Logla
b
& e
<
; © L4 -
o
%

by Mike Wharton
Solution to Problem

If you recall, there was a little problem
left for you to sort out in the last section. This
was to deduce the Truth Table of an array
made up of two-input NAND gates, and the
result which you should have arrived at is
givenin Fig. 1. Comparison of this table with
published ones will show it to be that of the
Exclusive-OR gate, (EX-OR). The common
symbol for this gate, also known as the
Difference gate, is shown in Fig. 2a. It is
called the Difference gate since a look at its
Truth Table will reveal that the output is high
only when the inputs are different; the
complement of this gate is the Exclusive-
NOR gate, (EX-NOR), whose symbol is
shown in Fig. 2b. This gate is also known as
an Equivalence gate, since its output is high
when the inputs are the same, and the Truth
Table for this gate is shown in Fig. 3.

A -] F
o] o] o]
[s] 1 1
1 0 1
1 1 0
Figure 1. Derived truth table for 2 input Exclusive
OR gate.
in In
Out Out
in : . in
Exclusive Exclusive
OR gate NOR gate
Figure 2. Symbols
A 8 C
o 0 1
o] 1 0
1 0 0
1 1 1

ye

"C.Cl_
P eyt
> L

e]

T

¥

A Beginner’s Guide to Logic Design Part 3

OR and EX-NOR gates, which are special
cases. The other gates have just one value of
logic output for a particular set of inputs; for
example, in a 2-input AND gate the outputis
always low except when both inputs are
high. In a 2-input NAND gate, the output is
always high, except when both inputs are
high, and this follows on for the 8-input
NAND gate, where the output is always high
except when all the inputs are high.

That this is so can be tested by con-
necting up a 7430 on a bread-board with a

Figure 3. Truth table for Exclusive NOR gate

it would be possible to produce an EX-
NOR gate by adding an inverter to the
output of the previous EX-OR gate made up
from NAND gates, thus using a total of five 2-
input NAND gates. This would be quite
wasteful of gates, and not surprisingly it is
possible to obtain both of these devicesina
single package. Thus Fig. 4a. shows the

pinout of the 7486, a quad 2-input EX-OR-

gate package, and Fig. 4b. gives the pinoutof
the 74266, the EX-NOR gate package.

This now completes the list of main logic
gates, although there are a few others which

46

Figure 4. Pinouts

can be obtained, but these really combina-
tions of the above types in order to obtain
‘programmable’ gates in the one package.
An example of this is the 7451 AND-OR-
INVERT gate, shown in Fig. 5; here it may be
seen that the package contains two AND
gates connected to the input of the NOR
gate. It is left as an exercise for the reader to
derive the Truth Table for this arrangement
of gates.

Multi-input gates

So far we have really only concerned our-
selves with gates having one or two inputs.
Many of the devices available have more
than this, as a glance at the relevant pages of
the Maplin Catalogue will reveal. For ex-
ample, the 7430 is an 8-input NAND gate,
shown for reference in Fig. 6 along with its
Truth Table. Fortunately, this does not make
the understanding of these gates that much
more difficult. If you look back at the
previous Truth Tables, as well as the one for

the 8-input NAND gate, you will see that they -

all Have a unique output state. An exception
to this rule are the Truth Tables for the EX-

7451 AND -OR-INVERT GATE

I <
|

1

w

i

14 13 12 11 10 9

-T— @

1 2 3 a 5§ ' 6 7

A|lB|C|DIE F|G|H Q -
o(o|o}jo0ojo|loOo]jOo|oO 1
1({o0|O0jOo]jOjO|O]O 1
o|l1]|]ojojo]|]o]|O]|O 1

' [}] 1 [}]]

D | 1 retc ¢ ' ' »

' i ' 1
ojo|lo|O0jo|loOo]|O]1 1
111 |1 1 1 1 1 1 [o]

Figure 6. Pinout and truth table
Maplin Magazine September 1983

LED wired to the output, as shown in the last
issue. If each of the inputs is connected to
logic 1 then the output will be found to be at
logic 0, with the LED extinguished. If one of
the inputs is now taken to logic 0, then the
LED will light up, and will remain alight while
any number of inputs are held at logic 0.

+5V
8x 10k
ctock 2 pull-up
= resistors
ii
1 83
Ho-o-e
. Poo—
£ H0- 00— 7430
3 [Po-o— o
3 150 0—4—
3
; P20 - 0—4
2 [fMo-o—4
%3 - 0—4

Figure 7. Part of counter/decoder circuit

The use of such a device may be demon-
strated by referring to the part of a circuit
shown in Fig. 7. The problem here was to
produce a signal from the output of the 8-
input NAND gate after the counter had

.counted a selectable number of clock
pulses. To achieve this action, each.of the
inputs is connected to logic 1 by a ‘pull-up’
resistor, thereby ensuring that the output
will be logic 0. The numbers shown by the
outputs from the BCD counter are the
number of clock pulses which need to be
counted before that particular output goes
high, assuming a start from zero. Without
going into any further detail of how the
outputs from the counter would appear, by
connecting the appropriate links it is pos-
sible to set the circuit to count any value of
pulses from 1 to 255. For example, if it were
required to count up to 23 clock pulses
before a logic 0 appeared at the outputof the
NAND gate, then the links for 1,2,4 and 16
would be made, since 1+2+4+16=23.

The individual puli-up resistors are
needed on the inputs in order to ensure that
any unconnected inputs are held at logic 1;
the value of these resistors is not all that
critical, but it must be remembered that the
output of the counter will be required to sink
the current through them when it goes low.
The BCD counter is a rather different type of
animal from the ones we have encountered
so far, belonging to the breed of sequential
logic devices. This is a whole range of
beasties which will be dealt with in a lot more
detail in a subsequent article.

Arithmetic Logic Units

Any reader who has perused books or
articles on the subject of micro-processors
or micro-computers, and these days it's
hard to avoid them, may well have come
across the term Arithmetic Logic Unit, or
ALU. This is the part of the micro-processor
which is concerned with ‘doing sums’ and
other logical operations. Needless to say, in
a real life processor, this section contains a
multitude of functional devices, but it is
possible to emulate one of its basic building
blocks, the Adder. Side-stepping the old
jokes about venomous snakes, the digital
adder comes in two types, the half-adder
and the full-adder. However, before we delve
into the workings of these circuits, it may
well be a good idea to brush up on some
binary arithmetic.

| am sure everyone reading this is fully
conversant with denary arithmetic, that is

September 1983 Maplin Magazine

working in powers of ten. In binary arith-
metic the same rules apply, but in this case
we are using the number base of two, with
the digits 0 and 1. When two denary (or
decimal) digits are added together there are
two possible situations:
a) a third digit, larger than the other two
results, but smaller than the base of the
number system, eg,

5 1
23 24
8 5 The new digit, 8 or 5 in

these examples, is called the SUM.
b) the third digit is equal to or larger than
the base of the number system,
5

8
+6 +7
1 1 1 5

CARRY SUM CARRY SUM In this case’

the position of the digits comes into play and
the answer consists of two parts, the SUM
and the CARRY. The generation of Sum and
Carry occurs whatever number base is in
use. In binary addition the generation of
Carry bits occurs much more often, as there
are only two digits.
0 0

1
+0 +1 + 1
o - 1 1 0

SUM SUM CARRY SUM
These examples cover nearly all the possible
combinations of binary addition, the only
other one being where the O and 1 are
reversed in the middle example!

Where binary numbers containing more
than one digit are to be added, then the
process can be broken down into a series of
repeated two-digit additions, until the pro-
cess is complete. For example:-

111
+0] +010
CARRY 11 SUM 1001 In the sec-

ond example, the addition of the first (right-
hand) digits of 0 and 1 gives a Sumof 1,and
no Carry; adding the next two digits, 1and 1,
produces a Sum of 0 and a Carry of 1. The
next stage is to add together 0, 1 and the
Carry; as before 0 and 1 give a Partial Sum of
1, and adding the 1 carried over gives a Sum
of 0 and a Carry into the next column. The

simple rules of binary addition may be

summarised in a Truth Table, shown in
Figure 8.

A B SUM CARRY
4] 0 4] [s]
[+] 1 1 4]
1 4] 1 4]
1 1 0 1

Figure 8. Binary addition truth table

Looking at this Table it is possible to see
that a Sum ORa Carry is the resultof a binary
addition, never a Sum-AND a Carry. To
perform this operation with logic gates, it i
only necessary to find ones which have the
same Truth Table as that for binary addition.
The circuit would require two inputs, Aand B
and two outputs to corresporid to the Sum
and Carry. This can, in fact, be achieved in
several different ways; ifyou look back at the
Truth Table for the EX-OR gate and the AND
gate it is apparent that the Sum part is the
same as the EX-OR truth table and the Carry
part is the same as the AND gate. Actually,
this is not quite a full solution, since no
account has been taken of the fact that a
Carry bit may have been produced by an
earlier stage, and hence this is known as the
half-adder.

Half-Adder Circuit

A digital half-adder circuit may be made
up, on a bread-board, following the diagram
given in Figure 9. Here it can be seenthat the
two gates which are required are the EX-OR

and the AND gates. Possibly the most
convenient method of making'up thiscircit
is to use single gates from a 7486 and a
7408, and connectthem up as shown. inthis
case the two bits to be added are applied to
inputs A and B to give the Sum and Carry
appear at the corresponding outputs. It is
also possible, remember, to make up such
gates as these from the common NAND
gate. We have already seen how the EX-OR
gate may be made up from four 2-input
NAND gates, and so to complete the picture
figure 10 shows how the AND gate may be
fashioned. It is left as a further exercise for
the reader to make up the half-adder circuit
from NAND gates and confirm that it is
logically identical to the first design.

4

4 7486

1
- A— 3
, suM
8 : >+

Y4 7408

Figure 9. Circuit for half-adder

2 7400

-1
A—4 3
B—i

]

5

Figure 10. AND gate using NAND gates

Full-Adder Design

The half-adder is incomplete in that no
provision is made for a ‘carry-in' from a
previous stage. In the case of the fuli-adder,
not only is account taken of this, but also a
provision is made for the possible genera-.
tion of a ‘carry-out’ to subsequent stages.
Again, the requirements of the fuil-adder’
may best be summarised in the form of a.
Truth Table; this will need to have three
inputs, A,B and Carry in, with two outputs,
Sum and Carry Out, as shown in Figure 11.

A 8 |CARRY [sum [cARY
o o o 0)
o o 1 1)
o 1 o] 1 [¢]
o 1 1 0 1
1 0 0 1 "o
1 o 1 o)
1 1 o 0 1
1 1 1 1 1

Figure 11. Truth table for binary full adder

The full-adder is, in essence, two half-
adders connected together to take account
of the extra bit carried in. The circuit for the
full-adder is given in Figure 12. Again,
although this is shown made up fresi
discrete gates, it can also be done with
NAND gates in the same manner as the half-
adder.

If more than two bits are to be summed
then the block can be repeated, with the
carry out from one stage being connected to
the carry in of the next stage. Finally, Figure
13 shows a couple of full-adders being used’
to add binary 11 and 11, giving 110;-ie
decimal 3+3=6.

Address Decoding

Still on the micro-processor scene, an-
other important use of TTL combinational
logic designs is in the area of address
decoding. The essential problem here is_fo
produce a signal in response to a unlque
pattern of bits on the micro- processor
address bus. This pattern of bits is#0f
course, the address of the device which is
being sought in order to send or receive data
along the data bus of the system. Typlcally,
Continued on page 64 47

