
elektor electronics - 10/200660

HANDS-ON FPGA

Paul Goossens

A typical bus system in a ‘normal’
microprocessor circuit consists of a
data bus, an address bus and several
control signals, such as RD/WR. The
peripheral ICs put their data on the
bus when requested to do so. During
the rest of the time, their inputs are in a
high-impedance state to give other ICs
a chance to put data on the bus. These
data ports are tristate ports, which
means they can be set to a high-
impedance state.

Different
In many FPGAs, it is not possible to
put internal signals in a high-imped-
ance state. In addition, a mistake in
the design can cause short-circuits or
data corruption on the bus. Tristate
ports are thus not used for the system
bus in such systems. Another factor is

FPGA Course (5)

Every embedded system uses
a system bus to transport
data between the various
components. This also applies
to systems implemented in
an FPGA. However, a
different sort of bus system
is commonly used in FPGAs.
This month’s article
introduces a bus system that
is often used in FPGAs.

that the peripheral electronics often
runs at a different clock speed than
the processor. This makes handshak-
ing necessary to ensure correct data
transport.
Several standard system busses have
been developed to avoid problems of
this sort in FPGA designs. This instal-
ment focuses on a system bus called
the ‘Wishbone bus’, which is used
quite often. It is used a lot at
www.opencores.com, a handy site
where you can download free designs
and subdesigns.

Minimum system
A minimum Wishbone bus with a sin-
gle master and a single slave is shown
in Figure 1. The dual data bus is clearly
visible. Each bus is unidirectional – one
bus carries data from the master to the

slave, while the other bus carries data in
the opposite direction.

The STB (strobe), CYC (cycle) and ACK
(acknowledge) signals provide hand-
shaking for each data transmission.
The slave can only respond to the
Wishbone signals if the STB_I and
CYC_I signals are both high. The mas-
ter sets WE (write enable) high to indi-
cate that it wants to write data to the
slave. If this signal is low, it means
that the master wants to read data
from the slave.
When the slave has finished process-
ing the data, it signals this by setting
the ACK signal high. The master pulls
the STB signal low in response. The
slave must then return its ACK output
to the low state.
This handshake protocol makes it pos-
sible to connect a slow slave device to

COUNT signal keeps track of how
many clock pulses have occurred since
the last write operation to this core.
When the value of this counter reaches
10, ACK_OK goes high. This signal
indicates that an ACK signal can be
generated now.
The ACK output signal is finally
defined in line 101. This core also gen-

erates an ACK if an invalid address is
placed on the bus (sel = ‘0’). This is
designed to prevent the processor from
hanging if the software accidentally
uses an incorrect address.
Note that the ACK signal is an asyn-
chronous signal. In other words, it is
not generated using a flip-flop. This is
one of the requirements of the Wish-

10/2006 - elektor electronics 61

WE O

CLK I

STB O

RST I
CLK I

WE I

060025 - 5 - 11

RST I

DAT I7...I0DAT O7...O0
DAT O7...O0DAT I7...I0
ADR I15...I0ADR O15...O0

STB I
CYC O

ACK I

CYC I

ACK O

Master
(e. g. 8052)

Slave
(e. g. OUTPUT)

Clock
and

Reset

Figure 1. A minimum Wishbone bus with a single master and a single slave.

CLK

RESET

DAT

ADR

WE

CYC

STB

ACK

Master Slave

IN IN

IN IN

IN

IN

IN

IN

IN

IN

OUT

OUT

OUT

OUT

OUT

OUT

VALID

VALID

XXXXX XX

XX XX

XX XX

060025 - 5 - 12

Figure 2. Here you can see that slave needs two extra clock cycles to complete the transaction.

Part 5: bus systems and interconnections
a much faster master, since the slave
can set its ACK signal high sometime
later. This gives a relatively slow slave
enough time to process the data. Fig-
ure 2 shows a read operation of this
sort, in which the slave needs two
extra clock cycles to complete the
transaction.

Example
We have prepared a simple example in
ex13. Here the 8051 microcontroller has
a master interface for the Wishbone
bus. The bus is connected to a simple
slave device that enables the master to
drive eight outputs. The slave interface
causes the ACK signal to appear with
a delay of 10 clock pulses. This makes it
possible to display the handshake
process using the logic analyser built
into Quartus.

The processor used here (T8052) uses
the Wishbone bus for all transactions
with XRAM memory in the region
starting at address 0x1000. The only
extension unit on this Wishbone bus is
an 8-bit output named wish_output.
This extension also has an internal
address decoder. This is normally
placed in a separate bit of hardware,
but for this simple example we placed
it in the core instead.
Seven of the eight outputs are con-
nected to the LEDs on the extension
board. The software causes the LEDs
to light up sequentially for a ‘running-
light’ effect.

Internal
Processing the Wishbone signals is
fairly simple. The sel signal detects
whether the address on the system
bus matches the address of the exten-
sion (0x8000).
The code starting on line 63 causes the
outputs to go high after a reset. When
a valid address appears (sel = ‘1’)
while a valid write cycle is in progress
(STB = ‘1’, CYC = ‘1’ and WE = ‘1’),
the data present at the DAT_I input is
stored in the output register by the ris-
ing edge of the clock signal.
Generating the ACK signal is some-
what more complicated in this case
because it has to be delayed. The

bone specification. ACK must go low in
response to setting STB or CYC low.

Experiment
In the software, we send the same
value to the output 20,000 times. This
slows the running light down to the
point that you can observe the effect
visually.
ACK is delayed by 10 clock cycles in
wish_output. If you increase this delay,
the running light will also slow down.
You can easily make this experiment
yourself. Simply change line 87 of
wish_output.vhdl to the following line:

IF (COUNT=200) THEN

Recompile the project and load it into
the FPGA. Now the running light will
run quite a bit slower than before. This
proves that a slow slave on the Wish-
bone bus causes the master to run
slower. This slowdown only occurs
during read and write operations with
the slave. All other instructions in the
microcontroller are executed at full
speed.

Multiple slaves
In practice, microcontroller circuits
usually have more slaves than just a
single I/O slave. All these slaves must
communicate with the microcontroller
via the same bus. This makes it neces-
sary to add another piece of hardware
that uses the address to determine
which slave is being addressed.
In ex14 the microcontroller is con-
nected to two slaves. They are nearly

the same as the slave used in the pre-
vious example. The address input has
been omitted because there is only one
write register and one read register.
The slave also has eight inputs.

The job of the address decoder (wish-
bone_decoder) is to pass the signals to
one of the two slaves depending on
the address. We use two signals for
this purpose (S1_SEL and S2_SEL),
which go high when the right address
appears on the Wishbone bus. The cor-
responding code for S1_SEL is:

S1_SEL<=’1’ WHEN ADR_I=x”8000”
ELSE ‘0’;

In this case address 0x8000 was
selected for slave 1.
A master–slave transaction can only
occur when the CYC and STB signals
are both high. It’s easy to generate
these signals now for slave 1:

S1_STB_O <= STB_I AND S1_SEL;
S1_CYC_O <= CYC_I AND S1_SEL;

The above lines of code ensure that the
STB and CYC signals for slave 1 do not
go high unless the slave is addressed.
Finally, the data bus from the master to
the slave has to be modified. If slave 1
is addressed, data must be sent from
slave 1 to the master, and of course the
same applies to slave 2. This is pro-
vided by the following line of code:

DAT_O_MASTER <= S1_DAT_I WHEN
(S1_SEL=’1’) ELSE
S2_DAT_I WHEN (S2_SEL=’1’)
ELSE x”00”;

The same considerations apply to the
ACK signal. It is passed on to the mas-
ter in a similar manner.

Versatile
The handshake protocol makes the
Wishbone bus very versatile. Besides
the features already described, the bus
can be extended with other signals
such as an error signal, it can be con-
figured so several masters can drive a
single bus, and so on. If you want to
know more about this, you can down-
load the bus specification from the
Opencores website.
There are also several other SoC
busses. Most of them also use a hand-
shake protocol, which makes it easy to
implement a bridge between different
bus systems.

Hierarchic VHDL
Up to now we have used graphic rep-
resentations in our course to intercon-
nect various blocks. However, you can
also describe a complete design in
Quartus using only VHDL.
We have prepared two examples to
show how this can be done in VHDL.
The first example (ex15) is a simple cir-
cuit consisting of two VHDL files and a
graphic file. The graphic file is the ‘top-
level entity’, which means it is the high-
est level in the hierarchy. The purpose of
this file is to couple the subdesigns to
each other and link the signals to the
outside world (in other words, the FPGA
pins). This is the method we have used
up to now in all the examples. Figure 3
shows this in schematic form.

elektor electronics - 10/200662

HANDS-ON FPGA

Figure 3. A simple design consisting of two VHDL files and a graphic file.

The second example (ex16) contains
the same design, but here the top-level
document has been replaced by a
VHDL file. The first statement in the
ex16.vhdl file (see inset) is a standard
ENTITY declaration. The inputs and
outputs of this entity are ultimately
connected to the pins of the FPGA,
since this is our top-level document.
The input and output signals of the
AND_2IN subdesign are described in
lines 13-19. The signal names in this
description must be the same as the
names used in the AND_2IN.VHDL file.
The same information must be pro-
vided for the OR_2IN subdesign.
Next we declare the signals used in
this design. The signal names are the
same as the names already used in
example 15. In that example, these sig-
nals were drawn and labelled. In
VHDL, this corresponds to signals of
type STD_LOGIC.
A component with the name inst1 is
instanced in line 38. This reference is
comparable to the designation ‘IC1’ or
the like in a normal schematic dia-
gram. The type of component to be
placed here is described after the colon
(:). In this case it is the component
AND_2IN.
Finally, the inputs and outputs of this
component are connected to signals
starting with line 41.
If you compare the two examples, the
principle involved will quickly become
apparent.

Compatible
The advantage of describing a design
entirely in VHDL is that the resulting
source code is compatible with other
CAD programs. Such a design can thus
be used with the software of a differ-
ent FPGA manufacturer without too
much trouble. It’s even possible to pro-
duce a real ASIC using exactly the
same source code.

Another advantage is that it is often
faster to modify a VHDL file than to
make the corresponding changes in a
graphic design, especially if there are
a lot of signals between the various
subdesigns.

(060025-5)

Web links
Opencores homepage:
www.opencores.org

Wishbone specification:
www.opencores.org/projects.cgi/web/
wishbone/wbspec_b3.pdf

10/2006 - elektor electronics 63

Listing ex16.vhdl

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY ex16 IS
PORT

(
SWITCH1, SWITCH2, SWITCH3, SWITCH4 : IN STD_LOGIC;
LED1, LED2, LED3 : OUT STD_LOGIC

);
END ex16;

ARCHITECTURE arch OF ex16 IS
COMPONENT AND_2IN
PORT

(
A,B : IN STD_LOGIC;
OUT_SIGNAL : OUT STD_LOGIC

);
END COMPONENT;

COMPONENT OR_2IN
PORT

(
A,B : IN STD_LOGIC;
OUT_SIGNAL : OUT STD_LOGIC

);
END COMPONENT;

SIGNAL IN1,IN2,IN3,IN4 : STD_LOGIC;
SIGNAL AND1_OUT,AND2_OUT, OR_OUT : STD_LOGIC;

BEGIN
IN1 <= SWITCH1;
IN2 <= SWITCH2;
IN3 <= SWITCH3;
IN4 <= SWITCH4;

inst1 : AND_2IN
PORT MAP
(

A => IN1,
B => IN2,
OUT_SIGNAL => AND1_OUT

);

inst2 : AND_2IN
PORT MAP
(

A => IN3,
B => IN4,
OUT_SIGNAL => AND2_OUT

);

inst3 : OR_2IN
PORT MAP
(

A => AND1_OUT,
B => AND2_OUT,
OUT_SIGNAL => OR_OUT

);

LED1 <= AND1_OUT;
LED2 <= OR_OUT;
LED3 <= AND2_OUT;

END;

