
ELECTRONICS
MEM -"Tim

EXPERIMENT
Part 4 by Graham Dixey C. Eng., M.I.E.R.E.

Introduction
A register is also a sequential logic

circuit but, whereas a counter is con-
cerned with the process of 'counting' the
input data, the register is principally
concerned with storing it. However, this
bold statement can be a little misleading,
since it implies an event that is going on for
a substantial period of time, which may not
be the case at all. As an example of this
consider the familiar electronic calculator.
When two numbers are added together,
each is deposited into a register and on
the command 'add' the two numbers are
replaced by their sum. This sum is held in
a register that only a moment before held
one of the numbers. Thus, the storage of
the original number was of very short
duration. Another example is when data is
being sent from a microcomputer to a
printer. It passes out via a register, each
byte in turn being held by this register
until it is replaced by the next one in the
queue. Thus, a register is really a string of
flip-flops that can hold a data word for a
period of time, no matter how long or short
that is. There are also certain other ways in
which particular types of register can be
useful and they will also be discussed.

To start with the most elementary
idea of a register, consider Figure 1, in
which the four possible modes of opera-
tion are shown. These modes arise be-
cause there are two ways in which data
can be transmitted from point to point.
These ways are known as 'parallel' and
'serial' transmission respectively.

In parallel transmission, there is one
line for each bit of the data word and all
bits are transmitted at once. Thus an
eight -bit word (a byte) requires eight
separate lines - an example of parallel
data transmission is the well-known Cen-
tronics printer interface. Because all bits
are sent at once, parallel transmission is
fast but requires lots of conductors.

In serial transmission, there is one
line only, which all bits have to share. They
are therefore sent down it one at a time.
Thus, no matter how many bits there are in
the data word only one transmission line is
used but the process gets slower and
September 1988 Maplin Magazine

Serial
In

(a)

t11 t
Parallel In

(c)

Serial
Out

Serial
Out

Serial
In

Parallel Out

t t f t t

(b)

Parallel Out

Parallel In

(d)

Figure 1. The four main modes of register operation. (a) Serial In, Serial Out (SISO); (b) Serial In,
Parallel Out (SIPO); (c) Parallel In, Serial Out (PISO); (d) Parallel In, Parallel Out (PIPO).

slower as the bits queue up for their turn
on the line! The advantage is the simplicity
of it. An example of serial transmission is
the RS232 interface for printers and
modems.

How does this relate to registers?
Quite simply. Each flip-flop of a register
holds just one bit of the data word. Serial
or parallel operation refers to the ways in
which the data is loaded into the register
or sent out from it.

For example, one mode is Serial In
Serial Out (SISO). There is only one input
line and only one output line. Data bits are
'clocked in' one at a time and then
'clocked out' in a similar fashion. For
example, if the register is 'eight bits wide'
(meaning it has eight flip-flops), it will take
eight clock pulses to store a data word and
a further eight clock pulses to 'shift' it out
again. Note the use of the word 'shift'.
Registers of this type are known as shift
registers. In continuous operation a
stream of bits flows in at one end and out at
the other.

However, it is possible to shift the
data in serially until all flip-flops hold one
bit of the data word and then access all

bits of the data word at once, so that the
output is 'parallel'. Obviously this mode of
operation is known as Serial In Parallel
Out (SIPO).

Reversing the latter mode is also
possible. With one clock pulse the whole
register can be loaded with the data word,
which can then be shifted out serially. This
is known as Parallel In Serial Out (PISO)
operation.

A little thought will reveal that the
SIPO type is a 'serial to parallel' converter,
while the PISO type is a 'parallel to serial'
converter. The significance of this can be
seen where a computer is connected
either to another computer or to a
peripheral through a serial connection, i.e.
a single line. Since the internal organisa-
tion of a computer is on parallel lines
(referring to the data bus), there must be a
parallel to serial conversion at the sending
end and a serial to parallel conversion at
the receiving end. It is an ideal function for
registers to perform.

Finally, it is possible to load a register
by parallel input and access it also by
parallel mode. This is Parallel In Parallel
Out (PIPO).

47

+5V

The D -type Flip-flop
As a general (but not invariable) rule,

counters use JK flip-flops and registers
use a type known as the D flip-flop (D
stands for Data). The D flip-flop is rather
simpler in operation then its JK equivalent.
Both its symbol and truth table are shown
in Figure 2. It has a single input line,
marked D, a CLOCK input and a pair of
complementary outputs, of which the Q
output is the more useful. The truth table
reveals its true simplicity.

The logic level, logic 0 or logic 1, to
be stored is first applied to the D input.
When a clock pulse is applied this level at
D shifts to the Q output, where it will
remain until a new data bit is applied to D
and a further clock pulse arrives. Thus, the
Q output merely copies whatever is at the
D input after the arrival of a clock pulse.

As an experiment, try connecting a
low -frequency clock oscillator to the
clock input of a D flip-flop, say 1Hz (a
suitable design appeared in Part Three).
At the same time connect a switched logic
level to the D input. Connect a logic level
indicator to the Q output. Randomly vary
the logic level input and note how, on the
arrival of the next clock pulse, the logic
level applied to D transfers to Q.

Clock

D 0

0

D

(a)

on

X

X

(b)

0

On .1

0

Figure 2. The D type flip-flop. (a) Circuit
symbol; (b) Truth Table showing that, after
clocking, the output at Q equals the input at
D. Note: Qn = state of Q before clock pulse;
Qn +1 = state of Q after clock pulse;
X - 'Don't care', i.e. can be 0 or 1.

The 7474
D -type Flip-flop

This package contains two D flip-
flops and its pin -out diagram appears in
Figure 3. This is an example of a `positive
edge triggered flip-flop'. This was men-
tioned in Part Three but will be repeated
here. The clock pulse can be considered
as two transitions occurring one after the
other. The first is from Logic 0 to Logic 1
(the positive edge) and the second is from
Logic 1 back to Logic 0 (the negative
edge). In a positive edge triggered flip-
flop only the first transition matters. The
data transfer from D to Q occurs at this
instant only. The duration of the clock
pulse is of no importance, nor is the
subsequent trailing edge.

OV

Figure 3. Pinout diagram of the 7474 Dual D type, positive edge triggered, flip-flop.

Each flip-flop has two connections
not so far mentioned. These are marked
on the 'chips' as SET and CLR and are
known usually as 'preset' and `preclear'.
The 'bubble' on each of these indicates
that they are 'active low' connections, that
is taking the terminal to Logic 0 causes the
required action to take place. It is usual to
connect all the CLR pins together for all
the flip-flops in a register and call this the
RESET line. Taking this low, momentarily,
clears all the flip-flops, that is all Q outputs
go immediately to Logic 0. The SET pins
can be used when required to preset a
given value into a register, that is to give it
a particular state to start off with rather
than starting with a clear register. Exam-
ples of this use appear later.

Shift Registers
The simplest types of register are the

SISO and SIPO types. Their circuit dia-
grams appear in Figure 4. Basically they
are the same; it is only in the way they are
used that they differ. The data input to the
register is the D input of the first flip-flop;

the data input of any subsequent flip-flop
is always the Q output of the preceding
one. All flip-flops are clocked at the same
time.

Purely for simplicity, only four -bit
registers are shown. The same principles
apply however many stages there are. To
study the mode of operation, connect up
this register using two 7474 ICs (Figure 5).
Connect all CLR pins together and wire
this common line through a switch to the
OV line; leave the switch open for the
moment. Connect a de -bounced switch
(see Part Three for details) to the clock
input and logic level indicators to each of
the Q outputs. Finally connect a logic level
switch to the data input. Switch on; the Q
outputs will be quite arbitrary. Momentari-
ly connect the RESET line to OV using the
switch provided for this purpose. The Q
outputs should now all be zero. Set the
logic level at the input to Logic 1. No
changes should be observed in any of the
flip-flops. Leave this level as set and pulse
the de -bounced switch four times. The Q
outputs should take up the successive

Serial
Input

(SISO and
SIPO)

Clock

D

CLR
U

Parallel Output (SIPO)
A

CLR CLR

Reset

Serial
0 Output

(SISO)

CLR

Figure 4. A 4 bit Serial In, Serial Out shift register (SISO), with the simple modification needed to
get a parallel output (SIPO).

48 Maplin Magazine September 1988

Logic

+5V

1k

Logic 0/ Input

OV

De -Bounced
Switch

12

CLR
01

7474

11

D

CLR
013

Reset

OV

D
12

CLR

01

74 74

11

D

0 Logic level
indicators

CLR
013

Figure S. The circuit of Figure 4 implemented with two 7474 ICs and the necessary hardware for evaluating it.

states: 1000, 1100, 1110 and 1111, as shown
by the four LEDs of the logic level
indicators. If it doesn't do this, check in
turn - the circuit wiring, the ICs them-
selves, the output from the de -bounced
switch; finally, "have you left the RESET
switch low?"

If all is well, consider the fact that the
data word 1111 is shown by the four LED
indicators. In other words, not only has it
been stored but it is available at the Q
outputs if four lines were to be connected
to these outputs. Thus, although the data
word was entered serially using four
clock pulses, it is now available at the Q
outputs without any further action being
necessary. This is SIPO operation.

But if it is desired to remove the data
word serially, four more clock pulses will
be needed. This will normally load a new
word so set the logic level input switch to
Logic 0 and pulse the de -bounced switch
four more times. The logic levels at the Q
outputs should now take up the successive
states: 0111, 0011, 0001 and 0000. Note that
the original data word has been progres-
sively shifted to the right until it was
replaced by the new word 0000. This is an
example of SISO operation. What has not
been done in this case is to 'catch' the data
word as it left the register. Special provi-
sion would have to be done to do this;
nonetheless, the basic operation of serial
shifting has been shown.

Parallel In Parallel Out
and Parallel In Serial
Out Registers

These registers, shown in Figure 6,
illustrate that sometimes extra gating is
needed to get the register to perform in
particular ways. In these cases, each
flip-flop requires a pair of two -input
NAND gates and an inverter. These are
concerned with the parallel loading. Once
the parallel load has taken place, the
contents of the register can be accessed in
parallel mode merely by connecting wires
to all of the Q outputs, or the data can be
obtained serially by clocking the register
four times, as already described for the

Serial In
(Not used)

Clock

Load

A

9

SET

D

CLR
0

B

9

Parallel Out (PIPO)

(i)

SET

D 0

CLR
0

9C

(L)

SET

D 0

CLR
0

SET

D

A A A

CLR
0

A A

Parallel In (PIPO or PISO)

Serial Out
(PISO)

Figure 6. Circuit diagram(s) for the Parallel In, Serial Out (PISO) and the Parallel In, Parallel Out (PIPO) registers.

September 1988 Maplin Magazine 49

SISO and SIPO types.
The parallel loading works as fol-

lows. The line marked LOAD is normally
held at Logic 0. Thus, both NAND gates of
each pair associated with each register
stage have logic 1 output levels. These
drive the SET and CLR pins of the
flip-flops; both pins being at logic Is,
nothing happens. Each DATA IN line will
have either a Logic 0 or a Logic 1 on it,
according to the data to be loaded. This is
applied directly to one NAND gate and in
inverted form to the other NAND gate.
Consequently, one NAND gate of a pair
will have Logic 1 and Logic 0 at its inputs,
while the other will have both inputs at
Logic 0. Now let the LOAD line go to Logic
1. One of each pair of NAND gates will
now have two Logic 1 inputs, the condition
that causes the output of a NAND gate to
go to Logic 0. Since the SET and CLR
inputs are negative -acting, each flip-flop
will become SET or CLEAR according to
the logic level at its DATA IN input. The
best way to follow this operation is to
connect up the circuit and use a logic
probe to look at the logic levels on all pins
of the NAND gates and inverters during
the load operation.

To connect up the circuit will require
an LED logic level indicator at each Q

output, a set of four logic level switches for
the four DATA IN lines and a switch for the
logic level on the LOAD line. Once the
data word has been loaded and the
operation fully understood, the shifting
operation can be shown by pulsing the
clock line with a de -bounced switch.

The Ring Counter
This is an interesting example of a

shift register apparently masquerading as
a counter, if the title is to be taken literally!
It certainly can be used as a particular
type of counter but it has a more interest-
ing and useful application. It is frequently
used for generating a 'walking one' pat-
tern for scanning keyboards, multiplexing
seven -segment displays and generating
dot-matrix characters on video displays. It
works very simply as follows.

The diagram of Figure 7 shows that
the Q output of the last flip-flop is
connected back to the D input of the first
flip-flop, forming the `ring' of the title.
Thus, there is no actual input apart from
the clock. To set it up it is necessary, when
it is first switched on, to clear all stages
(using a RESET line) and then SET just one
of the Q outputs, say the first, to Logic 1.
The 'preset' pin is used for this. If it is now
clocked the 'Logic 1' shifts to the next

stage to the right, its place being filled by a
Logic 0. Every clock pulse performs the
same action so that continuous clocking
causes the Logic 1 to keep circulating.
Naturally, when it reaches the Q output of
the last flip-flop it will pass around the ring
to the D input of the first, to keep the
process going.

The sequence, for a four -stage ring
counter, is 1000, 0100, 0010, 0001, 1000, etc.

Try this circuit out by wiring it up with
a pair of 7474 ICs. Connect LED logic level
indicators to all Q outputs and a low -

frequency clock to the clock input. At
about 111z it is possible to sit back and
watch the 'one' circulate with ease.

The Twisted Ring
Counter

This simple derivative of the ring
counter just discussed is formed merely
by taking the feedback from the not -Q
output of the last flip-flop rather than the Q
output (Figure 8). It is initialised in the
same way - cleared and then a single 'one'
put in. What happens when it is succes-
sively clocked? Would you be surprised
to find out that the sequence is as follows?

1000, 1100, 1110, 1111, 0111, 0011,
0001, 0000, 1000, etc.

Preset
Flip -Flop A

Clock

Reset

B C

CLR CLR
0

D

CLR CLR

Figure 7. An example of a register with 'feedback', the Ring Counter.

Preset
Flip -Flop A

Clock

Reset

B C

CLR
V

CLR
0

CLR-0-
0

CLR

Figure 8. If the feedback is taken from the not Q output of the last flip-flop instead, the circuit of Figure 7 becomes a 'twisted ring' counter, with
quite a different sequence.
50 Maplin Magazine September 1988

Outputs

+5V OA OB QC OD SRT SLT

0 00
Ott 014 13 12 11 10 9 8014 0

7495

3 4 5 6 7
10 200 0 0 0 0 0 0

Serial A BC D Mode OV

In
(A) Inputs

Outputs
,_

+5V H G F E CLR Clock

014 013 012 011 010 09 08

74164

2 3 4 5 6 7
0 0 0 0 0 0 0

A B C D OV

l l--,e--.,
Serial Outputs
Inputs

Parallel Inputs
Serial

+5V Enable DC B A In HOut

011 010 09016 015 014 013 012

74165

3 4 5 6 7
0

810 200 00 0 0 0 0
Load Clock E F G H HOut OV

.
Parallel Inputs

Figure 9. Pinout diagrams for some
MSI shift registers.

It is interesting to notice that 'four'
flip-flops give rise to 'eight' quite distinct
states. In fact the number of states is
always twice the number of flip-flops.
Therefore, if five flip-flops are used, the
number of states are ten - in other words
we have a 'decade counter'. The fact that it
is not the normal binary sequence for 0-9
is not really important as long as the state
of the counter at any instant can be
recognised by suitable decoding logic.
Thus, if 0000 represents '0', then 1000
represents '1', 1100 represents '2' and so
on. This code is called 'Johnson Code' and
the twisted ring counter is often known as
a 'Johnson Counter'. It has the characteris-
tic of being a very fast synchronous
counter, using shift register principles.

Further Work with
Registers

The registers discussed so far have

September 1988 Maplin Magazine

all been assembled from flip-flops and
gates in individual IC packages. However
there are, of course, fully operational
registers contained within single pack-
ages. These often offer particular facilities
that would be rather tedious to provide by
interconnecting flip-flops and gates. A
few of these will be discussed now, to
round off this feature.

The 7495 Four -Bit Left
Right PIPO Register

This comes in a 14 -pin DIL package
and the pin -out diagram, together with
those for the 74164 and 74165 registers, is
shown in Figure 9. It is used as follows.

In this register all D inputs and Q
outputs are individually accessible. It is
possible to parallel load data into it and
then either access it immediately (PIPO
mode) or shift it left or right. Reversible
registers normally require a fair amount of
extra logic so having it 'all on one chip' is a
decided advantage. It is possible to
cascade these registers to make, for
example, an eight -bit register.

There are two modes, known as
SHIFT and LOAD. To go into SHIFT mode,
the 'mode' input must be taken low. The
negative edge of a clock pulse on SRT
shifts data one stage `to the right'. Similarly
a negative edge on the other clock pulse,
SLT, will shift the data one stage left. Thus,
two clocks are needed, though in practice
it could be the same clock switched
between the SRT and SLT pins. Shifting
works exactly as described for previous
registers.

To go into LOAD mode, the 'mode'
input is taken high and the data presented
at the inputs LA - LD is entered into the
register when a negative -going transition
is made at the shift -left input (SLT). From
this it can be seen that the SLT input is
dual-purpose, shifting data left in SHIFT
mode and loading data in LOAD mode.

The 74164 Eight -Bit
SIPO Shift Register

This register, which has a right -
shifting ability only, can handle serial -in
data in the usual way, but can be pre -
loaded with a Logic 0 or Logic 1 input as
required. The data may be output in either
parallel form or serial form.

For normal operation, one of the
Serial Inputs is held high and the other
becomes the data input. The Clear pin is
also held high (taking it low momentarily
clears the register). Data is shifted right
one stage on every positive clock edge.
To enter a Logic 1 into the register both
Serial Inputs must be taken high. Taking
either Serial Input low enters a Logic 0. It is
essential that the clock is bounceless and
noise -free.

The 74165 Eight -Bit
PISO Register

This register has the versatility of
being able to function as a straightforward
Serial In Serial Out shift register or can be
loaded with parallel data, which can then

be shifted out serially.
For normal operation, the Enable pin

is held low and the Load pin is held high.
Data in is applied to the Serial In terminal
and shifts right one stage on every positive
clock edge.

To parallel load the register, the Load
pin is momentarily taken low while the
data input is applied to the parallel input
pins A - H.

Shifting may be disabled at any time
by taking the Enable pin high.

With the previous experience of
connecting up and testing the other regis-
ters mentioned earlier, it shouldn't be too
difficult now to devise schemes for testing
the above three registers. One learns best
by trying out a variety of circuits in this
way.

An Oscilloscope Probe
There is sometimes a problem when

using an oscilloscope to view the logic
waveforms of TTL circuits. The input
capacitance of the CRO may 'kill' the
waveform at the test point and what is
needed is some means of isolating the test
circuit from these unwanted effects. This
can be achieved quite easily using just two
components -a resistor and a capacitor.
The resistor is chosen to give attenuation
together with the input impedance of the
CRO, 10:1 being usual. See Figure 10. The
capacitor is wired in parallel with the
resistor RI and is chosen so that the time
constant of RI and C1 equals the time
constant of R,, and C,0 for the CRO. This
gives the widest possible bandwidth.

To take an example, the typical input
impedance of a CRO consists of a parallel
combination of a 1M resistance and a
capacitance of the order of 10 - 50pF, say
30pF. Therefore, for 10:1 attenuation, RI
should be 9M. This gives the relation that:

9M x Cl = 1M x 30pF

From which C I =
(1 x 30)

9
- 3.3pF

Figure 10. Probe design for a CRO.

It should be quite possible to assem-
ble these two components into a dis-
carded ball -pen case to make a useful
probe, using a short length of co -axial
cable between the probe and the Y input
of the CRO.

51

