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When you've got a circuit schematic with 
enough interconnections to make a traffic 
planner ill, how do you analyze it without 

getting ill? Network analysis! 

MOST OF THE MATHEMATICAL OPERATIONS USED IN 

electronics are performed for one of two purposes. 
First, the math helps to analyze a circuit. In analyz- 

ing a circuit, you find out not only how it works, but what the 

various current, voltage, and impedance levels are. Circuit 
analysis allows you to experiment with the circuit mathe- 

matically to determine how conditions change if one or more 

parameters are varied. 
The second reason for this type of math is circuit design. 

Whenever you wish to create a new circuit to perform a 

specific function, you must be able to specify what you want, 

then work backwards to synthesize the circuit that will give it 
to you. The math lets you do that on paper. 

Circuit analysis in electronics is really not all that difficult. 
Typically, a great deal of it can be done with the basic 

electrical laws you no -doubt learned somewhere along the 

line. Specifically, I am speaking of Ohm's law and 
Kirchhoff's laws. Both are simple mathematically and very 

easy to understand and apply. (See the sidebar entitled 
"Ohm's and Kirchhoff's Laws" for a quickie review of those 

important electronics laws.) 
When the circuits are essentially simple series and parallel 

circuits, all you need is Ohm's and Kirchhoff's laws to 

analyze and solve them completely. But as the circuits get 

more complex, the laws, while they still apply, are more 

difficult to use. In some cases complex circuits defy analysis 
or design. That's where special circuit theorems come into 
play. Over the years, many different techniques have been 

developed for analyzing and designing electronic circuits. 
The theorems are really not any more difficult to understand 
or apply than Ohm's or Kirchhoff's laws, but they have high 
faluzin' sounding names and often intimidate people. In real- 

ity, they are nothing more than tricks and shortcuts that help 

you speed up and simplify the analysis and design of circuits. 
In this article, we'll cover the popular and widely used 

Thevenin's theorem. 

Voltage Sources 
Almost ally electronic circuit can be represented by the 

simple equivalent circuits shown in Fig. I. The circuits con- 
sist of a voltage source with an internal impedance and some 

type of load. In Fig. IA, the source is a battery with a voltage 

of Vs and its internal resistance Rs connected to a resistive 
load Rt.. A simple example might be a flashlight where the 

battery represents some 1.5 -volt D cells, and the load repre- 

sents the light bulb. Another example might be where the 

battery in Fig. IA represents a DC electronic power suppl 
with its internal resistance Rs while the load represents one or 

more electronic circuits. 
In Fig. IB, the voltage source is an AC generator with its 

internal impedance connected to a load. That might represent 

any number of circuits. For example, the AC generator might 

represent the output of an amplifier with its internal imped- 
ance Rs, while the load RL may represent a speaker. Another 
example is that the voltage source might represent the class -(' 
output amplifier of a CB transmitter with its output imped- 

ance connected to a 50 -ohm load which represents an antes 

na. Those are only a few examples, but you get the idea. 

Almost any electronic circuit can be simplified until it is 

represented by an equivalent circuit similar to those shown in 

Fig. I. In some cases, you will hear the internal resistance 
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Fig. 1 -These are the simplest ways of representing a 

current or voltage source. They are known as Thevenin 
equivalents and they greatly simplify circuit analysis. 
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Ohm's and 
Ohm's law is a mathematical statement of the relationship 

between the current, voltage and resistance (or impedance) in 
a circuit. It states: 

"The current is directly proportional to the applied voltage 
and inversely proportional to the resistance (or imped- 
ance)." 

In mathematical form, Ohm's law is expressed as: 

1 = V/R 

where I is the current in amperes, V is the voltage in volts, and 
R is the resistance in ohms. For example, if a 20 ohm resistor 
is connected to a 12 -volt battery, the current is: 

1=12/20= .6 ampere 

Using algebra, you can rearrange the above formula to 
calculate the voltage or resistance: 

V =IR 
R = V/1 

Kirchhoff's Laws 
There are two basic Kirchhoff's laws, one for series cir- 

L nits, the other for parallel circuits. Kirchhoff's voltage law 
for series circuits states: 

"The sum of the voltage drops across components in a 
series circuit is equal to the source voltage." In Fig. A, that 
can be written mathematically as: 

Vs= V, +V, +V3 

where Vs is the source or applied voltage and VI, V2 and V3 

V1 =8V 

r- V2 =6.5V 

i-- 
V3 =2.3V 

r- 

Kirchhoff's Laws 

R1 R2 R3 

VS= 16.8V 

+il It 
Fig. A-Kirchhoff's voltage law for series circuits simply 
states that the input voltage must equal the sum of the 
voltage drops. That means no voltage "leaks" out. 

QI.. 2.3A 

R1 12 7A R2 13 = 1 2A R3 

Fig. t3- Kirchhoff's current law for parallel circuits simply 
states that the source current must equal the sum of the 
current through all branches. The electrons must remain in 
the circuit and return to the current source. 

are the voltages across R1, R2, and R3. In Fig. A, the source 
voltage is: 

8+6.5+2.3=8 volts 

You can also rearrange the formula to solve for one of the 
resistor voltages if the source voltage and the other compo- 
nent voltages are known. For example: 

Kirchhoff's current law for parallel circuits states: 
"The sum of the currents in the branches of a parallel 

circuit is equal to the total line current drawn from the 
source." 

In Fig. B, that is expressed as: 

IT =11 +I2 +13 

where IT is the total line current supplied by the battery and 
II, I2 and 13 are the individual branch currents in the resistors. 
In that case, the total line current is: 

IT =.4 +.7 +1.2 =2.3 A 

You can also rearrange the formula to solve for any branch 
current. To find I2 for example: 

I2 =1T -II -I3 
U2= 2.3- .4- 1.2 =.7 A. 

The three laws are used in the solution to almost any circuit 
problem. Commit them to memory and apply them as 
needed. 

referred to as the output impedance of the voltage source. 
The whole idea of most circuit theorems is to attempt to 

simplify the larger, more- complex electronic circuits and 
convert them so they can be represented by a simple circuit 
like those given in Fig. I. In most cases, all circuits can be 
reduced to the equivalent of a voltage source in series with its 
internal resistance and the load. That is, in fact, the whole 
purpose of Thevenin's theorem. By using Thevenin's theorem 
along with the usual Ohm's and Kirchhoff's laws, you can 
easily reduce most circuits into a Thevenin's equivalent 
which is essentially a voltage source in series with its internal 
resistance and a load. But before we talk in detail about the 
Thevenin's theorem process, let's get a little -more familiar 
with voltage sources. 

In electronic- circuit design, engineers strive to achieve 
what is known as an ideal voltage source. An ideal voltage 
source is some component or circuit that supplies a fixed 
output voltage to a load. That voltage, of course, will cause 
current to flow through the load and in that way produce some 

useful end effect. The problem is most voltage sources are not 
ideal. They will not provide a constant output voltage for all 
load values. Changing the load resistance invariably will 
change the amount of voltage supplied by the voltage source. 
The reason for the change is that all practical voltage sources 
have a built -in internal resistance or output impedance. Take 
a battery for example. It is about as close to a perfect voltage 
source as you can find in practice. You can almost connect 
any value of load resistance to a typical D cell and its output 
voltage will remain at approximately 1.5 volts. The reason for 
that is that the battery has an extremely low internal resistance 
(output impedance). It is usually so low, compared to the load 
resistance, that it is negligible, and so it is considered to be 
zero in most cases. But as you make the load resistance 
smaller, the internal resistance becomes a larger percentage 
of the total circuit resistance. It is at that point that decreasing 
the load resistance causes the output voltage to drop consider- 
ably. Let's take a look at that phenomenon in a little greater 
detail. 



Figure 2A shows a voltage source VS with its internal 

resistance RS. With no load connected to the battery, no 

current will flow. With no current flowing through the internal 

resistance, no voltage drop will be produced across it. For 

that reason, the voltage at terminals A and B will simply be 

the natural voltage produced by the battery. That is known as 

the open- circuit voltage, which is just VS here. 

Now, take a look at Fig. 2B. A load, RL, is now connected 

to the voltage source. That, of course, causes current to flow 

through the load and the internal resistance. The current 

through the internal battery resistance will produce a voltage 

drop across it, denoted V;. The voltage drop, when added to 

the load voltage, will equal VS just as Kirchhoff's law says. 

The voltage across the internal resistance will, of course, take 

away from the voltage that appears across the load. The best 

way to see that is to take an example. 
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Fig. 2 -In an unloaded state (A), the voltage source can 
be treated as though its internal resistance does not exist. 
When a load is applied (B), the resistance becomes noticeable. 

Suppose that we have a 12 -volt battery with an internal 

impedance of 1 ohm. Then suppose we connect a 5 -ohm load 

to the circuit. We know that the total circuit resistance RT is 

the sum of the individual resistors, in this case, the 5 -ohm 
load resistance plus the 1 -ohm internal resistance for a total of 
6 ohms: 

RT= Rs +RL =1 +5 =6 ohms 

We can now use Ohm's law to find out what the current is: 

I= V/R= 12/6 =2 A. 

We know that the total circuit current now is 2 amperes. To 

find out what the voltage across the load is, we again use 

Ohm's law. Remember that the voltage is simply the current 

multiplied by the resistance. The load voltage is: 

V L = I x RL = 2(5) =10 volts 

Well, you can see that the voltage across the load is not the 

entire 12 volts generated by the battery. All we are getting is 

10 volts across the load. Where is the other 2 volts? The 

answer is, it is being dropped across the battery's internal 

resistance. Looking at Fig. 2B, you can see that as current 

flows through the internal resistance, it produces a voltage 

drop of: 

1 volt x 2 amperes = 2 volts. 

The polarity of that voltage drop is as shown in the figure. The 

polarity is opposite to that of the battery polarity and so the 

two voltages oppose one another. That's why we say that the 2 

volts across the internal resistance takes away from the battery 

voltage leaving only 10 volts across terminals A and B, which 

are the actual battery terminals. That is why you see only 10 

volts across the load. All that makes sense because 

Kirchhoff's law tells us that the sum of the voltage drops is: 

Vs= Vi +VL= 2 +10 =12 volts 

Now you can see why an ideal voltage source is so desir- 

able. With zero internal resistance, all of the voltage gener- 

ated is applied across the load. Since perfect voltage sources 

can't be obtained in practice, then the objective is simply to 

keep the internal resistance as low as possible. That is always 

the basic design objective of most engineers. The lower the 

internal resistance compared to the load resistance, the great- 

er the amount of voltage that appears across the load. 

One way to analyze a voltage source with its load is to look 
at the internal resistance R; and the load resistance RL as a 

voltage divider. It can be more- easily seen if we redraw the 

circuit as shown in Fig. 3. A voltage divider is simply two or 

more resistors that are used to develop an output voltage 

somewhat lower than the input voltage. Normally, we design 

voltage dividers by choosing two resistor values that will give 

a desired output voltage for a given input voltage. The basic 

formula used for figuring the output voltage of a voltage 

divider given the resistor values and the source voltage is: 

Vo = VSRL/(RS +RL) 

Here, Vo is the output voltage across the load, Vs is the 

open circuit source voltage, RL is the load resistance, and Rs 

is the internal resistance of the voltage source. As an example 
of the use of the formula, let's use the 12 -volt battery we 

assumed before, but this time assume it has an internal 

impedance of 0.1 ohm instead of 1 ohm. The load resistance is 

still 5 ohms. The voltage across the load in that case then 

would be: 

Vo = 12(5/(5 + 0.1)) = 12(.98) =11.76 volts 

Here you can see that when the internal resistance is only a 

tenth of an ohm instead of 1 ohm, the output voltage is 11.76 

volts, or very much closer to the source voltage than the 10 

volts produced with an internal impedance of 1 ohm. Now 

you can see why it is desirable to keep the internal impedance 

low. 

vs 
: 

T 
vo 

Fig. 3 -The source's internal resistance and the external 
load form a voltage divider making the output voltage of the 

source easy to determine with voltage divider relationships. 
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One of the main problems in dealing with voltage sources 
is that it is often very difficult to determine the internal 
impedance of a source. For example, how do you know what 
the internal resistance of a battery is? We know that it is 
extremely low when the battery is good and, in most cases, it 
can be ignored or assumed to be zero. But as the battery 
discharges, the internal resistance increases. That's why 
when a battery goes bad, its output voltage drops to a very low 
level. When you connect a load to it, the current that flows 
produces a large internal voltage drop, leaving less voltage at 
the battery terminals for the external circuit. 

Unfortunately, you just can't get an ohmmeter and connect 
it to a battery and expect to measure the internal resistance. 
Neither can you do that on any other kind of voltage source 
nor AC generator. Yet it is important to be able to determine 
what that internal impedance is so that you can perform the 
circuit analysis. Well, there is a way to determine the internal 
impedance, although not by direct measurement. Let's take 
an example, but this time let's use an AC- voltage source. 

Refer to Fig. 4. There is an AC generator with an internal 
impedance of Rs. It might be a signal generator or function 
generator used for bench testing. Let's assume for a moment 
that we don't know what the internal impedance is. Through a 
series of measurements and calculations though, we can 
determine the output -impedance value. To do that, use the 
following procedure: 

1. Measure the open- circuit generator voltage. With no 
load on the circuit, connect a multimeter or oscilloscope 
across the generator output terminals A and B. Measure the 
output voltage. That is the real generator source voltage Vs as 
no current is flowing through the internal resistance Rs. 
Assume you measure 6 volts. 

2. Next, connect a load RL to generator terminals A and B. 
In general, it is best to connect a load resistance that is close 
to, but somewhat higher than, the internal impedance. Since 
you don't know what the internal impedance is, it is difficult 
to estimate what kind of load resistance to connect. Although 
in some cases you may have a feel for the general range of the 
output impedance. If you do, then assume a load resistance 
that is somewhat higher. In that case, let's just say that you 
guessed the output impedance is about 50 ohms, but you 
don't really know for sure. Say you picked a 100 ohm load 
resistance. 

3. With the load connected, measure the load voltage. 
Let's say you measured 4 volts. 

4. You now have enough information to calculate the 
circuit current. You can determine the current with Ohm's law 
by simply dividing the load voltage by the load resistance: 

I= VL/RL = 4/100 =.04A. 

5. Now you are ready to actually calculate the internal 
generator impedance. You do that with a combination of both 
Kirchhoff's and Ohm's laws. You know that the generator 
produces 6 volts output under open- circuit condition. With 
the load connected, you get 4 volts at the output terminals. 
From Kirchhoff's law then, you know that the voltage 
dropped across the internal impedance V, is the difference 
between those two voltages: 

Vs +V, +VL 
V, =Vs -VL 

V; = 6 -4= 2 volts 

Knowing that 2 volts is dropped across the internal resis- 
tance and knowing that the current flowing through it is .04 
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Fig. 4 -The internal impedance of a source can be 
determined by making a few measurements and using Ohms law. 
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Fig. 5-A quick technique for measuring the output 
impedance of any device can be performed using a 

potentiometer, and by taking two measurements. 

A 
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amperes. the source impedance can be calculated as follows: 

Rs = 2/.04 = 50 ohms 

Another method of measuring the internal resistance or 
output impedance of a voltage source is to use the technique 
illustrated in Fig. 5. It is called the half -voltage method. Use 
the procedure described below: 

1. Estimate the value of the output impedance, Rs. Let's 
assume that you guess that Rs is near 600 ohms. 

2. Select a variable resistor whose value is larger than the 
estimated value. For example, you may choose a potentiome- 
ter with a value of 1000 ohms. In general, you may want to 
make the resistance larger just in case the actual output 
impedance is larger. You might choose a 2.5K- or 5,000 -ohm 
potentiometer for the application. That is the load resistance, 
RL. 

3. Measure the open circuit or no -load output voltage of the 
generator at terminals A and B as you did before and record 
the value as Vs. Assume that it is 8 volts. 

4. Connect the potentiometer across the voltage source as a 
variable load resistor RL as Fig. 5 shows. Connect a voltmeter 
or oscilloscope across the load resistance. Vary the load 
resistance until the output voltage VL drops to one -half of the 
open- circuit value. In that case, you would adjust the potenti- 
ometer until the load voltage was 4 volts. 

5. Without disturbing the potentiometer, disconnect it from 
the voltage source. Then, using an ohmmeter, measure the 
resistance between the arm of the pot and the end you con- 
nected to the circuit, in this case, terminals I and 2. The 
resistance value will be equal to the output resistance of the 
circuit, or: 

Rs = RL. 

Assume that you measured a value of 650 ohms across the 
potentiometer. You would know then that the output imped- 
ance was 650 ohms. 
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Why does the technique work? It works because you are 

adjusting the load resistance to half the output voltage, and so 

you are dividing the output voltage into two equal parts, one 

part of which is dropped across the load itself, which you are 

measuring, while the other half is dropped across the internal 
resistance. If the load voltage and internal -resistance voltages 

are equal, then their resistance values should also be equal 

because the current flowing in both is the same. That is why 
when the output voltage is dropped to one half, the load 

resistance equals the internal resistance. 
Remember those important techniques when working with 

voltage sources. They will help you determine internal im- 
pedances and help you to calculate them. 

Now we are ready to take a look at Thevenin's theorem 
itself. 

Thevenin's Theorem 
Thevenin's theorem describes a process of converting any 

complex electrical or electronic circuit into a simple equiv- 
alent circuit consisting of a single voltage source in series 

with an internal impedance. In other words, a complex elec- 
tronic circuit represented by the box in Fig. 6A would be 

converted into a DC or AC voltage source as illustrated in Fig. 
6B or 6C. The equivalent circuits consist of an equivalent or 
Thevenin's voltage source designated V,h in series with an 

equivalent internal resistance designated the Thevenin's resis- 

tance or Rth. The mathematical process of converting the 

larger, more complex circuit into its Thevenin's equivalent is 

called "Theveninizing" a circuit. The mathematical process 

of Thevenin's theorem takes the voltages and resistances of 
the complex electronic circuit and uses them to calculate Vt 
and Reh. That's what we want to show you how to do here. 

Let's start with a relatively simple circuit, but one that is 

widely used and that Thevenin's theorem makes much easier 

ELECTRONIC 
CIRCUIT 
WITH 
VOLTAGE 
SOURCE 
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Fig. 6-Any complete circuit (A) can be replaced by its DC 
Thevenin (B) or AC Thevenin equivalent for analysis. 

to analyze. Figure 7 shows a DC- voltage source connected to 

a simple two -resistor voltage divider. A load resistance RL is 

connected across the voltage- divider output. Typically the 

problem is to determine the output voltage across terminals A 
and B, or VAB, for different values of load resistance. Of 
course, you can use standard circuit -analysis techniques for 
computing parallel- and series -resistance values, then use 

Ohm's and Kirchhoff's laws to compute the value for the 

output voltage for each load resistance. That is a rather time - 

consuming process. A much easier approach is to simply 
Theveninize the circuit, coming up with a simple voltage - 

source equivalent to which the load is connected. With such 

an arrangement, the output voltage for various values of load 

resistance can be more quickly and easily obtained. 
To Theveninize a circuit, the first step is to remove the load 

resistance as shown in Fig. 8A. Then, use standard Ohm's - 

and Kirchhoff's -law procedures to compute the voltage that 

appears across A and B without the load. That is called the 

vs = 

+ 

15V 

R1 = 20E2 

R2 = 30E2 

A 

B 

I 

VAB RL = 33E2 

f 

Fig. 7 -Of course, you can use techniques for computing 
parallel and series resistance values, and use Ohm's law to 
compute the output voltage for each load resistance. A much 
easier approach is to simply Theveninize the circuit. 
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VS=15V1 

R1 2012 
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R=33S2 
7R2=30E2 
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VAB 
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REPLACED 
BY A 

SHORT 

LOAD 
REMOVED 

R1 =2052 

R2 = 30E2 RT RL= 3352 

LOAD 
DISCONNECTED 

Fig. 8 -The first step in Theveninizing a circuit is to 
analyze the circuit without the load (A) to find the 
voltage. Next you must short the voltage source(s) to 
determine the thevenin equivalent impedance. Finally 
you replace the load, but now connected to the equivalent. 

B 
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Thevenin's- equivalent voltage, Vth: 

with = VAR 

To compute the Tnevenin's- equivalent voltage between 
points A and B, you can use the simple voltage- divider 
formula given earlier. We can express that as follows: 

VAB = VsRI /(Rl + R2) 

Using the values in Fig. 8, the Thevenin's- equivalent volt- 
age then is: 

Vth = 15(30)/(20+ 30) = 15(30/50) = 15(.6) = 9 volts 

The equivalent voltage source for the circuit then is a 9 -volt 
battery. 

Next, we need to compute the Thevenin's- equivalent resis- 
tance. Again, that is done by assuming that the load resis- 
tance is disconnected. It also assumes that the voltage source 
is replaced by a short circuit. That condition is illustrated in 
Fig. 8B. With the voltage source shorted, you simply calcu- 
late the total equivalent resistance between terminals A and 
B. In this case, the 20- and 30 -ohm resistors are simply in 
parallel with one another, and so the equivalent resistance can 
be computed by using the standard parallel- resistance for- 
mula. The total resistance is: 

RT= RIR2 /(RI +R2)= 
20(30)/(20 + 30) = 600/50 =12 ohms 

The total resistance therefore, is the Thevenin's- equivalent 
resistance Rth: 

Rth = RT 

We can now draw the complete Thevenin's equivalent, 
which is illustrated in Fig. 9. It is simply a 9 -volt battery in 
series with a I2 -ohm resistor. The load is reconnected to 
terminals A and B. Now using Ohm's and Kirchhoff's laws 
for additional calculations, the equivalent circuit, which is 
easier to work with, will produce exactly the same output 
voltage for varying load values as the original circuit. The 
load voltage, V1_, between A and B is found as follows: 

First, calculate the total circuit resistance, RT: 

RT = Rth + R1. 
RT =12 + 33 = 45 ohms 

Next, find the current, I: 

I = Vth /RT = 9/45 = .2 A. 

The load voltage, Vi_, then is: 

Vt =IxR1 = .2(33) =6.6 V. 

Now, let's take a somewhat more complex circuit. Refer to 
Fig. 10A. Again we wish to compute the Thevenin's- equiv- 
alent voltage and resistance. As usual, we begin by removing 
the load resistor. See Fig. IOB. Then we calculate the output 
voltage between terminals A and B. Note that we are using an 
AC generator. That is just to remind you that Thevenin's 
theorem works for both AC and DC circuits. The generator in 
the circuit supplies 6 volts to the network made up of resistors 
RI, R2, and R3. Note that RI and R2 form a voltage divider 
across the generator. Since the two values of resistance are 
equal, then the source voltage will simply divide equally 
across them. That means that there will be 3 volts dropped 
across RI and 3 volts dropped across R2. The voltage across 
R2 is the output voltage applied to terminals A and B. The 
voltage is, of course, applied through resistor R3. Since there 

RTh = 12L2 

VTh= 9V 

L 

A 

R1 =3312 }vL 

Fig. 9 -This is the complete Thevenin s equivalent of Fig. 
7. The load is reconnected to terminals A and B. Using 
Ohm's and Kirchhoff's laws the equivalent circuit will 
produce exactly the same output voltage values. 

vs=6 

Vs=6 

GENERATOR 
SHORTED 

R 1 = 10012 

R3 = 2512 

R2 = 10052 

A 

3V RL B 

LOAD 
REMOVED 

RTh = 75.1? RL f C 

R LOAD 
REMOVED 

Fig. 10-We wish to compute the Thevenin's equivalent 
voltage and resistance of the circuit in A. Begin by 
removing the load (B) and calculating the output voltage. 
Note that we are using an AC generator. 

is no load connected to terminals A and B, then no current 
flows through R3, and so there is no voltage across it. So the 
voltage across terminals A and B is simply the voltage across 
R2, or 3 volts. That is the Thevenin's- equivalent voltage, Vth. 

Next, compute the Thevenin's -equivalent resistance. That 
is done by shorting the generator and computing the total 
value of resistance between terminals A and B. The equiv- 
alent circuit is shown in Fig. IOC. First note that RI and R2 
are simply put in parallel. Putting two equal values of resis- 
tance in parallel gives a total resistance value of one -half the 
value of one of the resistors. The total equivalent resistance of 
RI and R2 in parallel then is 100/2 = 50 ohms. The total 
resistance between A and B then is simply 50 ohms added to 
the value of R3 of 25 ohms, for a total of 75 ohms. That is the 
Thevenin's- equivalent resistance, Rth. Now you can connect 



various values of load resistance and compute the output 
voltage for each using Ohm's and Kirchhoff's laws. 

Practice Problem 
1. Now it's time for you to try it yourself. Refer to Fig. I I . 

Calculate the Thevenin's equivalent voltage and resistance. 

R2 = 6012 

Fig. 11 -When trying out this problem. remember these 
steps: remove the load; compute the Thevenin voltage: 
compute the Thevenin resistance; connect the load to the 
equivalent circuit to observe its behavior. 

You really appreciate the power and convenience of a 

procedure such as Thevenin's theorem when you encounter a 

rather complex circuit to analyze. A good example is the 
bridge circuit shown in Hg. 12. All bridge circuits, whether 
they are made with resistors or a combination of resistors, 
capacitors, inductors, or transistors, have four arms. In gen- 
eral, most bridge circuits are balanced. In other words, the 
relationship between the resistances and/or impedances of 
the various arms is as follows: 

RI/R2= R3 /R4 

So, when the ratios of the resistances are equal, the bridge is 

said to be balanced. If that is true, the voltage at A is equal to 
the voltage at B with respect to ground and no current flows 
through the load resistance. 

Changing one of the arm values will cause the bridge to 
become unbalanced. Depending upon the nature of the 
change, that will cause current to flow through the load 
resistance from A to B or from B to A, depending on the 
conditions. Our job is to calculate the current in RL given the 
values in Fig. 12. 

Bridge circuits in general are a pain in the neck to analyze. 
Particularly if you wish to determine the amount of current 
through the load for different values of load resistance. The 
computations are complex, messy, and time consuming. The 
chances for making an error are also high. But then, along 
comes Thevenin's theorem to the rescue. There is no reason 
why you can't convert the more complex circuit into a simple 
Thevenin's equivalent. Let's see how to do that. 

Begin as before by removing the load resistance from the 
circuit. To find the Thevenin's- equivalent voltage, all we have 
to do is to compute the amount of voltage between terminals 
A and B. That shouldn't be too difficult. 

In examining the bridge circuit without the load, you may 
recognize the fact that it actually consists of two voltage 
dividers connected across the source voltage. If we redraw the 
circuit as shown in Fig. 13, you will see that more clearly. One 
voltage divider is made up of R1 and R2, while the other is 

1 
I V s 

Fig. 12- Bridge circuits are difficult to solve with more 
basic methods. However, they can easily be analyzed using 
Thevenin's Theorem and a little math. 

i 

R3 = 1212 

B 

R4 =812 

Fig. 13 -Even with a bridge circuit. the first step is to 
remove the load from the circuit before analysis. 

l 
VS 

SHORTED 

A B 

= 412 

6 

4 

R34' 4.812 

R3 121' 

A 

R4 8:2 

R3 = 1212 B 

Fig. 14 -After shorting the voltage source, the circuit 
looks a little strange (A), but that can be resolved by 
rearranging (B). Then we break the resistances down into 
simpler equivalent forms before final analysis. 

c 
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At last we can draw the full Thevenin's equivalent, which is 
illustrated in Fig. 15. A DC voltage of 4 volts is connected in 
series with its resistance of 8.8 ohms. Our load resistance is 4 
ohms. Calculating the voltage across the load resistance is 
now easy. 

To do that, we first find the total circuit resistance, which in 
this case is the Thevenin's- equivalent resistance plus the load 
resistance, or: 

RT= RE, + Rut =4 +8.8 =12.8 ohms 

Next, we find the total circuit current with Ohm's law: 

I = Vth /RT = 4/12.8 = .3125 amperes 

Now the voltage across RL is simply that current multiplied 
by the load resistance, or: 

VL =IRL= .3125x4 =1.25 volts 

Exercise Problem 
2. Now have one more go at using Thevenin's theorem 

yourself. Refer to Fig. 16. Calculate the Thevenin's equivalent 
voltage and resistance. 

R1 = 10012 R3 = 15052 
A 

C 

made up of R3 and R4. What we wish to know is the voltage 
between terminals A and B. But to find it, we must first 
determine the voltage at A with respect to ground and the 
voltage at B with respect to ground. To do that we can simply 
apply the voltage divider equation given earlier. 

The voltage at point A with respect to ground (VA) is 
computed as follows: 

VA = VsR2 /(RI + R2) =15 x 12/(6 + 12) 
=15(12/18)=15(0.6666)=10 volts 

The voltage at point B with respect to ground (VB) is 
computed in exactly the same way: 

VB= VSR4/(R3 +R4)= 15x8/(8 +12) 
=15(8/20)=15(.4)=6 volts 

We now know the voltages at A and B with respect to 
ground. The voltage directly between A and B is simply the 
difference between those two voltages. From that, VAB, 
which is also the Thevenin's- equivalent voltage, Vth, is: 

VAB= Vth =VA- VB= 10 -6 =4 volts 

Since VA is greater than VB, A is positive with respect to B. 
Now let's find the Thevenin's- equivalent resistance. As 

before, the load is assumed to be disconnected. Next, we 
short out the source voltage as we did before. The resulting 
circuit is shown in Fig. 14A. That is a good example of how 
not to draw a schematic diagram. To understand the circuit 
better, we can redraw it as shown in Fig. I4B. As you can see, 
we have a simple series -parallel combination circuit made up 
of RI and R2 in parallel, and R3 and R4 in parallel, and the 
two combinations in series. We can apply the standard re- 
sistor formulas to the problem. 

First, we find the parallel resistance of RI and R2, which 
we call Ill.,. That is done as follows: 

R, , = RI(R2) /(R1 + R2) = 6(121/(6+12) 
= 72/18 =4 ohms 

The parallel combination of R3 and R4 we can designate as 
R34 and it is computed as follows: 

R3.4 =R3(R4)/(R3 + R4) = 12(8)/(12 +8) 
=96/20=4.8 ohms 

The total resistance then is simply the sum of the two 
equivalent resistances shown in Fig. 14C. To find the total all 
we do is add the two equivalent resistances: 

RT= 4 +4.8 =8.8 ohms 

Of course, the total resistance is the Thevenin's- equivalent 
resistance, Rth. 

RTh 8.812 

¡ VT,, ` 4V 

Fig. 15-The equivalent of the bridge circuit looks like 
all the other equivalent circuits, indicating the 
usefulness of Thevenin's Theorem in circuit analysis. 
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R1.= 412 

VVV 

= 25V R2 = 30012 *R4 = 15052 R=1O0S2 

Fig. 16- Follow the basic steps for using Thevenin's Theorem 
when working the practice problem for this circuit. 

Next month we'll cover some of the more interesting 
techniques for circuit analysis. Till then, practice what 
you've learned and Theveninize! 

Answers 
1. Refer to Fig. 17A. 

a. Remove the load resistance RL. 
b. Calculate the Thevenin's equivalent voltage Vih across R3. 
Vth = V,. 
Calculate the total circuit resistance R 12.3. R2 and R3 are in 
series to produce: 
R2 3 =R2 +R3 
=60 +120=180 ohms. 
R23 is in parallel with RI. Since RI and R,3 are equal, the 
equivalent is: 
8123= 180/2 =90 ohms. 
Find the total current: 
I = Vs //R1.2.3 = 
10/90=.111A. 
Compute the current in R3(13): 
I, _ 
Vs /(R2 + R3)=10/180= .0555 A 



 VTn ° 7.5V 

R2 = 6052 

R2 = 6052 

::1 

VS SHORTED 

R 1 = 18052 

RTh = 4052 

R3 = 12052 

B 

I 

A 

Rt = 20052 

B 

= 20052 C 

Fig. 17 -When you redrew the circuit for various stages of 
the analysis they should have looked like these. 

Calculate the output voltage across R3: 

V, = I,R3 = .0555(120) = 6.67 volts. 
Vth = V, = 6.67 volts. 
c. Calculate the Thevenin's equivalent resistance. 
Short Vs. That shorts out RI and puts R2 and R3 in parallel. 
See Fig. 17B. R2.3 the resistance of R2 and R3 in parallel is: 

R2 3= R2(R3) /(R2 + R3) 
R2'3 = 60(120)/(60 + 120) 

R2.3= R21=7200/180=40 ohms 
d. The equivalent circuit is shown in Fig. I7C. 

2. Refer to Fig. 18. 

a. Remove the load resistance RL. 
b. Calculate the Thevenin's equivalent voltage across R4 and 

terminals A - B. To do that first find the total circuit resis- 

tance. R3 and R4 are in series so their total resistance is: 

150+150 = 300 ohms. 
That appears in parallel with R2. Two 300 -ohm resistances in 

parallel produce: 
300/2 =150 ohms. 
That is in series with RI to produce a total of: 
150 +100 =250 ohms. 
Calculate the circuit current with Ohm's law. 

1= Vs /R = 25/250= .1A. 

R1 = 10052 R3 = 15052 

R 1 = 10052 
ALA 

R3=15052 A 

::: 

Vs 

SHORTED 

R2 =.30052 

RTh = 42.8652 

AAA. 

R A 

R4 = 15052 B 

Rt = 10052 

Fig. 18-If you didn't get this problem right, it is 
strongly recommended that you choose one of the other 
circuits in the article and try to solve it without 
referring to the text until you are finished. 

C 

Compute the voltage across RI(V1). 
V, =IRI= .1(100) =10 V. 

Find the voltage across RL(V,). By Kirchhoff's law that is: 

V2 = Vs - V1 = 
25 -10=15 volts. 
Calculate the current in R3 and R4. 
(13.4). 13.4= V, /R3 + R4 = 15/300 = .05A. 
Calculate the output voltage across R4 and A -B. 
(V4). Vth = V4=13 4(R4)= 
.05(150) = 7.5 volts. 
c. Calculate the Thevenin's equivalent resistance: Short Vs. 
R3 and R4 are in series 
(123,4)= R3 + R4 = 150 +150 = 300 ohms. 
Also: 
R3.4= 300 ohms 
in parallel with R2 is 
R234=300/2= 150 ohms. 
With Vs shorted, RI appears in parallel with R2 and R3 /R4 in 

series. The total resistance is 150 in parallel with 100 or: 

Rth = RI(R2 34 /RI + R234) 

Rth =100(150)/100+ 1 250=15000/350 = 
42.86 ohms 
d. The equivalent circuit is shown in Fig. 18C. 
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