





Figure 2A shows a voltage source Vg with its internal
resistance Rg. With no load connected to the battery, no
current will flow. With no current flowing through the internal
resistance, no voltage drop will be produced across it. For
that reason, the voltage at terminals A and B will simply be
the natural voltage produced by the battery. That is known as
the open-circuit voltage, which is just Vg here.

Now, take a look at Fig. 2B. A load, R, , is now connected
to the voltage source. That, of course, causes current to flow
through the load and the internal resistance. The current
through the internal battery resistance will produce a voltage
drop across it, denoted V;. The voltage drop, when added to
the load voltage, will equal Vg just as Kirchhoff’s law says.
The voltage across the internal resistance will, of course, take
away from the voltage that appears across the load. The best
way to see that is to take an example.
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Fig. 2—In an unloaded state (A), the voltage source can
be treated as though its internal resistance does not exist.
When a load is applied (B), the resistance becomes noticeable.

Suppose that we have a 12-volt battery with an internal
impedance of 1 ohm. Then suppose we connect a 5-ohm load
to the circuit. We know that the total circuit resistance Ry is
the sum of the individual resistors, in this case, the 5-ohm
load resistance plus the 1-ohm internal resistance for a total of
6 ohms:

Rr=Rg+R, =1+5=6 ohms
We can now use Ohm’s law to find out what the current is:
I=V/IR=12/6=2 A.

We know that the total circuit current now is 2 amperes. To
find out what the voltage across the load is, we again use
Ohm’s law. Remember that the voltage is simply the current
multiplied by the resistance. The load voltage is:

V, =1xR, =2(5)=10 volts

Well, you can see that the voltage across the load is not the
entire 12 volts generated by the battery. All we are getting is
10 volts across the load. Where is the other 2 volts? The
answer is, it is being dropped across the battery’s internal
resistance. Looking at Fig. 2B, you can see that as current

flows through the internal resistance, it produces a voltage
drop of:

1 volt X 2 amperes = 2 volts.

The polarity of that voltage drop is as shown in the figure. The
polarity is opposite to that of the battery polarity and so the
two voltages oppose one another. That’s why we say that the 2
volts across the internal resistance takes away from the battery
voltage leaving only 10 volts across terminals A and B, which
are the actual battery terminals. That is why you see only 10
volts across the load. All that makes sense because
Kirchhoff’s law tells us that the sum of the voltage drops is:

Vg=V,+V, =2+10=12 volts

Now you can see why an ideal voltage source is so desir-
able. With zero internal resistance, all of the voltage gener-
ated is applied across the load. Since perfect voltage sources
can’t be obtained in practice, then the objective is simply to
keep the internal resistance as low as possible. That is always
the basic design objective of most engineers. The lower the
internal resistance compared to the load resistance, the great-
er the amount of voltage that appears across the load.

One way to analyze a voltage source with its load is to look
at the internal resistance R, and the load resistance R, as a
voltage divider. It can be more-easily seen if we redraw the
circuit as shown in Fig. 3. A voltage divider is simply two or
more resistors that are used to develop an output voltage
somewhat lower than the input voltage. Normally, we design
voltage dividers by choosing two resistor values that will give
a desired output voltage for a given input voltage. The basic
formula used for figuring the output voltage of a voltage
divider given the resistor values and the source voltage is:

Vo=VsR, /(Rg+Ry)

Here, V, is the output voltage across the load, Vg is the
open circuit source voltage, R, is the load resistance, and Rg
is the internal resistance of the voltage source. As an example
of the use of the formula, let’s use the 12-volt battery we
assumed before, but this time assume it has an internal
impedance of 0.1 ohm instead of 1 ohm. The load resistance is
still 5 ohms. The voltage across the load in that case then
would be:

Vo =12(5/(5+0.1)) =12(.98)=11.76 volts

Here you can see that when the internal resistance is only a
tenth of an ohm instead of 1 ohm, the output voltage is 11.76
volts, or very much closer to the source voltage than the 10
volts produced with an internal impedance of 1 ohm. Now
you can see why it is desirable to keep the internal impedance

low.
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Fig. 3—The source’s internal resistance and the external
load form a voltage divider making the output voltage of the
source easy to determine with voltage divider relationships.
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One of the main problems in dealing with voltage sources
is that it is often very difficult to determine the internal
impedance of a source. For example, how do you know what
the internal resistance of a battery is? We know that it is
extremely low when the battery is good and, in most cases, it
can be ignored or assumed to be zero. But as the battery
discharges, the internal resistance increases. That's why
when a battery goes bad. its output voltage drops to a very low
level. When you connect a load to it, the current that flows
produces a large internal voltage drop, leaving less voltage at
the battery terminals for the external circuit.

Unfortunately, you just can’t get an ohmmeter and connect
it to a battery and expect to measure the internal resistance.
Neither can you do that on any other kind of voltage source
nor AC generator. Yet it is important to be able to determine
what that internal impedance is so that you can perform the
circuit analysis. Well, there is a way to determine the internal
impedance, although not by direct measurement. Let’s take
an example, but this time let's use an AC-voltage source.

Refer to Fig. 4. There is an AC generator with an internal
impedance of Rg. It might be a signal generator or function
generator used for bench testing. Let's assume for a moment
that we don’t know what the internal impedance is. Through a
series of measurements and calculations though, we can
determine the output-impedance value. To do that, use the
following procedure:

1. Measure the open-circuit generator voltage. With no
load on the circuit, connect a multimeter or oscilloscope
across the generator output terminals A and B. Measure the
output voltage. That is the real generator source voltage Vg as
no current is flowing through the internal resistance Rq.
Assume you measure 6 volts.

2. Next, connect aload R, to generator terminals A and B.
In general, it is best to connect a load resistance that is close
to, but somewhat higher than, the internal impedance. Since
you don’t know what the internal impedance is, it is difficult
to estimate ' what kind of load resistance to connect. Although
in some cases you may have a feel for the general range of the
output impedance. If you do, then assume a load resistance
that is somewhat higher. In that case, let’s just say that you
guessed the output impedance is about 50 ohms, but you
don’t really know for sure. Say you picked a 100 ohm load
resistance.

3. With the load connected, measure the load voltage.
Let's say you measured 4 volts.

4. You now have enough information to calculate the
circuit current. You can determine the current with Ohm's law
by simply dividing the load voltage by the load resistance:

I=V,/R, =4/100=_04A.

5. Now you are ready to actually calculate the internal
generator impedance. You do that with a combination of both
Kirchhoff's and Ohm’s laws. You know that the generator
produces 6 volts output under open-circuit condition. With
the load connected, you get 4 volts at the output terminals.
From Kirchhoff’s law then, you know that the voltage
dropped across the internal impedance V, is the difference
between those two voltages:

Vg+V,+V,
Vi=Vs=V,.
V,=6—-4=2 volts
Knowing that 2 wvolts is dropped across the internal resis-
tance and knowing that the current flowing through it is .04
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Fig. 4—The internal impedance of a source can be
determined by making a few measurements and using Ohms law.
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Fig. 5—A quick technique for measuring the output
impedance of any device can be performed using a
potentiometer, and by taking two measurements.

amperes, the source impedance can be calculated as follows:
Rg=2/.04=50 ohms

Another method of measuring the internal resistance or
output impedance of a voltage source is to use the technique
illustrated in Fig. 5. It is called the half-voltage method. Use
the procedure described below:

1. Estimate the value of the output impedance, Rq. Let's
assume that you guess that Rg is near 600 ohms.

2. Select a variable resistor whose value is larger than the
estimated value. For example, you may choose a potentiome-
ter with a value of 1000 ohms. In general, you may want to
make the resistance larger just in case the actual output
impedance is larger. You might choose a 2.5K- or 5,000-ohm
potentiometer for the application. That is the load resistance,
R,.

3. Measure the open circuit or no-load output voltage of the
generator at terminals A and B as you did before and record
the value as Vq. Assume that it is 8 volts.

4. Connect the potentiometer across the voltage source as a
variable load resistor R, as Fig. 5 shows. Connect a voltmeter
or oscilloscope across the load resistance. Vary the load
resistance until the output voltage V, drops to one-half of the
open-circuit value. In that case, you would adjust the potenti-
ometer until the load voltage was 4 volts.

5. Without disturbing the potentiometer, disconnect it from
the voltage source. Then, using an ohmmeter, measure the
resistance between the arm of the pot and the end you con-
nected to the circuit, in this case, terminals | and 2. The
resistance value will be equal to the output resistance of the
circuit, or:

Rs=R,.
Assume that you measured a value of 650 ohms across the

potentiometer. You would know then that the output imped-
ance was 650 ohms.









various values of load resistance and compute the output
voltage for each using Ohm's and Kirchhoft’s laws.

Practice Problem
1. Now it's time for you to try it yourself. Refer to Fig. Il.
Calculate the Thevenin’s equivalent voltage and resistance.

R2 = 602 A
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Fig. 11—When trying out this problem, remember these
steps: remove the load; compute the Thevenin voltage;
compute the Thevenin resistance; connect the load to the
equivalent circuit to observe its behavior.

You really appreciate the power and convenience of a
procedure such as Thevenin’s theorem when you encounter a
rather complex circuit to analyze. A good example is the
bridge circuit shown in Fig. 12. All bridge circuits, whether
they are made with resistors or a combination of resistors,
capacitors, inductors, or transistors, have four arms. In gen-
eral, most bridge circuits are balanced. In other words, the
relationship between the resistances and/or impedances of
the various arms is as follows:

RI/R2=R3/R4

So, when the ratios of the resistances are equal, the bridge is
said to be balanced. If that is true, the voltage at A is equal to
the voltage at B with respect to ground and no current flows
through the load resistance.

Changing one of the arm values will cause the bridge to
become unbalanced. Depending upon the nature of the
change, that will cause current to flow through the load
resistance from A to B or from B to A, depending on the
conditions. Our job is to calculate the current in R|_given the
values in Fig. 12.

Bridge circuits in general are a pain in the neck to analyze.
Particularly if you wish to determine the amount of current
through the load for different values of load resistance. The
computations are complex, messy, and time consuming. The
chances for making an error are also high. But then, along
comes Thevenin’s theorem to the rescue. There is no reason
why you can’t convert the more complex circuit into a simple
Thevenin's equivalent. Let’s see how to do that.

Begin as before by removing the load resistance from the
circuit. To find the Thevenin's-equivalent voltage, all we have
to do is to compute the amount of voltage between terminals
A and B. That shouldn’t be too difficult.

In examining the bridge circuit without the load, you may
recognize the fact that it actually consists of two voltage
dividers connected across the source voltage. If we redraw the
circuit as shown in Fig. 13, you will see that more clearly. One
voltage divider is made up of R1 and R2, while the other is

R3=120

R1 =692
+

R2 = 1292

Fig. 12—Bridge circuits are difficult to solve with more
basic methods. However, they can easily be analyzed using
Thevenin's Theorem and a little math.
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Fig. 13—Even with a bridge circuit, the first step is to
remove the load from the circuit before analysis.
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Fig. 14—After shorting the voltage source, the circuit
looks a little strange (A), but that can be resolved by
rearranging (B). Then we break the resistances down into
simpler equivalent forms before final analysis.
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made up of R3 and R4. What we wish to know is the voltage
between terminals A and B. But to find it, we must first
determine the voltage at A with respect to ground and the
voltage at B with respect to ground. To do that we can simply
apply the voltage divider equation given earlier.

The voltage at point A with respect to ground (V,) is
computed as follows:

V.=V R2(RI+R2)=15x 12/(6+12)
=15(12/18) = 15(0.6666) = 10 volts

The voltage at point B with respect to ground (V) is
computed in exactly the same way:

V=V R4/(R3+R4)=15%8/(8+12)
=15(8/20) =15(.4) =6 volts

We now know the voltages at A and B with respect to
ground. The voltage directly between A and B is simply the
difference between those two voltages. From that, Vg,
which is also the Thevenin’s-equivalent voltage, V,,,, is:

Vag=Vi=Va—Vy=10—6=4 volts

Since V 4 is greater than V, A is positive with respect to B.

Now let’s find the Thevenin's-equivalent resistance. As
before, the load is assumed to be disconnected. Next, we
short out the source voltage as we did before. The resulting
circuit is shown in Fig. 14A. That is a good example of how
not to draw a schematic diagram. To understand the circuit
better, we can redraw it as shown in Fig. 14B. As you can see,
we have a simple series-parallel combination circuit made up
of Rl and R2 in pdl’d"el and R3 and R4 in parallel, and the
two combinations in series. We can apply the standard re-
sistor formulas to the problem.

First, we find the parallel resistance of Rl and R2, which
we call R, ». That is done as follows:

R, 5s=RIR2)/(RI+R2)=6(12)/(6 + 12)
=72/18=4 ohms

The paraliel combination of R3 and R4 we can designate as
R;, and it is computed as follows:

R; ;=R3(R4)/(R3+R4)=12(8)/(12+8)
=96/20=4.8 ohms

The total resistance then is simply the sum of the two
equivalent resistances shown in Fig. 14C. To find the total all
we do is add the two equivalent resistances:

R;=4+4.8=8.8 ohms

Of course, the total resistance is the Thevenin’s-equivalent
resistance, R,

Ry = 889
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Fig. 15—The equivalent of the bridge circuit looks like
all the other equivalent circuits, indicating the
usefulness of Thevenin’s Theorem in circuit analysis.

At last we can draw the full Thevenin’s equivalent, which is
illustrated in Fig. 15. A DC voltage of 4 volts is connected in
series with its resistance of 8.8 ohms. Our load resistance is 4
ohms. Calculating the voltage across the load resistance is
now easy.

To do that, we first find the total circuit resistance, which in
this case is the Thevenin's-equivalent resistance plus the load
resistance, or:

Ry=R_ +R,;=4+8.8=12.8 ohms
Next, we find the total circuit current with Chm’s law:
I=V,/R=4/12.8= 3125 amperes

Now the voltage across R _is simply that current multiplied
by the load resistance, or:

V =IR, =.3125x4=1.25 volts

Exercise Problem
2. Now have one more go at using Thevenin’s theorem
yourself. Refer to Fig. 16. Calculate the Thevenin's equivalent
voltage and resistance.

R1=100§2 R3I= 1502
AV‘VAV AV‘V‘V
<4 < = >
6) Vg = 25V i: R2 = 30082 3 R4 = 1500 5: R, = 10082

Fig. 16—Follow the basic steps for using Thevenin’s Theorem
when working the practice problem for this circuit.

Next month we’ll cover some of the more interesting
techniques for circuit analysis. Till then, practice what
you’ve learned and Theveninize! |

Answers

1. Refer to Fig. 17A.
a. Remove the load resistance R, .
b. Calculate the Thevenin’s equwalent voltage V,, across R3.
Vi =V,
Cdlculate the total circuit resistance R 1, ;. R2 and R3 are in
series to produce:
R, ;=R2+R3
=60+ 120=180 ohms.
R,; is in parallel with RI. Since R1 and R, are equal, the
equivalent is:
R, , 3;=180/2=90 ohms.
Find the total current:
I= S//RI 2,37
10/90=111A.
Compute the current in R3(I,):
I;=
V¢/(R2 +R3)=10/180=.0555 A
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Fig. 177—When you redrew the circuit for various stages of
the analysis they should have looked like these.

Calculate the output voltage across R3:
V,;=1,R3=.0555(120) = 6.67 volts.
Vi =V;3=6.67 volts.
c. Calculate the Thevenin’s equivalent resistance.
Short V. That shorts out R1 and puts R2 and R3 in parallel.
See Fig. 17B. R, , the resistance of R2 and R3 in parallel is:
R, ;=R2(R3)/(R2+R3)
R, 3=60(120)/(60 + 120)
R, 3 =7200/180 =40 ohms
d. The equivalent circuit is shown in Fig. 17C.

2. Refer to Fig. 18.
a. Remove the load resistance R, .
b. Calculate the Thevenin’s equivalent voltage across R4 and
terminals A —B. To do that first find the total circuit resis-
tance. R3 and R4 are in series so their total resistance is:
150 + 150 = 300 ohms.
That appears in parallel with R2. Two 300-ohm resistances in
parallel produce:
300/2 =150 ohms.
That is in series with R1 to produce a total of:
150 + 100 =250 ohms.
Calculate the circuit current with Ohm’s law.
[=VgR=25/250=1A.

R1 = 1002 R3=1502
AAA AAA — o — — —
AAAL AAA S
< Shna= <
6 Vg = 25V 3 A2 =300 $ Re=1500 3R A
8
R1=100Q RI=150Q
AvAvAv A‘A'A' _____
~ $ R2 3002 $ra=1500 B
< <
SHDRTED
8
Ry, = 4286
A"‘A'
QB Vg, = 1.5V $ R, = 1000 5
<

Fig. 18—If you didn’t get this problem right, it is
strongly recommended that you choose one of the other
circuits in the article and try to solve it without

referring to the text until you are finished.

Compute the voltage across RI(V)).

V,=IR1=.1(100)=10 V.

Find the voltage across R, (V,). By Kirchhoff’s law that is:
V,=V4-V,=

25—-10=15 volts.

Calculate the current in R3 and R4.

(I3 4)- 13 ,=V,/R3+ R4 =15/300=.05A.

Calculate the output voltage across R4 and A-B.

(V). V=V =1, (R =

.05(150)=7.5 volts.

c. Calculate the Thevenin's equivalent resistance: Short V.
R3 and R4 are in series

(R4 4)=R3+R4=150+ 150 = 300 ohms.

Also:

R4 4 =300 ohms

in parallel with R2 is

R, 3 4=300/2=150 ohms.

With V shorted, R1 appears in parallel with R2 and R3/R4 in
series. The total resistance is 150 in parallel with 100 or:
Ry =RIR, 3 JRI+ Ry,

R,, = 100(150)/100 + 250 = 15000/350 =

42.86 ohms

d. The equivalent circuit is shown in Fig. 18C. [ |
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