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WyHEN learning about electronics, 
one of the earliest things that we 

find is that for a resistor the voltage 
across it and the current driven through 
it are related by Ohm’s Law 

E= IR 

where E is the voltage across a resistor 
with resistance R and I is the current. 
These three quantities are generally 
measured in volts, ohms and amps 
respectively. We then discover that 
capacitors and inductors produce a 
similar relationship, which is written 
as E = IZ where Z is the impedance of 
the component and E and I are as¬ 
sumed to be sinusoidally varying a.c. 
voltage and current respectively. 

The reason for this assumption is 
that non-sinusoidal waveforms are 
effectively a mixture of more than one 
frequency. Since the impedance of 
many components varies with fre¬ 
quency, the current flowing will not 
then be directly (iroportional to the 
driving voltage. It Is worthwhile noting, 
as an aside, that the way that non- 
sinusoidal waveforms are dealt with 
is to break them up into the sum of 
sinusoidal parts, each of a different 
frequency. Each of these parts can 
then be dealt with using E = IZ, the 
current flowing can then be recon¬ 
structed by summing the currents of 
the individual parts. 

In order to use the above formula we 
need to know the value of the imped¬ 
ance Z for the circuit. For a capacitor 
the impedance (often called the 
reactance) is given by 1/27rfC, where 
f is the frequency of the signal in 
hertz, C is the capacitance of the 
capacitor in farads (a unit which we 
soon find out is about a million times 
larger than is useful), rr is 3'1416. 
Similarly the impedance of an inductor 
is 2/rfL where L is the inductance of 
the inductor in henrys. 

Given this starting point it soon 
becomes apparent that there is much 
more to the impedance of capacitors 
and inductors than their simple 
numerical value. Consider, for ex¬ 
ample, the case when we have a 

capacitor and an inductor which both 
have an impedance of, say, 10n at a 
particular frequency that we shall 
apply. If we connect these compo¬ 
nents in series and apply an a.c. 
voltage we might expect that the 
impedance of the combination would 
be 20n, but this is not the case. 
The total impedance is in fact zero I 
Furthermore if we connect the com¬ 
ponents in parallel the impedance is 
not 5fi, it is infinitely large. 

The above example demonstrates 
that we require rather more information 
if we want to calculate the impedance 
of a combination of elements. 

COMPLEX NUMBERS 
We now introduce the concept of a 

complex number which consists of 
two parts: called the real part and the 
imaginary part. A complex number is 
written like this 

X + yi 

Here x is the real part and consists of 
a real number, whilst y is the imaginary 
part, i is the important symbol (j is 
often used instead) which represents 
a number which when squared gives 
minus one 

If that is a little difficult to conceive of 
it doesn’t matter—just think of it as a 
symbol which labels the imaginary 
part of the complex number. Examples 
of complex numbers are: 3 -i- 4i, 
10 -31, -3-6 X 10‘ + 6-7i. Real num¬ 
bers such as —7 and 43-6 may also be 
thought of as complex numbers 
whose Imaginary part is zero. Similarly 
there are numbers such as 6i, —0-2i 
or even I (which is the same as 1i) in 
which the real part is zero. 

ARITHMETIC 
Fig. 1 demonstrates a way in which 

complex numbers can be shown on a 
diagram. In the figure the complex 
number is 3 -I- 4i. It is represented by 
a line which goes from the origin of 
co-ordinates (marked 0) to the point 
which lies on the lines; real part= 3 

and imaginary part= 4. This line has 
a certain length "r", and makes a 
certain angle to the real axis "0". 
Note that the complex number can be 
specified in terms of r and 6, and these 
two numbers completely specify a 
particular complex number, just as x 
and y do. 

Given the representation of a 
complex number as x -i- yi or as an r 
and a 0, it is always possible to convert 
from one representation to the other. 

Applying Pythagoras’ Theorem to 
Fig. 1 

r = a/x’ + y^ 

This is by far the most often needed 
conversion. For the more mathe¬ 
matically minded we will give the other 
formulae 

r cos(9 = X 
r sintf = y 

tan^ = y/x 

Of these the last is the most important. 
Addition of two complex numbers 

simply involves adding the real and 
the imaginary parts separately as 
shown below 

(x -h yi) + (a -F bi) = (X -t- a) -F (y -F b)i 

For subtraction you just subtract 
real and imaginary parts separately— 
be careful to get the signs right! 

(x -F yi) — (a + bi) = (x — a) + (y — b)i 
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Multiplication is a little more 
complicated 

(x + yi). (a + bi) = 
(xa — yb) + (xb + ay)i 

Unfortunately dividing complex 
numbers is more difficult than the 
preceding cases—hopefully the follow¬ 
ing steps should make the process 
clear. Assume we want to evaulate 

x+ yi 
a -t- bi 

First we multiply both the top and the 
bottom of this expression by a — bi. 
Since this is the same as multiplying 
the original expression by one, our 
division can now be written as 

(x -F yi). (a - bi) 

(a -f- bi). (a — bi) 

If we now multiply out (a -i- bi). 
(a — bi) we get a** + b’' which has no 
imaginary part at all, so our expres¬ 
sion is the same as: 

(x -I- yi). (a — bi) 

a^ + b^ 

and we know how to multiply the top 
to get 

(xa + yb) + (ya — xb)i 

a^ + b^ 

and this is the same as 

(xa -t- yb) (ya — bx) i 

a* -F b“ a** -t- b*' 

There is just one more thing before 
we finish our maths lesson and that 
is how to multiply and divide complex 
numbers when they are in r and d 
form. This is simpler than for numbers 
in X -t- yi form: to multiply you multiply 
the ‘'r”s and add the “d"s\ to divide 
you divide the “r"s and subtract the 
"d"s. 

In these examples the complex 
numbers are written as (r,0); thus 
(2,36°) stands for the complex number 
with r = 2 and d — 36°. 

(i) (3,15°) . (4, - 12°) = (3 . 4,15° 
-12°) = (12,3°) 

(ii) (16,186°) . (i, -26°) = (16.i, 
186° -26°) = (8,160°) 

(iii) 2jir _ 2 _ 

5,27° 5’ 

But remember that 360° is a full 
circle, so that —10° is the same as 

2 2 
+ 350° so g, —10° = 350° 

It is now time to use these numbers. 

COMPLEX IMPEDANCES 
Any impedance which is a combina¬ 

tion of resistances, capacitances and 
inductances can be represented as 
one complex number. Sinusoidally 

oscillating voltages and currents are 
also represented by complex numbers. 
Using the arithmetic of complex 
numbers that we have described, it is 
now possible to use Ohm’s law to 
give the correct answer and we can 
combine impedances in the same way 
as we used to combine resistances. 
Let's see how this works. 

Resistors have no imaginary part 
to their impedance, it is just their 
resistance R. 

Capacitors have no real part to their 
impedance, it is given by —i/27rfC. 
The symbols all have the same 
meanings as before. 

Inductors too have no real part to 
their impedance, it is given by 27rfLi. 

It is easiest to represent voltages 
and currents in r and 0 notation. 
First it is essential that you know 
about the phase difference between 
two sinusoidal waveforms of the same 
frequency. 

The phase difference is given by 
the distance between the peaks of the 
two waveforms and is specified by an 
angle which is worked out by defining 
the angle between two successive 
peaks of the same wave to be 360°. 
Reference to Fig. 2 should make this 
clearer. 

To describe a voltage or current in 
terms of a complex number it is 
necessary to take one waveform in the 
circuit as a reference to which all the 
others will be referred. This reference 
value has no imaginary part, and its 
real part is just its peak value. All other 
voltages or currents are represented 
in r and d notation by a complex 
number with r equal to the peak value 
and 0 equal to the angle by which the 
waveform “leads" the reference wave¬ 
form. By leads we mean that the 
angle is measured from a peak of 
the wave to the next peak in time of 
the reference wave. See Fig. 3 for an 
example of this. 

With the set up we have just des¬ 
cribed, almost anything that you 
could have done with resistances and 
d.c. voltages can now be done for 
impedances and sinusoidal (i.e. one 
frequency) a.c. voltages. 

TUNED CIRCUIT 
The complex impedance of the 

series tuned circuit in Fig. 4 (a) is 
found simply by adding together the 
complex impedances of the capacitor 
and the inductor to get 

(“'■-iSc)' 

Fig. 4 (a) 

Note that the impedance still has no 
real part. Hence in r and 0 form it has 

'-(“'--dfc)’"'*''"”"- 

You may notice that r might be 
negative in the above formula, in which 
case 0 would be 270°—but negative r 
in the direction of 90° is the same as 
positive r in the direction of 270°. 
It isn't usually worth bothering about 
these things, they almost always work 
out alright in the end! 

Now suppose that we want to know 
what current flows in the circuit. We 
know that E = IZ, so I = E/Z. Choose 
the input voltage to be the reference 
quantity for the circuit—it will then 
have r = V (the peak value) and 
0=0°. To work out the current 
flowing we divide E by Z, remembering 
to divide the '‘r'’s and subtract the 
"0’'s. So 1 has 

r  -^ and 0 = 0-90°= -90°. 
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So the current is 90° out of phase with 
the voltage, remembering that leading 
by —90° is the same as lagging by 
90°. We have a rather peculiar expres¬ 
sion for the peak value of the current 
(r). Notice how this expression is 
positive for high frequencies but 
negative for low ones. Thus the 
arrangement of the waveforms in 

Fig. 4 (b) 

Fig. 4 (b) is only valid for high frequen¬ 
cies. As f decreases, I suddenly be¬ 
comes very large (when the bottom of 
the expression, for r becomes zero) 
and then smaller again. However r is 
now negative so the phase changes 
by 180°—this is the same as saying 
that the waveform of the current be¬ 
comes inverted. 

In practical circuits of this nature 
there is always some resistance 
present so the change occurs gradu¬ 
ally. Note that the impedance of this 
circuit goes to zero when 

27rfL = 
27rfC 

^ 2n^LC 

which is the well known resonant 
frequency. 

SIMPLE R.C. CIRCUIT 
The circuit shown in Fig. 5 is a 

very basic high pass filter. To find the 
current which flows we need to know 
the impedance of the combination, 
which is given by 

Choosing Vij, to be the reference 
quantity (which, you should remember 
means that r = Vm and & = 0°) we 
can then say that the current flowing 

is given by ,sv 

Now the output voltage is produced 
by the current I flowing through the 
resistor R so, using Ohm's Law, we 
obtain 

To evaluate this we had better put it 
into r and 0 form. Vi„R is simple— 
since it is just an ordinary number 
with no imaginary part it has r = VmR 
and 0fp O°. To convert the bottom 
half of the expression we need to use 
the formulae for r and 0 in terms of 
X and y that we mentioned earlier: 

namely r = ,yx>-|-y2 and tan(?=y/x 
(this last part can be done by scale 
diagram). Putting the x and y values of 

2^ ' 

into these formulae gives the value of 
r to be 

r= R“ + 
1 

4rr*f’‘C=' 

and 6 is going to be the angle for which 

y _ - 1 

X 27rfRC ■ 

Using the rule for division in r and 0 
form we can now calculate the value of 

— the r part is 

R 

/r.+ _1_ 
V ^ 4;r>f>c» 

and the d part is minus the angle for 
which 

y _ - 1 
X 2rrfRC 

—if you draw a diagram you can see 
that this is the same as the angle for 
which 

y _ 1 
X 27rfRC 

The r value gives us the amount by 
which the amplitude of the voltage is 
decreased. When 

R»= ^ 
47r*f*C» 

this attenuation factor is about -707 (or, 
using the decibel scale, about —3dB). 
Rearranging this formula and getting 
rid of all the squares gives 

^ "" 2rrRC 

This is often called the break point for 
the filter. 

What do all these complicated- 
looking formulae mean as regards the 
performance? Well, when the fre¬ 
quency is very high the 

1 

. 4?r»f>C* 

term is very small and so becomes 

very close to one. This indicates that 
high frequencies pass through the 
filter almost unobstructed. In contrast, 
when f is very small the 

4?r«f«C* 

term is going to be far larger than the 
R* term so we can ignore the R* term 
without too much loss of accuracy. 
We then have 

Vout R n^a/^ 

V 4w«f>c» 

Notice that the figure halves every 

time the frequency halves. This sort 
of relationship is best shown on a 
decibels versus logarithmic frequency 
plot as shown in Fig. 6 (a). 

Fig. 6 (a) 

Taking OdB at the input level, the 
output level of the filter is fairly con¬ 
stant down to just above the break 
point: the output then curves down, 
finally falling off at about 6dB per 
octave (halving of frequency) which is 
20dB per decade. 

We have not yet used the informa¬ 
tion we have calculated about d. For 
actual values of R,C and f, 6 can be 
evaluated either by drawing a diagram 
or by working out 

on a scientific calculator. We can see 
roughly what is going to happen: at 
very high frequencies when the filter 
lb passing almost all of the input 
voltage, y/x is very small which means 
that the output voltage has almost the 
same phase as the input voltage. As 
the frequency decreases it will reach 
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the break point where :s oo ' 
: -,r ibi . 

■®'’ 2rrfRC;'^ . 'e-.'iohat, 

—this means that the output will lead 
the input by 45°. As the frequency 
keeps on decreasing the phase lead 
will continue increasing, getting ever 
nearer to 90° but never quite getting 
there as shown in Fig. 6 (b). 

— 

\ 
1 \ 
1 > 
1 

FREQUENCY 

Fig.6(b) 

When working with filters such as 
this one, it is generally true that the 
attenuation versus frequency graphs 
(on logarithmic scales) can be simpli¬ 
fied considerably. To do this you just 
assume that the response is flat 
down to the break point, whereupon 
it falls off immediately at a rate of 
6dB per octave — 20 dB per decade. 
This approximation is shown dotted 
in Fig. 6 (a)—the approximation is very 
accurate except for a decade or so 
around the break point when it can be 
up to 30 per cent out. 

MORE COMPLICATED 
FILTERS 

As a slightly more complicated 
example let us try to design a filter 
which passes high frequencies un¬ 
attenuated and attenuates low fre¬ 
quencies by 10. We want the middle 
point to be at 1kHz (the full attenuation 
is 20dB so call the mid point the lOdB 
attenuation point). We would also 
like some idea of the phase perform¬ 
ance. 

The obvious way to do this is shown 
in Fig. 7. At very low frequencies the 
effect of the capacitor, is insign|fi,cant 
so 

Vout ^ Re 

Vto Ri + Re ’ 

which we want to equal 

10' 

Choose as fairly sensible values Ri = 
9kn, R*=1kQ. Whether these are 
sensible will, of course, depend on 
the impedance of the source we are 
using to drive the filter and the imped¬ 
ance that is being driven by the filter. 
Say for the sake of simplicity that the 
driving impedance is a few ohms and 
that the driven impedance is at least 
several tens of kilohms. Now down 
to work: 

Using the symbol RillC to mean the 
impedance of the parallel combination 
of Ri and C we have 

Vout _ Re 

Vin ^ Re+ RillC 

But R, = Ika and Ri - 9ka so 

Vout 

Vin ' 

The “r part" of this expression can be 
found by dividing the r part of the top 
by the r part of the bottom 

since we require this to be equivalent 
to an attenuation of lOdB when 
f = 1kHz and lOdB is a voltage ratio 

of^lOil. 
Square both sides and multiply out 

which gives 

9 X 81 X 10* = 
2500 - 250 

7r>f*C* 

this is for f = 1kHz so 

2250 

9 X 81 X 10* X 7r» X 10‘ 

= 3-127 X 10-“ 

and finally we get to the value of the 
capacitance C = 5-6 x 10“* farads = 
0-056/tF. If we substitute this value 
into the original formula for the r part 
we get 

Jimxi)- + 

A graph of this is the attenuation of 
the filter, as shown in Fig. 8 (a). 

A 

Fig. 8 (a) 

PHASE PERFORMANCE 
To get some idea of how the phase 

difference between the input and the 
output varies with frequency we see 
that at high frequencies the capacitor 
is going to have far more effect than 
Ri and so the phase shift will go to 
zero, just as it did for the simple high- 
pass filter. Also at very low frequencies 
the effect of the capacitor will be 
negligible and the phase shift will go 
to zero again. What happens in be¬ 
tween? If we substitute the value for 
the capacitance into 

Vout 

Vin 

we end up with 

From this we can work out the phase 
shift for any frequency: for example 
at 1 kHz we have 

Voit 1 - 0-316 i 

Vin 1 - 3-16 i 

Now 0 for 1 — 0-316i is about — 17i° 
and 0 for 1 — 3-16i is about — 72i°, 
so 0 for 

= 1-17i° - (-72i°) = 55° 

Fig. 8 (b) 

In fact this is the maximum phase 
shift for any frequency. A graph of 
phase shift versus frequency is also 
shown on Fig. 8 (b). 
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