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Preface to the Second Edition

When I submitted proposals to publishers for the first edition of this book, they posed two questions to
me: (1) What is the future demand for analog books in a digital world? and (2) Is it wise to publish a book
dealing solely with CMOS? The words “analog” and “CMOS” in the book’s title were both in question.

Fortunately, the book resonated with students, instructors, and engineers. It has been adopted by
hundreds of universities around the world, translated to five languages, and cited 6,500 times.

While many fundamentals of analog design have not changed since the first edition was introduced,
several factors have called for a second: migration of CMOS technologies to finer geometries and lower
supply voltages, new approaches to analysis and design, and the need for more detailed treatments of
some topics. This edition provides:

� Greater emphasis on modern CMOS technology, culminating in a new chapter, Chapter 11, on
design methodologies and step-by-step op amp design in nanometer processes

� Extensive study of feedback through the approaches by Bode and Middlebrook

� A new section on the analysis of stability using Nyquist’s approach—as the oft-used Bode method
falls short in some common systems

� Study of FinFETs

� Sidebars highlighting important points in nanometer design

� A new section on biasing techniques

� Study of low-voltage bandgap circuits

� More than 100 new examples

Some instructors ask why we begin with square-law devices. This is for two reasons: (1) such a path
serves as an intuitive entry point and provides considerable value in the analysis of amplifiers in terms of
allowable voltage swings, and (2) despite their very short channel lengths, FinFETs—the devices used
in 16-nm nodes and below—exhibit nearly square-law characteristics.

This book is accompanied with a solutions manual and a new set of PowerPoint slides, available at
www.mhhe.com/razavi.

Behzad Razavi
July 2015
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Preface to the First Edition

In the past two decades, CMOS technology has rapidly embraced the field of analog integrated circuits,
providing low-cost, high-performance solutions and rising to dominate the market. While silicon bipolar
and III-V devices still find niche applications, only CMOS processes have emerged as a viable choice for
the integration of today’s complex mixed-signal systems. With channel lengths projected to scale down
to 0.05 µm, CMOS technology will continue to serve circuit design for another two decades.

Analog circuit design itself has evolved with the technology as well. High-voltage, high-power analog
circuits containing a few tens of transistors and processing small, continuous-time signals have gradually
been replaced by low-voltage, low-power systems comprising thousands of devices and processing large,
mostly discrete-time signals. For example, many analog techniques used only ten years ago have been
abandoned because they do not lend themselves to low-voltage operation.

This book deals with the analysis and design of analog CMOS integrated circuits, emphasizing fun-
damentals as well as new paradigms that students and practicing engineers need to master in today’s
industry. Since analog design requires both intuition and rigor, each concept is first introduced from an
intuitive perspective and subsequently treated by careful analysis. The objective is to develop both a solid
foundation and methods of analyzing circuits by inspection so that the reader learns what approximations
can be made in which circuits and how much error to expect in each approximation. This approach also
enables the reader to apply the concepts to bipolar circuits with little additional effort.

I have taught most of the material in this book both at UCLA and in industry, polishing the order, the
format, and the content with every offering. As the reader will see throughout the book, I follow four
“golden rules” in writing (and teaching): (1) I explain why the reader needs to know the concept that is
to be studied; (2) I put myself in the reader’s position and predict the questions that he/she may have
while reading the material for the first time; (3) With Rule 2 in mind, I pretend to know only as much
as the (first-time) reader and try to “grow” with him/her, thereby experiencing the same thought process;
(4) I begin with the “core” concept in a simple (even imprecise) language and gradually add necessary
modifications to arrive at the final (precise) idea. The last rule is particularly important in teaching circuits
because it allows the reader to observe the evolution of a topology and hence learn both analysis and
synthesis.

The text comprises 16 chapters whose contents and order are carefully chosen to provide a natural
flow for both self-study and classroom adoption in quarter or semester systems. Unlike some other books
on analog design, we cover only a bare minimum of MOS device physics at the beginning, leaving more
advanced properties and fabrication details for later chapters. To an expert, the elementary device physics
treatment my appear oversimplified, but my experience suggests that (a) first-time readers simply do
not absorb the high-order device effects and fabrication technology before they study circuits because
they do not see the relevance; (b) if properly presented, even the simple treatment proves adequate for a
substantial coverage of basic circuits; (c) readers learn advanced device phenomena and processing steps
much more readily after they have been exposed to a significant amount of circuit analysis and design.

Chapter 1 provides the reader with motivation for learning the material in this book. Chapter 2 describes
basic physics and operation of MOS devices.

Chapters 3 through 5 deal with single-stage and differential amplifiers and current mirrors, respectively,
developing efficient analytical tools for quantifying the behavior of basic circuits by inspection.

Chapters 6 and 7 introduce two imperfections of circuits, namely, frequency response and noise. Noise
is treated at an early stage so that it “sinks in” as the reader accounts for its effects in subsequent circuit
developments.

Chapters 8 through 10 describe feedback, operational amplifiers, and stability in feedback sys-
tems, respectively. With the useful properties of feedback analyzed, the reader is motivated to design
high-performance, stable op amps and understand the trade-offs between speed, precision, and power
dissipation.
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Chapters 11 through 13 deal with more advanced topics: bandgap references, elementary switched-
capacitor circuits, and the effect of nonlinearity and mismatch. These three subjects are included here
because they prove essential in most analog and mixed-signal systems today.

Chapter 14 is concerned with high-order MOS device effects and models, emphasizing the circuit
design implications. If preferred, the chapter can directly follow Chapter 2 as well. Chapter 15 describes
CMOS fabrication technology with a brief overview of layout design rules.

Chapter 16 presents the layout and packaging of analog and mixed-signal circuits. Many practical issues
that directly impact the performance of the circuit are described and various techniques are introduced.

The reader is assumed to have a basic knowledge of electronic circuits and devices, e.g., pn junctions,
the concept of small-signal operation, equivalent circuits, and simple biasing. For a senior-level elective
course, Chapters 1 through 8 can be covered in a quarter and Chapters 1 through 10 in a semester. For a
first-year graduate course, Chapters 1 through 11 plus one of Chapters 12, 13, or 14 can be taught in one
quarter, and almost the entire book in one semester.

The problem sets at the end of each chapter are designed to extend the reader’s understanding of the
material and complement it with additional practical considerations. A solutions manual will be available
for instructors.

Behzad Razavi
July 2000
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CHAPTER

1
Introduction to Analog Design

1.1 Why Analog?

We are surrounded by “digital” devices: digital cameras, digital TVs, digital communications (cell phones
and WiFi), the Internet, etc. Why, then, are we still interested in analog circuits? Isn’t analog design old
and out of fashion? Will there even be jobs for analog designers ten years from now?

Interestingly, these questions have been raised about every five years over the past 50 years, but mostly
by those who either did not understand analog design or did not want to deal with its challenges. In this
section, we learn that analog design is still essential, relevant, and challenging and will remain so for
decades to come.

1.1.1 Sensing and Processing Signals

Many electronic systems perform two principal functions: they sense (receive) a signal and subsequently
process and extract information from it. Your cell phone receives a radio-frequency (RF) signal and, after
processing it, provides voice or data information. Similarly, your digital camera senses the light intensity
emitted from various parts of an object and processes the result to extract an image.

We know intuitively that the complex task of processing is preferably carried out in the digital domain.
In fact, we may wonder whether we can directly digitize the signal and avoid any operations in the analog
domain. Figure 1.1 shows an example where the RF signal received by the antenna is digitized by an
analog-to-digital converter (ADC) and processed entirely in the digital domain. Would this scenario send
analog and RF designers to the unemployment office?

Analog�to�Digital
Converter

Antenna
0
0
1
0
1

1
0
1
1
0

Digital Signal
Processor

RF Signal

Figure 1.1 Hypothetical RF receiver with direct signal digitization.

1
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The answer is an emphatic no. An ADC that could digitize the minuscule RF signal1 would consume
much more power than today’s cell phone receivers. Furthermore, even if this approach were seriously
considered, only analog designers would be able to develop the ADC. The key point offered by this
example is that the sensing interface still demands high-performance analog design.

t

Action
Potential

Electronics

Probes

ADC

AmpliÞer

ADC

AmpliÞer Pr
oc

es
so

r

RF
Transmitter

(b)(a)

(c)
Figure 1.2 (a) Voltage waveform generated as a result of neural activity, (b) use of probes to measure action
potentials, and (c) processing and transmission of signals.

Another interesting example of sensing challenges arises in the study of the brain signals. Each time a
neuron in your brain “fires,” it generates an electric pulse with a height of a few millivolts and a duration
of a few hundred microseconds [Fig. 1.2(a)]. To monitor brain activities, a neural recording system may
employ tens of “probes” (electrodes) [Fig. 1.2(b)], each sensing a series of pulses. The signal produced
by each probe must now be amplified, digitized, and transmitted wirelessly so that the patient is free
to move around [Fig. 1.2(c)]. The sensing, processing, and transmission electronics in this environment
must consume a low amount of power for two reasons: (1) to permit the use of a small battery for days or
weeks, and (2) to minimize the rise in the chip’s temperature, which could otherwise damage the patient’s
tissue. Among the functions shown in Fig. 1.2(c), the amplifiers, the ADCs, and the RF transmitter—all
analog circuits—consume most of the power.

1.1.2 When Digital Signals Become Analog

The use of analog circuits is not limited to analog signals. If a digital signal is so small and/or so distorted
that a digital gate cannot interpret it correctly, then the analog designer must step in. For example, consider
a long USB cable carrying data rate of hundreds of megabits per second between two laptops. As shown
in Fig. 1.3, Laptop 1 delivers the data to the cable in the form of a sequence of ONEs and ZERO.

1And withstand large unwanted signals.
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Laptop 1 Equalizer

Laptop 2 

f

H

f

H
1

USB Cable

Figure 1.3 Equalization to compensate for high-frequency attenuation in a USB cable.

Unfortunately, the cable exhibits a finite bandwidth, attenuating high frequencies and distorting the data
as it reaches Laptop 2. This device must now perform sensing and processing, the former requiring an
analog circuit (called an “equalizer”) that corrects the distortion. For example, since the cable attenuates
high frequencies, we may design the equalizer to amplify such frequencies, as shown conceptually by the
1/|H | plot in Fig. 1.3.

The reader may wonder whether the task of equalization in Fig. 1.3 could be performed in the digital
domain. That is, could we directly digitize the received distorted signal, digitally correct for the cable’s
limited bandwidth, and then carry out the standard USB signal processing? Indeed, this is possible if
the ADC required here demands less power and less complexity than the analog equalizer. Following a
detailed analysis, the analog designer decides which approach to adopt, but we intuitively know that at very
high data rates, e.g., tens of gigabits per second, an analog equalizer proves more efficient than an ADC.

The above equalization task exemplifies a general trend in electronics: at lower speeds, it is more
efficient to digitize the signal and perform the required function(s) in the digital domain, whereas at
higher speeds, we implement the function(s) in the analog domain. The speed boundary between these
two paradigms depends on the nature of the problem, but it has risen over time.

1.1.3 Analog Design Is in Great Demand

Despite tremendous advances in semiconductor technology, analog design continues to face new chal-
lenges, thus calling for innovations. As a gauge of the demand for analog circuits, we can consider the
papers published by industry and academia at circuits conferences and see what percentage fall in our
domain. Figure 1.4 plots the number of analog papers published at the International Solid-State Circuits
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Figure 1.4 Number of analog papers published at the ISSCC in recent years.
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Conference (ISSCC) in recent years, where “analog” is defined as a paper requiring the knowledge in this
book. We observe that the majority of the papers involve analog design. This is true even though analog
circuits are typically quite a lot less complex than digital circuits; an ADC contains several thousand
transistors whereas a microprocessor employs billions.

1.1.4 Analog Design Challenges

Today’s analog designers must deal with interesting and difficult problems. Our study of devices and
circuits in this book will systematically illustrate various issues, but it is helpful to take a brief look at
what lies ahead.

Transistor Imperfections As a result of scaling, MOS transistors continue to become faster, but at the
cost of their “analog” properties. For example, the maximum voltage gain that a transistor can provide
declines with each new generation of CMOS technology. Moreover, a transistor’s characteristics may
depend on its surroundings, i.e., the size, shape, and distance of other components around it on the chip.

Declining Supply Voltages As a result of device scaling, the supply voltage of CMOS circuits has
inevitably fallen from about 12 V in the 1970s to about 0.9 V today. Many circuit configurations have not
survived this supply reduction and have been discarded. We continue to seek new topologies that operate
well at low voltages.

Power Consumption The semiconductor industry, more than ever, is striving for low-power design.
This effort applies both to portable devices—so as to increase their battery lifetime—and to larger
systems—so as to reduce the cost of heat removal and ease their drag on the earth’s resources. MOS
device scaling directly lowers the power consumption of digital circuits, but its effect on analog circuits
is much more complicated.

Circuit Complexity Today’s analog circuits may contain tens of thousands of transistors, demanding
long and tedious simulations. Indeed, modern analog designers must be as adept at SPICE as at higher-
level simulators such as MATLAB.

PVT Variations Many device and circuit parameters vary with the fabrication process, supply voltage,
and ambient temperature. We denote these effects by PVT and design circuits such that their performance
is acceptable for a specified range of PVT variations. For example, the supply voltage may vary from 1 V
to 0.95 V and the temperature from 0� to 80�. Robust analog design in CMOS technology is a challenging
task because device parameters vary significantly across PVT.

1.2 Why Integrated?

The idea of placing multiple electronic devices on the same substrate was conceived in the late 1950s. In
60 years, the technology has evolved from producing simple chips containing a handful of components to
fabricating flash drives with one trillion transistors as well as microprocessors comprising several billion
devices. As Gordon Moore (one of the founders of Intel) predicted in the early 1970s, the number of
transistors per chip has continued to double approximately every one and a half years. At the same time,
the minimum dimension of transistors has dropped from about 25 µm in 1960 to about 12 nm in the year
2015, resulting in a tremendous improvement in the speed of integrated circuits.

Driven primarily by the memory and microprocessor market, integrated-circuit technologies have also
embraced analog design, affording a complexity, speed, and precision that would be impossible to achieve
using discrete implementations. We can no longer build a discrete prototype to predict the behavior and
performance of modern analog circuits.
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1.3 Why CMOS?

The idea of metal-oxide-silicon field-effect transistors (MOSFETs) was patented by J. E. Lilienfeld in the
early 1930s—well before the invention of the bipolar transistor. Owing to fabrication limitations, however,
MOS technologies became practical only much later, in the early 1960s, with the first several generations
producing only n-type transistors. It was in the mid-1960s that complementary MOS (CMOS) devices
(i.e., with both n-type and p-type transistors) were introduced, initiating a revolution in the semiconductor
industry.

CMOS technologies rapidly captured the digital market: CMOS gates dissipated power only during
switching and required very few devices, two attributes in sharp contrast to their bipolar or GaAs coun-
terparts. It was also soon discovered that the dimensions of MOS devices could be scaled down more
easily than those of other types of transistors.

The next obvious step was to apply CMOS technology to analog design. The low cost of fabrication
and the possibility of placing both analog and digital circuits on the same chip so as to improve the
overall performance and/or reduce the cost of packaging made CMOS technology attractive. However,
MOSFETs were slower and noisier than bipolar transistors, finding limited application.

How did CMOS technology come to dominate the analog market as well? The principal force was
device scaling because it continued to improve the speed of MOSFETs. The intrinsic speed of MOS
transistors has increased by orders of magnitude in the past 60 years, exceeding that of bipolar devices
even though the latter have also been scaled (but not as fast).

Another critical advantage of MOS devices over bipolar transistors is that the former can operate
with lower supply voltages. In today’s technology, CMOS circuits run from supplies around 1 V and
bipolar circuits around 2 V. The lower supplies have permitted a smaller power consumption for complex
integrated circuits.

1.4 Why This Book?

The design of analog circuits itself has evolved together with the technology and the performance re-
quirements. As the device dimensions shrink, the supply voltage of intergrated circuits drops, and analog
and digital circuits are fabricated on one chip, many design issues arise that were previously unimportant.
Such trends demand that the analysis and design of circuits be accompanied by an in-depth understanding
of new technology-imposed limitations.

Good analog design requires intuition, rigor, and creativity. As analog designers, we must wear our
engineer’s hat for a quick and intuitive understanding of a large circuit, our mathematician’s hat for quan-
tifying subtle, yet important effects in a circuit, and our artist’s hat for inventing new circuit topologies.

This book describes modern analog design from both intuitive and rigorous angles. It also fosters the
reader’s creativity by carefully guiding him or her through the evolution of each circuit and presenting
the thought process that occurs during the development of new circuit techniques.

1.5 Levels of Abstraction

Analysis and design of integrated circuits often require thinking at various levels of abstraction. Depending
on the effect or quantity of interest, we may study a complex circuit at device physics level, transistor level,
architecture level, or system level. In other words, we may consider the behavior of individual devices in
terms of their internal electric fields and charge transport [Fig. 1.5(a)], the interaction of a group of devices
according to their electrical characteristics [Fig. 1.5(b)], the function of several building blocks operating
as a unit [Fig. 1.5(c)], or the performance of the system in terms of that of its constituent subsystems
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[Fig. 1.5(d)]. Switching between levels of abstraction becomes necessary in both understanding the details
of the operation and optimizing the overall performance. In fact, in today’s IC industry, the interaction
among all groups, from device physicists to system designers, is essential to achieving high performance
and low cost. In this book, we begin with device physics and develop increasingly more complex circuit
topologies.

Architecture System

n+n+

Analog�to�Digital
Converter

Amp./Filter

Clock
Recovery

(a) (b)

(c) (d)

AGC

Equalizer

CircuitDevice

Figure 1.5 Abstraction levels in circuit design: (a) device level, (b) circuit level, (c) architecture level,
(d) system level.
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CHAPTER

2
Basic MOS Device Physics

In studying the design of integrated circuits (ICs), one of two extreme approaches can be taken, (1) be-
gin with quantum mechanics and understand solid-state physics, semiconductor device physics, device
modeling, and finally the design of circuits; or (2) treat each semiconductor device as a black box whose
behavior is described in terms of its terminal voltages and currents and design circuits with little attention
to the internal operation of the device. Experience shows that neither approach is optimum. In the first
case, the reader cannot see the relevance of all the physics to designing circuits, and in the second, he or
she is constantly mystified by the contents of the black box.

In today’s IC industry, a solid understanding of semiconductor devices is essential—more so in analog
design than in digital design, because in the former, transistors are not considered to be simple switches,
and many of their second-order effects directly impact the performance. Furthermore, as each new
generation of IC technologies scales the devices, these effects become more significant. Since the designer
must often decide which effects can be neglected in a given circuit, insight into device operation proves
invaluable.

In this chapter, we study the physics of MOSFETs at an elementary level, covering the bare minimum
that is necessary for basic analog design. The ultimate goal is still to develop a circuit model for each device
by formulating its operation, but this is accomplished through a good understanding of the underlying
principles. After studying many analog circuits in Chapters 3 through 14 and gaining motivation for a
deeper understanding of devices, we return to the subject in Chapter 17 and deal with other aspects of
MOS operation.

We begin our study with the structure of MOS transistors and derive their I/V characteristics. Next,
we describe second-order effects such as body effect, channel-length modulation, and subthreshold
conduction. We then identify the parasitic capacitances of MOSFETs, derive a small-signal model, and
present a simple SPICE model. We assume that the reader is familiar with such basic concepts as doping,
mobility, and pn junctions.

2.1 General Considerations

2.1.1 MOSFET as a Switch

Before delving into the actual operation of the MOSFET, we consider a simplistic model of the device so
as to gain a feel for what the transistor is expected to be and which aspects of its behavior are important.

Shown in Fig. 2.1 is the symbol for an n-type MOSFET, revealing three terminals: gate (G), source
(S), and drain (D). The latter two are interchangeable because the device is symmetric. When operating

7
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Gate

Source Drain
Figure 2.1 Simple view of a MOS
device.

as a switch, the transistor “connects” the source and the drain together if the gate voltage, VG , is “high”
and isolates the source and the drain if VG is “low.”

Even with this simplified view, we must answer several questions. For what value of VG does the
device turn on? In other words, what is the “threshold” voltage? What is the resistance between S and D
when the device is on (or off)? How does this resistance depend on the terminal voltages? Can we always
model the path between S and D by a simple linear resistor? What limits the speed of the device?

While all of these questions arise at the circuit level, they can be answered only by analyzing the
structure and physics of the transistor.

2.1.2 MOSFET Structure

Figure 2.2 shows a simplified structure of an n-type MOS (NMOS) device. Fabricated on a p-type substrate
(also called the “bulk” or the “body”), the device consists of two heavily-doped n regions forming the
source and drain terminals, a heavily-doped (conductive) piece of polysilicon1 (simply called “poly”)
operating as the gate, and a thin layer of silicon dioxide (SiO2) (simply called “oxide”) insulating the gate
from the substrate. The useful action of the device occurs in the substrate region under the gate oxide.
Note that the structure is symmetric with respect to S and D.

n+n+

Oxide
Poly

p�substrate

Le�

Ldrawn

S
DG

LD

tox

W

Figure 2.2 Structure of a MOS device.

The lateral dimension of the gate along the source-drain path is called the length, L , and that perpen-
dicular to the length is called the width, W . Since the S/D junctions “side-diffuse” during fabrication, the
actual distance between the source and the drain is slightly less than L . To avoid confusion, we write,
Leff = Ldrawn �2L D , where Leff is the “effective” length, Ldrawn is the total length,2 and L D is the amount
of side diffusion. As we will see later, Leff and the gate oxide thickness, tox , play an important role in the
performance of MOS circuits. Consequently, the principal thrust in MOS technology development is to
reduce both of these dimensions from one generation to the next without degrading other parameters of
the device. Typical values at the time of this writing are Leff � 10 nm and tox � 15 A

�
. In the remainder of

this book, we denote the effective length by L unless otherwise stated.

1Polysilicon is silicon in amorphous (non crystal) form. As explained in Chapter 18, when the gate silicon is grown on top of
the oxide, it cannot form a crystal. The gate was originally made of metal [hence the term “metal-oxide-semiconductor” (MOS)]
and is returning to metal in recent generations.

2The subscript “drawn” is used because this is the dimension that we draw in the layout of the transistor (Sec. 2.4.1).
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If the MOS structure is symmetric, why do we call one n region the source and the other the drain?
This becomes clear if the source is defined as the terminal that provides the charge carriers (electrons
in the case of NMOS devices) and the drain as the terminal that collects them. Thus, as the voltages at
the three terminals of the device vary, the source and the drain may exchange roles. These concepts are
practiced in the problems at the end of the chapter.

We have thus far ignored the substrate on which the device is fabricated. In reality, the substrate
potential greatly influences the device characteristics. That is, the MOSFET is a four-terminal device.
Since in typical MOS operation, the S/D junction diodes must be reverse-biased, we assume that the
substrate of NMOS transistors is connected to the most negative supply in the system. For example, if
a circuit operates between zero and 1.2 volts, Vsub,NMOS = 0. The actual connection is usually provided
through an ohmic p+ region, as depicted in the side view of the device in Fig. 2.3.

G
DS

p+

B

n+n+

p�substrate

Figure 2.3 Substrate connection.

In complementary MOS (CMOS) technologies, both NMOS and PMOS transistors are available. From
a simplistic viewpoint, the PMOS device is obtained by negating all of the doping types (including the
substrate) [Fig. 2.4(a)], but in practice, NMOS and PMOS devices must be fabricated on the same wafer,
i.e., the same substrate. For this reason, one device type can be placed in a “local substrate,” usually called
a “well.” In today’s CMOS processes, the PMOS device is fabricated in an n-well [Fig. 2.4(b)]. Note that
the n-well must be connected to a potential such that the S/D junction diodes of the PMOS transistor
remain reverse-biased under all conditions. In most circuits, the n-well is tied to the most positive supply
voltage. For the sake of brevity, we sometimes call NMOS and PMOS devices “NFETs” and “PFETs,”
respectively.

Nanometer Design Notes

Some modern CMOS processes offer a
“deep n-well,” an n-well that contains an
NMOS device and its p-type bulk. As
shown below, the NMOS transistor’s bulk
is now localized and need not be tied
to that of other NMOS devices. But the
design incurs substantial area overhead
because the deep n-well must extend
beyond the p-well by a certain amount
and must maintain a certain distance to
the regular n-well.

p�substrate

n+n+p+

p�well

Deep n�well

p+p+n+

n�well
n+

PMOS NMOS

Figure 2.4(b) indicates an interesting difference between NMOS and PMOS
transistors: while all NFETs share the same substrate, each PFET can have
an independent n-well. This flexibility of PFETs is exploited in some analog
circuits.

2.1.3 MOS Symbols

The circuit symbols used to represent NMOS and PMOS transistors are shown
in Fig. 2.5. The symbols in Fig. 2.5(a) contain all four terminals, with the sub-
strate denoted by “B” (bulk) rather than “S” to avoid confusion with the source.
The source of the PMOS device is positioned on top as a visual aid because
it has a higher potential than its gate. Since in most circuits the bulk terminals
of NMOS and PMOS devices are tied to ground and VDD, respectively, we
usually omit these connections in drawing [Fig. 2.5(b)]. In digital circuits, it
is customary to use the “switch” symbols depicted in Fig. 2.5(c) for the two
types, but we prefer those in Fig. 2.5(b) because the visual distinction between
S and D proves helpful in understanding the operation of circuits.
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G
DSB

n�substrate

G
DS B

n+p+

p+p+n+

p+

n�well

G
DSB

p�substrate

(a)

(b)

n+n+p+

Figure 2.4 (a) Simple PMOS device; (b) PMOS inside an n-well.

D

G

S

B

D

G

S

B

NMOS PMOS

D

G

S D

G

S

NMOS PMOS

D

G

S

NMOS

D

G

S

PMOS

(c)(a) (b)
Figure 2.5 MOS symbols.

2.2 MOS I/V Characteristics

In this section, we analyze the generation and transport of charge in MOSFETs as a function of the
terminal voltages. Our objective is to derive equations for the I/V characteristics such that we can elevate
our abstraction from device physics level to circuit level.

2.2.1 Threshold Voltage

Consider an NFET connected to external voltages as shown in Fig. 2.6(a). What happens as the gate
voltage, VG , increases from zero? Since the gate, the dielectric, and the substrate form a capacitor, as VG

becomes more positive, the holes in the p-substrate are repelled from the gate area, leaving negative ions
behind so as to mirror the charge on the gate. In other words, a depletion region is created [Fig. 2.6(b)].
Under this condition, no current flows because no charge carriers are available.

As VG increases, so do the width of the depletion region and the potential at the oxide-silicon interface.
In a sense, the structure resembles a voltage divider consisting of two capacitors in series: the gate-
oxide capacitor and the depletion-region capacitor [Fig. 2.6(c)]. When the interface potential reaches a
sufficiently positive value, electrons flow from the source to the interface and eventually to the drain.
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p�substrate

VG

VG

n+n+n+n+p+

p�substrate

VG

(a) (b)

p�substrate

VG

Cox

Cdep

(c)

n+n+n+n+

p�substrate

VG

(d)

Negative Ions

Electrons

+0.1 V +0.1 V +0.1 V

+0.1 V +0.1 V

(Channel)

Figure 2.6 (a) A MOSFET driven by a gate voltage; (b) formation of depletion region; (c) onset of inversion;
(d) formation of inversion layer.

Thus, a “channel” of charge carriers is formed under the gate oxide between S and D, and the transistor
is “turned on.” We say the interface is “inverted.” For this reason, the channel is also called the “inversion
layer.” The value of VG for which this occurs is called the “threshold voltage,” VTH . If VG rises further,
the charge in the depletion region remains relatively constant while the channel charge density continues
to increase, providing a greater current from S to D.

In reality, the turn-on phenomenon is a gradual function of the gate voltage, making it difficult to
define VTH unambiguously. In semiconductor physics, the VTH of an NFET is usually defined as the
gate voltage for which the interface is “as much n-type as the substrate is p-type.” It can be proved [1]
that3

VTH = �MS + 2�F +
Qdep

Cox
(2.1)

where �M S is the difference between the work functions of the polysilicon gate and the silicon substrate,
�F = (kT/q) ln(Nsub/ni ), k is Boltzmann’s constant, q is the electron charge, Nsub is the doping density
of the substrate, ni is the density of electrons in undoped silicon, Qdep is the charge in the depletion region,
and Cox is the gate-oxide capacitance per unit area. From pn junction theory, Qdep =

�
4q�si|�F |Nsub,

where �si denotes the dielectric constant of silicon. Since Cox appears very frequently in device and
circuit calculations, it is helpful to remember that for tox � 20 A

�
, Cox � 17.25 fF/µm2. The value of Cox

can then be scaled proportionally for other oxide thicknesses.
In practice, the “native” threshold value obtained from the above equation may not be suited to circuit

design, e.g., VTH = 0 and the device does not turn off for VG � 0.4 For this reason, the threshold voltage
is typically adjusted by implantation of dopants into the channel area during device fabrication, in essence
altering the doping level of the substrate near the oxide interface. For example, as shown in Fig. 2.7, if a
thin sheet of p+ is created, the gate voltage required to deplete this region increases.

3Charge trapping in the oxide is neglected here.
4Called a “depletion-mode” FET, such a device was used in old technologies. NFETs with a positive threshold are called

“enhancement-mode” devices.
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n+n+

p�substrate
p+

Figure 2.7 Implantation of p+
dopants to alter the threshold.

The above definition is not directly applicable to the measurement of VTH . In Fig. 2.6(a), only the
drain current can indicate whether the device is “on” or “off,” failing to reveal at what VGS the interface
is as much n-type as the bulk is p-type. As a result, the calculation of VTH from I/V measurements is
somewhat ambiguous. We will return to this point later, but assume for now that the device turns on
abruptly for VGS � VTH .

The turn-on phenomenon in a PMOS device is similar to that of NFETs, but with all the polarities
reversed. As shown in Fig. 2.8, if the gate-source voltage becomes sufficiently negative, an inversion
layer consisting of holes is formed at the oxide-silicon interface, providing a conduction path between
the source and the drain. That is, the threshold voltage of a PMOS device is typically negative.

VG

VG

–0.1 V

–0.1 V
Holesn�substrate

p+p+

Figure 2.8 Formation of inversion layer in a PFET.

2.2.2 Derivation of I/V Characteristics

In order to obtain the relationship between the drain current of a MOSFET and its terminal voltages, we
make two observations.

First, consider a semiconductor bar carrying a current I [Fig. 2.9(a)]. If the mobile charge density
along the direction of current is Qd coulombs per meter and the velocity of the charge is v meters per
second, then

I = Qd • v (2.2)

To understand why, we measure the total charge that passes through a cross section of the bar in unit time.
With a velocity v, all of the charge enclosed in v meters of the bar must flow through the cross section in

I

One second later

v meters

(a) (b)
Figure 2.9 (a) A semiconductor bar carrying a current I ; (b) snapshots of the carriers one second apart.
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one second [Fig. 2.9(b)]. Since the charge density is Qd , the total charge in v meters equals Qd • v. This
lemma proves useful in analyzing semiconductor devices.

Second, to utilize the above lemma, we must determine the mobile charge density in a MOSFET. To
this end, consider an NFET whose source and drain are connected to ground [Fig. 2.10(a)]. What is the
charge density in the inversion layer? Since we assume that the onset of inversion occurs at VGS = VTH ,
the inversion charge density produced by the gate-oxide capacitance is proportional to VGS � VTH . For
VGS � VTH , any charge placed on the gate must be mirrored by the charge in the channel, yielding a
uniform channel charge density (charge per unit length along the source-drain path) equal to

Qd = WCox (VGS � VTH) (2.3)

where Cox is multiplied by W to represent the total capacitance per unit length.
Now suppose, as depicted in Fig. 2.10(b), that the drain voltage is greater than zero. Since the channel

potential varies from zero at the source to VD at the drain, the local voltage difference between the gate
and the channel varies from VG (near the source) to VG � VD (near the drain). Thus, the charge density
at a point x along the channel can be written as

Qd(x) = WCox [VGS � V (x) � VTH] (2.4)

where V (x) is the channel potential at x . From (2.2), the current is given by

ID = �WCox [VGS � V (x) � VTH]v (2.5)

S D
VG

VG

VG
VDW

p�substrate

VG

n+n+

S

VD

(a)

(b)

0 Lx

W

W

W

Gate�Sub.
Voltage Di�erence

p�substrate

Gate�Sub.
Voltage Di�erence

n+n+

Figure 2.10 Channel charge with (a) equal source and drain voltages and (b) unequal source and drain voltages.
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where the negative sign is inserted because the charge carriers are negative. Note that v denotes the
velocity of the electrons in the channel. For semiconductors, v = µE , where µ is the mobility of charge
carriers and E is the electric field. Noting that E(x) = �dV/dx and representing the mobility of electrons
by µn , we have

ID = WCox [VGS � V (x) � VTH]µn
dV(x)

dx
(2.6)

subject to boundary conditions V (0) = 0 and V (L) = VDS . While V (x) can be easily found from this
equation, the quantity of interest is in fact ID . Multiplying both sides by dx and performing integration,
we obtain

� L

x=0
IDdx =

� VDS

V =0
WCoxµn[VGS � V (x) � VTH]dV (2.7)

Since ID is constant along the channel,

ID = µnCox
W

L

�
(VGS � VTH)VDS �

1

2
V 2

DS

�
(2.8)

Note that L is the effective channel length.
Figure 2.11 plots the parabolas given by (2.8) for different values of VGS, indicating that the “current

capability” of the device increases with VGS. Calculating � ID/�VDS , the reader can show that the peak
of each parabola occurs at VDS = VGS � VTH and the peak current is

ID, max =
1

2
µnCox

W

L
(VGS � VTH)2 (2.9)

We call VGS � VTH the “overdrive voltage” and W/L the “aspect ratio.” If VDS � VGS � VTH , we say the
device operates in the “triode region.”5

VDS

ID

VGS1
VGS2

VGS3

Triode Region

V
G

S1
 �

 V
TH

V
G

S2
 �

 V
TH

V
G

S3
 �

 V
TH

Figure 2.11 Drain current versus
drain-source voltage in the triode region.

Equations (2.8) and (2.9) serve as our first step toward CMOS circuit design, describing the dependence
of ID upon the constant of the technology, µnCox , the device dimensions, W and L , and the gate and
drain potentials with respect to the source. Note that the integration in (2.7) assumes that µn and VTH are
independent of x and the gate and drain voltages, an approximation that we will revisit in Chapter 17.

5Also called the “linear region.”
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If in (2.8), VDS � 2(VGS � VTH), we have

ID � µnCox
W

L
(VGS � VTH)VDS (2.10)

that is, the drain current is a linear function of VDS. This is also evident from the characteristics of
Fig. 2.11 for small VDS: as shown in Fig. 2.12, each parabola can be approximated by a straight line.
The linear relationship implies that the path from the source to the drain can be represented by a linear
resistor equal to

Ron =
1

µnCox
W

L
(VGS � VTH)

(2.11)

VDS

ID

VGS1

VGS2

VGS3

VGS1

VGS2

VGS3

Figure 2.12 Linear operation in deep triode region.

A MOSFET can therefore operate as a resistor whose value is controlled by the overdrive voltage [so long
as VDS � 2(VGS � VTH)]. This is conceptually illustrated in Fig. 2.13. Note that in contrast to bipolar
transistors, a MOS device may be on even if it carries no current. With the condition VDS � 2(VGS �VTH),
we say the device operates in the deep triode region.

G

DS

VGS

S D Figure 2.13 MOSFET as a controlled
linear resistor.

� Example 2.1

For the arrangement in Fig. 2.14(a), plot the on-resistance of M1 as a function of VG . Assume that µnCox =
50 µA/V2, W/L = 10, and VTH = 0.3 V. Note that the drain terminal is open.

Solution

Since the drain terminal is open, ID = 0 and VDS = 0. Thus, if the device is on, it operates in the deep triode region.
For VG < 1 V + VTH , M1 is off and Ron = �. For VG > 1 V + VTH , we have

Ron =
1

50 µA/V2 × 10(VG � 1 V � 0.3 V)
(2.12)

The result is plotted in Fig. 2.14(b).
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VG

1 V
M1

Ron

VG

(a) (b)

1.3 V

Figure 2.14

�

MOSFETs operating as controllable resistors play a crucial role in many analog circuits. For example, a
voltage-controlled resistor can be used to adjust the frequency of the clock generator in a laptop computer
if the system must go into a power saving mode. As studied in Chapter 13, MOSFETs also serve as
switches.

What happens if the drain-source voltage in Fig. 2.11 exceeds VGS � VTH? In reality, the drain cur-
rent does not follow the parabolic behavior for VDS > VGS � VTH . In fact, as shown in Fig. 2.15, ID

becomes relatively constant, and we say the device operates in the “saturation” region.6 To understand
this phenomenon, recall from (2.4) that the local density of the inversion-layer charge is proportional to
VGS � V (x) � VTH . Thus, if V (x) approaches VGS � VTH , then Qd(x) drops to zero. In other words, as
depicted in Fig. 2.16, if VDS is slightly greater than VGS � VTH , then the inversion layer stops at x � L ,
and we say the channel is “pinched off.” As VDS increases further, the point at which Qd equals zero
gradually moves toward the source. Thus, at some point along the channel, the local potential difference
between the gate and the oxide-silicon interface is not sufficient to support an inversion layer.

VDS

ID

VGS1

VGS2

VGS3

Saturation Region

V
G

S3
 �

 V
TH

V
G

S2
 �

 V
TH

V
G

S1
 �

 V
TH

Figure 2.15 Saturation of drain current.

How does the device conduct current in the presence of pinch-off? As the electrons approach the
pinch-off point (where Qd 	 0), their velocity rises tremendously (v = I/Qd ). Upon passing the pinch-
off point, the electrons simply shoot through the depletion region near the drain junction and arrive at the
drain terminal.

6Note the difference between saturation in bipolar and MOS devices.
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n+ n+

Pinch�o�

0 x1

VDS1

Pinch�o� V(x2) = VGS – VTHV(x1) = VGS – VTH

0 x2

VDS2 > VDS1
VG VG

Gate�Sub.
Voltage Di�erence

VTH

Gate�Sub.
Voltage Di�erence

VTH

Depletion
Region

n+ n+

Figure 2.16 Pinch-off behavior.

With the above observations, we reexamine (2.7) for a saturated device. Since Qd is the density of
mobile charge, the integral on the left-hand side of (2.7) must be taken from x = 0 to x = L 
, where
L 
 is the point at which Qd drops to zero (e.g., x2 in Fig. 2.16), and that on the right from V (x) = 0 to
V (x) = VGS � VTH . As a result,

ID =
1

2
µnCox

W

L 
 (VGS � VTH)2 (2.13)

indicating that ID is relatively independent of VDS if L 
 remains close to L . We say the device exhibits a
“square-law” behavior. If ID is known, then VGS is obtained as

VGS =
����

2ID

µnCox
W

L 


+ VTH (2.14)

We must emphasize that for the transistor to remain in saturation (as is the case in many analog
circuits), the drain-source voltage must be equal to or greater than the overdrive voltage. For this reason,
some books write VD,sat = VGS � VTH , where VD,sat denotes the minimum VDS necessary for operation
in saturation. As seen later in this book, if the signal swings at the drain or the gate cause VDS to fall
below VGS � VTH , then a number of undesirable effects occur. For this reason, the choice of the overdrive
and hence VD,sat translates to a certain voltage “headroom” for the signal swings in the circuit: the larger
the VD,sat , the less headroom is available for the signals.

Equations (2.8) and (2.13) represent the “large-signal” behavior of NMOS devices; i.e., they can
predict the drain current for arbitrary voltages applied to the gate, source, and drain (but only if the device
is on). Since the nonlinear nature of these equations makes the analysis difficult, we often resort to linear
approximations (“small-signal” models) so as to develop some understanding of a given circuit. This
point becomes clear in Sec. 2.4.3.

For PMOS devices, Eqs. (2.8) and (2.13) are respectively written as

ID = �µpCox
W

L

�
(VGS � VTH)VDS �

1

2
V 2

DS

�
(2.15)

and

ID = �
1

2
µpCox

W

L 
 (VGS � VTH)2 (2.16)
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The negative sign appears here because we assume that ID flows from the drain to the source, whereas
holes flow in the reverse direction. Note that VGS, VDS, VTH , and VGS � VTH are negative for a PMOS
transistor that is turned on. Since the mobility of holes is about one-half the mobility of electrons, PMOS
devices suffer from lower “current drive” capability.

Vb

VDD VDD

Vb

I1

I1

I2

I2

Figure 2.17 Saturated MOSFETs operating as current sources.

With L assumed constant, a saturated MOSFET can be used as a current source connected between the
drain and the source (Fig. 2.17), an important component in analog design. Note that the NMOS current
source injects current into ground and the PMOS current source draws current from VDD . In other words,
only one terminal of each current source is “floating.” (It is difficult to design a current source that flows
between two arbitrary nodes of a circuit.)

� Example 2.2

On a VDS-VGS plane, show the regions of operation of an NMOS transistor.

VGS
VTH

VDS

V GS �
 V TH

Triode

SaturationOff

Figure 2.18 VDS-VGS plane showing
regions of operation.

Solution

Since the value of VDS with respect to VGS � VTH determines the region of operation, we draw the line VDS =
VGS � VTH in the plane, as shown in Fig. 2.18. If VGS > VTH , then the region above the line corresponds to satu-
ration, and that below the line corresponds to the triode region. Note that for a given VDS, the device eventually
leaves saturation as VGS increases. The minimum allowable VDS for operation in saturation is also called VD,sat .
It is important to bear in mind that VD,sat = VGS � VTH .

�

The distinction between saturation and triode regions can be confusing, especially for PMOS devices.
Intuitively, we note that the channel is pinched off if the difference between the gate and drain voltages is
not sufficient to create an inversion layer. As depicted conceptually in Fig. 2.19, as VG � VD of an NFET
drops below VTH , pinch-off occurs. Similarly, if VD � VG of a PFET is not large enough (< |VTHP|), the
device is saturated. Note that this view does not require knowledge of the source voltage. This means that
we must know a priori which terminal operates as the drain. The drain is defined as the terminal with a
higher (lower) voltage than the source for an NFET (PFET).
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VTHN

VTHP

(a) (b)

Saturation Edge of Triode Region Saturation Edge of Triode Region

Figure 2.19 Conceptual visualization of saturation and triode regions.

2.2.3 MOS Transconductance

Since a MOSFET operating in saturation produces a current in response to its gate-source overdrive
voltage, we may define a figure of merit that indicates how well a device converts a voltage to a current.
More specifically, since in processing signals, we deal with the changes in voltages and currents, we
define the figure of merit as the change in the drain current divided by the change in the gate-source
voltage. Called the “transconductance” (and usually defined in the saturation region) and denoted by gm ,
this quantity is expressed as

gm =
� ID

�VGS

����
VDS const.

(2.17)

= µnCox
W

L
(VGS � VTH) (2.18)

In a sense, gm represents the sensitivity of the device: for a high gm , a small change in VGS results in a
large change in ID . We express gm in 1/� or in siemens (S); e.g., gm = 1/(100 �) = 0.01 S. In analog
design, we sometimes say a MOSFET operates as a “transconductor” or a “V/I converter” to indicate
that it converts a voltage change to a current change. Interestingly, gm in the saturation region is equal to
the inverse of Ron in the deep triode region.

The reader can prove that gm can also be expressed as

gm =
	

2µnCox
W

L
ID (2.19)

=
2ID

VGS � VTH
(2.20)

Plotted in Fig. 2.20, each of the above expressions proves useful in studying the behavior of gm as a
function of one parameter while other parameters remain constant. For example, (2.18) suggests that

VGS � VTH VGS � VTH

gm

W/L Constant

gm

W/L Constant
ID

gm

ID Constant

Figure 2.20 Approximate MOS transconductance as a function of overdrive and drain current.
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gm increases with the overdrive if W/L is constant, whereas (2.20) implies that gm decreases with the
overdrive if ID is constant.

The ID and VGS � VTH terms in the above gm equations are bias values. For example, a transistor with
W/L = 5 µm/0.1 µm and biased at ID = 0.5 mA may exhibit a transconductance of (1/200 �). If a
signal is applied to the device, then ID and VGS � VTH and hence gm vary, but in small-signal analysis,
we assume that the signal amplitude is small enough that this variation is negligible.

Equation (2.19) implies that the transconductance can be raised arbitrarily if we increase W/L and
keep ID constant. This result is incorrect and will be revised in Sec. 2.3.

The concept of transconductance can also be applied to a device operating in the triode region, as
illustrated in the following example.

� Example 2.3

For the arrangement shown in Fig. 2.21, plot the transconductance as a function of VDS.

Vb

VDSVb � VTH

gm

VDSM1

ID

Figure 2.21

Solution

It is simpler to study gm as VDS decreases from infinity. So long as VDS � Vb � VTH , M1 is in saturation, ID is
relatively constant, and, from (2.19), so is gm . If the drain voltage falls below the gate voltage by more than one
threshold, M1 enters the triode region, and

gm =
�

�VGS



1

2
µnCox

W

L

�
2(VGS � VTH)VDS � V 2

DS

�

(2.21)

= µnCox
W

L
VDS (2.22)

Thus, as plotted in Fig. 2.21, the transconductance drops in the triode region. For amplification, therefore, we usually
employ MOSFETs in saturation.

�

For a PFET, the transconductance in the saturation region is expressed as gm =� µpCox(W/L)
(VGS � VTH) = �2ID/(VGS � VTH) =

�
2µpCox(W/L)ID .

2.3 Second-Order Effects

Our analysis of the MOS structure has thus far entailed various simplifying assumptions, some of which
are not valid in many analog circuits. In this section, we describe three second-order effects that are
essential in our subsequent circuit analyses. Other phenomena that appear in nanometer devices are
studied in Chapter 17.

Body Effect In the analysis of Fig. 2.10, we tacitly assumed that the bulk and the source of the tran-
sistor were tied to ground. What happens if the bulk voltage of an NFET drops below the source voltage
(Fig. 2.22)? Since the S and D junctions remain reverse-biased, we surmise that the device continues
to operate properly, but some of its characteristics may change. To understand the effect, suppose
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n+n+

p�substrate

VG

VG

VB < 0

VB < 0

VD VD

p+

Figure 2.22 NMOS device with negative bulk voltage.
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Figure 2.23 Variation of depletion region charge with bulk voltage.

VS = VD = 0, and VG is somewhat less than VTH , so that a depletion region is formed under the gate but
no inversion layer exists. As VB becomes more negative, more holes are attracted to the substrate connec-
tion, leaving a larger negative charge behind; i.e., as depicted in Fig. 2.23, the depletion region becomes
wider. Now recall from Eq. (2.1) that the threshold voltage is a function of the total charge in the depletion
region because the gate charge must mirror Qd before an inversion layer is formed. Thus, as VB drops and
Qd increases, VTH also increases. This phenomenon is called the “body effect” or the “back-gate effect.”

It can be proved that with body effect,

VTH = VT H0 + �
��

2�F + VSB �
�

|2�F |
�

(2.23)

where VT H0 is given by (2.1), � =
�

2q�si Nsub/Cox denotes the body-effect coefficient, and VSB is the
source-bulk potential difference [1]. The value of � typically lies in the range of 0.3 to 0.4 V1/2.

� Example 2.4

In Fig. 2.24(a), plot the drain current if VX varies from �� to 0. Assume VT H0 = 0.3 V, � = 0.4 V1/2, and
2�F = 0.7 V.

ID

VX

ID

VX1

2 V
M1

VX
0

(a) (b)

+1.2 V

Figure 2.24
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Solution

If VX is sufficiently negative, the threshold voltage of M1 exceeds 1.2 V and the device is off. That is,

1.2 V = 0.3 + 0.4
��

0.7 � VX1 �
�

0.7
�

(2.24)

and hence VX1 = �8.83 V. For VX1 < VX < 0, ID increases according to

ID =
1

2
µnCox

W

L

�
VGS � VT H0 � �

��
2�F � VX �

�
2�F

��2
(2.25)

Fig. 2.24(b) shows the resulting behavior.
�

For body effect to manifest itself, the bulk potential, Vsub, need not change: if the source voltage varies
with respect to Vsub, the same phenomenon occurs. For example, consider the circuit in Fig. 2.25(a), first
ignoring body effect. We note that as Vin varies, Vout closely follows the input because the drain current
remains equal to I1. In fact, we can write

I1 =
1

2
µnCox

W

L
(Vin � Vout � VTH)2 (2.26)

concluding that Vin � Vout is constant if I1 is constant [Fig. 2.25(b)].

M1

VDD

Vin

Vout

I1
t

Vin

t

Vin

(c)(a) (b)

Vout Vout

Figure 2.25 (a) A circuit in which the source-bulk voltage varies with input level; (b) input and output voltages
with no body effect; (c) input and output voltages with body effect.

Now suppose that the substrate is tied to ground and body effect is significant. Then, as Vin and hence
Vout become more positive, the potential difference between the source and the bulk increases, raising
the value of VTH . Equation (2.26) implies that Vin � Vout must increase so as to maintain ID constant
[Fig. 2.25(c)].

Body effect is usually undesirable. The change in the threshold voltage, e.g., as in Fig. 2.25(a), often
complicates the design of analog (and even digital) circuits. Device technologists balance Nsub and Cox

to obtain a reasonable value for � .

� Example 2.5

Equation (2.23) suggests that if VSB becomes negative, then VTH decreases. Is this correct?

Solution

Yes, it is. If the bulk voltage of an NMOS device rises above its source voltage, VTH falls below VT H0. This observation
proves useful in low-voltage design, where the performance of a circuit may suffer due to a high threshold voltage;
one can bias the bulk to reduce VTH . Unfortunately, this is not straightforward for NFETs because they typically
share one substrate, but it can readily be applied to individual PFETs.

�



Razavi-3930640 book December 17, 201516:17 23

Sec. 2.3 Second-Order Effects 23

Channel-Length Modulation In the analysis of channel pinch-off in Sec. 2.2, we noted that the actual
length of the channel gradually decreases as the potential difference between the gate and the drain
decreases. In other words, in (2.13), L 
 is in fact a function of VDS. This effect is called “channel-length
modulation.” Writing L 
 = L ��L , i.e., 1/L 
 � (1+�L/L)/L , and assuming a first-order relationship
between �L/L and VDS, such as �L/L = �VDS, we have, in saturation,

ID �
1

2
µnCox

W

L
(VGS � VTH)2(1 + �VDS) (2.27)

where � is the “channel-length modulation coefficient.” Illustrated in Fig. 2.26, this phenomenon results
in a nonzero slope in the ID/VDS characteristic and hence a nonideal current source between D and S in
saturation. The parameter � represents the relative variation in length for a given increment in VDS. Thus,
for longer channels, � is smaller.

VDS

ID

VGS1

VGS2

Figure 2.26 Finite saturation region
slope resulting from channel-length
modulation.

� Example 2.6

Is there channel-length modulation in the triode region?

Solution

No, there is not. In the triode region, the channel continuously stretches from the source
to the drain, experiencing no pinch-off. Thus, the drain voltage does not modulate the
length of the channel. Nanometer Design Notes

Nanometer transistors suffer from vari-
ous imperfections and markedly depart
from square-law behavior. Shown below
are the actual I-V characteristics of
an NFET with W/L = 5 µm/40 nm for
VGS = 0.3 V • • • 0.8 V. Also plotted are
the characteristics of a square-law
device of the same dimensions. Despite
our best efforts to match the latter
device to the former, we still observe
significant differences.
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0

0.5

1

1.5

2

2.5

3

3.5

VDS (V)

I D
 (m

A
)

The reader may then observe a discontinuity in the equations as the device goes
from the triode region to saturation:

ID,tri =
1

2
µnCox

W

L

�
2(VGS � VTH)VDS � V 2

DS

�
(2.28)

ID,sat =
1

2
µnCox

W

L
(VGS � VTH)2(1 + �VDS) (2.29)

The former yields (1/2)µnCoxW/L(VGS � VTH)2 at the edge of the triode region,
whereas the latter exhibits an additional factor of 1+�VDS. This discrepancy is removed
in more complex models of MOSFETs (Chapter 17).

�

With channel-length modulation, some of the expressions derived for gm

must be modified. Equations (2.18) and (2.19) are respectively rewritten as

gm = µnCox
W

L
(VGS � VTH)(1 + �VDS) (2.30)

=
�

2µnCox(W/L)ID(1 + �VDS) (2.31)

while Eq. (2.20) remains unchanged.
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� Example 2.7

Keeping all other parameters constant, plot the ID/VDS characteristic of a MOSFET for L = L1 and L = 2L1.

Solution

Writing

ID =
1

2
µnCox

W

L
(VGS � VTH)2(1 + �VDS) (2.32)

and � � 1/L , we note that if the length is doubled, the slope of ID vs. VDS is divided by four because � ID/�VDS �
�/L � 1/L2 (Fig. 2.27). (This is true only if VGS � VTH is constant.) For a given gate-source overdrive, a larger
L gives a more ideal current source while degrading the current capability of the device. Thus, W may need to be
increased proportionally. In fact, if we double W to restore ID to its original value, the slope also doubles. In other
words, for a required drain current and a given overdrive, doubling the length reduces the slope by a factor of 2.

VDS

ID L = L1

L = 2L1

Figure 2.27 Effect of doubling
channel length.

�

The linear approximation �L/L � VDS becomes less accurate in short-channel transistors, resulting
in a variable slope in the saturated ID/VDS characteristics. We return to this issue in Chapter 17.

The dependence of ID upon VDS in saturation may suggest that the bias current of a MOSFET can be
defined by the proper choice of the drain-source voltage, allowing freedom in the choice of VGS � VTH .
However, since the dependence on VDS is much weaker, the drain-source voltage is not used to set the
current. That is, we always consider VGS � VTH as the current-defining parameter. The effect of VDS on
ID is usually considered an error, and it is studied in Chapter 5.

Subthreshold Conduction In our analysis of the MOSFET, we have assumed that the device turns off
abruptly as VGS drops below VTH . In reality, for VGS � VTH , a “weak” inversion layer still exists and some
current flows from D to S. Even for VGS < VTH , ID is finite, but it exhibits an exponential dependence on
VGS [2, 3]. Called “subthreshold conduction,” this effect can be formulated for VDS greater than roughly
100 mV as

ID = I0 exp
VGS

	VT
(2.33)

where I0 is proportional to W/L , 	 > 1 is a nonideality factor, and VT = kT/q. We also say the device
operates in “weak inversion.” (Similarly, for VGS > VTH , we say the device operates in “strong inversion.”)
Except for 	 , (2.33) is similar to the exponential IC/VB E relationship of a bipolar transistor. The key point
here is that as VGS falls below VTH , the drain current drops at a finite rate. With typical values of 	 , at room
temperature VGS must decrease by approximately 80 mV for ID to decrease by one decade (Fig. 2.28).
For example, if a threshold of 0.3 V is chosen in a process to allow low-voltage operation, then when VGS

is reduced to zero, the drain current decreases by only a factor of 100.3 V/80 mV = 103.75 � 5.62×103. For
example, if the transistor carries about 1 µA for VGS = VTH and we have 100 million such devices, then
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Figure 2.28 MOS subthreshold char-
acteristics.

they draw 18 mA when they are nominally off. Especially problematic in large circuits such as memories,
subthreshold conduction can result in significant power dissipation (or loss of analog information).

If a MOS device conducts for VGS < VTH , then how do we define the threshold voltage? Indeed,
numerous definitions have been proposed. One possibility is to extrapolate, on a logarithmic vertical
scale, the weak inversion and strong inversion characteristics and consider their intercept voltage as the
threshold (Fig. 2.28).

We now reexamine Eq. (2.19) for the transconductance of a MOS device operating in the subthresh-
old region. Is it possible to achieve an arbitrarily high transconductance by increasing W while main-
taining ID constant? Is it possible to obtain a higher transconductance than that of a bipolar transistor
(IC/VT ) biased at the same current? Equation (2.19) was derived from the square-law characteristic ID =
(1/2)µnCox(W/L)(VGS � VTH)2. However, if W increases while ID remains constant, then VGS 	 VTH

and the device enters the subthreshold region. As a result, the transconductance is calculated from (2.33)
to be gm = ID/(	VT ), revealing that MOSFETs are still inferior to bipolar transistors in this respect.

At what overdrive voltage can we say the transistor goes from strong inversion to weak inversion?
While somewhat arbitrary, this transition point can be defined as the overdrive voltage, (VGS � VTH)1, at
which the corresponding transconductances would become equal for the same drain current:

ID

	VT
=

2ID

(VGS � VTH)1
(2.34)

and hence

(VGS � VTH)1 = 2	VT (2.35)

For 	 � 1.5, this amounts to about 80 mV.
The exponential dependence of ID upon VGS in subthreshold operation may suggest the use of MOS

devices in this regime so as to achieve a higher gain. However, since such conditions are met only by a
large device width or low drain current, the speed of subthreshold circuits is severely limited.

� Example 2.8

Examine the behavior of a MOSFET as the drain “current density,” ID/W , varies.

Solution

For a given drain current and device width, how do we determine the region of operation? We must consider the
equations for both strong and weak inversion:

ID =
1

2
µnCox

W

L
(VGS � VTH)2 (2.36)

ID = 

W

L
exp

VGS

	VT
(2.37)
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where channel-length modulation is neglected and I0 in Eq. (2.33) has been expressed as a proportionality factor,

, multiplied by W/L . What happens if the device is in strong inversion and we continue to reduce ID while W/L
is constant? Can VGS simply approach VTH to yield an arbitrarily small value for (VGS � VTH)2? Why does the
square-law equation not hold as VGS approaches VTH?

To answer these questions, we return to the plot of Fig. 2.28 and observe that only currents beyond a certain level
can be supported in strong inversion. In other words, for a given current and W/L , we must obtain VGS from both
the square-law and exponential equations and select the lower value:

VGS =

	
2ID

µnCoxW/L
+ VTH (2.38)

VGS = 	VT ln
ID


W/L
(2.39)

If ID remains constant and W increases, VGS falls and the device goes from strong inversion to weak inversion.
�

Voltage Limitations A MOSFET experiences various undesirable effects if its terminal voltage differ-
ences exceed certain limits (if the device is “stressed”). At high gate-source voltages, the gate oxide breaks
down irreversibly, damaging the transistor. In short-channel devices, an excessively large drain-source
voltage widens the depletion region around the drain so much that it touches that around the source,
creating a very large drain current. (This effect is called “punchthrough.”) Even without breakdown,
MOSFETs’ characteristics can change permanently if the terminal voltage differences exceed a specified
value. Such effects are described in Chapter 17.

2.4 MOS Device Models

2.4.1 MOS Device Layout

For the developments in subsequent sections, it is beneficial to have some understanding of the layout of a
MOSFET. We describe only a simple view here, deferring the fabrication details and structural subtleties
to Chapters 18 and 19.

The layout of a MOSFET is determined by both the electrical properties required of the device in
the circuit and the “design rules” imposed by the technology. For example, W/L is chosen to set the
transconductance or other circuit parameters while the minimum L is dictated by the process. In addition
to the gate, the source and drain areas must be defined properly as well.

Shown in Fig. 2.29 are the “bird’s-eye view” and the top view of a MOSFET. The gate polysilicon
and the source and drain terminals must be tied to metal (aluminum) wires that serve as interconnects
with low resistance and capacitance. To accomplish this, one or more “contact windows” must be
opened in each region, filled with metal, and connected to the upper metal wires. Note that the gate
poly extends beyond the channel area by some amount to ensure reliable definition of the “edge” of the
transistor.

The source and drain junctions play an important role in the performance. To minimize the capacitance
of S and D, the total area of each junction must be minimized. We see from Fig. 2.29 that one dimension
of the junctions is equal to W . The other dimension must be large enough to accommodate the contact
windows and is specified by the technology design rules.7

7This dimension is typically three to four times the minimum allowable channel length.
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Figure 2.29 Bird’s-eye and vertical views of a MOS device.

� Example 2.9

Draw the layout of the circuit shown in Fig. 2.30(a).

M1

M2

M3

A

B

E

N

F

C

E

C

N

F

M1

M2

M3

B

E

F

A

N

Aluminum
Wires

(c)(a) (b)
Figure 2.30

Solution

Observing that M1 and M2 share the same S/D junctions at node C and M2 and M3 also do so at node N , we surmise
that the three transistors can be laid out as shown in Fig. 2.30(b). Connecting the remaining terminals, we obtain the
layout in Fig. 2.30(c). Note that the gate polysilicon of M3 cannot be directly tied to the source material of M1, thus
requiring a metal interconnect.

�

2.4.2 MOS Device Capacitances

The basic quadratic I/V relationships derived in the previous section, along with corrections for body
effect and channel-length modulation, provide some understanding of the low-frequency behavior of
CMOS circuits. In many analog circuits, however, the capacitances associated with the devices must also
be taken into account so as to predict the high-frequency behavior as well.

We expect that a capacitance exists between every two of the four terminals of a MOSFET (Fig. 2.31).8

Moreover, the value of each of these capacitances may depend on the bias conditions of the transistor.

8The capacitance between S and D is negligible.
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Figure 2.31 MOS capacitances.
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Figure 2.32 (a) MOS device capacitances; (b) decomposition of S/D junction capacitance into bottom-plate and
sidewall components.

Nanometer Design Notes

New generations of CMOS technology
incorporate the “FinFET” structure. Un-
like the conventional “planar” device, the
FinFET extends in the third dimension.
As shown below, it consists of an n+

wall (resembling a shark’s fin) and a gate
that wraps around the wall. The tran-
sistor carries current from the source
to the drain on the surfaces of the fin.
Owing to the tight confinement of the
electric field between the two vertical
walls of the gate, the FinFET exhibits
less channel-length modulation and sub-
threshold leakage. But where do the S/D
contacts land? What other issues do we
face in FinFETs? We return to these
questions later in this book.

S

D

G

Oxide

Substrate

S/D Fin

n+

n+

Considering the physical structure in Fig. 2.32(a), we identify the following:
(1) the oxide capacitance between the gate and the channel, C1 = WLCox;
(2) the depletion capacitance between the channel and the substrate, C2 =
WL

�
q�si Nsub/(4�F ); and (3) the capacitance due to the overlap of the gate

poly with the source and drain areas, C3 and C4. Owing to fringing electric
field lines, C3 and C4 cannot be simply written as WLDCox, and are usually ob-
tained by more elaborate calculations. The overlap capacitance per unit width
is denoted by Cov and expressed in F/m (or fF/µm). We simply multiply Cov by
W to find the gate-source and gate-drain overlap capacitances. (4) The junc-
tion capacitance between the source/drain areas and the substrate. As shown
in Fig. 2.32(b), this last capacitance is decomposed into two components:
the bottom-plate capacitance associated with the bottom of the junction, C j ,
and the sidewall capacitance due to the perimeter of the junction, C jsw. The
distinction is necessary because different transistor geometries yield different
area and perimeter values for the S/D junctions. We specify C j and Cjsw as ca-
pacitance per unit area (in F/m2) and unit length (in F/m), respectively. Thus,
C j is multiplied by the S/D area, and C jsw by the S/D perimeter. Note that
each junction capacitance can be expressed as C j = C j0/[1 + VR/(�B)]m ,
where VR is the reverse voltage across the junction, �B is the junction built-in
potential, and m is a power typically in the range of 0.3 and 0.4.
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� Example 2.10

Calculate the source and drain junction capacitances of the two structures shown in Fig. 2.33.

(a) (b)

W

E

W
2

Source
Terminal

Drain
Terminal

E

Figure 2.33

Solution

For the transistor in Fig. 2.33(a), we have

CDB = CSB = WEC j + 2(W + E)Cjsw (2.40)

whereas for that in Fig. 2.33(b),

CDB =
W

2
EC j + 2

�
W

2
+ E

�
Cjsw (2.41)

CSB = 2

�
W

2
EC j + 2

�
W

2
+ E

�
Cjsw

�
(2.42)

= W EC j + 2(W + 2E)Cjsw (2.43)

Called a “folded” structure, the geometry in Fig. 2.33(b) exhibits substantially less drain junction capacitance than
that in Fig. 2.33(a) while providing the same W/L .

In the above calculations, we have assumed that the total source or drain perimeter, 2(W + E), is multiplied
by Cjsw. In reality, the capacitance of the inner sidewall (under the gate) may be different from that of the other
sidewalls.9 Nonetheless, we typically assume that all four sides have the same Cjsw. The error resulting from this
assumption is negligible because each node in a circuit is connected to a number of other device capacitances
as well.

�

We now derive the capacitances between terminals of a MOSFET in different regions of opera-
tion. If the device is off, CGD = CGS = CovW , and the gate-bulk capacitance consists of the series
combination of the gate-oxide capacitance and the depletion-region capacitance [Fig. 2.32(a)], i.e.,
CGB = (WLCox)Cd/(WLCox + Cd), where L is the effective length, Cd = WL

�
q�si Nsub/(4�F ), and

9This is because the other sidewalls are surrounded by a “trench” (Chapter 18).



Razavi-3930640 book December 17, 201516:17 30

30 Chap. 2 Basic MOS Device Physics

�si = �r,si × �0 = 11.8 × (8.85 × 10�14) F/cm. The value of CSB and CDB is a function of the source and
drain voltages with respect to the substrate.

If the device is in the deep triode region, i.e., if S and D have approximately equal voltages, then the
gate-channel capacitance, WLCox, is divided equally between the gate and source terminals and the gate
and drain terminals (Fig. 2.34). This is because a change of �V in the gate voltage draws equal amounts
of charge from S and D. Thus, CGD = CGS = WLCox/2 + WCov .

VGSVTH VD + VTH

2
3 WLCox + WCov

WCov

WLCox
2

+ WCovSaturation

O�

Triode
CGS

CGD
VG

VD

Figure 2.34 Variation of gate-source and gate-drain capacitances versus VGS.

Let us now consider CG D and CGS. If in saturation, a MOSFET exhibits a gate-drain capacitance
roughly equal to WCov . As for CGS, we note that the potential difference between the gate and the
channel varies from VGS at the source to VTH at the pinch-off point, resulting in a nonuniform vertical
electric field in the gate oxide as we travel from the source to the drain. It can be proved that the equivalent
capacitance of this structure, excluding the gate-source overlap capacitance, equals (2/3)WLCox [1]. Thus,
CGS = 2W Leff Cox/3+WCov . The behavior of CG D and CGS in different regions of operation is plotted in
Fig. 2.34. Note that the above equations do not provide a smooth transition from one region of operation
to another, creating convergence difficulties in simulation programs. This issue is revisited in Chapter 17.

The gate-bulk capacitance is usually neglected in the triode and saturation regions because the inversion
layer acts as a “shield” between the gate and the bulk. In other words, if the gate voltage varies, the charge
is supplied by the source and the drain rather than the bulk.

� Example 2.11

Sketch the capacitances of M1 in Fig. 2.35 as VX varies from zero to 3 V. Assume that VTH = 0.3 V and � = � = 0.

M1

VX

+2 V

+1 V

N

F

E

Figure 2.35

Solution

To avoid confusion, we label the three terminals as shown in Fig. 2.35 and denote the bulk by B. For VX � 0, M1 is
in the triode region, CEN � CEF = (1/2)WLCox + WCov, and CFB is maximum. The value of CNB is independent
of VX . As VX exceeds 1 V, the role of the source and drain is exchanged [Fig. 2.36(a)], eventually bringing M1 out
of the triode region for VX � 2 V � 0.3 V. The variation of the capacitances is plotted in Figs. 2.36(b) and (c).
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Figure 2.36

�

2.4.3 MOS Small-Signal Model

The quadratic characteristics described by (2.8) and (2.9) along with the voltage-dependent capacitances
derived above form the large-signal model of MOSFETs. Such a model proves essential in analyzing
circuits in which the signal significantly disturbs the bias points, particularly if nonlinear effects are
of concern. By contrast, if the perturbation in bias conditions is small, a “small-signal” model, i.e., an
approximation of the large-signal model around the operating point, can be employed to simplify the
calculations. Since in many analog circuits, MOSFETs are biased in the saturation region, we derive the
corresponding small-signal model here. For transistors operating as switches, a linear resistor given by
(2.11) together with device capacitances serves as a rough small-signal equivalent.

We derive the small-signal model by producing a small increment in one bias parameter and calculating
the resulting increment in other bias parameters. Specifically, we (1) apply certain bias voltages to the
terminals of the device, (2) increment the potential difference between two of the terminals while other
terminal voltages remain constant, and (3) measure the resulting change in all terminal currents. If we
change the voltage between two terminals by �V and measure a current change of �I in some branch,
we can model the effect by a voltage-dependent current source. Let us apply a change to the gate-source
voltage, �V = VGS, where VGS is a small-signal quantity.10 The drain current therefore changes by
gm VGS and is modeled by a voltage-dependent current source tied between the drain and source terminals
[Fig. 2.37(a)]. The gate current is very small and its change is negligible, thus requiring no representation
here. The result is the small-signal model of an ideal MOSFET—the model that an analog designer applies
to most devices in a circuit at first glance.

Owing to channel-length modulation, the drain current also varies with the drain-source voltage. This
effect can be modeled by a voltage-dependent current source [Fig. 2.37(b)], but a current source whose
value linearly depends on the voltage across it is equivalent to a linear resistor [Fig. 2.37(c)] (why?). Tied
between D and S, the resistor is given by

rO =
�VDS

� ID
(2.44)

=
1

� ID/�VDS
(2.45)

=
1

1

2
µnCox

W

L
(VGS � VTH)2 • �

(2.46)

10In this book, we use uppercase letters to denote large-signal or small-signal quantities. The distinction will be clear from
the context.
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(c) (d)
Figure 2.37 (a) Basic MOS small-signal model; (b) channel-length modulation represented by a dependent
current source; (c) channel-length modulation represented by a resistor; (d) body effect represented by a dependent
current source.

�
1 + �VDS

�ID
(2.47)

�
1

�ID
(2.48)

where it is assumed that �VDS � 1. As seen throughout this book, the output resistance, rO , affects the
performance of many analog circuits. For example, rO limits the maximum voltage gain of most amplifiers.

Now recall that the bulk potential influences the threshold voltage and hence the gate-source overdrive.
As demonstrated in Example 2.3, with all other terminals held at a constant voltage, the drain current
is a function of the bulk voltage. That is, the bulk behaves as a second gate. Modeling this dependence
by a current source connected between D and S [Fig. 2.37(d)], we write the value as gmbVbs , where
gmb = � ID/�VBS . In the saturation region, gmb can be expressed as

gmb =
� ID

�VBS
(2.49)

= µnCox
W

L
(VGS � VTH)

�
�

�VTH

�VBS

�
(2.50)

We also have

�VTH

�VBS
= �

�VTH

�VSB
(2.51)

= �
�
2

(2�F + VSB)�1/2 (2.52)

Thus,

gmb = gm
�

2
�

2�F + VSB
(2.53)

= �gm (2.54)
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where � = gmb/gm and is typically around 0.25. As expected, gmb is proportional to � . Equation (2.53)
also suggests that the incremental body effect becomes less pronounced as VSB increases. Note that gm VGS

and gmbVBS have the same polarity, i.e., raising the gate voltage has the same effect as raising the bulk
potential.

The model in Fig. 2.37(d) is adequate for most low-frequency small-signal analyses. In reality, each
terminal of a MOSFET exhibits a finite ohmic resistance resulting from the resistivity of the material (and
the contacts), but proper layout can minimize such resistances. For example, consider the two structures
of Fig. 2.33, repeated in Fig. 2.38 along with the gate distributed resistance. We note that folding reduces
the gate resistance by a factor of four.

(a) (b)

W
W
2

RG
RG
2

RG
2

Figure 2.38 Reduction of gate resis-
tance by folding.

Shown in Fig. 2.39, the complete small-signal model includes the device capacitances as well. The
value of each capacitance is calculated according to the equations derived in Sec. 2.4.2. The reader may
wonder how a complex circuit is analyzed intuitively if each transistor must be replaced by the model
of Fig. 2.39. The first step is to determine the simplest device model that can represent the role of each
transistor with reasonable accuracy. We provide some guidelines for this task at the end of Chapter 3.

gmVGSVGS

G

S

D

rO gmbVBS

VBS

CGD

CGS

CSB

CDBCGB

B

Figure 2.39 Complete MOS small-signal model.

� Example 2.12

Sketch gm and gmb of M1 in Fig. 2.40 as a function of the bias current I1.

Solution

Since gm =
�

2µnCox(W/L)ID , we have gm �
�

I1. The dependence of gmb upon I1 is less straightforward. As I1
increases, VX decreases, and so does VSB .
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M1

VDD

I1

(a) (b)

X

I1

gm

gmb

Figure 2.40
�

PMOS Small-Signal Model The derivation of the small-signal model seeks changes in the terminal
currents due to changes in the terminal voltage differences. As such, this derivation yields exactly the
same model for PMOS devices as for NMOS devices. For example, consider the arrangement shown in
Fig. 2.41(a), where the voltage source V1 is changed by a small amount and the change in ID is measured
(while M1 remains in saturation). Suppose V1 becomes more positive, making VGS more negative. Since
the transistor now has a greater overdrive, it carries a higher current, and hence ID becomes more negative.
(Recall that ID , in the direction shown here, is negative because the actual current of holes flows from
the source to the drain.) Thus, a negative �VGS leads to a negative �ID . Conversely, a positive �VGS

produces a positive �ID , as is the case for an NMOS device.

VDD

V1

ID

M1

Gate

Source

Drain
VD

V1

(a) (b)

Figure 2.41 (a) Small-signal test of
a PMOS device, and (b) small-signal
model.

In our circuit diagrams, we usually draw the PMOS devices with their source terminals on top and
their drain terminals on the bottom because the former are at a more positive voltage. This practice may
cause confusion in drawing small-signal models. Let us draw the small-signal equivalent of the above
circuit, assuming no channel-length modulation. Depicted in Fig. 2.41(b), the model shows the voltage-
dependent current source pointing upward, giving the (wrong) impression that the direction of the current
in the PMOS model is the opposite of that in the NMOS model. The reader is cautioned to avoid this
confusion and bear in mind that the small-signal models of NMOS and PMOS transistors are identical.

Unless otherwise stated, in this book we assume that the bulk of all NFETs is tied to the most negative
supply (usually the ground) and that of PFETs to the most positive supply (usually VDD).

2.4.4 MOS SPICE models

In order to represent the behavior of transistors in circuit simulations, simulators such as SPICE and
Cadence require an accurate model for each device. Over the last three decades, MOS modeling has
made tremendous progress, reaching sophisticated levels so as to represent high-order effects in short-
channel devices.

In this section, we describe the simplest MOS SPICE model, known as “Level 1,” and provide typical
values for each parameter in the model corresponding to a 0.5-µm technology. Chapter 17 describes
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more accurate SPICE models. Table 2.1 shows the model parameters for NMOS and PMOS devices. The
parameters are defined as follows:

Table 2.1 Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model

LEVEL = 1 VTO = 0.7 GAMMA = 0.45 PHI = 0.9
NSUB = 9e+14 LD = 0.08e�6 UO = 350 LAMBDA = 0.1
TOX = 9e�9 PB = 0.9 CJ = 0.56e�3 CJSW = 0.35e�11
MJ = 0.45 MJSW = 0.2 CGDO = 0.4e�9 JS = 1.0e�8

PMOS Model

LEVEL = 1 VTO = �0.8 GAMMA = 0.4 PHI = 0.8
NSUB = 5e+14 LD = 0.09e�6 UO = 100 LAMBDA = 0.2
TOX = 9e�9 PB = 0.9 CJ = 0.94e�3 CJSW = 0.32e�11
MJ = 0.5 MJSW = 0.3 CGDO = 0.3e�9 JS = 0.5e�8

VTO: threshold voltage with zero VSB (unit: V)
GAMMA: body-effect coefficient (unit: V1/2)
PHI: 2�F (unit: V)
TOX: gate-oxide thickness (unit: m)
NSUB: substrate doping (unit: cm�3)
LD: source/drain side diffusion (unit: m)
UO: channel mobility (unit: cm2/V/s)
LAMBDA: channel-length modulation coefficient (unit: V�1)
CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m2)
CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)
PB: source/drain junction built-in potential (unit: V)
MJ: exponent in CJ equation (unitless)
MJSW: exponent in CJSW equation (unitless)
CGDO: gate-drain overlap capacitance per unit width (unit: F/m)
CGSO: gate-source overlap capacitance per unit width (unit: F/m)
JS: source/drain leakage current per unit area (unit: A/m2)

2.4.5 NMOS Versus PMOS Devices

In most CMOS technologies, PMOS devices are quite inferior to NMOS transistors. For example, due
to the lower mobility of holes, µpCox � 0.5µnCox, yielding low current drive and transconductance.
Moreover, for given dimensions and bias currents, NMOS transistors exhibit a higher output resistance,
providing more ideal current sources and higher gain in amplifiers. For these reasons, incorporating
NFETs rather than PFETs wherever possible is preferred.11

2.4.6 Long-Channel Versus Short-Channel Devices

In this chapter, we have employed a very simple view of MOSFETs so as to understand the basic principles
of their operation. Most of our treatment is valid for “long-channel” devices, e.g., transistors having a
minimum length of a few microns. Many of the relationships derived here must be reexamined and revised
for short-channel MOSFETs. Furthermore, the SPICE models necessary for simulation of today’s devices

11One exception is when flicker noise is critical (Chapter 7).
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are much more sophisticated than the Level 1 model. For example, the intrinsic gain, gmrO , calculated
from the device parameters in Table 2.1 is much higher than actual values. These issues are studied in
Chapter 17.

The reader may wonder why we begin with a simplistic view of devices if such a view does not lead to
high accuracy in predicting the performance of circuits. The key point is that the simple model provides
a great deal of intuition that is necessary in analog design. As we will see throughout this book, we often
encounter a trade-off between intuition and rigor, and our approach is to establish the intuition first and
gradually complete our understanding so as to achieve rigor as well.

2.5 Appendix A: FinFETs

New CMOS technology generations (“nodes”) have migrated from the two-dimensional transistor struc-
ture to a three-dimensional geometry called the “FinFET.” This device exhibits superior performance
as channel lengths fall below approximately 20 nm. In fact, FinFET I/V characteristics are closer to
square-law behavior, making our simple large-signal mode relevant again.

Shown in Fig. 2.42(a), the FinFET consists of a vertical silicon “fin,” a dielectric (e.g., oxide) layer
deposited over the fin, and a polysilicon or metal gate created over the dielectric layer. Controlled by the
gate voltage, the current flows from one end of the fin to the other. The top view looks similar to that of
a planar MOSFET [Fig. 2.42(b)].

Source

Drain
Gate

Substrate

Oxide

WF

Gate
Length

HF

Drain

Source

Gate

(a) (b)
Figure 2.42 (a) FinFET structure, and (b) top view.

As depicted in Fig. 2.42(a), the gate length can be readily identified, but how about the gate width?
We note that the current flows on three facets of the fin. The equivalent channel width is therefore equal
to the sum of the fin’s width, WF , and twice its height, HF : W = WF + 2HF . Typically, WF � 6 nm and
HF � 50 nm.

Since HF is not under the circuit designer’s control, it appears that WF can be chosen so that WF +2HF

yields the desired transistor width. However, WF affects device imperfections such as source and drain
series resistance, channel-length modulation, subthreshold conduction, etc. For this reason, the fin width
is also fixed, dictating discrete values for the transistor width. For example, if WF +2HF = 100 nm, then
wider transistors can be obtained only by increasing the number of fins and only in 100-nm increments
(Fig. 2.43). The spacing between the fins, SF , also plays a significant role in the performance and is
typically fixed.

Due to the small dimensions of the intrinsic FinFET, the gate and S/D contacts must be placed away
from the core of the device. Figure 2.44 shows the details for a single- and a double-fin structure.
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Gate

Drain

Source

SF

Figure 2.43 FinFET with multiple fins.

Figure 2.44 Layout of single- and
double-fin transistors.

2.6 Appendix B: Behavior of a MOS Device as a Capacitor

In this chapter, we have limited our treatment of MOS devices to a basic level. However, the behavior of
a MOSFET as a capacitor merits some attention. Recall that if the source, drain, and bulk of an NFET
are grounded and the gate voltage rises, an inversion layer begins to form for VGS � VTH . We also noted
that for 0 < VGS < VTH , the device operates in the subthreshold region.

Now consider the NFET of Fig. 2.45. The transistor can be considered a two-terminal device, and
hence its capacitance can be examined for different gate voltages. Let us begin with a very negative
gate-source voltage. The negative potential on the gate attracts the holes in the substrate to the oxide
interface. We say that the MOSFET operates in the “accumulation” region. The two-terminal device can
be viewed as a capacitor having a unit-area capacitance of Cox because the two “plates” of the capacitor
are separated by tox.

n+n+

p�substrate

VG

+

VG < 0

Holes

+ + + ++ + + +

Figure 2.45 NMOS operating in
accumulation mode.

As VGS rises, the density of holes at the interface falls, a depletion region begins to form under the oxide,
and the device enters weak inversion. In this mode, the capacitance consists of the series combination of
Cox and Cdep. Finally, as VGS exceeds VTH , the oxide-silicon interface sustains a channel and the unit-area
capacitance returns to Cox. Figure 2.46 plots the behavior.
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VGS

CGS

0 VTH

Accumulation Strong Inversion

Figure 2.46 Capacitance-voltage
characteristic of an NMOS device.
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume VDD = 3 V
where necessary.

2.1. For W/L = 50/0.5, plot the drain current of an NFET and a PFET as a function of |VGS| as |VGS| varies from
0 to 3 V. Assume that |VDS| = 3 V.

2.2. For W/L = 50/0.5 and |ID | = 0.5 mA, calculate the transconductance and output impedance of both NMOS
and PMOS devices. Also, find the “intrinsic gain,” defined as gmrO .

2.3. Derive expressions for gmrO in terms of ID and W/L . Plot gmrO as a function of ID with L as a parameter.
Note that � � 1/L .

2.4. Plot ID versus VGS for a MOS transistor (a) with VDS as a parameter, and (b) with VBS as a parameter. Identify
the break points in the characteristics.

2.5. Sketch IX and the transconductance of the transistor as a function of VX for each circuit in Fig. 2.47 as VX

varies from 0 to VDD . In part (a), assume that VX varies from 0 to 1.5 V.

VDD

VX

VX VX

VX

VX

IX

IX IX

IXIX

M1
M1 M1

M1

M1

+1.9 V

+1 V

+1 V

+1.9 V

+1 V

+1.9 V

+1.9 V

+1 V

+1.5 V

(c)(a) (b)

(d) (e)

Figure 2.47
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2.6. Sketch IX and the transconductance of the transistor as a function of VX for each circuit in Fig. 2.48 as VX

varies from 0 to VDD .

M1

M1

M1

VX

VX

VX

VX

R1

R2

R1

R1

R2

VDD

VDD

VDD

IX

IX

IXIX

M 1

I1

R1+2 V

+2 V

I1 M1

I1

VX

R1

IX

(c)(a) (b)

(d) (e)

Figure 2.48

2.7. Sketch Vout as a function of Vin for each circuit in Fig. 2.49 as Vin varies from 0 to VDD .

M1 Vin

M1

+1 V

(c)

(a) (b)

(d)

R1

Vout

+3 V M1 Vin

R1

Vout

+1 V

Vin
R1

Vout M1
R1

Vout

Vin

+2 V

Figure 2.49



Razavi-3930640 book December 17, 201516:17 40

40 Chap. 2 Basic MOS Device Physics

2.8. Sketch Vout as a function of Vin for each circuit in Fig. 2.50 as Vin varies from 0 to VDD .

VDDM1

M1

+1 V

(c)(a) (b)

Vin

I1

Vout

R1

VDD

Vout
+2 V

Vin

M1
R1

Vout

+2 V

+2 V Vin

Figure 2.50

2.9. Sketch VX and IX as a function of time for each circuit in Fig. 2.51. The initial voltage of C1 is equal to 3 V.
In part (e), assume that the switch turns off at t = 0.

(c)(a) (b)

(d) (e)

M1Vb C1

VX
IX

M1 C1

VX
IX

VDD

C1

M1
Vb

VX

M1Vb C1

VX

I1

IX

IX

M1Vb C1

VX

I1

IX

Figure 2.51

2.10. Sketch VX and IX as a function of time for each circuit in Fig. 2.52. The initial voltage of each capacitor is
shown.

(c)(a) (b)

M1

C1

VX
IX

I1

C2

M1
C1

VX
X

C2

I

+2 V M1
C1

VX

C2

+2 V

IX

Figure 2.52
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2.11. Sketch VX as a function of time for each circuit in Fig. 2.53. The initial voltage of each capacitor is shown.

(c)

(a) (b)

(d)
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M1 C1
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1 V

1 V

2 V
VX

3 V

Figure 2.53

2.12. Sketch VX as a function of time for each circuit in Fig. 2.54. The initial voltage of each capacitor is shown.
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(a) (b)

(d)

M1 C1
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0
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VX M1

0

+3
Vin
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C2
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3 V
3 V

3 V

3 V

3 V

Figure 2.54

2.13. The transit frequency, fT , of a MOSFET is defined as the frequency at which the small-signal current gain of
the device drops to unity while the source and drain terminals are held at ac ground.
(a) Prove that

fT =
gm

2�(CG D + CGS)
(2.55)
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Note that fT does not include the effect of the S/D junction capacitance.
(b) Suppose the gate resistance, RG , is significant and the device is modeled as a distributed set of n transistors,
each with a gate resistance equal to RG/n. Prove that the fT of the device is independent of RG and still equal
to the value given above.
(c) For a given bias current, the minimum allowable drain-source voltage for operation in saturation can
be reduced only by increasing the width and hence the capacitances of the transistor. Using square-law
characteristics, prove that

fT =
µn

2�
VGS � VTH

L2 (2.56)

This relation indicates how the speed is limited as a device is designed to operate with lower supply voltages.

2.14. Calculate the fT of a MOS device in the subthreshold region and compare the result with that obtained in
Prob. 2.13.

2.15. For a saturated NMOS device having W = 50 µm and L = 0.5 µm, calculate all the capacitances. Assume
that the minimum (lateral) dimension of the S/D areas is 1.5 µm and that the device is folded as shown in
Fig. 2.33(b). What is the fT if the drain current is 1 mA?

2.16. Consider the structure shown in Fig. 2.55. Determine ID , as a function of VGS and VDS, and prove that the
structure can be viewed as a single transistor having an aspect ratio W/(2L). Assume that � = � = 0.

VGS
VDS

W
L
W
L

Figure 2.55

2.17. For an NMOS device operating in saturation, plot W/L versus VGS � VTH if (a) ID is constant, and
(b) gm is constant.

2.18. Explain why the structures shown in Fig. 2.56 cannot operate as current sources even though the transistors
are in saturation.

I1
VDD

I2

(a) (b) Figure 2.56

2.19. Considering the body effect as “back-gate effect,” explain intuitively why � is directly proportional to
�

Nsub

and inversely proportional to Cox.

2.20. A “ring” MOS structure is shown in Fig. 2.57. Explain how the device operates and estimate its equivalent
aspect ratio. Compare the drain junction capacitance of this structure with that of the devices shown in Fig. 2.33.

2.21. Suppose we have received an NMOS transistor in a package with four unmarked pins. Describe the minimum
number of dc measurement steps using an ohmmeter that is necessary to determine the gate, source/drain, and
bulk terminals of the device.

2.22. Repeat Prob. 2.21 if the type of the device (NFET or PFET) is not known.

2.23. For an NMOS transistor, the threshold voltage is known, but µnCox and W/L are not. Assume that � = � = 0.
If we cannot measure Cox independently, is it possible to devise a sequence of dc measurement tests to
determine µnCox and W/L? What if we have two transistors and we know that one has twice the aspect
ratio of the other?
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Gate

W

L

Drain

Source

Figure 2.57

2.24. Sketch IX versus VX for each of the composite structures shown in Fig. 2.58 with VG as a parameter. Also,
sketch the equivalent transconductance. Assume that � = � = 0.

(a) (b)

VX

VX

IX
IX

VG VG

Figure 2.58

2.25. An NMOS current source with ID = 0.5 mA must operate with drain-source voltages as low as 0.4 V. If the
minimum required output impedance is 20 k�, determine the width and length of the device. Calculate the
gate-source, gate-drain, and drain-substrate capacitance if the device is folded as in Fig. 2.33 and E = 3 µm.

2.26. Consider the circuit shown in Fig. 2.59, where the initial voltage at node X is equal to VDD . Assuming that
� = � = 0 and neglecting other capacitances, plot VX and VY versus time if (a) Vin is a positive step with
amplitude V0 > VTH , and (b) Vin is a negative step with amplitude V0 = VTH .

VDD

I1

C1 C2

X

Y
Vin

Figure 2.59

2.27. An NMOS device operating in the subthreshold region has a 
 of 1.5. What variation in VGS results in a tenfold
change in ID? If ID = 10 µA, what is gm?
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2.28. Consider an NMOS device with VG = 1.5 V and VS = 0. Explain what happens if we continually decrease
VD below zero or increase Vsub above zero.

2.29. Consider the arrangement shown in Fig. 2.60. Explain what happens to the pinch-off point as VG increases.

VG

M1 1.2 V 

Figure 2.60

2.30. From Fig. 2.20, plot ID vs. VGS � VTH if W/L is constant, VGS � VTH vs. ID if W/L is constant, and W/L
vs. VGS � VTH if ID is constant.

2.31. Plotted in Fig. 2.61 are the charactersitics of a square-law NMOS device with W/Ldrawn = 5 µm/40 nm and
tox = 18 A

�
. Here, VGS is incremented in equal steps. Estimate µn, VTH, �, and the VGS steps.
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Figure 2.61
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CHAPTER

3
Single-Stage Amplifiers

Amplification is an essential function in most analog (and many digital) circuits. We amplify an analog
or digital signal because it may be too small to drive a load, overcome the noise of a subsequent stage,
or provide logical levels to a digital circuit. Amplification also plays a critical role in feedback systems
(Chapter 8).

In this chapter, we study the low-frequency behavior of single-stage CMOS amplifiers. Analyzing
both the large-signal and the small-signal characteristics of each circuit, we develop intuitive techniques
and models that prove useful in understanding more complex systems. An important part of a designer’s
job is to use proper approximations so as to create a simple mental picture of a complicated circuit. The
intuition thus gained makes it possible to formulate the behavior of most circuits by inspection rather
than by lengthy calculations.

Following a brief review of basic concepts, we describe in this chapter four types of amplifiers:
common-source and common-gate topologies, source followers, and cascode configurations. In each
case, we begin with a simple model and gradually add second-order phenomena such as channel-length
modulation and body effect.

3.1 Applications

Do you carry an amplifier? In all likelihood, yes. Your mobile phone, laptop, and digital camera all
incorporate various types of amplifiers. The receiver in your phone must sense and amplify small signals
received by the antenna, thus requiring a “low-noise” amplifier (LNA) at the front end (Fig. 3.1). As the
signal travels down the receive chain, it must be further amplified by additional stages so as to reach an
acceptably high level. This proves difficult because, in addition to the small desired signal, the antenna
picks up other strong signals (“interferers”) that are transmitted by various other users in the same vicinity.
Your phone’s transmitter, too, employs amplifiers: to amplify the signal generated by the microphone and,
eventually, the signal delivered to the antenna. The “power amplifier” (PA) necessary for such delivery
draws the most energy from the battery and still presents interesting challenges.

3.2 General Considerations

An ideal amplifier generates an output, y(t), that is a linear replica of the input, x(t):

y(t) = �1x(t) (3.1)

45
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PA
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Upconverter
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f

InterfererDesired
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Figure 3.1 General RF transceiver.

where �1 denotes the gain. Since the output signal is in fact superimposed on a bias (dc operating) point,
�0, we can write the overall output as y(t) = �0 + �1x(t). In this case, the input-output (large-signal)
characteristic of the circuit is a straight line [Fig. 3.2(a)]. However, as the signal excursions become larger
and the bias point of the transistor(s) is disturbed substantially, the gain (the slope of the characteristic)
begins to vary [Fig. 3.2(b)]. We approximate this nonlinear characteristic by a polynomial:

y(t) = �0 + �1x(t) + �2x2(t) + • • • + �n xn(t) (3.2)

A nonlinear amplifier distorts the signal of interest or creates unwanted interactions among several signals
that may coexist at the input. We return to the problem of nonlinearity in Chapter 14.

x

y

x1 x2

(a) (b)

x

y

 �0 
 �1

Figure 3.2 Input-output characteristic of a (a) linear and (b) nonlinear system.

What aspects of the performance of an amplifier are important? In addition to gain and speed, such
parameters as power dissipation, supply voltage, linearity, noise, or maximum voltage swings may be
important. Furthermore, the input and output impedances determine how the circuit interacts with the
preceding and subsequent stages. In practice, most of these parameters trade with each other, making the
design a multidimensional optimization problem. Illustrated in the “analog design octagon” of Fig. 3.3,
such trade-offs present many challenges in the design of high-performance amplifiers, requiring intuition
and experience to arrive at an acceptable compromise.

Table 3.1 gives a preview of the amplifier topologies studied in this chapter, indicating the much wider
use of the common-source (CS) stage than other circuit configurations. For these amplifiers, we must (1)
set up proper bias conditions so that each transistor provides the necessary transconductance and output
resistance with certain quiescent currents and voltages, and (2) analyze the circuit’s behavior as the input
and output signals cause small or large departures from the bias input (small-signal and large-signal
analyses, respectively). We deal with the latter task here and defer the former to Chapter 5.
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Noise Linearity

Gain

Voltage
Swings

Power
Dissipation

Supply
Voltage

Speed

Input/Output
Impedance

Figure 3.3 Analog design octagon.

Table 3.1 Amplifier categories.

Common-Source Stage Source Follower Common-Gate Stage Cascode

With Resistive Load With Resistive Bias With Resistive Load Telescopic
With Diode-Connected Load With Current-Source Bias With Current-Source Load Folded
With Current-Source Load
With Active Load
With Source Degeneration

3.3 Common-Source Stage

3.3.1 Common-Source Stage with Resistive Load

By virtue of its transconductance, a MOSFET converts changes in its gate-source voltage to a small-signal
drain current, which can pass through a resistor to generate an output voltage. Shown in Fig. 3.4(a), the
common-source stage performs such an operation.1 We study both the large-signal and the small-signal
behavior of the circuit. Note that the input impedance of the circuit is very high at low frequencies.

If the input voltage increases from zero, M1 is off and Vout = VDD [Fig. 3.4(b)]. As Vin approaches
VT H , M1 begins to turn on, drawing current from RD and lowering Vout . Transistor M1 turns on in
saturation regardless of the values of VDD and RD (why?), and we have

Vout = VDD � RD
1

2
µnCox

W

L
(Vin � VT H )2 (3.3)

where channel-length modulation is neglected. With further increase in Vin , Vout drops more, and the tran-
sistor continues to operate in saturation until Vin exceeds Vout by VT H [point A in Fig. 3.4(b)]. At this point,

Vin1 � VT H = VDD � RD
1

2
µnCox

W

L
(Vin1 � VT H )2 (3.4)

from which Vin1 � VT H and hence Vout can be calculated.
For Vin > Vin1, M1 is in the triode region:

Vout = VDD � RD
1

2
µnCox

W

L

�
2(Vin � VT H )Vout � V 2

out

�
(3.5)

1The common-source topology is identified as receiving the input at the gate and producing the output at the drain.
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M1

M1

RD

Vout

VTH

VDD

Vin

Vin1 Vin

Vout
VTH

M1

RD

Vout
Vin Ron

VDD

(c)

(a) (b)

(d)

VDD

A

RD

Vout

V1Vin gmV1

Figure 3.4 (a) Common-source stage, (b) input-output characteristic, (c) equivalent circuit in the deep triode
region, and (d) small-signal model for the saturation region.

If Vin is high enough to drive M1 into the deep triode region, Vout � 2(Vin � VT H ), and, from the
equivalent circuit of Fig. 3.4(c),

Vout = VDD
Ron

Ron + RD
(3.6)

=
VDD

1 + µnCox
W

L
RD(Vin � VT H )

(3.7)

Since the transconductance drops in the triode region, we usually ensure that Vout > Vin � VT H , and
hence the current operates to the left of point A in Fig. 3.4(b). Using (3.3) as the input-output characteristic
and viewing its slope as the small-signal gain, we have

Av =
�Vout

�Vin
(3.8)

= �RDµnCox
W

L
(Vin � VT H ) (3.9)

= �gm RD (3.10)

This result can be directly derived from the observation that M1 converts an input voltage change �Vin

to a drain current change gm�Vin , and hence an output voltage change �gm RD�Vin . The small-signal
model of Fig. 3.4(d) yields the same result: Vout = �gm V1 RD = �gm Vin RD . Note that, as mentioned in
Chapter 2, Vin , V1, and Vout in this figure denote small-signal quantities.

Even though derived for small-signal operation, the equation Av = �gm RD predicts certain effects
if the circuit senses a large signal swing. Since gm itself varies with the input signal according to
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gm = µnCox (W/L)(VGS � VT H ), the gain of the circuit changes substantially if the signal is large. In
other words, if the gain of the circuit varies significantly with the signal swing, then the circuit operates in
the large-signal mode. The dependence of the gain upon the signal level leads to nonlinearity (Chapter 14),
usually an undesirable effect.

A key result here is that to minimize the nonlinearity, the gain equation must be a weak function of
signal-dependent parameters such as gm . We present several examples of this concept in this chapter and
in Chapter 14.

� Example 3.1

Sketch the drain current and transconductance of M1 in Fig. 3.4(a) as a function of the input voltage.

Nanometer Design Notes

How does the CS stage behave in
nanometer technologies? The figure
plots the simulated input-output char-
acteristic for W/L = 2 µm/40 nm,
RD = 2 k�, and VDD = 1 V. We observe
that the circuit provides a gain of about
3 in the input range of 0.4 V to 0.6 V. The
output swing is limited to about 0.3 V–0.8
V for the gain not to drop significantly.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Vin (V)

V
ou

t (V
)

Solution

The drain current becomes significant for Vin > VT H , eventually approaching
VDD/RD if Ron1 � RD [Fig. 3.5(a)]. Since in saturation, gm = µnCox (W/L)(Vin �
VT H ), the transconductance begins to rise for Vin > VT H . In the triode region,
gm = µnCox (W/L)VDS , falling as Vin exceeds Vin1 [Fig. 3.5(b)]. Starting with
Eq. (3.5), the reader can show that

Av =
�Vout

�Vin
=

�µnCox (W/L)RD Vout

1 + µnCox (W/L)RD(Vin � VT H � Vout )
(3.11)

which reaches a maximum if Vout = Vin � VT H (point A).

(b)(a)

VTH Vin

VDD
RD

ID

VTH VinVin1

gm

A

Figure 3.5

�

� Example 3.2

A CS stage is driven by a sinusoid, Vin = V1 cos �1t + V0, where V0 is the bias value and V1 is large enough to drive
the transistor into the off and triode regions. Sketch the gm of the transistor as a function of time.

Solution

Let us first sketch the output voltage (Fig. 3.6), noting that when Vin = V1 + V0, Vout is low, M1 is in the triode region,
and gm assumes a small value. As Vin falls and Vout and gm rise, M1 enters saturation at t = t1 (when Vin � Vout =
VT H ) and gm reaches its maximum (why?). As Vin falls further, so do ID and gm . At t = t2, gm reaches zero.

We observe that (a) since the voltage gain is approximately equal to �gm RD , it experiences the same variation
as the gm , and (b) gm varies periodically.2

2We even express gm as a Fourier series in more advanced courses.
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+

VDD
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Vout

gm

Vout

M1

t1 t2

Vin

VinV1

t

t

t

V0

V0

Figure 3.6

�

How do we maximize the voltage gain of a common-source stage? Writing (3.10) as

Av = �
�

2µnCox
W

L
ID

VRD

ID
(3.12)

where VR D denotes the voltage drop across RD , we have

Av = �
�

2µnCox
W

L

VRD�
ID

(3.13)

Thus, the magnitude of Av can be increased by increasing W/L or VRD or decreasing ID if other parameters
are constant. It is important to understand the trade-offs resulting from this equation. A larger device size
leads to greater device capacitances, and a higher VRD limits the maximum voltage swings. For example,
if VDD �VR D = Vin �VT H , then M1 is at the edge of the triode region, allowing only very small swings at
the output (and input). If VR D remains constant and ID is reduced, then RD must increase, thereby leading
to a greater time constant at the output node. In other words, as noted in the analog design octagon, the
circuit exhibits trade-offs between gain, bandwidth, and voltage swings. Lower supply voltages further
tighten these trade-offs.

For large values of RD , the effect of channel-length modulation in M1 becomes significant. Modifying
(3.3) to include this effect,

Vout = VDD � RD
1

2
µnCox

W

L
(Vin � VT H )2(1 + �Vout ) (3.14)

we have

�Vout

�Vin
= �RDµnCox

W

L
(Vin � VT H )(1 + �Vout )

�RD
1

2
µnCox

W

L
(Vin � VT H )2�

�Vout

�Vin
(3.15)
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We recognize that (1/2)µnCox (W/L)(Vin � VT H )2� = 1/rO and

Av = �RDgm �
RD

rO
Av (3.16)

Thus,

Av = �gm
rO RD

rO + RD
(3.17)

The small-signal model of Fig. 3.7 gives the same result with much less effort. That is, since
gm V1(rO�RD) = �Vout and V1 = Vin , we have Vout/Vin = �gm(rO�RD).

RD

Vout

Vin V1 r0
gmV1

Figure 3.7 Small-signal model of
CS stage including the transistor output
resistance.

� Example 3.3

Assuming that M1 in Fig. 3.8 is biased in saturation, calculate the small-signal voltage gain of the circuit.

VDD

I1

Vout

M1Vin

Figure 3.8

Solution

Since I1 introduces an infinite impedance (RD = �), the gain is limited by the output resistance of M1:

Av = �gmrO (3.18)

Called the “intrinsic gain” of a transistor, this quantity represents the maximum voltage gain that can be achieved
using a single device. In today’s CMOS technology, gmrO of short-channel devices is between roughly 5 and 10.
We usually assume 1/gm � rO .

In Fig. 3.8, Kirchhoff’s current law (KCL) requires that ID1 = I1. Then, how can Vin change the current of M1
if I1 is constant? Writing the total drain current of M1 as

ID1 =
1

2
µnCox

W

L
(Vin � VT H )2(1 + �Vout ) (3.19)

= I1 (3.20)

we note that Vin appears in the square term and Vout in the linear term. As Vin increases, Vout must decrease such
that the product remains constant. We may nevertheless say “ID1 increases as Vin increases.” This statement simply
refers to the quadratic part of the equation.

�
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An important conclusion here is that, to maximize the voltage gain, we must maximize the (small-
signal) load impedance. Why can we not replace the load with an open circuit? This is because the circuit
still needs a path from VDD to ground for the bias current of M1.

� Example 3.4

It is possible to use the bulk (back gate) of a MOSFET as the terminal controlling the channel. Shown in Fig. 3.9 is
an example. Determine the voltage gain if � = 0.

VDD

RD

Vb

Vout

M1

Vin

Figure 3.9

Solution

From the small-signal MOS model developed in Chapter 2, we recall that the drain
current is given by gmbVin . Thus, Av = �gmb RD .

�

Nanometer Design Notes

How do we design a CS stage for a
given gain and supply voltage? With
W/L , I D , and RD under our control, we
seem to have a wide design space. A
good starting point is to choose a small
device, W/L = 0.5 µm/40 nm, a low
bias current, I D = 50 µA, and a suffi-
ciently large load resistance to achieve
the required gain. To this end, we use
simulations to plot the transconductance
of such a device as a function of I D ,
obtaining gm = 0.45 mS. Thus, for a
voltage gain of , say, 10, RD must reach
22.2 k� if � = 0. Is this an acceptable
design? The answer depends on the
application. In addition to gain, the cir-
cuit must also satisfy certain bandwidth,
noise, and output swing requirements.
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3.3.2 CS Stage with Diode-Connected Load

In some CMOS technologies, it is difficult to fabricate resistors with tightly-
controlled values or a reasonable physical size (Chapter 19). Consequently, it
is desirable to replace RD in Fig. 3.4(a) with a MOS transistor.

A MOSFET can operate as a small-signal resistor if its gate and drain are
shorted [Fig. 3.10(a)]. Called a “diode-connected” device in analogy with its
bipolar counterpart, this configuration exhibits small-signal behavior similar
to that of two-terminal resistor. Note that the transistor is always in saturation
because the drain and the gate have the same potential. Using the small-signal
equivalent shown in Fig. 3.10(b) to obtain the impedance of the device, we
write V1 = VX and IX = VX/rO + gm VX . That is, the impedance of the diode
is simply equal to VX/IX = (1/gm)�rO � 1/gm . If body effect exists, we can
use the circuit in Fig. 3.11 to write V1 = �VX , Vbs = �VX , and

(gm + gmb)VX +
VX

rO
= IX (3.21)

(a) (b)

Diode�Connected Device

gmV1 rO VX

IX

V1

Figure 3.10 (a) Diode-connected NMOS and PMOS devices; (b) small-signal equivalent circuit.
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(a) (b)

rOgmV1 gmbVbsV1

VX

IX

VDD
M1

VX

IX

Figure 3.11 (a) Arrangement for measuring the equivalent resistance of a diode-connected MOSFET;
(b) small-signal equivalent circuit.

It follows that

VX

IX
=

1

gm + gmb + r�1
O

(3.22)

=
1

gm + gmb
�rO (3.23)

�
1

gm + gmb
(3.24)

In the general case, VX/IX = (1/gm)||rO ||(1/gmb). Interestingly, the impedance seen at the source of
M1 is lower when body effect is included. Intuitive explanation of this effect is left as an exercise for the
reader.

From a large-signal point of view, a diode-connected device acts as a “square-root” operator if its
current is considered the input and its VGS or VGS � VT H the output (why?). We return to this point later.

� Example 3.5

Consider the circuit shown in Fig. 3.12(a). In some cases, we are interested in the impedance seen looking into the
source, RX . Determine RX if � = 0.

(a) (b)

Vin

VDD

Vout

M1

ZL

RX

gmV1 ZL
gmbVbsV1

VX

IX

IX

Figure 3.12 Impedance seen at the source with � = 0.

Solution

To determine RX , we set all independent sources to zero, draw the small-signal model, and apply a voltage source
as shown in Fig. 3.12(b). Since V1 = �VX and Vbs = �VX , we have

(gm + gmb)VX = IX (3.25)
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and

VX

IX
=

1

gm + gmb
(3.26)

This result should not be surprising: the topologies in Fig. 3.12(a) and Fig. 3.11(a) are similar except that the drain of
M1 in Fig. 3.12(b) is not at ac ground. This difference does not manifest itself if � = 0. We sometimes say, “looking
into the source of a MOSFET, we see 1/gm ,” assuming implicitly that � = � = 0.

�

We now study a common-source stage with a diode-connected load (Fig. 3.13). With negligible
channel-length modulation, (3.24) can be substituted in (3.10) for the load impedance, yielding

Av = �gm1
1

gm2 + gmb2
(3.27)

= �
gm1

gm2

1

1 + 	
(3.28)

where 	 = gmb2/gm2. Expressing gm1 and gm2 in terms of device dimensions and bias currents, we have

Av = �
�

2µnCox (W/L)1 ID1�
2µnCox (W/L)2 ID2

1

1 + 	
(3.29)

and, since ID1 = ID2,

Av = �

�
(W/L)1

(W/L)2

1

1 + 	
(3.30)

This equation reveals an interesting property: if the variation of 	 with the output voltage is neglected,
the gain is independent of the bias currents and voltages (so long as M1 stays in saturation). In other
words, as the input and output signal levels vary, the gain remains relatively constant, indicating that the
input-output characteristic is relatively linear.

VDD

Vin

Vout

M2

M1
Figure 3.13 CS stage with
diode-connected load.

The linear behavior of the circuit can also be confirmed by large-signal analysis. Neglecting channel-
length modulation for simplicity, we have in Fig. 3.13

1

2
µnCox

�
W

L

�

1

(Vin � VT H1)2 =
1

2
µnCox

�
W

L

�

2

(VDD � Vout � VT H2)2 (3.31)

and hence
��

W

L

�

1

(Vin � VT H1) =

��
W

L

�

2

(VDD � Vout � VT H2) (3.32)
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Thus, if the variation of VT H2 with Vout is small, the circuit exhibits a linear input-output characteristic.
In essence, the squaring function performed by M1 (from the input voltage to its drain current) and the
square root function performed by M2 (from its drain current to its overdrive) act as f �1( f (x)) = x .

The small-signal gain can also be computed by differentiating both sides with respect to Vin:

��
W

L

�

1

=

��
W

L

�

2

�
�

�Vout

�Vin
�

�VT H2

�Vin

�
(3.33)

which, upon application of the chain rule �VT H2/�Vin = (�VT H2/�Vout )(�Vout/�Vin) = 	(�Vout/�Vin),
reduces to

�Vout

�Vin
= �

�
(W/L)1

(W/L)2

1

1 + 	
(3.34)

It is instructive to study the overall large-signal characteristic of the circuit as well. But let us first
consider the circuit shown in Fig. 3.14(a). What is the final value of Vout if I1 drops to zero? As I1

decreases, so does the overdrive of M2. Thus, for small I1, VGS2 � VT H2 and Vout � VDD � VT H2. In
reality, the subthreshold conduction in M2 eventually brings Vout to VDD if ID approaches zero, but at
very low current levels, the finite capacitance at the output node slows down the change from VDD �VT H2

to VDD . This is illustrated in the time-domain waveforms of Fig. 3.14(b). For this reason, in circuits that
have frequent switching activity, we assume that Vout remains around VDD � VT H2 when I1 falls to small
values.

(a) (b)

VDD

Vout

CPI1

M2 t

t

VDD
VDD VTH2

Vout

I1

�

Figure 3.14 (a) Diode-connected device with stepped bias current; (b) variation of source voltage versus time.

Now we return to the circuit of Fig. 3.13. Plotted in Fig. 3.15 versus Vin , the output voltage equals
VDD � VT H2 if Vin < VT H1. For Vin > VT H1, Eq. (3.32) holds and Vout follows an approximately straight
line. As Vin exceeds Vout + VT H1 (beyond point A), M1 enters the triode region, and the characteristic
becomes nonlinear.

A

Vin

Vout

VTH1

VDD � VTH2

Figure 3.15 Input-output characteris-
tic of a CS stage with diode-connected
load.
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The diode-connected load of Fig. 3.13 can be implemented with a PMOS device as well. Shown in
Fig. 3.16, the circuit is free from body effect, providing a small-signal voltage gain equal to

Av = �

�
µn(W/L)1

µp(W/L)2
(3.35)

where channel-length modulation is neglected.

VDD

Vin

Vout

M2

M1
Figure 3.16 CS stage with diode-
connected PMOS device.

Equations (3.30) and (3.35) indicate that the gain of a common-source stage with diode-connected
load is a relatively weak function of the device dimensions. For example, to achieve a gain of 5,
µn(W/L)1/[µp(W/L)2] = 25, implying that, with µn � 2µp, we must have (W/L)1 � 12.5(W/L)2. In
a sense, a high gain requires a “strong” input device and a “weak” load device. In addition to disproportion-
ately wide or long transistors (and hence a large input or load capacitance), a high gain translates to another
important limitation: reduction in allowable voltage swings. Specifically, since in Fig. 3.16, ID1 = |ID2|,

µn

�
W

L

�

1

(VGS1 � VT H1)2 = µp

�
W

L

�

2

(VGS2 � VT H2)2 (3.36)

if � = 0, revealing that

|VGS2 � VT H2|
VGS1 � VT H1

= Av (3.37)
Nanometer Design Notes

Let us design and simulate a CS stage
with a diode-connected PMOS load in
40-nm technology. We select W/L =
5 µm/40 nm for the NMOS device and
1 µm/40 nm for the PMOS device. The
large-signal I-V characteristic is shown
in the figure. We observe that the circuit
provides a small-signal gain of about
1.5 for an input range of roughly 0.4 V to
0.5 V. (In this dc sweep, Vout can reach
VDD when the input transistor is off.)
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In the above example, the overdrive voltage of M2 must be 5 times that of M1.
For example, with VGS1 � VT H1 = 100 mV and |VT H2| = 0.3 V, we have
|VGS2| = 0.8 V, severely limiting the output swing. This is another example
of the trade-offs suggested by the analog design octagon. Note that, with
diode-connected loads, the swing is constrained by both the required overdrive
voltage and the threshold voltage. That is, even with a small overdrive, the
output level cannot exceed VDD � |VT H |.

An interesting paradox arises here if we write gm = µCox (W/L)|
VGS � VTH|. The voltage gain of the circuit is then given by

|Av| =
gm1

gm2
(3.38)

=
µnCox (W/L)1(VGS1 � VT H1)
µpCox (W/L)2|VGS2 � VT H2|

(3.39)

Equation (3.39) implies that Av is inversely proportional to |VGS2 � VT H2|.
It is left for the reader to resolve the seemingly opposite trends suggested by
(3.37) and (3.39).
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� Example 3.6

In the circuit of Fig. 3.17, M1 is biased in saturation with a drain current equal to I1. The current source IS = 0.75I1
is added to the circuit. How is (3.37) modified for this case? Assume � = 0.

VDD

Vin

IS

I1

Vout

M2

M1
Figure 3.17

Solution

Since |ID2| = I1/4, we have

Av = �
gm1

gm2
(3.40)

= �
�

4µn(W/L)1

µp(W/L)2
(3.41)

Moreover,

µn

�
W

L

�

1

(VGS1 � VT H1)2 = 4µp

�
W

L

�

2

(VGS2 � VT H2)2 (3.42)

yielding

|VGS2 � VT H2|
VGS1 � VT H1

=
Av

4
(3.43)

Thus, for a gain of 5, the overdrive of M2 need be only 1.25 times that of M1. Alternatively, for a given overdrive
voltage, this circuit achieves a gain four times that of the stage in Fig. 3.16. Intuitively, this is because for a
given |VGS2 � VTH2|, if the current decreases by a factor of 4, then (W/L)2 must decrease proportionally, and
gm2 =

�
2µpCox (W/L)2 ID2 is lowered by the same factor.

�

� Example 3.7

A student attempts to calculate the voltage gain in the previous example by differentiating both sides of (3.42). Does
this approach give a correct result? Why?

Solution

Since VGS2 = Vout � VDD , differentiation and multiplication by Cox yield

µnCox

�
W

L

�

1

(Vin � VT H1)2 = 4µpCox

�
W

L

�

2

(Vout � VDD � VT H2)
�Vout

�Vin
(3.44)

It follows that �Vout/�Vin = �gm1/(4gm2). This incorrect result arises because (3.42) is valid for only one value
of Vin . As Vin is perturbed by the signal, I1 departs from 4|ID2| and (3.42) cannot be differentiated.

�
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In today’s CMOS technology, channel-length modulation is quite significant and, more important, the
behavior of transistors notably departs from the square law. Thus, the gain of the stage in Fig. 3.13 must
be expressed as

Av = �gm1

�
1

gm2
�rO1�rO2

�
(3.45)

where gm1 and gm2 must be obtained as described in Chapter 17.

3.3.3 CS Stage with Current-Source Load

In applications requiring a large voltage gain in a single stage, the relationship Av = �gm RD suggests
that we should increase the load impedance of the CS stage. With a resistor or diode-connected load,
however, increasing the load resistance translates to a large dc drop across the load, thereby limiting the
output voltage swing.

A more practical approach is to replace the load with a device that does not obey Ohm’s law, e.g., a
current source. Described briefly in Example 3.3, the resulting circuit is shown in Fig. 3.18, where both
transistors operate in saturation. Since the total impedance seen at the output node is equal to rO1�rO2,
the gain is given by is

Av = �gm1(rO1�rO2) (3.46)

The key point here is that the output impedance and the minimum required |VDS| of M2 are less strongly
coupled than the value and voltage drop of a resistor; the former need not satisfy Ohm’s law, but the latter
must. The voltage |VDS2,min| = |VGS2 � VT H2| can be reduced to less than a hundred millivolts by simply
increasing the width of M2. If rO2 is not sufficiently high, the length and width of M2 can be increased to
achieve a smaller � while maintaining the same overdrive voltage. The penalty is the larger capacitance
introduced by M2 at the output node.

VDD

VinVinVin

Vb gm2V2 rO2 rO2

Vout

Vout Vout

V2M2

M1 M1 M1

Figure 3.18 CS stage with current-source load.

We should remark that the output bias voltage of the circuit in Fig. 3.18 is not well-defined. Thus, the
stage is reliably biased only if a feedback loop forces Vout to a known value (Chapter 8). The large-signal
analysis of the circuit is left as an exercise for the reader.

As explained in Chapter 2, the output impedance of MOSFETs at a given drain current can be scaled
by changing the channel length, i.e., to the first order, � � 1/L , and hence rO � L/ID . Since the gain of
the stage shown in Fig. 3.18 is proportional to rO1�rO2, we may surmise that longer transistors yield a
higher voltage gain.

Let us consider M1 and M2 separately. If L1 is scaled up by a factor of � (> 1), then W1 may need to
be scaled proportionally as well. This is because, for a given drain current, VGS1 � VT H1 � 1/

�
(W/L)1,

i.e., if W1 is not scaled, the overdrive voltage increases, limiting the output voltage swing. Also, since
gm1 �

�
(W/L)1, scaling up only L1 lowers gm1.
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In applications where these issues are unimportant, W1 can remain constant while L1 increases. Thus,
the intrinsic gain of M1 can be written as

gm1rO1 =

�

2

�
W

L

�

1

µnCox ID
1

�ID
(3.47)

indicating that the gain increases with L because � depends more strongly on L than gm does. Also, note
that gmrO decreases as ID increases.

Increasing L2 while keeping W2 constant increases rO2 and hence the voltage gain, but at the cost of
a higher |VDS2,min|, which is required to maintain M2 in saturation.

� Example 3.8

Compare the maximum output voltage swings of CS stages with resistive and current-source loads.

Solution

For the resistively-loaded stage [Fig. 3.19(a)], the maximum output voltage is near VDD (when Vin falls to about
VT H1). The minimum is the value that places M1 at the edge of the triode region, Vin � VT H1.

(a) (b)

VDD
VDD

Vin

Vb
M2

M2 at Edge of
Saturation

M1

�

Vin � VTH1

VGS2 � VTH20

VDD VDD

Vin

RD
ID

M1 Vin � VTH1

Figure 3.19 Output swing in CS stage with (a) resistive load and (b) current-source load.

For the stage with a current-source load [Fig. 3.19(b)], the maximum output voltage is that which places M2 at
the edge of the triode region, VDD � |VGS2 � VT H2|. Thus, the latter actually provides smaller swings than the
former, but can always achieve a higher gain if L1 and L2 are increased.

�

3.3.4 CS Stage with Active Load

In the amplifier topology of Fig. 3.19(b), the PMOS device serves as a constant current source. Is it
possible for M2 to operate as an amplifying device? Yes; we can apply the input signal to the gate of
M2 as well [Fig. 3.20(a)], converting it to an “active” load. The reader may recognize this topology as a
CMOS inverter. Suppose both transistors are in saturation and Vin rises by �V0. Two changes now occur:
(a) ID1 increases, pulling Vout lower, and (b) M2 injects less current into the output node, allowing Vout to
drop. The two changes thus enhance each other, leading to a greater voltage gain. Equivalently, as seen
in Fig. 3.20(b), the two transistors operate in parallel and collapse into one as illustrated in Fig. 3.20(c).
It follows that �(gm1 + gm2)Vin(rO1||rO2) = Vout , and hence

Av = �(gm1 + gm2)(rO1||rO2) (3.48)

Compared to the amplifier of Fig. 3.19(b), this circuit exhibits the same output resistance, rO1||rO2, but
a higher transconductance. This topology is also called a “complementary CS stage.”

The amplifier of Fig. 3.20(a) must deal with two critical issues. First, the bias current of the two
transistors is a strong function of PVT. In particular, since VGS1 + |VGS2| = VDD , variations in VDD or
the threshold voltages directly translate to changes in the drain currents. Second, the circuit amplifies
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(c)(b)(a)

gm2V2 rO2

rO1gm1V1

Vout

Vin

V2

V1

VDD

Vout

Vin M1

M2

rO2rO1

Vout

Vin ( gm1 + gm2 )Vin

Figure 3.20 (a) CS stage with active load, (b) small-signal model, and (c) simplified model.

supply voltage variations (“supply noise”)! To understand this point, consider the arrangement depicted
in Fig. 3.21, where VB is a bias voltage to place M1 and M2 in saturation. In Problem 3.31, we prove that
the small-signal gain from VDD to Vout is given by

Vout

VDD
=

gm2rO2 + 1

rO2 + rO1
rO1 (3.49)

=
�

gm2 +
1

rO2

�
(rO1||rO2) (3.50)

Nanometer Design Notes

With minimum channel lengths, the
CS stage with current-source load
provides a low gain. For example,
if (W/L)NM OS = 5 µm/40 nm and
(W/L)PM OS = 10 µm/40 nm, we obtain
the input-output characteristic shown in
the figure, where the maximum gain is
about 2.5! If we plot the slope, we also
see the useful output voltage range to
be about 0.7 V with VDD = 1 V. Outside
this range, the gain drops considerably.
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about half of the Av found above. These issues are addressed in Chapter 5.

VDD

VoutVB

M1

M2

Figure 3.21 Arrangement for study-
ing supply sensitivity of CS stage with
active load.

3.3.5 CS Stage with Triode Load

A MOS device operating in the deep triode region behaves as a resistor and
can therefore serve as the load in a CS stage. Illustrated in Fig. 3.22, such a
circuit biases the gate of M2 at a sufficiently low level, ensuring that the load
is in the deep triode region for all output voltage swings. Since

Ron2 =
1

µpCox (W/L)2(VDD � Vb � |VT H P |)
(3.51)

the voltage gain can be readily calculated.
The principal drawback of this circuit stems from the dependence of Ron2

upon µpCox , Vb, and VT H P . Since µpCox and VT H P vary with process and
temperature, and since generating a precise value for Vb requires additional
complexity, this circuit is difficult to use. Triode loads, however, consume
less voltage headroom than do diode-connected devices because in Fig. 3.22,
Vout,max = VDD , whereas in Fig. 3.16, Vout,max � VDD � |VT H P |.
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VDD VDD

Ron2

Vb Vout Vout

Vin Vin M1

M2

M1

Figure 3.22 CS stage with triode load.

Among the five CS variants studied above, those employing resistive, current-source, or active loads
find wider usage than the other two.

(a) (b)

ID

VDD

Vin

RS

RD

Vout

ID

RS

gmV1Vin V1M1

Figure 3.23 CS stage with source degeneration.

3.3.6 CS Stage with Source Degeneration

In some applications, the nonlinear dependence of the drain current upon the overdrive voltage introduces
excessive nonlinearity, making it desirable to “soften” the device characteristics. In Sec. 3.3.2, we noted
the linear behavior of a CS stage using a diode-connected load, which allows “postcorrection” of the
nonlinearity. Alternatively, as depicted in Fig. 3.23(a), this can be accomplished by placing a “degenera-
tion” resistor in series with the source terminal so as to make the input device more linear. Let us neglect
channel-length modulation and body effect. Here, as Vin increases, so do ID and the voltage drop across
RS . That is, a fraction of the change in Vin appears across the resistor rather than as the gate-source
overdrive, thus leading to a smoother variation of ID . From another perspective, we intend to make the
gain equation a weaker function of gm . Since Vout = VDD � ID RD , the nonlinearity of the circuit arises
from the nonlinear dependence of ID upon Vin . We note that �Vout/�Vin = �(� ID/�Vin)RD , and define
the equivalent transconductance of the circuit as Gm = � ID/�Vin .3 Now, assuming that ID = f (VGS),
we write

Gm =
� ID

�Vin
(3.52)

=
� f

�VGS

�VGS

�Vin
(3.53)

3As explained later, the output voltage must be kept constant when Gm is calculated.
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Since VGS = Vin � ID RS , we have �VGS/�Vin = 1 � RS� ID/�Vin , obtaining

Gm =
�

1 � RS
� ID

�Vin

�
� f

�VGS
(3.54)

But, � f/�VGS is the transconductance of M1, and

Gm =
gm

1 + gm RS
(3.55)

The small-signal voltage gain is thus equal to

Av = �Gm RD (3.56)

=
�gm RD

1 + gm RS
(3.57)

The same result can be derived using the small-signal model of Fig. 3.23(b) by writing a KVL, Vin =
V1 + ID RS , and noting that ID = gm V1. Equation (3.55) implies that as RS increases, Gm becomes
a weaker function of gm and hence the drain current. In fact, for RS � 1/gm , we have Gm � 1/RS ,
i.e., �ID � �Vin/RS , concluding that most of the change in Vin appears across RS . We say that the
drain current is a “linearized” function of the input voltage. In Problem 3.30, we examine this effect
from a different perspective. The linearization is obtained at the cost of lower gain [and higher noise
(Chapter 7)].

For our subsequent calculations, it is useful to determine Gm in the presence of body effect and
channel-length modulation. With the aid of the equivalent circuit shown in Fig. 3.24, we recognize that
the current through RS equals Iout and, therefore, Vin = V1 + Iout RS . Summing the currents at node X ,
we have

Iout = gm V1 � gmbVX �
Iout RS

rO
(3.58)

= gm(Vin � Iout RS) + gmb(�Iout RS) �
Iout RS

rO
(3.59)

It follows that

Gm =
Iout

Vin
(3.60)

=
gmrO

RS + [1 + (gm + gmb)RS]rO
(3.61)

gmV1 rO gmbVbs

Iout

Vin V1

X

RS Figure 3.24 Small-signal equivalent
circuit of a degenerated CS stage.
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Let us now examine the large-signal behavior of the CS stage with RS = 0 and RS 	= 0. For RS = 0,
our derivations in Chapter 2 indicate that ID and gm vary as shown in Fig. 3.25(a). For RS 	= 0, the
turn-on behavior is similar to that in Fig. 3.25(a) because, at low current levels, 1/gm � RS , and hence
Gm � gm [Fig. 3.25(b)]. As the overdrive and therefore gm increase, the effect of degeneration, 1+ gm RS

in (3.55), becomes more significant. For large values of Vin (if M1 is still saturated), ID is approximately
a linear function of Vin and Gm approaches 1/RS .

(a) (b)

ID gm

VTH VTHVin Vin

1
RS

1
RS

Gm

VTH VTHVin Vin

ID

Figure 3.25 Drain current and transconductance of a CS device (a) without and (b) with source degeneration.

� Example 3.9

Plot the small-signal voltage gain of the circuit in Fig. 3.23 as a function of the input bias voltage, Vin .

Solution

Using the results derived above for the equivalent transconductance of M1 and RS , we arrive at the plot shown
in Fig. 3.26. For Vin slightly greater than VT H , 1/gm � RS and Av � �gm RD . As Vin increases, degeneration
becomes more significant and Av = �gm RD/(1+gm RS). For large values of Vin , Gm � 1/RS and Av = �RD/RS .
However, if Vin > Vout + VT H , that is, if RD ID > VT H + VDD � Vin , M1 enters the triode region and Av drops.

VinVTH

Av

gm RD

RD
RS

Figure 3.26

�

Equation (3.57) can be rewritten as

Av = �
RD

1

gm
+ RS

(3.62)

This result allows formulating the gain by inspection. First, let us examine the denominator of (3.62).
The expression is equal to the series combination of the inverse transconductance of the device and the
explicit resistance seen from the source to ground. We call the denominator “the resistance seen in the
source path” because if, as shown in Fig. 3.27, we disconnect the bottom terminal of RS from ground
and calculate the resistance seen “looking up” (while setting the input to zero), we obtain RS + 1/gm .



Razavi-3930640 book December 17, 201516:21 64

64 Chap. 3 Single-Stage Amplifiers

+

RS

RS

1
gm

1
gm

Figure 3.27 Resistance seen in the
source path.

Nanometer Design Notes

A common issue in nanometer technolo-
gies is that a MOS transistor experiences
”stress” if its VGS, VDS, or VDG exceeds
certain limits. For example, in 40-nm
technology, these voltages should re-
main below 1 V. Interestingly, the cas-
code structure can avoid device stress
even if VDD is greater than allowed. As
can be seen from the diagram below, as
the drain current decreases and Vout ap-
proaches VDD , M1 experiences VDS =
VDD , whereas M2 sees VDS � Vb �
VT H2. Similarly, VDS3 < VDD (why?).

M3

M2M1Vin

VDD

Vout

RD

Vb

Vin

VDD

Vout

RD

Noting that the numerator of (3.62) is the resistance seen at the drain, we
view the magnitude of the gain as the resistance seen at the drain node divided
by the total resistance in the source path. This method greatly simplifies the
analysis of more complex circuits.

� Example 3.10

Assuming � = � = 0, calculate the small-signal gain of the circuit shown in
Fig. 3.28(a).

(a) (b)

VDD

RD

Vout

Vin M1

M2

inV

VDD

RD

Vout

M1

1
gm2

Figure 3.28

Solution

Noting that M2 is a diode-connected device and simplifying the circuit to that shown in Fig. 3.28(b), we use the
above rule to write

Av = �
RD

1

gm1
+

1

gm2

(3.63)

�

Output Resistance Another important consequence of source degeneration is the increase in the output
resistance of the stage. We calculate the output resistance first with the aid of the equivalent circuit shown
in Fig. 3.29, where the load resistor, RD , is excluded for now. Note that body effect is also included to

gmV1 rO gmbVbsV1 VX

IX

IX
RS

Figure 3.29 Equivalent circuit for cal-
culating the output resistance of a degen-
erated CS stage.
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arrive at a general result. Since the current through RS is equal to IX , V1 = �IX RS , and the current
flowing through rO is given by IX � (gm + gmb)V1 = IX + (gm + gmb)RS IX . Adding the voltage drops
across rO and RS , we obtain

rO [IX + (gm + gmb)RS IX ] + IX RS = VX (3.64)

It follows that

Rout = [1 + (gm + gmb)RS]rO + RS (3.65)

= [1 + (gm + gmb)rO ]RS + rO (3.66)

Equation (3.65) indicates that rO is “boosted” by a factor of 1 + (gm + gmb)RS and then added to RS .
As an alternative perspective, Eq. (3.66) suggests that RS is boosted by a factor of 1 + (gm + gmb)rO (a
value close to the transistor’s intrinsic gain) and then added to rO . Both views prove useful in analyzing
circuits. Note that the overall output resistance is equal to the parallel combination of Rout and RD . If
(gm + gmb)rO � 1, we have

Rout � (gm + gmb)rO RS + rO (3.67)

= [1 + (gm + gmb)RS]rO (3.68)

To gain more insight, let us consider the circuit of Fig. 3.29 with RS = 0 and RS > 0. If RS = 0, then
gm V1 = gmbVbs = 0 and IX = VX/rO . On the other hand, if RS > 0, we have IX RS > 0 and V1 < 0,
obtaining negative gm V1 and gmbVbs . Thus, the current supplied by VX is less than VX/rO , and hence the
output impedance is greater than rO .

The relationship in (3.65) can also be derived by inspection. As shown in Fig. 3.30(a), we apply a
voltage to the output node, change its value by �V , and measure the resulting change, �I , in the output
current. Since the current through RS must change by �I (why?), we first compute the voltage change
across RS . To this end, we draw the circuit as shown in Fig. 3.30(b) and note that the resistance seen
looking into the source of M1 is equal to 1/(gm + gmb) [Eq. (3.24)], thus arriving at the equivalent circuit
in Fig. 3.30(c). The voltage change across RS is therefore equal to

�VRS = �V

1

gm + gmb
�RS

1

gm + gmb
�RS + rO

(3.69)

(a) (b) (c)

RS RS

rO rO

M1 M1

� I
�V �V

�VRS

�V

RS

rO
1

gm+gmb
�VRS

�V

Figure 3.30 (a) Change in drain current in response to change in applied voltage to drain; (b) equivalent of (a);
(c) small-signal model.
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The change in the current is

�I =
�VRS

RS
(3.70)

= �V
1

[1 + (gm + gmb)]RSrO + RS
(3.71)

that is,

�V

�I
= [1 + (gm + gmb)RS]rO + RS (3.72)

With the foregoing developments, we can now compute the gain of a degenerated CS stage in the
general case, taking into account both body effect and channel-length modulation. In the equivalent circuit
depicted in Fig. 3.31, the current through RS must equal that through RD , i.e., �Vout/RD . Thus, the source
voltage with respect to ground (and the bulk) is equal to �Vout RS/RD , yielding V1 = Vin + Vout RS/RD .
The current flowing through rO from top to bottom can therefore be written as

Iro = �
Vout

RD
� (gm V1 + gmbVbs) (3.73)

= �
Vout

RD
�

	
gm

�
Vin + Vout

RS

RD

�
+ gmbVout

RS

RD



(3.74)

RD

�

rO gmbVbs

Vout

Vin V1

Vout
RD

�
Vout
RD

RS

gmV1

Figure 3.31 Small-signal model of degenerated CS stage with finite output resistance.

Since the voltage drops across rO and RS must add up to Vout , we have

Vout = IrorO �
Vout

RD
RS (3.75)

= �
Vout

RD
rO �

	
gm

�
Vin + Vout

RS

RD

�
+ gmbVout

RS

RD



rO � Vout

RS

RD
(3.76)

It follows that

Vout

Vin
=

�gmrO RD

RD + RS + rO + (gm + gmb)RSrO
(3.77)

To gain more insight into this result, we recognize that the last three terms in the denominator, namely,
RS + rO + (gm + gmb)RSrO , represent the output resistance of a MOS device degenerated by a resistor
RS , as originally derived in (3.66). Let us now rewrite (3.77) as

Av =
�gmrO RD[RS + rO + (gm + gmb)RSrO ]

RD + RS + rO + (gm + gmb)RSrO
•

1

RS + rO + (gm + gmb)RSrO
(3.78)

= �
gmrO

RS + rO + (gm + gmb)RSrO
•

RD[RS + rO + (gm + gmb)RSrO ]

RD + RS + rO + (gm + gmb)RSrO
(3.79)
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The two fractions in (3.79) represent two important parameters of the circuit: the first is identical to that
in (3.61), i.e., the equivalent transconductance of a degenerated MOSFET; and the second denotes the
parallel combination of RD and RS + rO + (gm + gmb)RSrO , i.e., the overall output resistance of the
circuit.

The above discussion suggests that in some circuits, it may be easier to calculate the voltage gain by
exploiting the following lemma. We recall that the output port of a linear circuit can be represented by a
Norton equivalent [Fig. 3.32(a)].

Lemma In a linear circuit, the voltage gain is equal to �Gm Rout , where Gm denotes the transconduc-
tance of the circuit when the output is shorted to ground [Fig. 3.32(b)] and Rout represents the output
resistance of the circuit when the input voltage is set to zero [Fig. 3.32(c)].

(c)(a) (b)

Gm Calculation Rout Calculation

Iout Iout IoutRout Rout Rout RoutVout VoutVin

Figure 3.32 (a) Norton equivalent of a linear circuit; (b) Gm calculation; and (c) Rout calculation.

The lemma can be proved by noting that the output voltage in Fig. 3.32(a) is equal to �Iout Rout , and
Iout can be obtained by measuring the short-circuit current at the output. Defining Gm = Iout/Vin , we
have Vout = �Gm Vin Rout . This lemma proves useful if Gm and Rout can be determined by inspection.
Note the direction of Iout .

� Example 3.11

Calculate the voltage gain of the circuit shown in Fig. 3.33. Assume that I0 is ideal.

VDD

Vout

RS

I0

M1Vin

Figure 3.33

Solution

The transconductance and output resistance of the stage are given by Eqs. (3.61) and (3.66), respectively. Thus,

Av = �
gmrO

RS + [1 + (gm + gmb)RS]rO
{[1 + (gm + gmb)rO ]RS + rO } (3.80)

= �gmrO (3.81)

Interestingly, the voltage gain is equal to the intrinsic gain of the transistor and independent of RS . This is because,
if I0 is ideal, the current through RS cannot change, and hence the small-signal voltage drop across RS is zero—as
if RS were zero itself.

�
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3.4 Source Follower

Our analysis of the common-source stage indicates that, to achieve a high voltage gain with limited supply
voltage, the load impedance must be as large as possible. If such a stage is to drive a low-impedance
load, then a “buffer” must be placed after the amplifier so as to drive the load with negligible reduction
in gain. The source follower (also called the “common-drain” stage) can operate as a voltage buffer.

(a) (b)

Low
Resistance

Gain Stage Bu�er

=

(c)

VDDVDD

Vout

VGSVout

V out
V in

RS

Vin

VinVTH

M1

High
Resistance

Figure 3.34 (a) Source follower, (b) example of its role as a buffer, and (c) its input-output characteristic.

Illustrated in Fig. 3.34(a), the source follower senses the signal at the gate, while presenting a high
input impedance, and drives the load at the source, allowing the source potential to “follow” the gate
voltage. Figure 3.34(b) depicts how the circuit can be used to drive a low resistance without degrading
the voltage gain of a CS stage. Beginning with the large-signal behavior of the source follower, we note
that for Vin < VT H , M1 is off and Vout = 0. As Vin exceeds VT H , M1 turns on in saturation (why?) and
ID1 flows through RS [Fig. 3.34(c)]. As Vin increases further, Vout follows the input with a difference
(level shift) equal to VGS . We can express the input-output characteristic as

1

2
µnCox

W

L
(Vin � VT H � Vout )2 RS = Vout (3.82)

where channel-length modulation is neglected. Let us calculate the small-signal gain of the circuit by
differentiating both sides of (3.82) with respect to Vin:

1

2
µnCox

W

L
2(Vin � VT H � Vout )

�
1 �

�VT H

�Vin
�

�Vout

�Vin

�
RS =

�Vout

�Vin
(3.83)

Since �VT H/�Vin = (�VT H/�VSB)(�VSB/�Vin) = 	�Vout/�Vin ,

�Vout

�Vin
=

µnCox
W

L
(Vin � VT H � Vout )RS

1 + µnCox
W

L
(Vin � VT H � Vout )RS(1 + 	)

(3.84)

Also, note that

gm = µnCox
W

L
(Vin � VT H � Vout ) (3.85)
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Consequently,

Av =
gm RS

1 + (gm + gmb)RS
(3.86)

The same result is more easily obtained with the aid of a small-signal equivalent circuit. From Fig. 3.35,
we have Vin � V1 = Vout , Vbs = �Vout , and gm V1 � gmbVout = Vout/RS . Thus, Vout/Vin = gm RS/[1 +
(gm + gmb)RS].

gmV1 gmbVbs

Vout

V1

RS

Vin

Figure 3.35 Small-signal equivalent
circuit of source follower.

Sketched in Fig. 3.36 vs. Vin , the voltage gain begins from zero for Vin � VT H (that is, gm � 0) and
monotonically increases. As the drain current and gm increase, Av approaches gm/(gm +gmb) = 1/(1+	).
Since 	 itself slowly decreases with Vout , Av would eventually become equal to unity, but for typical
allowable source-bulk voltages, 	 remains greater than roughly 0.2.

1
1 + �

1.0

Av

VinVTH
Figure 3.36 Voltage gain of source
follower versus input voltage.

An important result of (3.86) is that even if RS = �, the voltage gain of a source follower is not equal
to one (unless body effect is removed as explained later). We return to this point later. Note that M1 in
Fig. 3.34(a) remains in saturation if Vin does not exceed VDD + VT H .

In the source follower of Fig. 3.34(a), the drain current of M1 heavily depends on the input dc level.
For example, if Vin changes from 0.7 V to 1 V, ID may increase by a factor of 2, and hence VGS � VT H

by
�

2. Even if VT H is relatively constant, the increase in VGS means that Vout (= Vin � VGS) does not
follow Vin faithfully, thereby incurring nonlinearity. To alleviate this issue, the resistor can be replaced by
a constant current source as shown in Fig. 3.37(a). The current source itself is implemented as an NMOS
transistor operating in the saturation region [Fig. 3.37(b)].

(a)

I 1

(b)

VDD VDD

Vout Vout

Vin Vin

Vb

M1 M1

M2

Figure 3.37 Source follower using
(a) an ideal current source, and (b) an
NMOS transistor as a current source.
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� Example 3.12

Suppose that in the source follower of Fig. 3.37(a), (W/L)1 = 20/0.5, I1 = 200 µA, VT H0 = 0.6 V, 2
F = 0.7 V,
VDD = 1.2 V, µnCox = 50 µA/V2, and � = 0.4 V1/2.

(a) Calculate Vout for Vin = 1.2 V.
(b) If I1 is implemented as M2 in Fig. 3.37(b), find the minimum value of (W/L)2 for which M2 remains saturated

when Vin = 1.2 V.

Solution

(a) Since the threshold voltage of M1 depends on Vout , we perform a simple iteration. Noting that

(Vin � VT H � Vout )2 =
2ID

µnCox

�
W

L

�

1

(3.87)

we first assume that VT H � 0.6 V, obtaining Vout = 0.153 V. Now we calculate a new VT H as

VT H = VT H0 + � (
�

2
F + VSB �
�

2
F ) (3.88)

= 0.635 V (3.89)

This indicates that Vout is approximately 35 mV less than that calculated above, i.e., Vout � 0.118 V.
(b) Since the drain-source voltage of M2 is equal to 0.118 V, the device is saturated only if (VGS�VT H )2 
 0.118 V.

With ID = 200 µA, this gives (W/L)2 � 287/0.5. Note the substantial drain junction and overlap capacitance
contributed by M2 to the output node.

�

� Example 3.13

Explain intuitively why the gain of the source follower in Fig. 3.37(a) is equal to unity if I1 is ideal and � = � = 0.

Solution

In this case, the drain current of M1 remains exactly constant, and so does VGS1. Since Vout = Vin � VGS1, we
observe that a change in Vin must equally appear in Vout . Alternatively, as shown in Fig. 3.38, we can say that the
small-signal drain current cannot flow through any path and must be zero, yielding V1 = 0 and Vout = Vin .

gmV1

Vout

Vin V1

Figure 3.38
�

To gain a better understanding of source followers, let us calculate the small-signal output resistance
of the circuit in Fig. 3.39(a). Using the equivalent circuit of Fig. 3.39(b) and noting that VX = �Vbs , we
write

IX � gm VX � gmbVX = 0 (3.90)

It follows that

Rout =
1

gm + gmb
(3.91)
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(a) (b) (c)

ac ac
VDD

VDD

gmV1 gmbVbs

Rout

V1

VX

IX
IX

VX

M1

M1

Figure 3.39 Calculation of the output impedance of a source follower.

This result should not come as a surprise: the circuit in Fig. 3.39(b) is similar to that in Fig. 3.11(b).
Interestingly, body effect decreases the output resistance of source followers. To understand why, sup-
pose that in Fig. 3.39(c), VX decreases by �V so that the drain current increases. With no body ef-
fect, only the gate-source voltage of M1 would increase by �V . With body effect, on the other hand,
the threshold voltage of the device decreases as well. Thus, in (VGS � VT H )2, the first term increases
and the second decreases, resulting in a greater change in the drain current and hence a lower output
impedance.

The above phenomenon can also be studied with the aid of the small-signal model shown in Fig. 3.40(a).
It is important to note that the magnitude of the current source gmbVbs = gmbVX is linearly proportional
to the voltage across it (because the current source and the voltage source are in parallel). Such a
behavior is that of a simple resistor equal to 1/gmb, yielding the small-signal model shown in Fig. 3.40(b).
The equivalent resistor simply appears in parallel with the output, thereby lowering the overall output
resistance. Since without 1/gmb, the output resistance equals 1/gm , we conclude that

Rout =
1

gm
�

1

gmb
(3.92)

=
1

gm + gmb
(3.93)

Modeling the effect of gmb by a resistor—which is valid only for source followers—also helps explain
the less-than-unity voltage gain implied by (3.86) for RS = �. As shown in the Thevenin equivalent

(a)

gmV1 gmV1gmbVXV1 V1

VX

IX

(b)

VX

IX
gmb

1

Figure 3.40 Source follower including body effect.
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gmV1V1

gm
1 gmb

1 gmb
1

gm
1

Vin
Vout Vin

Vout

Figure 3.41 Representation of intrinsic source follower by a Thevenin equivalent.

of Fig. 3.41,

Av =

1

gmb

1

gm
+

1

gmb

(3.94)

=
gm

gm + gmb
(3.95)

For completeness, we also study a source follower with a finite load resistance and channel-length
modulation [Fig. 3.42(a)]. Noting that 1/gmb, rO1, rO2, and RL are in parallel, we can reduce the circuit
to that shown in Fig. 3.42(c), where Req = (1/gmb)||rO1||rO2||RL . It follows that

Av =
Req

Req +
1

gm

(3.96)

(b)

VDD

Vin

Vout

M1

M2Vb RL

(a)

gmV1 gmV1V1

gmb
1

Vin
Vout Vout

rO1 rO2 RL

Vin V1

Req

(c)
Figure 3.42 (a) Source follower driving load resistance; (b) small-signal equivalent circuit; (c) simplified model.

� Example 3.14

Calculate the voltage gain of the circuit shown in Fig. 3.43.

Solution

The impedance seen looking into the source of M2 (a diode-connected device) is equal to [1/(gm2 + gmb2)]�rO2.
The impedance appears in parallel with 1/gmb1 and rO1. Thus,

Av =

1

gm2 + gmb2
�rO2�rO1�

1

gmb1
1

gm2 + gmb2
�rO2�rO1�

1

gmb1
+

1

gm1

(3.97)
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VDD

Vin

M1

M2

Vout

VDD

Figure 3.43

�

Source followers exhibit a high input impedance and a moderate output impedance, but at the cost of
two drawbacks: nonlinearity and voltage headroom limitation. We consider these issues in detail.

As mentioned in relation to Fig. 3.34(a), even if a source follower is biased by an ideal current source,
its input-output characteristic displays some nonlinearity due to the nonlinear dependence of VT H upon
the source potential. In submicron technologies, rO of the transistor also changes substantially with VDS ,
thus introducing additional variation in the small-signal gain of the circuit (Chapter 14). For this reason,
typical source followers suffer from significant nonlinearity.

The nonlinearity due to body effect can be eliminated if the bulk is tied to the source. This is usually
possible only for PFETs because all NFETs share the same substrate. Figure 3.44 shows a PMOS source
follower employing two separate n-wells so as to eliminate the body effect of M1. The lower mobility of
PFETs, however, yields a higher output impedance in this case than that available in an NMOS counterpart.

VDD

Vin

M2
Vout

M1

Vb

(a)

Vin

Vb

VDD

GND

n�well
n�well

Contacts

(b)

Vout

Figure 3.44 (a) PMOS source follower with no body effect; (b) corresponding layout showing separate n-wells.

Source followers also shift the dc level of the signal by VGS , thereby consuming voltage headroom
and limiting the voltage swings. To understand this point, consider the example illustrated in Fig. 3.45,
a cascade of a common-source stage and a source follower. Without the source follower, the minimum
allowable value of VX would be equal to VGS1 � VT H1 (for M1 to remain in saturation). With the source
follower, on the other hand, VX must be greater than VGS2 + (VGS3 � VT H3) so that M3 is saturated. For
comparable overdrive voltages in M1 and M3, this means the allowable swing at X is reduced by VGS2,
a substantial amount.

It is also instructive to compare the gain of source followers and common-source stages when the load
impedance is relatively low. A practical example is the need to drive an external 50-� termination in a
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VDD

Vout

M2

M3Vb

M1

ID

Vin

X

Figure 3.45 Cascade of source
follower and CS stage.

VDD

Vout

M1

I1 RL

(a)

Vin

M1

RL

Vout
Vin

VDD

(b)
Figure 3.46 (a) Source follower and (b) CS stage driving a load resistance.

high-frequency environment. As shown in Fig. 3.46(a), the load can be driven by a source follower with
an overall voltage gain of

Vout

Vin
|SF �

RL

RL + 1/gm1
(3.98)

�
gm1 RL

1 + gm1 RL
(3.99)

On the other hand, as depicted in Fig. 3.46(b), the load can be included as part of a common-source stage,
providing a gain of

Vout

Vin
|C S � �gm1 RL (3.100)

The key difference between these two topologies is the achievable voltage gain for a given bias current.
For example, if 1/gm1 � RL , then the source follower exhibits a gain of at most 0.5, whereas the common-
source stage provides a gain close to unity. Thus, source followers are not necessarily efficient drivers.

The drawbacks of source followers, namely, nonlinearity due to body effect and voltage headroom
consumption due to level shift, limit the use of this topology. As a general rule, we avoid the use of source
followers unless they become absolutely necessary. One application of source followers is in performing
voltage-level shift, as illustrated by the following example.

� Example 3.15

(a) In the circuit of Fig. 3.47(a), calculate the voltage gain if C1 acts as an ac short at the frequency of interest. What
is the maximum dc level of the input signal for which M1 remains saturated?

(b) To accommodate an input dc level close to VDD , the circuit is modified as shown in Fig. 3.47(b). What
relationship between the gate-source voltages of M2 and M3 guarantees that M1 is saturated?
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M1

Vout

I1

Vin

VDD

C1

M1

Vout

I1

Vin

VDD

C1

M3

M2 M2

(a) (b)

X

Figure 3.47

Solution

(a) Noting that the source of M1 is at ac ground, we write the gain as

Av = �gm1[rO1�rO2�(1/gm2)] (3.101)

Since Vout = VDD � |VGS2|, the maximum allowable dc level of Vin is equal to VDD � |VGS2| + VT H1.
(b) If Vin = VDD , then VX = VDD � VGS3. For M1 to be saturated when Vin = VDD , we must have VDD �

VGS3 � VT H1 
 VDD � |VGS2|, and hence VGS3 + VT H1 � |VGS2|. �

As explained in Chapter 7, source followers also introduce substantial noise. For this reason, the circuit
of Fig. 3.47(b) is ill-suited to low-noise applications.

3.5 Common-Gate Stage

In common-source amplifiers and source followers, the input signal is applied to the gate of a MOSFET.
It is also possible to apply the signal to the source terminal. Shown in Fig. 3.48(a), a common-gate (CG)
stage senses the input at the source and produces the output at the drain. The gate is connected to a dc
voltage to establish proper operating conditions. Note that the bias current of M1 flows through the input
signal source. Alternatively, as depicted in Fig. 3.48(b), M1 can be biased by a constant current source,
with the signal capacitively coupled to the circuit.

RD

Vout

Vb

VDD

Vin

RD

Vout

Vb

VDD

Vin
C1 I1

(a) (b)

M1M1

Figure 3.48 (a) Common-gate stage with direct coupling at input; (b) CG stage with capacitive coupling at input.
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Vb � VTH

Vb � VTH

Vin

Vout

VDD

M1 in
SaturationM1 in

Triode Region

M1 o�

Figure 3.49 Common-gate input-
output characteristic.

We first study the large-signal behavior of the circuit in Fig. 3.48(a). For simplicity, let us assume that
Vin decreases from a large positive value. Also, � = 0. For Vin � Vb � VT H , M1 is off and Vout = VDD .
For lower values of Vin , we can write

ID =
1

2
µnCox

W

L
(Vb � Vin � VT H )2 (3.102)

if M1 is in saturation. As Vin decreases, so does Vout , eventually driving M1 into the triode region if

VDD �
1

2
µnCox

W

L
(Vb � Vin � VT H )2 RD = Vb � VT H (3.103)

The input-output characteristic is shown in Fig. 3.49, illustrating a case in which M1 enters the triode
region as Vin decreases. In the region where M1 is saturated, we can express the output voltage as

Vout = VDD �
1

2
µnCox

W

L
(Vb � Vin � VT H )2 RD (3.104)

obtaining a small-signal gain of

�Vout

�Vin
= �µnCox

W

L
(Vb � Vin � VT H )

�
�1 �

�VT H

�Vin

�
RD (3.105)

Since �VT H/�Vin = �VT H/�VSB = 	, we have

�Vout

�Vin
= µnCox

W

L
RD(Vb � Vin � VT H )(1 + 	) (3.106)

= gm(1 + 	)RD (3.107)

Note that the gain is positive. Interestingly, body effect increases the equivalent transconductance of the
stage.

For a given bias current and supply voltage (i.e., a given power budget), how do we maximize the
voltage gain of a CG stage? We can increase gm by widening the input device, eventually reaching
subthreshold operation [gm � ID/(�VT )] (why?), and/or we can increase RD and, inevitably, the dc drop
across it. We must bear in mind that the minimum allowable level of Vout in Fig. 3.48(b) is equal to
VGS � VT H + VI 1, where VI 1 denotes the minimum voltage required by I1.

� Example 3.16

(a) Is it possible for M1 in Fig. 3.48(a) to remain in saturation for the entire range of Vin from 0 to VDD?
(b) Is it possible for M1 to remain in the triode region for the entire range of Vin from 0 to VDD?
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Solution

(a) Yes, it is possible. To so guarantee, we choose VDD � RD ID > Vb � VT H , where ID denotes the drain current
at Vin = 0.
(b) Yes, it is possible. If Vb > VDD + VT H , then M1 turns on at the edge of the triode region at Vin = VDD � VT H

and goes deeper as Vin falls. Of course, this choice of Vb is neither practical nor desirable.
�

The input impedance of the circuit is also important. We note that for � = 0, the impedance seen at the
source of M1 in Fig. 3.48(a) is the same as that at the source of M1 in Fig. 3.39, namely, 1/(gm + gmb) =
1/[gm(1 + 	)]. Thus, the body effect decreases the input impedance of the common-gate stage. The
relatively low input impedance of the common-gate stage proves useful in some applications.

� Example 3.17

In Fig. 3.50, transistor M1 senses �V and delivers a proportional current to a 50-� transmission line. The other
end of the line is terminated by a 50-� resistor in Fig. 3.50(a) and a common-gate stage in Fig. 3.50(b). Assume
� = � = 0.

(a) Calculate Vout/Vin at low frequencies for both arrangements.
(b) What condition is necessary to minimize wave reflection at node X?

RD

Vb

VDD

I1

M2

�V�V

RD

VDD

M1

ID1

XM1

ID1

(a) (b)
Figure 3.50

Solution

(a) For small signals applied to the gate of M1, the drain current experiences a change equal to gm1�VX . This current
is drawn from RD in Fig. 3.50(a) and M2 in Fig. 3.50(b), producing an output voltage swing equal to �gm1�VX RD .
Thus, Av = �gm1 RD for both cases.

(b) To minimize reflection at node X , the resistance seen at the source of M2 must equal 50 � and the reactance
must be small. Thus, 1/(gm2 + gmb2) = 50 �, which can be ensured by proper sizing and biasing of M2. To
minimize the capacitances of the transistor, it is desirable to use a small device biased at a large current. (Recall that
gm =

�
2µnCox (W/L)ID .) In addition to higher power dissipation, this remedy also requires a large VGS for M2.

The key point in this example is that, while the overall voltage gain in both arrangements equals �gm1 RD , the
value of RD in Fig. 3.50(b) can be much greater than 50 � without introducing reflections at point X . Thus, the
common-gate circuit can provide a higher voltage gain than that in Fig. 3.50(a).

�

Now let us study the common-gate topology in a more general case, taking into account both the
output impedance of the transistor and the impedance of the signal source. Depicted in Fig. 3.51(a), the
circuit can be analyzed with the aid of its equivalent shown in Fig. 3.51(b). Noting that the current flowing
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rO

Vin

RS

RD

Vout

VDD

Vb

M1 V1 gmV1 gmbVbsrO

RS

RD

Vout

Vin

XX

(a) (b)
Figure 3.51 (a) CG stage with finite transistor output resistance; (b) small-signal equivalent circuit.

through RS is equal to �Vout/RD , we have

V1 �
Vout

RD
RS + Vin = 0 (3.108)

Moreover, since the current through rO is equal to �Vout/RD � gm V1 � gmbV1, we can write

rO

�
�Vout

RD
� gm V1 � gmbV1

�
�

Vout

RD
RS + Vin = Vout (3.109)

Upon substitution for V1 from (3.108), (3.109) reduces to

rO

	
�Vout

RD
� (gm + gmb)

�
Vout

RS

RD
� Vin

�

�

Vout RS

RD
+ Vin = Vout (3.110)

It follows that

Vout

Vin
=

(gm + gmb)rO + 1

rO + (gm + gmb)rO RS + RS + RD
RD (3.111)

Note the similarity between (3.111) and (3.77). The gain of the common-gate stage is slightly higher due
to body effect.

� Example 3.18

Calculate the voltage gain of the circuit shown in Fig. 3.52(a) if � 	= 0 and � 	= 0.

Solution

We first find the Thevenin equivalent of M1 and Vin . As shown in Fig. 3.52(b), M1 operates as a source follower, the
equivalent Thevenin voltage is given by

Vin,eq =
rO1

����
1

gmb1

rO1

����
1

gmb1
+

1

gm1

Vin (3.112)
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(a) (b)

RD

Vout

VDD

Vb

M1

M2

M1

rO1

Vin

Vin
Vin,eq

Req

RD

Vout

VDD

Vb M2

Vin,eq

Req

(c)
Figure 3.52

and the equivalent Thevenin resistance is

Req = rO1

����
1

gmb1

����
1

gm1
(3.113)

Redrawing the circuit as in Fig. 3.52(c), we use (3.111) to write

Vout

Vin
=

(gm2 + gmb2)rO2 + 1

rO2 + [1 + (gm2 + gmb2)rO2]

�
rO1

����
1

gmb1

����
1

gm1

�
+ RD

RD

rO1

����
1

gmb1

rO1

����
1

gmb1
+

1

gm1

(3.114)

This example demonstrates the ease with which a circuit can be analyzed by inspection—while relying on
previously-derived results—rather than by blindly writing KVLs and KCLs.

�

The input and output impedances of the common-gate topology are also of interest. To obtain the
impedance seen at the source [Fig. 3.53(a)], we use the equivalent circuit in Fig. 3.53(b). Since V1 = �VX

and the current through rO is equal to IX + gm V1 + gmbV1 = IX � (gm + gmb)VX , we can add up the
voltages across rO and RD and equate the result to

RD IX + rO [IX � (gm + gmb)VX ] = VX (3.115)

rO

RD

VDD

Vb

M1

V1 rO gmbVbsgmV1 RD

(a) (b)
Rin

IX

VX

IX

Figure 3.53 (a) Input resistance of a CG stage; (b) small-signal equivalent circuit.
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Thus,

VX

IX
=

RD + rO

1 + (gm + gmb)rO
(3.116)

�
RD

(gm + gmb)rO
+

1

gm + gmb
(3.117)

if (gm + gmb)rO � 1. This result reveals that the drain impedance is divided by (gm + gmb)rO when seen
at the source. This is particularly important in short-channel devices because of their low intrinsic gain.
Two special cases of (3.116) are worth studying. First, suppose RD = 0. Then,

VX

IX
=

rO

1 + (gm + gmb)rO
(3.118)

=
1

1

rO
+ gm + gmb

(3.119)

which is simply the impedance seen at the source of a source follower, a predictable result because if
RD = 0, the circuit configuration is the same as in Fig. 3.39(a).

Second, let us replace RD with an ideal current source. Equation (3.117) predicts that the input
impedance approaches infinity. While somewhat surprising, this result can be explained with the aid of
Fig. 3.54. Since the total current through the transistor is fixed and equal to I1, a change in the source
potential cannot change the device current, and hence IX = 0. In other words, the input impedance of a
common-gate stage is relatively low only if the load impedance connected to the drain is small.

rO

VDD

Vb

M1

VX

IX

I1

Figure 3.54 Input resistance of a CG
stage with ideal current-source load.

� Example 3.19

Calculate the voltage gain of a common-gate stage with a current-source load [Fig. 3.55(a)].

Solution

Letting RD approach infinity in (3.111), we have

Av = (gm + gmb)rO + 1 (3.120)

Interestingly, the gain does not depend on RS . From our foregoing discussion, we recognize that if RD � �, so
does the impedance seen at the source of M1, and the small-signal voltage at node X becomes equal to Vin . We can
therefore simplify the circuit as shown in Fig. 3.55(b), readily arriving at (3.120).
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rO

VDD

Vb

M1

Vin

I1

Vout

(a) (b)

RS

r
O

VDD

Vb

M1

Vin

I1

Vout

X X

Figure 3.55
�

Our analysis of the degenerated CS stage and the CG stage gives another interesting insight. As
illustrated in Fig. 3.56, we loosely say that a transistor transforms its source resistance up and its drain
resistance down (when seen at the appropriate terminal).

rO

RD

VDD

M1

RS

M1

[1 + (gm + gmb) rO] RS

1 + (gm + gmb) rO

RD + rO 

Figure 3.56 Impedance transformation by a MOSFET.

In order to calculate the output impedance of the common-gate stage, we use the circuit in Fig. 3.57.
We note that the result is similar to that in Fig. 3.29, and hence

Rout = {[1 + (gm + gmb)rO ]RS + rO}�RD (3.121)

rO

RS

RD

VDD

Vb

M1 VX

IX

Figure 3.57 Calculation of output
resistance of a CG stage.
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� Example 3.20

As seen in Example 3.17, the input signal of a common-gate stage may be a current rather than a voltage. Shown
in Fig. 3.58 is such an arrangement. Calculate Vout/Iin and the output impedance of the circuit if the input current
source exhibits an output impedance equal to RP .

RD

Vout

Vb

VDD

Iin RP

Figure 3.58

Solution

To find Vout/Iin , we replace Iin and RP with a Thevenin equivalent and use (3.111) to write

Vout

Iin
=

(gm + gmb)rO + 1

rO + (gm + gmb)rO RP + RP + RD
RD RP (3.122)

The output impedance is simply equal to

Rout = {[1 + (gm + gmb)rO ]RP + rO }�RD (3.123)

�

3.6 Cascode Stage

As mentioned in Example 3.17, the input signal of a common-gate stage may be a current. We also
know that a transistor in a common-source arrangement converts a voltage signal to a current signal. The
cascade of a CS stage and a CG stage is called a “cascode”4 topology, providing many useful properties.
Figure 3.59 shows the basic configuration: M1 generates a small-signal drain current proportional to the
small-signal input voltage, Vin , and M2 simply routes the current to RD . We call M1 the input device and
M2 the cascode device. Note that in this example, M1 and M2 carry equal bias and signal currents. As
we describe the attributes of the circuit in this section, many advantages of the cascode topology over a
simple common-source stage become evident. This circuit is also known as the “telescopic” cascode.

RD

Vout

Vb

VDD

M1

M2

Vin

X

Figure 3.59 Cascode stage.

4The term cascode is believed to be the acronym for “cascaded triodes,” possibly invented in vacuum tube days.
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Before delving into our analysis, it is instructive to explore the circuit qualitatively. We wish to know
what happens if the value of Vin or Vb changes by a small amount. Assume that both transistors are in
saturation and � = � = 0. If Vin rises by �V , then ID1 increases by gm1�V . This change in current
flows through the impedance seen at X , i.e., the impedance seen at the source of M2, which is equal to
1/gm2. Thus, VX falls by an amount given by gm1�V • (1/gm2) [Fig. 3.60(a)]. The change in ID1 also
flows through RD , producing a drop of gm1�V RD in Vout —just as in a simple CS stage.

VDD

M2

RD

M
1

Vb

X

�V

�Vgm1
gm2

gm1 �V RD

VDD

M2

RD

M1Vb

X

�V

VDD

M2

RD

X

�V
Vout VoutVout

(a) (b)
Figure 3.60 Cascode stage sensing a signal at the gate of (a) an input device and (b) a cascode device.

Now, consider the case where Vin is fixed and Vb increases by �V . Since VGS1 is constant and
rO1 = �, we simplify the circuit as shown in Fig. 3.60(b). How do VX and Vout change here? As far as
node X is concerned, M2 operates as a source follower because it senses an input, �V , at its gate and
generates an output at X . With � = � = 0, the small-signal voltage gain of the follower is equal to unity,
regardless of the value of RD (why?). Thus, VX rises by �V . On the other hand, Vout does not change
because ID2 is equal to ID1 and hence remains constant. We say that the voltage gain from Vb to Vout is
zero in this case.

Let us now study the bias conditions of the cascode, still assuming that � = � = 0. For M1 to operate
in saturation, we must have VX � Vin � VT H1. If M1 and M2 are both in saturation, M2 operates as a
source follower and VX is determined primarily by Vb: VX = Vb � VGS2. Thus, Vb � VGS2 � Vin � VT H1,
and hence Vb > Vin + VGS2 � VT H1 (Fig. 3.61). For M2 to be saturated, Vout � Vb � VT H2; that is,

Vout � Vin � VT H1 + VGS2 � VT H2 (3.124)

= (VGS1 � VT H1) + (VGS2 � VT H2) (3.125)

VDD

M2

RD
Vout

M1

VTH1

Vin

Vb

X

VGS2 � VTH2 

VGS1 � VTH1 
Figure 3.61 Allowable voltages in
cascode stage.
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if Vb is chosen to place M1 at the edge of saturation. Consequently, the minimum output level for which
both transistors operate in saturation is equal to the overdrive voltage of M1 plus that of M2. In other
words, addition of M2 to the circuit reduces the output voltage swing by at least the overdrive voltage of
M2. We say that M2 is “stacked” on top of M1. We also loosely say that the minimum output voltage is
equal to two overdrives or 2VD,sat .

We now analyze the large-signal behavior of the cascode stage shown in Fig. 3.59 as Vin goes from
zero to VDD . For Vin 
 VT H1, M1 and M2 are off, Vout = VDD , and VX � Vb � VT H2 (if subthreshold
conduction is neglected) (Fig. 3.62). As Vin exceeds VT H1, M1 begins to draw current, and Vout drops.
Since ID2 increases, VGS2 must increase as well, causing VX to fall. As Vin assumes sufficiently large
values, two effects can occur: (1) VX drops below Vin by VT H1, forcing M1 into the triode region; (2) Vout

drops below Vb by VT H2, driving M2 into the triode region. Depending on the device dimensions and the
values of RD and Vb, one effect may occur before the other. For example, if Vb is relatively low, M1 may
enter the triode region first. Note that if M2 goes into the deep triode region, VX and Vout become nearly
equal.

VTH1 Vin

Vout
VDD

Vb � VTH2
VX

Figure 3.62 Input-output
characteristic of a cascode stage.

Let us now consider the small-signal characteristics of a cascode stage, assuming that both transistors
operate in saturation. If � = 0, the voltage gain is equal to that of a common-source stage because
the drain current produced by the input device must flow through the cascode device. Illustrated in the
equivalent circuit of Fig. 3.63, this result is independent of the transconductance and body effect of M2.
It can also be verified using Av = �Gm Rout .

RD

Vout

Vin

gm1V1

gm1V1

gm2V2 gmbVbsV2

V1

Figure 3.63 Small-signal equivalent circuit of cascode stage.

� Example 3.21

Calculate the voltage gain of the circuit shown in Fig. 3.64 if � = 0.

Solution

The small-signal drain current of M1, gm1Vin , is divided between RP and the impedance seen looking into the source
of M2, 1/(gm2 + gmb2). Thus, the current flowing through M2 is

ID2 = gm1Vin
(gm2 + gmb2)RP

1 + (gm2 + gmb2)RP
(3.126)
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VDD

M2

RD

Vout

M1

Vb

Vin
RP

Figure 3.64

The voltage gain is therefore given by

Av = �
gm1(gm2 + gmb2)RP RD

1 + (gm2 + gmb2)RP
(3.127)

�

M2

M1

Rout

M2

Rout

rO1
Figure 3.65 Calculation of output
resistance of cascode stage.

Nanometer Design Notes

With a limited voltage headroom,
nanometer cascode current sources
are only moderately better than single
transistors. The figure shows the I-V
characteristic of an NMOS current
source before and after cascoding (gray
and black curves, respectively). Here,
W/L = 5 µm/40 nm for both devices.
We observe that for VX < 0.2 V, the
cascode has only a slightly higher
output impedance.

0 0.2 0.4 0.6 0.8 1
0
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0.6

0.8

1

VX (V)

I X
 (m

A
)

Output Resistance An important property of the cascode structure is its
high output impedance. As illustrated in Fig. 3.65, for calculation of Rout , the
circuit can be viewed as a common-source stage with a degeneration resistor
equal to rO1. Thus, from (3.66),

Rout = [1 + (gm2 + gmb2)rO2]rO1 + rO2 (3.128)

Assuming gmrO � 1, we have Rout � (gm2 + gmb2)rO2rO1. That is, M2

boosts the output impedance of M1 by a factor of (gm2 + gmb2)rO2. As shown
in Fig. 3.66, cascoding can be extended to three or more stacked devices
to achieve a higher output impedance, but the required additional voltage

M2

M1

Rout

Vin

Vb1

M3Vb2

Figure 3.66 Triple cascode.
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headroom makes such configurations less attractive. For example, the minimum output voltage of a triple
cascode is equal to the sum of three overdrive voltages.

To appreciate the utility of a high output impedance, recall from the lemma in Sec. 3.3.3 that the
voltage gain can be written as �Gm Rout . Since Gm is typically determined by the transconductance of a
transistor, e.g., M1 in Fig. 3.59, and hence bears trade-offs with the bias current and device capacitances,
it is desirable to increase the voltage gain by maximizing Rout . Shown in Fig. 3.67 is an example.
If both M1 and M2 operate in saturation, then Gm � gm1 and Rout � (gm2 + gmb2)rO2rO1, yielding
Av = (gm2 + gmb2)rO2gm1rO1. Thus, the maximum voltage gain is roughly equal to the square of the
intrinsic gain of the transistors.

� Example 3.22

Calculate the exact voltage gain of the circuit shown in Fig. 3.67.

M2

M1Vin

Vb

I1

Vout

VDD

Figure 3.67 Cascode stage
with current-source load.

Solution

The actual Gm of the stage is slightly less than gm1 because a fraction of the small-signal current produced by M1
is shunted to ground by rO1. As depicted in Fig. 3.68(a), we short the output node to ac ground and recognize that
the impedance seen looking into the source of M2 is equal to [1/(gm2 + gmb2)]||rO2. Thus,

Iout = gm1Vin
rO1

rO1 +
1

gm2 + gmb2

����rO2

(3.129)

M2

M1

Vin

Vb

I1

VDD

r

rO2

O1

Iout

M2
Vb

I1

VDD

rO1

rO2

Vout

�gm1 rO1 Vin

(a) (b)
Figure 3.68
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It follows that the overall transconductance is equal to

Gm =
gm1rO1[rO2(gm2 + gmb2) + 1]

rO1rO2(gm2 + gmb2) + rO1 + rO2
(3.130)

and hence the voltage gain is given by

|Av | = Gm Rout (3.131)

= gm1rO1[(gm2 + gmb2)rO2 + 1] (3.132)

If we had assumed that Gm � gm1, then |Av | � gm1{[1 + (gm2 + gmb2)rO2]rO1 + rO2}.
Another approach to calculating the voltage gain is to replace Vin and M1 by a Thevenin equivalent, reducing the

circuit to a common-gate stage. Illustrated in Fig. 3.68(b), this method in conjunction with (3.111) gives the same
result as (3.132).

�

It is also interesting to compare the increase in the output impedance due to cascoding with that due to
increasing the length of the input transistor for a given bias current (Fig. 3.69). Suppose, for example, that
the length of the input transistor of a CS stage is quadrupled while the width remains constant. Then, since
ID = (1/2)µnCox (W/L)(VGS � VT H )2, the overdrive voltage is doubled, and the transistor consumes
the same amount of voltage headroom as does a cascode stage. That is, the circuits of Figs. 3.69(b) and
(c) impose equal voltage swing constraints.

ID ID
W
4L

ID
W
L
W
L

W
L

Vb2

(a) (b) (c)

Vin Vin VinM1 M1 M1

M2

Figure 3.69 Increasing output impedance by increasing the device length or cascoding.

Now consider the output impedance achieved in each case. Since

gmrO =
�

2µnCox
W

L
ID

1

�ID
(3.133)

and � � 1/L , quadrupling L only doubles the value of gmrO while cascoding results in an output
impedance of roughly gmr2

O . Note that the transconductance of M1 in Fig. 3.69(b) is half that in
Fig. 3.69(c), degrading the performance. In other words, for a given voltage headroom, the cascode
structure provides a higher output impedance.

A cascode structure need not operate as an amplifier. Another popular application of this topology is in
building constant current sources. The high output impedance yields a current source closer to the ideal,
but at the cost of voltage headroom. For example, current source I1 in Fig. 3.67 can be implemented as
a PMOS cascode (Fig. 3.70), exhibiting an impedance equal to [1 + (gm3 + gmb3)rO3]rO4 + rO3.

We calculate the voltage gain with the aid of the lemma illustrated in Fig. 3.32. Writing Gm � gm1,
we note that Rout is now equal to the parallel combination of the NMOS cascode output impedance and
the PMOS cascode output impedance:

Rout = {[1 + (gm2 + gmb2)rO2]rO1 + rO2}�{[1 + (gm3 + gmb3)rO3]rO4 + rO3} (3.134)
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M2

M1Vin

Vb1

Vout

VDD

Vb2

Vb3

M3

M4 Cascode
Current
Source

Figure 3.70 NMOS cascode amplifier
with PMOS cascode load.

The gain is given by |Av| � gm1 Rout . For typical values, we approximate the voltage gain as

|Av| � gm1[(gm2rO2rO1)�(gm3rO3rO4)] (3.135)

� Example 3.23

How much voltage swing can the cascode amplifier of Fig. 3.70 support at the output?

Solution

Recall from Fig. 3.61 that Vb1 can be chosen low enough to place M1 at the edge of saturation, Vb1 = VGS2 +
(VGS1 � VT H1), allowing a minimum value of (VGS2 � VT H2) + (VGS1 � VT H1) for Vout . Similarly, Vb2 can be
chosen high enough to bias M4 at the edge of saturation: Vb2 +|VGS3| = VDD �|VGS4 � VT H4|. This choice allows
a maximum value of VDD � |VGS4 � VT H4| � |VGS3 � VT H3| for Vout . Thus, the total allowable voltage swing at
the output is equal to

Vout,max � Vout,min = VDD � (VGS1 � VT H1) � (VGS2 � VT H2) � |VGS3 � VT H3| � |VGS4 � VT H4| (3.136)

We loosely say that the output swing is equal to VDD minus four overdrives or 4VD,sat . �

We should caution the reader that the dc value at the output of the cascode amplifier shown in Fig. 3.70
is poorly defined because two possibly unequal high-impedance current sources are placed in series.
(What happens if two unequal ideal current sources appear in series?) For this reason, the circuit must be
biased in a negative-feedback loop.

Poor Man’s Cascode A “minimalist” cascode current source omits the bias voltage necessary for the
cascode device. Shown in Fig. 3.71, this “poor man’s cascode” places M2 in the triode region because
VGS1 > VT H1 and VDS2 = VGS2 �VGS1 < VGS2 �VT H2. In fact, if M1 and M2 have identical dimensions,
it can be proved that the structure is equivalent to a single transistor having twice the length—not really
a cascode.

M2

M1

Figure 3.71 Poor man’s cascode.
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In modern CMOS technologies, however, transistors with different threshold voltages are available,
allowing M2 to operate in saturation if M1 has a lower threshold than M2. For example, if VT H2 �VT H1 =
150 mV and if VGS1 � VT H1 < 100 mV, then M2 is saturated and the circuit acts as a true cascode.

Shielding Property Recall from Fig. 3.30 that the high output impedance arises from the fact that if the
output-node voltage is changed by �V , the resulting change at the source of the cascode device is much
less. In a sense, the cascode transistor “shields” the input device from voltage variations at the output.
The shielding property of cascodes proves useful in many circuits.

� Example 3.24

Two identical NMOS transistors are used as constant current sources in a system [Fig. 3.72(a)]. However, due to the
internal circuitry of the system, VX is higher than VY by �V .

(a) Calculate the resulting difference between ID1 and ID2 if � 	= 0.
(b) Add cascode devices to M1 and M2 and repeat part (a).

Analog
System

M1

Vb

ID1 ID2

M2

Analog
System

M1

Vb1

ID1 ID2

M2

X Y

X Y
M3 M4

Vb2

P Q

(a) (b)
Figure 3.72

Solution

(a) We have

ID1 � ID2 =
1

2
µnCox

W

L
(Vb � VT H )2(�VDS1 � �VDS2) (3.137)

=
1

2
µnCox

W

L
(Vb � VT H )2(��V ) (3.138)

(b) As shown in Fig. 3.72(b), cascoding reduces the effect of VX and VY upon ID1 and ID2, respectively. As
depicted in Fig. 3.30 and implied by Eq. (3.69), a difference �V between VX and VY translates to a difference �VP Q

between P and Q equal to

�VP Q = �V
rO1

[1 + (gm3 + gmb3)rO3]rO1 + rO3
(3.139)

�
�V

(gm3 + gmb3)rO3
(3.140)

Thus,

ID1 � ID2 =
1

2
µnCox

W

L
(Vb � VT H )2 ��V

(gm3 + gmb3)rO3
(3.141)

In other words, cascoding reduces the mismatch between ID1 and ID2 by a factor of (gm3 + gmb3)rO3.
�
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Nanometer Design Notes

Let us implement a cascode stage
with (W/L)NM OS = 10 µm/40 nm,
(W/L)PM OS = 20 µm/40 nm, and I D =
0.3 mA. The figure plots the input-output
characteristic of the circuit, displaying
nonlinearity at the extremes of Vout .
How do we quantify this nonlinearity?
We can say that the output swing should
not cause, say, more than a 20% drop
in the small-signal voltage gain. Plotting
the derivative of the characteristic in the
figure, we observe that the allowable
single-ended peak-to-peak output swing
is about 0.5 V if the gain must remain
greater than 10. We also note that the
gain is fairly low, dictating longer PMOS
devices if a higher gain is necessary.
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The shielding property of cascodes diminishes if the cascode device enters
the triode region. To understand why, let us consider the circuit in Fig. 3.73,
assuming that VX decreases from a large positive value. As VX falls below
Vb2 � VT H2, M2 enters the triode region and requires a greater gate-source
overdrive so as to sustain the current drawn by M1. We can write

ID2 =
1

2
µnCox

�
W

L

�

2

[2(Vb2 � VP � VT H2)(VX � VP) � (VX � VP)2]

(3.142)
concluding that as VX decreases, VP also drops, so that ID2 remains constant.
In other words, variation of VX is less attenuated as it appears at P . If VX falls
sufficiently, VP goes below Vb1 � VT H1, driving M1 into the triode region.

M2

M1Vb1

Vb2 VX

P

Figure 3.73 Output swing of
cascode stage.

3.6.1 Folded Cascode

The idea behind the cascode structure is to convert the input voltage to a current
and apply the result to a common-gate stage. However, the input device and
the cascode device need not be of the same type. For example, as depicted
in Fig. 3.74(a), a PMOS-NMOS combination performs the same function. In
order to bias M1 and M2, a current source must be added as in Fig. 3.74(b).
Note that |ID1| + ID2 is equal to I1 and hence constant. The small-signal
operation is as follows. If Vin becomes more positive, |ID1| decreases, forcing
ID2 to increase and hence Vout to drop. The voltage gain and output impedance
of the circuit can be obtained as calculated for the NMOS-NMOS cascode of
Fig. 3.59. Shown in Fig. 3.74(c) is an NMOS-PMOS cascode. The advantages
and disadvantages of these types will be explained later.

RD

Vout

Vb

VDD

M2

M1Vin

gm1Vin

RD

Vout

Vb

VDD

M2

M1Vin

I1

(a) (b)

M1

RD

Vout

I1

VDD

Vin Vb

(c)

X

M2

Figure 3.74 (a) Simple folded cascode; (b) folded cascode with proper biasing; (c) folded cascode with NMOS
input.
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The structures of Figs. 3.74(b) and (c) are called “folded cascode” stages because the small-signal
current is “folded” up [in Fig. 3.74(b)] or down [in Fig. 3.74(c)]. We should mention as a point of contrast
that the bias current of M1 in Fig. 3.70 flows through M2, i.e., it is “reused,” whereas those of M1 and M2

in Fig. 3.74(b) add up to I1. Thus, the total bias current in this case must be higher than that in Fig. 3.70
to achieve a comparable performance.

It is instructive to examine the large-signal behavior of a folded-cascode stage. Suppose that in
Fig. 3.74(b), Vin decreases from VDD to zero. For Vin > VDD � |VT H1|, M1 is off and M2 carries
all of I1,5 yielding Vout = VDD � I1 RD . For Vin < VDD � |VT H1|, M1 turns on in saturation, giving

ID2 = I1 �
1

2
µpCox

�
W

L

�

1

(VDD � Vin � |VT H1|)2 (3.143)

As Vin drops, ID2 decreases further, falling to zero if ID1 = I1. This occurs at Vin = Vin1 if

1

2
µpCox

�
W

L

�

1

(VDD � Vin1 � |VT H1|)2 = I1 (3.144)

Thus,

Vin1 = VDD �

�
2I1

µpCox (W/L)1
� |VT H1| (3.145)

If Vin falls below this level, ID1 tends to be greater than I1, and M1 enters the triode region so as to ensure
ID1 = I1. The result is plotted in Fig. 3.75. The reader is encouraged to determine the input voltage at
which |ID1| = ID2.

Vin Vin

Vout
VDD

Vin1

VDD � RDI1

I1
ID2

VDD � �VTH1�

�ID1�

Vin1 VDD � �VTH1�

Figure 3.75 Large-signal characteristics of folded cascode.

What happens to VX in the above test? As ID2 drops, VX rises, reaching Vb � VT H2 for ID2 = 0. As
M1 enters the triode region, VX approaches VDD .

� Example 3.25

Calculate the output impedance of the folded cascode shown in Fig. 3.76(a), where M3 operates as the bias current
source.

Solution

Using the simplified model in Fig. 3.76(b) and Eq. (3.66), we have

Rout = [1 + (gm2 + gmb2)rO2](rO1�rO3) + rO2 (3.146)

5If I1 is excessively large, M2 may enter the deep triode region, possibly driving I1 into the triode region as well.
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M3

Vin

VDD

Vb3

M1

VbM2

Rout

rO1 rO3

VbM2

Rout

(a) (b)
Figure 3.76

Thus, the circuit exhibits an output impedance lower than that of a nonfolded (also called “telescopic”) cascode.
�

In order to achieve a high voltage gain, the load of a folded cascode can be implemented as a cascode
itself (Fig. 3.77). This structure is studied more extensively in Chapter 9.

Vin M1

VbM2

VDD

Vb2

Vb3

M4

M5

Vout

I1

Load

Figure 3.77 Folded cascode with
cascode load.

Throughout this chapter, we have attempted to increase the output resistance of voltage amplifiers so
as to obtain a high gain. This may seem to make the speed of the circuit quite susceptible to the load
capacitance. However, as explained in Chapter 8, a high output impedance per se does not pose a serious
issue if the amplifier is placed in a proper feedback loop.

3.7 Choice of Device Models

In this chapter, we have developed various expressions for the properties of single-stage amplifiers.
For example, the voltage gain of a degenerated common-source stage can be as simple as �RD/(RS+g�1

m )
or as complex as Eq. (3.77). How does one choose a sufficiently accurate device model or
expression?

The proper choice is not always straightforward, and making it is a skill gained through practice,
experience, and intuition. However, some general principles in choosing the model for each transistor
can be followed. First, break the circuit down into a number of familiar topologies. Next, concentrate
on each subcircuit and use the simplest transistor model (a single voltage-dependent current source for
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FETs operating in saturation) for all transistors. If the drain of a device is connected to a high impedance
(e.g., the drain of another), then add rO to its model. At this point, the basic properties of most circuits
can be determined by inspection. In a second, more accurate iteration, the body effect of devices whose
source or bulk is not at ac ground can be included as well.

For bias calculations, it is usually adequate to neglect channel-length modulation and body effect
in the first pass. These effects do introduce some error, but they can be included in the next iteration
step—after the basic properties are understood.

In today’s analog design, simulation of circuits is essential because the behavior of short-channel
MOSFETs cannot be predicted accurately by hand calculations. Nonetheless, if the designer avoids a
simple and intuitive analysis of the circuit and hence skips the task of gaining insight, then he/she cannot
interpret the simulation results intelligently. For this reason, we say, “Don’t let the computer think for
you.” Some say, “Don’t be a SPICE monkey.”

Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that
VDD = 3 V where necessary. All device dimensions are effective values and in microns.

3.1. For the circuit of Fig. 3.13, calculate the small-signal voltage gain if (W/L)1 = 50/0.5, (W/L)2 = 10/0.5,
and ID1 = ID2 = 0.5 mA. What is the gain if M2 is implemented as a diode-connected PMOS device
(Fig. 3.16)?

3.2. In the circuit of Fig. 3.18, assume that (W/L)1 = 50/0.5, (W/L)2 = 50/2, and ID1 = ID2 = 0.5 mA when
both devices are in saturation. Recall that � � 1/L .
(a) Calculate the small-signal voltage gain.
(b) Calculate the maximum output voltage swing while both devices are saturated.

3.3. In the circuit of Fig. 3.4(a), assume that (W/L)1 = 50/0.5, RD = 2 k�, and � = 0.
(a) What is the small-signal gain if M1 is in saturation and ID = 1 mA?
(b) What input voltage places M1 at the edge of the triode region? What is the small-signal gain under this

condition?
(c) What input voltage drives M1 into the triode region by 50 mV? What is the small-signal gain under this

condition?

3.4. Suppose the common-source stage of Fig. 3.4(a) is to provide an output swing from 1 V to 2.5 V. Assume that
(W/L)1 = 50/0.5, RD = 2 k�, and � = 0.
(a) Calculate the input voltages that yield Vout = 1 V and Vout = 2.5 V.
(b) Calculate the drain current and the transconductance of M1 for both cases.
(c) How much does the small-signal gain, gm RD , vary as the output goes from 1 V to 2.5 V? (Variation of

small-signal gain can be viewed as nonlinearity.)

3.5. Calculate the intrinsic gain of an NMOS device and a PMOS device operating in saturation with W/L = 50/0.5
and |ID | = 0.5 mA. Repeat these calculations if W/L = 100/1.

3.6. Assuming a constant L , plot the intrinsic gain of a satuated device versus the gate-source voltage if (a) the
drain current is constant, (b) W is constant.

3.7. Assuming a constant L , plot the intrinsic gain of a saturated device versus W/L if (a) the gate-source voltage
is constant, (b) the drain current is constant.

3.8. An NMOS transistor with W/L = 50/0.5 is biased with VG = +1.2 V and VS = 0. The drain voltage is
varied from 0 to 3 V.
(a) Assuming the bulk voltage is zero, plot the intrinsic gain versus VDS .
(b) Repeat part (a) for a bulk voltage of �1 V.

3.9. For an NMOS device operating in saturation, plot gm , rO , and gmrO as the bulk voltage goes from 0 to ��
while other terminal voltages remain constant.
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3.10. Consider the circuit of Fig. 3.13 with (W/L)1 = 50/0.5 and (W/L)2 = 10/0.5. Assume that � = � = 0.
(a) At what input voltage is M1 at the edge of the triode region? What is the small-signal gain under this

condition?
(b) What input voltage drives M1 into the triode region by 50 mV? What is the small-signal gain under this

condition?

3.11. Repeat Problem 3.10 if body effect is not neglected.

3.12. In the circuit of Fig. 3.17, (W/L)1 = 20/0.5, I1 = 1 mA, and IS = 0.75 mA. Assuming � = 0, calculate
(W/L)2 such that M1 is at the edge of the triode region. What is the small-signal voltage gain under this
condition?

3.13. Plot the small-signal gain of the circuit shown in Fig. 3.17 as IS goes from 0 to 0.75I1. Assume that M1 is
always saturated, and neglect channel-length modulation and body effect.

3.14. The circuit of Fig. 3.18 is designed to provide an output voltage swing of 2.2 V with a bias current of 1 mA
and a small-signal voltage gain of 100. Calculate the dimensions of M1 and M2.

3.15. Sketch Vout versus Vin for the circuits of Fig. 3.78 as Vin varies from 0 to VDD . Identify important transition
points.

(c)(a) (b)

(d) (e)

M1
Vb

Vout

Vin

RD

RF M1Vin

RD

VDDVDD

Vout

RF

M1

RD

VDD

Vout

Vin

RS

M1

RD

VDD

Vout

Vin

RS

M1

VDD

Vin

RS

RF
Vout

Figure 3.78

3.16. Sketch Vout versus Vin for the circuits of Fig. 3.79 as Vin varies from 0 to VDD . Identify important transition
points.

3.17. Sketch Vout versus Vin for the circuits of Fig. 3.80 as Vin varies from 0 to VDD . Identify important transition
points.

3.18. Sketch IX versus VX for the circuits of Fig. 3.81 as VX varies from 0 to VDD . Identify important transition
points.

3.19. Sketch IX versus VX for the circuits of Fig. 3.82 as VX varies from 0 to VDD . Identify important transition
points.
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Figure 3.79
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Figure 3.82

3.20. Assuming all MOSFETs are in saturation, calculate the small-signal voltage gain of each circuit in Fig. 3.83
(� 	= 0, � = 0).

3.21. Assuming all MOSFETs are in saturation, calculate the small-signal voltage gain of each circuit in Fig. 3.84
(� 	= 0, � = 0).

3.22. Sketch VX and VY as a function of time for each circuit in Fig. 3.85. The initial voltage across C1 is equal
to VDD .

3.23. In the cascode stage of Fig. 3.59, assume that (W/L)1 = 50/0.5, (W/L)2 = 10/0.5, ID1 = ID2 = 0.5 mA,
and RD = 1 k�.
(a) Choose Vb such that M1 is 50 mV away from the triode region.
(b) Calculate the small-signal voltage gain.
(c) Using the value of Vb found in part (a), calculate the maximum output voltage swing. Which device enters

the triode region first as Vout falls?
(d) Calculate the swing at node X for the maximum output swing obtained above.
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(c)(a) (b)
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Figure 3.85

3.24. Consider the circuit of Fig. 3.23 with (W/L)1 = 50/0.5, RD = 2 k�, and RS = 200 �.
(a) Calculate the small-signal voltage gain if ID = 0.5 mA.
(b) Assuming � = � = 0, calculate the input voltage that places M1 at the edge of the triode region. What is

the gain under this condition?

3.25. Suppose the circuit of Fig. 3.22 is designed for a voltage gain of 5. If (W/L)1 = 20/0.5, ID1 = 0.5 mA, and
Vb = 0 V:
(a) Calculate the aspect ratio of M2.
(b) What input level places M1 at the edge of the triode region? What is the small-signal gain under this

condition?
(c) What input level places M2 at the edge of the saturation region? What is the small-signal gain under this

condition?

3.26. Sketch the small-signal voltage gain of the circuit shown in Fig. 3.22 as Vb varies from 0 to VDD . Consider
two cases:
(a) M1 enters the triode region before M2 is saturated;
(b) M1 enters the triode region after M2 is saturated.

3.27. A source follower can operate as a level shifter. Suppose the circuit of Fig. 3.37(b) is designed to shift the
voltage level by 1 V, i.e., Vin � Vout = 1 V.
(a) Calculate the dimensions of M1 and M2 if ID1 = ID2 = 0.5 mA, VGS2 � VGS1 = 0.5 V, and � = � = 0.
(b) Repeat part (a) if � = 0.45 V�1 and Vin = 2.5 V. What is the minimum input voltage for which M2

remains saturated?

3.28. Sketch the small-signal gain, Vout/Vin , of the cascode stage shown in Fig. 3.59 as Vb goes from 0 to VDD .
Assume that � = � = 0.

3.29. The cascode of Fig. 3.70 is designed to provide an output swing of 1.9 V with a bias current of 0.5 mA. If
� = 0 and (W/L)1�4 = W/L , calculate Vb1, Vb2, and W/L . What is the voltage gain if L = 0.5 µm?

3.30. Consider the gate-source voltage of M1 in Fig. 3.23(a): VGS = Vin � ID RS . Determine �VGS in response
to a change in Vin and show that it decreases as gm RS increases. How does this trend show that the circuit
becomes more linear?

3.31. Prove that the voltage gain from VDD to Vout in Fig. 3.21 is given by

Vout

Vin
=

gm2rO2 + 1

rO2 + rO1
rO1 (3.147)

3.32. In the circuit shown in Fig. 3.86, prove that

Vout1

Vout2
=

�RD

RS
(3.148)

where Vout1 and Vout2 are small-signal quantities and �, � > 0.
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RD

Vout1

Vin M1

RD

Vout2

VDD

Figure 3.86

3.33. The CG stage of Fig. 3.51(a) is designed such that its input resistance (seen at node X ) matches the signal
source resistance, RS . If �, � > 0, prove that

Vout

Vin
=

1 + (gm + gmb)rO

2 +
�

1 +
rO

RD

� (3.149)

Also, prove that

Vout

Vin
=

RD

2RS
(3.150)

3.34. Calculate the voltage gain of a source follower using the lemma Av = �Gm Rout . Assume that the circuit
drives a load resistance of RL and �, � > 0.

3.35. Calculate the voltage gain of a common-gate stage using the lemma Av = �Gm Rout . Assume a source
resistance of RS and �, � > 0.

3.36. How many amplifier topologies can you create using each of the structures shown in Fig. 3.87 and no other
transistors? (The source and drain terminals can be swapped.)

M2

M1 M1

(a) (b)

M2

Figure 3.87



Razavi-3930640 book December 17, 201516:27 100

CHAPTER

4
Differential Amplifiers

The differential amplifier is among the most important circuit inventions, dating back to the vacuum tube
era. Offering many useful properties, differential operation has become the de facto choice in today’s
high-performance analog and mixed-signal circuits.

This chapter deals with the analysis and design of CMOS differential amplifiers. Following a review
of single-ended and differential operation, we describe the basic differential pair and analyze both the
large-signal and the small-signal behavior. Next, we introduce the concept of common-mode rejection
and formulate it for differential amplifiers. We then study differential pairs with diode-connected and
current-source loads as well as differential cascode stages. Finally, we describe the Gilbert cell.

4.1 Single-Ended and Differential Operation

A “single-ended” signal is defined as one that is measured with respect to a fixed potential, usually the
ground [Fig. 4.1(a)]. A differential signal is defined as one that is measured between two nodes that
have equal and opposite signal excursions around a fixed potential [Fig. 4.1(b)]. In the strict sense, the
two nodes must also exhibit equal impedances to that potential. The “center” potential in differential
signaling is called the “common-mode” (CM) level. It is helpful to view the CM level as the bias value
of the voltages, i.e., the value in the absence of signals.

The specification of signal swings in a differential system can be confusing. Suppose each single-
ended output in Fig. 4.1(b) has a peak amplitude of V0. Then, the single-ended peak-to-peak swing is
2V0 and the differential peak-to-peak swing is 4V0. For example, if the voltage at X (with respect to
ground) is V0 cos �t + VC M and that at Y is �V0 cos �t + VC M , then the peak-to-peak swing of VX � VY

(=2V0 cos �t) is 4V0. It is therefore not surprising that a circuit with a supply voltage of 1 V can deliver
a peak-to-peak differential swing of 1.6 V.

An important advantage of differential operation over single-ended signaling is higher immunity to
“environmental” noise. Consider the example depicted in Fig. 4.2, where two adjacent lines in a circuit
carry a small, sensitive signal and a large clock waveform. Due to capacitive coupling between the lines,
transitions on line L2 corrupt the signal on line L1. Now suppose, as shown in Fig. 4.2(b), the sensitive
signal is distributed as two equal and opposite phases. If the clock line is placed midway between the two,
the transitions disturb the differential phases by equal amounts, leaving the difference intact. Since the
common-mode level of the two phases is disturbed, but the differential output is not corrupted, we say
that this arrangement “rejects” common-mode noise.1

1It is also possible to place a “shield” line between the sensitive line and the clock line (Chapter 19).

100
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ZS ZS ZS

Vin Vin1 Vin2
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t t

(a) (b)

CM
Level

X Y

V0

Figure 4.1 (a) Single-ended and (b) differential signals.

M1
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L1
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M1

VX

M2

V

CK
L1

L2

L3
Y

(a) (b)

Clock Line
L2

Line�to�Line
Capacitance

Figure 4.2 (a) Corruption of a signal due to coupling; (b) reduction of coupling by differential operation.

Another example of common-mode rejection occurs with noisy supply voltages. In the CS stage of
Fig. 4.3(a), if VDD varies by �V , then Vout changes by approximately the same amount, i.e., the output is
quite susceptible to noise on VDD . Now consider the circuit in Fig. 4.3(b). Here, if the circuit is symmetric,
noise on VDD affects VX and VY , but not VX � VY = Vout . Thus, the circuit of Fig. 4.3(b) is much more
robust in dealing with supply noise.

M1

RD

Vout

VDD

M1 M2

RD RD

VX VY

VDD

(a) (b)

X Y

Figure 4.3 Effect of supply noise on (a) a single-ended circuit and (b) a differential circuit.

Thus far, we have seen the importance of employing differential paths for sensitive signals (“victims”).
It is also beneficial to employ differential distribution for noisy lines (“aggressors”). For example, suppose
the clock signal of Fig. 4.2 is distributed in differential form on two lines (Fig. 4.4). Then, with perfect
symmetry, the components coupled from C K and C K to the signal line cancel each other.
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M1

VX

CK
L2

L1

L3
CK

Figure 4.4 Reduction of coupled noise by differential operation.

� Example 4.1

If differential victims or differential aggressors improve the overall noise immunity, can we choose differential phases
for both victims and aggressors?

Solution

Yes, we can. Let us consider the arrangement shown in Fig. 4.5(a), where the differential victims are surrounded by
the differential aggressors. Unfortunately, in this case, V +

out � V �
out is corrupted because V +

out and V �
out experience

opposite jumps.

(a) (b)

CK

CK

CK

CK

Vout

Vout

Vout

Vout

Figure 4.5

Now, suppose we modify the routing as depicted in Fig. 4.5(b), where V +
out (V �

out ) is adjacent to C K (C K ) for half
of the distance and to C K (C K ) for the other half. In this case, the couplings from C K and C K cancel each other.
Interestingly, V +

out and V �
out are free from the coupling—and so is their difference. This geometry is an example of

“twisted pairs.”
�

Another useful property of differential signaling is the increase in maximum achievable voltage swings.
In the circuit of Fig. 4.3, for example, the maximum output swing at X or Y is equal to VDD �(VGS �VT H ),
whereas for VX � VY , the peak-to-peak swing is equal to 2[VDD � (VGS � VT H )]. Other advantages of
differential circuits over their single-ended counterparts include simpler biasing and higher linearity
(Chapter 14).

While differential circuits may occupy about twice as much area as single-ended alternatives, in
practice this is a minor drawback. The numerous advantages of differential operation by far outweigh the
possible increase in the area.
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4.2 Basic Differential Pair

How do we amplify a differential signal? As suggested by the observations in the previous section, we
may incorporate two identical single-ended signal paths to process the two phases [Fig. 4.6(a)]. Here,
two differential inputs, Vin1 and Vin2, having a certain CM level, Vin,C M , are applied to the gates. The
outputs are also differential and swing around the output CM level, Vout,C M . Such a circuit indeed offers
some of the advantages of differential signaling: high rejection of supply noise, higher output swings, etc.
But what happens if Vin1 and Vin2 experience a large common-mode disturbance or simply do not have a
well-defined common-mode dc level? As the input CM level, Vin,C M , changes, so do the bias currents of
M1 and M2, thus varying both the transconductance of the devices and the output CM level. The variation
of the transconductance, in turn, leads to a change in the small-signal gain, while the departure of the
output CM level from its ideal value lowers the maximum allowable output swings. For example, as
shown in Fig. 4.6(b), if the input CM level is excessively low, the minimum values of Vin1 and Vin2 may
in fact turn off M1 and M2, leading to severe clipping at the output. Thus, it is important that the bias
currents of the devices have minimal dependence on the input CM level.

M1 M2

X Y

VDD

RD

Vin1 Vin2

tt

Vin1

Vin2

RD

Vout2Vout1

Vout1

Vout2

tt

Vin1

Vin2

Vout1

Vout2

(a)

(b)

Vin,CM

Vin,CM

Vout,CM

Vout,CM

M2 turns o� M1 turns o�

VDD

VDD

Figure 4.6 (a) Simple differential circuit; (b) illustration of sensitivity to the input common-mode level.

VDD

M1 M2

RD1 RD2

X Y

Vin1

Vout1

Vin2

Vout2

ISS
RD1 = RD2 = RD

Figure 4.7 Basic differential pair.

A simple modification can resolve the above issue. Shown in Fig. 4.7, the “differential pair”2 employs
a current source ISS to make ID1 + ID2 independent of Vin,C M . Thus, if Vin1 = Vin2, the bias current of

2Also called a “source-coupled” pair or (in the British literature) a “long-tailed” pair.
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each transistor equals ISS/2 and the output common-mode level is VDD � RD ISS/2. It is instructive to
study the large-signal behavior of the circuit for both differential and common-mode input variations. In
the large-signal study, we neglect channel-length modulation and body effect.

4.2.1 Qualitative Analysis

Let us assume that in Fig. 4.7, Vin1 � Vin2 varies from �� to +�. If Vin1 is much more negative than
Vin2, M1 is off, M2 is on, and ID2 = ISS . Thus, Vout1 = VDD and Vout2 = VDD � RD ISS . As Vin1 is
brought closer to Vin2, M1 gradually turns on, drawing a fraction of ISS from RD1 and hence lowering
Vout1. Since ID1 + ID2 = ISS , the drain current of M2 falls and Vout2 rises. As shown in Fig. 4.8(a), for
Vin1 = Vin2, we have Vout1 = Vout2 = VDD � RD ISS/2, which is the output CM level. As Vin1 becomes
more positive than Vin2, M1 carries a greater current than does M2 and Vout1 drops below Vout2. For
sufficiently large Vin1 � Vin2, M1 “hogs” all of ISS , turning M2 off. As a result, Vout1 = VDD � RD ISS

and Vout2 = VDD . Figure 4.8 also plots Vout1 � Vout2 versus Vin1 � Vin2. Note that the circuit contains
three differential quantities: Vin1 � Vin2, Vout1 � Vout2, and ID1 � ID2.

Vin1 � Vin2

Vin1 � Vin2

Vout1

Vout2

Vout1 � Vout2

VDD

VDD � RD ISS

�RD ISS

RD ISS

+RD ISS

(a) (b)

2
VDD �Vout,CM

Figure 4.8 Differential input-output characteristics of a differential pair.

The foregoing analysis reveals two important attributes of the differential pair. First, the maximum and
minimum levels at the output are well-defined (VDD and VDD � RD ISS , respectively) and independent
of the input CM level. Second, as proved later, the small-signal gain (the slope of Vout1 � Vout2 versus
Vin1 � Vin2) is maximum for Vin1 = Vin2, gradually falling to zero as |Vin1 � Vin2| increases. In other
words, the circuit becomes more nonlinear as the input voltage swing increases. For Vin1 = Vin2, we say
that the circuit is in “equilibrium.”

Now let us consider the common-mode behavior of the circuit. As mentioned earlier, the role of
the tail current source is to suppress the effect of input CM level variations on the operation of M1

and M2 and the output level. Does this mean that Vin,C M can assume arbitrarily low or high values?
To answer this question, we set Vin1 = Vin2 = Vin,C M and vary Vin,C M from 0 to VDD . Figure 4.9(a)
shows the circuit with ISS implemented by an NFET. Note that the symmetry of the pair requires that
Vout1 = Vout2.

What happens if Vin,C M = 0? Since the gate potential of M1 and M2 is not more positive than their
source potential, both devices are off, yielding ID3 = 0. This indicates that M3 operates in the deep triode
region because Vb is high enough to create an inversion layer in the transistor. With ID1 = ID2 = 0, the
circuit is incapable of signal amplification, Vout1 = Vout2 = VDD , and VP = 0.

Now suppose Vin,C M becomes more positive. Modeling M3 by a resistor as in Fig. 4.9(b), we note that
M1 and M2 turn on if Vin,C M � VT H . Beyond this point, ID1 and ID2 continue to increase, and VP also
rises [Fig. 4.9(c)]. In a sense, M1 and M2 constitute a source follower, forcing VP to track Vin,C M . For
a sufficiently high Vin,C M , the drain-source voltage of M3 exceeds VGS3 � VT H3, allowing the device to
operate in saturation. The total current through M1 and M2 then remains constant. We conclude that for
proper operation, Vin,C M � VGS1 + (VGS3 � VT H3).
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Figure 4.9 (a) Differential pair sensing an input common-mode change; (b) equivalent circuit if M3 operates in
the deep triode region; (c) common-mode input-output characteristics.

What happens if Vin,C M rises further? Since Vout1 and Vout2 are relatively constant, we expect that M1

and M2 enter the triode region if Vin,C M > Vout1 + VT H = VDD � RD ISS/2 + VT H . This sets an upper
limit on the input CM level. In summary, the allowable value of Vin,C M is bounded as follows:

VGS1 + (VGS3 � VT H3) � Vin,C M � min

�
VDD � RD

ISS

2
+ VT H , VDD

�
(4.1)

Beyond the upper bound, the CM characteristics of Fig. 4.9(c) do not change, but the differential gain
drops.3

� Example 4.2

Sketch the small-signal differential gain of a differential pair as a function of the input CM level.

V2V1 Vin,CMVTH

Av

Figure 4.10

Solution

As shown in Fig. 4.10, the gain begins to increase as Vin,C M exceeds VT H . After the tail current source enters
saturation (Vin,C M = V1), the gain remains relatively constant. Finally, if Vin,C M is so high that the input transistors
enter the triode region (Vin,C M = V2), the gain begins to fall.

�

3This bound assumes small differential swings at the input and the output. This point become clear later.
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With our understanding of differential and common-mode behavior of the differential pair, we can
now answer another important question: How large can the output voltage swings of a differential pair
be? Suppose the circuit is biased with input and output bias levels Vin,C M and Vout,C M , respectively, and
Vin,C M < Vout,C M . Also, assume that the voltage gain is high, that is, the input swing is much less than
the output swing. As illustrated in Fig. 4.11, for M1 and M2 to be saturated, each output can go as high
as VDD but as low as approximately Vin,C M � VT H . In other words, the higher the input CM level, the
smaller the allowable output swings. For this reason, it is desirable to choose a relatively low Vin,C M ,
but, of course, no less than VGS1 + (VGS3 � VT H3). Such a choice affords a single-ended peak-to-peak
output swing of VDD � (VGS1 � VT H1) � (VGS3 � VT H3) (why?). The reader is encouraged to repeat this
analysis if the voltage gain is around unity.

VDD

X Y

Vin1
Vin1

VTH1

VY

t

Vin2 Vin2

Vin,CM

Vout,CM

VXRDRD

Vb

M1 M2

M3

t

Figure 4.11 Maximum allowable output swings in a differential pair.

� Example 4.3

Compare the maximum output voltage swings provided by a CS stage and a differential pair.

Nanometer Design Notes

Owing to both severe channel-length
modulation and limited supply voltages,
the voltage gain of nanometer differ-
ential pairs hardly exceeds 5. In this
case, the peak input swing also limits
the output swing. As shown below,
for a peak input amplitude of V0, the
minimum allowable output is equal to
Vi n,CM + V0 � VT H . This issue arises in
any circuit that has a negative gain.

t t

VTH

V0

Input 
Waveforms

Waveforms
Output

Vin,CM

Solution

Recall from Chapter 3 that a CS stage (with resistive load) allows an output swing
of VDD minus one overdrive (VDD � VD,sat ). As seen above, with proper choice
of the input CM level, a differential pair provides a maximum output swing of VDD

minus two overdrives (single-ended) or 2VDD minus four overdrives (differential)
(2VDD � 4VD,sat ), which is typically quite a lot larger than VDD � VD,sat . �

4.2.2 Quantitative Analysis

In this section, we quantify both large-signal and small-signal characteristics
of MOS differential pairs. We begin with large-signal analysis to arrive at
expressions for the plots shown in Fig. 4.8.

Large-Signal Behavior Consider the differential pair shown in Fig. 4.12.
Our objective is to determine Vout1 � Vout2 as a function of Vin1 � Vin2. We
have Vout1 = VDD � RD1 ID1 and Vout2 = VDD � RD2 ID2, that is, Vout1 �
Vout2 = RD2 ID2 � RD1 ID1 = RD(ID2 � ID1) if RD1 = RD2 = RD . Thus, we
simply calculate ID1 and ID2 in terms of Vin1 and Vin2, assuming the circuit
is symmetric, M1 and M2 are saturated, and � = 0. Since the voltage at node
P is equal to Vin1 � VGS1 and Vin2 � VGS2,

Vin1 � Vin2 = VGS1 � VGS2 (4.2)
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VDD

RD1 RD2

Vout1 Vout2

Vin2

ISS

P

Vin1 M1 M2

Figure 4.12 Differential pair.

For a square-law device, we have

(VGS � VT H )2 =
ID

1

2
µnCox

W

L

(4.3)

and, therefore,

VGS =
����

2ID

µnCox
W

L

+ VT H (4.4)

It follows from (4.2) and (4.4) that

Vin1 � Vin2 =
����

2ID1

µnCox
W

L

�
����

2ID2

µnCox
W

L

(4.5)

We wish to calculate the differential output current, ID1 � ID2. Squaring the two sides of (4.5) and
recognizing that ID1 + ID2 = ISS , we obtain

(Vin1 � Vin2)2 =
2

µnCox
W

L

(ISS � 2
�

ID1 ID2) (4.6)

That is,
1

2
µnCox

W

L
(Vin1 � Vin2)2 � ISS = �2

�
ID1 ID2 (4.7)

Squaring the two sides again and noting that 4ID1 ID2 = (ID1+ ID2)2�(ID1� ID2)2 = I 2
SS �(ID1� ID2)2,

we arrive at

(ID1 � ID2)2 = �
1

4

�
µnCox

W

L

	2

(Vin1 � Vin2)4 + ISSµnCox
W

L
(Vin1 � Vin2)2 (4.8)

Thus,

ID1 � ID2 =
1

2
µnCox

W

L
(Vin1 � Vin2)

����
4ISS

µnCox
W

L

� (Vin1 � Vin2)2 (4.9)

=



µnCox
W

L
ISS(Vin1 � Vin2)

�

1 �
µnCox (W/L)

4ISS
(Vin1 � Vin2)2 (4.10)

We can say that M1, M2, and the tail operate as a voltage-dependent current source producing ID1 � ID2

according to the above large-signal characteristics. As expected, ID1� ID2 is an odd function of Vin1�Vin2,
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falling to zero for Vin1 = Vin2. As |Vin1 � Vin2| increases from zero, |ID1 � ID2| increases because the
factor preceding the square root rises more rapidly than the argument in the square root drops.4

Before examining (4.9) further, it is instructive to calculate the slope of the characteristic, i.e., the
equivalent Gm of M1 and M2. Denoting the differential quantities ID1 � ID2 and Vin1 � Vin2 by �ID and
�Vin , respectively, the reader can show that

��ID

��Vin
=

1

2
µnCox

W

L

4ISS

µnCox W/L
� 2�V 2

in



4ISS

µnCox W/L
� �V 2

in

(4.11)

For �Vin = 0, Gm is maximum (why?) and equal to
�

µnCox (W/L)ISS . Moreover, since Vout1 �Vout2 =
RD�I = �RDGm�Vin , we can write the small-signal differential voltage gain of the circuit in the
equilibrium condition as

|Av| =



µnCox
W

L
ISS RD (4.12)

Since each transistor carries a bias current of ISS/2 in this condition, the factor
�

µmCox (W/L)ISS is in
fact the same as the transconductance of each device, that is, |Av| = gm RD . Equation (4.11) also suggests
that Gm falls to zero for �Vin =

�
2ISS/(µnCox W/L). As we will see below, this value of �Vin plays

an important role in the operation of the circuit.
Let us now examine Eq. (4.9) more closely. If (Vin1 � Vin2)2 � 4ISS/[µnCox (W/L)], then

ID1 � ID2 =



µnCox
W

L
ISS(Vin1 � Vin2) (4.13)

which yields the same equilibrium Gm as that obtained above.
But what happens for larger values of |Vin1 � Vin2|? It appears that the argument in the square root

drops to zero for �Vin =
�

4ISS/(µnCox W/L) and �ID crosses zero at two different values of �Vin ,
an effect not predicted by our qualitative analysis in Fig. 4.8. This conclusion, however, is incorrect. To
understand why, recall that (4.9) was derived with the assumption that both M1 and M2 are on. In reality,
as �Vin exceeds a limit, one transistor carries the entire ISS , turning off the other.5 Denoting this value
by �Vin1, we have ID1 = ISS and �Vin1 = VGS1 � VT H because M2 is nearly off. It follows that

�Vin1 =
����

2ISS

µnCox
W

L

(4.14)

For �Vin > �Vin1, M2 is off and (4.9) and (4.10) do not hold. As mentioned above, Gm falls to zero for
�Vin = �Vin1. Figure 4.13 plots the behavior.

� Example 4.4

Plot the output currents of a differential pair versus �Vin as the device width and the tail current vary.

Solution

Consider the characteristic shown in Fig. 4.14(a). As W/L increases, �Vin1 decreases, narrowing the input range
across which both devices are on [Fig. 4.14(b)]. As ISS increases, both the input range and the output current swing
increase [Fig. 4.14(c)]. Intuitively, we expect the circuit to become more linear as ISS increases or W/L decreases.

�

4It is interesting to note that, even though ID1 and ID2 are square functions of their respective gate-source voltages, ID1 � ID2

is an odd function of Vin1 � Vin2. This effect is studied in Chapter 14.
5We neglect subthreshold conduction here.
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(a) (b)

ID1
GmID2

��Vin1 ��Vin1+�Vin1 +�Vin1�Vin �Vin

Figure 4.13 Variation of drain currents and overall transconductance of a differential pair versus input voltage.

(c)(a) (b)

��Vin1 ��Vin1 ��Vin1

+�Vin1 �Vin+�Vin1 +�Vin1 �Vin�Vin

ID1 � ID2 ID1 � ID2 ID1 � ID2

+ISS + ISS

+ISS2

�ISS �ISS
�ISS2

Figure 4.14

Nanometer Design Notes

Nanometer differential pairs exhibit a
similar relation between the equilibrium
overdrive and the differential voltage
necessary to turn one side off. Plotted
below are the output currents of a
differential pair with W/L = 5 µm/40 nm
and ISS = 0.25 mA using actual models
(black curve) and a square-law model
(gray curve). If we define cut-off as
when one transistor carries 90% of the
tail current, then the nanometer design
also displays approximately a factor of�

2 between the equilibrium and cut-off
voltages.

�0.2 �0.1 0 0.1 0.2
0

50

100

150

200

250

Vin (V)

I D
 (�

A
)

The value of �Vin1 given by (4.14) in essence represents the maximum
differential input that the circuit can “handle.” It is possible to relate �Vin1

to the overdrive voltage of M1 and M2 in equilibrium. For a zero differential
input, ID1 = ID2 = ISS/2, yielding

(VGS � VT H )1,2 =
����

ISS

µnCox
W

L

(4.15)

Thus, �Vin1 is equal to
�

2 times the equilibrium overdrive. The point is
that increasing �Vin1 to make the circuit more linear inevitably increases the
overdrive voltage of M1 and M2. For a given ISS , this is accomplished only
by reducing W/L and hence the transconductance of the transistors, trading
small-signal gain for linearity. Alternatively, we can increase ISS , but at the
cost of power. (What happens to the gain if ISS is increased but ISS RD is kept
constant due to headroom constraints?)

� Example 4.5

Due to a manufacturing defect, the differential signals applied to a differential pair
have unequal dc levels (Fig. 4.15). If the peak swing, V0, is small and the imbalance,
VO S , happens to be equal to �Vin1/2 = (1/2)

�
2ISS/(µnCox W/L), sketch the output

voltage waveforms and determine the small-signal voltage gain.
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t

7

(c)(a) (b)

4

VDD

RD RD

VOS

Gm

Gm1

Gm1 RDV0

ISS RD

YX

ISS

�Vin

Vin1

Vin1

Vin2

VOS

V0

Vin2

t

M1 M2

VY

VX

Figure 4.15

Solution

Let us first study the circuit with only dc inputs that differ by VO S . The differential pair senses an imbalance of
Vin1 � Vin2 = VO S and, from Eq. (4.10), generates

ID1 � ID2 =
�

7

4
ISS (4.16)

That is, ID1 � 0.83ISS , ID2 � 0.17ISS and VX � VY = �(
�

7/4)ISS RD .
Now, we recognize from Fig. 4.15(b) that the input dc imbalance biases the transistors away from the highest

transconductance, yielding from Eq. (4.11)

Gm1 =
3

�
14



µnCox

W

L
ISS (4.17)

This value is about 20% less than that at equilibrium. The output waveforms are shown in Fig. 4.15(c).
�

Small-Signal Analysis We now study the small-signal behavior of differential pairs. As depicted in
Fig. 4.16, we apply small signals Vin1 and Vin2 and assume that M1 and M2 are saturated. What is the
differential voltage gain, (Vout1 � Vout2)/(Vin1 � Vin2)? Recall from Eq. (4.12) that this quantity equals�

µnCox ISS W/L RD . Since in the vicinity of equilibrium, each transistor carries approximately ISS/2,
this expression reduces to gm RD , where gm denotes the transconductance of M1 and M2. To arrive at the
same result by small-signal analysis, we employ two different methods, each providing insight into the
circuit’s operation. We assume that RD1 = RD2 = RD .

VDD

Vout1 Vout2

Vin2Vin1

RD1 RD2

M1

X Y

M2

ISS
Figure 4.16 Differential pair with
small-signal inputs.

Method I The circuit of Fig. 4.16 is driven by two independent signals. Thus, the output can be
computed by superposition. (The voltages in this section are small-signal quantities.)
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(c)(a) (b)

VDD

VDD VDD

Vin1

Vout1 Vout2

Vout1 Vout2 Vin1

Vin1ISS

RD1

RD1 RD2

RS

RD1

VX

X Y

Y
X X

RD2

M1 M2

RS

M1
M1

M2

Figure 4.17 (a) Differential pair sensing one input signal; (b) circuit of (a) viewed as a CS stage degenerated by
M2; (c) equivalent circuit of (b).

Let us set Vin2 to zero and find the effect of Vin1 at X and Y [Fig. 4.17(a)]. To obtain VX , we note that
M1 forms a common-source stage with a degeneration resistance equal to the impedance seen looking
into the source of M2 [Fig. 4.17(b)]. Neglecting channel-length modulation and body effect, we have
RS = 1/gm2 [Fig. 4.17(c)] and

VX

Vin1
=

�RD

1

gm1
+

1

gm2

(4.18)

To calculate VY , we note that M1 drives M2 as a source follower and replace Vin1 and M1 by a Thevenin
equivalent (Fig. 4.18): the Thevenin voltage VT = Vin1 and the resistance RT = 1/gm1. Here, M2 operates
as a common-gate stage, exhibiting a gain equal to

VY

Vin1
=

RD

1

gm2
+

1

gm1

(4.19)

It follows from (4.18) and (4.19) that the overall voltage gain for Vin1 is

(VX � VY )|Due to V in1 =
�2RD

1

gm1
+

1

gm2

Vin1 (4.20)

(a) (b)

VDD VDD

Vout2 Vout2

Vin1

RD1 RD2 RD2

M1 M2 M2RT

VT

Y Y

Figure 4.18 Replacing M1 by a Thevenin equivalent.
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which, for gm1 = gm2 = gm , reduces to

(VX � VY )|Due to V in1 = �gm RD Vin1 (4.21)

By virtue of symmetry, the effect of Vin2 at X and Y is identical to that of Vin1 except for a change in
the polarities:

(VX � VY )|Due to V in2 = gm RD Vin2 (4.22)

Adding the two sides of (4.21) and (4.22) to perform superposition, we have

(VX � VY )tot

Vin1 � Vin2
= �gm RD (4.23)

Comparison of (4.21), (4.22), and (4.23) indicates that the magnitude of the differential gain is equal
to gm RD regardless of how the inputs are applied: in Figs. 4.17 and 4.18, the input is applied to only one
side, whereas in Fig. 4.16 the input is the difference between two sources. It is also important to recognize
that if the output is single-ended, i.e., it is sensed between X or Y and ground, the gain is halved.

� Example 4.6

Due to a manufacturing error, in the circuit of Fig. 4.19, M2 is twice as wide as M1. Calculate the small-signal gain
if the dc levels of Vin1 and Vin2 are equal.

VDD

Vout2

Vin1 Vin2

Vout1

2W
L

W
L

RD RD

M1 M2

ISS

Figure 4.19

Solution

If the gates of M1 and M2 are at the same dc potential, then VGS1 = VGS2 and ID2 = 2ID1 = 2ISS/3. Thus,
gm1 =

�
2µnCox (W/L)ISS/3 and gm2 =

�
2µnCox (2W/L)(2ISS)/3 = 2gm1. Following the same procedure as

above, the reader can show that

|Av | =
2RD

1

gm1
+

1

2gm1

(4.24)

=
4

3
gm1 RD (4.25)

Note that, for a given ISS , this value is lower than the gain of a symmetric differential pair [Eq. (4.23)] because gm1
is smaller. The reader can show that the characteristics of Fig. 4.13 are shifted horizontally, and hence the circuit
exhibits an “offset.” We utilize this idea in Chapter 14 to linearize differential pairs.

�
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How does the transconductance of a differential pair compare with that of a common-source stage?
For a given total bias current, the value of gm in (4.23) is 1/

�
2 times that of a single transistor biased at

ISS with the same dimensions. Thus, the total Gm is proportionally less.

Method II If a fully-symmetric differential pair senses differential inputs (i.e., the two inputs change
by equal and opposite amounts from the equilibrium condition), then the concept of “half circuit” can be
applied. We first prove a lemma.

Lemma Consider the symmetric circuit shown in Fig. 4.20(a), where D1 and D2 represent any three-
terminal active device. Suppose Vin1 and Vin2 change differentially, the former from V0 to V0 +�Vin and
the latter from V0 to V0 � �Vin [Fig. 4.20(b)]. Then, if the circuit remains linear, VP does not change.
Assume � = 0.

(b)(a) (c)

I1

IT

D1

V1
P

V2

D2

I2

Vin1

Vin1

V0 Va

Vin2

V1

V2

t

�Vin �V1

�V2�Vin

Vin2

t

Figure 4.20 Illustration of why node P is a virtual ground.

Proof. The lemma can be proved by invoking symmetry. As long as the operation remains linear, so
that the difference between the bias currents of D1 and D2 is negligible, the circuit is symmetric. Thus,
VP cannot “favor” the change at one input and “ignore” the other.

From another point of view, the effect of D1 and D2 at node P can be represented by Thevenin
equivalents (Fig. 4.21). If VT 1 and VT 2 change by equal and opposite amounts and RT 1 and RT 2 are equal,
then VP remains constant. We emphasize that this is valid if the changes are small enough that we can
assume RT 1 = RT 2 (e.g., 1/gm1 = 1/gm2).6 This perspective suggests the lemma’s validity even if the
tail current source is not ideal. �

VT1 VT2

RT1

P

RT2

Figure 4.21 Replacing each half
of a differential pair by a Thevenin
equivalent.

We now offer a more formal proof. Let us assume that V1 and V2 have an equilibrium value of Va and
change by �V1 and �V2, respectively [Fig. 4.20(c)]. The output currents therefore change by gm�V1

and gm�V2. Since I1 + I2 = IT , we have gm�V1 + gm�V2 = 0, i.e., �V1 = ��V2. We also know that
Vin1 � V1 = Vin2 � V2, and hence V0 + �Vin � (Va + �V1) = V0 � �Vin � (Va + �V2). Consequently,
2�Vin = �V1��V2 = 2�V1. In other words, if Vin1 and Vin2 change by +�Vin and ��Vin , respectively,
then V1 and V2 change by the same values, i.e., a differential change in the inputs is simply “absorbed” by
V1 and V2. In fact, since VP = Vin1�V1, and since V1 exhibits the same change as Vin1, VP does not change.

6It is also possible to derive an expression for the large-signal behavior of VP and prove that for small Vin1 � Vin2, VP remains
constant. We defer this calculation to Chapter 15.
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The above lemma greatly simplifies the small-signal analysis of differential amplifiers. As shown in
Fig. 4.22, since VP experiences no change, node P can be considered “ac ground” (or a “virtual ground”),
and the circuit can be decomposed into two separate halves. We say that we have applied the “half-circuit
concept” [1]. We can write VX/Vin1 = �gm RD and VY /(�Vin1) = �gm RD , where Vin1 and �Vin1

denote the voltage change on each side. Thus, (VX � VY )/(2Vin1) = �gm RD .

(a) (b)

VDD

X Y

RD1 RD2

VDD

RD1 RD2

Vout2Vout1 X Y Vout2Vout1

+Vin1 +Vin1�Vin1 �Vin1

M1 M2 M1 M2

P

ISS

Figure 4.22 Application of the half-circuit concept.

� Example 4.7

Calculate the differential gain of the circuit of Fig. 4.22(a) if � �= 0.

Solution

Applying the half-circuit concept as illustrated in Fig. 4.23, we have VX /Vin1 = �gm(RD	rO1) and VY /(�Vin1) =
�gm(RD	rO2), thus arriving at (VX � VY )/(2Vin1) = �gm(RD	rO ), where rO = rO1 = rO2. Note that Method I
would require lengthy calculations here.

VDD

rO1 rO2

Vout1 Vout2

+Vin1 �Vin1

RD

X Y

RD

M1 M2

Figure 4.23
�

The half-circuit concept provides a powerful technique for analyzing symmetric differential pairs with
fully differential inputs. But what happens if the two inputs are not fully differential [Fig. 4.24(a)]? As
depicted in Figs. 4.24(b) and (c), the two inputs Vin1 and Vin2 can be viewed as

Vin1 =
Vin1 � Vin2

2
+

Vin1 + Vin2

2
(4.26)

Vin2 =
Vin2 � Vin1

2
+

Vin1 + Vin2

2
(4.27)

Since the second term is common to both inputs, we obtain the equivalent circuit in Fig. 4.24(d), recogniz-
ing that the circuit senses a combination of a differential input and a common-mode variation. Therefore,
as illustrated in Fig. 4.25, the effect of each type of input can be computed by superposition, with the
half-circuit concept applied to the differential-mode operation. We deal with CM analysis in Sec. 4.3.
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(b)

(c)

(a)

(d)

Vin1 Vin2

M1 M2

M1 M2 M1 M2

M1 M2

ISSISS

ISS
ISS

Vin1
2

+

Vin1 � Vin2
2

Vin1 + Vin2
2

Vin2 � Vin1
2

Vin1 � Vin2
2

Vin2 � Vin1
2

Vin1 + Vin2
2

Vin1 + Vin2
2

Vin1
2

+

Vin2
2

+

Vin2
2

�

Vin2
2

+

Vin2
2

+

Vin1
2

+

Vin1
2

�

Figure 4.24 Conversion of arbitrary inputs to differential and common-mode components.

(a) (b)

ISS

ISS

M1 M2

M1 M2

Vin1 � Vin2
2

Vin2 � Vin1
2

Vin1 + Vin2
2

Figure 4.25 Superposition for (a) differential and (b) common-mode signals.

� Example 4.8

In the circuit of Fig. 4.22(a), calculate VX and VY if Vin1 �= �Vin2 and � �= 0.

Solution

For differential-mode operation, we have from Fig. 4.26(a)

VX = �gm(RD	rO1)
Vin1 � Vin2

2
(4.28)

VY = �gm(RD	rO2)
Vin2 � Vin1

2
(4.29)
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That is,

VX � VY = �gm(RD	rO )(Vin1 � Vin2) (4.30)

which is to be expected.
For common-mode operation, the circuit reduces to that in Fig. 4.26(b). How much do VX and VY change as

Vin,C M changes? If the circuit is fully symmetric and ISS an ideal current source, the currents drawn by M1 and
M2 from RD1 and RD2 are exactly equal to ISS/2 and independent of Vin,C M . Thus, VX and VY remain equal
to VDD � RD(ISS/2) and experience no change as Vin,C M varies. Interestingly, the circuit simply amplifies the
difference between Vin1 and Vin2 while eliminating the effect of Vin,C M .

(b)(a)

VDD

VDD

RD RD

RD RD

rO1

rO1 rO2

rO2

Vout1

Vout1 Vout2

Vout2X

X

Y

Y

M1

M1 M2

M2

ISS

ISS
Vin1 � Vin2

2
Vin2 � Vin1

2

Vin1 + Vin2
2

Vin,CM = 

Figure 4.26
�

4.2.3 Degenerated Differential Pair

As with a simple common-source stage, a differential pair can incorporate resistive degeneration to
improve its linearity. Shown in Fig. 4.27(a), such a topology softens the nonlinear behavior of M1 and
M2 by RS1 and RS2. This can be seen from the input-output characteristics of Fig. 4.27(b), where, due
to degeneration, the differential voltage necessary to turn off one side increases in magnitude. We can

(a) (b)

VDD

VDD

VDD � RD ISS

RD1

RD1 = RD2 = RD
RS1 = RS2 = RS

RD2

RS1 RS2

VX RS = 0

RS > 0

VY

Vin1 Vin2

��Vin2 ��Vin1 +�Vin1 +�Vin2 �Vin

X Y

M1 M2

ISS

VDD � 
RD ISS

2

Figure 4.27 (a) Degenerated differential pair, and (b) characteristics with and without degeneration.
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readily prove this point. Suppose that at Vin1 � Vin2 = �Vin2, M2 turns off and ID1 = ISS . We then have
VGS2 = VT H , and hence

Vin1 � VGS1 � RS ISS = Vin2 � VT H (4.31)

which yields

Vin1 � Vin2 = VGS1 � VT H + RS ISS (4.32)

=
����

2ISS

µnCox
W

L

+ RS ISS (4.33)

We recognize the first term on the right-hand side as �Vin1 (the input difference necessary for turning
off M2 if RS = 0). It follows that

�Vin2 � �Vin1 = RS ISS (4.34)

suggesting that the linear input range is widened by approximately –RS ISS .
The small-signal voltage gain of the degenerated differential pair can be obtained by applying the

half-circuit concept. The half circuit is simply a degenerated CS stage, exhibiting a gain of

|Av| =
RD

1

gm
+ RS

(4.35)

if � = � = 0. The circuit thus trades gain for linearity—as is also observed from the slopes of the
characteristics in Fig. 4.27(b). Note that Av is less sensitive to gm variations in this case.

In addition to reducing the gain, the degeneration resistors in Fig. 4.27(a) also consume voltage
headroom. In the equilibrium condition, each resistor sustains a voltage drop of RS ISS/2, as if the tail
current source itself required this much more headroom. The input common-mode level must therefore
be higher by this amount, and so must be the minimum voltage at X or Y . In other words, the maximum
allowable differential output swing is reduced by RS ISS . This issue can be resolved as shown in Fig. 4.28,
where the tail current source is split in half, with each half directly tied to a source. In equilibrium, no
current flows through the degeneration resistance, and hence no headroom is sacrificed.7 Other methods
of linearizing differential pairs are described in Chapter 14.

VDD

RD1

2RS

RD2

ISS
2

ISS
2

X Y

M1 M2

Figure 4.28 Degenerated differential
pair with split tail current source.

7But, as explained later in the book, the two tail current sources do contribute differential noise and offset in this case.



Razavi-3930640 book December 17, 201516:27 118

118 Chap. 4 Differential Amplifiers

4.3 Common-Mode Response

An important attribute of differential amplifiers is their ability to suppress the effect of common-mode
perturbations. Example 4.8 portrays an idealized case of common-mode response. In reality, neither is
the circuit fully symmetric nor does the current source exhibit an infinite output impedance. As a result,
a fraction of the input CM variation appears at the output.

(a) (b) (c)

VDD VDD VDD

RSS

Vout
Vout1 Vout2

RSS RSS

P P

Vin,CM Vin,CM Vin,CM

RD RD RDRD

X XY Y

M1
M1

M1 M1 + M2M2

RD
2

Figure 4.29 (a) Differential pair sensing CM input; (b) simplified version of (a); (c) equivalent circuit of (b).

We first assume that the circuit is symmetric, but the current source has a finite output impedance, RSS

[Fig. 4.29(a)]. As Vin,C M changes, so does VP , thereby increasing the drain currents of M1 and M2 and
lowering both VX and VY . Owing to symmetry, VX remains equal to VY and, as depicted in Fig. 4.29(b),
the two nodes can be shorted together. Since M1 and M2 are now “in parallel,” i.e., they share all of their
respective terminals, the circuit can be reduced to that in Fig. 4.29(c). Note that the composite device,
M1 + M2, has twice the width and the bias current of each of M1 and M2 and, therefore, twice their
transconductance. The “common-mode gain” of the circuit is thus equal to

Av,C M =
Vout

Vin,C M
(4.36)

= �
RD/2

1/(2gm) + RSS
(4.37)

where gm denotes the transconductance of each of M1 and M2 and � = � = 0.
What is the significance of this calculation? In a symmetric circuit, input CM variations disturb the

bias points, altering the small-signal gain and possibly limiting the output voltage swings. This can be
illustrated by an example.

� Example 4.9

The circuit of Fig. 4.30 uses a resistor rather than a current source to define a tail current of 1 mA. Assume that
(W/L)1,2 = 25/0.5, µnCox = 50 µA/V2, VT H = 0.6 V, � = � = 0, and VDD = 3 V.

(a) What is the required input CM voltage for which RSS sustains 0.5 V?
(b) Calculate RD for a differential gain of 5.
(c) What happens at the output if the input CM level is 50 mV higher than the value calculated in (a)?
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RSS

VDD

Vout1

Vin1

1 mA

Vout2

Vin2

RD RD

M1 M2

X Y

Figure 4.30

Solution

(a) Since ID1 = ID2 = 0.5 mA, we have

VGS1 = VGS2 =

����
2ID1

µnCox
W

L

+ VT H (4.38)

= 1.23 V (4.39)

Thus, Vin,C M = VGS1 + 0.5 V = 1.73 V. Note that RSS = 500 �.
(b) The transconductance of each device is gm =

�
2µnCox (W/L)ID1 = 1/(632 �), requiring RD = 3.16 k�

for a gain of 5.
Note that the output bias level is equal to VDD � ID1 RD = 1.42 V. Since Vin,C M = 1.73 V and VT H = 0.6 V,

the transistors are 290 mV away from the triode region.
(c) If Vin,C M increases by 50 mV, the equivalent circuit of Fig. 4.29(c) suggests that VX and VY drop by

|�VX,Y | = �Vin,C M
RD/2

RSS + 1/(2gm)
(4.40)

= 50 mV × 1.94 (4.41)

= 96.8 mV (4.42)

Now, M1 and M2 are only 143 mV away from the triode region because the input CM
level has increased by 50 mV and the output CM level has decreased by 96.8 mV.

�

Nanometer Design Notes

As a result of the low output impedance
of tail current sources in nanometer
technologies, a CM level change can
“propagate.” Plotted below are the
output CM levels of two cascaded
differential pairs as the main input CM
level, Vi n,CM , increases, revealing a
drop in the first and a rise in the second.
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The foregoing discussion indicates that the finite output impedance of the
tail current source results in some common-mode gain in a symmetric differ-
ential pair. Nonetheless, this is usually a minor concern. More troublesome
is the variation of the differential output as a result of a change in Vin,C M , an
effect that occurs because in reality the circuit is not fully symmetric, i.e., the
two sides suffer from slight mismatches during manufacturing. For example,
in Fig. 4.29(a), RD1 may not be exactly equal to RD2.

We now study the effect of input common-mode variations if the circuit is
asymmetric and the tail current source suffers from a finite output impedance.
Suppose, as shown in Fig. 4.31, RD1 = RD and RD2 = RD + �RD , where
�RD denotes a small mismatch and the circuit is otherwise symmetric. As-
sume that � = � = 0 for M1 and M2. What happens to VX and VY as Vin,C M

increases? We recognize that M1 and M2 operate as one source follower,
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VDD

RD

RSS

RD + �RD

Vout1 Vout2

Vin,CM

X Y

M1 M2P

Figure 4.31 Common-mode response
in the presence of resistor mismatch.

raising VP by

�VP =
RSS

RSS +
1

2gm

�Vin,C M (4.43)

Since M1 and M2 are identical, ID1 and ID2 increase by [gm/(1 + 2gm RSS)]�Vin,C M , but VX and VY

change by different amounts:

�VX = ��Vin,C M
gm

1 + 2gm RSS
RD (4.44)

�VY = ��Vin,C M
gm

1 + 2gm RSS
(RD + �RD) (4.45)

Thus, a common-mode change at the input introduces a differential component at the output. We
say that the circuit exhibits common-mode to differential conversion. This is a critical problem be-
cause if the input of a differential pair includes both a differential signal and common-mode noise,
the circuit corrupts the amplified differential signal by the input CM change. The effect is illustrated
in Fig. 4.32.

RSS

VDD

Vin,DM

Vin,CM

RD RD + �RD

M1 M2

Figure 4.32 Effect of CM noise in the presence of resistor mismatch.

In summary, the common-mode response of differential pairs depends on the output impedance of
the tail current source and asymmetries in the circuit, manifesting itself through two effects: variation of
the output CM level (in the absence of mismatches) and conversion of input common-mode variations
to differential components at the output. In analog circuits, the latter effect is much more severe than the
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former. For this reason, the common-mode response should usually be studied with mismatches taken
into account.

How significant is common-mode to differential conversion? We make two observations. First, as
the frequency of the CM disturbance increases, the total capacitance shunting the tail current source
introduces larger tail current variations. Thus, even if the output resistance of the current source is high,
common-mode to differential conversion becomes significant at high frequencies. Shown in Fig. 4.33,
this capacitance arises from the parasitics of the current source itself as well as the source-bulk junctions
of M1 and M2. Second, the asymmetry in the circuit stems from both the load resistors and the input
transistors, the latter contributing a typically much greater mismatch.

VDD

RDRD

Vout2Vout1

Vin,CM

X Y

M1

C1

M2

ISS
Figure 4.33 CM response with finite
tail capacitance.

Let us study the asymmetry resulting from mismatches between M1 and M2 in Fig. 4.34(a). Owing
to dimension and threshold voltage mismatches, the two transistors carry slightly different currents and
exhibit unequal transconductances. We assume that � = � = 0. To calculate the small-signal gain from
Vin,C M to X and Y , we use the equivalent circuit in Fig. 4.34(b), writing ID1 = gm1(Vin,C M � VP) and
ID2 = gm2(Vin,C M � VP). Since (ID1 + ID2)RSS = VP ,

(gm1 + gm2)(Vin,C M � VP)RSS = VP (4.46)

and

VP =
(gm1 + gm2)RSS

(gm1 + gm2)RSS + 1
Vin,C M (4.47)

(a) (b)

VDD VDD

RSS

P

RD RD RDRD

Vout1

Vin,CM Vin,CM

RSS

P

Vout2X XY Y

M1 gm1 gm2

M1 M2
M2

Figure 4.34 (a) Differential pair sensing CM input; (b) equivalent circuit of (a).
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We now obtain the output voltages as

VX = �gm1(Vin,C M � VP)RD (4.48)

=
�gm1

(gm1 + gm2)RSS + 1
RD Vin,C M (4.49)

and

VY = �gm2(Vin,C M � VP)RD (4.50)

=
�gm2

(gm1 + gm2)RSS + 1
RD Vin,C M (4.51)

The differential component at the output is therefore given by

VX � VY = �
gm1 � gm2

(gm1 + gm2)RSS + 1
RD Vin,C M (4.52)

In other words, the circuit converts input CM variations to a differential error by a factor equal to

AC M�DM = �
�gm RD

(gm1 + gm2)RSS + 1
(4.53)

where AC M�DM denotes common-mode to differential-mode conversion and �gm = gm1 � gm2.

� Example 4.10

Two differential pairs are cascaded as shown in Fig. 4.35. Transistors M3 and M4 suffer from a gm mismatch of
�gm , the total parasitic capacitance at node P is represented by CP , and the circuit is otherwise symmetric. What
fraction of the supply noise appears as a differential component at the output? Assume that � = � = 0.

Vout

RD

A B

RD

VDD

RD RD

X Y

M1 M2
M3

CP

M4P

ISSISS

Figure 4.35

Solution

Neglecting the capacitance at nodes A and B, we note that the supply noise appears at these nodes with no attenuation.
Substituting 1/(CP s) for RSS in (4.53) and taking the magnitude, we have

|AC M�DM | =
�gm RD�

1 + (gm3 + gm4)2

����
1

CP�

����
2

(4.54)

The key point is that the effect becomes more noticeable as the supply noise frequency, �, increases.
�
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For a meaningful comparison of differential circuits, the undesirable differential component produced
by CM variations must be normalized to the wanted differential output resulting from amplification. We
define the “common-mode rejection ratio” (CMRR) as the desired gain divided by the undesired gain:

CMRR =
����

ADM

AC M�DM

���� (4.55)

If only gm mismatch is considered, the reader can show from the analysis of Fig. 4.17 that

|ADM | =
RD

2

gm1 + gm2 + 4gm1gm2 RSS

1 + (gm1 + gm2)RSS
(4.56)

and hence

CMRR =
gm1 + gm2 + 4gm1gm2 RSS

2�gm
(4.57)

�
gm

�gm
(1 + 2gm RSS) (4.58)

where gm denotes the mean value, that is, gm = (gm1 + gm2)/2. In practice, all mismatches must be taken
into account. Note that 2gm RSS 
 1, and hence CMRR � 2g2

m RSS/�gm .

� Example 4.11

Our studies suggest that an ideal tail current source guarantees infinite CM rejection. Is this always true?

Solution

Interestingly, it is not. If the two transistors exhibit body-effect mismatch, then the circuit still converts an input
CM change to a differential output component even if the tail impedance is infinite. As illustrated in Fig. 4.36, a
change in Vin,C M produces a change in VP , and hence in VBS of both transistors. If gmb1 �= gmb2, the change in
ID1(= gmb1VBS1) is not equal to that in ID2, yielding a differential change at the output.

Vin,CM

ISS

ID1 ID2

M2M1

P

Figure 4.36
�

4.4 Differential Pair with MOS Loads

The load of a differential pair need not be implemented by linear resistors. As with the common-
source stages studied in Chapter 3, differential pairs can employ diode-connected or current-source
loads (Fig. 4.37). The small-signal differential gain can be derived using the half-circuit concept. For
Fig. 4.37(a),

Av = �gm N


g�1

m P

��rO N

��rO P
�

(4.59)

� �
gm N

gm P
(4.60)
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(a) (b)

VDD VDD

Vout

ISS

Vout

Vin Vin

X Y

M3 Vb

M1 M2 M1 M2

M4

M4M3

ISS

Figure 4.37 Differential pair with (a) diode-connected and (b) current-source loads.

where the subscripts N and P denote NMOS and PMOS, respectively. Expressing gm N and gm P in terms
of device dimensions, we have

Av � �

�
µn(W/L)N

µp(W/L)P
(4.61)

For Fig. 4.37(b), we have

Av = �gm N (rO N 	rO P) (4.62)

� Example 4.12

It is possible to obviate the need for Vb in the circuit of Fig. 4.37(b) as shown in Fig. 4.38(a), where R1 and R2(= R1)
are relatively large. In the absence of signals, VX = VY = VN = VDD � |VGS3,4|. That is, M3 and M4 are
“self-biased.” Determine the differential voltage gain of this topology.

(a) (b)

VDD
N

X Y
Vout

Vout
Vin Vin

M3
M3

M1

R1
R1

M1 M2

R2

M4

ISS

Figure 4.38

Solution

For differential outputs, VN does not change (why?) and can be considered ac ground. Shown in Fig. 4.38(b), the
half-circuit yields

|Av | = gm1(rO1	R1	rO3) (4.63)

If the resistors are much greater than rO1||rO3, then they negligibly reduce the gain.
�
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In the circuit of Fig. 4.37(a), the diode-connected loads consume voltage headroom, thus creating
a trade-off between the output voltage swings, the voltage gain, and the input CM range. Recall from
Eq. (3.37) that, for given bias current and input device dimensions, the circuit’s gain and the PMOS
overdrive voltage scale together. To achieve a higher gain, (W/L)P must decrease, thereby increasing
|VGS P � VT H P | and lowering the CM level at nodes X and Y .

In order to alleviate the above difficulty, part of the bias currents of the input transistors can be provided
by PMOS current sources. Illustrated in Fig. 4.39(a), the idea is to lower the gm of the load devices by
reducing their current rather than their aspect ratio. For example, if the “auxiliary” current sources, M5

and M6, carry 80% of the drain current of M1 and M2, the current through M3 and M4 is reduced by a
factor of five. For a given |VGS P �VT H P |, this translates to a fivefold reduction in the transconductance of
M3 and M4 because the aspect ratio of the devices can be lowered by the same factor. Thus, the differential
gain is now five times that of the case with no PMOS current sources (if � = 0).

Vb

(a) (b)

VDD
RD RD

Vout

Vin

Vb Vb

M3

M1 M2

M4

ISS

0.8
ISS
2

0.8
ISS
2

VDD

Vout

Vin

Vb M3
M5

M1 M2

M6

M4

ISS

0.8
ISS
2

0.8
ISS
2

Figure 4.39 Addition of current sources to increase the voltage gain with (a) diode-connected loads and
(b) resistive loads.

Since the voltage headroom consumed by diode-connected devices cannot be less than VT H (if sub-
threshold conduction is neglected), the topology of Fig. 4.39(a) allows limited output voltage swings. We
therefore prefer the alternative shown in Fig. 4.39(b), where the loads are realized by resistors—and the
maximum voltage at each output node is equal to VDD � |VGS3,4 � VT H3,4| rather than VDD � |VT H3,4|.
For a given output CM level and 80% auxiliary currents, RD can be five times as large, yielding a voltage
gain of

|Av| = gm N (RD||rO N ||rO P) (4.64)

If the PMOS devices are long (and, necessarily, wide), then rO P 
 rO N and the gain is limited by
RD||rO N . The circuit of Fig. 4.39(b) approaches that in Fig. 4.37(b) if RD � �, with the PMOS current
sources providing all of the bias currents of M1 and M2.

The small-signal gain of the differential pair with current-source loads is relatively low—in the range
of 5 to 10 in nanometer technologies. How do we increase the voltage gain? Borrowing ideas from the
amplifiers in Chapter 3, we increase the output impedance of both the PMOS and the NMOS devices by
cascoding, in essence creating a differential version of the cascode stage introduced in Chapter 3. The
result is depicted in Fig. 4.40(a). To calculate the gain, we construct the half circuit of Fig. 4.40(b), which
is similar to the cascode stage of Fig. 3.70. It follows that

|Av| � gm1[(gm3rO3rO1)	(gm5rO5rO7)] (4.65)

Cascoding therefore increases the differential gain substantially, but at the cost of consuming more voltage
headroom. We return to this circuit in Chapter 9.
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VDD VDD

Vout Vout

Vb3 Vb3

Vb2

Vb1

Vin

Vb2

Vb1

Vin

M7 M7

M5

M3

M1

M8

M5 M6

M3 M4

M1 M2

ISS

(a) (b)
Figure 4.40 (a) Cascode differential pair; (b) half circuit of (a).

As a final note, we should mention that high-gain fully differential amplifiers require a means of
defining the output common-mode level. For example, in Fig. 4.37(b), the output common-mode level
is not well-defined, whereas in Fig. 4.37(a), diode-connected transistors define the output CM level as
VDD � VGS P . We revisit this issue in Chapter 9.

4.5 Gilbert Cell

Our study of differential pairs reveals two important aspects of their operation: (1) the small-signal gain
of the circuit is a function of the tail current, and (2) the two transistors in a differential pair provide a
simple means of steering the tail current to one of two destinations. By combining these two properties,
we can develop a versatile building block.

Suppose we wish to construct a differential pair whose gain is varied by a control voltage. This can
be accomplished as depicted in Fig. 4.41(a), where the control voltage defines the tail current and hence
the gain. In this topology, Av = Vout/Vin varies from zero (if ID3 = 0) to a maximum value given by
voltage headroom limitations and device dimensions. This circuit is a simple example of a “variable-gain
amplifier” (VGA). VGAs find application in systems where the signal amplitude may experience large
variations and hence requires inverse changes in the gain.

Now suppose we seek an amplifier whose gain can be continuously varied from a negative value to
a positive value. Consider two differential pairs that amplify the input by opposite gains [Fig. 4.41(b)].
We now have Vout1/Vin = �gm RD and Vout2/Vin = +gm RD , where gm denotes the transconduc-
tance of each transistor in equilibrium. If I1 and I2 vary in opposite directions, so do |Vout1/Vin|
and |Vout2/Vin|.

But how should Vout1 and Vout2 be combined into a single output? As illustrated in Fig. 4.42(a), the two
voltages can be summed, producing Vout = Vout1+Vout2 = A1Vin+A2Vin , where A1 and A2 are controlled
by Vcont1 and Vcont2, respectively. The actual implementation is in fact quite simple: since Vout1 =
RD ID1 � RD ID2 and Vout2 = RD ID4 � RD ID3, we have Vout1 +Vout2 = RD(ID1 + ID4)� RD(ID2 + ID3).
Thus, rather than add Vout1 and Vout2, we simply short the corresponding drain terminals to sum the currents
and subsequently generate the output voltage [Fig. 4.42(b)]. Note that if I1 = 0, then Vout = +gm RD ,
and if I2 = 0, then Vout = �gm RD . For I1 = I2, the gain drops to zero.
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RDRD RDRD RDRD

Vin Vin Vin

I1 I2Vcont Vcont1 Vcont2

Vout Vout1 Vout2

M1 M2 M1 M2 M3 M4

M3

(a) (b)
Figure 4.41 (a) Simple VGA; (b) two stages providing variable gain.
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Vin

A1

A2

M1 M2

M1

A B
M3 M4

M5 M6

M2

M1 M2 M3 M4

M5 M6

M3 M4

ISS ISS

(a) (b)
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Figure 4.42 (a) Summation of the output voltages of two amplifiers; (b) summation in the current domain; (c) use
of M5-M6 to control the gain; (d) Gilbert cell.
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In the circuit of Fig. 4.42(b), Vcont1 and Vcont2 must change I1 and I2 in opposite directions such that the
gain of the amplifier changes monotonically. What circuit can vary two currents in opposite directions?
A differential pair provides such a characteristic, leading to the topology of Fig. 4.42(c). Note that for
a large |Vcont1 � Vcont2|, all of the tail current is steered to one of the top differential pairs and the gain
from Vin to Vout is at its most positive or most negative value. If Vcont1 = Vcont2, the gain is zero. For
simplicity, we redraw the circuit as shown in Fig. 4.42(d). Called the “Gilbert cell” [2], this topology is
widely used in many analog and communication systems. In a typical design, M1–M4 are identical, and
so are M5 and M6.

� Example 4.13

Explain why the Gilbert cell can operate as an analog voltage multiplier.

Solution

Since the gain of the circuit is a function of Vcont = Vcont1 �Vcont2, we have Vout = Vin • f (Vcont). Expanding f (Vcont)
in a Taylor series and retaining only the first-order term, �Vcont , we have Vout = �Vin Vcont. Thus, the circuit can
multiply voltages. This property accompanies any voltage-controlled variable-gain amplifier.

�

As with a cascode structure, the Gilbert cell consumes a greater voltage headroom than a simple
differential pair does. This is because the two differential pairs M1–M2 and M3–M4 are “stacked”
on top of the control differential pair. To understand this point, suppose the differential input, Vin ,
in Fig. 4.42(d) has a common-mode level VC M,in . Then, VA = VB = VC M,in � VGS1, where M1–M4 are
assumed identical. For M5 and M6 to operate in saturation, the CM level of Vcont , VC M,cont , must be such
that VC M,cont � VC M,in � VGS1 + VT H5,6. Since VGS1 � VT H5,6 is roughly equal to one overdrive voltage,
we conclude that the control CM level must be lower than the input CM level by at least this value.

In arriving at the Gilbert cell topology, we opted to vary the gain of each differential pair through its
tail current, thereby applying the control voltage to the bottom pair and the input signal to the top pairs.
Interestingly, the order can be exchanged while still obtaining a VGA. Illustrated in Fig. 4.43(a), the idea
is to convert the input voltage to current by means of M5 and M6 and route the current through M1–M4

to the output nodes. If, as shown in Fig. 4.43(b), Vcont is very positive, then only M1 and M3 are on and
Vout = gm5,6 RD Vin . Similarly, if Vcont is very negative [Fig. 4.43(c)], then only M2 and M4 are on and
Vout = �gm5,6 RD Vin . For a zero differential control voltage, Vout = 0. The input differential pair may
incorporate degeneration to provide a linear voltage-to-current conversion.

VDD VDD VDD

RD RD RD RD RD RD

Vcont
Vcont Vcont

Vin Vin Vin

Vout Vout Vout
M1 M2 M2M1

M3 M4

M5 M6 M5 M6

M3

M5 M6

M4

ISS ISS ISS

(a) (b) (c)
Figure 4.43 (a) Gilbert cell sensing the input voltage by the bottom differential pair; (b) signal path for very
positive Vcont ; (c) signal path for very negative Vcont .
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that VDD = 3 V
where necessary. All device dimensions are effective values and in microns.

4.1. Suppose the total capacitance between adjacent lines in Fig. 4.2 is 10 fF and the capacitance from the drains
of M1 and M2 to ground is 100 fF.
(a) What is the amplitude of the glitches in the analog output in Fig. 4.2(a) for a clock swing of 3 V?
(b) If in Fig. 4.2(b), the capacitance between L1 and L2 is 10% less than that between L1 and L3, what is the

amplitude of the glitches in the differential analog output for a clock swing of 3 V?

4.2. Sketch the small-signal differential voltage gain of the circuit shown in Fig. 4.9(a) if VDD varies from 0 to 3
V. Assume that (W/L)1�3 = 50/0.5, Vin,C M = 1.3 V, and Vb = 1 V.

4.3. Construct the plots of Fig. 4.9(c) for a differential pair using PMOS transistors.

4.4. In the circuit of Fig. 4.11, (W/L)1,2 = 50/0.5 and ISS = 0.5 mA.
(a) What is the maximum allowable output voltage swing if Vin,C M = 1.2 V?
(b) What is the voltage gain under this condition?

4.5. A differential pair uses input NMOS devices with W/L = 50/0.5 and a tail current of 1 mA.
(a) What is the equilibrium overdrive voltage of each transistor?
(b) How is the tail current shared between the two sides if Vin1 � Vin2 = 50 mA?
(c) What is the equivalent Gm under this condition?
(d) For what value of Vin1 � Vin2 does the Gm drop by 10%? By 90%?

4.6. Repeat Problem 4.5 with W/L = 25/0.5 and compare the results.

4.7. Repeat Problem 4.5 with a tail current of 2 mA and compare the results.

4.8. Sketch ID1 and ID2 in Fig. 4.19 versus Vin1 � Vin2. For what value of Vin1 � Vin2 are the two currents
equal?

4.9. Consider the circuit of Fig. 4.32, assuming (W/L)1,2 = 50/0.5 and RD = 2 k�. Suppose RSS represents
the output impedance of an NMOS current source with (W/L)SS = 50/0.5 and a drain current of 1 mA. The
input signal consists of Vin,DM = 10 mVpp and Vin,C M = 1.5 V + Vn(t), where Vn(t) denotes noise with a
peak-to-peak amplitude of 100 mV. Assume that �R/R = 0.5%.
(a) Calculate the output differential signal-to-noise ratio, defined as the signal amplitude divided by the noise

amplitude.
(b) Calculate the CMRR.

4.10. Repeat Problem 4.9 if �R = 0, but M1 and M2 suffer from a threshold voltage mismatch of 1 mV.

4.11. Suppose the differential pair of Fig. 4.37(a) is designed with (W/L)1,2 = 50/0.5, (W/L)3,4 = 10/0.5, and
ISS = 0.5 mA. Also, ISS is implemented with an NMOS device having (W/L)SS = 50/0.5.
(a) What are the minimum and maximum allowable input CM levels if the differential swings at the input

and output are small?
(b) For Vin,C M = 1.2 V, sketch the small-signal differential voltage gain as VDD goes from 0 to 3 V.

4.12. In Problem 4.11, suppose M1 and M2 have a threshold voltage mismatch of 1 mV. What is the CMRR?

4.13. In Problem 4.11, suppose W3 = 10 µm, but W4 = 11 µm. Calculate the CMRR.

4.14. For the differential pairs of Fig. 4.37(a) and (b), calculate the differential voltage gain if ISS = 1 mA,
(W/L)1,2 = 50/0.5, and (W/L)3,4 = 50/1. What is the minimum allowable input CM level if ISS requires at
least 0.4 V across it? Using this value for Vin,C M , calculate the maximum output voltage swing in each case.
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4.15. In the circuit of Fig. 4.39(a), assume that ISS = 1 mA and W/L = 50/0.5 for all the transistors.
(a) Determine the voltage gain.
(b) Calculate Vb such that ID5 = ID6 = 0.8(ISS/2).
(c) If ISS requires a minimum voltage of 0.4 V, what is the maximum differential output swing?

4.16. Assuming that all the circuits shown in Fig. 4.44 are symmetric, sketch Vout as (a) Vin1 and Vin2 vary
differentially from zero to VDD , and (b) Vin1 and Vin2 are equal and vary from zero to VDD .

(c)(a) (b)

(d) (e)

VDD VDD VDD

VDD VDD

Vout

Vout

Vout

Vout

Vout

Vin1

Vin1 Vin1 Vin2Vin2

Vb

Vb2

Vin1 Vin2 Vin1

Vb1

Vin2

Vb1

Vb2

Vb

Vin2

R1

R1 R1
R2 R2

R1

R1

R2M4M3

M2

M5

M3

M1

M5 Vb M5

M2 M1 M2

M4 M3 M4

M1

M4

M4
M3

M1 M2

M5

M3

M1

M5

M2

Figure 4.44

4.17. Assuming that all the circuits shown in Fig. 4.45 are symmetric, sketch Vout as (a) Vin1 and Vin2 vary
differentially from zero to VDD , and (b) Vin1 and Vin2 are equal and vary from zero to VDD .

4.18. Assuming that all the transistors in the circuits of Figs. 4.44 and 4.45 are saturated and � �= 0, calculate the
small-signal differential voltage gain of each circuit.

4.19. Consider the circuit shown in Fig. 4.46.
(a) Sketch Vout as Vin1 and Vin2 vary differentially from zero to VDD .
(b) If � = 0, obtain an expression for the voltage gain. What is the voltage gain if W3,4 = 0.8W5,6?

4.20. For the circuit shown in Fig. 4.47,
(a) Sketch Vout , VX , and VY as Vin1 and Vin2 vary differentially from zero to VDD .
(b) Calculate the small-signal differential voltage gain.

4.21. Assuming no symmetry in the circuit of Fig. 4.48 and using no equivalent circuits, calculate the small-signal
voltage gain (Vout )/(Vin1 � Vin2) if � = 0 and � �= 0.

4.22. Due to a manufacturing defect, a large parasitic resistance has appeared between the drain and source ter-
minals of M1 in Fig. 4.49. Assuming � = � = 0, calculate the small-signal gain, common-mode gain, and
CMRR.
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Figure 4.45

VDD

Vout

M5

Vin1

Vb1

Vin2M1 M2

M7

M3 M4 M6

Figure 4.46

4.23. Due to a manufacturing defect, a large parasitic resistance has appeared between the drains of M1 and M4
in the circuit of Fig. 4.50. Assuming � = � = 0, calculate the small-signal gain, common-mode gain, and
CMRR.

4.24. In the circuit of Fig. 4.51, all of the transistors have a W/L of 50/0.5, and M3 and M4 are to operate in the deep
triode region with an on-resistance of 2 k�. Assuming that ID5 = 20 µA and � = � = 0, calculate the input
common-mode level that yields such resistance. Sketch Vout1 and Vout2 as Vin1 and Vin2 vary differentially
from 0 to VDD .
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VDD

Vout1

Vin1 Vin2

Vout2

M1 M2

M5

M3 M4

Vb

Figure 4.51

4.25. In the circuit of Fig. 4.37(b), (W/L)1�4 = 50/0.5 and ISS = 1 mA.
(a) What is the small-signal differential gain?
(b) For Vin,C M = 1.5 V, what is the maximum allowable output voltage swing?

4.26. In the circuit of Fig. 4.39, assume that M5 and M6 have a small threshold voltage mismatch of �V and ISS

has an output impedance RSS . Calculate the CMRR.

4.27. What happens if RSS in Eq. (4.56) becomes very large? Can we obtain the same result by analyzing a differential
pair having an ideal tail current source but gm1 �= gm2?

4.28. In Example 4.5, how much input dc imbalance can be tolerated if the small-signal gain must not drop by more
than 5%?

4.29. In the lemma illustrated in Fig. 4.20, suppose channel-length modulation is not neglected. Assuming the two
devices are connected to two equal load resistors, explain intuitively why the lemma still holds.

4.30. Does the lemma in Fig. 4.20 still hold if the devices have body effect? Explain.

4.31. Repeat Example 4.7 using Method I.

4.32. Prove the lemma illustrated in Fig. 4.20 if the tail current source is replaced by a resistor RT .

4.33. What happens to the plots on Fig. 4.13 as W/L increases? Determine the area under the Gm plot and use the
result to explain why the peak Gm must increase as W/L increases.

4.34. Assuming that I1 and ISS in Fig. 4.52 are ideal and �, � > 0, determine Vout1/Vin and Vout2/Vin .

VDD

R1

M1 M2

I1

Vout1

Vin

Vout2

Vb

ISS

Figure 4.52

4.35. In Problem 4.11, suppose M3 and M4 have a threshold voltage mismatch of 1 mV. Calculate the CMRR.
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CHAPTER

5
Current Mirrors and Biasing
Techniques

Our study of single-stage and differential amplifiers in Chapters 3 and 4 points to the wide usage of
current sources. In these circuits, current sources act as a large resistor without consuming excessive
voltage headroom. We also noted that MOS devices operating in saturation can act as a current source.

Current sources find other applications in analog design as well. For example, some digital-to-analog
(D/A) converters employ an array of current sources to produce an analog output proportional to the
digital input. Also, current sources, in conjunction with “current mirrors,” can perform useful functions
on analog signals.

This chapter deals with the design of current mirrors and bias circuits. Following a review of basic
current mirrors, we study the cascode mirror. Next, we analyze active current mirrors and describe
the properties of differential pairs using such circuits as loads. Finally, we introduce various biasing
techniques for amplifier stages.

5.1 Basic Current Mirrors

Figure 5.1 illustrates two examples in which a current source proves useful. From our study in Chapter 2,
recall that the output resistance and capacitance and the voltage headroom of a current source trade
with the magnitude of the output current. In addition to these issues, several other aspects of current
sources are important: supply, process, and temperature dependence; output noise current; and match-
ing with other current sources. We defer the noise and matching considerations to Chapters 7 and 14,
respectively.

M1

Vout

I1

VDD

Vin M1

Vout

VDD

Vin

Vb

ISS Vb

(a) (b)

I1

ISS

Figure 5.1 Applications of current sources.

134
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M1

R1

R2

VDD

Iout

Figure 5.2 Definition of current by
resistive divider.

How should a MOSFET be biased so as to operate as a stable current source? To gain a better view of
the issues, let us consider the simple resistive biasing shown in Fig. 5.2. Assuming M1 is in saturation,
we can write

Iout �
1

2
µnCox

W

L

�
R2

R1 + R2
VDD � VTH

�2

(5.1)

This expression reveals various PVT dependencies of Iout. The overdrive voltage is a function of VDD

and VTH; the threshold voltage may vary by 50 to 100 mV from wafer to wafer. Furthermore, both µn

and VTH exhibit temperature dependence. Thus, Iout is poorly defined. The issue becomes more severe as
the device is biased with a smaller overdrive voltage, e.g., to consume less headroom and support greater
voltage swings at the drain. With a nominal overdrive of, say, 200 mV, a 50-mV error in VTH results in a
44% error in the output current.

It is important to note that process and temperature dependencies exist even if the gate voltage is not
a function of the supply voltage. In other words, if the gate-source voltage of a MOSFET is precisely
defined, then its drain current is not! For this reason, we must seek other methods of biasing MOS current
sources.

The design of current sources in analog circuits is based on “copying” currents from a reference,
with the assumption that one precisely-defined current source is already available. While this method
may appear to entail an endless loop, it is carried out as illustrated in Fig. 5.3. A relatively complex
circuit—sometimes requiring external adjustments—is used to generate a stable reference current, IREF,
which is then “cloned” to create many current sources in the system. We study the copying operation
here and the reference generator (which is based on “bandgap” techniques) in Chapter 12.

Reference
Generator

IREF

I1

I2

VDD

Figure 5.3 Use of a reference to gen-
erate various currents.

How do we generate copies of a reference current? For example, in Fig. 5.4, how do we guarantee that
Iout = IREF? For a MOSFET, if ID = f (VGS), where f (•) denotes the dependence of ID upon VGS, then
VGS = f �1(ID). That is, if a transistor is biased at IREF, then it produces VGS = f �1(IREF) [Fig. 5.5(a)].
Thus, if this voltage is applied to the gate and source terminals of a second MOSFET, the resulting current
is Iout = f [ f �1(IREF)] = IREF [Fig. 5.5(b)]. From another point of view, two identical MOS devices that
have equal gate-source voltages and operate in saturation carry equal currents (if � = 0).



Razavi-3930640 book December 17, 201516:35 136

136 Chap. 5 Current Mirrors and Biasing Techniques

VDD

Iout
Copy

Circuit

IREF

Figure 5.4 Conceptual means of
copying currents.

VDD
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f �1(IREF)

VDD

IREF
Iout

L
W

L
W

(a) (b)

M1
M1

M2

Analog
Circuit

Figure 5.5 (a) Diode-connected device
providing inverse function; (b) basic cur-
rent mirror.

The structure consisting of M1 and M2 in Fig. 5.5(b) is called a “current mirror.” In the general case,
the transistors need not be identical. Neglecting channel-length modulation, we can write

IREF =
1

2
µnCox

�
W

L

�

1

(VGS � VTH)2 (5.2)

Iout =
1

2
µnCox

�
W

L

�

2

(VGS � VTH)2 (5.3)

obtaining

Iout =
(W/L)2

(W/L)1
IREF (5.4)

The key property of this topology is that it allows precise copying of the current with no dependence on
process and temperature. The translation from IREF to Iout merely involves the ratio of device dimensions,
a quantity that can be controlled with reasonable accuracy.

It is important to appreciate the cause-and-effect relationships stipulated by VGS = f �1(IREF) and
f [ f �1(IREF)] = IREF. The former suggests that we must generate a VGS from IREF; i.e., IREF is the cause
and VGS is the effect. A MOSFET can perform this function only if it is configured as a diode while
carrying a current of IREF [M1 in Fig. 5.5(b)]. Similarly, the latter equation indicates that a transistor must
sense f �1(IREF) (= VGS) and generate f [ f �1(IREF)]. In this case, the cause is VGS and the effect is the
output current, f [ f �1(IREF)] [as provided by M2 in Fig. 5.5(b)].

With the aid of these observations, we can understand why a circuit such as that in Fig. 5.6 does not
perform current copying. Here, Vb is not caused by IREF, and hence Iout does not track IREF.
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IREF

M1 M2

VDD

Iout

Vb Figure 5.6 Circuit incapable of
copying current.

� Example 5.1

In Fig. 5.7, find the drain current of M4 if all of the transistors are in saturation.

VDD

IREF

Iout

M1 M2

M3 M4

Figure 5.7

Solution

We have ID2 = IREF[(W/L)2/(W/L)1]. Also, |ID3| = |ID2| and ID4 = ID3 × [(W/L)4/(W/L)3]. Thus, |ID4| =
�� IREF , where � = (W/L)2/(W/L)1 and � = (W/L)4/(W/L)3. Proper choice of � and � can establish large
or small ratios between ID4 and IREF . For example, � = � = 5 yields a magnification factor of 25. Similarly,
� = � = 0.2 can be utilized to generate a small, well-defined current.

�

We should also remark that the copy of a copy may not be as “clear” as the original. Owing to random
“mismatches” between M1 and M2 in the above example, ID2 slightly deviates from its nominal value.
Similarly, as ID2 is copied onto ID4, additional errors accumulate. We must therefore avoid long current
mirror chains.

Current mirrors find wide application in analog circuits. Figure 5.8 illustrates a typical case, where a
differential pair is biased by means of an NMOS mirror for the tail current source and a PMOS mirror

IREF

ITM0

M2

VDD

P

0.4IT 0.4IT

M1

M3 M4

M5 M6 W
L

( )P
W
L

( )P

X

W
L )N5(W

L )N2(
W
L

)N(

Figure 5.8 Current mirrors used to bias a differential amplifier.
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for the load current sources. The device dimensions shown establish a drain current of 0.4IT in M5 and
M6, reducing the drain current of M3 and M4 and hence increasing the amplifier’s gain.

Sizing Issues Current mirrors usually employ the same length for all of the transistors so as to minimize
errors due to the side-diffusion of the source and drain areas (L D). For example, in Fig. 5.8, the NMOS
current sources must have the same channel length as M0. This is because if Ldrawn is, say, doubled, then
Lef f = Ldrawn � 2L D is not. Furthermore, the threshold voltage of short-channel devices exhibits some
dependence on the channel length (Chapter 17). Thus, current ratioing is achieved by scaling only the
width of the transistors.

Suppose we wish to copy a reference current, IREF, and generate 2IREF. We begin with a width
of WREF for the diode-connected reference transistor and hence choose 2WREF for the current source
[Fig. 5.9(a)]. Unfortunately, direct scaling of the width also faces difficulties. As illustrated in Fig. 5.9(b),
since the “corners” of the gate are poorly defined, if the drawn W is doubled, the actual width does not
exactly double. We thus prefer to employ a “unit” transistor and create copies by repeating such a device
[Fig. 5.9(c)].

IREF

M2

VDD

(a)

2IREF

2WREF

W

A A

Gate
Corner

Oxide

Channel

Top
View

AA
View W

IREF

MREF

M2

VDD

2IREF

WREF WREF

(c)(b)

MREF

WREF

Figure 5.9 (a) Current mirror multiplying IREF by 2, (b) effect of gate corner on current accuracy, and (c) more
accurate current multiplication.

But how do we generate a current equal to IREF/2 from IREF? In this case, the diode-connected device
itself must consist of two units, each carrying IREF/2. Figure 5.10(a) depicts an example for the generation
of both 2IREF and IREF/2; each unit has a width of W0 (and the same length).

IREF

MREF

VDD

2IREF

W0 W0 W0 W0 W0

IREF
2

IREF
2

W0W0

IREF

M

VDD

2IREF

REF
W0 W0

W0
W0

W0
Series Transistors

(a) (b)
Figure 5.10 Current mirrors providing IREF/2 from IREF by (a) half-width device and (b) series transistors.

The above approach requires a large number of unit transistors if many different currents must be
generated. It is possible to reduce the complexity by scaling the lengths, but not directly. In order
to avoid the errors due to L D , we can, for example, double the equivalent length by placing two unit
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transistors in series. Illustrated in Fig. 5.10(b), this approach preserves an effective length of Ldrawn �2L D

for each unit, yielding an equivalent length of 2(Ldrawn � 2L D) for the composite device and hence
halving the current. Note that this structure is not a cascode because the bottom device is in the triode
region (why?).

We should also mention that current mirrors can process signals as well. In Fig. 5.5(b), for example,
if IREF increases by �I , then Iout increases by �I (W/L)2/(W/L)1. That is, the circuit amplifies the
small-signal current if (W/L)2/(W/L)1 > 1 (but at the cost of proportional multiplication of the bias
current).

� Example 5.2

Calculate the small-signal voltage gain of the circuit shown in Fig. 5.11.

M1

Vout

VDD

Vin
RL

M2

M3

Figure 5.11

Solution

The small-signal drain current of M1 is equal to gm1Vin . Since ID2 = ID1 and ID3 = ID2(W/L)3/(W/L)2,
the small-signal drain current of M3 is equal to gm1Vin(W/L)3/(W/L)2, yielding a voltage gain of
gm1 RL (W/L)3/(W/L)2.

�

5.2 Cascode Current Mirrors

In our discussion of current mirrors thus far, we have neglected channel-length modulation. In practice,
this effect produces significant error in copying currents, especially if minimum-length transistors are
used so as to minimize the width and hence the output capacitance of the current source. For the simple
mirror of Fig. 5.5(b), we can write

ID1 =
1

2
µnCox

�
W

L

�

1

(VGS � VTH)2(1 + �VDS1) (5.5)

ID2 =
1

2
µnCox

�
W

L

�

2

(VGS � VTH)2(1 + �VDS2) (5.6)

and hence

ID2

ID1
=

(W/L)2

(W/L)1
•

1 + �VDS2

1 + �VDS1
(5.7)

While VDS1 = VGS1 = VGS2, VDS2 may not equal VGS2 because of the circuitry fed by M2. For example,
in Fig. 5.8, the potential at node P is determined by the input common-mode level and the gate-source
voltage of M1 and M2, and it may not equal VX .
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In order to suppress the effect of channel-length modulation in Fig. 5.5(b), we can (1) force VDS2 to be
equal to VDS1, or (2) force VDS1 to be equal to VDS2. These two principles lead to two different topologies.

First Approach We begin with the first principle and wish to ensure that VDS2 in Fig. 5.5(b) is both
constant and equal to VDS1. Recall from Chapter 3 that a cascode device can shield a current source,
thereby reducing the voltage variations across it. As shown in Fig. 5.12(a), even though the analog
circuit may allow VP to vary substantially, VY remains relatively constant. But how do we ensure that
VDS2 = VDS1? We must generate Vb such that Vb � VGS3 = VDS1 (= VGS1), i.e., Vb = VGS3 + VGS1. In
other words, Vb can be established by two diode-connected devices in series [Fig. 5.12(b)], provided that
VGS0 + VGS1 = VGS3 + VGS1, and hence VGS0 = VGS3. We now attach the Vb generator of Fig. 5.12(b)
to the cascode current source as shown in Fig. 5.12(c). The result allows accurate copying of the current
even in the presence of body effect (why?).

IREF

M0IREF

M1 M2

M3

VDD

Vb

Iout

YX

M1

VDD

X

IREF

M0

M1

VDD

X

M2

M3

Y
N

(c)(a) (b)

P

N

Analog
Circuit

Iout

P

Analog
Circuit

VGS0 + VGS1

Vb

Figure 5.12 (a) Cascode current source, (b) modification of mirror circuit to generate the cascode bias voltage,
and (c) cascode current mirror.

A few notes on the sizing of the transistors in Fig. 5.12(c) are warranted. As explained earlier, we
typically select L2 = L1 and scale W2 (in integer units) with respect to W1 to obtain the desired multiple
of IREF. Similarly, for VGS3 to be equal to VGS0, we choose L3 = L0 and scale W3 with respect to W0

by the same factor, i.e., W3/W0 = W2/W1. In practice, L3 and L0 are equal to the minimum allowable
value so as to minimize their width, while L1 and L2 may be longer in some cases.1

� Example 5.3

In Fig. 5.13, sketch VX and VY as a function of IREF . If IREF requires 0.5 V to operate as a current source, what is
its maximum value?

Solution

Since M2 and M3 are properly ratioed with respect to M1 and M0, we have VY = VX �
�

2IREF/[µnCox (W/L)1]+
VTH1. The behavior is plotted in Fig. 5.13(b).

To find the maximum value of IREF , we note that

VN = VGS0 + VGS1 (5.8)

=

�
2IREF

µnCox

���
L

W

�

0

+

��
L

W

�

1

�

+ VT H0 + VTH1 (5.9)

1To reduce channel-length modulation, mismatches, or flicker noise.
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(a) (b)
Figure 5.13

Thus,

VDD �

�
2IREF

µnCox

���
L

W

�

0

+

��
L

W

�

1

�

� VTH0 � VTH1 = 0.5 V (5.10)

and hence

IRE F,max =
µnCox

2

(VDD � 0.5 V � VTH0 � VTH1)2

(
�

(L/W )0 +
�

(L/W )1)2
(5.11)

�

While operating as a current source with a high output impedance and accurate value, the topology of
Fig. 5.12(c) nonetheless consumes substantial voltage headroom. For simplicity, let us neglect the body
effect and assume that all of the transistors are identical. Then, the minimum allowable voltage at node
P is equal to

VN � VTH = VGS0 + VGS1 � VTH (5.12)

= (VGS0 � VTH) + (VGS1 � VTH) + VTH (5.13)

i.e., two overdrive voltages plus one threshold voltage. How does this value compare with that in
Fig. 5.12(a) if Vb could be chosen more arbitrarily? As shown in Fig. 5.14(a), Vb could be so low

IREF

VDD

Vb

Iout � IREF

YX

IREF

M0

M1

VDD

X

Iout = IREF

Y
N

(a)

VGS2 VDS2 (=VGS1)

(b)

M1

P

M3

M2

M3

M2

P

VGS3 � VTH3

VGS2 � VTH3

VGS3 � VTH3

Figure 5.14 (a) Cascode current source with minimum headroom voltage; (b) headroom consumed by a
cascode mirror.
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(= VGS3 + VGS2 � VTH2) that the minimum allowable voltage at P is merely two overdrive voltages.
Thus, the cascode mirror of Fig. 5.12(c) “wastes” one threshold voltage in the headroom. This is because
VDS2 = VGS2, whereas VDS2 could be as low as VGS2 � VTH while maintaining M2 in saturation.

Figure 5.14 summarizes our discussion. In Fig. 5.14(a), Vb is chosen to allow the lowest possible
value of VP , but the output current does not accurately track IREF because M1 and M2 sustain unequal
drain-source voltages. In Fig. 5.14(b), a higher accuracy is achieved, but the minimum level at P is higher
by one threshold voltage.

Before resolving this issue, it is instructive to examine the large-signal behavior of a cascode current
source.

� Example 5.4

In Fig. 5.15(a), assume that all of the transistors are identical and sketch IX and VB as VX drops from a large positive
value.

IREF

M0

M1

VDD

N

(a) (b)

A B

M2

M3

VX

IX

VX

VB

VN � VGS3

VN � VTH3 VXVN � VTH3

VA � VTH2 + VDS3

IX

(c)

IREF

Figure 5.15

Solution

For VX � VN � VTH , both M2 and M3 are in saturation, IX = IREF and VB = VA. As VX drops, which transistor
enters the triode region first, M3 or M2? Suppose M2 enters the triode region before M3 does. For this to occur, VDS2
must drop and, since VGS2 is constant, so must ID2. This means that VGS3 increases while ID3 decreases, which is
not possible if M3 is still in saturation. Thus, M3 enters the triode region first.

As VX falls below VN � VTH , M3 enters the triode region, requiring a greater gate-source overdrive to carry the
same current. Thus, as shown in Fig. 5.15(b), VB begins to drop, causing ID2 and hence IX to decrease slightly. As
VX and VB decrease further, eventually we have VB < VA � VTH , and M2 enters the triode region. At this point, ID2
begins to drop sharply. For VX = 0, IX = 0, and M2 and M3 operate in the deep triode region. Note that as VX drops
below VN � VTH3, the output impedance of the cascode falls rapidly because gm3 degrades in the triode region.

�

Second Approach In order to avoid the VTH penalty in the voltage headroom of the above cascode
current source, we force VDS1 to be equal to VDS2 instead. To understand this principle, we return to
Fig. 5.14(a) and recognize that the VTH headroom consumption is eliminated only if Vb = VGS3 + (VGS2 �
VTH2), i.e., only if VDS2 is around one overdrive voltage. How can we then ensure that VDS1 = VDS2

(= VGS2 � VTH2)? Since M1 is a diode-connected device, it appears impossible to expect a VDS1 less than
one threshold.

A simple escape from the foregoing quandary is to create a deliberate voltage difference between
the gate and drain of M1 by a means of a resistor. Illustrated in Fig. 5.16(a), the idea is to choose
R1 IREF � VTH1 and Vb = VGS3 + (VGS1 � VTH1). Now, VDS1 = VGS1 � R1 IREF � VGS1 � VTH1, which is
equal to Vb � VGS3 and hence to VDS2.
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M3

M2 M5
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I6

VDD

Vb

M5

R6

I6

VDD

Vb

M6

(c)(b)
Figure 5.16 (a) Use of IR drop to improve accuracy of current mirror, (b) generation of Vb, and (c) alternative
generation of Vb.

� Example 5.5

Is the M1-R1 combination in Fig. 5.16(a) a diode-connected device? Assume � > 0.

Solution

From the small-signal equivalent shown in Fig. 5.17, we express the voltage drop across R1 as IX R1 and write a
KCL at the drain node:

VX � IX R1

rO
+ gm VX = IX (5.14)

VX gmV1
rOV1

R1

IX
M1

Figure 5.17

It follows that

VX

IX
=

R1 + rO

1 + gmrO
(5.15)

which reduces to 1/gm in the absence of channel-length modulation. (Is it a coincidence that this impedance is the
same as that seen at the source of a common-gate stage with � = 0?!) Thus, from a small-signal point of view, the
combination is close to a diode-connected device. From a large-signal point of view, VGS1 �

�
2ID/[µnCox (W/L)]+

VTH if � is small, suggesting diode-connected operation as well.
�

The circuit of Fig. 5.16(a) entails two issues. First, in the presence of PVT variations, it may be
difficult to guarantee that R1 IREF � VTH1 as R1 and VTH may vary differently. Second, the generation
of Vb = VGS3 + (VGS1 � VTH1) is not straightforward. Let us address the latter issue first. We seek an
arrangement that adds one gate-source voltage to an overdrive, surmising that we must begin with a diode-
connected device. We consider the branch shown in Fig. 5.16(b) as a candidate and write Vb = VGS5+R6 I6.
We can readily choose I6 and the dimensions of M5 to ensure that VGS5 = VGS3. However, the condition
R6 I6 = VGS1 � VTH1 = VGS1 � R1 IREF translates to R6 I6 + R1 IREF = VGS1, which is difficult to meet
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because the I R products do not “track” the MOS gate-source voltage. For example, the value of the
resistors may fall with temperature while VGS may rise.

Depicted in Fig. 5.16(c) is another example, where M5 establishes the VGS, and M6 and R6 the
overdrive. We select I6 and the device parameters such that

VGS5 = VGS3 (5.16)

VGS6 � R6 I6 = VGS1 � VTH1 (5.17)

= VGS1 � R1 IREF (5.18)

observing that it is now possible to ensure that VGS6 and VGS1 track each other, and so do R1 IREF and
R6 I6. For example, we may simply choose I6 = IREF, R6 = R1, and (W/L)6 = (W/L)1.2

To avoid the first issue mentioned above, we develop another circuit topology that forces the VDS of
the diode-connected device to be equal to the VDS of the current source transistor. The level shift between
the gate and drain voltages need not be created by a resistor. In particular, suppose we tie the output
node of a cascode topology to its input [Fig. 5.18(a)]. In this case, VDS1 = Vb � VGS0, and Vb can be
chosen to place M1 at the edge of saturation. We now connect this branch to the main cascode current
source as shown in Fig. 5.18(b), recognizing that VDS1 is forced to be equal to VDS2 if VGS0 = VGS3.
Called a “low-voltage cascode,” this configuration finds wider usage than the regular cascode shown in
Fig. 5.14(b).

(a)

M1

M0Vb

IREF

A

X

VDD

M1

M0

Vb

IREF

A

X

VDD

B

M2

M3

(b)

Iout

Figure 5.18 Modification of cascode mirror for low-voltage operation.

We must now answer two questions. First, how do we choose Vb in Fig. 5.18(a) so that both M1 and M0

are in saturation? We must have Vb � VTH0 � VX (= VGS1) for M0 to be saturated and VGS1 � VTH1 � VA

(= Vb � VGS0) for M1 to be saturated. Thus,

VGS0 + (VGS1 � VTH1) � Vb � VGS1 + VTH0 (5.19)

A solution exists if VGS0 + (VGS1 � VTH1) < VGS1 + VTH0, i.e., if VGS0 � VTH0 < VTH1. We must therefore
size M0 to ensure that its overdrive is well below VTH1.

The second question is how to generate Vb. For minimal voltage headroom consumption,
VA = VGS1 � VTH1, and hence Vb must be equal to (or slightly greater than) VGS0 + (VGS1 � VTH1).
Figure 5.19(a) depicts an example where M5 generates VGS5 � VGS0 and M6 together with Rb

2The circuit incurs a small tracking error because M6 experiences body effect but M1 does not (and also because M3 does but
M5 does not).
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M0
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X

M6

I1

VDD

M7

Figure 5.19 Generation of gate voltage Vb for cascode mirrors.

produces VDS6 = VGS6 � Rb I1 � VGS1 � VTH1. Some inaccuracy nevertheless arises because M5 does
not suffer from body effect whereas M0 does. Also, the magnitude of Rb I1 is not well-controlled.

A simpler alternative is shown in Fig. 5.19(b), where the diode-connected transistor M7 provides the
necessary VGS and M6 creates a VDS equal to the required overdrive.

� Example 5.6

Shown in Fig. 5.20(a) is a differential pair along with its bias network. In this particular design, the voltage headroom
is too small to allow the use of a cascode current source. Devise a method to reduce the current mirror error due to
channel-length modulation.

IREF

M1

VDD

ISS

M2

P

A B A B A B

IREF

M1

VDD

ISS

M2

PP’

Wd Wd

Wr Wr

(a) (b)
Figure 5.20

Solution

Since the limited headroom does not allow us to make VDS2 equal to VDS1, we seek to make VDS1 equal to VDS2.
As exemplified by Fig. 5.16(a), we can simply insert a resistor in series with the drain of M1 and select the voltage
drop across it such that VDS1 = VDS2. However, if variations in the circuit preceding the differential pair change
the common-mode level at A and B, then VDS1 �= VDS2. We must therefore force the voltage at node P upon the
drain of M1. Let us replicate the differential pair and insert the replica as shown in Fig. 5.20(b). Now, the voltages
at P � and P track even if the CM level at A and B varies. To ensure that VP � = VP , the two differential pairs must
incorporate the same lengths and scale their widths according to Wr /Wd = IREF/ISS . Of course, if the CM level at
A and B rises excessively, the replica transistors enter the triode region, introducing some error.

�
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� Example 5.7

Figure 5.21(a) shows an alternative current mirror exhibiting a high output impedance. Study the small-signal and
large-signal properties of the circuit.

IREF

VDD

M2

VX

M1

M3

VX

ID1

VGS1 � VTH1 VTH3

M1 begins
to turn o� 

(a) (b)

N

X

Figure 5.21

Nanometer Design Notes

Owing to severe channel-length modu-
lation in nanometer devices, even the
cascode current mirror may exhibit sub-
stantial mismatches. We choose W/L =
5 µm/40 nm for the devices in the cir-
cuit shown below and IREF = 0.25 mA.
As VX is swept from low to high values,
we observe that I X still varies noticeably
even though all transistors are in satura-
tion for 0.4 V < VX .
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Solution

In this circuit, M3 raises the output impedance by sensing the voltage change at node X
and adjusting the voltage at node N . For example, suppose VX rises by �V and tends
to increase ID1 by �V/rO1. Transistor M3 then draws a current change of gm3�V
from node N , causing VN to fall by approximately gm3�V/gm2 and ID1 to decrease by
(gm3�V/gm2)gm1. In other words, if we choose gm3gm1/gm2 � r�1

O1, the net change
in ID1 is small.

The circuit displays interesting large-signal properties. Let us sweep VX from 0
to a high value and examine ID1. At VX = 0, M1 operates in the deep triode region,
carrying a zero current, and M3 is off. As VX rises, so does ID1 proportionally, up to
VX = VGS1 � VTH1. Beyond this point, ID1 varies more gradually [Fig. 5.21(b)]. If
VX exceeds VTH3, M3 turns on and begins to “regulate” ID1, creating a higher output
impedance. However, for a sufficiently large VX , M3 absorbs all of IREF and turns
M1 off.

While providing a high output impedance without a cascode device, the above
circuit does pose its own voltage headroom limitation, i.e., VX must exceed
VTH3(> VDS,sat ). �

5.3 Active Current Mirrors

As mentioned earlier and exemplified by the circuit of Fig. 5.11, current
mirrors can also process signals, i.e., operate as “active” elements. Particu-
larly useful is a type of mirror topology used in conjunction with differen-
tial pairs. In this section, we study this circuit and its properties. Shown in
Fig. 5.22 and sometimes called a five-transistor “operational transconductance
amplifier” (OTA), this topology finds application in many analog and digital

systems and merits a detailed study here. Note that the output is single-ended; hence the circuit is
sometimes used to convert differential signals to a single-ended output. We analyze a simpler topology
with passive load before studying the OTA.

Differential Pair with Passive Load To generate a single-ended output, we may simply discard one
output of a differential pair as shown in Fig. 5.23(a). Here, a current source in a “passive ” mirror
arrangement serves as the load. What is the small-signal gain, Av = Vout/Vin , of this circuit? We
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Figure 5.22 Five-transistor OTA.
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P
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Figure 5.23 (a) Differential pair with current-source load; (b) circuit for calculation of Gm ; (c) circuit for
calculation of Rout.

calculate Av using two different approaches, assuming � = 0 for simplicity. Owing to the asymmetry,
the half-circuit concept cannot be applied directly here.

Writing |Av| = Gm Rout, we must compute the short-circuit transconductance, Gm , and the output
resistance, Rout. We recognize from Fig. 5.23(b) that M1 and M2 become symmetric when the output is
shorted to ac ground. Thus, Gm = Iout/Vin = (gm1Vin/2)/Vin = gm1/2. As illustrated in Fig. 5.23(c),
for the Rout calculation, M2 is degenerated by the source output impedance of M1, Rdeg = (1/gm1)||rO1,
thereby exhibiting an output impedance equal to (1 + gm2rO2)Rdeg + rO2a � 2rO2. It follows that
Rout = (2rO2)�rO4, and

|Av| =
gm1

2
[(2rO2)�rO4] (5.20)

Interestingly, if rO4 	 
, then Av 	 �gm1rO2.
In our second approach, we calculate VP/Vin and Vout/VP in Fig. 5.23(a) and multiply the results to

obtain Vout/Vin . With the aid of Fig. 5.24 and viewing M1 as a source follower, we write

VP

Vin
=

Req ||rO1

Req ||rO1 +
1

gm1

(5.21)
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VDD

rO4

M1Vin M2

ISS

P

Vout

Req Figure 5.24 Circuit for calculation of
VP/Vin .

where Req denotes the resistance seen looking into the source of M2. Since the drain of M2 is terminated
by a relatively large resistance, rO4, the value of Req must be obtained from Eq. (3.117):

Req =
rO2 + rO4

1 + gm2rO2
(5.22)

It follows that

VP

Vin
=

gm1rO1(rO2 + rO4)
(1 + gm1rO1)(rO2 + rO4) + (1 + gm2rO2)rO1

(5.23)

We now calculate Vout/VP . From Fig. 5.25,

Vout

VP
=

(1 + gm2rO2)rO4

rO2 + rO4
(5.24)

Vb

VDD

M2

rO4

rO2

Vout

VP Figure 5.25 Circuit for calculation of
Vout/VP .

From (5.23) and (5.24), we have

Vout

Vin
=

gm2rO2rO4

2rO2 + rO4
(5.25)

=
gm2

2
[(2rO2)�rO4] (5.26)

Differential Pair with Active Load In the circuit of Fig. 5.23(a), the small-signal drain current of
M1 is “wasted.” As conceptually shown in Fig. 5.26(a), it is desirable to utilize this current with proper
polarity at the output. This can be accomplished by the five-transistor OTA shown in Fig. 5.26(b), where
M3 and M4 are identical and operate as an active current mirror.



Razavi-3930640 book December 17, 201516:35 149

Sec. 5.3 Active Current Mirrors 149

VDD

M4

M1 M2

ISS

inV

Vout

(a) (b)

?

VDD

M4

M1 M2

ISS

Vin

Vout

M3

VDD

M4

M1 M2

ISS

Vout

M3

XF

(c)

F

Figure 5.26 (a) Concept of combining the drain currents of M1 and M2, (b) realization of (a), and (c) response of
the circuit to differential inputs.

To see how M3 enhances the gain, suppose the gate voltages of M1 and M2 change by equal and
opposite amounts [Fig. 5.26(c)]. Consequently, ID1 increases, VF falls, and ID2 decreases. Thus, the
output voltage rises by means of two mechanisms: M2 draws less current from X to ground and M4

pushes a greater current from VDD to X . By contrast, in the circuit of Fig. 5.23(a), M4 plays no active role
in changing Vout because its gate voltage is constant. The five-transistor OTA is also called a differential
pair with active load.

5.3.1 Large-Signal Analysis

Let us study the large-signal behavior of the five-transistor OTA. To this end, we replace the ideal tail
current source by a MOSFET as shown in Fig. 5.27(a). If Vin1 is much more negative than Vin2, M1 is
off, and so are M3 and M4. Since no current can flow from VDD , both M2 and M5 operate in the deep
triode region, carrying zero current. Thus, Vout = 0.3 As Vin1 approaches Vin2, M1 turns on, drawing a
fraction of ID5 from M3 and turning M4 on. The output voltage then depends on the difference between
ID4 and ID2. For a small difference between Vin1 and Vin2, both M2 and M4 are saturated, providing
a high gain [Fig. 5.27(b)]. As Vin1 becomes more positive than Vin2, ID1, |ID3|, and |ID4| increase and
ID2 decreases, allowing Vout to rise and eventually driving M4 into the triode region. If Vin1 � Vin2 is
sufficiently large, M2 turns off, M4 operates in the deep triode region with zero current, and Vout = VDD .

VDD

M4

M1 M2Vin1

Vout

M3

P

(a)

Vin2

(b)

Vin1�Vin2

Vout

VDD

MVb 5

F

High�Gain
Region

Figure 5.27 (a) Differential pair with active current mirror and realistic current source; (b) large-signal
input-output characteristic.

3If Vin1 is greater than one threshold voltage with respect to ground, M5 may draw a small current from M1, raising Vout slightly.
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Note that if Vin1 > VF + VTH , then M1 enters the triode region. Also, Vout is in-phase with respect to Vin1

but 180� out of phase with respect to Vin2.
The choice of the input common-mode voltage of the circuit is also important. For M2 to be saturated,

the output voltage cannot be less than Vin,C M � VTH . Thus, to allow maximum output swings, the input
CM level must be as low as possible, with the minimum given by VGS1,2 + VDS5,min . The constraint
imposed by the input CM level upon the output swing in this circuit is a critical drawback.

What is the output voltage of the circuit when Vin1 = Vin2? With perfect symmetry, Vout = VF =
VDD � |VGS3|. This can be proved by contradiction as well. Suppose, for example, that Vout < VF . Then,
due to channel-length modulation, M1 must carry a greater current than M2 (and M4 a greater current
than M3). In other words, the total current through M1 is greater than half of ISS . But this means that
the total current through M3 also exceeds ISS/2, violating the assumption that M4 carries more current
than M3. In reality, however, asymmetries in the circuit may result in a large deviation in Vout, possibly
driving M2 or M4 into the triode region. For example, if the threshold voltage of M2 is slightly smaller
than that of M1, the former carries a greater current than the latter even with Vin1 = Vin2, causing Vout

to drop significantly. For this reason, the circuit is rarely used in an open-loop configuration to amplify
small signals. Nonetheless, the open-loop OTA proves useful as a differential to a single-ended converter
for large swings, as illustrated by the following example.

� Example 5.8

Some digital circuits operate with differential (complementary) signals having voltage swings less than VDD . For
example, the single-ended swing can be 300 mVpp . Explain how a five-transistor OTA can convert the moderate-swing
differential signals to a single-ended rail-to-rail signal.

Solution

Consider the OTA shown in Fig. 5.28, where M1 and M2 sense swings equal to V2 � V1 = 300 mV. With proper
choice of (W/L)1,2 and ISS , we can guarantee that such a swing turns off one side. For example, if M1 carries all
of ISS , then M2 remains off, allowing M4 to pull Vout to VDD . Conversely, when M2 hogs ISS , M1, M2, and M4
turn off, M2 and M5 remain on with zero current, and Vout = 0. The “push-pull” action between M2 and M4 thus
produces rail-to-rail swings at the output.

VDD

M4

M1 M2

Vout

M3

X
F

V1

V2 V2

V1

M5

ISS

P

Figure 5.28

In practice, Vout does not reach exactly VDD or zero if V1 > VTH1,2. The proof is left as an exercise for the reader.
(Hint: if M2 and M5 are in the deep triode region, then VP approaches zero, possibly turning on M1.) For this reason,
the OTA is typically followed by a CMOS inverter to obtain rail-to-rail swings.

�

� Example 5.9

Assuming perfect symmetry, sketch the output voltage of the circuit in Fig. 5.29(a) as VDD varies from 3 V to zero.
Assume that for VDD = 3 V, all of the devices are saturated.
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+3 V �  VGS3
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Figure 5.29

Solution

For VDD = 3 V, symmetry requires that Vout = VF . As VDD drops, so do VF and Vout with a slope close to unity
[Fig. 5.29(b)]. As VF and Vout fall below +1.5 V �VTHN , M1 and M2 enter the triode region, but their drain currents
are constant if M5 is saturated. Further decrease in VDD and hence VF and Vout causes VGS1 and VGS2 to increase,
eventually driving M5 into the triode region. Thereafter, the bias current of all of the transistors drops, lowering the
rate at which Vout decreases. For VDD < |VTH P |, we have Vout = 0.

�

� Example 5.10

Sketch the large-signal input-output characteristic of the unity-gain buffer shown in Fig. 5.30(a) if the op amp is
realized as a five-transistor OTA.

VDD

M4

M1 M2

M3
Vin Vout Vout

M5Vb

Vin

Vin

V out =
 V in

VTH

M4 enters
triode region 

(c)(a) (b)

P

Figure 5.30

Solution

Drawing the circuit as shown in Fig. 5.30(b), we begin with Vin = 0 and note that M1, M3, and M4 are off. Thus, M5
enters the triode region with zero drain current and the diode-connected device M2 sustains a zero VGS.4 We therefore
have Vout = VP = 0 [Fig. 5.30(c)]. As Vin rises and exceeds one threshold, M1 begins to draw current from M3,

4In constructing input-output characteristics, we assume that the input is changing slowly, and hence the subthreshold currents
have enough time to reduce VGS to zero.
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turning M4 and hence M2 on. Note that, since ID3 � ID4, we have ID1 � ID2 and VGS1 � VGS2. That is, Vout � Vin .
This unity-gain action continues as Vin increases. For a sufficiently high Vin , two phenomena occur: (a) M1 enters
the triode region if Vin > VDD �|VGS3|+ VTH1, and (b) M4 enters the triode region if Vout > VDD �|VGS4 � VTH4|,
and hence Vin > VDD � |VGS4 � VTH4|. These two values are roughly equal if VTH1 and |VTH4| are comparable.
Beyond this point, |ID4| < |ID3| (why?), and hence VGS1 > VGS2, yielding Vout < Vin . If Vin = VDD , then M4
carries little current and Vout incurs substantial error.

�

Nanometer Design Notes

The five-transistor OTA provides a lim-
ited gain in nanometer technologies and
across a limited output range. With
VDD = 1 V, W/L = 5 µ/40 nm, a tail cur-
rent of 0.25 mA, and input CM level of 0.5
V, we obtain the characteristic shown be-
low. The slope plot also shows the steep
drop in the gain as the NMOS or PMOS
device tied to the output enters the triode
region.
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5.3.2 Small-Signal Analysis

We now analyze the small-signal properties of the circuit shown in Fig. 5.27(a),
assuming � = 0 for simplicity. Can we apply the half-circuit concept to
calculate the differential gain here? As illustrated in Fig. 5.31, with small
differential inputs, the voltage swings at nodes F and X are vastly different.
This is because the diode-connected device M3 yields a much lower voltage
gain from the input to node F than that from the input to node X . As a result,
the effects of VF and VX at node P (through rO1 and rO2, respectively) do not
cancel each other, and this node cannot be considered a virtual ground. Using
the lemma |Av| = Gm Rout, we first perform an approximate analysis so as to
develop insight and then carry out an exact calculation of the gain.

VDD

M4

M1 M2

ISS

M3

P
rO1 rO2

F X

Figure 5.31 Asymmetric swings
in a differential pair with active
current mirror.

Approximate Analysis For the calculation of Gm , consider Fig. 5.32(a).
The circuit is not quite symmetric, but because the impedance seen at node
F is relatively low and the swing at this node small, the current returning
from F to P through rO1 is negligible, and node P can be approximated by

a virtual ground [Fig. 5.32(b)]. Thus, ID1 = |ID3| = |ID4| = gm1,2Vin/2 and ID2 = �gm1,2Vin/2, yielding
Iout = �gm1,2Vin , and hence |Gm | = gm1,2. Note that, by virtue of active current mirror operation, this
value is twice the transconductance of the circuit of Fig. 5.23(b).

Calculation of Rout is less straightforward. We may surmise that the output resistance of this circuit
is equal to that of the circuit in Fig. 5.23(c), namely, (2rO2)�rO4. In reality, however, the active mirror
operation yields a different value because when a voltage is applied to the output to measure Rout, the
gate voltage of M4 does not remain constant. Rather than draw the entire equivalent circuit, we observe
that for small signals, ISS is open [Fig. 5.33(a)], any current flowing into M1 must flow out of M2, and the
role of the two transistors can be represented by a resistor RXY = 2rO1,2 [Fig. 5.33(b)]. As a result,
the current drawn from VX by RXY is mirrored by M3 onto M4 with unity gain. This current is equal to
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VDD

M4

M1 M2

ISS

M3

P

(a)

Iout

VDD

M4

M1 M2
Vin

M3

2
+

Vin

2
+

Vin

2
�

Vin

2
�

Iout

(b)

F F

Figure 5.32 (a) Circuit for calculation of Gm ; (b) circuit of (a) with node P grounded.

(b)

VDD

M4

M1 M2

M3
M4

VX

IX

RXY

VX

IX

gm3

1

2rO1,2

(a)

rO3

RXY

Figure 5.33 (a) Circuit for calculating Rout; (b) substitution of a resistor for M1 and M2.

VX/[2rO1,2 + (1/gm3)||rO3]. We multiply this current by (1/gm3)||rO3 to obtain the gate-source voltage
of M4 and then multiply the result by gm4. It follows that

IX =
VX

2rO1,2 +
1

gm3
||rO3

	
1 +

�
1

gm3
||rO3

�
gm4



+

VX

rO4
(5.27)

For 2rO1,2 � (1/gm3)�rO3, we have

Rout � rO2�rO4 (5.28)

The overall voltage gain is approximately equal to |Av| = Gm Rout = gm1,2(rO2�rO4), somewhat higher
than that of the circuit in Fig. 5.23(a).

Exact Analysis We must compute both the Gm and Rout of the OTA. Let us determine the Gm , without
grounding node P , by solving the equivalent circuit shown in Fig. 5.34. For the sake of brevity, we use
the subscript 1 to denote both M1 and M2. Since the current flowing downward through (1/gm3)||rO3

(denoted by rd hereafter) is �V4/rd , rO1 sustains a voltage equal to (�V4/rd � gm1V1)rO1. Adding this
voltage to VP = Vin1 � V1, we have

�
�

V4

rd
� gm1V1

�
rO1 + Vin1 � V1 = V4 (5.29)
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gm1V1 rO1V1 V2rO2 Vin2

P

Vin1

rO4gm4V4

gm2V2

V4

Iout

1
gm3

rO3rd = 

Figure 5.34 Equivalent circuit of five-transistor OTA

We also recognize that the sum of gm2V2 and the current flowing through rO2 is equal to V4/rd (why?).
That is

gm2V2 �
Vin2 � V2

rO2
=

V4

rD
(5.30)

Obtaining V1 and V2 from these equations in terms of V4 and noting that V1 � V2 = Vin1 � Vin2 and
Iout = gm4V4 + V4/rd , we arrive at

Iout = �gm1rO1
gm4rd + 1

rd + 2rO1
(Vin1 � Vin2) (5.31)

It follows that

Gm = �gm1rO1
gm4rd + 1

rd + 2rO1
(5.32)

In the next step, we calculate Rout. Let us express the output admittance from Eq. (5.27) as

IX

VX
=

1 + gm4rd

2rO1 + rd
+

1

rO4
(5.33)

=
(1 + gm4rd)rO4 + 2rO1 + rd

(2rO1 + rd)rO4
(5.34)

and hence

Gm Rout = �gm1rO1
(gm4rd + 1)rO4

(gm4rd + 1)rO4 + 2rO1 + rd
(5.35)

Since rd = rO3/(1 + gm3rO3), this expression reduces to

Gm Rout = �gm1rO1rO4
2gm3rO3 + 1

(2gm3rO3 + 1)rO4 + 2rO1(1 + gm3rO3) + rO3
(5.36)

= �
gm1rO1rO4

rO1 + rO3
•

2gm3rO3 + 1

2(gm3rO3 + 1)
(5.37)

We thus obtain a simple but exact expression for the gain:

|Av| = gm1(rO1||rO4)
2gm4rO4 + 1

2(gm4rO4 + 1)
(5.38)
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We can view this result as our approximate solution, gm1(rO1||rO4), multiplied by a “correction” factor
that is less than unity. For example, if gm4rO4 = 5, then |Av| = 0.92gm1(rO1||rO4).

� Example 5.11

With the aid of the above results, determine the output response to an input CM change if mismatches are neglected.

Solution

To represent an input CM change, we choose Vin1 = Vin2 in Fig. 5.34, obtaining from Eq. (5.31) Iout = 0. The
single-ended output voltage is therefore free from the input CM change.

�

� Example 5.12

Calculate the small-signal voltage gain of the circuit shown in Fig. 5.35. How does the performance of this circuit
compare with that of a differential pair with active mirror?

M1

VDD

M2Vb

Vin

Vout

Figure 5.35

Solution

We have Av = gm1(rO1�rO2), similar to the value derived above. For given device dimensions, this circuit requires
half of the bias current to achieve the same gain as a differential pair. However, advantages of differential operation
(less sensitivity to CM noise and less distortion) often outweigh the power penalty.

�

The above calculations of the gain have assumed an ideal tail current source. In reality, the output
impedance of this source affects the gain, but the error is relatively small.

Headroom Issues The five-transistor OTA does not easily lend itself to low-voltage operation as
the diode-connected PMOS device tends to consume a substantial voltage headroom. To arrive at a
modification, we observe that the gate voltage of this device need not be equal to its drain voltage. As
shown in Fig. 5.36, we insert a resistor in series with the gate and draw a constant current from it, thereby

VDD

M4

M1 M2

Vout

M3

F
R1 I1

ISS

G

Figure 5.36 OTA headroom
improvement by level shift.
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allowing VG to be below VF by R1 I1 � VTH3. With this level shift, the input CM level can be higher,
easing the design of the preceding stage and the tail current source. The value of I1 must be much less
than ISS/2 so as to introduce negligible asymmetry between the two sides of the circuit. The reader is
encouraged to compute the input-referred offset voltage arising from I1.

5.3.3 Common-Mode Properties

Let us now study the common-mode properties of the differential pair with active current mirror. We
assume � = 0 for simplicity and leave a more general analysis including body effect for the reader.
Our objective is to predict the consequences of a finite output impedance in the tail current source. As
depicted in Fig. 5.37, a change in the input CM level leads to a change in the bias current of all of the
transistors. How do we define the common-mode gain here? Recall from Chapter 4 that the CM gain
represents the corruption of the output signal of interest due to variations in the input CM level. In the
circuits of Chapter 3, the output signal was sensed differentially, and hence the CM gain was defined in
terms of the output differential component generated by the input CM change. In the circuit of Fig. 5.37,
on the other hand, the output signal of interest is sensed with respect to ground. Thus, we define the CM
gain in terms of the single-ended output component produced by the input CM change:

AC M =
�Vout

�Vin,C M
(5.39)

VDD

M4

M1 M2

M3

Vout

F X

Vin,CM

RSS

P
Figure 5.37 Differential pair with
active current mirror sensing a
common-mode change.

To determine AC M , we observe that if the transistors are symmetric, Vout = VF for any input CM level
(Section 5.3.1). For example, as Vin,C M increases, VF drops and so does Vout. In other words, nodes F
and X can be shorted [Fig. 5.38(a)], resulting in the equivalent circuit shown in Fig. 5.38(b). Here, M1

and M2 appear in parallel and so do M3 and M4. It follows that

AC M �
�

1

2gm3,4

����
rO3,4

2
1

2gm1,2
+ RSS

(5.40)

=
�1

1 + 2gm1,2 RSS

gm1,2

gm3,4
(5.41)
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(a) (b)

VDD

M4

M1

M3

Vout
F X

Vin,CM

RSS

M2

RSS

rO1,2
2

rO3,4
2

1
2gm3,4

Vout

Vin,CM

2gm1,2

VDD

Figure 5.38 (a) Simplified circuit of Fig. 5.37; (b) equivalent circuit of (a).

where we have assumed that 1/(2gm3,4) 
 rO3,4 and neglected the effect of rO1,2/2. The CMRR is then
given by

CMRR =
����

ADM

AC M

���� (5.42)

= gm1,2(rO1,2�rO3,4)
gm3,4(1 + 2gm1,2 RSS)

gm1,2
(5.43)

= (1 + 2gm1,2 RSS)gm3,4(rO1,2�rO3,4) (5.44)

For example, if RSS = rO and 2gm1,2rO � 1, then CMRR is on the order of (gmrO)2.
Equation (5.41) indicates that, even with perfect symmetry, the output signal is corrupted by input

CM variations. High-frequency common-mode noise therefore degrades the performance considerably
as the capacitance shunting the tail current source exhibits a lower impedance.

� Example 5.13

The CM gain of the circuit of Fig. 5.37 can be shown to be zero by a (flawed) argument. As shown in Fig. 5.39(a), if
Vin,C M introduces a change of �I in the drain current of each input transistor, then ID3 also experiences the same
change, and so does ID4. Thus, M4 seemingly provides the additional current required by M2, and the output voltage
need not change, i.e., AC M = 0. Explain the flaw in this proof.

Solution

The assumption that �ID4 completely cancels the effect of �ID2 is incorrect. Consider the equivalent circuit shown
in Fig. 5.39(b). Since

�VF = �I1

�
1

gm3

����rO3

�
(5.45)

we have

|�ID4| = gm4�VF (5.46)

= gm4�I1
rO3

1 + gm3rO3
(5.47)
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VDD
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M1 M2

M3

Vout
F X

RSS

P

�I �I
�Vin,CM

VDD
M4M3

Vout
F X

�I1 �I2

rO4rO3

(a) (b)
Figure 5.39

This current and �I2 ( = �I1 = �I ) give a net voltage change equal to

�Vout = (�I1gm4
rO3

1 + gm3rO3
� �I2)rO4 (5.48)

= ��I
1

gm3rO3 + 1
rO4 (5.49)

which is equal to the voltage change at node F .
�

Effect of Mismatches It is also instructive to calculate the common-mode gain in the presence of
mismatches. As an example, we consider the case where the input transistors exhibit slightly different
transconductances [Fig. 5.40(a)]. How does Vout depend on Vin,C M ? Since the change at nodes F and X
is relatively small, we can compute the change in ID1 and ID2 while neglecting the effect of rO1 and rO2.
As shown in Fig. 5.40(b), the voltage change at P can be obtained by considering M1 and M2 as a single
transistor (in a source follower configuration) with a transconductance equal to gm1 + gm2, i.e.,

�VP = �Vin,C M
RSS

RSS +
1

gm1 + gm2

(5.50)

where body effect is neglected. The changes in the drain currents of M1 and M2 are therefore given by

�ID1 = gm1(�Vin,C M � �VP) (5.51)

=
�Vin,C M

RSS +
1

gm1 + gm2

gm1

gm1 + gm2
(5.52)

�ID2 = gm2(�Vin,C M � �VP) (5.53)

=
�Vin,C M

RSS +
1

gm1 + gm2

gm2

gm1 + gm2
(5.54)
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P

(b)

Vin,CM

Figure 5.40 Differential pair with gm mismatch.

The change �ID1 multiplied by (1/gm3)�rO3 yields |�ID4| = gm4[(1/gm3)�rO3]�ID1. The difference
between this current and �ID2 flows through the output impedance of the circuit, which is equal to rO4

because we have neglected the effect of rO1 and rO2:

�Vout =




���
gm1�Vin,C M

1 + (gm1 + gm2)RSS

rO3

rO3 +
1

gm3

�
gm2�Vin,C M

1 + (gm1 + gm2)RSS

�

��� rO4 (5.55)

=
�Vin,C M

1 + (gm1 + gm2)RSS

(gm1 � gm2)rO3 � gm2/gm3

rO3 +
1

gm3

rO4 (5.56)

If rO3 � 1/gm3, we have

�Vout

�Vin,C M
�

(gm1 � gm2)rO3 � gm2/gm3

1 + (gm1 + gm2)RSS
(5.57)

Compared to Eq. (5.41), this result contains the additional term (gm1�gm2)rO3 in the numerator, revealing
the effect of transconductance mismatch on the common-mode gain.

5.3.4 Other Properties of Five-Transistor OTA

The five-transistor OTA suffers from two drawbacks with respect to the fully-differential topologies
studied in Chapter 4. First, the circuit exhibits a finite CMRR even with perfectly-matched transistors. As
depicted in Fig. 5.41(a), an input CM change directly corrupts Vout in this OTA, but not the differential
output in the fully-differential version [Fig. 5.41(b)].

Second, the supply rejection of this OTA is inferior. To understand this point, let us tie the inputs to a
constant voltage and change VDD by a small amount, �VDD [Fig. 5.42(a)]. How much does VF change?
Viewing M1 as a constant current source with a high output impedance, we recognize that VGS3 must
remain relatively constant. That is, �VF � �VDD . With symmetric transistors, Vout must also change by
�VDD . In other words, the gain from VDD to Vout is about unity.

Now consider the fully-differential topology in Fig. 5.42(b), where the PMOS current sources are
biased by a current mirror arrangement. How do VX and VY change here in response to a supply change
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(a) (b)
Figure 5.41 Input CM response of (a) five-transistor OTA and (b) fully-differential amplifier with
current-source loads.
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M3 + M4

M1 + M2
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X,Y

VDD

rO3 rO4

(c)(a) (b)
Figure 5.42 (a) OTA with supply step, (b) fully-differential circuit with supply step, and (c) equivalent circuit
of (b).

of �VDD? We note that VGS5 and hence VGS3 and VGS4 are constant, and, by virtue of symmetry, VX and
VY must change by equal amounts. We thus short X and Y and merge M3 with M4 and M1 with M2

[Fig. 5.42(c)]. If the output impedance of the cascode circuit consisting of M1 + M2 and ISS is very high,
then �VX = �VY � �VDD (why?). In this case, too, the output voltages change by �VDD , but their
difference remains intact. We should caution the reader that this circuit requires common-mode feedback
(Chapter 9).

5.4 Biasing Techniques

The amplifier stages studied thus far must be properly biased so that, in the absence of the input signal,
each transistor carries the required current and sustains the necessary terminal voltages. We recognize
that the current establishes the transconductance and output resistance of the transistor while the terminal
voltages determine the headroom and hence the allowable voltage swings. In this section, we consider a
number of biasing techniques for CMOS circuits.
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5.4.1 CS Biasing

Simple CS Stage We wish to create a certain drain current and desired VGS and VDS for a transistor in
a CS configuration. Using the transistor’s I/V characteristics, we have determined its dimensions and
must now tie the gate to a proper bias voltage [Fig. 5.43(a)]. But how do we ensure that VB does not
“fight” Vin? One solution is to couple Vin capacitively and establish a high impedance for VB so that X
has the same dc voltage as VB and the same signal voltage as Vin [Fig. 5.43(b)]. Noting that CB and RB

form a high-pass filter, we select 1/(2� RBCB) lower than the lowest input frequency so that the ac gain
from Vin to VX is near unity in the frequency range of interest.

M1

RD

Vout

VDD

Vin

VB

M 1

RD

Vout

VDD

VB

CB
Vin

RB

X
M1

RD

Vout

VDD

CB
Vin

RB

X

MB

VDD

IB

VB

M1

RD

Vout

VDD

CB
Vin

X

MB

VDD

IB

VG

MR

M1

RD

Vout

VDD

CB
Vin

X

MB

VDD

IB VG

MR

MC

(c)(a) (b)

(d) (e)

?

Figure 5.43 CS stage biasing with (a) VB fighting Vin , (b) ac coupling to set the dc value of VX to VB , (c) use of
a current mirror, (d) a large resistor realized by MR , and (e) accurate VGS generation for MR .

We now make several remarks. (1) Node X in Fig. 5.43(b) must have a dc path to a voltage; if RB is
removed, X floats, sustaining a poorly-defined voltage.5 (2) As explained in Sec. 5.1, the bias voltage,
VB , must not be constant; rather, it must be generated by a diode-connected device [Fig. 5.43(c)]. (3) We
typically select IB about one-tenth to one-fifth of ID1 so as to minimize the power consumed by the
bias network. (4) The capacitor and the resistor may occupy a large chip area if Vin contains very low
frequencies, e.g., in the audio range. (5) The capacitor introduces its own parasitics in the signal path
(Chapter 19), degrading the high-frequency performance; even if chip area is not critical, the value of the
capacitor is limited by these parasitic effects.

In applications requiring a large RBCB product, one can replace RB with a long, narrow MOSFET
operating in the deep triode region and bias this transistor with a small overdrive voltage, thus maximizing

5In reality, the gate leakage current of M1 would discharge X to zero.
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its on-resistance [Fig. 5.43(d)]. But how do we guarantee that MR does not turn off with PVT variations?
While small, the overdrive of MR must still be well-controlled, i.e., VG � VB must still be around VTH .
This difference can be created by means of a diode-connected device [Fig. 5.43(e)]. If (W/L)C is large,
VGS,C � VTH , producing a high resistance in MR . Using a long-channel model, the reader can prove that,
in strong inversion,

Ron,R =
(W/L)C

(W/L)R

1

gm,C
(5.58)

We conclude that (W/L)C must be maximized and (W/L)R minimized. In Problem 5.24, we reexamine
the circuit in the subthreshold region.

Is it possible to remove the input coupling capacitor and provide the bias voltage from the preceding
stage? Figure 5.44 depicts an example, where VDD � RD2 ID2 serves as the bias gate voltage of M1. The
principal difficulty here is that the bias conditions of M1 are influenced by those of M2. For example,
if ID2 varies with PVT variations, so do VX and hence ID1. In such a cascade, the PVT variations are
amplified because they are indistinguishable from the signal. Nonetheless, one can employ direct coupling
between two stages if each has a low gain, e.g., around 2 or 3. For a larger number of stages or higher
gains, negative feedback may become necessary, especilly if the load resistors are replaced with current
sources (Chapter 8).

M1

RD1

Vout

VDD

M2

RD2

Vin

X

Figure 5.44 Direct coupling between
two stages.

CS Stage with Current-Source Load We now turn our attention to the common-source stage with
current-source load [Fig. 5.45(a)]. The foregoing techniques can be readily applied to both M1 and
M2, yielding the circuit shown in Fig. 5.45(b). We note that ID1 and ID2 are copied from IB1 and IB2,
respectively.
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M2

CB
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Vout
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N

(c)(a) (b) (d)
Figure 5.45 (a) CS stage with current-source load; (b) simple biasing; (c) self-biasing of current source; (d) use
of IG to shift the output.
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The CS stage with current-source load exemplifies a situation sometimes encountered in analog design:
two high-impedance current sources, M1 and M2, fight each other. That is, if the copied currents in
Fig. 5.45(b) are not exactly equal, each transistor wants to impose its own current. (Imagine what happens
if two unequal ideal current sources are placed in series.) For example, if ID1 tends to be greater than
|ID2|, then Vout falls—possibly driving M1 into the triode region—until ID1 becomes equal to |ID2|. To
resolve this issue, we modify the circuit as shown in Fig. 5.45(c), where M2 acts as a diode-connected
device at dc, happily carrying the current imposed by M1. At high frequencies, CG shorts the gate of M2

to ground, yielding a small-signal gain equal to

Av = �gm1(rO1||rO2||RG) (5.59)

We therefore select RG � rO1||rO2 and 1/(2� RGCG) less than the lowest signal frequency of interest.
In the above CS stage, M2 forces the bias value of Vout to be as low as VDD � |VGS2|. We can draw a

constant current of IG from RG [Fig. 5.45(d)] so that VN is still low enough to provide the necessary VGS

for M2, but Vout = VN + IG RG is higher. The value of IG is chosen much less than the bias current.

� Example 5.14

Compare the maximum allowable voltage swings in Figs. 5.45(c) and (d).

Solution

In Fig. 5.45(c), Vout begins from VDD � |VGS2| and can rise to VDD � |VGS2 � VTH2| and fall to VGS1 � VTH1.
However, as illustrated in Fig. 5.46(a), since the down swing is limited to VDD � |VGS2| � (VGS1 � VTH1), the up
swing cannot reach its maximum. Thus, the allowable peak-to-peak swing is about 2[VDD �|VGS2|�(VGS1�VTH1)].

t

VDD

VDD � VGS2 � VTH2

VDD � VGS2

VGS1 � VTH1

t

VDD

VDD � VGS2 � VTH2

VDD � VGS2

VGS1 � VTH1

+ IGRG

(a) (b)
Figure 5.46

In Fig. 5.45(d), on the other hand, IG RG can shift the operating point such that the down swing and the up swing
are approximately equal. From Fig. 5.46(b), we have

VDD � |VGS2| + IG RG � (VGS1 � VTH1) � VDD � |VGS2 � VTH2| � [VDD � |VGS2| + IG RG ] (5.60)

If the NMOS and PMOS overdrives are roughly equal, we must choose

IG RG � |VGS2| �
VDD

2
(5.61)

in which case the output peak-to-peak swing can reach 2[VDD/2 � (VGS1 � VTH1)]. Alternatively, we can choose
|VGS2| = VDD/2 and apply no IG . As explained in Chapter 7, M2 contributes less noise as its overdrive increases
(while its bias current remains constant), making the former topology more attractive.

�
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(c)(a) (b) (d)

Vout

Figure 5.47 (a) Complementary CS stage, (b) self-biased topology, (c) accurate definition of bias current, and (d)
use of ac coupling at input.

Complementary CS Stage Let us now consider the problem of biasing for the CS stage with active
current source [Fig. 5.47(a)]. As explained in Chapter 3, this topology exhibits considerable PVT depen-
dence because VGS1 + |VGS2| = VDD . Also, in a manner similar to the CS stage of Fig. 5.45(b), M1 and
M2 fight each other.

As a first step, consider the arrangement shown in Fig. 5.47(b), where a large resistor is tied between the
drains and gates of the transistors. In the absence of signals, no current flows through RF and Vout = VX ; in
essence, each transistor is configured as a diode-connected device and guaranteed to operate in saturation.
The two devices therefore do not fight anymore: if for example, M1 tends to carry a larger drain current,
then Vout and hence VX fall so that ID1 = |ID2|.

To define the bias current accurately, we modify the circuit as shown in Fig. 5.47(c). Here, I1 establishes
the drain currents of M1 and M2, and C1 creates a short circuit at the lowest signal frequency of interest,
�min . The value of C1 is chosen such that M2 experiences negligible degeneration:

1

C1�min



1

gm2
(5.62)

Note that I1 consumes additional voltage headroom in this case.
Since the bias voltage at node X must track Vout, the input must be capacitively coupled [Fig. 5.47(d)].

In Problem 5.25, we compute the corner frequency of the high-pass filter formed by Cin and the remainder
of the circuit. This frequency must be chosen lower than �min . With sufficiently large values for Cin ,
RF , and C1, the voltage gain of the amplifier at signal frequencies of interest is still given by (gm1 +
gm2)(rO1||rO2).

5.4.2 CG Biasing

In a common-gate stage, the transistor must carry a bias current while sensing the input at its source
terminal. Thus, the source cannot be directly tied to the ground, requiring an intervening element that
passes dc, e.g., a resistor, a current source, or an inductor. Figure 5.48(a) depicts an example where M1

and MB form a current mirror so that ID1 is a multiple of IB . For proper copying of IB , we must ensure
that VGS1 = VGS,B . We therefore choose (W/L)1/(W/L)B equal to the desired ratio for ID1 and IB (e.g.,
in the range of 5 to 10) and apply the same ratio to RB/RS , i.e., RB/RS = ID1/IB .

The circuit of Fig. 5.48(a) faces difficulties in low-voltage design. In the presence of a finite driv-
ing impedance, R1 (i.e., the output impedance of the preceding stage), the signal experiences addi-
tional attenuation due to RS . Neglecting channel-length modulation, we write the voltage gain from Vin
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Vout
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Vin
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MB MB

Figure 5.48 CG stage with (a) resistive path from source to ground, (b) current-source biasing, and (c)
low-voltage current mirror.

to VX as

VX

Vin
=

1

gm1 + gmb1
||RS

1

gm1 + gmb1
||RS + R1

(5.63)

concluding that RS must be much greater than 1/(gm1 + gmb1) to minimize this attenuation. However,
since the gain from VX to Vout is equal to (gm1 + gmb1)RD , this means that RS may reach or even
exceed RD . Thus, RS may sustain a large dc voltage drop, limiting the dc drop across RD and hence the
voltage gain.

To remedy the situation, we replace RS with a current source [Fig. 5.48(b)]. Here, M2 exhibits a high
impedance but does not necessarily require a high VDS . Copied from IB , the drain current of M2 does
incur some error due to channel-length modulation because VDS2 < VDS,B . This issue is reminiscent of
the cascode current mirror studied in Section 5.2 and can be resolved by means of a low-voltage cascode
topology [Fig. 5.48(c)]. The bias voltage, Vb, is also generated as explained in Section 5.2.

5.4.3 Source Follower Biasing

Source followers are typically biased by means of a current source as shown in Fig. 5.49(a). If the
mismatch between ID2 and IB due to channel-length modulation proves undesirable, a resistor can be
placed in series with the drain of MB (Sec. 5.2). Defined by M2, the bias current of M1 is less sensitive to
its gate voltage than in a CS amplifier, allowing direct connection to the preceding stage. In applications
where the input dc voltage may vary considerably, capacitive coupling can be used [Fig. 5.49(b)]. Note
that the gate voltage of M1 begins at VDD and can swing up by one threshold before the transistor enters
the triode region.

IB

VDD

M1

MB M2

Vin

Vout

IB

VDD

M1

MB M2

Vin

out
V

Rin

Cin

(a) (b)
Figure 5.49 Source follower biasing with (a) current source and (b) ac coupling at input.
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� Example 5.15

A source follower serves as an output buffer for a CS stage. Study the performance with and without capacitive
coupling between the two stages.

Solution

In Fig. 5.50(a), the minimum drain voltage of M3 is given by VGS1 +VDS2,min , leaving little for the allowable voltage
drop across RD . The CS voltage gain is therefore severely limited. In the circuit of Fig. 5.50(b), on the other hand,
the first stage’s gain can be independently maximized.

VDD

M1

M2

Vout

VDD

M1

M2

Vout

RB

CC

(a) (b)

M3

RD

Vin

X

M3

RD

Vin

X

Figure 5.50

�

5.4.4 Differential Pair Biasing

In addition to the tail current source, the gate voltage of a differential pair must also be defined. To
maximize the voltage gain and/or output swings, we select the lowest input CM level, as shown in
Fig. 5.51(a), equal to VGS1,2 + VDS3,min . This choice allows the drain voltages of M1 and M2 to be as low
as (VGS1,2 � VTH1,2) + VDS3,min (two overdrive voltages above ground) and hence maximum RD .

Vout

RD

M1

RD

VDD

M2Vin,CM Vin,CM

M3Vb

M4 M5

M6

Vout

RD

M1

RD

VDD

M2

M3

X Y

(a) (b)
Figure 5.51 (a) Choice of input CM level for a differential pair, and (b) cascaded pairs.

Since the bias currents of M1 and M2 in Fig. 5.51(a) are relatively insensitive to their gate voltages, we
can directly connect their gates to the preceding stage [Fig. 5.51(b)]. This approach, however, constrains
the overall voltage gain: if the bias value of VX and VY is chosen equal to two overdrives above ground
so as to maximize the gain of the first stage, then it is an excessively low common-mode level for the
second stage (why?). For this reason, we may resort to capacitive coupling in some cases.
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that VDD = 3 V
where necessary. All device dimensions are effective values and in microns.

5.1. In Fig. 5.2, assume that (W/L)1 = 50/0.5, � = 0, Iout = 0.5 mA, and M1 is saturated.
(a) Determine R2/R1.
(b) Calculate the sensitivity of Iout to VDD , defined as 	 Iout/	VDD and normalized to Iout.
(c) How much does Iout change if VTH changes by 50 mV?
(d) If the temperature dependence of µn is expressed as µn � T �3/2 but VTH is independent of temperature,

how much does Iout vary if T changes from 300 �K to 370 �K?
(e) What is the worst-case change in Iout if VDD changes by 10%, VTH changes by 50 mV, and T changes

from 300 �K to 370 �K?

5.2. Consider the circuit of Fig. 5.7. Assuming IREF is ideal, sketch Iout versus VDD as VDD varies from 0 to 3 V.

5.3. In the circuit of Fig. 5.8, (W/L)N = 10/0.5, (W/L)P = 10/0.5, and IREF = 100 µA. The input CM level
applied to the gates of M1 and M2 is equal to 1.3 V.
(a) Assuming � = 0, calculate VP and the drain voltage of the PMOS diode-connected transistors.
(b) Now take channel-length modulation into account to determine IT and the drain current of the PMOS

diode-connected transistors more accurately.

5.4. In the circuit of Fig. 5.11, sketch Vout versus VDD as VDD varies from 0 to 3 V.

5.5. Consider the circuit of Fig. 5.12(a), assuming (W/L)1�3 = 40/0.5, IREF = 0.3 mA, and � = 0.
(a) Determine Vb such that VX = VY .
(b) If Vb deviates from the value calculated in part (a) by 100 mV, what is the mismatch between Iout and

IREF?
(c) If the circuit fed by the cascode current source changes VP by 1 V, how much does VY change?

5.6. The circuit of Fig. 5.18(b) is designed with (W/L)1,2 = 20/0.5, (W/L)3,0 = 60/0.5, and IREF = 100 µA.
(a) Determine VX and the acceptable range of Vb.
(b) Estimate the deviation of Iout from 300 µA if the drain voltage of M3 is higher than VX by 1 V.

5.7. The circuit of Fig. 5.23(a) is designed with (W/L)1�4 = 50/0.5 and ISS = 2I1 = 0.5 mA.
(a) Calculate the small-signal voltage gain.
(b) Determine the maximum output voltage swing if the input CM level is 1.3 V.

5.8. Consider the circuit of Fig. 5.29(a) with (W/L)1�5 = 50/0.5 and ID5 = 0.5 mA.
(a) Calculate the deviation of Vout from VF if |VTH3| is 1 mV less than |VTH4|.
(b) Determine the CMRR of the amplifier.

5.9. Sketch VX and VY as a function of VDD for each circuit in Fig. 5.52. Assume the transistors in each circuit
are identical.

5.10. Sketch VX and VY as a function of VDD for each circuit in Fig. 5.53. Assume the transistors in each circuit
are identical.

5.11. For each circuit in Fig. 5.54, sketch VX and VY as a function of V1 for 0 < V1 < VDD . Assume the transistors
in each circuit are identical.

5.12. For each circuit in Fig. 5.55, sketch VX and VY as a function of V1 for 0 < V1 < VDD . Assume the transistors
in each circuit are identical.

5.13. For each circuit in Fig. 5.56, sketch VX and VY as a function of IREF .

5.14. For the circuit of Fig. 5.57, sketch Iout, VX , VA, and VB as a function of (a) IREF , (b) Vb.

5.15. In the circuit shown in Fig. 5.58, a source follower using a wide transistor and a small bias current is inserted
in series with the gate of M3 so as to bias M2 at the edge of saturation. Assuming M0–M3 are identical and
� �= 0, estimate the mismatch between Iout and IREF if (a) � = 0, (b) � �= 0.

5.16. Sketch VX and VY as a function of time for each circuit in Fig. 5.59. Assume the transistors in each circuit are
identical.
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5.17. Sketch VX and VY as a function of time for each circuit in Fig. 5.60. Assume the transistors in each circuit are
identical.

(c)(a) (b)

M1M2

X

Y
IREF M3Vb

C10

VDD VDD VDD
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M1M2

X

Y
M3Vb

C1
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M2

X

Y
M3Vb

C1

IREF

VDD
VDD

IREF

R1

Figure 5.60

5.18. Sketch VX and VY as a function of time for each circuit in Fig. 5.61. Assume the transistors in each circuit are
identical.

5.19. The circuit shown in Fig. 5.62 exhibits a negative input inductance. Calculate the input impedance of the
circuit and identify the inductive component.

5.20. Due to a manufacturing defect, a large parasitic resistance, R1, has appeared in the circuits of Fig. 5.63.
Calculate the gain of each circuit if � > 0.

5.21. In digital circuits such as memories, a differential pair with an active current mirror is used to convert a
small differential signal to a large single-ended swing (Fig. 5.64). In such applications, it is desirable that the
output levels be as close to the supply rails as possible. Assuming moderate differential input swings (e.g.,
�V = 0.1 V) around a common-mode level Vin,C M and a high gain in the circuit, explain why Vmin depends
on Vin,C M .

5.22. Sketch VX and VY for each circuit in Fig. 5.65 as a function of time. The initial voltage across C1 is shown.
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VDD

M3M2

C1

I1

M1

Zin
Figure 5.62

M1 M2

Vout

Vin1 Vin2

VDD

M4M3

ISS

R1
M1 M2

Vout

Vin1 Vin2

VDD

M4M3

ISS

R1

(a) (b)
Figure 5.63
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5.23. If in Fig. 5.66, �V is small enough that all of the transistors remain in saturation, determine the time constant
and the initial and final values of Vout.

M1 M2

VDD

M4M3

ISS

X

P

Vout

CLV1Vin
V1 �V

Figure 5.66

5.24. For a device operating in the subthreshold region, we have

ID = µCd
W

L
V 2

T

�
exp

VGS � VTH

VT

��
1 � exp

�VDS

VT

�
(5.64)

(a) If the device is in the deep triode region, VDS 
 VT . Using exp(�
) � 1�
, determine the on-resistance.
(b) If the device is in saturation, VDS � VT . Compute the transconductance.
(c) Find the relation between gm,B and Ron,R in Fig. 5.43(d) using the above results.

5.25. Determine the corner frequency resulting from Cin in Fig. 5.47(d). For simplicity, assume C1 is a short circuit.

5.26. Determine the supply rejection of the circuit shown in Fig. 5.67.

VDD

M4

M1 M2

ISS

Vout

M3

Figure 5.67
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CHAPTER

6
Frequency Response of Amplifiers

Our analysis of simple amplifiers has thus far focused on low-frequency characteristics, neglecting the
effect of device and load capacitances. In most analog circuits, however, the speed trades with many
other parameters such as gain, power dissipation, and noise. It is therefore necessary to understand the
frequency-response limitations of each circuit.

In this chapter, we study the behavior of single-stage and differential amplifiers in the frequency
domain. Following a review of basic concepts, we analyze the high-frequency response of common-
source and common-gate stages and source followers. Next, we deal with cascode and differential am-
plifiers. Finally, we consider the effect of active current mirrors on the frequency response of differential
pairs.

6.1 General Considerations

Recall that a MOS device exhibits four capacitances: CGS, CG D, CDB , and CSB . For this reason, the
transfer function of CMOS circuits can rapidly become complicated, calling for approximations that
simplify the circuit. In this section, we introduce two such approximations, namely, Miller’s theorem
and association of poles with nodes. We remind the reader that a two-terminal impedance, Z , is defined
as Z = V/I , where V and I denote the voltage across and the current flowing through the device.
For example, Z = 1/(Cs) for a capacitor. Also, the transfer function of a circuit yields the frequency
response if we replace s with j�, i.e., if we assume a sinusoidal input such as A cos �t . For example,
H( j�) = (RC j� + 1)�1 provides the magnitude and phase of a simple low-pass filter.

In this chapter, we are primarily interested in the magnitude of the transfer function (with s =
j�). Figure 6.1 shows examples of magnitude response. We should also remark that, even if computed
exactly, some transfer functions do not offer much insight. We therefore study numerous special cases
by considering extreme conditions, e.g., if the load capacitance is very small or very large.

A few basic concepts are used extensively throughout this chapter and merit a brief review. (1) The
magnitude of a complex number a + jb is given by

�
a2 + b2. (2) Zeros and poles are respectively

defined as the roots of the numerator and denominator of the transfer function. (3) According to Bode’s
approximations, the slope of the magnitude of a transfer function increases by 20 dB/decade as � passes
a pole frequency and decreases by 20 dB/decade as � passes a zero frequency.

173



Razavi-3930640 book December 17, 201516:40 174

174 Chap. 6 Frequency Response of Amplifiers

 �  
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 ( j�)  Vout
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 �   �  
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Figure 6.1 (a) Low-pass, (b) band-pass, and (c) high-pass frequency-response examples.

6.1.1 Miller Effect

An important phenomenon that occurs in many analog (and digital) circuits is related to the “Miller
effect,” as described by Miller in a theorem.

Miller’s Theorem If the circuit of Fig. 6.2(a) can be converted to that of Fig. 6.2(b), then Z1 =
Z/(1 � Av) and Z2 = Z/(1 � A�1

v ), where Av = VY /VX .

ZX Y X Y

Z1 Z2

(a) (b)
Figure 6.2 Application of Miller effect to a floating impedance.

Proof The current flowing through Z from X to Y is equal to (VX � VY )/Z . For the two circuits to be
equivalent, the same current must flow through Z1. Thus,

VX � VY

Z
=

VX

Z1
(6.1)

that is

Z1 =
Z

1 �
VY

VX

(6.2)

Similarly,

Z2 =
Z

1 �
VX

VY

(6.3)

This decomposition of a “floating” impedance, Z , into two “grounded” impedances proves useful in
analysis and design.

� Example 6.1

Consider the circuit shown in Fig. 6.3(a), where the voltage amplifier has a negative gain equal to �A and is otherwise
ideal. Calculate the input capacitance of the circuit.
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Z1 Z2
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X Y X Y

Cin

�A �A �A �V

�V

�A
X Y

CF

(c)(a) (b)
Figure 6.3

Solution

Using Miller’s theorem to convert the circuit to that shown in Fig. 6.3(b), we have Z = 1/(CF s) and Z1 =
[1/(CF s)]/(1 + A). That is, the input capacitance is equal to CF (1 + A). We call this effect “Miller multiplication”
of the capacitor.

Why is CF multiplied by 1+ A? Suppose, as depicted in Fig. 6.3(c), we measure the input capacitance by applying
a voltage step at the input and calculating the charge supplied by the voltage source. A step equal to �V at X results
in a change of �A�V at Y , yielding a total change of (1 + A)�V in the voltage across CF . Thus, the charge drawn
by CF from Vin is equal to (1 + A)CF�V and the equivalent input capacitance equal to (1 + A)CF .

�

� Example 6.2

A student needs a large capacitor for a filter and decides to utilize the Miller multiplication of [Fig. 6.4(a)]. Explain
the issues in this approach.

R1

CF

Vin Vout

Y

X

�A

R1
Vin Vout

X

M1

CF
Y

(a) (b)

(A+1) CF V0

AV0

Figure 6.4

Solution

The issues relate to the amplifier, particularly to its output swing. As exemplified by the implementation in
Fig. 6.4(b), if the voltage at X swings by V0, then Y must accommodate a swing of AV0 without saturating the
amplifier. In addition, the dc level in Vin must be compatible with the input of the amplifier.

�

It is important to understand that (6.2) and (6.3) hold if we know a priori that the circuit of Fig. 6.2(a)
can be converted to that of Fig. 6.2(b). That is, Miller’s theorem does not stipulate the conditions under
which this conversion is valid. If the impedance Z forms the only signal path between X and Y , then the
conversion is often invalid. Illustrated in Fig. 6.5 for a simple resistive divider, the theorem gives a correct
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R1

R2

X XY Y

R1 + R2

(a) (b)

R2 �R2

Figure 6.5 Improper application of Miller’s theorem.

input impedance but an incorrect gain. Nevertheless, Miller’s theorem proves useful in cases where the
impedance Z appears in parallel with the main signal (Fig. 6.6).

Z

�A

Main Signal Path
Figure 6.6 Typical case for valid
application of Miller’s theorem.

� Example 6.3

Calculate the input resistance of the circuit shown in Fig. 6.7(a).

rO

VDD

Vb

M1

I1

(a) (b)

Rin

X

Y

VDD

Vb

M1

I1

Rin

X

Y

rO
1 � Av

rO
1 � 1/Av

Figure 6.7

Solution

The reader can prove that the voltage gain from X to Y is equal to 1 + (gm + gmb)rO . As shown in Fig. 6.7(b), the
input resistance is given by the parallel combination of rO/(1 � Av) and 1/(gm + gmb). Since Av is usually greater
than unity, rO/(1 � Av) is a negative resistance. We therefore have

Rin =
rO

1 � [1 + (gm + gmb)rO ]

���
1

gm + gmb
(6.4)

=
�1

gm + gmb

���
1

gm + gmb
(6.5)

= � (6.6)

This is the same result as obtained in Chapter 3 (Fig. 3.54) by direct calculation.
�
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We should also mention that, strictly speaking, the value of Av = VY /VX in (6.2) and (6.3) must be
calculated at the frequency of interest, complicating the algebra significantly. To understand this point, let
us return to Example 6.1 and assume an amplifier with a finite output resistance. Depicted in Fig. 6.8, the
equivalent circuit reveals that VY �= �AVX at high frequencies, and hence CF cannot be simply multiplied
by 1+ A to yield the input capacitance. However, in many cases we use the low-frequency value of VY /VX

to gain insight into the behavior of the circuit. We call this approach “Miller’s approximation.”

VX �AVX

Rout

CF

Ampli�er

X Y

Figure 6.8 Equivalent circuit showing
gain change at high frequencies.

� Example 6.4

Determine the transfer function of the circuit shown in Fig. 6.9(a) using (a) direct analysis and (b) Miller’s
approximation.

VX �AVX

�AVX

Rout

CF

X
Vin

RS

VX

RoutX
Vin

RS

(A+1) CF

Vout

Vout

A+1
CF

Y

(a) (b)

�
(log scale)

20log

0

Vout
Vin

 ( j�)

�p �z

�20dB/dec

(c)

A

Figure 6.9

Solution

(a) We note that the current flowing through RS is given by (Vin � VX )/RS , yielding a voltage drop across Rout

equal to (Vin � VX )Rout/RS . It follows that

Vin � VX

RS
Rout � AVX = Vout (6.7)
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We also equate the currents flowing through RS and CF :

Vin � VX

RS
= (VX � Vout)CF s (6.8)

The reader can find VX from the first equation and substitute the result in the second, thereby obtaining

Vout

Vin
(s) =

RoutCF s � A

[(A + 1)RS + Rout]CF s + 1
(6.9)

The circuit thus exhibits a zero at �z = A/(RoutCF ) and a pole at �p = �1/[(A + 1)RSCF + RoutCF ].
Figure 6.9(b) plots the response for the case of |�p| < |�z |.
(b) Applying Miller’s approximation, we decompose CF into (1+ A)CF at the input and CF/(1+ A�1) at the output
[Fig. 6.9(c)]. Since Vout/Vin = (VX /Vin)(Vout/VX ), we first write VX /Vin by considering RS and (1 + A)CF as a
voltage divider:

VX

Vin
=

1

(1 + A)CF s
1

(1 + A)CF s
+ RS

(6.10)

=
1

(1 + A)RSCF s + 1
(6.11)

As for Vout/VX , we first amplify VX by �A and subject the result to the output voltage divider,

Vout

VX
=

�A
1

1 + A�1 CF Routs + 1
(6.12)

That is

Vout

Vin
(s) =

�A

[(1 + A)RSCF s + 1]

�
1

1 + A�1 CF Routs + 1

� (6.13)

Sadly, Miller’s approximation has eliminated the zero and predicted two poles for the circuit! Despite these short-
comings, Miller’s approximation can provide intuition in many cases.1

�

If applied to obtain the input-output transfer function, Miller’s theorem cannot be used simultaneously
to calculate the output impedance. To derive the transfer function, we apply a voltage source to the input
of the circuit, obtaining a value for VY /VX in Fig. 6.2(a). On the other hand, to determine the output
impedance, we must apply a voltage source to the output of the circuit, obtaining a value for VX/VY that
may not be equal to the inverse of the VY /VX measured in the first test. For example, the circuit of Fig.
6.7(b) may suggest that the output impedance is equal to

Rout =
rO

1 � 1/Av
(6.14)

=
rO

1 � [1 + (gm + gmb)rO ]�1
(6.15)

=
1

gm + gmb
+ rO (6.16)

1Both of these artifacts can be avoided if we multiply CF by 1 + A(s), where A(s) is the actual transfer function from VX to
Vout , but the algebra is as lengthy as that in part (a).
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whereas the actual value is equal to rO (if X is grounded). Other subtleties of Miller’s theorem are
described in the Appendix C.

In summary, Miller’s approximation divides a floating impedance by the low-frequency gain and faces
the following limitations: (1) it may eliminate zeros, (2) it may predict additional poles, and (3) it does
not correctly compute the “output” impedance.

6.1.2 Association of Poles with Nodes

Consider the simple cascade of amplifiers depicted in Fig. 6.10. Here, A1 and A2 are ideal voltage
amplifiers, R1 and R2 model the output resistance of each stage, Cin and CN represent the input capacitance
of each stage, and CP denotes the load capacitance. The overall transfer function can be written as

Vout

Vin
(s) =

A1

1 + RSCins
•

A2

1 + R1CN s
•

1

1 + R2CP s
(6.17)

The circuit exhibits three poles, each of which is determined by the total capacitance seen from each node
to ground multiplied by the total resistance seen at the node to ground. We can therefore associate each
pole with one node of the circuit, i.e., � j = ��1

j , where � j is the product of the capacitance and resistance
seen at node j to ground. From this perspective, we may say that “each node in the circuit contributes
one pole to the transfer function.”

M

Cin

RS

Vin CN

R1
A2A1

N

CP

R2 P
Vout

Figure 6.10 Cascade of amplifiers.

The above statement is not valid in general. For example, in the circuit of Fig. 6.11, the location of
the poles is difficult to calculate because R3 and C3 create interaction between X and Y . Nevertheless,
in many circuits, association of one pole with each node provides an intuitive approach to estimating the
transfer function: we simply multiply the total equivalent capacitance by the total incremental (small-
signal) resistance (both from the node of interest to ground), thus obtaining an equivalent time constant
and hence a pole frequency.

C1

R1

Vin

A1

C2

R2
Vout

R3 C3

X Y

Figure 6.11 Example of interaction
between nodes.

� Example 6.5

Neglecting channel-length modulation, compute the transfer function of the common-gate stage shown in
Fig. 6.12(a).
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I1

X

Y

RD

Vout

Vb

VDD

RS

Vin

M1

X

RD

Vout

VDD

RS

Vin

CGD + CDB

CGS + CSB

gmV1 V1

(a) (b)
Figure 6.12 Common-gate stage with parasitic capacitances.

Solution

In this circuit, the capacitances contributed by M1 are connected from the input and output nodes to ground [Fig.
6.12(b)]. At node X , CS = CGS + CSB , giving a pole frequency

�in =
�
(CGS + CSB)

�
RS

����
1

gm + gmb

���1

(6.18)

Similarly, at node Y , CD = CDG + CDB , yielding a pole frequency

�out = [(CDG + CDB)RD]�1 (6.19)

The overall transfer function is thus given by

Vout

Vin
(s) =

(gm + gmb)RD

1 + (gm + gmb)RS
•

1�
1 +

s

�in

��
1 +

s

�out

� (6.20)

where the first fraction represents the low-frequency gain of the circuit. Note that if we do not neglect rO1, the input
and output nodes interact, making it difficult to calculate the poles.

�

Nanometer Design Notes

Defined as the frequency at which the
small-signal current gain of a device
is unity, the transit frequency, fT , of
MOSFETs increases with the overdrive,
but flattens out as the vertical electric
field reduces the mobility. Plotted below
is the fT for an NMOS device with
W/L = 5 µm/40 nm and VDS = 0.8 V.
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As observed in Example 6.4, Miller’s approximation converts a floating
impedance to two grounded impedances, allowing us to associate one pole
with each node. We apply this technique to various amplifier topologies in
this chapter—but cautiously and retrospectively to avoid its pitfalls. It is also
helpful to bear in mind that the fT of a MOS transistor is roughly equal to
gm/(2�CGS) and can exceed 300 GHz in today’s technologies. (However,
since fT � VGS � VT H , as we push the devices for low-voltage operation, we
tend to reduce their fT ’s.)

6.2 Common-Source Stage

The common-source topology exhibits a relatively high input impedance while
providing voltage gain and requiring a minimal voltage headroom. As such,
it finds wide application in analog circuits and its frequency response is of
interest.
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Shown in Fig. 6.13(a) is a common-source stage driven by a finite source resistance, RS .2 We identify
all of the capacitances in the circuit, noting that CGS and CDB are “grounded” capacitances while CG D

appears between the input and the output. In reality, the circuit also drives a load capacitance, which can
be merged with CDB .

M1

RD

Vout

RS

Vin CGS

CGD

CDB

VDD

X
M1

RD

Vout

RS

Vin

VDD

X

CGS + (1�Av)CGD

(a)

CDB + CGD Av

(b)

1(1 � )

Figure 6.13 (a) High-frequency model of a common-source stage, and (b) simplified circuit using Miller’s
approximation.

Miller’s Approximation Assuming that � = 0 and M1 operates in saturation, let us first estimate the
transfer function by associating one pole with each node. The total capacitance seen from X to ground is
equal to CGS plus the Miller multiplication of CG D , namely, CGS + (1 � Av)CG D , where Av = �gm RD

[Fig. 6.13(b)]. The magnitude of the “input” pole is therefore given by

�in =
1

RS[CGS + (1 + gm RD)CG D]
(6.21)

At the output node, the total capacitance seen to ground is equal to CDB plus the Miller effect of CG D ,
i.e., CDB + (1 � A�1

v )CG D � CDB + CG D (if Av � 1). Thus,

�out =
1

RD(CDB + CG D)
(6.22)

M1

RD

CGS

CGD

CDB

VDD

ZX

Figure 6.14 Model for calculation of
output impedance.

Another approximation of the output pole can be obtained if RS is relatively large. Simplifying the
circuit as shown in Fig. 6.14, where the effect of RS is neglected, the reader can prove that

Z X =
1

Ceqs

����

�
CG D + CGS

CG D
•

1

gm1

�
(6.23)

2Note that RS is not deliberately added to the circuit. Rather, it models the output resistance of the preceding stage.
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where Ceq = CG DCGS/(CG D + CGS). Thus, the output pole is roughly equal to

�out =
1�

RD

����

�
CG D + CGS

CG D
•

1

gm1

��
(Ceq + CDB)

(6.24)

We should point out that the sign of �in and �out in the above equations is positive because we
eventually write the denominator of the transfer function in the form of (1 + s/�in)(1 + s/�out); i.e.,
the denominator vanishes at s = ��in and s = ��out. Alternatively, we could express the values of �in

and �out with a negative sign and hence write the denominator as (1 � s/�in)(1 � s/�out). We adopt the
former notation in this book. We then surmise that the transfer function is

Vout

Vin
(s) =

�gm RD�
1 +

s

�in

� �
1 +

s

�out

� (6.25)

Note that rO1 and any load capacitance can easily be included here.
The primary error in this estimation is that we have not considered the existence of zeros in the circuit.

Another concern stems from approximating the gain of the amplifier by �gm RD whereas in reality the
gain varies with frequency (for example, due to the capacitance at the output node).

Direct Analysis We now obtain the exact transfer function, investigating the validity of the above
approach. Using the equivalent circuit depicted in Fig. 6.15, we can sum the currents at each node:

VX � Vin

RS
+ VX CGSs + (VX � Vout)CG Ds = 0 (6.26)

(Vout � VX )CG Ds + gm VX + Vout

�
1

RD
+ CDBs

�
= 0 (6.27)

gmVX CDB

RS

Vin CGS

CGD

X

RD

Vout

VX

Figure 6.15 Equivalent circuit of Fig. 6.13.

From (6.27), VX is obtained as

VX = �
Vout

�
CG Ds +

1

RD
+ CDBs

�

gm � CG Ds
(6.28)

which, upon substitution in (6.26), yields

�Vout
[R�1

S + (CGS + CG D)s][R�1
D + (CG D + CDB)s]

gm � CG Ds
� VoutCG Ds =

Vin

RS
(6.29)
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That is

Vout

Vin
(s) =

(CG Ds � gm)RD

RS RD�s2 + [RS(1 + gm RD)CG D + RSCGS + RD(CG D + CDB)]s + 1

(6.30)

where � = CGSCG D + CGSCDB + CG DCDB . Note that the transfer function is of second order even
though the circuit contains three capacitors. This is because the capacitors form a “loop,” allowing only
two independent initial conditions in the circuit and hence yielding a second-order differential equation
for the time response.

� Example 6.6

A student considers only CG D in Fig. 6.13(a) so as to obtain a one-pole response, reasons that the voltage gain drops
by 3 dB (by a factor of =

�
2) at the pole frequency, and concludes that a better approximation of the Miller effect

should multiply CG D by 1 + gm RD
�

2. Explain the flaw in this reasoning.

Solution

Setting CGS and CDB to zero, we obtain

Vout

Vin
(s) =

(CG Ds � gm)RD
s

�0
+ 1

(6.31)

where �0 = RS(1+ gm RD)CG D + RDCG D . We note that CG D is multiplied by 1+ gm RD in this exact analysis. So
where is the flaw in the student’s argument? It is true that the voltage gain in Fig. 6.13(a) falls by

�
2 at �0, but this

gain would be from Vin to Vout and not the gain seen by CG D . The reader can readily express the transfer function
from node X to Vout as

Vout

VX
(s) =

(CG Ds � gm)RD

RDCG D + 1
(6.32)

observing that this gain begins to roll off at a higher frequency, namely, at 1/(RDCG D). Thus, the multiplication of
CG D by 1 + gm RD is still justified.

�

Special Cases If manipulated judiciously, Eq. (6.30) reveals several interesting points about the circuit.
While the denominator appears rather complicated, it can yield intuitive expressions for the two poles,
�p1 and �p2, if we assume that |�p1| � |�p2|. This is called the “dominant pole” approximation. Writing
the denominator as

D =
�

s

�p1
+ 1

� �
s

�p2
+ 1

�
(6.33)

=
s2

�p1�p2
+

�
1

�p1
+

1

�p2

�
s + 1 (6.34)

we recognize that the coefficient of s is approximately equal to 1/�p1 if �p2 is much farther from the
origin. It follows from (6.30) that the dominant pole is given by

�p1 =
1

RS(1 + gm RD)CG D + RSCGS + RD(CG D + CDB)
(6.35)
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How does this compare with the “input” pole given by (6.21)? The only difference results from the term
RD(CG D +CDB), which may be negligible in some cases. The key point here is that the intuitive approach
of associating a pole with the input node provides a rough estimate with much less effort. We also note
that the Miller multiplication of CG D by the low-frequency gain of the amplifier is relatively accurate in
this case. Of course, for a given set of values, we must check to ensure that �p1 � �p2.

Other special cases are also of interest. We consider the case of CG D = 0 in Problem 6.26 and the
case of RD = � below.

� Example 6.7

The circuit shown in Fig. 6.16(a) is a special case where RD 	 �. Calculate the transfer function (with � = 0) and
explain why the Miller effect vanishes as CDB (or the load capacitance) increases.

M1

Vout

RS

Vin CGS

CGD

CDB

VDD

X

I1

�
(log scale)

20log
Vout
Vin

 ( j�)

�p2
0 dB

�20 dB/dec

�40 dB/dec

(a) (b)
Figure 6.16

Solution

Using (6.30) and letting RD approach infinity, we have

Vout

Vin
(s) =

CG Ds � gm

RS�s2 + [gm RSCG D + (CG D + CDB)]s
(6.36)

=
CG Ds � gm

s[RS(CGSCG D + CGSCDB + CG DCDB)s + (gm RS + 1)CG D + CDB ]

As expected, the circuit exhibits two poles—one at the origin because the dc gain is infinity [Fig. 6.16(b)]. The
magnitude of the other pole is given by

�p2 �
(1 + gm RS)CG D + CDB

RS(CG DCGS + CGSCDB + CG DCDB)
(6.37)

For a large CDB or load capacitance, this expression reduces to

�p2 �
1

RS(CGS + CG D)
(6.38)

indicating that CG D experiences no Miller multiplication. This can be explained by noting that, for a large CDB , the
voltage gain from node X to the output begins to drop even at low frequencies. As a result, for frequencies close to
[RS(CGS + CG D)]�1, the effective gain is quite small and CG D(1 � Av) � CG D . Such a case is an example where
the application of the Miller effect using low-frequency gain does not provide a reasonable estimate.

�
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Nanometer Design Notes

The high-frequency MOS model de-
veloped in Chapter 2 does not contain
a drain-source capacitance. In reality,
however, the metal contact stacks touch-
ing the source and drain areas form
two “columns” that create a capacitance
between the drain and the source. This
effect has become more pronounced in
modern CMOS technologies because
of the shorter channel length, i.e., less
spacing between the columns, and the
ability to stack many contacts, i.e., taller
columns. The reader is encouraged
to analyze a CG stage while including
CDS.

n+n+

CDS

C
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ta
ct

C
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From (6.30) and applying the dominant pole approximation, we can also
estimate the second pole of the CS stage of Fig. 6.13(a). Since the coefficient
of s2 is equal to (�p1�p2)�1, we have

�p2 =
1

�p1
•

1

RS RD(CGSCG D + CGSCDB + CG DCDB)
(6.39)

=
RS(1 + gm RD)CG D + RSCGS + RD(CG D + CDB)

RS RD(CGSCG D + CGSCDB + CG DCDB)
(6.40)

We emphasize that these results hold only if �p1 � �p2.
As a special case, if CGS � (1+gm RD)CG D + RD(CG D +CDB)/RS , then

�p2 �
RSCGS

RS RD(CGSCG D + CGSCDB)
(6.41)

=
1

RD(CG D + CDB)
(6.42)

the same as (6.22). Thus, the “output” pole approach is valid only if CGS

dominates the response.
The transfer function of (6.30) exhibits a zero given by �z = +gm/CG D ,

an effect not predicted by Miller’s approximation and (6.25). Located in the
right half plane, the zero arises from direct coupling of the input to the output through CG D . As illustrated
in Fig. 6.17, CG D provides a feedthrough path that conducts the input signal to the output at very high
frequencies, resulting in a slope in the frequency response that is less negative than �40 dB/dec. Note
that gm/CG D > gm/CGS because CG D < CGS , implying that the zero lies beyond the transistor’s fT .
However, as explained in Chapter 10, this zero falls to lower frequencies in cases where we deliberately
add a capacitor between the gate and the drain, introducing other difficulties.

Feedthrough
Path

Main
Path

��p1 �p2 �z

20log

(log scale)

�20 dB/dec

�40 dB/dec

�20 dB/dec

VDD

RD

Vout

RS

Vout
Vin

 ( j �)

Figure 6.17 Feedforward path through CG D (log-log scale).

The zero, sz , can also be computed by noting that the transfer function Vout(s)/Vin(s) must drop to
zero for s = sz . For a finite Vin , this means that Vout(sz) = 0, and hence the output can be shorted to
ground at this (possibly complex) frequency with no current flowing through RD or the short (Fig. 6.18).
Therefore, the currents through CG D and M1 are equal and opposite:

V1CG Dsz = gm V1 (6.43)

That is, sz = +gm/CG D .3

3This approach is similar to expressing the transfer function as Gm Zout and finding the zeros of Gm and Zout .
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VDD

CGD
RD

Iout = 0RS

V1

M1

Vin CGS Figure 6.18 Calculation of the zero in
a CS stage.

� Example 6.8

We have seen that the signals traveling through two paths within an amplifier may cancel each other at one frequency,
creating a zero in the transfer function (Fig. 6.19). Can this occur if H1(s) and H2(s) are first-order low-pass circuits?

H1 (s)

Vin

H2 (s)

Vout

Figure 6.19

Solution

Modeling H1(s) by A1/(1 + s/�p1) and H2(s) by A2/(1 + s/�p2), we have

Vout

Vin
(s) =

�
A1

�p2
+

A2

�p1

�
s + A1 + A2

�
1 +

s

�p1

��
1 +

s

�p2

� (6.44)

Indeed, the overall transfer function contains a zero.
�

� Example 6.9

Determine the transfer function of the complementary CS stage shown in Fig. 6.20(a).

VDD

Vout Vout

M2 RS

CGS1 + CGS2 ( gm1 + gm2 )V1 CDB1 + CDB2rO1 rO2

CGD1 + CGD2

RS

M1 V1

Vin Vin

(a) (b)
Figure 6.20
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Solution

Since the corresponding terminals of M1 and M2 are shorted to one another in the small-signal model, we merge
the two transistors, drawing the equivalent circuit as shown in Fig. 6.20(b). The circuit thus has the same transfer
function as the simple CS stage studied above.

�

In high-speed applications, the input impedance of the common-source stage is also important. With
the aid of Miller’s approximation, we have from Fig. 6.21(a)

Zin =
1

[CGS + (1 + gm RD)CG D]s
(6.45)

M 1

VDD VDD VDD

RD RD

Vout

IX

VX

CGD

CDB

CGS
Zin

M1
M1

Zin

CDB CDB

RDCGD

gmVX
Vout Vout

(a) (b) (c)
Figure 6.21 Calculation of input impedance of a CS stage.

But at high frequencies, the effect of the output node capacitance must be taken into account. Ignoring
CGS for the moment and using the circuit of Fig. 6.21(b), we add the voltage drops across RD||(CDBs)�1

and CG D , equating the result to VX :

(IX � gm VX )
RD

1 + RDCDBs
+

IX

CG Ds
= VX (6.46)

and hence

VX

IX
=

1 + RD(CG D + CDB)s
CG Ds(1 + gm RD + RDCDBs)

(6.47)

The actual input impedance consists of the parallel combination of (6.47) and 1/(CGSs).
As a special case, suppose that at the frequency of interest, |RD(CG D +CDB)s| � 1 and |RDCDBs| �

1+gm RD . Then, (6.47) reduces to [(1+gm RD)CG Ds]�1 (as expected), indicating that the input impedance
is primarily capacitive. At higher frequencies, however, (6.47) contains both real and imaginary parts. In
fact, if CG D is large, it provides a low-impedance path between the gate and the drain of M1, yielding the
equivalent circuit of Fig. 6.21(c) and suggesting that 1/gm1 and RD appear in parallel with the input.

� Example 6.10

Explain what happens to Eq. (6.47) if the circuit drives a large load capacitance.

Solution

Merged with CDB , the large load capacitance reduces the numerator to RDCDBs and the denominator
to CG Ds(RDCDBs), yielding VX /IX � 1/(CG Ds). In a manner similar to that in Example 6.7, the large load
capacitance lowers the gain at high frequencies, suppressing Miller multiplication of CG D .

�
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Nanometer Design Notes

While characterizing the intrinsic
MOSFET, the fT overestimates how
fast typical circuits can operate. A
more “circuit-centric” measure is the
gain-bandwidth product of a simple CS
amplifier that is loaded by an identical
stage. Shown below is the frequency
response of such an amplifier, revealing
a gain-bandwidth product of about 34
GHz if W/L = 5 µm/40 nm, RD = 5 k�,
and the bias current is 130 µA.
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Source followers are occasionally employed as level shifters or buffers,
affecting the overall frequency response. Consider the circuit depicted in
Fig. 6.22(a), where CL represents the total capacitance seen at the output
node to ground, including CSB1. The strong interaction between nodes X and
Y through CGS in Fig. 6.22(a) makes it difficult to associate a pole with each
node in a source follower. Neglecting channel-length modulation and body
effect for simplicity and using the equivalent circuit shown in Fig. 6.22(b), we
sum the currents at the output node:

V1CGSs + gm V1 = VoutCLs (6.48)

obtaining

V1 =
CLs

gm + CGSs
Vout (6.49)

Also, noting that the voltage across CG D is equal to V1 + Vout and beginning
from Vin , we add the voltage across RS to V1 and Vout:

Vin = RS[V1CGSs + (V1 + Vout)CG Ds] + V1 + Vout (6.50)

Substituting for V1 from (6.49), we have

Vout

Vin
(s) =

gm + CGSs

RS(CGSCL + CGSCG D + CG DCL)s2 + (gm RSCG D + CL + CGS)s + gm
(6.51)

Interestingly, the transfer function contains a zero in the left half plane (and near the fT ). This is because
the signal conducted by CGS at high frequencies adds with the same polarity to the signal produced by
the intrinsic transistor. We study some special cases below.

X
Y

M1

CL

V1
Vout

Vin gmV1

Vout
CL

(b)

VDD

Vin

RS

RS

CGD CGS

(a)
Figure 6.22 (a) Source follower; (b) high-frequency equivalent circuit.

� Example 6.11

Examine the source follower transfer function if CL = 0.
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Solution

We have

Vout

Vin
=

gm + CGSs

RSCGSCG Ds2 + (gm RSCG D + CGS)s + gm
(6.52)

=
gm + CGSs

(1 + RSCG Ds)(gm + CGSs)
(6.53)

=
1

1 + RSCG Ds
(6.54)

The circuit now has only one pole at the input. Why does CGS disappear here? This is because, in the absence of
channel-length modulation and body effect, the voltage gain from the gate to the source is equal to unity. Since a
change of �V at the gate translates to an equal change at the source (Fig. 6.23), no current flows through CGS .
Consequently, CGS contributes neither a zero nor a pole. We say CGS is “bootstrapped” by the source follower. With
�, 	 > 0, the output change is less than �V , requiring some change in the voltage across CGS .

Y

VDD
RS

CGS

M1
X

�V

�V

Figure 6.23 Bootstrapping of CGS in
a source follower.

�

If the two poles of (6.51) are assumed far apart, then the lower one has a magnitude of

�p1 �
gm

gm RSCG D + CL + CGS
(6.55)

=
1

RSCG D +
CL + CGS

gm

(6.56)

Also, if RS = 0, then �p1 = gm/(CL + CGS)—as expected.
Let us now calculate the input impedance of the circuit, noting that CG D simply shunts the input and

can be ignored initially. Shown in Fig. 6.24, the equivalent circuit includes body effect, but channel-length
modulation can also be added by replacing 1/gmb with (1/gmb)||rO . The small-signal gate-source voltage
of M1 is equal to IX/(CGSs), giving a source current of gm IX/(CGSs). Starting from the input and adding

VDD

CGS

1
gmb

IX

VX
Vout

CL

M1

Figure 6.24 Calculation of source
follower input impedance.
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the voltages, we have

VX =
IX

CGSs
+

�
IX +

gm IX

CGSs

� �
1

gmb

����
1

CLs

�
(6.57)

that is

Zin =
1

CGSs
+

�
1 +

gm

CGSs

�
1

gmb + CLs
(6.58)

We consider some special cases. First, if gmb = 0 and CL = 0, then Zin = �, because CGS is
entirely bootstrapped by the source follower and draws no current from the input. Second, at relatively
low frequencies, gmb � |CLs| and

Zin �
1

CGSs

�
1 +

gm

gmb

�
+

1

gmb
(6.59)

indicating that the equivalent input capacitance is equal to CGSgmb/(gm + gmb) and hence quite less than
CGS . In other words, the overall input capacitance is equal to CG D plus a fraction of CGS—again because
of bootstrapping.

� Example 6.12

Apply Miller’s approximation to the above circuit if CL = 0.

Solution

As illustrated in Fig. 6.25, the low-frequency gain from the gate to the source is equal to (1/gmb)/[(1/gm) +
(1/gmb)] = gm/(gm +gmb). The Miller multiplication of CGS at the input is thus equal to CGS[1�gm/(gm +gmb)] =
CGS gmb/(gm + gmb).

Y

X

VDD

VX
CGS

M1
IX

1
gmb

gm
gm+gmb

 �V

�V

Figure 6.25

�

At high frequencies, gmb � |CLs| and

Zin �
1

CGSs
+

1

CLs
+

gm

CGSCLs2
(6.60)

For a given s = j�, the input impedance consists of the series combination of capacitors CGS and CL

and a negative resistance equal to �gm/(CGSCL�2) (Fig. 6.26). The negative resistance property can be
utilized in oscillators (Chapter 15). It is important to bear in mind that a source follower driving a load
capacitance exhibits a negative input resistance, possibly causing instability.
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VDD

CGS � gm

CGSCL�2

CGS

Zin

CL

Zin

CL

M1

Figure 6.26 Negative resistance seen at the input of a source follower.

� Example 6.13

Neglecting channel-length modulation and body effect, calculate the transfer function of the circuit shown in
Fig. 6.27(a).

VDD

CL

RS

RS

CX CXY
Vin

Vin

M2

M1

Y

X
X

gm2V2

gm1V1

CY
V2

V1

Vout
Y

Vout

(a) (b)
Figure 6.27

Solution

Let us first identify all of the capacitances in the circuit. At node X , CG D1 and CDB2 are connected to ground and CGS1
and CG D2 to Y . At node Y , CSB1, CGS2, and CL are connected to ground. Similar to the source follower of Fig. 6.22(b),
this circuit has three capacitances in a loop and hence a second-order transfer function. Using the equivalent circuit
shown in Fig. 6.27(b), where CX = CG D1 + CDB2, CXY = CGS1 + CG D2, and CY = CSB1 + CGS2 + CL , we have
V1CXY s + gm1V1 = VoutCY s, and hence V1 = VoutCY s/(CXY s + gm1). Also, since V2 = Vout, the summation of
currents at node X gives

(V1 + Vout)CX s + gm2Vout + V1CXY s =
Vin � V1 � Vout

RS
(6.61)

Substituting for V1 and simplifying the result, we obtain

Vout

Vin
(s) =

gm1 + CXY s

RS�s2 + [CY + gm1 RSCX + (1 + gm2 RS)CXY ]s + gm1(1 + gm2 RS)
(6.62)

where � = CX CY + CX CXY + CY CXY . As expected, (6.62) reduces to a form similar to (6.51) for gm2 = 0.
�

The output impedance of source followers is also of interest. In Fig. 6.22(a), the body effect and CSB

simply yield an impedance in parallel with the output. Ignoring this impedance and neglecting CG D , we
note from the equivalent circuit of Fig. 6.28(a) that V1CGSs+gm V1 = �IX . Also, V1CGSs RS+V1 = �VX .
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� �

gmV1
Zout Zout

V1

IX

VX

1
gm

1
gm

RS

RS

CGS

RS

(a) (b) (c)
Figure 6.28 Calculation of source follower output impedance.

Dividing both sides of these equations gives

Zout =
VX

IX
(6.63)

=
RSCGSs + 1

gm + CGSs
(6.64)

It is instructive to examine the magnitude of this impedance as a function of frequency. At low frequencies,
Zout � 1/gm , as expected. At very high frequencies, Zout � RS (because CGS shorts the gate and the
source). We therefore surmise that |Zout| varies as shown in Figs. 6.28(b) or (c). Which one of these
variations is more realistic? Operating as buffers, source followers must lower the output impedance, i.e.,
1/gm < RS . For this reason, the characteristic shown in Fig. 6.28(c) occurs more commonly than that in
Fig. 6.28(b).

The behavior illustrated in Fig. 6.28(c) reveals an important attribute of source followers. Since the
output impedance increases with frequency, we postulate that it contains an inductive component. To
confirm this guess, we represent Zout by a first-order passive network, noting that Zout equals 1/gm at
� = 0 and RS at � = �. The network can therefore be realized as shown in Fig. 6.29 because Z1 equals
R2 at � = 0 and R1 + R2 at � = �. In other words, Z1 = Zout if three conditions hold: R2 = 1/gm ,
R1 = RS � 1/gm , and L is chosen properly.

L

R1R2
Z1

Figure 6.29 Equivalent output
impedance of a source follower.

To calculate L , we can simply obtain an expression for Z1 in terms of the three components in Fig. 6.29
and equate the result to Zout found above. Alternatively, since R2 is a series component of Z1, we can
subtract its value from Zout, thereby obtaining an expression for the parallel combination of R1 and L:

Zout �
1

gm
=

CGSs

�
RS �

1

gm

�

gm + CGSs
(6.65)
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Inverting the result to obtain the admittance of the parallel circuit, we have

1

Zout �
1

gm

=
1

RS �
1

gm

+
1

CGSs

gm

�
RS �

1

gm

� (6.66)

We can thus identify the first term on the right-hand side as the inverse of R1 and the second term as the
inverse of an impedance equal to (CGSs/gm)(RS � 1/gm), i.e., an inductor with the value

L =
CGS

gm

�
RS �

1

gm

�
(6.67)

Note that CGS/gm is approximately equal to �T = 2� fT .

� Example 6.14

Can we construct a (two-terminal) inductor from a source follower?

Solution

Yes, we can. Called an “active inductor,” such a structure is shown in Fig. 6.30(a), providing an inductance of
(CGS2/gm2)(RS � 1/gm2). But the inductor is not ideal because it also incurs a parallel resistance equal to R1 =
RS = 1/gm2 and a series resistance equal to 1/gm2. Figure 6.30(b) depicts an application of active inductors: the
inductance can partially cancel the load capacitance, CL , at high frequencies, thus extending the bandwidth. However,
the voltage headroom consumed by M2 (= VGS2) limits the gain. Also, CG D2, which has been neglected in our
analysis, limits the bandwidth enhancement.

VDD
RS

CGS2

M2

VDD

RS

Vout

CGS2

CL
M1Vin

M2

(a) (b)
Figure 6.30

�

6.4 Common-Gate Stage

As explained in Example 6.5, in a common-gate stage, the input and output nodes are “isolated” if channel-
length modulation is neglected. For a common-gate stage such as that in Fig. 6.31, the calculation of
Example 6.5 suggested a transfer function

Vout

Vin
(s) =

(gm + gmb)RD

1 + (gm + gmb)RS

1�
1 +

CS

gm + gmb + R�1
S

s

�
(1 + RDCDs)

(6.68)
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VDD

RDCD

CS

RS

Vin

Vout

Vb
M1

Figure 6.31 Common-gate stage at
high frequencies.

An important property of this circuit is that it exhibits no Miller multiplication of capacitances, potentially
achieving a wide band. Note, however, that the low input impedance may load the preceding stage.
Furthermore, since the voltage drop across RD is typically maximized to obtain a reasonable gain, the dc
level of the input signal must be quite low. For these reasons, the CG stage finds two principal applications:
as an amplifier in cases where a low input impedance is required (Chapter 3) and in cascode stages.

If channel-length modulation is not negligible, the calculations become quite complex. Recall from
Chapter 3 that the input impedance of a common-gate topology does depend on the drain load if � �= 0.
From Eq. (3.117), we can express the impedance seen looking into the source of M1 in Fig. 6.31 as

Zin �
ZL

(gm + gmb)rO
+

1

gm + gmb
(6.69)

where ZL = RD
[1/(CDs)]. Since Zin now depends on ZL , it is difficult to associate a pole with the
input node.

� Example 6.15

For the common-gate stage shown in Fig. 6.32(a), calculate the transfer function and the input impedance, Zin .
Explain why Zin becomes independent of CL as this capacitance increases.

VDD

gmV1 rOVout

RSVb

Vout

Vin
Vin CinCin

CL
CL

rO

I1
V1

RS

(a) (b)
Figure 6.32

Solution

Using the equivalent circuit shown in Fig. 6.32(b), we can write the current through RS as �VoutCL s + V1Cins.
Noting that the voltage across RS plus Vin must equal �V1, we have

(�VoutCL s + V1Cins)RS + Vin = �V1 (6.70)
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That is

V1 = �
�VoutCL s RS + Vin

1 + Cin RSs
(6.71)

We also observe that the voltage across rO minus V1 equals Vout:

rO (�VoutCL s � gm V1) � V1 = Vout (6.72)

Substituting for V1 from (6.71), we obtain the transfer function:

Vout

Vin
(s) =

1 + gmrO

rO CL Cin RSs2 + [rO CL + Cin RS + (1 + gmrO )CL RS]s + 1
(6.73)

The reader can prove that body effect can be included by simply replacing gm with gm + gmb. As expected, the gain
at very low frequencies is equal to 1 + gmrO . For Zin , we can use (6.69) by replacing ZL with 1/(CL s), obtaining

Zin =
1

gm + gmb
+

1

CL s
•

1

(gm + gmb)rO
(6.74)

We note that as CL or s increases, Zin approaches 1/(gm + gmb), and hence the input pole can be defined as

�p,in =
1�

RS

����
1

gm + gmb

�
Cin

(6.75)

Why does Zin become independent of CL at high frequencies? This is because CL lowers the voltage gain of the
circuit, thereby suppressing the effect of the negative resistance introduced by the Miller effect through rO (Fig. 6.7).
In the limit, CL shorts the output node to ground, and rO affects the input impedance negligibly.

�

Our analysis of the CG frequency response has assumed a zero impedance in series with the gate. In
practice, the bias network providing the gate voltage exhibits a finite impedance, altering the frequency
response. Shown in Fig. 6.33(a) is an example in which this impedance is modeled by a resistor, RG .
If all of the device capacitances are included here, the circuit’s transfer function is of third order. For
simplicity, we consider only CGS here and only CG D in Appendix B. From the equivalent circuit in
Fig. 6.33(b),4 we have gm V1 = �Vout/RD , and hence V1 = �Vout/(gm RD). The current flowing through
RS is equal to V1CGSs + gm V1 = �(CGSs + gm)Vout/(gm RD), and that through RG equal to V1CGSs =
�CGSsVout/(gm RD). Writing a KVL around the input network, we have

Vin � (CGS + gm)
Vout

gm RD
RS +

Vout

gm RD
� CGSs

Vout

gm RD
RG = 0 (6.76)

It follows that

Vout

Vin
=

gm RD

(RG + RS)CGSs + 1 + gm RS
(6.77)

yielding a pole at

�p =
1 + gm RS

(RG + RS)CGS
(6.78)

Thus, RG directly adds to RS in this case, lowering the pole magnitude.

4Channel-length modulation and body effect are neglected here.
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VDD

RD

RD

RG

V1CGSRS
RG

RS
gmV1

Vout
Vout

Vb

Vin

M1

Vin

(a) (b)
Figure 6.33 (a) CG stage with resistance in series with gate, and (b) equivalent circuit.

If a common-gate stage is driven by a relatively large source impedance, then the output impedance
of the circuit drops at high frequencies. This effect is better described in the context of cascode
circuits.

6.5 Cascode Stage

As explained in Chapter 3, cascoding proves beneficial in increasing the voltage gain of amplifiers and
the output impedance of current sources while providing shielding as well. The invention of the cascode
(in the vacuum tube era), however, was motivated by the need for high-frequency amplifiers with a
relatively high input impedance. Viewed as a cascade of a common-source stage and a common-gate
stage, a cascode circuit offers the speed of the latter—by suppressing the Miller effect—and the input
impedance of the former.

Let us consider the cascode shown in Fig. 6.34, first identifying all of the device capacitances. At node
A, CGS1 is connected to ground and CG D1 to node X . At node X , CDB1, CSB2, and CGS2 are tied to ground,
and at node Y , CDB2, CG D2, and CL are connected to ground. The Miller effect of CG D1 is determined
by the gain from A to X . As an approximation, we use the low-frequency value of this gain, which for
low values of RD (or negligible channel-length modulation) is equal to �gm1/(gm2 + gmb2). Thus, if
M1 and M2 have roughly equal dimensions, CG D1 is multiplied by approximately 2 rather than the large

VDD

CGD2

CGD2

CGD1

CGS1Vin

Vb

RS

A

CDB2 + CL

CDB1 + CSB2

RD

Y

X

Vout

M2

M1

Figure 6.34 High-frequency model of
a cascode stage.
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voltage gain in a simple common-source stage. We therefore say that the Miller effect is less significant
in cascode amplifiers than in common-source stages. The pole associated with node A is estimated as

�p,A =
1

RS

�
CGS1 +

�
1 +

gm1

gm2 + gmb2

�
CG D1

� (6.79)

We can also attribute a pole to node X . The total capacitance at this node is roughly equal to 2CG D1 +
CDB1 + CSB2 + CGS2, giving a pole

�p,X =
gm2 + gmb2

2CG D1 + CDB1 + CSB2 + CGS2
(6.80)

How does this pole compare with 2� fT � gm2/CGS2? The other capacitances in the denominator reduce
the magnitude of �p,X to roughly 2� fT /2. Finally, the output node yields a third pole:

�p,Y =
1

RD(CDB2 + CL + CG D2)
(6.81)

The relative magnitudes of the three poles in a cascode circuit depend on the actual design parameters,
but �p,X is typically quite a lot higher than the other two.

But what if RD in Fig. 6.34 is replaced by a current source so as to achieve a higher dc gain? We know
from Chapter 3 that the impedance seen at node X reaches high values if the load impedance at the drain
of M2 is large. For example, Eq. (3.117) predicts that the pole at node X may be quite a lot lower than
(gm2 + gmb2)/CX if RD itself is the output impedance of a PMOS cascode current source. Interestingly,
however, the overall transfer function is negligibly affected by this phenomenon. This can be better seen
by an example.

� Example 6.16

Consider the cascode stage shown in Fig. 6.35(a), where the load resistor is replaced by an ideal current source.
Neglecting the capacitances associated with M1, representing Vin and M1 by a Norton equivalent as in Fig. 6.35(b),
and assuming 	 = 0, compute the transfer function.

VDD

Y YVout Vout

CY

CX

rO2rO2

M2

Vb Vb

XX

M2

RS

Vin

Iin

I1

M1 CX

CY

(a) (b)
Figure 6.35 Simplified model of a cascode stage.
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Solution

Since the current through CX is equal to �VoutCY s � Iin , we have VX = �(VoutCY s + Iin)/(CX s), and the small-
signal drain current of M2 is �gm2(�VoutCY s � Iin)/(CX s). The current through rO2 is then equal to �VoutCY s �
gm2(VoutCY s + Iin)/(CX s). Noting that VX plus the voltage drop across rO2 is equal to Vout, we write

�rO2

�
(VoutCY s + Iin)

gm2

CX s
+ VoutCY s

�
� (VoutCY s + Iin)

1

CX s
= Vout (6.82)

That is

Vout

Iin
= �

gm2rO2 + 1

CX s
•

1

1 + (1 + gm2rO2)
CY

CX
+ CY rO2s

(6.83)

which, for gm2rO2 � 1 and gm2rO2CY /CX � 1 (i.e., CY > CX ), reduces to

Vout

Iin
� �

gm2

CX s

1
CY

CX
gm2 + CY s

(6.84)

and hence

Vout

Vin
= �

gm1gm2

CY CX s

1

gm2/CX + s
(6.85)

The magnitude of the pole at node X is still given by gm2/CX . This is because at high frequencies (as we approach
this pole), CY shunts the output node, dropping the gain and suppressing the Miller effect of rO2.

�

If a cascode structure is used as a current source, then the variation of its output impedance with
frequency is of interest. Neglecting CG D1 and CY in Fig. 6.35(a), we have

Zout = (1 + gm2rO2)Z X + rO2 (6.86)

where Z X = rO1||(CX s)�1. Thus, Zout contains a pole at (rO1CX )�1 and falls at frequencies higher than
this value.

6.6 Differential Pair

The versatility of differential pairs and their extensive use in analog systems motivate us to characterize
their frequency response for both differential and common-mode signals.

6.6.1 Differential Pair with Passive Loads

Consider the simple differential pair shown in Fig. 6.36(a), with the differential half circuit and the
common-mode equivalent circuit depicted in Figs. 6.36(b) and (c), respectively. For differential signals,
the response is identical to that of a common-source stage, exhibiting Miller multiplication of CG D . Note
that since +Vin2/2 and �Vin2/2 are multiplied by the same transfer function, the number of poles in
Vout/Vin is equal to that of each path (rather than the sum of the number of poles in the two paths).

For common-mode signals, the total capacitance at node P in Fig. 6.36(c) determines the high-
frequency gain. Arising from CG D3, CDB3, CSB1, and CSB2, this capacitance can be quite substantial if
M1–M3 are wide transistors. For example, limited voltage headroom often necessitates that W3 be so large
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Vout

VDD

CGD CL CL

VDD VDD

Vout Vout1

CDB

CGS

M1 M2
Vin1 Vin1

Vin2 Vin,CM

M1

CPrO3

P

RD RD RD RDRD

M3

M1 M2

Vb

(a) (b) (c)
Figure 6.36 (a) Differential pair; (b) half-circuit equivalent; (c) equivalent circuit for common-mode inputs.

that M3 does not require a large drain-source voltage for operating in the saturation region. If only the
mismatch between M1 and M2 is considered, the high-frequency common-mode gain can be calculated
with the aid of Eq. (4.53). We replace rO3 with rO3
[1/(CP s)] and RD by RD
[1/(CLs)], where CL

denotes the total capacitance seen at each output node.5 Thus,

Av,C M = �
�gm

�
RD

����

�
1

CLs

��

(gm1 + gm2)
�

rO3

����

�
1

CP s

��
+ 1

(6.87)

This result suggests that the common-mode rejection of the circuit degrades considerably at high
frequencies. In fact, writing the CMRR from Chapter 4 for this case gives

CMRR �
gm

�gm

�
1 + 2gm

�
rO3||

1

CP s

��
(6.88)

�
gm

�gm

rO3CP s + 1 + 2gmrO3

rO3CP s + 1
(6.89)

where gm = (gm1 + gm2)/2. We observe that this transfer function contains a zero at (1 + 2gm3rO3)/
(rO3CP) and a pole at 1/(rO3CP). Since 2gm3rO3 � 1, the magnitude of the zero is much greater than
the pole and approximately equal to 2gm3/CP . The CMRR response thus appears as shown in Fig. 6.37.

�
(log scale)

2g2
m rO3

CMRR
(log scale)

0 dB

�gm

1
rOCP

2gm3
CP

Figure 6.37 CMRR for a differential
pair vs. frequency.

5For simplicity, channel-length modulation, body effect, and other capacitances are neglected.
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As illustrated in Fig. 6.38, if the supply voltage contains high-frequency noise and the circuit
exhibits mismatches, the resulting common-mode disturbance at node P translates to a differential
noise component at the output. This effect becomes more pronounced as the noise frequency exceeds
1/(2�rO3CP).

VDD

VDD

CPrO3

M1 P
M2

Figure 6.38 Effect of high-frequency supply noise in differential pairs.

We should emphasize that the circuit of Fig. 6.36(a) suffers from a trade-off between voltage headroom
and CMRR. To minimize the headroom consumed by M3, its width is maximized, introducing substantial
capacitance at the sources of M1 and M2 and degrading the high-frequency CMRR. The issue becomes
more serious at low supply voltages.

We now study the frequency response of differential pairs with high-impedance loads. Shown in
Fig. 6.39(a) is a fully differential implementation. As with the topology of Fig. 6.36, this circuit can
be analyzed for differential and common-mode signals separately. Note that here CL includes the drain
junction capacitance and the gate-drain overlap capacitance of each PMOS transistor as well. Also,

G

VDD VDD

Vout

Vout1

CGD3

CGD1

CGD4

Vin

Vin1 rO1 rO3 CLM1

M3 M3 M4

M1

ISS

M2

CL

G

CL

M4

(a)

(c)

(b)

Figure 6.39 (a) Differential pair with current-source loads; (b) effect of differential swings at node G;
(c) half-circuit equivalent.



Razavi-3930640 book December 17, 201516:40 201

Sec. 6.6 Differential Pair 201

as depicted in Fig. 6.39(b) for differential output signals, CG D3 and CG D4 conduct equal and opposite
currents to node G, making this node an ac ground. (In practice, node G is still bypassed to ground by
means of a capacitor.)

The differential half circuit is depicted in Fig. 6.39(c), with the output resistance of M1 and M3 shown
explicitly. This topology implies that Eq. (6.30) can be applied to this circuit if RL is replaced by rO1
rO3.
In practice, the relatively high value of this resistance makes the output pole, given by [(rO1
rO3)CL ]�1,
the “dominant” pole. We return to this observation in Chapter 10. The common-mode behavior of the
circuit is similar to that of Fig. 6.36(c).

6.6.2 Differential Pair with Active Load

Let us now consider a differential pair with an active current mirror (Fig. 6.40). How many poles does
this circuit have? In contrast to the fully differential configuration of Fig. 6.39(a), this topology contains
two signal paths with different transfer functions. The path consisting of M3 and M4 includes a pole at
node E , approximately given by gm3/CE , where CE denotes the total capacitance from E to ground.
This capacitance arises from CGS3, CGS4, CDB3, CDB1, and the Miller effect of CG D1 and CG D4. Even if
only CGS3 and CGS4 are considered, the severe trade-off between gm and CGS of PMOS devices results
in a pole that impacts the performance of the circuit. The pole associated with node E is called a “mirror
pole.” Note that, as with the circuit of Fig. 6.39(a), both signal paths shown in Fig. 6.40 contain a pole at
the output node.

In order to estimate the frequency response of the differential pair with an active current mirror,
we construct the simplified model depicted in Fig. 6.41(a), where all other capacitances are neglected.

VDD

Vout

ISS

Vin

M4M3

E

M2M1

Output
Pole

Mirror
Pole

Figure 6.40 High-frequency behavior
of differential pair with active current
mirror.

VDD

M4

M1 M2

ISS

Vin

M3

Vout

VDD

M4

RX VX

CE

CL

E

CL rOP

Vout

gmP
1

CE

E

IX

(a) (b)
Figure 6.41 (a) Simplified high-frequency model of differential pair with active current mirror; (b) circuit of
(a) with a Thevenin equivalent.
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Replacing Vin, M1, and M2 by a Thevenin equivalent, we arrive at the circuit of Fig. 6.41(b), where
VX = gm N rO N Vin and RX = 2rO N (why?). Here, the subscripts P and N refer to PMOS and NMOS
devices, respectively, and we have assumed that 1/gm P � rO P . The small-signal voltage at E is equal to

VE = (Vout � VX )

1

CE s + gm P

1

CE s + gm P
+ RX

(6.90)

and the small-signal drain current of M4 is gm4VE . Noting that �gm4VE � IX = Vout(CLs +r�1
O P), we have

Vout

Vin
=

gm N rO N (2gm P + CE s)rO P

2rO PrO N CE CLs2 + [(2rO N + rO P)CE + rO P(1 + 2gm PrO N )CL ]s + 2gm P(rO N + rO P)
(6.91)

Since the mirror pole is typically much higher in magnitude than the output pole, we can utilize the results
of Eq. (6.34) to write

�p1 �
2gm P(rO N + rO P)

(2rO N + rO P)CE + rO P(1 + 2gm PrO N )CL
(6.92)

Neglecting the first term in the denominator and assuming that 2gm PrO N � 1, we have

�p1 �
1

(rO N 
rO P)CL
(6.93)

an expected result. The second pole is then given by

�p2 �
gm P

CE
(6.94)

which is also expected.
An interesting point revealed by Eq. (6.91) is a zero with a magnitude of 2gm P/CE in the left half

plane. The appearance of such a zero can be understood by noting that the circuit consists of a “slow
path” (M1, M3, and M4) in parallel with a “fast path” (M1 and M2). Representing the two by A0/[(1 +
s/�p1)(1 + s/�p2)] and A0/(1 + s/�p1), respectively, we have

Vout

Vin
=

A0

1 + s/�p1

�
1

1 + s/�p2
+ 1

�
(6.95)

=
A0(2 + s/�p2)

(1 + s/�p1)(1 + s/�p2)
(6.96)

That is, the system exhibits a zero at 2�p2. The zero can also be obtained by the method of Fig. 6.18
(Problem 6.15).

Comparing the circuits of Figs. 6.39(a) and 6.40, we conclude that the former entails no mirror pole,
another advantage of fully differential circuits over single-ended topologies.

� Example 6.17

Not all fully differential circuits are free from mirror poles. Figure 6.42(a) illustrates an example where current
mirrors M3–M5 and M4–M6 “fold” the signal current. Estimate the low-frequency gain and the transfer function of
this circuit.
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RS
Vin1 M1

RS
Vin1

Figure 6.42

Solution

Neglecting channel-length modulation and using the differential half circuit shown in Fig. 6.42(b), we observe that
M5 multiplies the drain current of M3 by K, yielding an overall low-frequency voltage gain Av = gm1 K RD .

To obtain the transfer function, we utilize the equivalent circuit depicted in Fig. 6.42(c), including a source
resistance RS for completeness. To simplify calculations, we assume that RDCL is relatively small so that the Miller
multiplication of CG D5 can be approximated as CG D5(1 + gm5 RD). The circuit thus reduces to that in Fig. 6.42(d),
where CX � CGS3 + CGS5 + CDB3 + CG D5(1 + gm5 RD) + CDB1. The overall transfer function is then equal to
VX /Vin1 multiplied by Vout1/VX . The former is readily obtained from (6.30) by replacing RD with 1/gm3 and CDB

with CX , while the latter is

Vout1

VX
(s) = �gm5 RD

1

1 + RDCL s
(6.97)

Note that we have neglected the zero due to CG D5.
�

6.7 Gain-Bandwidth Trade-Offs

In many applications, we wish to maximize both the gain and the bandwidth of amplifiers. For example,
optical communication receivers employ an amplifier that must achieve a high gain and a wide band-
width. This section deals with gain-bandwidth trade-offs encountered in high-speed design. As shown in
Fig. 6.43, we are interested in both the �3-dB bandwidth, ��3d B , and the “unity-gain” bandwidth, �u .



Razavi-3930640 book December 17, 201516:40 204

204 Chap. 6 Frequency Response of Amplifiers

�
(log scale)

20log
Vout
Vin

( j�)

 ��3dB  �u
0 dB

Figure 6.43 Frequency response showing
�3-dB and unity-gain bandwidths.

6.7.1 One-Pole Circuits

In some circuits, the load capacitance seen at the output node produces a dominant pole, allowing a
one-pole approximation. That is, we can say that the �3-dB bandwidth is equal to the pole frequency.
For example, the CS stage of Fig. 6.44 exhibits an output pole given by �p = [(rO1||rO2)CL ]�1 if other
capacitances are neglected. Noting that the low-frequency gain is equal to |A0| = gm1(rO1||rO2), we
define the “gain-bandwidth” product (GBW) as

GBW = A0�p (6.98)

= gm1(rO1||rO2)
1

2�(rO1||rO2)CL
(6.99)

=
gm1

2�CL
(6.100)

M1

VDD

M2

Vout

CLVin

Vb

Figure 6.44 CS stage with one pole.

As an example, if gm1 = (100 �)�1 and CL = 50 fF, then GBW = 31.8 GHz. For a one-pole system,
the gain-bandwidth product is approximately equal to the unity-gain bandwidth; this can be seen
by writing

A0	
1 + (

�u

�p
)2

= 1 (6.101)

and hence

�u =



A2
0 � 1�p (6.102)

� A0�p (6.103)

if A2
0 � 1.
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� Example 6.18

Does cascoding increase the GBW product? Assume that the output pole is dominant.

Solution

No, it does not. Equation (6.100) suggests that the GBW product is independent of the output resistance. More
specifically, if cascoding in Fig. 6.44 raises the output impedance by a factor of K , then |A0| (= Gm Rout) rises and
�p falls, both by a factor of K , yielding a constant GBW product.

�

6.7.2 Multi-Pole Circuits

It is possible to increase the GBW product by cascading two or more gain stages. Consider the amplifier
shown in Fig. 6.45, where, for simplicity, we assume that the two stages are identical and neglect other
capacitances. Associating one pole with each node, we write the transfer function as (Vout/VX )(VX/Vin):

Vout

Vin
=

A2
0

(1 +
s

�p
)2

(6.104)

M1

M2

CLVin

Vb

M3

VDD

M4

Vout

CL

VX

Figure 6.45 Cascaded CS stages.

where A0 = gm N (rO N ||rO P) and �p = [(rO N ||rO P)CL ]�1. To obtain the �3-dB bandwidth, we equate
the magnitude of Vout/Vin to A2

0/
�

2:

A2
0

1 +
�2

�3d B

�2
p

=
A2

0�
2

(6.105)

and

��3d B =

�

2 � 1�p (6.106)

� 0.64�p (6.107)

The GBW product thus rises to

GBW =

�

2 � 1A2
0�p (6.108)

a factor of 0.64A0 greater than that in Eq. (6.103). Of course, the power consumption is doubled.
While raising the GBW product, cascading reduces the bandwidth, as evidenced by Eq. (6.107). In

fact, we prove in Problem 6.25 that for N identical stages,

��3d B =



N
�

2 � 1�p (6.109)
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observing a steady decline in the bandwidth as N increases. Another disadvantage of cascading is
that the resulting multiple poles lead to instability if the circuit is placed in a negative-feedback loop
(Chapter 10).

6.8 Appendix A: Extra Element Theorem

Introduced by Middlebrook [1], the extra element theorem (EET) proves useful in calculating some
transfer functions. Suppose the transfer function of a circuit is known and denoted by H(s). Now, as
shown in Fig. 6.46(a), we add an extra impedance Z1 between two nodes of the circuit. We wish to
determine the new transfer function, G(s). Middlebrook proves that

G(s) = H(s)
1 +

Zout,0

Z1

1 +
Zin,0

Z1

(6.110)

i.e., the original transfer function is multiplied by a “correction factor.” The terms Zout,0 and Zin,0 are
quantities measured between nodes A and B in the absence of Z1. The former is computed as depicted
in Fig. 6.46(b): we apply a voltage source between A and B while Vin is present and choose their values
so that Vout = 0; then Zout,0 = V1/I1. This calculation appears rather complex and unintuitive, but, as
shown below, it is in fact quite simple. We should also remark that Zout,0 is not an impedance in the
standard sense because it is obtained with a finite Vin . The latter, Zin,0, is simply equal to the impedance
seen between A and B when Vin = 0 [Fig. 6.46(c)].

VoutVin
A

Z1

Vout = 0Vin
AB B A B

V1 V1

I1 I1

(c)(a) (b)
Figure 6.46 (a) Circuit with extra parallel element, Z1, (b) Zout,0 calculation, and (c) Zin,0 calculation.

This theorem is particularly useful for frequency-response analysis because we can begin with no
capacitances in the circuit, find H(s) as the low-frequency gain, add the capacitors one by one, and
calculate the correction factors. Note that H(s) cannot be zero or infinity because the EET’s proof relies
on division by H(s).

� Example 6.19

Using the EET, find the transfer function of the circuit in Fig. 6.47(a).

Solution

We first consider the circuit without CF and write H(s) = �gm(RD ||rO ). Next, we find Zout,0 using the setup
shown in Fig. 6.47(b), exploiting the condition that Vout is zero and so is the current through RD . Since Vout = 0,
we have VGS = V1 and I1 = �gm VGS = �gm V1. That is, Zout,0 = �1/gm . Note that we resisted the temptation to
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Vin

VDD
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VDD

A

BVout

V1
I1 Vout = 0

M1

RD

RS

VDD

A

B

V1
I1

(a) (b) (c)
Figure 6.47

write equations involving Vin . Also, the negative sign of Zout,0 does not imply a negative impedance between A and
B because Vin �= 0.

For Zin,0, we have from Fig. 6.47(c), VA = I1 RS = VGS . A KCL at node B gives the current through RD as
gm I1 RS + I1, and a KVL across RD , V1, and RS leads to I1 RD(1 + gm RS) � V1 + I1 RS = 0. It follows that
Zin,0 = (1 + gm RS)RD + RS = (1 + gm RD)RS + RD and

G(s) = �gm(RD ||rO )
1 �

1

gm
CF s

1 + [(1 + gm RD)RS + RD]CF s
(6.111)

We see that the EET beautifully predicts the zero and the pole produced by CF .
�

� Example 6.20

Repeat the above example while including both CF and a capacitor, CB , from node B to ground.

Solution

Since we have already obtained the transfer function with CF present, we must seek the Zout,0 and Zin,0 corresponding
to CB . The arrangement depicted in Fig. 6.48(a) suggests that Zout,0 = 0 because the drain voltage must be zero
while V1 is not, requiring an infinite current to flow through V1.

M1

RD

RS

VDD

A

B

CF

V1

I1

M1

RD

RS

VDD

A

B

CF

V1

I1

Vin

(a) (b)
Figure 6.48

For Zin,0, we note from Fig. 6.48(b) that VGS = V1 RSCF s/(RSCF s + 1) and the current flowing through CF

is equal to V1/[(CF s)�1 + RS]. A KCL at the drain node gives

V1

RD
+

V1CF s

RSCF s + 1
+ gm V1

RSCF s

RSCF s + 1
= I1 (6.112)
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Thus,

Zin,0 =
RD(RSCF s + 1)

[RS(1 + gm RD) + RD]CF s + 1
(6.113)

Using Eq. (6.111), we write the new transfer function as

G(s) = �gm(RD ||rO )
1 �

CF

gm
s

1 + [(1 + gm RD)RS + RD]CF s

1

1 +
RD(RSCF s + 1)CBs

[RS(1 + gm RD) + RD]CF s + 1

= �gm(RD ||rO )
1 �

CF

gm
s

[RS(1 + gm RD) + RD]CF s + RD(RSCF s + 1)CBs + 1
(6.114)

�

The EET can also be expressed for series elements [1]. That is, if the transfer function of a circuit is
H(s) before we insert an element, Z1, in series with a branch, then the new transfer function is given
by [1]

G(s) = H(s)
1 +

Z1

Zout,0

1 +
Z1

Zin,0

(6.115)

6.9 Appendix B: Zero-Value Time Constant Method

Our analysis of frequency response in this chapter reveals considerable mathematical labor when the
number of poles exceeds two. In some cases, we are content with estimating the dominant pole—if one
exists—or the �3-dB bandwidth of the circuit. The “zero-value time constant” (ZVTC) method provides
an approximation of these quantities. It also proves useful as an additional analysis tool.

Before delving into the ZVTC method, let us make an observation. Suppose a circuit contains one
capacitor and no other storage elements and we wish to determine the pole of the system [Fig. 6.49(a)].
We can derive the transfer function Vout(s)/Vin(s) and examine its denominator, D(s). Alternatively, as
shown in Fig. 6.49(b), we can set the input to zero, compute the resistance, R1, seen by C1, and express

C1

A

Vin Vout

C1

AB B

R1

(a) (b)
Figure 6.49 (a) General circuit containing one capacitor, and (b) resistance seen by C1.
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the pole as 1/(R1C1). In Problem 6.23, we prove why this is true, but the important point here is that this
method often simplifies the analysis.

� Example 6.21

A CG stage contains a resistance RG in series with the gate [Fig. 6.50(a)]. If only CG D is considered, determine the
pole frequency.

gmV1 gmV1

RG

RD

Vout

V1RS

Vin

CGD
RG

RD

Vout

V1RS

VX IX

(a) (b)
Figure 6.50

Solution

As illustrated in Fig. 6.50(b), we remove CG D , set Vin to zero, and apply a voltage (or current) source to measure
the resistance seen by this capacitor. The voltage across RS is equal to gm V1 RS , yielding

gm V1 RS + V1 = �IX RG (6.116)

and hence V1 = �IX RG/(1 + gm RS). Since the current flowing through RD is equal to IX � gm V1, we have

�IX RG + VX = (IX � gm V1)RD (6.117)

Substituting for V1, we obtain

VX

IX
= RD +

�
gm RD

1 + gm RS
+ 1

�
RG = Req (6.118)

The pole is given by 1/(ReqCG D). The reader is encouraged to determine the circuit’s transfer function directly and
compare the mathematical labor.

Interestingly, as a result of RG , the resistance seen by CG D rises from RD to RD plus a multiple of RG , the
multiple given by the low-frequency gain of the CG stage plus 1. It is also interesting to note that the circuit of
Fig. 6.50(a) does not lend itself to Miller’s approximation (why?).

�

As our first step toward developing the ZVTC method, let us determine the transfer function of the
simple second-order circuit shown in Fig. 6.51. Since the current through R2 is equal to VoutC2s, and
hence VX = R2VoutC2s + Vout, we obtain the current through C1 as VX C1s = (1 + R2C2s)C1sVout. This
current and that through R2 flow through R1, producing a voltage drop equal to R1(1+ R2C2s)C1sVout +
R1VoutC2s. Writing a KVL around Vin , R1, R2, and Vout gives

Vin = R1(1 + R2C2s)C1sVout + R1C2sVout + R2VoutC2s + Vout (6.119)
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C1

R1

C2

R2
V in Vout

VX

Figure 6.51 Second-order RC circuit.

It follows that

Vout

Vin
(s) =

1

R1 R2C1C2s2 + [R1C1 + (R1 + R2)C2]s + 1
(6.120)

Recall from Sec. 6.2 that, if a dominant pole exists, then it is given by the inverse of the coefficient of s,
Bs . We now focus on this coefficient, noting that it must have a time dimension and is therefore the sum
of time constants. The first time constant, R1C1, contains a resistance equal to the resistance seen by C1

as if C2 were zero.6 Similarly, the second time constant, (R1 + R2)C2, arises from the resistance seen
by C2 as if C1 were zero. We call R1C1 and (R1 + R2)C2 “zero-value” time constants because each is
obtained by setting the other capacitor to zero.

Can we generalize this result? That is, can we say that the dominant pole is given by the inverse
of the sum of all of the zero-value time constants? We must first prove that, even for higher-order
systems, the dominant pole is equal to the inverse of the coefficient of s in the denominator. Writing the
denominator as

D(s) =
�

1 +
s

�p1

� �
1 +

s

�p2

�
• • •

�
1 +

s

�pn

�
(6.121)

we recognize that the coefficient of s, Bs , is equal to ��1
p1 + ��1

p2 + • • • + ��1
pn , which reduces to ��1

p1 if
this pole is dominant.

Next, we must prove that Bs is equal to the sum of the zero-value time constants of the circuit.
Assuming that the circuit contains only capacitors as storage elements,7 we note that, since Bs has a time
dimension, it can be expressed as

Bs = R1C1 + R2C2 + • • • + RnCn (6.122)

where R1–Rn are unknown. Note that C1–Cn denote the capacitors in the circuit, but R1–Rn may represent
physical resistors or equivalent resistances (e.g., 1/gm). How do we obtain R1–Rn? If C2–Cn are set to
zero, the order of the system falls to 1, i.e., D(s) = Bss +1 = R1C1s +1, where R1 is the resistance seen
by C1. Similarly, if C1 = C3 = • • • = Cn = 0, we have D(s) = R2C2s+1, where R2 is the resistance seen
by C2. Thus, the dominant pole is indeed equal to the inverse of the sum of the zero-value time constants.
The reader is cautioned that, even though, Bs = ��1

p1 + ��1
p2 + • • • + ��n

p1 = R1C1 + R2C2 + • • • + RnCn ,
we cannot conclude that ��1

p1 = R1C1, ��1
p2 = R2C2, etc. Also, note that this method neglects the effect

of zeros.
The ZVTC method proves useful if we wish to estimate the �3-dB bandwidth of a circuit. Depicted

in Fig. 6.52, the idea is to approximate the frequency response by a one-pole system, and hence the time
response by a single exponential. The following example illustrates this point.

6With Vin = 0.
7The analysis can be repeated for other types of storage elements as well.
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Figure 6.52 Approximation of the frequency and time responses by one-pole counterparts.

� Example 6.22

Estimate the �3-dB bandwidth of a resistively-degenerated common-source stage. Assume � = 	 = 0.

Solution

Shown in Fig. 6.53(a), the small-signal model is of third order,8 providing little intuition. The zero-value time
constant method can give a rough estimate of the circuit’s bandwidth, thereby revealing the contribution of each
capacitor.

gmV1 CL

RG

Vin CGS

CGD

RD

Vout

V1

RS

gmV1

RG

RDV1

RS
V X

I X

(a) (b)
Figure 6.53

We begin with the time constant associated with CGS and set CG D and CL to zero. As depicted in Fig. 6.53(b),
the resistance seen by CGS is VX /IX . We denote this resistance by RCGS . Since V1 = VX and the current flowing
through RS is equal to gm V1 � IX = gm VX � IX , we write a KVL as follows:

IX RG = VX + (gm VX � IX )RS (6.123)

obtaining

RCGS =
RG + RS

1 + gm RS
(6.124)

For the resistance seen by CG D , we have from Example 6.21

RCG D = RD +
�

gm RD

1 + gm RS
+ 1

�
RG (6.125)

8This can be seen by observing that it is possible to impose three independent initial conditions across the three capacitors
without violating KVL.
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Finally, the resistance seen by CL is simply equal to RD . It follows that the �3-dB bandwidth is given by

��1
�3d B =

RG + RS

1 + gm RS
CGS +

�
RD +

�
gm RD

1 + gm RS
+ 1

�
RG

�
CG D + RDCL (6.126)

With no degeneration, this result reduces to Eq. (6.35). With a finite RS , the effect of CGS and RG is reduced by a
factor of 1 + gm RS , albeit at the cost of voltage gain.

�

� Example 6.23

Repeat the above example for a common-gate stage containing a gate resistance of RG and a source resistance of RS .

Solution

We draw the small-signal circuit as shown in Fig. 6.54. For the computation of zero-value time constants, the main
input is set to zero. Thus, the resulting equivalent circuits are identical for CS and CG stages, yielding the same time
constants and hence the same bandwidth. After all, the circuits in Figs. 6.53(a) and 6.54 are topologically identical
and contain the same poles.

gmV1 CL

RG

CGS

CGD

RD

Vout

V1

RS

Vin

Figure 6.54

Does this result contradict our earlier assertion that the CG stage is free from the Miller effect? No, it does not.
In a CG stage, we strive to avoid RG , whereas in a CS stage, RG represents the preceding circuit’s output resistance
and is inevitable.

�

6.10 Appendix C: Dual of Miller’s Theorem

In Miller’s theorem (Fig. 6.2), we readily observe that Z1 + Z2 = Z . This is no coincidence, and it has
interesting implications. Redrawing Fig. 6.2 as shown in Fig. 6.55(a), we surmise that since the point
between Z1 and Z2 can be grounded, then if we “walk” from X toward Y along the impedance Z , the

Z

Za Zb

Z1 Z2

X Y

(b)

X Y

X Y

VP = 0

Z

(a)
Figure 6.55 Illustration of Miller’s theorem, identifying a local zero potential a long Z .
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local potential drops to zero at some intermediate point [Fig. 6.55(b)]. Indeed, for VP = 0, we have

Za

Za + Zb
(VY � VX ) + VX = 0 (6.127)

and, since Za + Zb = Z ,

Za =
Z

1 � VY /VX
(6.128)

Similarly,

Zb =
Z

1 � VX/VY
(6.129)

In other words, Z1(= Za) and Z2(= Zb) are such decompositions of Z that provide an intermediate node
having a zero potential. For example, since in the common-source stage of Fig. 6.13, VX and VY have
opposite polarities, the potential falls to zero at some point “inside” CG D .

The above observation explains the difficulty with the transformation depicted in Fig. 6.5. Drawing
Fig. 6.55(b) for this case as in Fig. 6.56(a), we recognize that the circuit is still valid before node P is
grounded because the current through R1 + R2 must equal that through �R2. However, if, as shown in
Fig. 6.56(b), node P is tied to ground, then the only current path between X and Y vanishes.

R2

X Y X Y

(a) (b)

R1 + R2

R2

�R2 R1 + R2 �R2

Figure 6.56 Resistive divider with decomposition of R1.

The concept of a local zero potential along the floating impedance Z also allows us to develop the
“dual” of Miller’s theorem, i.e., decomposition in terms of admittances and current ratios. Suppose two
loops carrying currents I1 and I2 share an admittance Y [Fig. 6.57(a)]. Then, if Y is properly decomposed
into two parallel admittances Y1 and Y2, the current flowing between the two is zero [Fig. 6.57(b)], and
the connection can be broken [Fig. 6.57(c)]. In Fig. 6.57(a), the voltage across Y is equal to (I1 � I2)/Y ,
and in Fig. 6.57(c), the voltage across Y1 is I1/Y1. For the two circuits to be equivalent,

I1 � I2

Y
=

I1

Y1
(6.130)

and

Y1 =
Y

1 � I2/I1
(6.131)

YI1 I2 I1 I2Y1 Y2

I = 0

I1 I2Y1 Y2

(c)(a) (b)
Figure 6.57 (a) Two loops sharing admittance Y , (b) decomposition of Y into Y1 and Y2 such that I = 0,
(c) equivalent circuit.
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Note the duality between this expression and Z1 = (1 � VY /VX )Z . We also have

Y2 =
Y

1 � I1/I2
(6.132)
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that VDD = 3
V where necessary. Also, assume that all transistors are in saturation. All device dimensions are effective values and
in microns.

6.1. In the circuit of Fig. 6.3(c), suppose the amplifier has a finite output resistance Rout.
(a) Explain why the output jumps up by �V before it begins to go down. This indicates the existence of a

zero in the transfer function.
(b) Determine the transfer function and the step response without using Miller’s theorem.

6.2. Repeat Problem 6.1 if the amplifier has an output resistance Rout and the circuit drives a load capacitance CL .

6.3. The CS stage of Fig. 6.13 is designed with (W/L)1 = 50/0.5, RS = 1 k�, and RD = 2 k�. If ID1 = 1 mA,
determine the poles and the zero of the circuit.

6.4. Consider the CS stage of Fig. 6.16, where I1 is realized by a PMOS device operating in saturation. Assume
that (W/L)1 = 50/0.5, ID1 = 1 mA, and RS = 1 k�.
(a) Determine the aspect ratio of the PMOS transistor such that the maximum allowable output level is 2.6 V.

What is the maximum peak-to-peak swing?
(b) Determine the poles and the zero.

6.5. A source follower employing an NFET with W/L = 50/0.5 and a bias current of 1 mA is driven by a source
impedance of 10 k�. Calculate the equivalent inductance seen at the output.

6.6. Neglecting other capacitances, calculate the input impedance of each circuit shown in Fig. 6.58.

M1

C2C1

M2

VDD

� = 0� = 0 � � 0

M1

C2C1

VDD

I1

Zin Zin

M1

VDD

I1

C1

C2

Zin

(c)(a) (b)
Figure 6.58

6.7. Estimate the poles of each circuit in Fig. 6.59.

6.8. Calculate the input impedance and the transfer function of each circuit in Fig. 6.60.

6.9. Calculate the gain of each circuit in Fig. 6.61 at very low and very high frequencies. Neglect all other
capacitances and assume that � = 0 for circuits (a) and (b) and 	 = 0 for all of the circuits.
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M1Vin

RS

I1

M2

VDD

I2

Vout

I1

M2

VDD

I2

Vout

M1 Vb
Vin

RS

(a) (b)

� = 0� � 0

Figure 6.59

M1

VDD

I1

(c)(a) (b)

M2

Vin

RS

Vb

I2

Vout

Zin

M1

VDD

I1

M2

Vin

RS

I2

Vout

Zin

M1

VDD

I1

M2

Vin

RS

I2

Vout

Zin

M1

VDD

I1

Vb

M2

Vin

RS

I2Zin

Vout
Vb1

VDD

I1

M2

Vin

RS

I2

Vout

Zin

M1 Vb2

VDD

I1

Vin

RS

I2

Vout

Zin
� = � = 0 

� = � = 0 � = � = 0 � � 0 

� = � = 0 
� = � = 0 

M1 Vb2

M2

(d) (e) (f)
Figure 6.60

6.10. Calculate the gain of each circuit in Fig. 6.62 at very low and very high frequencies. Neglect all other
capacitances and assume that � = 	 = 0.

6.11. Consider the cascode stage shown in Fig. 6.63. In our analysis of the frequency response of a cascode stage,
we assumed that the gate-drain overlap capacitance of M1 is multiplied by gm1/(gm2 + gmb2). Recall from
Chapter 3, however, that with a high resistance loading the drain of M2, the resistance seen looking into the
source of M2 can be quite high, suggesting a much higher Miller multiplication factor for CG D1. Explain why
CG D1 is still multiplied by 1 + gm1/(gm2 + gmb2) if CL is relatively large.

6.12. Neglecting other capacitances, calculate Z X in the circuits of Fig. 6.64. Sketch |Z X | versus frequency.

6.13. The common-gate stage of Fig. 6.31 is designed with (W/L)1 = 50/0.5, ID1 = 1 mA, RD = 2 k�, and
RS = 1 k�. Assuming � = 0, determine the poles and the low-frequency gain. How do these results compare
with those obtained in Problem 6.9?



Razavi-3930640 book December 17, 201516:40 216

216 Chap. 6 Frequency Response of Amplifiers

M1Vin

M2

R1

C1

VDD

R2

C2
M3

Vout

M1Vin
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VDD
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Vout
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Vb2
C1

M1

C2C1

M2

VDD

(c)

(a) (b)

Vin Vout

M1

M2

VDD

Vout

C1

Vin

R2

Vb

R1

C2

(d)

M3

Vb

Figure 6.61

(a) (b)

M1 M2

VDD

M4M3

ISS

C1

Vin

Vout

Vout

VDD

M4M3

R2 R2

M1 M2

ISS

Vin

R1 C1

Vb

C2

M5

M6

Figure 6.62
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VDD

I1

M1

M2

Vout

Vb2
CL

CGD1

Figure 6.63

M1

VDD

(a)

M2

I1ZX

RD

C1
M1

VDD

� = � = 0� = � = 0

M2

I1

ZX

RD

C1

(b)
Figure 6.64

6.14. Suppose that in the cascode stage of Fig. 6.34, a resistor RG appears in series with the gate of M2. Including
only CGS2, neglecting other capacitances, and assuming � = 	 = 0, determine the transfer function.

6.15. Apply the method of Fig. 6.18 to the circuit of Fig. 6.41(b) to determine the zero of the transfer function.

6.16. The circuit of Fig. 6.42(a) is designed with (W/L)1,2 = 50/0.5 and (W/L)3,4 = 10/0.5. If ISS = 100 µA,
K = 2, CL = 0, and RD is implemented by an NFET having W/L = 50/0.5, estimate the poles and zeros
of the circuit. Assume the amplifier is driven by an ideal voltage source.

6.17. A differential pair driven by an ideal voltage source is required to have a total phase shift of 135� at the
frequency where its gain drops to unity.
(a) Explain why a topology in which the load is realized by diode-connected devices or current sources does

not satisfy this condition.
(b) Consider the circuit shown in Fig. 6.65. Neglecting other capacitances, determine the transfer function.

Explain under what conditions the load exhibits an inductive behavior. Can this circuit provide a total
phase shift of 135� at the frequency where its gain drops to unity?

Vout

M1 M2

ISS

Vin

R1

C1

R2

C2
M3 M4

VDD

Figure 6.65
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6.18. Repeat Example 6.3, but assume that I1 is replaced with a resistor R1.

6.19. A resistively-degenerated common-source stage bootstraps CGS in a manner similar to a source follower.
Estimate the input capacitance of such a stage.

6.20. Determine the transfer function of a CG stage with a resistance RG in series with the gate, including only
CGS and CG D . Assume � = 	 = 0.

6.21. Determine the transfer function of a CG stage with a resistance RG in series with the gate, including only
CG D and CDB . Assume � = 	 = 0.

6.22. Determine the transfer function of a differential pair with current-source loads for differential signals. Assume
that each input is driven by a series resistance of RS .

6.23. Consider a circuit containing only one capacitor, C1. We set the main input to zero and apply a current
source, IX , in parallel with C1, obtaining the voltage across it, VX , and hence VX (s)/IX (s) (Fig. 6.66). This
impedance has the same pole as the main transfer function. Prove that the pole is given by 1/(R1C1), where
R1 is the resistance seen by C1.

C1

A B

Iin

VX

Figure 6.66

6.24. Repeat Example 6.22, but with � > 0 and 	 > 0.

6.25. Prove that the �3-dB bandwidth of N first-order identical gain stages is given by
�

N
�

2 � 1�p , where �p

denotes the pole of one stage.

6.26. Prove that if CG D = 0, then Eq. (6.30) reduces to the product of two transfer functions that can simply be
obtained by association of poles with the input and output nodes.
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CHAPTER

7
Noise

Noise limits the minimum signal level that a circuit can process with acceptable quality. Today’s analog
designers constantly deal with the problem of noise because it trades with power dissipation, speed, and
linearity.

In this chapter, we describe the phenomenon of noise and its effect on analog circuits. The objective is
to provide sufficient understanding of the problem so that further developments of analog circuits in the
following chapters take noise into account as naturally as they do other circuit parameters, such as gain,
input and output impedances, etc. Seemingly a complex subject, noise is introduced at this early stage
so as to accompany the reader for the remainder of the book and become more intuitive through various
examples.

Following a general description of noise characteristics in the frequency and time domains, we intro-
duce thermal and flicker noise. Next, we consider methods of representing noise in circuits. Finally, we
describe the effect of noise in single-stage and differential amplifiers along with trade-offs with other
performance parameters.

7.1 Statistical Characteristics of Noise

Noise is a random process. For our purposes in this book, this statement means that the value of noise
cannot be predicted at any time even if the past values are known. Compare the output of a sine-wave
generator with that of a microphone picking up the sound of water flow in a river (Fig. 7.1). While the
value of x1(t) at t = t1 can be predicted from the observed waveform, the value of x2(t) at t = t2 cannot.
This is the principal difference between deterministic and random phenomena.

If the instantaneous value of noise in the time domain cannot be predicted, how can we incorporate
noise in circuit analysis? This is accomplished by observing the noise for a long time and using the
measured results to construct a “statistical model” for the noise. While the instantaneous amplitude of
noise cannot be predicted, a statistical model provides knowledge about some other important properties
of the noise that prove useful and adequate in circuit analysis.

Which properties of noise can be predicted? In many cases, the average power of noise is predictable.
For example, if a microphone picking up the sound of a river is brought closer to the river, the resulting
electrical signal displays, on the average, larger excursions and hence higher power (Fig. 7.2). The reader
may wonder if a random process can be so random that even its average power is unpredictable. Such
processes do exist, but we are fortunate that most sources of noise in circuits exhibit a constant average
power.

219
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t

x1(t)

x2(t)

Signal
Generator

t

(a)

(b)

t1

t2

Figure 7.1 (a) The output of a generator, and (b) the sound of a river.

t

(a)

(b)

t

xA(t)

xB(t)

Figure 7.2 Illustration of the average power of a random signal.

The concept of average power proves essential in our analysis and must be defined carefully. Recall
from basic circuit theory that the average power delivered by a periodic voltage v(t) to a load resistance
RL is given by

Pav =
1

T

� +T/2

�T/2

v2(t)
RL

dt (7.1)

where T denotes the period.1 Measured in watts, this quantity can be visualized as the average heat
produced in RL by v(t).

1To be more rigorous, v2(t) should be replaced by v(t) • v�(t), where v�(t) is the complex conjugate waveform.
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How do we define Pav for a random signal? In the example of Fig. 7.2, we expect that xB(t) generates
more heat than xA(t) if the microphone drives a resistive load. However, since the signals are not periodic,
the measurement must be carried out over a long time:

Pav = lim
T ��

1

T

� +T/2

�T/2

x2(t)
RL

dt (7.2)

where x(t) is a voltage quantity. Figure 7.3 illustrates the operation on x(t): the signal is squared, the
area under the resulting waveform is calculated for a long time T , and the average power is obtained by
normalizing the area to T .2

t t

(  )2

T T

Figure 7.3 Average noise power.

To simplify calculations, we write the definition of Pav as

Pav = lim
T ��

1

T

� +T/2

�T/2
x2(t)dt (7.3)

where Pav is expressed in V2 rather than W. The idea is that if we know Pav from (7.3), then the actual
power delivered to a load RL can be readily calculated as Pav/RL . In analogy with deterministic signals,
we can also define a root-mean-square (rms) voltage for noise as

�
Pav , where Pav is given by (7.3).

7.1.1 Noise Spectrum

The concept of average power becomes more versatile if defined with regard to the frequency content of
noise. The noise made by a group of men contains weaker high-frequency components than that made
by a group of women, a difference observable from the “spectrum” of each type of noise. Also called the
“power spectral density” (PSD), the spectrum shows how much power the signal carries at each frequency.
More specifically, the PSD, Sx ( f ), of a noise waveform x(t) is defined as the average power carried by
x(t) in a one-hertz bandwidth around f . That is, as illustrated in Fig. 7.4(a), we apply x(t) to a bandpass
filter with a center frequency of f1 and a 1-Hz bandwidth, square the output, x f 1(t), and calculate the
average over a long time to obtain Sx ( f1). Repeating the procedure with bandpass filters having different
center frequencies, we arrive at the overall shape of Sx ( f ) [Fig. 7.4(b)].3 Generally, Sx ( f ) is measured
in watts per hertz. The total area under Sx ( f ) represents the power carried by the signal (or the noise) at
all frequencies; i.e., the total power.

� Example 7.1

(a) Sketch the spectrum of voice for men and women. What does the difference imply about their time-domain
waveforms?
(b) Estimate the averaging time, T , in Eq. (7.3) for voice signals.

2Strictly speaking, this definition holds only for “stationary” processes [1].
3In signal processing theory, the PSD is defined as the Fourier transform of the autocorrelation function of the noise. The two

definitions are equivalent in most cases of interest to us.
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ff2f1 fn

ff1

1 Hz

Band�Pass
Filter

t

x(t)

( ) 2

t

t

xf1(t)  2

xf1(t)

Sx(f )

(a)

(b)
Figure 7.4 Calculation of noise spectrum.

Solution

(a) The human voice exhibits frequencies from 20 Hz to 20 kHz. Since women’s voice contain stronger high-
frequency components, we expect the two spectra to differ as shown in Fig. 7.5(a). In the time domain, we observe
faster changes in women’s voice [Fig. 7.5(b)].

SX(f )

f

Men�s
Voice

Women�s
Voice

20 Hz 20 kHz

x(t) x(t)

t t

Women�s VoiceMen�s Voice

(a)

(b)
Figure 7.5 (a) Spectra of men’s and women’s voices, and (b) corresponding time-domain waveforms.
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(b) The averaging time must be long enough to include a sufficient number of cycles of the lowest frequencies.
That is, the averaging must capture the slowest dynamics in the signal. We must therefore choose T to be at least
about 10 cycles of 20 Hz, i.e., roughly 500 ms.

�

As with the definition of Pav in (7.3), it is customary to eliminate RL from Sx ( f ). Thus, since each
value on the plot in Fig. 7.4(b) is measured for a 1-Hz bandwidth, Sx ( f ) is expressed in V2/Hz rather than
W/Hz. It is also common to take the square root of Sx ( f ), expressing the result in V/

�
Hz. For example,

we say that the input noise voltage of an amplifier at 100 MHz is equal to 3 nV/
�

Hz, simply to mean
that the average power in a 1-Hz bandwidth at 100 MHz is equal to (3 × 10�9)2 V2.

f

Sn(f )

Figure 7.6 White spectrum.

An example of a common type of noise PSD is the “white spectrum,” also called white noise. Shown in
Fig. 7.6, such a PSD displays the same value at all frequencies (similar to white light). Strictly speaking,
we note that white noise does not exist because the total area under the power spectral density, i.e., the
total power carried by the noise, is infinite. In practice, however, any noise spectrum that is flat in the
band of interest is usually called white.

The PSD is a powerful tool in analyzing the effect of noise in circuits, especially in conjunction with
the following theorem.

Theorem If a signal with spectrum Sx ( f ) is applied to a linear time-invariant system with transfer
function H(s), then the output spectrum is given by

SY ( f ) = Sx ( f )|H( f )|2 (7.4)

where H( f ) = H(s = 2� j f ). The proof can be found in textbooks on signal processing or communi-
cations, e.g., [1].

Somewhat similar to the relation Y (s) = X (s)H(s), this theorem agrees with our intuition that the
spectrum of the signal should be “shaped” by the transfer function of the system (Fig. 7.7). For example,
as illustrated in Fig. 7.8, since regular telephones have a bandwidth of approximately 4 kHz, they suppress
the high-frequency components of the caller’s voice. Note that, owing to its limited bandwidth, xout(t)
exhibits slower changes than does xin(t). This bandwidth limitation sometimes makes it difficult to
recognize the caller’s voice.

f

H(f ) 2

ff

Sx(f ) Sy(f )

Figure 7.7 Noise shaping by a transfer function.

Since Sx ( f ) is an even function of f for real x(t) [1], as depicted in Fig. 7.9, the total power carried
by x(t) in the frequency range [ f1 f2] is equal to

Pf 1, f 2 =
� � f1

� f2

Sx ( f )d f +
� + f2

+ f1

Sx ( f )d f (7.5)

=
� + f2

+ f1

2Sx ( f )d f (7.6)
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xin(t) xout(t)

Sxin(f ) Sxout(f )

f

H(f )

Telephone

t

f

4 kHz

20 kHz f 4 kHz

Figure 7.8 Spectral shaping by telephone bandwidth.

f

SX(f ) SX(f )

f0 0
(a) (b)

�f2 �f1 f1 f2 f1 f2

Figure 7.9 (a) Two-sided and (b) one-sided noise spectra.

In fact, the integral in (7.6) is the quantity measured by a power meter sensing the output of a bandpass
filter between f1 and f2. That is, the negative-frequency part of the spectrum is folded around the vertical
axis and added to the positive-frequency part. We call the representation of Fig. 7.9(a) the “two-sided”
spectrum and that of Fig. 7.9(b) the “one-sided” spectrum. For example, the two-sided white spectrum
of Fig. 7.6 has the one-sided counterpart shown in Fig. 7.10.

f f

Sn(f )Sn(f )

�
2

�

Figure 7.10 Folded white spectrum.

In summary, the spectrum shows the power carried in a small bandwidth at each frequency, revealing
how fast the waveform is expected to vary in the time domain.

7.1.2 Amplitude Distribution

As mentioned earlier, the instantaneous amplitude of noise is usually unpredictable. However, by observ-
ing the noise waveform for a long time, we can construct a “distribution” of the amplitude, indicating
how often each value occurs. Also called the “probability density function” (PDF), the distribution of
x(t) is defined as

pX (x)dx = probability of x < X < x + dx (7.7)

where X is the measured value of x(t) at some point in time.
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As illustrated in Fig. 7.11, to estimate the distribution, we sample x(t) at many points, construct bins
of small width, choose the bin height equal to the number of samples whose value falls between the two
edges of the bin, and normalize the bin heights to the total number of samples. Note that the PDF provides
no information as to how fast x(t) varies in the time domain. For example, the sound generated by a
violin may have the same amplitude distribution as that produced by a drum even though their frequency
contents are vastly different.

x

Number
of Samples

t

x(t)

Figure 7.11 Amplitude distribution of noise.

An important example of PDFs is the Gaussian (or normal) distribution. The central limit theorem
states that if many independent random processes with arbitrary PDFs are added, the PDF of the sum
approaches a Gaussian distribution [1]. It is therefore not surprising that many natural phenomena exhibit
Gaussian statistics. For example, since the noise of a resistor results from the random “walk” of a very
large number of electrons, each having relatively independent statistics, the overall amplitude follows a
Gaussian PDF.

In this book, we employ the spectrum and average power of noise to a much greater extent than the
amplitude distribution. For completeness, however, we note that the Gaussian PDF is defined as

pX (x) =
1

�
�

2�
exp

�(x � m)2

2� 2
(7.8)

where � and m are the standard deviation and mean of the distribution, respectively. For Gaussian
distribution, � is equal to the rms value of the noise.

7.1.3 Correlated and Uncorrelated Sources

In analyzing circuits, we often need to add the effect of several sources of noise to obtain the total noise.
While for deterministic voltages and currents, we simply use the superposition principle, the procedure
is somewhat different for random noise because we are ultimately interested in the average noise power.
Let us add two noise waveforms and take the average of the resulting power:

Pav = lim
T ��

1

T

� +T/2

�T/2
[x1(t) + x2(t)]2dt (7.9)

= lim
T ��

1

T

� +T/2

�T/2
x2

1(t)dt + lim
T ��

1

T

� +T/2

�T/2
x2

2(t)dt

+ lim
T ��

1

T

� +T/2

�T/2
2x1(t)x2(t)dt (7.10)

= Pav1 + Pav2 + lim
T ��

1

T

� +T/2

�T/2
2x1(t)x2(t)dt (7.11)
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where Pav1 and Pav2 denote the average power of x1(t) and x2(t), respectively. Called the “correlation”
between x1(t) and x2(t),4 the third term in (7.11) indicates how “similar” these two waveforms are. If
generated by independent devices, the noise waveforms are usually “uncorrelated” and the integral in
(7.11) vanishes. For example, the noise produced by a resistor has no correlation with that generated by
a transistor. In such a case, Pav = Pav1 + Pav2. From this observation, we say that superposition holds
for the power of uncorrelated noise sources. Of course, superposition also holds for noise voltages and
currents, but this does not help us in most cases.

A familiar analogy is that of the spectators in a sports stadium. Before the game begins, many conver-
sations are in progress, generating uncorrelated noise components [Fig. 7.12(a)]. During the game, the
spectators applaud (or scream) simultaneously, producing correlated noise at a much higher power level
arising from the third term in Eq. (7.11). [Fig. 7.12(b)].

x1(t)

x2(t)

x3(t)

x1(t)

x2(t)

x3(t)

xtot(t) xtot(t)

t

t

(a) (b)
t

t

Figure 7.12 (a) Uncorrelated noise and (b) correlated noise generated in a stadium.

In most cases studied in this book, the noise sources are uncorrelated. One exception is studied in
Section 7.3.

Ampli�erVin

t

Signal

Noise

0 f20 kHz 1 MHz

Audio
Range

Ampli�er Bandwidth

H(�)  

(a) (b)
Figure 7.13 (a) Output noise produced by a circuit, and (b) additional noise if bandwidth is excessively wide.

7.1.4 Signal-to-Noise Ratio

Suppose an amplifier receives a sinusoidal signal as shown in Fig. 7.13. The output contains both the
amplified signal and the noise generated by the circuit. For the output signal to be intelligible, its power,
Psig, must be sufficiently higher than that of the noise, Pnoise. We therefore define the “signal-to-noise
ratio” (SNR) as

SNR =
Psig

Pnoise
(7.12)

4This terminology applies only to stationary signals.
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For example, audio signals require a minimum SNR of about 20 dB (i.e., Psig/Pnoise = 100).5 For a
sinusoid having a peak amplitude of A, Psig = A2/2, but how do we calculate Pnoise? The total average
power carried by noise is equal to the area under its spectrum:

Pnoise =
� +�

��
Snoise( f )d f (7.13)

Does this mean that Pnoise can be very large if Snoise( f ) spans a wide frequency range? Yes, indeed. As
an example, suppose the above amplifier provides a bandwidth of 1 MHz while sensing an audio signal
[Fig. 7.13(b)]. Then, the signal is corrupted by all of the noise components in the 1-MHz bandwidth.
For this reason, the bandwidth of the circuit must always be limited to the minimum acceptable value so
as to minimize the integrated noise power. The bandwidth can be reduced within the amplifier or by a
low-pass filter placed thereafter.

� Example 7.2

An amplifier produces a one-sided noise spectrum given by Snoise( f ) = 5 × 10�16 V2/Hz. Determine the total
output noise in a bandwidth of 1 MHz.

Solution

We have

Pnoise =
� 1 MHz

0
Snoise( f )d f (7.14)

= 5 × 10�10 V2 (7.15)

Note that the total integrated noise is measured in V2 and not in V2/Hz. This noise power corresponds to an rms
voltage of

�
5 × 10�10 V2 = 22.4 µV.

�

7.1.5 Noise Analysis Procedure

With the tools developed in previous sections, we can now outline a methodology for the analysis of
noise in circuits. The output signal of a given circuit is corrupted by the noise sources within the circuit.
We are therefore interested in the noise observed at the output. Our procedure consists of four steps:

1. Identify the sources of noise (e.g., resistors and transistors) and write down the spectrum of each.

2. Find the transfer function from each noise source to the output (as if the source were a deterministic
signal).

3. Utilize the theorem SY ( f ) = Sx ( f )|H( f )|2 to calculate the output noise spectrum contributed by
each noise source. (The input signal is set to zero.)

4. Add all of the output spectra, paying attention to correlated and uncorrelated sources.

This procedure gives the output noise spectrum, which must then be integrated from �� to +� so
as to yield the total output noise. To carry out the first step, we need the noise representation of various
electronic devices, to be described in the next section.

5Since Psig and Pnoise are power quantities, 20 dB = 10 log(Psig/Pnoise).
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7.2 Types of Noise

Analog signals processed by integrated circuits are corrupted by two different types of noise: device
electronic noise and “environmental” noise. The latter refers to (seemingly) random disturbances that
a circuit experiences through the supply or ground lines or through the substrate. We focus on device
electronic noise here and defer the study of environmental noise to Chapter 19.

7.2.1 Thermal Noise

Resistor Thermal Noise The random motion of electrons in a conductor introduces fluctuations in the
voltage measured across the conductor, even if the average current is zero. Thus, the spectrum of thermal
noise is proportional to the absolute temperature. As shown in Fig. 7.14, the thermal noise of a resistor
R can be modeled by a series voltage source, with the one-sided spectral density

Sv( f ) = 4kT R, f � 0 (7.16)

R V2n

Noiseless
Resistor f

Sv(f )

4kTR

Figure 7.14 Thermal noise of a resistor.

where k = 1.38 × 10�23 J/K is the Boltzmann constant. Note that Sv( f ) is expressed in V2/Hz. Thus,
we also write V 2

n = 4kT R, where the overline indicates averaging.6 We may even say that the noise
“voltage” is given by 4kT R even though this quantity is in fact the noise voltage squared. For example, a
50-� resistor held at T = 300 K exhibits 8.28 × 10�19 V2/Hz of thermal noise. To convert this number
to a more familiar voltage quantity, we take the square root, obtaining 0.91 nV/

�
Hz. While the square

root of hertz may appear strange, it is helpful to remember that 0.91 nV/
�

Hz has little significance per
se and simply means that the power in a 1-Hz bandwidth is equal to (0.91 × 10�9)2 V2.

The equation Sv( f ) = 4kT R suggests that thermal noise is white. In reality, Sv( f ) is flat for up to
roughly 100 THz, dropping at higher frequencies. For our purposes, the white spectrum is quite accurate.

Since noise is a random quantity, the polarity used for the voltage source in Fig. 7.14 is unimportant.
Nevertheless, once a polarity is chosen, it must be retained throughout the analysis of the circuit so as to
obtain consistent results.

� Example 7.3

Consider the RC circuit shown in Fig. 7.15. Calculate the noise spectrum and the total noise power in Vout.

R

C VR
2

R

C VoutVout

Figure 7.15 Noise generated in a low-pass filter.

6Some books write V 2
n = 4kT R� f to emphasize that 4kT R is the noise power per unit bandwidth. To simplify the notation,

we assume that � f = 1 Hz, unless otherwise stated. In other words, we use Sv( f ) and V 2
n interchangeably.
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Solution

We follow the four steps described in Section 7.1.5. The noise spectrum of R is given by Sv( f ) = 4kT R. Next,
modeling the noise of R by a series voltage source VR , we compute the transfer function from VR to Vout:

Vout

VR
(s) =

1

RCs + 1
(7.17)

From the theorem in Section 7.1.1, we have

Sout( f ) = Sv( f )
����

Vout

VR
( j�)

����
2

(7.18)

= 4kT R
1

4�2 R2C2 f 2 + 1
(7.19)

Thus, the white noise spectrum of the resistor is shaped by a low-pass characteristic (Fig. 7.16). To calculate the total
noise power at the output, we write

Pn,out =
� �

0

4kT R

4�2 R2C2 f 2 + 1
d f (7.20)

f

Sv(f )

4kTR

R

C Vn,out

f

Sout(f )

4kTR

Figure 7.16 Noise spectrum shaping by a low-pass filter.

Note that the integration must be with respect to f rather than � (why?). Since

�
dx

x2 + 1
= tan�1 x (7.21)

the integral reduces to

Pn,out =
2kT

�C
tan�1 u|u=�

u=0 (7.22)

=
kT

C
(7.23)

Note that the unit of kT/C is V2. We may also consider
�

kT/C as the total rms noise voltage measured at the
output. For example, with a 1-pF capacitor, the total noise voltage is equal to 64.3 µVrms at T = 300 K.

Equation (7.23) implies that the total noise at the output of the circuit shown in Fig. 7.15 is independent of the
value of R. Intuitively, this is because for larger values of R, the associated noise per unit bandwidth increases while
the overall bandwidth of the circuit decreases. The fact that kT/C noise can be decreased only by increasing C (if
T is fixed) introduces many difficulties in the design of analog circuits (Chapter 13).

�

The thermal noise of a resistor can be represented by a parallel current source as well (Fig. 7.17).
For the representations of Figs. 7.14 and 7.17 to be equivalent, we have V 2

n /R2 = I 2
n , that is, I 2

n = 4kT/R.
Note that I 2

n is expressed in A2/Hz. Depending on the circuit topology, one model may lead to simpler
calculations than the other.
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R In2
Noiseless
Resistor

Figure 7.17 Representation of resistor
thermal noise by a current source.

� Example 7.4

Calculate the equivalent noise voltage of two parallel resistors R1 and R2 [Fig. 7.18(a)].

R2 R2R1 R1V2n,tot V2n,tot
I2n2I2n1

(a) (b)
Figure 7.18

Solution

As shown in Fig. 7.18(b), each resistor exhibits an equivalent noise current with the spectral density 4kT/R. Since
the two noise sources are uncorrelated, we add the powers:

I 2
n,tot = I 2

n1 + I 2
n2 (7.24)

= 4kT

�
1

R1
+

1

R2

�
(7.25)

Thus, the equivalent noise voltage is given by

V 2
n,tot = I 2

n,tot (R1�R2)2 (7.26)

= 4kT (R1�R2) (7.27)

as intuitively expected. Note that our notation assumes a 1-Hz bandwidth.
�

The dependence of thermal noise (and some other types of noise) upon T suggests that low-temperature
operation can decrease the noise in analog circuits. This approach becomes more attractive with the
observation that the mobility of charge carriers in MOS devices increases at low temperatures [2].7

Nonetheless, the required cooling equipment limits the practicality of low-temperature circuits.

MOSFETs MOS transistors also exhibit thermal noise. The most significant source is the noise generated
in the channel. It can be proved [4] that for long-channel MOS devices operating in saturation, the channel
noise can be modeled by a current source connected between the drain and source terminals (Fig. 7.19)
with a spectral density:8

I 2
n = 4kT � gm (7.28)

7At extremely low temperatures, the mobility drops due to “carrier freezeout” [2].
8The actual equation reads I 2

n = 4kT � gds , where gds is the drain-source conductance with VDS = 0, i.e., the same as R�1
on .

For long-channel devices, gds with VDS = 0 is equal to gm in saturation.
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In2 = 4kT�gm

Figure 7.19 Thermal noise of a
MOSFET.

The coefficient � (not to be confused with the body effect coefficient!) is derived to be equal to 2/3
for long-channel transistors and may need to be replaced by a larger value for submicron MOSFETs [5].
It also varies to some extent with the drain-source voltage. As a rule of thumb, we assume � � 1.

� Example 7.5

Find the maximum noise voltage that a single MOSFET can generate.

Solution

As shown in Fig. 7.20, the maximum output noise occurs if the transistor sees only its own output impedance as
the load, i.e., if the external load is an ideal current source. The output noise voltage spectrum is then given by
Sout( f ) = Sin( f )|H( f )|2, i.e.,

V 2
n = I 2

n r2
O (7.29)

= (4kT � gm)r2
O (7.30)

In2 = 4kT�gm

I1

VDD

ac

V2n,outM1

Figure 7.20

Let us make three observations. First, (7.30) suggests that the noise current of a MOS transistor decreases if the
transconductance drops. For example, if the transistor operates as a constant current source, it is desirable to minimize
its transconductance.

Second, the noise measured at the output of the circuit does not depend on where the input terminal is because
for output noise calculation, the input is set to zero.9 For example, the circuit of Fig. 7.20 may be a common-source
or a common-gate stage, exhibiting the same output noise.

Third, the output resistance, rO , does not produce noise because it is not a physical resistor.
�

The ohmic sections of a MOSFET also contribute thermal noise. As conceptually illustrated in the top
view of Fig. 7.21(a), the gate, source, and drain materials exhibit finite resistivity, thereby introducing
noise. For a relatively wide transistor, the source and drain resistance is typically negligible whereas the
gate distributed resistance may become noticeable.

9Of course, if the input voltage or current source has an output impedance that generates noise, this statement must be interpreted
carefully.



Razavi-3930640 book December 17, 201516:45 232

232 Chap. 7 Noise

G
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V2n,RD

V2n,RS

V2n,R1 R RG1 RG2 RGn

D

S

S

D

G

(c)

(a)

(b)

RG1 + RG2 + RGn = RG

1

Polysilicon

Figure 7.21 (a) Layout of a MOSFET indicating the terminal resistances; (b) circuit model; (c) distributed gate
resistance.

Nanometer Design Notes

The small dimensions of nanometer de-
vices lead to considerable flicker noise.
Plotted below are the gate-referred
noise spectra for PMOS and NMOS
devices with W/L = 5 µm/40 nm and
I D = 250 µA. We observe that PMOS
devices exhibit less noise, and the
NMOS flicker noise corner is as high
as several hundred megahertz. For low
flicker noise, therefore, the transistor
areas must be increased substantially.
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In the noise model of Fig. 7.21(b), a lumped resistor R1 represents the
distributed gate resistance. Viewing the overall transistor as the distributed
structure shown in Fig. 7.21(c), we observe that the unit transistors near the
left end see the noise of only a fraction of RG whereas those near the right
end see the noise of most of RG . We therefore expect the lumped resistor in
the noise model to be less than RG . In fact, it can be proved that R1 = RG/3
(Problem 7.3) [3], and hence the noise generated by the gate resistance is given
by V 2

n RG = 4kT RG/3.
While the thermal noise generated in the channel is controlled by only

the transconductance of the device, the effect of RG can be reduced by proper
layout. Shown in Fig. 7.22 are two examples. In Fig. 7.22(a), the two ends of the
gate are shorted by a metal line, thus reducing the distributed resistance from
RG to RG/4 (why?). Alternatively, the transistor can be folded as described
in Chapter 19 [Fig. 7.22(b)] so that each gate “finger” exhibits a resistance
of RG/2, yielding a total distributed resistance of RG/4 for the composite
transistor.

(a) (b)
Metal

S

D

S

W

W
2

Figure 7.22 Reduction of gate resistance by (a) adding contacts to both sides or (b) folding.
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� Example 7.6

A transistor of width W is laid out with one gate finger and exhibits a total gate resistance of RG [Fig. 7.23(a)]. Now,
we reconfigure the device into four equal gate fingers [Fig. 7.23(b)]. Determine the total gate resistance thermal noise
spectrum of the new structure.

W W
4

(a) (b) Figure 7.23

Solution

With a width of W/4, each gate finger now has a distributed resistance of RG/4 and hence a lumped-model resistance
of RG/12. Since the four fingers are in parallel, the net resistance is given by RG/48, yielding a noise spectrum of

V 2
n RG = 4kT

RG

48
(7.31)

(In general, if the gate is decomposed into N parallel fingers, the distributed resistance falls by a factor of N 2.)
�

� Example 7.7

Find the maximum thermal noise voltage that the gate resistance of a single MOSFET can generate. Neglect the
device capacitances.

Solution

If the total distributed gate resistance is RG , then from Fig. 7.24, the output noise voltage due to RG is given by

V 2
n,out = 4kT

RG

3
(gmrO )2 (7.32)

An important observation here is that, for the gate resistance noise to be negligible, we must ensure that (7.32) is
much less than (7.30), and thus

RG

3
	

�
gm

(7.33)

The number of gate fingers is chosen large enough to guarantee this condition.

I1

VDD

M1
3

V2n,RG =  4kT

RG

3
RG

V2n,out

Figure 7.24
�
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7.2.2 Flicker Noise

The interface between the gate oxide and the silicon substrate in a MOSFET entails an interesting
phenomenon. Since the silicon crystal reaches an end at this interface, many “dangling” bonds appear,
giving rise to extra energy states (Fig. 7.25). As charge carriers move at the interface, some are randomly
trapped and later released by such energy states, introducing “flicker” noise in the drain current. In
addition to trapping, several other mechanisms are believed to generate flicker noise [4].

Polysilicon

Dangling
Bonds

Silicon
Crystal

SiO2

Figure 7.25 Dangling bonds at the
oxide-silicon interface.

Unlike thermal noise, the average power of flicker noise cannot be predicted easily. Depending on the
“cleanness” of the oxide-silicon interface, flicker noise may assume considerably different values and as
such varies from one CMOS technology to another. The flicker noise is more easily modeled as a voltage
source in series with the gate and, in the saturation region, roughly given by

V 2
n =

K

Cox W L
•

1

f
(7.34)

where K is a process-dependent constant on the order of 10�25 V2F. Note that our notation assumes a
bandwidth of 1 Hz. Interestingly, as shown in Fig. 7.26, the noise spectral density is inversely proportional
to the frequency. For example, the trap-and-release phenomenon associated with the dangling bonds
occurs more often at low frequencies. For this reason, flicker noise is also called 1/ f noise. Note that
(7.34) does not depend on the bias current or the temperature. This is only an approximation; in reality,
the flicker noise equation is somewhat more complex [3].

log f

10log V2n

Figure 7.26 Flicker noise spectrum.

The inverse dependence of (7.34) on W L suggests that to reduce 1/ f noise, the device area must be
increased. It is therefore not surprising to see devices having areas of several hundred square microns in
low-noise applications. (More fundamentally, the noise power trades with the gate capacitance, W LCox .)
Generally, PMOS devices exhibit less 1/ f noise than NMOS transistors because the former carry the
holes in a “buried channel,” i.e., at some distance from the oxide-silicon interface, and hence trap and
release the carriers to a lesser extent.

� Example 7.8

For an NMOS current source, calculate the total thermal and 1/ f noise in the drain current for a band from 1 kHz
to 1 MHz.
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Solution

The thermal noise current per unit bandwidth is given by I 2
n,th = 4kT � gm . Thus, the total thermal noise integrated

across the band of interest is

I 2
n,th,tot = 4kT � gm(106 � 103) (7.35)

� 4kT � gm × 106 A2 (7.36)

For 1/ f noise, the drain noise current per unit bandwidth is obtained by multiplying the noise voltage at the gate
by the device transconductance:

I 2
n,1/ f =

K

Cox W L
•

1

f
• g2

m (7.37)

The total 1/ f noise is then equal to

I 2
n,1/ f,tot =

K g2
m

Cox W L

� 1 MHz

1 kHz

d f

f
(7.38)

=
K g2

m

Cox W L
ln 103 (7.39)

=
6.91K g2

m

Cox W L
(7.40)

�

The above example raises an interesting question. What happens to I 2
n,1/ f,tot if the lower end of the

band, fL , is zero rather than 1 kHz? Equation (7.39) then yields an infinite value for the total noise. To
overcome the fear of infinite noise, we make two observations. First, extending fL to zero means that we
are interested in arbitrarily slow noise components. A noise component at 0.01 Hz varies significantly
in roughly 10 s (one-tenth of the period) and one at 10�6 Hz in roughly one day. Second, the infinite
flicker noise power simply means that if we observe the circuit for a very long time, the very slow
noise components can randomly assume a very large power level. At such slow rates, noise becomes
indistinguishable from thermal drift or aging of devices.

The foregoing observations lead to the following conclusions. First, since the signals encountered in
most applications do not contain very-low-frequency components, our observation window need not be
very long. For example, voice signals display negligible energy below 20 Hz, and if a noise component
varies at a lower rate, it does not corrupt the voice significantly. Second, the logarithmic dependence of
the flicker noise power upon fL allows some margin for error in selecting fL . For example, if the integral
in Eq. (7.38) begins from 100 Hz rather than 1 kHz, the coefficient in (7.40) rises from 6.91 to 9.21.

In order to quantify the significance of 1/ f noise with respect to thermal noise for a given device, we
plot both spectral densities on the same axes (Fig. 7.27). Called the 1/ f noise “corner frequency,” the

f (log scale)

f
1

Thermal

fC

Corner

10log V2n

Figure 7.27 Concept of flicker noise
corner frequency.
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intersection point serves as a measure of what part of the band is mostly corrupted by flicker noise. In
the above example, the 1/ f noise corner, fC , of the output current is determined as

4kT � gm =
K

Cox W L
•

1

fC
• g2

m (7.41)

that is,

fC =
K

� Cox W L
gm

1

4kT
(7.42)

This result implies that fC generally depends on the device area and transconductance. Nonetheless, for
a given L , the dependence is weak and the 1/ f noise corner is relatively constant, falling in the vicinity
of 10 MHz to 50 MHz for nanometer transistors.

� Example 7.9

For a 100-µm/0.5-µm MOS device with gm = 1/(100 �), the 1/ f noise corner frequency is measured to be 500 kHz.
If tox = 90 A



, what is the flicker noise coefficient, K , in this technology?

Solution

For tox = 90 A



, we have Cox = 3.84 fF/µm2. Using Eq. (7.42), we write

500 kHz =
K

3.84 × 100 × 0.5 × 10�15 •
1

100
•

3

8 × 1.38 × 10�23 × 300
(7.43)

That is, K = 1.06 × 10�25 V2F.
�

It is important to bear in mind that typical transistor models include thermal and flicker noise but not
the gate resistance noise. The latter must therefore be added to each transistor by the designer.

7.3 Representation of Noise in Circuits

Output Noise Consider a general circuit with one input port and one output port (Fig. 7.28). How do
we quantify the effect of noise here? The natural approach would be to set the input to zero and calculate
the total noise at the output due to various sources of noise in the circuit. This is indeed how the noise is
measured in the laboratory or in simulations. Our analysis procedure in Section 7.1.5 methodically leads
to the output noise spectrum.

V2n1

I2n2
V2n3

Vin Vout

Figure 7.28 Noise sources in a circuit.

� Example 7.10

What is the total output noise voltage of the common-source stage shown in Fig. 7.29(a)? Assume that � = 0.
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ac
M1

RD

Vout

VDD

Vin

M1

RD

VDD

I2n1

V2n,out

I2nRD

(a) (b)
Figure 7.29 (a) CS stage; (b) circuit including noise sources.

Solution

We must identify the sources of noise, find their transfer functions to the output, multiply their spectra by the squared
magnitude of the transfer functions and add the results. We model the thermal and flicker noise of M1 by two current
sources: I 2

n,th = 4kT � gm and I 2
n,1/ f = K g2

m/(Cox W L f ). We also represent the thermal noise of RD by a current

source I 2
n,R D = 4kT/RD . Since these currents flow through RD , the output noise voltage per unit bandwidth is

equal to

V 2
n,out =

�
4kT � gm +

K

Cox W L
•

1

f
• g2

m +
4kT

RD

�
R2

D (7.44)

Note that the noise mechanisms are added as “power” quantities because they are uncorrelated. The value given by
(7.44) represents the noise power in 1 Hz at a frequency f . The total output noise is obtained by integration.

�

Input-Referred Noise While intuitively appealing, the output-referred noise does not allow a fair
comparison of the performance of different circuits because it depends on the gain. For example, as
depicted in Fig. 7.30, if a common-source stage is followed by a noiseless amplifier having a voltage
gain A1, then the output noise is equal to the expression in (7.44) multiplied by A2

1. Considering only
the output noise, we may conclude that as A1 increases, the circuit becomes noisier, an incorrect result
because a larger A1 also provides a proportionally higher signal level at the output. That is, the output
signal-to-noise ratio does not depend on A1.

M1

RD

Vout

VDD

Vin

A1

Figure 7.30 Addition of gain stage to
a CS stage.

To overcome the above quandary, we usually specify the “input-referred noise” of circuits. Illustrated
conceptually in Fig. 7.31, the idea is to represent the effect of all noise sources in the circuit by a single

V2n,in
V2n1

V2n3
I2n2

Noisy Circuit

(a) (b)

Noiseless Circuit

V2n,outV2n,out

Figure 7.31 Determination of input-referred noise voltage.
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source, V 2
n,in , at the input such that the output noise in Fig. 7.31(b) equals that in Fig. 7.31(a). If the

voltage gain is Av , then we must have V 2
n,out = A2

vV 2
n,in , that is, the input-referred noise voltage in this

simple case is given by the output noise voltage divided by the gain.

� Example 7.11

For the circuit of Fig. 7.29, calculate the input-referred noise voltage.

Solution

We have

V 2
n,in =

V 2
n,out

A2
v

(7.45)

=
�

4kT � gm +
K

Cox W L
•

1

f
• g2

m +
4kT

RD

�
R2

D
1

g2
m R2

D

(7.46)

= 4kT
�
gm

+
K

Cox W L
•

1

f
+

4kT

g2
m RD

(7.47)

Note that the first term in (7.47) can be viewed as the thermal noise of a resistor equal to � /(gm) placed in series
with the gate. Similarly, the third term corresponds to the noise of a resistor equal to (g2

m RD)�1. We sometimes say
the “equivalent thermal noise resistance” of a circuit is equal to RT , meaning that the total input-referred thermal
noise of the circuit in unit bandwidth is equal to 4kT RT .

Why does V 2
n,in decrease as RD increases? This is because the noise voltage due to RD at the output is proportional

to
�

RD while the voltage gain of the circuit is proportional to RD .
�

At this point of our study, we make two observations. First, the input-referred noise and the input
signal are both multiplied by the gain as they are processed by the circuit. Thus, the input-referred noise
indicates how much the input signal is corrupted by the circuit’s noise, i.e., how small an input the circuit
can detect with acceptable SNR. For this reason, input-referred noise allows a fair comparison of different
circuits. Second, the input-referred noise is a fictitious quantity in that it cannot be measured at the input
of the circuit. The two circuits of Figs. 7.31(a) and (b) are mathematically equivalent but the physical
circuit is still that in Fig. 7.31(a).

In the foregoing discussion, we have assumed that the input-referred noise can be modeled by a single
voltage source in series with the input. This is generally an incomplete representation if the circuit has a
finite input impedance and is driven by a finite source impedance. To understand why, let us first return
to the CS stage of Fig. 7.29 and observe that the output thermal noise due to M1 is equal to (4kT � gm)R2

D
regardless of the network driving the gate (i.e., regardless of the preceding stage). Upon dividing this noise
by (gm RD)2, we obtain an input-referred noise voltage of 4kT � /gm—also independent of the preceding
stage.

Now, consider the common-source stage of Fig. 7.32(a), where the input capacitance is denoted by
Cin . The input-referred noise voltage due to M1 is still given by 4kT � /gm . Suppose the preceding stage
is modeled by a Thevenin equivalent having an output impedance of R1 [Fig. 7.32(b)]. Simplifying the
circuit for noise calculations as shown in Fig. 7.32(c), we seek the output noise due to M1, hoping to
obtain 4kT � gm R2

D . Owing to the voltage division between R1 and 1/(Cins), the output noise emerges as

V 2
n,out = V 2

n,in

����
1

R1Cin j� + 1

����
2

(gm RD)2 (7.48)

=
4kT � gm R2

D

R2
1C2

in�2 + 1
(7.49)

This result is incorrect; after all, the output noise due to M1 must not diminish as R1 increases.
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M1

RD

Vout

VDD

(a)

Cin

M1

RD

Vout

VDD

CinVin

(b)

M1

RD

Vout

VDD

V2n,in

V2n,in
V2n,in

Cin

(c)

R1

Preceding
Stage

R1

Figure 7.32 CS stage including input capacitance; (b) CS stage stimulated by a finite source impedance;
(c) effect of single noise source.

Let us summarize the problem. If the circuit has a finite input impedance, modeling the input-referred
noise by merely a voltage source implies that the output noise vanishes as the source impedance becomes
large, an incorrect conclusion. To resolve this issue, we model the input-referred noise by both a series
voltage source and a parallel current source (Fig. 7.33) so that if the output impedance of the preceding
stage assumes large values—thereby reducing the effect of V 2

n,in—the noise current source still flows

through a finite impedance, producing noise at the input. It can be proved that V 2
n,in and I 2

n,in are necessary
and sufficient to represent the noise of any linear two-port circuit [5].

Noiseless
CircuitI2n,in

V2n,in

Figure 7.33 Representation of noise
by voltage and current sources.

How do we calculate V 2
n,in and I 2

n,in? Since the model is valid for any source impedance, we consider
two extreme cases: zero and infinite source impedances. As shown in Fig. 7.34(a), if the source impedance
is zero, I 2

n,in flows through V 2
n,in and has no effect on the output. Thus, the output noise measured in this

case arises solely from V 2
n,in . Similarly, if the input is open [Fig. 7.34(b)], then V 2

n,in has no effect and the

output noise is due to only I 2
n,in . Let us apply this method to the circuit of Fig. 7.32.

Noisy
Circuit

Noiseless
Circuit

Noisy
Circuit

Noiseless
Circuit

(a)

(b)

I2n,in

V2n,in

V2n, in

I2n,inV2n1,out V2n1,out

V2n2, out V2n2,out

Figure 7.34 Calculation of input-referred noise (a) voltage and (b) current.

� Example 7.12

Calculate the input-referred noise voltage and current of Fig. 7.32, including only the thermal noise of M1 and RD .
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Solution

From (7.47), the input-referred noise voltage is simply

V 2
n,in = 4kT

�
gm

+
4kT

g2
m RD

(7.50)

As depicted in Fig. 7.35(a), this voltage generates the same output noise as the actual circuit if the input is shorted.

M1

RD

VDD

Cin

(a) (b)

M1

RD

VDD

Cin

Input
Shorted

Input
Open

V2n,in

I2n,in

V2n2,outV2n1,out

Figure 7.35

To obtain the input-referred noise current, we open the input and find the output noise in terms of I 2
n,in [Fig. 7.35(b)].

The noise current flows through Cin , generating at the output

V 2
n2,out = I 2

n,in

�
1

Cin�

�2

g2
m R2

D (7.51)

According to Fig. 7.34(b), this value must be equal to the output of the noisy circuit when its input is open:

V 2
n2,out =

�
4kT � gm +

4kT

RD

�
R2

D (7.52)

From (7.51) and (7.52), it follows that

I 2
n,in = (Cin�)2 4kT

g2
m

�
� gm +

1

RD

�
(7.53)

�

As mentioned earlier, the input noise current, In,in , becomes significant if the circuit’s input impedance,
Zin , is not very high. To see whether In,in can be neglected or not, we consider the scenario depicted in
Fig. 7.36, where ZS denotes the output impedance of the preceding circuit. The total noise voltage sensed
by the second stage at node X is equal to

Vn,X =
Zin

Zin + ZS
Vn,in +

Zin ZS

Zin + ZS
In,in (7.54)

Zin

ZS X
V2n,in

I2n,in
Figure 7.36 Effect of input noise
current.
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If I 2
n,in|ZS|2 	 V 2

n,in , then the effect of In,in is negligible. In other words, ultimately, it is the output
impedance of the preceding stage—rather than Zin—that determines the significance of In,in . We conclude
that the input-referred noise current can be neglected if

|ZS|2 	
V 2

n,in

I 2
n,in

(7.55)

A difficulty in the use of input-referred noise voltages and currents is that they may be correlated.
After all, Vn,in and In,in may contain effects from the same noise source. For example, in Fig. 7.35, if the
noise voltage of RD is increasing at some point in time, then both Vn,in and In,in also inherit this increase.
For this reason, noise calculations must revert to Eq. (7.11) and include the correlation between the two.
Methods of avoiding this correlation are described in Appendix A.

The reader may wonder if the use of both a voltage source and a current source to represent the
input-referred noise “counts the noise twice.” We consider the environment depicted in Fig. 7.37 as
an example and prove that the output noise is correct for any source impedance, ZS . Assuming ZS is
noiseless for simplicity, we first calculate the total noise voltage at the gate of M1 due to V 2

n,in and

I 2
n,in . This voltage cannot be obtained by superposition of powers because V 2

n,in and I 2
n,in are correlated.

Nonetheless, superposition still applies to voltages and currents because the circuit is linear and time-
invariant. Equations (7.50) and (7.53) must be respectively rewritten as

Vn,in = Vn,M1 +
1

gm RD
Vn,RD (7.56)

In,in = CinsVn,M1 +
Cins

gm RD
Vn,RD (7.57)

M1

RD

VDD

CinI2n,in

ZS X
V2n,in V2n,out

Figure 7.37 CS stage driven by a
source impedance.

where Vn,M1 denotes the gate-referred noise voltage of M1 and Vn,RD the noise voltage of RD . We
recognize that Vn,M1 and Vn,R D appear in both Vn,in and In,in , creating a strong correlation between the
two. Thus, the calculations must use superposition of voltages—as if Vn,in and In,in were deterministic
quantities.

Adding the contributions of Vn,in and In,in at node X in Fig. 7.37, we have

Vn,X = Vn,in

1

Cins
1

Cins
+ ZS

+ In,in

ZS

Cins
1

Cins
+ ZS

(7.58)

=
Vn,in + In,in ZS

ZSCins + 1
(7.59)
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Substituting for Vn,in and In,in from (7.56) and (7.57), respectively, we obtain

Vn,X =
1

ZSCins + 1

�
Vn,M1 +

1

gm RD
Vn,RD + Cins ZS(Vn,M1 +

1

gm RD
Vn,RD)

�

= Vn,M1 +
1

gm RD
Vn,R D (7.60)

Note that Vn,X is independent of ZS and Cin . It follows that

V 2
n,out = g2

m R2
D V 2

n,X (7.61)

= 4kT

�
� gm +

1

RD

�
R2

D (7.62)

the same as (7.52). Thus, Vn,in and In,in do not “double count” the noise.

Another Approach In some cases, it is simpler to consider the output short-circuit noise current—
rather than the output open-circuit noise voltage—for these calculations. This current is then multiplied
by the circuit’s output resistance to yield the output noise voltage or simply divided by a proper gain to
give the input-referred quantities. The following example illustrates this approach.

� Example 7.13

Determine the input-referred noise voltage and current for the amplifier shown in Fig. 7.38(a). Assume that I1 is
noiseless and � = 0.

I1

VDD

M1

Vout

RF

Vin

M1

RF

I2n,RF

I2n,M1

I2n,M1

I2n1,out

I2n2,out

M1

RF Iout

M1

RF
V2n,RF

M1

RF Iout

Iin

(a) (b) (c)

(e)(d)

Vin

Figure 7.38

Solution

To compute the input-referred noise voltage, we must short the input port. In this case, we can also short the output
port as shown in Fig. 7.38(b), and find the output noise current due to RF and M1. Since both terminals of RF are
at ac ground, a KVL yields

I 2
n1,out =

4kT

RF
+ 4kT � gm (7.63)
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The output impedance of the circuit with the input shorted is simply equal to RF , yielding

V 2
n1,out =

�
4kT

RF
+ 4kT � gm

�
R2

F (7.64)

We can calculate the input-referred noise voltage by dividing (7.64) by the voltage gain or by dividing (7.63) by the
transconductance, Gm . Let us pursue the latter method. As depicted in Fig. 7.38(c),

Gm =
Iout

Vin
(7.65)

= gm �
1

RF
(7.66)

Dividing (7.63) by G2
m gives

V 2
n,in =

4kT

RF
+ 4kT � gm

(gm �
1

RF
)2

(7.67)

For the input-referred noise current, we first compute the output noise current with the input left open [Fig. 7.38(d)].
Since Vn,RF directly modulates the gate-source voltage of M1, producing a drain current of 4kT RF g2

m , we have

I 2
n2,out = 4kT RF g2

m + 4kT � gm (7.68)

Next, we must determine the current gain of the circuit according to the arrangement shown in Fig. 7.38(c). Noting
that VGS = Iin RF , and hence ID = gm Iin RF , we obtain

Iout = gm RF Iin � Iin (7.69)

= (gm RF � 1)Iin (7.70)

Dividing (7.68) by the square of the current gain yields

I 2
n,in =

4kT RF g2
m + 4kT � gm

(gm RF � 1)2 (7.71)

The reader is encouraged to repeat this analysis using the output noise voltage rather than the output noise current.
The above circuit exemplifies cases where the output noise voltage is not the same for short-circuit and open-circuit

input ports. The reader can prove that, if the input is left open, then

V 2
n2,out =

4kT �
gm

+ 4kT RF (7.72)

�

7.4 Noise in Single-Stage Amplifiers

Having developed basic mathematical tools and models for noise analysis, we now study the noise
performance of single-stage amplifiers at low frequencies. Before considering specific topologies, we
describe a lemma that simplifies noise calculations.

Lemma The circuits shown in Fig. 7.39(a) and (b) are equivalent at low frequencies if V 2
n = I 2

n /g2
m

and the circuits are driven by a finite impedance.
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M1

ZL

ZS

VDD

In2 I2n

I2n,out1 In2,out2

V2n,out V2n,outV2n V2n

M1

ZL

ZS

VDD

M1

ZS

M1

ZS

(c)(a) (b) (d)

Figure 7.39 Equivalent CS stages.

Proof Since the circuits have equal output impedances, we simply examine the output short-circuit
currents [Figs. 7.39(c) and (d)]. It can be proved (Problem 7.4) that the output noise current of the circuit
in Fig. 7.39(c) is given by

In,out1 =
In

ZS(gm + gmb + 1/rO) + 1
(7.73)

and that of Fig. 7.39(d) is

In,out2 =
gm Vn

ZS(gm + gmb + 1/rO) + 1
(7.74)

Equating (7.73) and (7.74), we have Vn = In/gm . We call Vn the “gate-referred” noise of M1.
This lemma suggests that the noise source can be transformed from a drain-source current to a gate

series voltage for arbitrary ZS . We repeat this analysis in the presence of the gate-source capacitance in
Problem 7.29.

� Example 7.14

Prove the above lemma using Thevenin equivalents.

Solution

We construct a Thevenin model for the circuits in Figs. 7.39(a) and (b) but exclude ZL , as depicted in Figs. 7.40(a)
and (b). With In = 0 and Vn = 0, the two topologies are identical, and hence ZThev1 = ZThev2. We thus need only
find the condition under which VThev1 = VThev2.

To obtain the Thevenin voltages, we must replace ZL with an open circuit [Fig. 7.40(c)].10 Since the current flowing
through ZS is zero in both circuits, we have VThev1 = InrO and VThev2 = gm VnrO . It follows that Vn = In/gm .

�

7.4.1 Common-Source Stage

From Example 7.11, the input-referred noise voltage per unit bandwidth of a simple CS stage is
equal to

V 2
n,in = 4kT

�
�
gm

+
1

g2
m RD

�
+

K

Cox W L

1

f
(7.75)

10The Thevenin voltage is calculated by disconnecting the port of interest from external loads.
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I2n

I2n

VThev1

ZThev1

ZL

ZL

ZS

Vn2

Vn2

VThev2

ZThev2
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M1

ZS

VThev1

M1

ZS

VThev2

M1

(a) (b)

(c)
Figure 7.40

Vin

M1

Vout

M1Vb

I0

(a) (b)
Figure 7.41 Voltage amplification
versus current generation.

From the above lemma, we recognize that the term 4kT � /gm is in fact the thermal noise current of M1

expressed as a voltage in series with the gate.
How can we reduce the input-referred noise voltage? Equation (7.75) implies that the transconductance

of M1 must be maximized. Thus, the transconductance must be maximized if the transistor is to amplify
a voltage signal applied to its gate [Fig. 7.41(a)] whereas it must be minimized if the transistor operates
as a constant current source [Fig. 7.41(b)], as illustrated by the following example.

� Example 7.15

Calculate the input-referred thermal noise voltage of the amplifier shown in Fig. 7.42(a), assuming both transistors
are in saturation. Also, determine the total output thermal noise if the circuit drives a load capacitance CL . What is
the output signal-to-noise ratio if a low-frequency sinusoid of peak amplitude Vm is applied to the input?

Solution

Representing the thermal noise of M1 and M2 by current sources [Fig. 7.42(b)] and noting that they are uncorrelated,
we write

V 2
n,out = 4kT (� gm1 + � gm2)(rO1�rO2)2 (7.76)
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M1

Vout

VDD

Vin

Vb M2

M1

VDD

Vin

Vb

M2
I2n2

I2n1
rO1 rO2

V2n,out

(a) (b)
Figure 7.42

(In reality, � may not be the same for NMOS and PMOS devices.) Since the voltage gain is equal to gm1(rO1�rO2),
the total noise voltage referred to the gate of M1 is

V 2
n,in = 4kT (� gm1 + � gm2)

1

g2
m1

(7.77)

= 4kT �
�

1

gm1
+

gm2

g2
m1

�
(7.78)

Equation (7.78) reveals the dependence of V 2
n,in upon gm1 and gm2, confirming that gm2 must be minimized because

M2 serves as a current source rather than a transconductor.11

The reader may wonder why M1 and M2 in Fig. 7.42 exhibit different noise effects. After all, if the noise currents
of both transistors flow through rO1�rO2, why should gm1 be maximized and gm2 minimized? This is simply because,
as gm1 increases, the output noise voltage rises in proportion to

�
gm1 whereas the voltage gain of the stage increases

in proportion to gm1. As a result, the input-referred noise voltage decreases. Such a trend does not apply to M2.
To compute the total output noise, we integrate (7.76) across the band:

V 2
n,out,tot =

� �

0
4kT � (gm1 + gm2)(rO1�rO2)2 d f

1 + (rO1�rO2)2C2
L (2� f )2

(7.79)

Using the results of Example 7.3, we have

V 2
n,out,tot = � (gm1 + gm2)(rO1�rO2)

kT

CL
(7.80)

A low-frequency input sinusoid of amplitude Vm yields an output amplitude equal to gm1(rO1�rO2)Vm . The output
SNR is equal to the ratio of the signal power and the noise power:

SNRout =
�

gm1(rO1�rO2)Vm�
2

�2

•
1

� (gm1 + gm2)(rO1�rO2)(kT/CL )
(7.81)

=
CL

2� kT
•

g2
m1(rO1�rO2)
gm1 + gm2

V 2
m (7.82)

We note that to maximize the output SNR, CL must be maximized, i.e., the bandwidth must be minimized. Of course,
the bandwidth is also dictated by the input signal spectrum. This example indicates that it becomes exceedingly
difficult to design broadband circuits while maintaining low noise.

�

11A device or a circuit that converts a voltage to a current is called a transconductor or a V/I converter.
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� Example 7.16

Determine the input-referred thermal noise voltage of the complementary common-source stage shown in Fig. 7.43.

M1

VDD

M2

Vout

Vin

Figure 7.43

Solution

With the input signal set to zero, this circuit produces the same output noise voltage as the circuit in Fig. 7.42(a)
does. But the complementary stage provides a higher voltage gain, (gm1 + gm2)(rO1||rO2). The input-referred noise
voltage is thus given by

V 2
n,in =

4kT �
gm1 + gm2

(7.83)

an expected result because M1 and M2 operate in “parallel,” and hence their transconductances add. Why does this
topology exhibit a lower input noise than the circuit of Fig. 7.42(a)? In both cases, M2 injects noise to the output
node, but in the complementary stage, this device operates as a transconductor and amplifies the input.

�

For a simple CS stage with resistive load, Eq. (7.75) suggests that the thermal noise can be reduced
by increasing the bias current. But, for a given headroom, this requires that we decrease RD and hence
increase its noise contribution. In order to quantify this trade-off, we express gm as 2ID/(VGS � VT H )
and write the input-referred thermal noise as

V 2
n,in = 4kT

�
� (VGS � VT H )

2ID
+

(VGS � VT H )2

4ID • ID RD

�
(7.84)

This equation suggests that Vn,in falls if ID is increased and ID RD kept constant provided that VGS � VT H

also remains constant, i.e., if the transistor width increases in proportion to ID .

� Example 7.17

Calculate the input-referred 1/ f and thermal noise voltage of the CS stage depicted in Fig. 7.44(a), assuming M1
and M2 are in saturation.

M1

Vout

VDD

Vin

Vb M2 I2n,R1

V2n,out

(a) (b)

RD

M1

VDD

M2 RD

V2n2

V2n1

Figure 7.44
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Solution

We model the 1/ f and thermal noise of the transistors as voltage sources in series with their gates [Fig. 7.44(b)].
The noise voltage at the gate of M2 experiences a gain of gm2(RD�rO1�rO2) as it appears at the output. The result
must then be divided by gm1(RD�rO1�rO2) to be referred to the main input. The noise current of RD is multiplied
by RD�rO1�rO2 and divided by gm1(RD�rO1�rO2). Thus, the overall input-referred noise voltage is given by

V 2
n,in = 4kT �

�
gm2

g2
m1

+
1

gm1

�
+

1

Cox

�
K P g2

m2

(W L)2g2
m1

+
KN

(W L)1

�
1

f
+

4kT

g2
m1 RD

(7.85)

where K P and KN denote the flicker noise coefficients of PMOS and NMOS devices, respectively. Note that the
circuit reduces to that in Fig. 7.42(a) or 7.29(a) if RD = � or gm2 = 0, respectively. How should the bias
current of M2 be chosen to minimize Vn,in if the dc voltage drop across RD is fixed? This is left as an exercise for
the reader.

�

How do we design a common-source stage for low-noise operation? For thermal noise in the simple
topology of Fig. 7.41, we must maximize gm1 by increasing the drain current or the device width. A
higher ID translates to greater power dissipation and limited output voltage swings while a wider device
leads to larger input and output capacitance. We can also increase RD , but at the cost of limiting the
voltage headroom and lowering the speed.

For 1/ f noise, the primary approach is to increase the area of the transistor. If W L is increased while
W/L remains constant, then the device transconductance, and hence its thermal noise, do not change,
but the device capacitances increase. These observations point to the trade-offs between noise, power
dissipation, voltage headroom, and speed.

� Example 7.18

A student writes the drain flicker noise current of a MOS device as [K/(WLCox f )]g2
m = [K/(WLCox f )]

(
�

2µnCox (W/L)ID)2 = 2Kµn ID/(L2 f ), concluding that the flicker noise current is independent of W . Explain
the flaw in this argument.

Solution

A fair comparison must keep both the overdrive and ID constant as W changes. (If we allow VGS � VT H to
change, then the drain voltage headroom also changes.). Thus, we can express the drain flicker noise current as
[K/(WLCox f )](4I 2

D)/(VGS � VT H )2, which reveals that the noise current decreases as W L increases.
�

� Example 7.19

Design a resistively-loaded common-source stage with a total input-referred noise voltage of 100 µVrms, a power
budget of 1 mW, a bandwidth of 1 GHz, and a supply voltage of 1 V. Neglect channel-length modulation and flicker
noise and assume that the bandwidth is limited by the load capacitance.

Solution

Illustrated in Fig. 7.45(a), the circuit produces noise at the output in a bandwidth given by RD and CL . From the
noise model shown in Fig. 7.45(b), the reader can derive a Thevenin equivalent for the circuit in the dashed box,
obtaining the output noise spectrum as

V 2
n,out = (V 2

n,RD + R2
D I 2

n,M1)
1

R2
DC2

L�2 + 1
(7.86)

= (4kT RD + 4kT � gm R2
D)

1

R2
DC2

L�2 + 1
(7.87)
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M1

RD

VDD

Vin

Vout

CL
V2n,RD

RD

I2n,M1
CL

V2n,out

(a) (b)
Figure 7.45

Since we know that the integral of 4kT RD/(R2
DC2

L�2 + 1) from 0 to � yields a value of kT/CL , we manipulate
the transistor noise contribution as follows:

V 2
n,out =

4kT RD

R2
DC2

L�2 + 1
+ � gm RD

4kT RD

R2
DC2

L�2 + 1
(7.88)

Integration from 0 to � thus gives

V 2
n,out,tot =

kT

CL
+ � gm RD

kT

CL
(7.89)

= (1 + � gm RD)
kT

CL
(7.90)

This noise must be divided by g2
m R2

D and equated to (100 µVrms)2. We also note that 1/(2� RDCL ) = 1 GHz and
kT = 4.14 × 10�21 J at the room temperature, arriving at

1 + � gm RD

g2
m RD

•
2�kT

2� RDCL
= (100 µVrms)2 (7.91)

and hence

1

gm

�
1

gm RD
+ �

�
= 384 � (7.92)

We have some flexibility in the choice of gm and RD here. For example, if gm RD = 3 and � = 1, then 1/gm = 288 �
and RD = 864 �. With a drain-current budget of 1 mW/VDD = 1 mA, we can choose W/L so as to obtain this
amount of transconductance.

The above choice of the voltage gain and the resulting values of RD and gm must be checked against the bias
conditions. Since RD ID = 864 mV, VDS,min = 136 mV, leaving little headroom for voltage swings. The reader is
encouraged to try gm RD = 2 or 4 to see how the voltage headroom depends on the choice of the gain.

�

7.4.2 Common-Gate Stage

Thermal Noise Consider the common-gate configuration shown in Fig. 7.46(a). Neglecting channel-
length modulation, we represent the thermal noise of M1 and RD by two current sources [Fig. 7.46(b)].
Note that, owing to the low input impedance of the circuit, the input-referred noise current is not negligible
even at low frequencies. To calculate the input-referred noise voltage, we short the input to ground and
equate the output noises of the circuits in Figs. 7.47(a) and (b):

�
4kT � gm +

4kT

RD

�
R2

D = V 2
n,in(gm + gmb)2 R2

D (7.93)
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(a) (b)

I2nRD
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Vb

VDD

M1
I2n1

V2n,out

Vin

Figure 7.46 (a) CG stage; (b) circuit including noise sources.
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Vn21,out Vn21,out V2n2,out V2n2,out

Vn2, in

RD

Vb

VDD

M1

(c)(a) (b) (d)

Figure 7.47 Calculation of input-referred noise of a CG stage.

That is

V 2
n,in =

4kT (� gm + 1/RD)
(gm + gmb)2

(7.94)

Similarly, equating the output noises of the circuits in Figs. 7.47(c) and (d) yields the input-referred noise
current. What is the effect of I 2

n1 at the output in Fig. 7.47(c)? Since the sum of the currents at the source
of M1 is zero, In1 + ID1 = 0. Consequently, In1 creates an equal and opposite current in M1, producing
no noise at the output. The output noise voltage of Fig. 7.46(a) is therefore equal to 4kTRD , and hence
I 2
n,in R2

D = 4kTRD . That is

I 2
n,in =

4kT

RD
(7.95)

An important drawback of the common-gate topology is that it directly refers the noise current produced
by the load to the input. Exemplified by (7.95), this effect arises because such a circuit provides no current
gain, a point of contrast to common-source amplifiers.

We have thus far neglected the noise contributed by the bias-current source of a common-gate stage.
Shown in Fig. 7.48 is a simple mirror arrangement establishing the bias current of M1 as a multiple of I1.
Capacitor C0 shunts the noise generated by M0 to ground. We note that if the input of the circuit is shorted
to ground, then the drain noise current of M2 does not flow through RD , contributing no input-referred
noise voltage. On the other hand, if the input is open, all of I 2

n2 flows from M1 and RD (at low frequencies),
producing an output noise equal to I 2

n2 R2
D and hence an input-referred noise current of I 2

n2. As a result,
the noise current of M2 directly adds to the input-referred noise current, making it desirable to minimize
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RD

Vout

Vb

VDD

M1

M2
In22

I1

M0
C0

Vin

Figure 7.48 Noise contributed by
bias-current source.

the transconductance of M2. For a given bias current, however, this translates to a higher drain-source
voltage for M2 because gm2 = 2ID2/(VGS2 �VT H2), requiring a high value for Vb and limiting the voltage
swing at the output node.

� Example 7.20

Calculate the input-referred thermal noise voltage and current of the circuit shown in Fig. 7.49 assuming that all of
the transistors are in saturation.

I2
Vout

Vb

VDD

M1

M2
In22

I1

M0

M3M4

Vin

Figure 7.49

Solution

To compute the input-referred noise voltage, we short the input to ground, obtaining

V 2
n1,out = 4kT � (gm1 + gm3)(rO1�rO3)2 (7.96)

Thus, the input-referred noise voltage, Vn,in , must satisfy this relationship:

V 2
n,in(gm1 + gmb1)2(rO1�rO3)2 = 4kT � (gm1 + gm3)(rO1�rO3)2 (7.97)

where the voltage gain from Vin to Vout is approximated by (gm1 + gmb1)(rO1||rO3). It follows that

V 2
n,in = 4kT �

(gm1 + gm3)
(gm1 + gmb1)2 (7.98)

As expected, the noise is proportional to gm3.
To calculate the input-referred noise current, we open the input and note that the output noise voltage due to M3

is simply given by I 2
n3 R2

out, where Rout = rO3||[rO2 + (gm1 + gmb1)rO1rO2 + rO1] denotes the output impedance
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when the input is open. The reader can prove that, in response to an input current Iin , the circuit generates an output
voltage given by

Vout =
(gm1 + gmb1)rO1 + 1

rO1 + (gm1 + gmb1)rO1rO2 + rO2 + rO3
rO3rO2 Iin (7.99)

Dividing In3 Rout by this gain to refer the noise of M3 to the input, we have

In,in |M3 =
rO2 + (gm1 + gmb1)rO1rO2 + rO1

rO2[(gm1 + gmb1)rO1 + 1]
In3 (7.100)

which reduces to

In,in |M3 � In3 (7.101)

� 4kT � gm3 (7.102)

if any gmrO product is much greater than unity. Since the noise current of M2 directly adds to the input, we have

I 2
n,in = 4kT � (gm2 + gm3) (7.103)

Again, the noise is proportional to the transconductance of the two current sources. In the above calculations, we
have neglected the effect of In1 when the input is left open even though the source of M1 sees a finite degeneration
(rO2). In Problem 7.31, we refer this noise to the input and prove that it is still negligible.

�

Flicker Noise The effect of 1/ f noise in a common-gate topology is also of interest. As a typical case,
we compute the input-referred 1/ f noise voltage and current of the circuit shown in Fig. 7.49. Illustrated
in Fig. 7.50, each 1/ f noise generator is modeled by a voltage source in series with the gate of the
corresponding transistor. Note that the 1/ f noise of M0 and M4 is neglected. A more realistic case is
studied in Problem 7.10.

VDD

M1

M3

V2n,out

V2n1

V2n2

V2n3

M2

Vin

Figure 7.50 Flicker noise in a CG
stage.

With the input shorted to ground, we have

V 2
n1,out =

1

Cox f

�
g2

m1 KN

(W L)1
+

g2
m3 K P

(W L)3

�
(rO1�rO3)2 (7.104)

where KN and K P denote the flicker noise coefficients of NMOS and PMOS devices, respectively.
Approximating the voltage gain as (gm1 + gmb1)(rO1||rO3), we obtain

V 2
n,in =

1

Cox f

�
g2

m1 KN

(W L)1
+

g2
m3 K P

(W L)3

�
1

(gm1 + gmb1)2
(7.105)



Razavi-3930640 book December 17, 201516:45 253

Sec. 7.4 Noise in Single-Stage Amplifiers 253

With the input open, the output noise voltage is approximately given by

V 2
n2,out =

1

Cox f

�
g2

m2 KN

(W L)2
+

g2
m3 K P

(W L)3

�
R2

out (7.106)

where it is assumed that the transconductance from the gate of M2 to the output is equal to gm2. It follows
that

I 2
n,in =

1

Cox f

�
g2

m2 KN

(W L)2
+

g2
m3 K P

(W L)3

�
(7.107)

Equations (7.105) and (7.107) describe the 1/ f noise behavior of the circuit and must be added to
(7.98) and (7.103), respectively, to obtain the overall noise per unit bandwidth.

7.4.3 Source Followers

Consider the source follower depicted in Fig. 7.51(a), where M2 serves as the bias-current source. Since
the input impedance of the circuit is quite high, even at relatively high frequencies, the input-referred
noise current can usually be neglected for moderate driving source impedances. To compute the input-
referred thermal noise voltage, we employ the representation in Fig. 7.51(b), expressing the output noise
due to M2 as

V 2
n,out|M2 = I 2

n2

�
1

gm1

����
1

gmb1

����rO1�rO2

�2

(7.108)

V2n1

VDD VDD

Vin

Vout

M1

M2Vb

M1

M2

I2n2

V2n,out

Figure 7.51 (a) Source follower; (b) circuit including noise sources.

From Chapter 3,

Av =

1

gmb1

����rO1�rO2

1

gmb1

����rO1�rO2 +
1

gm1

(7.109)

Thus, the total input-referred noise voltage is

V 2
n,in = V 2

n1 +
V 2

n,out

��
M2

A2
v

(7.110)

= 4kT �
�

1

gm1
+

gm2

g2
m1

�
(7.111)

Note the similarity between (7.78) and (7.111).
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Since source followers add noise to the input signal while providing a voltage gain of less than unity,
they are usually avoided in low-noise amplification. The 1/ f noise performance of source followers is
studied in Problem 7.11.

7.4.4 Cascode Stage

Consider the cascode stage of Fig. 7.52(a). Since at low frequencies the noise currents of M1 and RD

mostly flow through RD , the noise contributed by these two devices is quantified as in a common-source
stage:

V 2
n,in|M1,RD = 4kT

�
�

gm1
+

1

g2
m1 RD

�
(7.112)

Vin

M2

M1

Vb

VDD

RD

Vout M2

M1

Vb

VDD

RD

X
I2n2

M2

VDD

RD

X

V2n2

(c)(a) (b)

X

M1

V2n,out V2n,out

Figure 7.52 (a) Cascode stage; (b) noise of M2 modeled by a current source; (c) noise of M2 modeled by a
voltage source.

where 1/ f noise of M1 is ignored. What is the effect of noise of M2? Modeled as in Fig. 7.52(b), this
noise contributes negligibly to the output, especially at low frequencies. This is because, if channel-length
modulation in M1 is neglected, then In2 + ID2 = 0, and hence M2 does not affect Vn,out. From another
point of view, using the lemma of Fig. 7.39 to construct the equivalent in Fig. 7.52(c), we note that the
voltage gain from Vn2 to the output is quite small if the impedance at node X is large. At high frequencies,
on the other hand, the total capacitance at node X , CX , gives rise to a gain:

Vn,out

Vn2
�

�RD

1/gm2 + 1/(CX s)
(7.113)

increasing the output noise. This capacitance also reduces the gain from the main input to the output by
shunting the signal current produced by M1 to ground. As a result, the input-referred noise of a cascode
stage may rise considerably at high frequencies.

If RD in Fig. 7.52(c) is large, e.g., if it represents the output resistance of a PMOS cascode load, then
the gain from Vn2 to Vout may not be small. The reader can show that, if RD � gmr2

O (for a cascode), then
Vout/Vn is still much greater, making the contribution of Vn negligible.

7.5 Noise in Current Mirrors

The noise produced by the devices in current mirrors may propagate to the output of interest. In Figs. 7.48
and 7.49, for example, the diode-connected device may contribute substantial flicker noise unless an
extremely large bypass capacitor is used. This effect is exacerbated by the bias-current multiplication
factor in the current mirror.
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IREF

MREF

VDD

M1

ID1

CB
gm,REF V1 V1

V2n,REF

MREF

V2n,REF

gm,REF
1

M1

V2n1
X

I2n,out

CB

(a) (b) (c)
Figure 7.53 (a) Current mirror using a capacitor to suppress diode-connected device’s noise, (b) small-signal
model, and (c) overall equivalent circuit.

To appreciate the difficulty with current-mirror flicker noise, let us study the simple topology shown in
Fig. 7.53(a), where (W/L)1 = N (W/L)REF. The multiplication factor, N , is in the range of 5 to 10 so as to
minimize the power consumed by the reference branch. We wish to determine the flicker noise in ID1. We
assume that � = 0 and IREF is noiseless but caution the reader that, as described in Chapter 12, the noise
of the reference (bandgap) current may not be negligible. We first construct a Thevenin equivalent for
MREF and its flicker noise, Vn,RE F : as depicted in Fig. 7.53(b), the open-circuit voltage is equal to Vn,RE F

because V1 must be zero (why?). Noting that the Thevenin resistance is equal to 1/gm,RE F , we arrive at
the arrangement in Fig. 7.53(c), where the noise voltage at node X and Vn1 add (without correlation) and
drive the gate of M1, producing

I 2
n,out =

	
g2

m,REF

C2
B�2 + g2

m,REF

V 2
n,REF + V 2

n1




g2
m1 (7.114)

Since (W/L)1 = N (W/L)REF and, typically, L1 = LREF, we observe that V 2
n,REF = N V 2

n1 because the
flicker noise power spectral density is inversely proportional to the channel area, W L . It follows that

I 2
n,out =

	
Ng2

m,REF

C2
B�2 + g2

m,REF

+ 1




g2
m1V 2

n1 (7.115)

For the noise of the diode-connected device to be negligible, we must ensure that the first term inside the
parentheses is small:

(N � 1)g2
m,REF 	 C2

B�2 (7.116)

and hence

C2
B �

(N � 1)g2
m,REF

�2
(7.117)

For example, if N = 5, gm,REF � 1/(200 �), and the minimum frequency of interest is 1 MHz, we have
C2

B � 2.533 × 10�18 F. For a tenfold suppression of the MREF noise, this translates to 5.03 nF!
In order to reduce the noise contributed by MREF while avoiding such a large capacitor, we can insert

a resistance between its gate and CB [Fig. 7.54(a)] and revise Eq. (7.114) as

I 2
n,out =

�
g2

m,REF

(1 + gm,REF RB)2C2
B�2 + g2

m,REF

(V 2
n,REF + V 2

n,RB) + V 2
n1

�

g2
m1 (7.118)
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Figure 7.54 (a) Use of a resistor to filter a diode-connected device’s noise, and (b) realization of the resistor by a
MOSFET.

The series resistance lowers the filter cutoff frequency to [(1/gm1,REF + RB)CB]�1 but also contributes
its own noise. We can thus increase RB before V 2

n,RB becomes an appreciable fraction of V 2
n,REF.

In practice, RB can be quite large before its thermal noise becomes comparable with the flicker noise
of MREF. The upper bound on RB is therefore dictated by the area trade-off between RB and CB .12 We
thus seek a circuit arrangement that provides a high resistance and occupies a moderate area. Fortunately,
we have developed such a topology in Chapter 5: as shown in Fig. 7.54(b), a MOS device, MR , with a
small, but controlled overdrive serves our purpose. As explained in Chapter 5, MR is chosen narrow and
long, and MC wide and short.

7.6 Noise in Differential Pairs

With our understanding of noise in basic amplifiers, we can now study the noise behavior of differential
pairs. Shown in Fig. 7.55(a), a differential pair can be viewed as a two-port circuit. It is therefore possible
to model the overall noise as depicted in Fig. 7.55(b). For low-frequency operation, I 2

n,in is negligible.

M1 M2

RD

VDD

RD

Vin ISS

Vout Vn2,in

In2,in

M1 M2

RD

VDD

RD

ISS

V2n,out

(a) (b)
Figure 7.55 (a) Differential pair; (b) circuit including input-referred noise sources.

To calculate the thermal component of V 2
n,in , we first obtain the total output noise with the inputs

shorted together [Fig. 7.56(a)], noting that superposition of power quantities is possible because the noise

12Also, the transistors’ gate leakage currents flow through RB , introducing a significant dc error if this resistor is very large.
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M1 M2

RD1

VDD

RD2

In21

M1

RD1

In21
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1
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1

(c)

(a) (b)

Vn,out

P

VDD

M1

RD1

In2,out1In2,out1
In1

In1

(d)
Figure 7.56 Calculation of input-referred noise of a differential pair.

sources in the circuit are uncorrelated. Since In1 and In2 are uncorrelated, node P cannot be considered
a virtual ground, making it difficult to use the half-circuit concept. Thus, we simply derive the effect of
each source individually. Depicted in Fig. 7.56(b), the contribution of In1 is obtained by first reducing the
circuit to that in Fig. 7.56(c). With the aid of this figure and neglecting channel-length modulation, the
reader can prove that half of In1 flows through RD1 and the other half through M2 and RD2. [As shown
in Fig. 7.56(d), this can also be proved by decomposing In1 into two (correlated) current sources and
calculating their effect at the output.] Thus, the differential output noise due to M1 is equal to

Vn,out|M1 =
In1

2
RD1 +

In1

2
RD2 (7.119)

Note that the two noise voltages are directly added because they both arise from In1 and are therefore
correlated. It follows that, if RD1 = RD2 = RD ,

V 2
n,out

��
M1 = I 2

n1 R2
D (7.120)

Similarly,

V 2
n,out

��
M2 = I 2

n2 R2
D (7.121)
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yielding

V 2
n,out

��
M1,M2 =



I 2
n1 + I 2

n2

�
R2

D (7.122)

Taking into account the noise of RD1 and RD2, we have for the total output noise

V 2
n,out =

�
I 2
n1 + I 2

n2

�
R2

D + 2(4kTRD) (7.123)

= 8kT


� gm R2

D + RD
�

(7.124)

Dividing the result by the square of the differential gain, g2
m R2

D , we obtain

V 2
n,in = 8kT

�
�
gm

+
1

g2
m RD

�
(7.125)

This is simply twice the input noise voltage squared of a common-source stage.
The input-referred noise voltage can also be calculated by exploiting the lemma illustrated in Fig. 7.39.

As shown in Fig. 7.57, the noise of M1 and M2 is modeled as a voltage source in series with their gates,
and the noise of RD1 and RD2 is divided by g2

m R2
D , thereby resulting in (7.125). The reader is encouraged

to repeat these calculations if the tail current source is replaced with a short circuit.

ISS

RD1

VDD

RD2

V2n,RD1 V2n,RD2

M1 M2

V2n2V2n1 V2n,out

Figure 7.57 Alternative method of
calculating the input-referred noise.

It is instructive to compare the noise performance of a differential pair and a common-source stage,
as expressed by (7.75) and (7.125). We conclude that, if each transistor has a transconductance gm , then
the input-referred noise voltage of a differential pair is

�
2 times that of a common-source stage. This is

simply because the former includes twice as many devices in the signal path, as exemplified by the two
series voltage sources in Fig. 7.57. (Since the noise sources are uncorrelated, their powers add.) It is also
important to recognize that, with the assumption of equal device transconductances, a differential pair
consumes twice as much power as a common-source stage if the transistors have the same dimensions.

The noise modeling of Fig. 7.57 can readily account for 1/ f noise of the transistors as well. Placing
the voltage sources given by K/(Cox W L) in series with each gate, we can rewrite (7.125) as

V 2
n,in,tot = 8kT

�
�
gm

+
1

g2
m RD

�
+

2K

Cox W L

1

f
(7.126)

These derivations suggest that the input-referred noise voltage squared of a fully-differential circuit is
equal to twice that of its half-circuit equivalent (because the latter employs half as many devices in the
signal path). The following example reinforces this point.
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� Example 7.21

A differential pair with current-source loads can be configured to act as a large “floating” resistor [7]. Illustrated
in Fig. 7.58(a), the idea is to bias M1 and M2 at a very small current so as to obtain a high incremental resistance
between A and B, approximately equal to 1/gm1 + 1/gm2. Determine the noise associated with this resistor. Neglect
channel-length modulation.

M1 M2

Vb

VDD

A B

M3
M4

M1

Vb

A

VDD

M3

(a) (b)
Figure 7.58

Solution

Viewing A and B as the outputs and modeling the circuit by its Thevenin equivalent, we must determine the noise
voltage that appears between these nodes. To this end, we construct the half circuit shown in Fig. 7.58(b) and write
the noise voltage at A as

V 2
n,A = (4kT � gm1 + 4kT � gm3)

1

g2
m1

+
K

(W L)1Cox

1

f
+

K

(W L)3Cox

1

f
(

gm3

gm1
)2 (7.127)

The noise measured between A and B is thus equal to

V 2
n,AB = 8kT � (gm1 + gm3)

1

g2
m1

+
2K

(W L)1Cox

1

f
+

2K

(W L)3Cox

1

f
(

gm3

gm1
)2 (7.128)

We recognize that this resistor is noisier than a simple ohmic resistor of the same value (� 2/gm1). It is also much
less linear (why?).

�

Does the tail current source in Fig. 7.55 contribute noise? If the differential input signal is zero and
the circuit is symmetric, then the noise in ISS divides equally between M1 and M2, producing only a
common-mode noise voltage at the output. On the other hand, for a small differential input, �Vin , we have

�ID1 � �ID2 = gm�Vin (7.129)

=

�

2µnCox
W

L

�
ISS + In

2

�
�Vin (7.130)

where In denotes the noise in ISS and In 	 ISS . In essence, the noise modulates the transconductance of
each device. Equation (7.130) can be written as

�ID1 � �ID2 �
�

2µnCox
W

L
•

ISS

2

�
1 +

In

2ISS

�
�Vin (7.131)

= gm0

�
1 +

In

2ISS

�
�Vin (7.132)
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where gm0 is the transconductance of the noiseless circuit. Equation (7.132) suggests that as the circuit de-
parts from equilibrium, In is more unevenly divided between M1 and M2, thereby generating differential
noise at the output. This effect is nonetheless usually negligible.

� Example 7.22

Assuming that the devices in Fig. 7.59(a) operate in saturation and the circuit is symmetric, calculate the input-referred
noise voltage.

(a)

(b)

M1 M2

VDD

Vb

Vout

Vin

M1 M2

VDD
V2n3

V2n1

V2n4

V2n2

X Y

M3 M4

M3 M4

M1 M2

VDD
V2n3

Y

M3 M4

rO3

RX

X

(c)
Figure 7.59

Solution

Since the thermal and 1/ f noise of M1 and M2 can be modeled as voltage sources in series with the input, we need
only refer the noise of M3 and M4 to the input. Let us calculate the output noise contributed by M3. The drain noise
current of M3 is divided between rO3 and the resistance seen looking into the drain of M1 [Fig. 7.59(c)]. From
Chapter 5, this resistance equals RX = rO4 + 2rO1. Denoting the resulting noise currents flowing through rO3 and
RX by In A and InB , respectively, we have

In A = gm3Vn3
rO4 + 2rO1

2rO4 + 2rO1
(7.133)

and

InB = gm3Vn3
rO3

2rO4 + 2rO1
(7.134)

The former produces a noise voltage of gm3Vn3rO3(rO4 + 2rO1)/(2rO4 + 2rO1) at node X with respect to ground
whereas the latter flows through M1, M2, and rO4, generating gm3Vn3rO3rO4/(2rO4 + 2rO1) at node Y with respect
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to ground. Thus, the total differential output noise due to M3 is equal to

VnXY = VnX � VnY (7.135)

= gm3Vn3
rO3rO1

rO3 + rO1
(7.136)

(The reader can verify that VnY must be subtracted from VnX .)
Equation (7.136) implies that the noise current of M3 is simply multiplied by the parallel combination of rO1 and

rO3 to produce the differential output voltage. This is of course not surprising because, as depicted in Fig. 7.60, the
effect of Vn3 at the output can also be derived by decomposing Vn3 into two differential components applied to the
gates of M3 and M4 and subsequently using the half-circuit concept. Since this calculation relates to a single noise
source, we can temporarily ignore the random nature of noise and treat Vn3 and the circuit as familiar deterministic,
linear components.

(a) (b)

M1 M2

VDD
Vn3

Y

M3 M4

X

(c)

M1 M2

V
DD

Y
M3 M4

X

� 

M1

Vn3

M3

X

2
Vn3
2

+Vn3
2

+ VDD

Figure 7.60 Calculation of input-referred noise in a differential pair with current-source loads.

Applying (7.136) to M4 as well and adding the resulting powers, we have

V 2
n,out|M3,M4 = g2

m3(rO1�rO3)2V 2
n3 + g2

m4(rO2�rO4)2V 2
n4 (7.137)

= 2g2
m3(rO1�rO3)2V 2

n3 (7.138)

To refer the noise to the input, we divide (7.138) by g2
m1(rO1�rO3)2, obtaining the total input-referred noise

voltage per unit bandwidth as

V 2
n,in = 2V 2

n1 + 2
g2

m3

g2
m1

V 2
n3 (7.139)

which, upon substitution for V 2
n1 and V 2

n3, reduces to

V 2
n,in = 8kT �

�
1

gm1
+

gm3

g2
m1

�
+

2KN

Cox (W L)1 f
+

2K P

Cox (W L)3 f

g2
m3

g2
m1

(7.140)

�

It is instructive to compare the above input-referred noise to that of a differential pair with active
load (the five-transistor OTA). We analyze the thermal noise of the latter and leave the flicker noise as
an exercise for the reader. Due to lack of perfect symmetry, we seek the Norton noise equivalent of the
circuit by first computing the output short-circuit noise current (Fig. 7.61). This result can be multiplied
by the output resistance and divided by the gain to obtain the input-referred noise voltage.
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VDD

M4

M1 M2

ISS

M3

X I2n,out

Figure 7.61 OTA output short-circuit
noise current.

We recall from Chapter 5 that the transconductance of the five-transistor OTA is approximately equal
to gm1,2. Thus, the output noise current due to M1 and M2 is given by this transconductance multiplied
by the gate-referred noises of M1 and M2, i.e., g2

m1,2(4kT � /gm1 + 4kT � /gm2).
Let us consider the noise current of M3, 4kT � gm3. This current primarily circulates through the diode-

connected impedance, 1/gm3, producing a voltage at the gate of M4 with a spectral density of 4kT � /gm3.
This noise is multiplied by g2

m4 as it emerges from the drain of M4. The noise current of M4 itself also
directly flows through the output short circuit. We therefore have

I 2
n,out = 4kT � (2gm1,2 + 2gm3,4) (7.141)

Multiplying this noise by R2
out � (rO1,2||rO3,4)2 and dividing the result by A2

v = G2
m R2

out, we obtain the
total input-referred noise voltage as

V 2
n,in = 8kT �

	
1

gm1,2
+

gm3,4

g2
m1,2




(7.142)

which is the same as that of the fully-differential circuit.
An interesting difference between the OTA and the fully-differential topology relates to the noise

contributed by the tail current when Vin1 = Vin2. Recall from Chapter 5 that the output voltage of the
OTA in Fig. 7.62 is equal to VX . If ISS fluctuates, so do VX and Vout. Since the tail noise current, In , splits
equally between M1 and M2, the noise voltage at X is given by I 2

n /(4g2
m3), and so is the noise voltage at

the output. (Why does In split equally, even though the impedance seen looking into the source of M2

appears to be higher than that seen looking into the source of M1?)
The effect of noise must be studied for many other analog circuits as well. For example, feedback

systems, op amps, and bandgap references exhibit interesting and important noise characteristics. We
return to these topics in other chapters.

VDD

M4

M1 M2

ISS

M3

X Vout

Figure 7.62 Effect of tail noise current
in OTA.
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7.7 Noise-Power Trade-Off

In our analysis of the input-referred thermal noise, we have seen that the noise contributed by the transistors
“in the signal path” is inversely proportional to their transconductance. This dependence suggests a trade-
off between noise and power consumption.

The noise-power trade-off can in fact be generalized to any circuit (so long as the input noise current
is negligible). To understand this point, let us begin with a simple CS stage as shown in Fig. 7.63(a):
we double W/L and the bias current of M1 and halve the load resistor. This transformation maintains
the voltage gain and the output swing regardless of the transistor characteristics. But we note that the
input-referred thermal and flicker noise power is exactly halved (because both the gm and the gate area
of the transistor are doubled). This 3-dB reduction in noise accrues at a cost of doubling the power
consumption (and the input capacitance).

M1

VDD

Vin

ID
W1
L1 W1

L1

W1
L1

RD

M1

VDD

Vin L1

RD
2

2W1

2ID
Vout

in
V

ID

RD

V
DD

ID

RD

outV
Vout

W1 2W1

WD
2WD

(a) (b)

(c)

RD

M1

Figure 7.63 (a) Output noise reduction by scaling, (b) equivalent operation, and (c) scaling viewed at layout level.

Called “linear scaling,” the transformation depicted in Fig. 7.63(a) can also be viewed as placing two
instances of the original circuit in parallel, as illustrated in Fig. 7.63(b). Alternatively, we can say that
the widths of the transistor and the resistor are doubled [Fig. 7.63(c)].

In general, if two instances of a circuit are placed in parallel, the output noise power is halved
[Fig. 7.64(a)]. This can be proved by setting the input to zero and constructing a Thevenin noise equivalent
for each [Fig. 7.64(b)]. Since Vn1,out and Vn2,out are uncorrelated, we can use superposition of powers to
write

V 2
n,out =

V 2
n1,out

4
+

V 2
n2,out

4
(7.143)

=
V 2

n1,out

2
(7.144)

Thus, the output noise is traded for power consumption while retaining the voltage gain and output
swings. Note that this can also be proved if the input is left open, revealing that the input-referred noise
current, I 2

n,in , is doubled (why?).
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A

A
Vin Vout

Zout

V2n1

V2n2

Zout
V2n,out

(a) (b)
Figure 7.64 (a) General scaling for noise reduction, and (b) equivalent circuit.

We should also remark that noise spectrum must eventually be integrated across the circuit’s band-
width. The foregoing linear scaling assumes that the bandwidth is dictated by the application and hence
constant.

7.8 Noise Bandwidth

The total noise corrupting a signal in a circuit results from all of the frequency components that fall in
the bandwidth of the circuit. Consider a multipole circuit having the output noise spectrum shown in
Fig. 7.65(a). Since the noise components above �p1 are not negligible, the total output noise must be
evaluated by calculating the total area under the spectral density:

V 2
n,out,tot =

� �

0
V 2

n,outd f (7.145)

However, as depicted in Fig. 7.65(b), it is sometimes helpful to represent the total noise simply as V 2
0 • Bn ,

where the bandwidth Bn is chosen such that

V 2
0 • Bn =

� �

0
V 2

n,outd f (7.146)

Called the “noise bandwidth,” Bn allows a fair comparison of circuits that exhibit the same low-frequency
noise, V 2

0 , but different high-frequency transfer functions. As an exercise, the reader can prove that the
noise bandwidth of a one-pole system is equal to �/2 times the pole frequency.

�p1 �p2 � �p1 �p2 �

V2
0

Bn

A1

A2

A1 = A2

(a) (b)

V2n,out

V2
0

V2n,out

Figure 7.65 (a) Output noise spectrum of a circuit; (b) concept of noise bandwidth.
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7.9 Problem of Input Noise Integration

In our noise studies thus far, we have computed the output noise spectrum and, by integration, the total
output noise voltage. Is it possible to perform the integration on the input-referred noise instead?

Consider the CS stage shown in Fig. 7.66, where we assume that � = 0 and M1 exhibits only
thermal noise. For simplicity, let us neglect the noise of RD . We note that the output noise spectrum is
equal to the amplified and low-pass filtered noise of M1; this spectrum readily lends itself to integration
(Example 7.19). The input-referred noise voltage, on the other hand, is simply equal to V 2

n,M1, carrying
an infinite power and prohibiting integration at the input.

M1

RD

VDD

CL

V2n,M1 V2n,out

f0

gm

4kT�

V2n,in

f0

V2n,out

g2mR2
DV2n,M1

�gmRD
kT
CL

Figure 7.66 Difficulty with referring output noise to input.

The above quandary arises in most circuits, encouraging only output noise integration. After all, the
physical and observable noise appears only at the output, and the input-referred noise remains a fictitious
quantity. However, for a fair comparison of different designs, we can divide the integrated output noise
by the low-frequency (or mid-band) gain of the circuit. For example, the CS stage of Fig. 7.66 can be
characterized by a total input-referred noise equal to

V 2
n,in,tot = � gm RD

kT

CL
•

1

g2
m R2

D

(7.147)

=
�

gm RD

kT

CL
(7.148)

if the noise of RD is neglected. The reader is encouraged to repeat these calculations with channel-length
modulation and the noise of RD included.

7.10 Appendix A: Problem of Noise Correlation

As explained in Section 7.1.3, the input-referred noise voltage and current are generally correlated, com-
plicating noise calculations. In this appendix, we consider alternative methods that avoid the correlation.
Recall from (7.55) that the input-referred noise current manifests itself only if the magnitude squared of
the impedance driving the circuit is comparable to V 2

n,in/I 2
n,in .

In many circuits, the output noise voltage remains approximately the same as the driving impedance,
ZS , goes from zero to infinity, i.e., the input port termination goes from a short circuit to an open circuit.13

For example, a common-source stage with negligible CG D exhibits this behavior [Fig. 7.67(a)]:

V 2
n1,out = V 2

n2,out = 4kT � gm R2
D + 4kT RD (7.149)

13The noise of ZS is excluded here.
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M1

RD

VDD

Cin

V2n1,out V2n2,out

V2n1,out V2n2,out

M1

RD

VDD

Cin

M1

RD

VDD

CinV2n,in

M1

RD

VDD

CinI2n,in Zin

(a)

(b)
Figure 7.67 (a) Output noise of CS stage with input shorted or open; (b) calculation of input-referred sources.

We now note from Fig. 7.67(b) that

V 2
n1,out = V 2

n,in|H( f )|2 (7.150)

where H(s) = Vout/Vin , and also

V 2
n2,out = I 2

n,in|Zin( f )|2|H( f )|2 (7.151)

It follows that I 2
n,in = V 2

n,in/|Zin( f )|2. Since Zin(s) is a deterministic quantity, we have In,in =
Vn,in/Zin(s), and hence 100% correlation between the two sources. In order to account for both Vn,in and
In,in , we must carry out lengthy calculations similar to those for Fig. 7.37.

Now, consider the arrangement shown in Fig. 7.68(a), where ZS denotes the output impedance of the
preceding stage. We assume that the output noise of the circuit negligibly changes as ZS varies. The noise
voltage at node X is equal to

Vn,X =
Zin

Zin + ZS
Vn,in +

Zin Zs

Zin + ZS
In,in (7.152)

I2n,in

V 2n,in V 2n,in

Zin

ZS X

Zin

ZS X

(a) (b)

Figure 7.68 (a) Cascade of two stages, and (b) transformation to omit In,in .
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Replacing for In,in from above, we obtain

Vn,X = Vn,in (7.153)

That is, In,in simply serves to keep Vn,X (with respect to ground) equal to Vn,in for different values of ZS .
This interesting result helps simplify the analysis.

Based on this observation, we modify the arrangement to that in Fig. 7.68(b), where Zin simply loads
the preceding stage but In,in is absent. Here, too, we have Vn,X = Vn,in . Thus, in circuits whose output
noise voltage is a weak function of the input termination, In,in can be omitted if an impedance equal to
Zin is used to load the preceding stage.

If the above condition for Vn,out does not hold, we may simply consider the preceding stage as part of
the circuit and view the two stages as one entity. For example, the amplifier shown in Fig. 7.69 can be
modeled as one stage with input-referred noise sources Vn,in and In,in , thereby avoiding the complications
associated with the second stage’s noise voltage and current.

M1

RD1

VDD

M2

RD2RF

I 2n,in

V 2n,in

Figure 7.69 Viewing a cascade as a
single circuit.
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that VDD = 3 V
where necessary. Also, assume that all transistors are in saturation.

7.1. A common-source stage incorporates a 50-µm/0.5-µm NMOS device biased at ID = 1 mA along with a load
resistor of 2 k�. What is the total input-referred thermal noise voltage in a 100-MHz bandwidth?

7.2. Consider the common-source stage of Fig. 7.42. Assume that (W/L)1 = 50/0.5, ID1 = ID2 = 0.1 mA,
and VDD = 3 V. If the contribution of M2 to the input-referred noise voltage (not voltage squared) must be
one-fifth of that of M1, what is the maximum output voltage swing of the amplifier?
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7.3. Using the distributed model of Fig. 7.21(c) and ignoring the channel thermal noise, prove that, for gate noise
calculations, a distributed gate resistance of RG can be replaced by a lumped resistance equal to RG/3. (Hint:
model the noise of RG j by a series voltage source and calculate the total drain noise current. Watch for
correlated sources of noise.)

7.4. Prove that the output noise current of Fig. 7.39(c) is given by Eq. (7.73).

7.5. Calculate the input-referred flicker noise voltage of the circuit shown in Fig. 7.70.

M1

M2

VDD

Vin Vout

Figure 7.70

7.6. Calculate the input-referred thermal noise voltage of each circuit in Fig. 7.71. Assume that � = � = 0.

M1Vin

RS

VDD

RD
Vout

M1Vin

RS

VDD

Vout

M1Vin

RS

Vout

VDD

M2

(c)(a) (b)

(d)

VDD

I1

M1

Vout

RS

RFVin

VDD

M1

M2

RD

Vin

Vb

Vout

RF
M1Vin

VDD

RS

Vb

RD

Vout

M2

(e) (f)
Figure 7.71

7.7. Calculate the input-referred thermal noise voltage of each circuit in Fig. 7.72. Assume that � = � = 0.
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VDD

M1

Vout

RS

RFVin

M2Vb

VDD

M1

Vout

RS

RFVin

M2

VDD

M1

RS

Vin

RD M2

Vout

VDD

M1

M2Vb2

RDM3

Vin

Vb1
Vout

(a) (b) (c) (d)

Figure 7.72

7.8. Calculate the input-referred thermal noise voltage and current of each circuit in Fig. 7.73. Assume that
� = � = 0.

M1 Vb

VDD

RD

Vout

RGVin
M1

Vb

VDD

RD

Vout

Vin

R1
M1Vin

VDD

RD

Vout

RF

M1

VDD

RD
Vout

Vin

R1

R1

(c)(a) (b) (d)

Figure 7.73

7.9. Calculate the input-referred thermal noise voltage and current of each circuit in Fig. 7.74. Assume that
� = � = 0.

7.10. Calculate the input-referred 1/ f noise voltage and current of Fig. 7.49 if the two capacitors are removed.

7.11. Calculate the input-referred 1/ f noise voltage of the source follower shown in Fig. 7.51.

7.12. Assuming that � = � = 0, calculate the input-referred thermal noise voltage of each circuit in Fig. 7.75. For
part (a), assume that gm3,4 = 0.5gm5,6.

7.13. Consider the degenerated common-source stage shown in Fig. 7.76.
(a) Calculate the input-referred thermal noise voltage if � = � = 0.
(b) Suppose linearity requirements necessitate that the dc voltage drop across RS be equal to the overdrive

voltage of M1. How does the thermal noise contributed by RS compare with that contributed by M1?

7.14. Explain why Miller’s theorem cannot be applied to calculate the effect of the thermal noise of a floating resistor.

7.15. The circuit of Fig. 7.20 is designed with (W/L)1 = 50/0.5 and ID1 = 0.05 mA. Calculate the total rms
thermal noise voltage at the output in a 50-MHz bandwidth.

7.16. For the circuit shown in Fig. 7.77, calculate the total output thermal and 1/ f noise in a bandwidth [ fL , fH ].
Assume that � �= 0, but neglect other capacitances.

7.17. Suppose in the circuit of Fig. 7.42, (W/L)1,2 = 50/0.5 and ID1 = |ID2| = 0.5 mA. What is the input-referred
thermal noise voltage?

7.18. The circuit of Fig. 7.42 is modified as depicted in Fig. 7.78.
(a) Calculate the input-referred thermal noise voltage.
(b) For a given bias current and output voltage swing, what value of RS minimizes the input-referred thermal

noise?
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Figure 7.74
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M4M3
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Vout
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ISS

P

ISS

P

(a) (b)
Figure 7.75

7.19. A common-gate stage incorporates an NMOS device with W/L = 50/0.5 biased at ID = 1 mA and a load
resistor of 1 k�. Calculate the input-referred thermal noise voltage and current.

7.20. The circuit of Fig. 7.48 is designed with (W/L)1 = 50/0.5, ID1 = ID2 = 0.5 mA, and RD = 1 k�.
(a) Determine (W/L)2 such that the contribution of M2 to the input-referred thermal noise current (not current

squared) is one-fifth of that due to RD .
(b) Now calculate the minimum value of Vb to place M2 at the edge of the triode region. What is the maximum

allowable output voltage swing?

7.21. Design the circuit of Fig. 7.48 for an input-referred thermal noise voltage of 3 nV/
�

Hz and maximum output
swing. Assume that ID1 = ID2 = 0.5 mA.
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M1

RD

VDD

RS

Vin

Vout

Figure 7.76

M1

RD

VDD

Vin

Vout

CL

Figure 7.77

M1

RS

VDD

Vin

Vb

Vout

M2

Figure 7.78

7.22. Consider the circuit of Fig. 7.49. If (W/L)1�3 = 50/0.5 and ID1�3 = 0.5 mA, determine the input-referred
thermal noise voltage and current.

7.23. The circuit of Fig. 7.49 is designed with (W/L)1 = 50/0.5 and ID1�3 = 0.5 mA. If an output swing of 2 V is
required, estimate by iteration the dimensions of M2 and M3 such that the input-referred thermal noise current
is minimum.

7.24. The source follower of Fig. 7.51 is to provide an output resistance of 100 � with a bias current of 0.1 mA.
(a) Calculate (W/L)1.
(b) Determine (W/L)2 such that the input-referred thermal noise voltage (not voltage squared) contributed

by M2 is one-fifth of that due to M1. What is the maximum output swing?

7.25. The cascode stage of Fig. 7.52(a) exhibits a capacitance CX from node X to ground. Neglecting other capac-
itances, determine the input-referred thermal noise voltage.

7.26. Determine the input-referred thermal and 1/ f noise voltages of the circuits shown in Fig. 7.79 and compare
the results. Assume that the circuits draw equal supply currents.

7.27. Repeat the analysis in Example 7.13 but assume that � > 0.

7.28. Suppose the circuit of Fig. 7.38(a) is driven by a finite source impedance, as shown in Fig. 7.80. Assume that
� = 0, and neglect the noise of RS .
(a) Determine the output noise voltage of the circuit.
(b) In a manner similar to the analysis of Fig. 7.37, compute in terms of Vn,RF and Vn,M1 the input-referred

noise voltage and current, paying close attention to their correlation.
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Vout
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M4
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Figure 7.79

I1

VDD

M1

Vout

RF

RS
Vin

Figure 7.80

(c) Using superposition of voltages and currents (not powers), calculate the output noise voltage in terms of
Vn,in and In,in , as obtained in (b). Now make the substitutions V 2

n,RF = 4kT RF and I 2
n,M1 = 4kT � gm .

Is this result the same as that derived in (a)?

7.29. Consider the circuits in Figs. 7.39(c) and (d), but include CGS and a noiseless impedance Z1 in series with the
gate. Derive expressions for In,out1 and In,out2. Does the lemma hold in this case?

7.30. Repeat Example 7.14 while including CGS and an impedance Z1 in series with the gate. Does the lemma hold
in this case?

7.31. Model the thermal noise of M1 in Fig. 7.49 by a voltage source in series with its gate and assuming the input
is open,
(a) Determine the resulting output voltage. (The voltage gain for a degenerated CS stage was derived in

Chapter 3.)
(b) Now refer this voltage to the input as a current and compare the result with the contributions of M2 and M3.

7.32. Figure 7.81 shows a noiseless amplifier driven by a source resistance of RS . If the amplifier can be modeled
by a low-frequency gain of A0 and a single pole at �0, determine the total integrated noise at the output
due to RS .

RS
Vin

A0,�0

Vout
Figure 7.81
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7.33. Considering only thermal noise in Fig. 7.82, determine the output noise spectrum and the total integrated
noise. Assume that � > 0.

M1

RD

VDD

Vin

Vout
CL

RP

Figure 7.82

7.34. Calculate the input-referred thermal and flicker noise of the circuit shown in Fig. 7.83, where the output of
interest is ID3 � ID4. Consider two cases: (a) the current sources are ideal, and (b) the current sources are
realized by MOSFETs. Neglect channel-length modulation and body effect.

M1 M2

M3 M4

VDD

RS

Figure 7.83
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CHAPTER

8
Feedback

On a mild August morning in 1927, Harold Black was riding the ferry from New York to New Jersey, where
he worked at Bell Laboratories. Black and many other researchers had been investigating the problem of
nonlinearity in amplifiers used in long-distance telephone networks, seeking a practical solution. While
reading the newspaper on the ferry, Black was suddenly struck by an idea and began to draw a diagram
on the newspaper, which would later be used as the evidence in his patent application. The idea is known
to us as the negative-feedback amplifier.

Feedback is a powerful technique that finds wide application in analog circuits. For example, nega-
tive feedback allows high-precision signal processing, and positive feedback makes it possible to build
oscillators. In this chapter, we consider only negative feedback and use the term feedback to mean that.

We begin with a general view of feedback circuits, describing important benefits that result from
feedback. Next, we study four feedback topologies and their properties. We then deal with difficulties
in feedback circuit analysis and introduce the two-port technique, Bode’s technique, and Blackman’s
theorem as possible solutions.

8.1 General Considerations

Figure 8.1 shows a negative-feedback system, where H(s) and G(s) are called the feedforward and the
feedback networks, respectively. Since the output of G(s) is equal to G(s)Y (s), the input to H(s), called
the feedback error, is given by X (s) � G(s)Y (s). That is

Y (s) = H(s)[X (s) � G(s)Y (s)] (8.1)

Thus,

Y (s)
X (s)

=
H(s)

1 + G(s)H(s)
(8.2)

X(s) H(s) Y(s)

G(s)
Figure 8.1 General feedback system.

274
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H(s) Y(s)

G(s)

Error

Figure 8.2 Similarity between output
of feedback network and input signal.

We call H(s) the “open-loop” transfer function and Y (s)/X (s) the “closed-loop” transfer function. In
most cases of interest in this book, H(s) represents an amplifier and G(s) is a frequency-independent
quantity. In other words, a fraction of the output signal is sensed and compared with the input, generating
an error term. In a well-designed negative-feedback system, the error term is minimized, thereby making
the output of G(s) an accurate “copy” of the input and hence the output of the system a faithful (scaled)
replica of the input (Fig. 8.2). We also say that the input of H(s) is a “virtual ground” because the signal
amplitude at this point is small. In subsequent developments, we replace G(s) by a frequency-independent
quantity � and call it the “feedback factor.”

It is instructive to identify four elements in the feedback system of Fig. 8.1: (1) the feedforward
amplifier, (2) a means of sensing the output, (3) the feedback network, and (4) a means of generating the
feedback error, i.e., a subtractor (or an adder). These elements exist in every feedback system, even though
they may not be obvious in cases such as a simple common-source stage with resistive degeneration.

8.1.1 Properties of Feedback Circuits

Before proceeding to the analysis of feedback circuits, we study some simple examples to describe the
benefits of negative feedback.

Gain Desensitization Consider the common-source stage shown in Fig. 8.3(a), where the voltage gain
is equal to gm1rO1. A critical drawback of this circuit is the poor definition of the gain: both gm1 and
rO1 vary with process and temperature. Now suppose the circuit is configured as in Fig. 8.3(b), where
the gate bias of M1 is set by means not shown here (Chapter 13). Let us calculate the overall voltage
gain of the circuit at relatively low frequencies such that C2 draws a negligible (small-signal) current
from the output node, i.e., Vout/VX = �gm1rO1 because the entire drain current flows through rO1. Since
(Vout � VX )C2s = (VX � Vin)C1s, we have

Vout

Vin
= �

1�
1 +

1

gm1rO1

�
C2

C1
+

1

gm1rO1

(8.3)

I1 I1

M1 M1

C1

C2

VDD VDD

Vout Vout

Vin Vin
X

(a) (b)
Figure 8.3 (a) Simple common-source stage; (b) circuit of (a) with feedback.
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If gm1rO1 is sufficiently large, the 1/(gm1rO1) terms in the denominator can be neglected, yielding

Vout

Vin
= �

C1

C2
(8.4)

Compared to gm1rO1, this gain can be controlled with much higher accuracy because it is given by the ratio
of two capacitors. If C1 and C2 are made of the same material, then process and temperature variations
do not change C1/C2.

The above example reveals that negative feedback provides gain “desensitization,” i.e., the closed-loop
gain is less sensitive to device parameters than the open-loop gain is. One may also say that negative
feedback “stabilizes” the gain and hence “improves the stability.” But this nomenclature may be confused
with frequency stability (Chapter 10), which typically worsens as a result of negative feedback. Illustrated
for a more general case in Fig. 8.4, gain desensitization can be quantified by writing

Y

X
=

A

1 + � A
(8.5)

�
1

�

�
1 �

1

� A

�
(8.6)

where we have assumed that � A � 1. We note that the closed-loop gain is determined, to the first order
by the feedback factor, �. More important, even if the open-loop gain, A, varies by a factor of, say, 2,
Y/X varies by a small percentage because 1/(� A) � 1.

X YA

�
Figure 8.4 Simple feedback system.

Called the “loop gain,” the quantity � A plays an important role in feedback systems.1 We see from
(8.6) that the higher � A is, the less sensitive Y/X will be to variations in A. From another perspective,
the accuracy of the closed-loop gain improves by maximizing � A. Note that as � increases, the closed-
loop gain, Y/X � 1/�, decreases, suggesting a trade-off between precision and the closed-loop gain. In
other words, we begin with a high-gain amplifier and apply feedback to obtain a low, but less sensitive,
closed-loop gain. Another conclusion here is that the output of the feedback network is equal to �Y =
X • � A/(1 + � A), approaching X as � A becomes much greater than unity. This result agrees with the
illustration in Fig. 8.2.

The calculation of the loop gain can proceed as follows. As illustrated in Fig. 8.5, we set the main
input to (ac) zero, break the loop at some point, inject a test signal in the “right direction,” follow the
signal around the loop, and obtain the value that returns to the break point. The negative of the transfer
function thus derived is the loop gain. Note that the loop gain is a dimensionless quantity. In Fig. 8.5,
we have Vt�(�1)A = VF and hence VF/Vt = �� A. Similarly, as depicted in Fig. 8.6, for the simple
feedback circuit, we can write VX = Vt C2/(C1 + C2) and2

Vt
C2

C1 + C2
(�gm1rO1) = VF (8.7)

1The loop gain, � A, and the open-loop gain, A, must not be confused with each other.
2A common mistake here is to say that C2 does not pass signals at very low frequencies, and hence VX = 0. This is not true

because C1 also has a high impedance at very low frequencies.
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A

�

Vt VF

X(s) = 0

Figure 8.5 Computation of loop gain.

I1

C2
C1

M1

VF

Vt

VDD

X Figure 8.6 Computation of loop gain
in a simple feedback circuit.

That is

VF

Vt
= �

C2

C1 + C2
gm1rO1 (8.8)

Note that the current drawn by C2 from the output is neglected here. This issue will be addressed in
Sec. 8.5.

� Example 8.1

Determine the loop gain for the feedback common-gate stage shown in Fig. 8.7(a).

C1

C2

C1

C1

C2

C2

VDD VDD VDD

M1 M1 M1

Vout Vout
Vout

(a) (b) (c)

Vin

Figure 8.7

Solution

In order to compute the loop gain, we must first set the main input to (ac) zero, arriving at the arrangement shown
in Fig. 8.7(b). Redrawing the circuit as in Fig. 8.7(c), we recognize that this topology is identical to the CS stage of
Fig. 8.3(b) with Vin = 0. The loop gain is therefore given by Eq. (8.8).

The important point here is that, when computing the loop gain, we no longer know where the main input and
output terminals are. Thus, seemingly different circuit topologies may have the same loop gain.

�
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We should emphasize that the desensitization of gain by feedback leads to many other properties of
feedback systems. Our examination of Eq. (8.6) indicates that large variations in A affect Y/X negligibly
if � A is large. Such variations can arise from different sources: process, temperature, frequency, and
loading. For example, if A drops at high frequencies, Y/X varies to a lesser extent, and the bandwidth is
increased. Similarly, if A decreases because the amplifier drives a heavy load, Y/X is not affected much.
These concepts become clearer below.

Terminal Impedance Modification As a second example, let us study the circuit shown in Fig. 8.8(a),
where a capacitive voltage divider senses the output voltage of a common-gate stage, applying the
result to the gate of current source M2 and hence returning a signal to the input.3 Our objective is to
compute the input resistance at relatively low frequencies with and without feedback. Neglecting channel-
length modulation and the current drawn by C1, we break the feedback loop as shown in Fig. 8.8(b)
and write

Rin,open =
1

gm1 + gmb1
(8.9)

RD

C1

C2

Vb

VDD

P
M2

M1

Rin

RD

C1

C2

C1

C2

Vb

VDD

P
M2

M1

Rin

(c)(a) (b)

RD

Vb

VDD

P
M2

M1

VX

IX

Vout Vout Vout

Vin

Figure 8.8 (a) Common-gate circuit with feedback; (b) open-loop circuit; (c) calculation of input resistance.

For the closed-loop circuit, as depicted in Fig. 8.8(c), we write Vout = (gm1 + gmb1)VX RD and

VP = Vout
C1

C1 + C2
(8.10)

= (gm1 + gmb1)VX RD
C1

C1 + C2
(8.11)

Thus, the small-signal drain current of M2 equals gm2(gm1 + gmb1)VX RDC1/(C1 + C2). Adding this
current to the drain current of M1 with proper polarity yields IX :

IX = (gm1 + gmb1)VX + gm2(gm1 + gmb1)
C1

C1 + C2
RD VX (8.12)

= (gm1 + gmb1)
�

1 + gm2 RD
C1

C1 + C2

�
VX (8.13)

3The bias network for M2 is not shown.
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It follows that

Rin,closed = VX/IX (8.14)

=
1

gm1 + gmb1

1

1 + gm2 RD
C1

C1 + C2

(8.15)

We therefore conclude that this type of feedback reduces the input resistance by a factor of 1 +
gm2 RDC1/(C1 + C2). The reader can prove that the quantity gm2 RDC1/(C1 + C2) is the loop gain.

Let us now consider the circuit of Fig. 8.9(a) as an example of output impedance modification by
feedback. Here M1, RS , and RD constitute a common-source stage and C1, C2, and M2 sense the output
voltage,4 returning a current equal to [C1/(C1 + C2)]Voutgm2 to the source of M1. The reader can prove
that the feedback is indeed negative. To compute the output resistance at relatively low frequencies, we
set the input to zero [Fig. 8.9(b)] and write

ID1 = VX
C1

C1 + C2
gm2

RS

RS +
1

gm1 + gmb1

(8.16)

M2

Vout

C1

C2

C1

C2

P

RD

VDD

RD

VDD

M1

M2

M1

(a) (b)

VX

IX

Vin

RS RS P

Figure 8.9 (a) CS stage with feedback; (b) calculation of output resistance.

Since IX = VX/RD + ID1, we have

VX

IX
=

RD

1 +
gm2 RS(gm1 + gmb1)RD

(gm1 + gmb1)RS + 1

C1

C1 + C2

(8.17)

Equation (8.17) implies that this type of feedback decreases the output resistance. The denominator of
(8.17) is indeed equal to one plus the loop gain.

Bandwidth Modification. The next example illustrates the effect of negative feedback on the band-
width. Suppose the feedforward amplifier has a one-pole transfer function:

A(s) =
A0

1 +
s

�0

(8.18)

4Biasing of M2 is not shown.
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where A0 denotes the low-frequency gain and �0 is the 3-dB bandwidth. What is the transfer function of
the closed-loop system? From (8.5), we have

Y

X
(s) =

A0

1 +
s

�0

1 + �
A0

1 +
s

�0

(8.19)

=
A0

1 + � A0 +
s

�0

(8.20)

=

A0

1 + � A0

1 +
s

(1 + � A0)�0

(8.21)

The numerator of (8.21) is simply the closed-loop gain at low frequencies—as predicted by (8.5)—and
the denominator reveals a pole at (1 + � A0)�0. Thus, the 3-dB bandwidth has increased by a factor of
1 + � A0, albeit at the cost of a proportional reduction in the gain (Fig. 8.10).

X(s) Y(s)

�
�

A0

1
�

� �

A0

1 + �A0

(1 + �A0) �0

Y
X

�0

Figure 8.10 Bandwidth modification as a result of feedback.

The increase in the bandwidth fundamentally originates from the gain desensitization property of
feedback. Recall from (8.6) that, if A is large enough, the closed-loop gain remains approximately equal
to 1/� even if A experiences substantial variations. In the example of Fig. 8.10, A varies with frequency
rather than process or temperature, but negative feedback still suppresses the effect of this variation. Of
course, at high frequencies, A drops to such low levels that � A becomes comparable with unity and the
closed-loop gain falls below 1/�.

Equation (8.21) suggests that the “gain-bandwidth product” of a one-pole system is equal to A0�0 and
does not change much with feedback, making the reader wonder how feedback improves the speed if a
high gain is required. Suppose we need to amplify a 20-MHz square wave by a factor of 100 and maximum
bandwidth, but we have only a single-pole amplifier with an open-loop gain of 100 and 3-dB bandwidth of
10 MHz. If the input is applied to the open-loop amplifier, the response appears as shown in Fig. 8.11(a),
exhibiting a long risetime and falltime because the time constant is equal to 1/(2� f3-dB) � 16 ns.

Now suppose we apply feedback to the amplifier such that the gain and bandwidth are modified to
10 and 100 MHz, respectively. Placing two of these amplifiers in a cascade [Fig. 8.11(b)], we obtain a
much faster response with an overall gain of 100. Of course, the cascade consumes twice as much power,
but it would be quite difficult to achieve this performance with the original amplifier even if its power
dissipation were doubled.

Nonlinearity Reduction An important property of negative feedback is the reduction of nonlinearity
in analog circuits. A nonlinear characteristic is one that departs from a straight line, i.e., one whose slope
varies (Fig. 8.12). A familiar example is the input-output characteristic of differential pairs. Note that
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Vin

Vin Vin

VinVout

Vout Vout

Vout

Av = 100 Av = 10 Av = 10

t t
(a) (b)

� 16 ns � 1.6 ns

 f3�dB = 10 MHz  f3�dB = 100 MHz  f3�dB = 100 MHz

Figure 8.11 Amplification of a 20-MHz square wave by (a) a 10-MHz amplifier and (b) a cascade of two
100-MHz feedback amplifiers.

Vin Vin

Vout Vout

A1

A2

�
1

(a) (b)
Figure 8.12 Input-output characteristic of a nonlinear amplifier (a) before and (b) after applying feedback.

the slope can be viewed as the small-signal gain. We predict that, even though the gain of an open-loop
amplifier varies from A1 to A2 in Fig. 8.12, a closed-loop feedback system incorporating such an amplifier
exhibits less gain variation and hence a higher linearity. To quantify this effect, we note that the open-loop
gain ratio between regions 1 and 2 in Fig. 8.12 is equal to

ropen =
A2

A1
(8.22)

For example, ropen = 0.9 means that the gain falls by 10% from region 1 to region 2. Assuming A2 =
A1 � �A, we can write

ropen = 1 �
�A

A1
(8.23)

Let us place this amplifier in a negative-feedback loop. For the closed-loop gain ratio, we have

rclosed =

A2

1 + � A2

A1

1 + � A1

(8.24)

=
1 +

1

� A1

1 +
1

� A2

(8.25)
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It follows that

rclosed � 1 �

1

� A2
�

1

� A1

1 +
1

� A2

(8.26)

� 1 �
A1 � A2

1 + � A2

1

A1
(8.27)

� 1 �
�A

1 + � A2

1

A1
(8.28)

Comparison of (8.23) and (8.28) suggests that the gain ratio is much closer to 1 in the latter if the loop
gain, 1 + � A2, is large.

We study nonlinearity and its behavior in feedback systems more extensively in Chapter 14.

8.1.2 Types of Amplifiers

Most of the circuits studied thus far can be considered “voltage amplifiers” because they sense a voltage
at the input and produce a voltage at the output. However, three other types of amplifiers can also be
constructed such that they sense or produce currents. Shown in Fig. 8.13, the four configurations have
quite different properties: (1) circuits sensing a voltage must exhibit a high input impedance (a voltmeter
measures a voltage with minimal loading) whereas those sensing a current must provide a low input
impedance (a current meter inserted in a wire must negligibly disturb the current); (2) circuits generating
a voltage must exhibit a low output impedance (as a voltage source) while those generating a current
must provide a high output impedance (as a current source). Note that the gains of transimpedance and
transconductance5 amplifiers have a dimension of resistance and conductance, respectively. For example,
a transimpedance amplifier may have a gain of 2 k�, which means that it produces a 2-V output in
response to a 1-mA input. Also, we use the sign conventions depicted in Fig. 8.13; for example, the
transimpedance R0 = Vout/Iin if Iin flows into the amplifier.

Vout

Vout

Vout

Vout

Voltage Amp. Transimpedance Amp.

Iin

Vin

Vin

Vin

Vin

Transconductance Amp.

Iout IoutIin

Current  Amp.

(c)(a) (b) (d)

Iin Iout Iin Iout

Figure 8.13 Types of amplifiers along with their idealized models.

5This terminology is standard but not consistent. One should use either transimpedance and transadmittance or transresistance
and transconductance.
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M1 M1
M1

M1

VDD

RD

VDD

RD

Vin

Vout Vout

Vb

Iin

Vin

Iout
Iout

Vb

Iin

(c)(a) (b) (d)

Figure 8.14 Simple implementations of four types of amplifiers.

Figure 8.14 illustrates simple implementations of each amplifier. In Fig. 8.14(a), a common-source
stage senses and produces Voltages, and in Fig. 8.14(b), a common-gate circuit serves as a transimpedance
amplifier, converting the source current to a voltage at the drain. In Fig. 8.14(c), a common-source
transistor operates as a transconductance amplifier (also called a V/I converter), generating an output
current in response to an input voltage, and in Fig. 8.14(d), a common-gate device senses and produces
currents.

The circuits of Fig. 8.14 may not provide adequate performance in many applications. For example,
the circuits of Figs. 8.14(a) and (b) suffer from a relatively high output impedance. Figure 8.15 depicts
modifications that alter the output impedance or increase the gain.

M1

RD

Vin
Vout

RD

VbM1

M1Iin

M2

Iout

VbM1

Iin

(c)(a) (b) (d)

VDD

M2

Vout

VDD

M2
RD

Vin

M2

Iout
RD

VDDVDD

X

Figure 8.15 Four types of amplifiers with improved performance.

� Example 8.2

Calculate the gain of the transconductance amplifier shown in Fig. 8.15(c).

Solution

The gain in this case is defined as Gm = Iout/Vin . That is

Gm =
VX

Vin
•

Iout

VX
(8.29)

= �gm1(rO1�RD) • gm2 (8.30)

�

While most familiar amplifiers are of the voltage-voltage type, the other three configurations do find
usage. For example, transimpedance amplifiers are an integral part of optical fiber receivers because they
must sense the current produced by a photodiode, eventually generating a voltage that can be processed
by subsequent circuits.
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� Example 8.3

Reconstruct the models of Fig. 8.13 for nonideal amplifiers.

Solution

A nonideal voltage amplifier draws current from its input and exhibits a finite output impedance, as depicted in
Fig. 8.16(a).

ZinVin AvVin

Zout

Vout

Zout

Vout

Zin

Iin

Iin

R0Iin

ZinVin GmVin Zout

Zin

Iin

IinIout

Zout

Iout

A0Iin

(c)

(a) (b)

(d)

Figure 8.16

A nonideal transimpedance amplifier may have finite input and output impedances [Fig. 8.16(b)]. Note that Zin

is in parallel with the input port in Fig. 8.16(a) and in series with the input port in Fig. 8.16(b). This is to ensure a
meaningful result in the ideal case: if Zin goes to infinity in the former or to zero in the latter, the models reduce to
those of Fig. 8.13.

The reader is encouraged to justify the models shown in Figs. 8.16(c) and (d) for the other two amplifier types.
We should mention that these amplifiers may also have internal feedback from their output to their input, e.g., due
to CG D , but we neglect that for now.

�

8.1.3 Sense and Return Mechanisms

Placing a circuit in a feedback loop requires sensing the output signal and returning (a fraction) of the
result to the summing node at the input. With voltage or current quantities as input and output signals,
we can identify four types of feedback: voltage-voltage, voltage-current, current-current, and current-
voltage, where the first entry in each case denotes the quantity sensed at the output and the second the
type of signal returned to the input.6

It is instructive to review methods of sensing and summing voltages or currents. To sense a voltage, we
place a voltmeter in parallel with the corresponding port [Fig. 8.17(a)], ideally introducing no loading.

(c)(a) (b)

Vout RL

Iout

Voltmeter

Current Meter

RL

Iout

RS

VS

Figure 8.17 Sensing (a) a voltage by a voltmeter; (b) a current by a current meter; (c) a current by a small resistor.

6Different authors use different orders or terminologies for the four types of feedback.
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When used in a feedback system, this type of sensing is also called “shunt feedback” (regardless of the
quantity returned to the input).

To sense a current, a current meter is inserted in series with the signal [Fig. 8.17(b)], ideally exhibiting
zero series resistance. Thus, this type of sensing is also called “series feedback.” In practice, a small
resistor replaces the current meter [Fig. 8.17(c)], with the voltage drop across the resistor serving as a
measure of the output current.

The addition of the feedback signal and the input signal can be performed in the voltage domain or
current domain. To add two quantities, we place them in series if they are voltages and in parallel if they
are currents (Fig. 8.18).

Vin

VF
Iin IF

(a) (b)
Figure 8.18 Addition of (a) voltages
and (b) currents.

To visualize the methods of Figs. 8.17 and 8.18, we consider a number of practical implementations.
A voltage can be sensed by a resistive (or capacitive) divider in parallel with the port [Fig. 8.19(a)] and a

Vin

R2

R1

Vout

VF

Vin

R1

VF

VDD

Iout

Vin

R1

VF
Iout

Vin

VinVin

R2

R1

R2

R1

R2

R1

Vout VoutVout

VFVF
VF

M1
M1

(c)(a) (b)

(d) (e) (f )

Iin

RF

IF Iin IF

(g) (h)
Figure 8.19 Practical means of sensing and adding voltages and currents.
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current by placing a small resistor in series with the wire and sensing the voltage across it [Figs. 8.19(b)
and (c)]. To subtract two voltages, a differential pair can be used [Fig. 8.19(d)]. Alternatively, a single
transistor can perform voltage subtraction as shown in Figs. 8.19(e) and (f) because ID1 is a function of
Vin � VF . Subtraction of currents can be accomplished as depicted in Fig. 8.19(g) or (h). Note that for
voltage subtraction, the input and feedback signals are applied to two distinct nodes, whereas for current
subtraction, they are applied to a single node. This observation proves helpful in identifying the type of
feedback.

While ideally having no influence on the operation of the open-loop amplifier itself, the feedback
network in reality introduces loading effects that must be taken into account. This issue is discussed in
Sec. 8.5.

8.2 Feedback Topologies

In this section, we study four “canonical” topologies resulting from placing each of the four amplifier
types in a negative-feedback loop. As depicted in Fig. 8.20, X and Y can be a current or a voltage quantity.
The main amplifier is called the “feedforward” or simply the “forward” amplifier, around which we apply
feedback to improve the performance.

X(s) H(s) Y(s)

G(s)

Forward AmpliÞer

Feedback Network
Figure 8.20 Canonical feedback
system.

We should remark that some feedback circuits do not conform to the four canonical topologies. We
return to this point later in the chapter, but the intuition gained from the analysis of these topologies
proves essential to analog design. For example, we greatly benefit from the knowledge that one type of
feedback lowers the output impedance while another raises it.

8.2.1 Voltage-Voltage Feedback

This topology senses the output voltage and returns the feedback signal as a voltage.7 Following the
conceptual illustrations of Figs. 8.17 and 8.18, we note that the feedback network is connected in parallel
with the output and in series with the input port (Fig. 8.21). An ideal feedback network in this case
exhibits infinite input impedance and zero output impedance because it senses a voltage and generates a
voltage. We can therefore write VF = �Vout, Ve = Vin � VF , Vout = A0(Vin � �Vout), and hence

Vout

Vin
=

A0

1 + � A0
(8.31)

We recognize that � A0 is the loop gain and that the overall gain has dropped by 1 + � A0. Note that here
both A0 and � are dimensionless quantities.

As a simple example of voltage-voltage feedback, suppose we employ a differential voltage amplifier
with single-ended output as the feedforward amplifier and a resistive divider as the feedback network

7This configuration is also called “series-shunt” feedback, where the first term refers to the input connection and the second to
the output connection.
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Feedforward
AmpliÞer

Feedback
Network

Vout

High Rin

Vin

VF

A0

�Low Rout

Ve

Figure 8.21 Voltage-voltage
feedback.

Vout Vout

R1

R2

R1

R2

Vin Vin

VF

(a) (b)

A0 A0

Figure 8.22 (a) Amplifier with output sensed by a resistive divider; (b) voltage-voltage feedback amplifier.

Vin

VF

A0Ve Ve
Rout

�

RL Vout

Figure 8.23 Effect of voltage-voltage
feedback on output resistance.

[Fig. 8.22(a)]. The divider senses the output voltage, producing a fraction thereof as the feedback signal
VF . Following the block diagram of Fig. 8.21, we place VF in series with the input of the amplifier to
perform subtraction of voltages [Fig. 8.22(b)].

How does voltage-voltage feedback modify the input and output impedances? Let us first consider the
output impedance. Recall that a negative-feedback system attempts to make the output an accurate (scaled)
replica of the input. Now suppose, as shown in Fig. 8.23, we load the output by a resistor RL , gradually
decreasing its value. While in the open-loop configuration, the output would simply drop in proportion to
RL/(RL + Rout), in the feedback system, Vout is maintained as a reasonable replica of Vin even though RL

decreases. That is, so long as the loop gain remains much greater than unity, Vout/Vin � 1/�, regardless
of the value of RL . From another point of view, since the circuit stabilizes (“regulates”) the output voltage
amplitude despite load variations, it behaves as a voltage source, thus exhibiting a low output impedance.
This property fundamentally originates from the gain desensitization provided by feedback.

In order to formally prove that voltage feedback lowers the output impedance, we consider the simple
model in Fig. 8.24, where Rout represents the output impedance of the feedforward amplifier. Setting the
input to zero and applying a voltage at the output, we write VF = �VX , Ve = ��VX , VM = �� A0VX ,
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A0Ve

�

Rout

VM

VX

IX

VF

Figure 8.24 Calculation of output
resistance of a voltage-voltage feedback
circuit.

and hence IX = [VX � (�� A0VX )]/Rout (if the current drawn by the feedback network is neglected). It
follows that

VX

IX
=

Rout

1 + � A0
(8.32)

Thus, the output impedance and the gain are lowered by the same factor. In the circuit of Fig. 8.22(b),
for example, the output impedance is lowered by 1 + A0 R2/(R1 + R2).

� Example 8.4

The circuit shown in Fig. 8.25(a) is an implementation of the feedback configuration depicted in Fig. 8.22(b), but
with the resistors replaced by capacitors. (The bias network of M2 is not shown.) Calculate the closed-loop gain and
output resistance of the amplifier at relatively low frequencies.

VDD VDD

M4

M1 M2 M1 M2

ISS ISS
ISS

M3 M4M3

VDD

M4M3

C1

C2

X
C1

C2

M1 M2
C1

C2
X X

VF

Vt

(c)(a) (b)

Vin Vin

Vout Vout

Simple Op Amp

Figure 8.25

Solution

At low frequencies, C1 and C2 draw a negligible current from the output node. To find the open-loop voltage gain,
we break the feedback loop as shown in Fig. 8.25(b), grounding the top plate of C1 to ensure zero voltage feedback.
The open-loop gain is thus equal to gm1(rO2�rO4).

We must also compute the loop gain, � A0. With the aid of Fig. 8.25(c), we have

VF = �Vt
C1

C1 + C2
gm1(rO2�rO4) (8.33)

That is

� A0 =
C1

C1 + C2
gm1(rO2�rO4) (8.34)
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and hence

Aclosed =
gm1(rO2�rO4)

1 +
C1

C1 + C2
gm1(rO2�rO4)

(8.35)

As expected, if � A0 � 1, then Aclosed � 1 + C2/C1.
The open-loop output resistance of the circuit is equal to rO2�rO4 (Chapter 5). It follows that

Rout,closed =
rO2�rO4

1 +
C1

C1 + C2
gm1(rO2�rO4)

(8.36)

It is interesting to note that if � A0 � 1, then

Rout,closed �
�

1 +
C2

C1

�
1

gm1
(8.37)

In other words, even if the open-loop amplifier suffers from a high output resistance, the closed-loop output resistance
is independent of rO2�rO4, simply because the open-loop gain scales with rO2�rO4 as well.

�

� Example 8.5

Figure 8.26(a) shows an inverting amplifier using an op amp, and Fig. 8.26(b) illustrates a circuit implementation
incorporating capacitors rather than resistors for the feedback network. Determine the loop gain and output impedance
of the latter at low frequencies.

R1

R2
Vin Vout

VDD

M3

M1 M2

M4

Vb

C1

C2
Vin

Vout

(a) (b)

Vin Vout

C1

C2

Figure 8.26

Solution

With Vin set to zero, this circuit becomes indistinguishable from that in Fig. 8.25(a). Thus, the loop gain is given by
(8.34) and the output impedance by (8.36).

The circuits in Figs. 8.25(a) and 8.26(b) appear similar, but provide different closed-loop gains, approximately
1 + C2/C1 and �C2/C1, respectively. Thus, for a gain of, say, 4, C2/C1 � 3 in the former and C2/C1 � 4 in the
latter. Which topology exhibits a higher loop gain in this case?

�
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Voltage-voltage feedback also modifies the input impedance. Comparing the configurations in Fig. 8.27,
we note that the input impedance of the feedforward amplifier sustains the entire input voltage in
Fig. 8.27(a), but only a fraction of Vin in Fig. 8.27(b). As a result, the current drawn by Rin in the
feedback topology is less than that in the open-loop system, suggesting that returning a voltage quantity
to the input increases the input impedance.

A0VeVe
Rout

VF �

RL Vout

Rout Vout

Vin

Ve
Vin

Iin

(a) (b)

Rin

A0VeRin

Figure 8.27 Effect of voltage-voltage feedback on input resistance.

The foregoing observation can be confirmed analytically with the aid of Fig. 8.28. Since Ve = IX Rin

and VF = � A0 IX Rin , we have Ve = VX � VF = VX � � A0 IX Rin . Thus, IX Rin = VX � � A0 IX Rin , and

VX

IX
= Rin(1 + � A0) (8.38)

The input impedance therefore increases by the ubiquitous factor 1 + � A0, bringing the circuit closer to
an ideal voltage amplifier.

A0Ve

�

IX

VF

VX Rin
Figure 8.28 Calculation of input
impedance of a voltage-voltage feedback
circuit.

� Example 8.6

Figure 8.29(a) shows a common-gate topology placed in a voltage-voltage feedback configuration. Note that the
summation of the feedback voltage and the input voltage is accomplished by applying the former to the gate and the
latter to the source.8 Calculate the input resistance at low frequencies if channel-length modulation is negligible.

Solution

Breaking the loop as depicted in Fig. 8.29(b), we recognize that the open-loop input resistance is equal to (gm1 +
gmb1)�1. To find the loop gain, we set the input to zero and inject a test signal in to the loop [Fig. 8.29(c)], obtaining
VF/Vt = �gm1 RDC1/(C1 + C2). The closed-loop input impedance is then equal to

Rin,closed =
1

gm1 + gmb1

�
1 +

C1

C1 + C2
gm1 RD

�
(8.39)

8This circuit is similar to the right half of the topology shown in Fig. 8.25(a).
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RD

C1

C2

VDD

P M1

Vout

RD

VDD

RD

VDD

Vout

Vin

C1

C2

M1

C1

C2

M1

Vin

P P
Vt

VF

(c)(a) (b)
Figure 8.29

The increase in the input impedance can be explained as follows. Suppose the input voltage decreases by �V , causing
the output voltage to fall. As a result, the gate voltage of M1 decreases, thereby lowering the gate-source voltage of
M1 and yielding a change in VGS1 that is less than �V . This means that the drain current changes by an amount less
than (gm + gmb)�V . By contrast, if the gate of M1 were connected to a constant potential, the gate-source voltage
would change by �V , resulting in a larger current change.

�

In summary, voltage-voltage feedback decreases the output impedance and increases the input imped-
ance, thereby proving useful as a “buffer” stage that can be interposed between a high-impedance source
and a low-impedance load.

8.2.2 Current-Voltage Feedback

In some circuits, it is desirable or simpler to sense the output current to perform feedback. The current
is actually sensed by placing a (preferably small) resistor in series with the output and using the voltage
drop across the resistor as the feedback information. This voltage may even serve as the return signal that
is directly subtracted from the input.

Feedforward
AmpliÞer

Feedback
Network

Vin

VF

Low Rout

Ve

Gm

RF

ZL

Iout

Low Rin

Iout

Figure 8.30 Current-voltage
feedback.

Let us consider the general current-voltage feedback system illustrated in Fig. 8.30.9 Since the feedback
network senses the output current and returns a voltage, its feedback factor, �, has the dimension of
resistance and is denoted by RF . It is important to note that a Gm stage must be loaded (“terminated”)
by a finite impedance, ZL , to ensure that it can deliver its output current. If ZL = �, then an ideal Gm

9This topology is also called “series-series” feedback.
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stage would sustain an infinite output voltage. We write VF = RF Iout, Ve = Vin � RF Iout, and hence
Iout = Gm(Vin � RF Iout). It follows that

Iout

Vin
=

Gm

1 + Gm RF
(8.40)

An ideal feedback network in this case exhibits zero input and output impedances.
It is instructive to confirm that Gm RF is indeed the loop gain. As shown in Fig. 8.31, we set the input

voltage to zero and break the loop by disconnecting the feedback network from the output and replacing
it with a short at the output (if the feedback network is ideal). We then inject the test signal It , producing
VF = RF It , and hence Iout = �Gm RF It . Thus, the loop gain is equal to Gm RF and the transconductance
of the amplifier is reduced by 1 + Gm RF when feedback is applied.

Gm

RF

ZL

It

Iout

Short

VF Figure 8.31 Calculation of loop gain
for current-voltage feedback.

Is it realistic to assume that the input impedance of the feedback network is zero? Why do we use
a test current rather than a test voltage? Does the type of test source affect the loop gain calculations?
These questions are addressed later in this chapter.

Sensing the current at the output of a feedback system increases the output impedance. This is because
the system attempts to make the output current a faithful replica of the input signal (with a proportionality
factor if the input is a voltage quantity). Consequently, the system delivers the same current waveform
as the load varies, in essence approaching an ideal current source and hence exhibiting a high output
impedance.

VX

IX

RF IX

Gm Rout

VF Figure 8.32 Calculation of output
resistance of a current-voltage feedback
amplifier.

To prove the above result, we consider the current-voltage feedback topology shown in Fig. 8.32, where
Rout represents the finite output impedance of the feedforward amplifier.10 The feedback network produces
a voltage VF proportional to IX :VF = RF IX , and the current generated by Gm equals �RF IX Gm . As a

10Note that Rout is placed in parallel with the output because the ideal transimpedance amplifier is modeled by a voltage-
dependent current source.
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result, �RF IX Gm = IX � VX/Rout, yielding

VX

IX
= Rout(1 + Gm RF ) (8.41)

The output impedance therefore increases by a factor of 1 + Gm RF .

� Example 8.7

Rechargeable batteries must be charged by a constant current (rather than a constant voltage) to avoid damage. The
battery charger must therefore generate a constant current from a golden reference, VRE F . As shown in Fig. 8.33(a),
we can insert a small resistor r in the output current path, apply the voltage across r to an amplifier A1, and subtract
the output of A1 from VRE F . Calculate the output current and impedance of this circuit, assuming |ZL | � rO (the
output resistance of M1).

r
A1

(a) (b)

VREF

Iout

M1M1

r

A1

Vt

VF

ZL
Rechargeable 

Battery

ZL

Figure 8.33

Solution

With a high loop gain, the output voltage of A1 is approximately equal to VRE F , and hence Iout = (VRE F/A1)/r .
Using the circuit of Fig. 8.33(b) to determine the loop gain, we have

VF

Vt
� �gmr A1 (8.42)

Thus, the open-loop output impedance seen by ZL is multiplied by 1 + gmr A1, yielding

Rout,closed = (1 + gmr A1)(rO + r) (8.43)

We observe that ZL is now driven by a better current source.
�

As with voltage-voltage feedback, current-voltage feedback increases the input impedance by a factor
equal to one plus the loop gain. As illustrated in Fig. 8.34, we have IX RinGm = Iout. Thus, Ve =
VX � Gm RF IX Rin and

VX

IX
= Rin(1 + Gm RF ) (8.44)

The reader can show that the loop gain is indeed equal to Gm RF .
In summary, current-voltage feedback increases both the input and the output impedances while

decreasing the feedforward transconductance. As explained in Chapter 9, the high output impedance
proves useful in high-gain op amps.



Razavi-3930640 book December 17, 201516:54 294

294 Chap. 8 Feedback

IX

RF Iout

GmRin

VF

VX Ve

Iout

Figure 8.34 Calculation of input
resistance of a current-voltage feedback
amplifier.

8.2.3 Voltage-Current Feedback

In this type of feedback, the output voltage is sensed and a proportional current is returned to the summing
point at the input.11 Note that the feedforward path incorporates a transimpedance amplifier with gain R0

and the feedback factor has a dimension of conductance.
A voltage-current feedback topology is shown in Fig. 8.35. Sensing a voltage and producing a current,

the feedback network is characterized by a transconductance gm F , ideally exhibiting infinite input and
output impedances. Since IF = gm F Vout and Ie = Iin � IF , we have Vout = R0 Ie = R0(Iin � gm F Vout).
It follows that

Vout

Iin
=

R0

1 + gm F R0
(8.45)

The reader can prove that gm F R0 is indeed the loop gain, concluding that this type of feedback lowers
the transimpedance by a factor equal to one plus the loop gain.

Feedforward
AmpliÞer

Feedback
Network

Vout

High Rin

R0

gmFHigh Rout

IF

Ie

Iin

Figure 8.35 Voltage-current feedback.

� Example 8.8

Calculate the transimpedance, Vout/Iin , of the circuit shown in Fig. 8.36(a) at relatively low frequencies. Assume
that � = 0. (The bias network of M1 is not shown.)

Solution

In this circuit, the capacitive divider C1-C2 senses the output voltage, applying the result to the gate of M1 and
producing a current that is subtracted from Iin . The open-loop transimpedance equals that of the core common-gate
stage, RD . The loop gain is obtained by setting Iin to zero and breaking the loop at the output [Fig. 8.36(b)]:

�Vt
C1

C1 + C2
gm1 RD = VF (8.46)

11This topology is also called “shunt-shunt” feedback.
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Vb Vb
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VDD

P M1

M2
C1

C2

M1

M2

(a) (b)

Iin

Vout

P

Vt

VF

Figure 8.36

Thus, the overall transimpedance is equal to

Rtot =
RD

1 +
C1

C1 + C2
gm1 RD

(8.47)

�

� Example 8.9

We know from the previous example that

Rin =
1

gm2

1

1 +
C1

C1 + C2
gm1 RD

(8.48)

A student repeats the analysis, but with the input driven by a voltage source, concluding that the loop gain is zero
and the input impedance is not affected by the feedback loop. Explain the flaw in the student’s argument.

Solution

Consider the arrangement shown in Fig. 8.37(a). We know that Rin is affected by the feedback because M1 generates
a current in response to Vin . On the other hand, it appears from Fig. 8.37(b) that the loop gain is zero in this case.
How do we reconcile these two views?

RD

C1

C2

C1

C2

Vb Vb

VF

VDD

RD

VDD

P M1

M2

M1

M2

(a) (b)

Vout

P

Vt

Vin

Iin

Rin

Figure 8.37

We must recall that returning current to the input assumes that the circuit is driven by a current source; i.e., our
generic negative-feedback system requires that the returned quantity and the input have the same dimension. In other
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words, the circuit of Fig. 8.37(a) does not map to our canonical feedback system because it returns a current but is
driven by a voltage. We therefore cannot compute the loop gain by setting the input voltage to zero and breaking the
loop. Of course, the input impedance is still given by Eq. (8.48). We will return to this circuit in Sec. 8.6.4 and apply
Blackman’s theorem to it.

�

Following our reasoning for the other two types of feedback studied above, we surmise that voltage-
current feedback decreases both the input and the output impedances. As shown in Fig. 8.38(a) and noted
in Example 8.3, the input resistance of R0 appears in series with its input port. We write IF = IX �VX/Rin

and (VX/Rin)R0gm F = IF . Thus,

VX

IX
=

Rin

1 + gm F R0
(8.49)

(a) (b)

IX

gmF

Ie

R0

Vout gmF VX

IF

Vout Iin = 0

IF

Rout

VX

IX

VM

Rin

Ie

R0Rin

Figure 8.38 Calculation of (a) input and (b) output impedance of a voltage-current feedback amplifier.

Similarly, from Fig. 8.38(b), we have IF = VX gm F , Ie = �IF , and VM = �R0gm F VX . Neglecting
the input current of the feedback network, we write IX = (VX � VM)/Rout = (VX + gm F R0VX )/Rout.
That is

VX

IX
=

Rout

1 + gm F R0
(8.50)

� Example 8.10

Calculate the input and output impedances of the circuit shown in Fig. 8.39(a). For simplicity, assume that RF � RD .

M1 M1

VDD

RD

VDD

RD
RF RF

Vout

Iin

Vt

VF

(a) (b)
Figure 8.39
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Solution

In this circuit, RF senses the output voltage and returns a current to the input. Breaking the loop as depicted
in Fig. 8.39(b), we calculate the loop gain as gm RD . Thus, the open-loop input impedance, RF , is divided by
1 + gm RD :

Rin,closed =
RF

1 + gm RD
(8.51)

Similarly,

Rout,closed =
RD

1 + gm RD
(8.52)

=
1

gm
||RD (8.53)

Note that Rout,closed is in fact the parallel combination of a diode-connected transistor and RD .
The reduction of the input impedance agrees with Miller’s prediction: since the voltage gain from the gate of M1

to its drain is approximately equal to �gm RD , the feedback resistor equivalently produces a grounded resistance at
the input equal to RF/(1 + gm RD).

�

An important application of amplifiers with low input impedance is in fiber optic receivers, where light
received through a fiber is converted to a current by a reverse-biased photodiode. This current is typically
converted to a voltage for further amplification and processing. Shown in Fig. 8.40(a), such conversion
can be accomplished by a simple resistor, but at the cost of bandwidth because the diode suffers from
a relatively large junction capacitance. For this reason, the feedback topology of Fig. 8.40(b) is usually
employed, where R1 is placed around the voltage amplifier A to form a “transimpedance amplifier” (TIA).
The input impedance is R1/(1 + A) and the output voltage is approximately �R1 ID1. The bandwidth
thus increases from 1/(2� R1CD1) to (1 + A)/(2� R1CD1) if A itself is a wideband amplifier.

D1 CD1 D1 CD1R1

Optical Fiber Optical Fiber

R1

(a) (b)

�AVout Vout

Transimpedance
AmpliÞer

ID ID

Figure 8.40 Detection of current produced by a photodiode by (a) resistor R1 and (b) a transimpedance amplifier.

8.2.4 Current-Current Feedback

Figure 8.41 illustrates this type of feedback.12 Here, the feedforward amplifier is characterized by a
current gain, AI , and the feedback network by a current ratio, �. In a fashion similar to the previous
derivations, the reader can easily prove that the closed-loop current gain is equal to AI /(1 + � AI ), the
input impedance is divided by 1 + � AI and the output impedance is multiplied by 1 + � AI .

12This topology is also called “shunt-series” feedback, where the first term refers to the input connection and the second to the
output connection.
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�

Feedforward
AmpliÞer

Feedback
Network

ZL

Iout

Iout

Low RinHigh Rout

IF

Ie

Iin

Figure 8.41 Current-current feedback.

M1

VDD

RD

Iin

M2

RSRF

Iout

X

Y

Figure 8.42

Figure 8.42 illustrates an example of current-current feedback. Here, since the source and drain currents
of M2 are equal (at low frequencies), resistor RS is inserted in the source network to monitor the output
current. Resistor RF plays the same role as in Fig. 8.39.

8.3 Effect of Feedback on Noise

Feedback does not improve the noise performance of circuits. Let us first consider the simple case
illustrated in Fig. 8.43(a), where the open-loop voltage amplifier A1 is characterized by only an input-
referred noise voltage and the feedback network is noiseless. We have (Vin � �Vout + Vn)A1 = Vout,
and hence

Vout = (Vin + Vn)
A1

1 + � A1
(8.54)

�

A1

VnVn

�

VinVin VoutVout A1

(a) (b)
Figure 8.43 Feedback around a noisy circuit.
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Thus, the circuit can be simplified as shown in Fig. 8.43(b), revealing that the input-referred noise of the
overall circuit is still equal to Vn . This analysis can be extended to all four feedback topologies to prove
that the input-referred noise voltage and current remain the same if the feedback network introduces no
noise. In practice, the feedback network itself may contain resistors or transistors, degrading the overall
noise performance.

It is important to note that in Fig. 8.43(a), the output of interest is the same as the quantity sensed
by the feedback network. This need not always be the case. For example, in the circuit of Fig. 8.44, the
output is provided at the drain of M1 whereas the feedback network senses the voltage at the source
of M1. In such cases, the input-referred noise of the closed-loop circuit may not be equal to that of the
open-loop circuit even if the feedback network is noiseless. As an example, let us consider the topology
of Fig. 8.44 and, for simplicity, take only the noise of RD , Vn,RD , into account. The reader can prove that
the closed-loop voltage gain is equal to �A1gm RD/[1 + (1 + A1)gm RS] if � = � = 0, and hence the
input-referred noise voltage due to RD is

��Vn,in,closed

�� =
|Vn,RD|
A1 RD

�
1

gm
+ (1 + A1)RS

�
(8.55)

VDD

RD

M1

RS

Vout
Vin A1

Figure 8.44 Noisy circuit with
feedback sensing the source voltage.

For the open-loop circuit, on the other hand, the input-referred noise is

��Vn,in,open

�� =
|Vn,RD|
A1 RD

�
1

gm
+ RS

�
(8.56)

Interestingly, as A1 � �, |Vn,in,closed| � |Vn,RD|RS/RD whereas |Vn,in,open| � 0.

8.4 Feedback Analysis Difficulties

Our study of feedback systems has made some simplifying assumptions that may not hold in all circuits. In
this section, we point out five difficulties that arise in the analysis of feedback circuits, and in subsequent
sections, we deal with some of them.

The analysis approach described previously proceeds as follows: (a) break the loop and obtain the
open-loop gain and input and output impedances, (b) determine the loop gain, � A0, and hence the closed-
loop parameters from their open-loop counterparts, and (c) use the loop gain to study properties such as
stability (Chapter 10), etc. However, this approach faces issues in some circuits.

The first difficulty relates to breaking the loop and stems from the “loading” effects imposed by
the feedback network upon the feedforward amplifier. For example, in the noninverting amplifier of
Fig. 8.45(a) and its simple implementation shown in Fig. 8.45(b), the feedback branch consisting of R1

and R2 may draw a significant signal current from the op amp, reducing its open-loop gain. Figure 8.45(c)
depicts another case, in which the open-loop gain of the forward CS stage falls if RF is not very large. In
both cases, this “output” loading results from the nonideal input impedance of the feedback network.
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Vin Vout Vout

Vout

Vout

M4

M1

M1M1

M2

M2

M3

Vin

Vin

(b)

R2

R1

R2

R1

(a)

Op Amp

VDD
VDD

RF

RS

RD1

Vin

R2

RD2

R1

VF

(c) (d)

RD

Figure 8.45 (a) Noninverting amplifier, (b) implementation using a differential pair, (c) implementation using a
CS stage, and (d) implementation using a two-stage amplifier.

As another example, consider the arrangement shown in Fig. 8.45(d), where R1 and R2 sense Vout and
return a voltage to the source of M1. Since the output impedance of the feedback network may not be
sufficiently small, we surmise that M1 is degenerated appreciably even as far as the open-loop forward
amplifier is concerned. This circuit exemplifies “input loading” due to the nonideal output impedance of
the feedback network.

The important question that we must address with regard to loading is, how do we break the loop
while properly including output and input loading effects?

� Example 8.11

Can the loop be broken at the gate of M2 in Fig. 8.45(d) without concern for loading effects?

Solution

As illustrated in Fig. 8.46, such an attempt provides the loop gain while avoiding loading issues. However, we are
also interested in the open-loop gain and the open-loop input and output impedances, which cannot be obtained from
this configuration. We must therefore develop a methodical approach to constructing the open-loop system such that
the loading effects are included.

�

The second difficulty is that some circuits cannot be clearly decomposed into a forward amplifier
and a feedback network. In the two-stage network of Fig. 8.47, it is unclear whether RD2 belongs to the
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M1

VDD

RD1

R2

M2

RD2

R1

Vt

VF

Figure 8.46

M1

VDD

RD1

RD2
RF

Vin

M2

RS

Vout

Figure 8.47 Feedback circuit without
a clearly-distinguishable feedback net-
work.

feedforward amplifier or the feedback network. We might choose the former case, reasoning that M2

needs a load so as to operate as a voltage amplifier, but such a choice seems arbitrary.
The third difficulty in feedback analysis is that some circuits do not readily map to the four canonical

topologies studied in the previous sections. For example, a simple degenerated common-source stage
does contain feedback because the source resistance measures the drain current, converts it to voltage,
and subtracts the result from the input [Fig. 8.48(a)]. However, it is not immediately clear which feedback
topology represents this arrangement because the sensed quantity, ID1, is different from the output of
interest, Vout [Fig. 8.48(b)].

M1

RD

Vin

RS

VDD

ID1
�

Vin ID1

(a) (b)

Vout

Vout

Forward
Circuit

Figure 8.48 (a) CS stage and (b) block diagram showing the output and sense ports.

The fourth difficulty is that the general feedback system analyzed thus far assumes unilateral stages,
i.e., signal propagation in only one direction around the loop. In practice, however, the loop may contain
bilateral circuits, allowing signals to flow from the output toward the input through a path other than the
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M1

VDD

RD

M2

Vout

Iin

RF

CGS2

Figure 8.49 Example of circuit with
more than one feedback mechanism.

nominal feedback path. In Fig. 8.47, for example, the signal leaks from the drain of M2 to its gate through
CG D2 at high frequencies.

The fifth difficulty arises in circuits containing multiple feedback mechanisms (loosely called “mul-
tiloop” circuits). In the topology of Fig. 8.49, for example, RF provides feedback around the circuit,
and CGS2 around M2. We can also say that the source follower itself contains degeneration and hence
feedback. We must then ask, which loop should be broken and what exactly do we mean by “loop gain”
in this case? Table 8.1 summarizes the five issues described here.

Table 8.1 Feedback analysis difficulties.

Loading Noncanonical
Topologies

Nonunilateral
Loop

Multiple Feedback
Mechanisms

Ambiguous 
Decomposition

In this chapter, we introduce three methods of feedback circuit analysis. Outlined in Table 8.2, the
first employs two-port models to analyze the four canonical topologies while including loading effects.

Table 8.2 Three methods of feedback analysis.

Two�Port Method BodeÕs Method

Computes open�loop and closed�loop

Neglects feedforward through
feedback network.

Can be applied recursively to

quantities and the loop gain.

Includes loading e�ects.

multiple feedback mechanisms.

Does not apply to noncanonical
topologies.

Computes closed�loop quantities
without breaking the loop.

Provides loop gain only if one
feedback mechanism is present .

Applies to any topology .

Computes closed�loop quantities
without breaking the loop.

Applies to any topology .

MiddlebrookÕs Method

Provides loop gain only if local
and global loops are distinguishable.

Reveals e�ect of reverse loop
gain in nonunilateral loops.
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This method proves more efficient than direct analysis of the circuit (with no knowledge of feedback)
if the loop is assumed unilateral, i.e., the forward propagation of the input signal through the feedback
network is neglected, and so is the backward propagation of the signal through the forward amplifier.
The other two methods do not attempt to break the loop and yield the closed-loop quantities exactly but
with lengthier algebra.

8.5 Effect of Loading

The problem of loading manifests itself when we need to break the feedback loop so as to identify the
open-loop system, e.g., calculate the open-loop gain and the input and output impedances. To arrive at
the proper procedure for including the feedback network terminal impedances, we first review models of
two-port networks.

8.5.1 Two-Port Network Models

The simplified amplifier and feedback network models employed in the previous sections may not suffice
in general. We must therefore resort to accurate two-port models. For example, the feedback network
placed around the feedforward amplifier can be considered a two-port circuit sensing and producing
voltages or currents. Recall from basic circuit theory that a two-port linear (and time-invariant) network
can be represented by any of the four models shown in Fig. 8.50. The “Z model” in Fig. 8.50(a) consists of
input and output impedances in series with current-dependent voltage sources, whereas the “Y model” in
Fig. 8.50(b) comprises input and output admittances in parallel with voltage-dependent current sources.
The “hybrid models” of Figs. 8.50(c) and (d) incorporate a combination of impedances and admittances
and voltage sources and current sources. Each model is described by two equations. For the Z model, we
have

V1 = Z11 I1 + Z12 I2 (8.57)

V2 = Z21 I1 + Z22 I2 (8.58)

Each Z parameter has a dimension of impedance and is obtained by leaving one port open, e.g., Z11 =
V1/I1 when I2 = 0. Similarly, for the Y model,

I1 = Y11V1 + Y12V2 (8.59)

I2 = Y21V1 + Y22V2 (8.60)

Z11

Z12I2

V1

I1 Z22

H22

Z21I1

H12V2 H21I1

I2

Y11

G11

V1

V1

V2

V2

I1

I1

Y12V2 Y22Y21V1

I1 H11 I2

V2V1

V2 G12I2

I2

I2

G21V1

G22

(c)

(a) (b)

(d)

Figure 8.50 Linear two-port network models.
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where each Y parameter is calculated by shorting one port, e.g., Y11 = I1/V1 when V2 = 0. For the H
model,

V1 = H11 I1 + H12V2 (8.61)

I2 = H21 I1 + H22V2 (8.62)

and for the G model,

I1 = G11V1 + G12 I2 (8.63)

V2 = G21V1 + G22 I2 (8.64)

Note that, for example, Y11 may not be equal to the inverse of Z11 because the two are obtained under
different conditions: the output is shorted for the former but left open for the latter.

It is instructive to compare the general two-port models with the simplified amplifier representations
that we have used in the previous sections. For example, let us consider the voltage amplifier model
in Example 8.3 vis-à-vis the Z model. We observe that (1) absent in the former, Z12 I2 represents the
amplifier’s internal feedback, e.g., due to CG D; (2) if Z12 is zero, then Z11 is equal to Zin , the input
impedance calculated with the output left open; and (3) Z22 is not necessarily equal to Zout: the former
is computed with the input port left open and the latter with the input shorted.

The most important drawback of the Z model for our purposes is that its output generator, Z21 I1, is
controlled by the input current rather than the input voltage. For a MOS circuit with the input applied to
the gate, this model becomes meaningless if the input capacitance is neglected. The H model entails the
same difficulty.

Do any of the two-port models agree with our intuitive picture of voltage amplifiers? Yes, the G model
is close. If the internal feedback, G12 I2, is neglected, then G11 (= I1/V1 with I2 = 0) represents the
inverse of the input impedance, and G22 (= V2/I2 with V1 = 0) the output impedance. The reader can
try this exercise for the other three types of amplifiers.

8.5.2 Loading in Voltage-Voltage Feedback

As mentioned before, the Z and H models fail to represent voltage amplifiers if the input current is very
small—as in a simple CS stage. We therefore choose the G model here.13 The complete equivalent circuit
is shown in Fig. 8.51(a), where the forward and feedback network parameters are denoted by upper-case
and lower-case letters, respectively. Since the input port of the feedback network is connected to the
output port of the forward amplifier, g11 and g12 Iin are tied to Vout.

It is possible to solve this circuit exactly, but we simplify the analysis by neglecting two quantities:
the amplifier’s internal feedback, G12Vout, and the “forward” propagation of the input signal through
the feedback network, g12 Iin . In other words, the loop is “unilateralized.” Figure 8.51(b) depicts the
resulting circuit with our intuitive amplifier notations (Zin , Zout, A0) added to indicate equivalencies. Let
us first directly compute the closed-loop voltage gain. Recognizing that g11 is an admittance and g22 an
impedance, we write a KVL around the input network and a KCL at the output node:

Vin = Ve + g22
Ve

Zin
+ g21Vout (8.65)

g11Vout +
Vout � A0Ve

Zout
= 0 (8.66)

13Though allowing simpler algebra, the Y model does not provide intuitive results.
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Ve G11 G12Vout VoutG21Ve

G22

g12Iin g11g21Vout

g22

Vin

Iin

Ve G11 Vout

G22

g11g21Vout

g22

Vin

Iin

ZinG21Ve A0Ve
Zout

(a)

(b)
Figure 8.51 Voltage-voltage feedback circuit with (a) feedback network represented by a G model and (b) a
simplified G model.

Finding Ve from the latter equation and substituting the result in the former, we have

Vout

Vin
=

A0

(1 +
g22

Zin
)(1 + g11 Zout) + g21 A0

(8.67)

It is desirable to express the closed-loop gain in the familiar form, Av,open/(1 + � Av,open). To this end,
we divide the numerator and the denominator by (1 + g22/Zin)(1 + g11 Zout):

Vout

Vin
=

A0

(1 +
g22

Zin
)(1 + g11 Zout)

1 + g21
A0

(1 +
g22

Zin
)(1 + g11 Zout)

(8.68)

We can thus write

Av,open =
A0

(1 +
g22

Zin
)(1 + g11 Zout)

(8.69)

� = g21 (8.70)
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Let us now interpret these results. The equivalent open-loop gain contains a factor A0, i.e., the original
amplifier’s voltage gain (before immersion in feedback). But this gain is attenuated by two factors,
namely, 1 + g22/Zin and 1 + g11 Zout. Interestingly, we can write 1 + g22/Zin = (Zin + g22)/Zin ,
concluding that A0 is multiplied by Zin/(Zin + g22), which reminds us of a voltage divider. Similarly,
1 + g11 Zout = (g�1

11 + Zout)/g�1
11 , whose inverse points to another voltage divider. The loaded forward

amplifier now emerges as shown in Fig. 8.52. Note that this model excludes the two generators G12Vout

and g12 Iin , which are generally not negligible.

A0VeVe ZinVin
Zout

Vout

g11

g22

Figure 8.52 Proper method of including loading in a voltage-voltage feedback circuit.

The reader may wonder why we go to the trouble of finding the open-loop parameters while the
closed-loop circuit in Fig. 8.51(a) can be solved exactly. The key principle here is that the rules depicted
in Fig. 8.52 afford us a quick and intuitive understanding of the circuit that would not be possible from
the direct analysis of Fig. 8.51(a). Specifically, we recognize that the finite input and output impedances
of the feedback network reduce the output voltage and the voltage seen by the input of the main amplifier,
respectively.

It is important to note that g11 and g22 in Fig. 8.50 are computed as follows:

g11 =
I1

V1

����
I 2=0

(8.71)

g22 =
V2

I2

����
V 1=0

(8.72)

Thus, as illustrated in Fig. 8.53, g11 is obtained by leaving the output of the feedback network open
whereas g22 is calculated by shorting the input of the feedback network.

A0

�

Vout

�

Vin

g11�1g22

Figure 8.53 Conceptual view of open-
ing a voltage-voltage feedback loop with
proper loading.

Another important result of the foregoing analysis is that the loop gain, i.e., the second term in the
denominator of (8.68), is simply equal to the loaded open-loop gain multiplied by g21. Thus, a separate
calculation of the loop gain is not necessary. Also, the open-loop input and output impedances obtained
from Fig. 8.52 are scaled by 1 + g21 Av,open to yield the closed-loop values. Again, we must bear in mind
that this loop gain neglects the effect of G12Vout and g12 Iin .
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� Example 8.12

For the circuit shown in Fig. 8.54(a), calculate the open-loop and closed-loop gains assuming � = � = 0.

(a) (b)

X
M1M1

RD1

RD2

X

Y
RF RFRF RSRD2RS RS

Vin Vin

Vout

VDDVDD

M2 M2

Feedback
Network

Figure 8.54

Solution

The circuit consists of two common-source stages, with RF and RS sensing the output voltage and returning a
fraction thereof to the source of M1. This transistor subtracts the returned voltage from Vin . The reader can prove
that the feedback is indeed negative. Following the procedure illustrated in Fig. 8.53, we identify RF and RS as the
feedback network and construct the open-loop circuit as shown in Fig. 8.54(b). Note that the loading effect in the
input network is obtained by shorting the right terminal of RF to ground and that in the output by leaving the left
terminal of RF open. Neglecting channel-length modulation and body effect for simplicity, we observe that M1 is
degenerated by the feedback network and

Av,open =
VY

Vin
=

�RD1

RF�RS + 1/gm1
{�gm2[RD2�(RF + RS)]} (8.73)

To compute the closed-loop gain, we first find the loop gain as g21 Av,open. Recall from (8.64) that g21 = V2/V1
with I2 = 0. For the voltage divider consisting of RF and RS , g21 = RS/(RF + RS). The closed-loop gain is simply
equal to Av,closed = Av,open/(1 + g21 Av,open).

Can we include RD2 in the feedback network rather than in the forward amplifier? Yes, we can ascribe a finite
rO to M2 and proceed while considering RD2, RF , and RS as the feedback network. The result is slightly different
from that obtained above.

The above analysis neglects the forward amplifier’s internal feedback (e.g., due to CG D2) and the propagation
of the input signal from the source of M1 and through RF to the output. (Transistor M1 also operates as a source
follower in this case.)

�

� Example 8.13

A student eager to understand the approximations leading to the circuit in Fig. 8.51(b) decides to use an H model for
the forward amplifier and obtain an exact solution. Perform this analysis and explain the results.

Solution

Illustrated in Fig. 8.55, this representation is attractive as it allows a simple series connection of voltages and
impedances at the input and a parallel connection at the output. Writing a KVL and a KCL gives

Vin = Iin H11 + H12Vout + Iin g22 + g21Vout (8.74)

H22Vout + H21 Iin + g11Vout + g12 Iin = 0 (8.75)
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Ve

g12 Iin g11g21 Vout

g22

Vin

Iin H11

H12 H21 H22IinVout Vout

Figure 8.55

Finding Iin from the latter and replacing it in the former, we have

Vout

Vin
=

�
H21 + g12

(H22 + g11)(H11 + g22)

1 � (H12 + g21)
H21 + g12

(H22 + g11)(H11 + g22)

(8.76)

We can thus define

Av,open = �
H21 + g12

(H22 + g11)(H11 + g22)
(8.77)

� = H12 + g21 (8.78)

If we assume that g12 � H21 and H12 � g21, then

Av,open =
�H21

(H22 + g11)(H11 + g22)
(8.79)

� = g21 (8.80)

and the attenuation factors H22 + g11 and H11 + g22 can be interpreted in the same manner as those in Eq. (8.69).
This approach therefore explicitly reveals the simplifying approximations, namely, g12 � H21 and H12 � g21.
Unfortunately, however, for a MOS gate input, H21 (the “current gain”) approaches infinity, making the model
difficult to use.

�

8.5.3 Loading in Current-Voltage Feedback

In this case, the feedback network appears in series with the output so as to sense the current. We
represent the forward amplifier and the feedback network by Y and Z models, respectively (Fig. 8.56),
neglecting the generators Y12Vout and z12 Iin . We wish to compute the closed-loop gain, Iout/Vin , and
therefrom determine how the open-loop parameters can be obtained in the presence of loading. Noting
that Iin = Y11Ve and I2 = Iin , we write two KVLs:

Vin = Ve + Y11Vez22 + z21 Iout (8.81)

�Ioutz11 =
Iout � Y21Ve

Y22
(8.82)
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VeVin

Iin

I2

Ve

Iout

Iout

Y22Y21Y11

z11

z21

z22

Figure 8.56 Current-voltage feedback circuit with loading.

Finding Ve from the latter and substituting in the former, we have

Iout

Vin
=

Y21

(1 + z22Y11)(1 + z11Y22)

1 + z21
Y21

(1 + z22Y11)(1 + z11Y22)

(8.83)

We can thus visualize the open-loop gain and the feedback factor as

Gm,open =
Y21

(1 + z22Y11)(1 + z11Y22)
(8.84)

� = z21 (8.85)

Note that Y21 is in fact the transconductance gain, Gm , of the original amplifier. The two attenuation
factors (1 + z22Y11)�1 and (1 + z11Y22)�1 respectively correspond to voltage division at the input and
current division at the output, allowing us to construct the loaded open-loop forward amplifier as shown in
Fig. 8.57. Since z22 = V2/I2 with I1 = 0 and z11 = V1/I1 with I2 = 0, we arrive at the conceptual picture
depicted in Fig. 8.58 for properly breaking the feedback. Note that the loop gain is equal to z21Gm,open.

Vin Ve GmVe

Iout

Y11 Y22 z11

z22
Figure 8.57 Current-voltage feedback
circuit with proper loading of feedback
network.

Vin

Gm
Iout

� �
z11z22

Figure 8.58 Conceptual view of open-
ing the loop in current-voltage feedback.
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� Example 8.14

A PMOS current source delivers a current to a load, e.g., the rechargeable battery in a cell phone [Fig. 8.59(a)]. We
wish to make this current less PVT-dependent by means of negative feedback. As shown in Fig. 8.59(b), we convert
the output current to voltage by a small series resistor, rM , compare this voltage with a reference by means of an
amplifier, and return the result to the gate of M1. Determine the output current and the impedance seen by the load.

(a) (b) (c) (d)

Load

Feedback
Network

M1

VDD

rM

Vb

Transconductance
AmpliÞer

A1X

Y
Load

M1

VDD

rM
Vb

A1

Iout

Load

M1

VDD
Vb

Iout

M1

VDD

rM

Load

Vb

rM

Iout

Zout

A1

Figure 8.59

Solution

We view Vb as the input voltage and recognize that rM sustains a voltage approximately equal to Vb if the loop gain
is high. That is, Iout � Vb/rM . But let us analyze this arrangement more accurately. Redrawing the circuit as in
Fig. 8.59(c), we identify A1 and M1 as the forward transconductance amplifier and rM as the feedback network. The
procedure depicted in Fig. 8.58 leads to the open-loop topology of Fig. 8.59(d), and hence

Gm,open =
Iout

Vb
(8.86)

� A1gm (8.87)

where the current flowing through rO is neglected. The feedback factor � = z21 = rM . Thus, the closed-loop output
current is given by

Iout =
A1gm

1 + A1gmrM
Vb (8.88)

In the open-loop configuration, the load sees an impedance of rO + rM . Since feedback regulates the output
current, the impedance seen by the load rises by a factor of 1 + A1gmrM , reaching Zout = (1 + A1gmrM )(rO + rM ).

A critical point emerging from this example is that the output impedance of a current-voltage feedback topology
must be obtained by breaking the output current path and measuring the impedance between the resulting two nodes
[e.g., X and Y in Fig. 8.59(b)]. In the above calculations, the “impedance seen by the load” is in fact computed by
replacing the load with a voltage source and measuring the current through it.

�

8.5.4 Loading in Voltage-Current Feedback

In this configuration, the forward (transimpedance) amplifier generates an output voltage in response to
the input current and can thus be represented by a Z model. Sensing the output voltage and returning a
proportional current, the feedback network lends itself to a Y model. The equivalent circuit is shown in
Fig. 8.60, where the effect of Z12 and y12 is neglected. As in previous cases, we compute the closed-loop
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Z11

Ie

Z22Ie

Vout

Iin VoutZ21

y11y21y22

Figure 8.60 Voltage-current feedback circuit with loading.

gain, Vout/Iin , by writing two equations:

Iin = Ie + Ie Z11 y22 + y21Vout (8.89)

y11Vout +
Vout � Z21 Ie

Z22
= 0 (8.90)

Eliminating Ie, we obtain

Vout

Iin
=

Z21

(1 + y22 Z11)(1 + y11 Z22)

1 + y21
Z21

(1 + y22 Z11)(1 + y11 Z22)

(8.91)

Thus, the equivalent open-loop gain and feedback factor are given by

R0,open =
Z21

(1 + y22 Z11)(1 + y11 Z22)
(8.92)

� = y21 (8.93)

Interpreting the attenuation factors in R0,open as current division at the input and voltage division at the
output, we arrive at the conceptual view in Fig. 8.61. The loop gain is given by y21 R0,open.

R0,open

Vout

Iin

Y22�1 Y11�1

� �

Figure 8.61 Conceptual view of open-
ing the loop in voltage-current feedback.

� Example 8.15

Figure 8.62(a) shows a transimpedance amplifier topology commonly used in optical communication systems.
Determine the circuit’s gain and input and output impedances if � = 0.
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RF

Vout
Vout

(a) (b)

Iin

Iin Iin
M1 M1

VDD

RD

Vout

VDD

RDRF RF RF

Figure 8.62

Solution

We can view the feedback resistor, RF , as a network that senses the output voltage, converts it to current, and returns
the result to the input. Following Figure 8.61, we construct the loaded open-loop amplifier as shown in Fig. 8.62(b),
and express the open-loop gain as

R0,open = �RF gm(RF ||RD) (8.94)

The feedback factor, y21 (= I2/V1 with V2 = 0) is equal to �1/RF . It follows that the closed-loop gain is equal to

Vout

Iin
=

�RF gm(RF ||RD)
1 + gm(RF ||RD)

(8.95)

which, if gm(RF ||RD) � 1, reduces to �RF , an expected result (why?). The closed-loop input impedance is

Rin =
RF

1 + gm(RF ||RD)
(8.96)

which is approximately equal to (1 + RF/RD)(1/gm) if the above condition holds. Similarly, the closed-loop output
impedance is given by

Rout =
RF ||RD

1 + gm(RF ||RD)
(8.97)

which amounts to 1/gm if gm(RF ||RD) � 1. Note that if � > 0, we can simply replace RD with RD ||rO in all of
the foregoing equations.

This transconductance amplifier is simple enough that we can solve it directly, and the reader is encouraged to do so.
But we can readily identify two inconsistencies. First, breaking the loop at the gate of M1 yields a loop gain of gm RD

rather than gm(RD ||RF ). Second, the closed-loop output impedance [with Iin set to zero in Fig. 8.62(a)] is simply
equal to RD ||(1/gm) = RD/(1 + gm RD). The value derived above can be expressed as RD/(1 + gm RD + RD/RF ),
revealing the extra term RD/RF . These errors arise from the approximate nature of the model.

�

� Example 8.16

Calculate the voltage gain of the circuit shown in Fig. 8.63(a).

Solution

What type of feedback is used in this circuit? Resistor RF senses the output voltage and returns a proportional current
to node X . Thus, the feedback can be considered as the voltage-current type. However, in the general representation
of Fig. 8.60(a), the input signal is a current quantity, whereas in this example, it is a voltage quantity. For this reason,
we replace Vin and RS by a Norton equivalent [Fig. 8.63(b)] and view RS as the input resistance of the main amplifier.
Opening the loop according to Fig. 8.61 and neglecting channel-length modulation, we write the open-loop gain
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(a) (b)

M1M1M1

VDD

RDRF

VDD

RDRF

VDD

RDRF
VoutVoutVout

IN RSINVin RS

RS
RF

(c)

X

Figure 8.63

from Fig. 8.63(c) as

R0,open =
Vout

IN

����
open

(8.98)

= �(RS�RF )gm(RF�RD) (8.99)

where IN = Vin/RS . We also calculate the loop gain as y21 R0,open. Thus, the circuit of Fig. 8.63(a) exhibits a voltage
gain of

Vout

Vin
=

1

RS
•

�(RS�RF )gm(RF�RD)
1 + gm(RF�RD)RS/(RS + RF )

(8.100)

Interestingly, if RF is replaced by a capacitor, this analysis does not yield a zero in the transfer function because
we have neglected the reverse transmission of the feedback network (from the output of the feedback network to its
input). The input and output impedances of the circuit are also interesting to calculate. This is left as an exercise for
the reader. The reader is also encouraged to apply this solution to the circuit of Fig. 8.3(b).

�

8.5.5 Loading in Current-Current Feedback

The forward amplifier in this case generates an output current in response to the input current and can be
represented by an H model, and so can the feedback network. Shown in Fig. 8.64 is the equivalent circuit
with the H12 and h12 generators neglected. We write

Iin = Ie H11h22 + h21 Iout + Ie (8.101)

Iout = �Iouth11 H22 + H21 Ie (8.102)

Ie

H21 H22IeH11

h11h21 Iouth22

Iin

Iout

Figure 8.64 Equivalent circuit for current-current feedback.
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and hence

Iout

Iin
=

H21

(1 + h22 H11)(1 + h11 H22)

1 + h21
H21

(1 + h22 H11)(1 + h11 H22)

(8.103)

As in previous topologies, we define the equivalent open-loop current gain and the feedback factor as

AI,open =
H21

(1 + h22 H11)(1 + h11 H22)
(8.104)

� = h21 (8.105)

The conceptual view of the broken loop is depicted in Fig. 8.65, and the loop gain is equal to h21 AI,open.

Iout
AI

�

Iin

h11h22�1

�
Figure 8.65 Conceptual view of load-
ing in current-current feedback.

� Example 8.17

Calculate the open-loop and closed-loop gains of the circuit shown in Fig. 8.66(a). Assume that � = � = 0.

M1 M1

VDD

RD RD

Iin Iin

M2

VDD

M2

RS

(a) (b)

RF RS RSRF RF

Iout Iout

X

Y Y

X

Figure 8.66

Solution

In this circuit, RS and RF sense the output current and return a fraction thereof to the input. Breaking the loop
according to Fig. 8.65, we arrive at the circuit in Fig. 8.66(b), where we have

AI,open = �(RF + RS)gm1 RD
1

RS�RF + 1/gm2
(8.106)

The loop gain is given by h21 AI,open, where, from (8.62), h21 = I2/I1 with V2 = 0. For the feedback network
consisting of RS and RF , we have h21 = �RS/(RS + RF ). The closed-loop gain equals AI,open/(1 + h21 AI,open).�
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8.5.6 Summary of Loading Effects

The results of our study of loading are summarized in Fig. 8.67. The analysis is carried out in three
steps: (1) open the loop with proper loading and calculate the open-loop gain, AO L , and the open-loop
input and output impedances; (2) determine the feedback ratio, �, and hence the loop gain, � AO L ; and
(3) calculate the closed-loop gain and input and output impedances by scaling the open-loop values by a
factor of 1 + � AO L . Note that in the equations defining �, the subscripts 1 and 2 refer to the input and
output ports of the feedback network, respectively.

In this chapter, we have described two methods of obtaining the loop gain: (1) by breaking the loop
at an arbitrary point, as shown in Fig. 8.5, and (2) by calculating AO L and �, as illustrated in Fig. 8.67.
The two methods may yield slightly different results due to the issues outlined in Table 8.1.

A0

�

Vout

Vout

�

Vin

Iout
AI

�

R0

Iin Iin

�� �

Vin
Iout

�

Gm

�

V2
V1

� =
I2 = 0

I2
I1

� =
V2 = 0

V2
I1

� =
I2 = 0

I2
V1

� =
V2 = 0

(a) (b)

(c) (d)
Figure 8.67 Summary of loading effects.

8.6 Bode’s Analysis of Feedback Circuits

Bode’s approach provides a rigorous solution for a circuit’s closed-loop parameters (whether it includes
feedback or not), but it does not tell us much about the loop gain in the presence of multiple feedback
mechanisms. The analysis presented in this section was originally described by Bode in his 1945 classic
textbook Network Analysis and Feedback Network Design. Since this approach is somewhat less intuitive,
we encourage the reader to be patient and read this section in several sittings.

8.6.1 Observations

Before delving into Bode’s analysis, we should make two simple, yet new observations with regard to
circuit equations.

First, consider the general circuit shown in Fig. 8.68(a), where one transistor is explicitly shown in its
ideal form. We know from our small-signal gain and transfer function analyses in previous chapters that
Vout can eventually be expressed as AvVin or H(s)Vin . But, what happens if we denote the dependent
current source by I1 and do not make the substitution I1 = gm V1 yet? Then, Vout is obtained as a function
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gmV1V1 Vout

V1
rO RD

RS

Vin
gm V1 I1

gmV1V1Vin

V1

(c)(a) (b)

Vout

Vin

Figure 8.68 (a) Circuit containing a dependent source, (b) circuit example, and (c) V1 as a signal of interest.

of both Vin and I1:

Vout = AVin + B I1 (8.107)

As an example, in the degenerated common-source stage of Fig. 8.68(b), we note that the current flowing
upward through RD (and downward through RS) is equal to �Vout/RD , and hence the voltage drop across
rO is given by (�Vout/RD � I1)rO . A KVL around the output network thus yields

Vout =
�

�
Vout

RD
� I1

�
rO �

Vout

RD
RS (8.108)

and

Vout =
�rO

1 +
rO + RS

RD

I1 (8.109)

In this case, A = 0 and B = �rO RD/(RD + rO + RS).
Second, let us return to the general circuit in Fig. 8.68(a) and consider V1 as the signal of interest, i.e.,

we wish to compute V1 as a function of Vin in the form of AvVin or H(s)Vin . This is always possible by
pretending that V1 is the “output,” as conceptually illustrated in Fig. 8.68(c). In a manner similar to Eq.
(8.107), V1 can be written as

V1 = CVin + DI1 (8.110)

if we temporarily forget that I1 = gm V1. In Fig. 8.68(b), for example, we express the current though RS

(and RD) as (Vin � V1)RS , subtract this current from I1, and let the result flow through rO . A KVL around
the output network gives

Vin � V1 �
�

I1 �
Vin � V1

RS

�
rO = �

Vin � V1

RS
RD (8.111)

and hence

V1 = Vin �
rO RS

RD + rO + RS
I1 (8.112)

That is, C = 1 and D = �rO RS/(RD + rO + RS).
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In summary, in a given circuit containing at least one transistor (whether there is feedback or not), we
can eventually reach two equations that express Vout and V1 in terms of Vin and I1. To obtain Vout/Vin ,
we solve the two equations while applying the knowledge that I1 is in fact equal to gm V1.

The foregoing developments and, in particular, Eqs. (8.107) and (8.110) appear unnecessarily tedious.
After all, we can directly solve the circuit in Fig. 8.68(b) with less algebra. However, the interpretation
of the coefficients A, B, C , and D affords a simple and elegant approach to feedback analysis.

8.6.2 Interpretation of Coefficients

We now focus on Eqs. (8.107) and (8.110) and ask whether the A–D coefficients can be directly calculated
for a given circuit. We begin with A:

A =
Vout

Vin
with I1 = 0 (8.113)

This result implies that A is obtained as the voltage gain of the circuit if the dependent current source is set
to zero, which can be readily accomplished by “disabling” the transistor, i.e., by forcing the transistor’s
gm to zero. We can consider Vout in this case as the “feedthrough” of the input signal (in the absence
of the ideal transistor) [Fig. 8.69(a)]. In the CS example, Vout = 0 if I1 = 0 because no current flows
through RS , rO , and RD . That is, A = 0.

I1

I1

V1 VoutVin

V1
rO RD

RS

Vin

V1

(a)

I1

Vout

V1 Vout

V1
rO RD

RS

I1
I1

Vout

(b)

V1

V1
rO RD

RS

Vin I1

V1

V1

V1
rO RD

RS

I1
I1

V1 V1

(c) (d)

Vin

Figure 8.69 Setups for the calculation of (a) A, (b) B, (c) C , and (d) D.

As for the B coefficient in (8.107), we have

B =
Vout

I1
with Vin = 0 (8.114)

That is, we set the input to zero and compute Vout as a result of I1 [Fig. 8.69(b)], pretending that I1 is an
independent source.14 In the CS example,

�
�

Vout

RD
� I1

�
rO �

Vout

RD
RS = Vout (8.115)

14If I1 is kept as a dependent source, the circuit has no external stimulus and, therefore, generates no voltage or current.
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and hence

Vout =
�rO RD

RD + rO + RS
I1 (8.116)

Thus, B = �rO RD/(RD + rO + RS).
The C coefficient in (8.110) is interpreted as

C =
V1

Vin
with I1 = 0 (8.117)

i.e., the transfer function from the input to V1 with the transistor’s gm set to zero [Fig. 8.69(c)]. In the CS
circuit, no current flows through RS under this condition, yielding V1 = Vin and C = 1.

Finally, the D coefficient is obtained as

D =
V1

I1
with Vin = 0 (8.118)

which, as illustrated in Fig. 8.69(d), represents the transfer function from I1 to V1 with the input at zero.
In the CS stage, the current flowing through RS (and RD) under this condition is equal to �V1/RS ,
producing a voltage drop of (�V1/RS � I1)rO across rO . A KVL around the output network yields

�V1 �
�

V1

RS
+ I1

�
rO =

V1

RS
RD (8.119)

We therefore have

V1 = �
rO RS

RD + rO + RS
I1 (8.120)

and hence D = �rO RS/(RD + rO + RS).
In summary, the A–D coefficients are computed as shown in Fig. 8.70: (1) we disable the transistor

by setting its gm to zero and obtain A and C as the feedthroughs from Vin to Vout and to V1, respectively,
and (2) we set the input to zero and calculate B and D as the gain from I1 to Vout and to V1, respectively.
From another perspective, the former step finds the responses to Vin with gm = 0, and the latter, to I1

with Vin = 0. We can even say that the circuit is excited each time by one input, either Vin or I1, and
generates two outputs of interest, Vout and V1. The reader may still not see the reason for these derivations,
but patience is a virtue!

V1

V1Vin I1 V1

V1

I1Vout Vout

C =
V1
Vin

D =
V1
I1

A =
Vout
Vin

B =
Vout

I1

(a) (b)
Figure 8.70 Summary of computations for A–D.
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� Example 8.18

Compute the A–D coefficients for the circuit shown in Fig. 8.71(a).

M1

VDD

RDRF
Vout

(a)

Vin Vin

RS

VDD

RDRF
VoutRS

VDD

RDRF
VoutRS

V1 V1 I1 V1 I1

(c)(b)
Figure 8.71

Solution

Following the procedures illustrated in Fig. 8.70, we first set I1 (i.e., gm ) to zero and determine the feedthrough
components Vout/Vin and V1/Vin . From Fig. 8.71(b), we have

A =
Vout

Vin
(8.121)

=
RD

RD + RS + RF
(8.122)

and

C =
V1

Vin
(8.123)

=
RF + RD

RD + RS + RF
(8.124)

Next, we set Vin to zero and calculate the transfer functions from I1 to Vout and to V1 [Fig. 8.71(c)]:

B =
Vout

I1
(8.125)

= �RD ||(RS + RF ) (8.126)

= �
RD(RS + RF )
RD + RS + RF

(8.127)

and

D =
V1

I1
(8.128)

=
RS

RS + RF

Vout

I1
(8.129)

= �
RS RD

RD + RS + RF
(8.130)

�

For our subsequent studies, we must refresh our memory about loop gain calculations.
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� Example 8.19

Determine the exact loop gain for the circuit of Fig. 8.71(a).

Solution

We prefer to break the loop at a port that does not entail loading effects. Let us do so at the gate of M1, as depicted
in Fig. 8.72(a). Applying a test voltage, Vt , and calculating the feedback voltage, VF , we have

Loop Gain = �
VF

Vt
(8.131)

= gm [RD ||(RS + RF )]
RS

RS + RF
(8.132)

=
gm RS RD

RD + RS + RF
(8.133)

Note that the loop gain and the D coefficient in (8.130) differ by only a factor of �gm . We return to this point below.

(a)

VDD

RDRF
Vout

VDD

RDRF
Vout

RS

V1

(b)

Vt

VF
RS

VF

gm V1 It

X

Figure 8.72

Alternatively, we can break the loop at the top terminal of the dependent current source. Illustrated in Fig. 8.72(b),
the idea is to draw a test current, It , from node X and measure the resulting feedback voltage, VF , recognizing that
the ratio �VF/It must be multiplied by gm to arrive at the loop gain:

VF = �It [RD ||(RS + RF )]
RS

RS + RF
(8.134)

and thus

Loop Gain = �
gm VF

It
(8.135)

=
gm RS RD

RD + RS + RF
(8.136)

We see a similarity between the calculation of D in Fig. 8.69(d) and the calculation of the loop gain in Fig. 8.72(b).
In both cases, we set the input to zero, apply I1 or It , and measure the controlling voltage, V1. We therefore surmise
that D and the loop gain may be related. We will keep the reader in suspense for now.

�

8.6.3 Bode’s Analysis

We have seen in the previous section that the A–D coefficients can be computed relatively easily. We
now express Vout/Vin in terms of these coefficients. Since

Vout = AVin + B I1 (8.137)

V1 = CVin + DI1 (8.138)
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and, in the actual circuit, I1 = gm V1, we have

V1 =
C

1 � gm D
Vin (8.139)

The closed-loop gain is therefore equal to

Vout

Vin
= A +

gm BC

1 � gm D
(8.140)

As expected, the first term represents the input-output feedthrough, manifesting itself when gm = 0. We
can also write

Vout

Vin
=

A + gm(BC � AD)
1 � gm D

(8.141)

In contrast to direct analysis of the closed-loop circuit, Bode’s method decomposes the computation into
several simpler steps. While our formulation has assumed a dependent current source, the results are
applicable to dependent voltage sources as well. Let us solve some circuits using Bode’s approach.

� Example 8.20

Determine the voltage gain of the degenerated CS stage shown in Fig. 8.69.

Solution

Utilizing the results obtained for Fig. 8.69 and noting that A = 0 and C = 1, we have

Vout

Vin
=

gm
�rO RD

RD + rO + RS

1 + gm
rO RS

RD + rO + RS

(8.142)

=
�gmrO RD

RD + rO + (1 + gmrO )RS
(8.143)

The reader is encouraged to repeat this analysis in the presence of body effect.
�

� Example 8.21

Determine the voltage gain of the feedback amplifier shown in Fig. 8.71(a) without breaking the loop.

Solution

With the aid of the results obtained in Example 8.18, we obtain

Vout

Vin
=

RD

RD + RS + RF
+

�gm
RD(RS + RF )(RF + RD)

(RD + RS + RF )2

1 +
gm RS RD

RD + RS + RF

(8.144)

=
RD

RD + RS + RF
+

�gm RD(RS + RF )(RF + RD)
(RD + RS + RF + gm RS RD)(RD + RS + RF )

(8.145)

Note that this result is exact, with the first term representing the circuit’s direct feedthrough in the absence of transistor
action (gm = 0).
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Under what condition does the above loop gain reduce to the familiar, ideal form �RF/RS? We may surmise that
RD must be small enough not to “feel” the loading effect of RF . But the condition RD � RF does not yield a voltage
gain of �RF/RS . After all, this ideal value also presumes a high open-loop gain. Thus, we need two conditions,
namely, RD � RF and gm RD � 1 for the above result to reduce to �RF/RS .

�

Let us make a useful observation. If A = 0, Eq. (8.140) yields Vout/Vin = gm BC/(1 � gm D), a
result resembling the generic feedback equation A0/(1 + � A0). We therefore loosely call gm BC the
“open-loop” gain.

Return Ratio and Loop Gain As mentioned in Example 8.19, the quantity D (= V1/I1 with Vin = 0)
and the loop gain appear to be related. In fact, the closed-loop gain expression in Eq. (8.141) may suggest
that 1�gm D = 1+ loop gain, and hence loop gain = �gm D. This is not a coincidence: in both cases, we
set the main input to zero, break the loop by replacing the dependent source with an independent source,
and compute the returned quantity.

In his original treatment of feedback, Bode introduces the term “return ratio” (RR) to refer to �gm D
and ascribes it to a given dependent source in the circuit [1]. Thus, the return ratio, obtained by injecting
a voltage in place of VGS or a current in place of ID , appears to be the same as the true loop gain15 even
if the loop cannot be completely broken. In fact, the return ratio is equal to the loop gain if the circuit
contains only one feedback mechanism and the loop traverses the transistor of interest. We elaborate on
this point later.

� Example 8.22

Determine the voltage gain of the source follower shown in Fig. 8.73(a) using Bode’s method. Assume that � = � = 0.

Vin

Vin

RS RS

VDD

Vout
Vout

M1 V1 V1gm

(a) (b) Figure 8.73

Solution

Figure 8.73(b) depicts the small-signal model. To compute the A and C coefficients, Fig. 8.70 suggests setting gm

to zero, which results in

A =
Vout

Vin
= 0 (8.146)

C =
V1

Vin
= 1 (8.147)

For the B and and D coefficients, we set Vin to zero and apply a current source I1 in lieu of gm V1:

B =
Vout

I1
= RS (8.148)

D =
V1

I1
= �RS (8.149)

15By the true loop gain, we mean one that is obtained without any approximations, e.g., without neglecting loading or the
propagation of the input signal through the feedback network to the main output.
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From (8.140) or (8.141), we have

Vout

Vin
=

gm RS

1 + gm RS
(8.150)

The return ratio associated with the dependent source is equal to �gm D = gm RS .
A peculiar result occurs here if RS approaches an ideal current source: the return ratio, gm RS , goes to infinity,

and so does B. Since (8.140) was obtained by dividing by B and D, in general it may give an incorrect value if B or
D is infinite. In the case of the source follower, however, (8.140) produces a correct result.

�

� Example 8.23

Figure 8.74(a) shows a circuit in which one transistor, M1, resides outside the feedback loop. Using Bode’s method,
compute Vout/Vin .

Vin

RS

VDD

M1

M2

RD

Vout

V1

Figure 8.74

Solution

We first obtain A and C by setting gm1 to zero:

A =
Vout

Vin
= 0 (8.151)

C =
V1

Vin
=

gm2 RS

1 + gm2 RS
(8.152)

Next, we set Vin to zero and apply I1 in lieu of M1:

B =
Vout

I1
= �RD (8.153)

D =
V1

I1
= 0 (8.154)

As expected, the return ratio for M1 is zero. We thus have

Vout

Vin
= gm1(�RD

gm2 RS

1 + gm2 RS
) (8.155)

Alternatively, the gain can be obtained by treating M2 as the dependent source of interest. The return ratio for M2 is
the same as that found for the source follower in the above example. Even though the circuit contains one feedback
mechanism, the two return rations are unequal because the feedback loop does not traverse M1.

�

� Example 8.24

Calculate the closed-loop gain of the circuit shown in Fig. 8.75(a). Assume that � = � = 0.
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M2 M2

VDD

RD RD

M1

RS RS

Vout Vout

Iin

V1 V1 I1

(a) (b)
Figure 8.75

Solution

We calculate the A–D coefficients with the aid of the conceptual diagram in Fig. 8.70. We can select either transistor
as the device of interest. Setting gm1 to zero, we obtain

A =
Vout

Iin
with gm1 = 0 (8.156)

= RS (8.157)

because, in the absence of M1, Iin simply flows through RS , producing a feedthrough component at the output. For
C , we note that V1 = Iin RS(�gm2 RD) � Iin RS , and hence

C =
V1

Iin
with gm1 = 0 (8.158)

= �(1 + gm2 RD)RS (8.159)

We now set Iin to zero and inject an independent current source in place of M1, as shown in Fig. 8.75(b). Since
Vout = I1 RS ,

B =
Vout

I1
with Iin = 0 (8.160)

= RS (8.161)

Also, V1 = I1 RS(�gm2 RD) � I1 RS = �I1 RS(1 + gm2 RD) and

D =
V1

I1
with Iin = 0 (8.162)

= �RS(1 + gm2 RD) (8.163)

Equation (8.140) thus gives

Vout

Iin
= A +

gm1 BC

1 � gm1 D
(8.164)

= RS �
gm1(1 + gm2 RD)R2

S

1 + gm1 RS(1 + gm2 RD)
(8.165)

=
RS

1 + gm1 RS(1 + gm2 RD)
(8.166)

The reader is encouraged to repeat the derivation with M2 as the dependent source of interest.
�
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8.6.4 Blackman’s Impedance Theorem

Continuing our effort to compute the closed-loop parameters of a feedback system without breaking the
loop, we now study Blackman’s theorem, which determines the impedance seen at any port of a general
circuit. This theorem can be proved using Bode’s approach.

Consider the general circuit depicted in Fig. 8.76(a), where the impedance between nodes P and Q is
of interest. As in Bode’s analysis, we have explicitly shown one of the transistors by its ideal model, the
voltage-dependent current source I1. Let us pretend that Iin is the input signal and Vin the output signal
so that we can utilize Bode’s results:

Vin = AIin + B I1 (8.167)

V1 = C Iin + DI1 (8.168)

It follows that

Zin =
Vin

Iin
= A +

gm BC

1 � gm D
(8.169)

V1 I1 V1 I1 V1 I1

(a) (b)

VinIin

P

Q

P

Q

Open

TOC

P

Q

TSC

Short

(c)
Figure 8.76 (a) Arrangement for calculating a port impedance, (b) calculation of Toc, and (c) calculation of Tsc.

where gm denotes the transconductance of the transistor modeled by I1 in Fig. 8.76(a). We now manipulate
this result in three steps so as to obtain a more intuitive expression. First, we recognize from (8.168) that,
if Iin = 0, then V1/I1 = D. We call �gm D the “open-circuit loop gain” (because the port of interest
is left open) and denote it by Toc [Fig. 8.76(b)]. Second, we note from (8.167) that, if Vin = 0, then
Iin = (�B/A)I1, and hence, from (8.168),

V1

I1
=

AD � BC

A
(8.170)

We call �gm times this quantity the “short-circuit” loop gain (because Vin = 0) and denote it by Tsc

[Fig. 8.76(c)]. Note that the circuit topology changes in these two cases. Both Toc and Tsc can be viewed
as return ratios associated with I1 for the two circuit topologies. In summary,

Toc = �gm
V1

I1
|I in=0 (8.171)

Tsc = �gm
V1

I1
|V in=0 (8.172)
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In the third step, we use Toc and Tsc to rewrite Eq. (8.169) as

Zin =
Vin

Iin
=

A � gm(BC � AD)
1 � gm D

(8.173)

= A
1 + Tsc

1 + Toc
(8.174)

Originally derived by Blackman [2], this result lends itself to a great deal of intuition if we recall that
A = Vin/Iin with I1 = 0, i.e., when the transistor under consideration is disabled. We roughly view A as
the “open-loop” impedance because it is obtained without the transistor in the feedback loop. In addition,
we observe that (1) if |Tsc| � 1, then Zin � A/(1 + Toc); that is, the open-loop impedance is divided
by 1 + Toc; and (2) if |Toc| � 1, then Zin � A(1 + Tsc); i.e., the open-loop impedance is multiplied
by 1 + Tsc. Reminiscent of closed-loop input and output impedances derived in previous sections, these
two cases nonetheless reveal that, in general, the closed-loop impedance cannot be expressed as Zin

multiplied or divided by (1 + the loop gain).

� Example 8.25

Determine the output impedance of a degenerated CS stage [Fig. 8.77(a)]. Assume that � = 0.

M1

RS RS RS

rO rO

(a)

Rout

I1V1 rOI1V1

(c)(b)
Figure 8.77

Solution

We must compute three quantities. First, with the transistor disabled,

A = rO + RS (8.175)

Second, with the port of interest left open [Fig. 8.77(b)], we have

Toc = �gm
V1

I1
(8.176)

= 0 (8.177)

because no current flows through RS . Third, with the port of interest shorted [Fig. 8.77(c)], we obtain

Tsc = �gm
V1

I1
(8.178)

= +gm(RS ||rO ) (8.179)

It follows from Eq. (8.174) that

Zout = (rO + RS)[1 + gm(RS ||rO )] (8.180)

= (1 + gmrO )RS + rO (8.181)

The reader is encouraged to repeat the analysis while including body effect.
�
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� Example 8.26

Compute the output impedance of the circuit shown in Fig. 8.78(a). Assume that � = 0.

(a)

rO rOI1V1 I1V1

(c)(b)

M1

RS RS RS

A1

A1 A1

Rout

Figure 8.78

Solution

The difficulty with this circuit is that it does not map into one of the four canonical topologies: amplifier A1 senses the
voltage at the source of M1 whereas the output is taken at the drain. Fortunately, Blackman’s theorem is impervious
to such departures. Again, we proceed in three steps. With the transistor disabled,

A = rO + RS (8.182)

If the output is left open [Fig. 8.78(b)], no current flows through RS , and hence Toc = 0. With the output shorted
[Fig. 8.78(c)],

Tsc = gm(RS ||rO )A1 (8.183)

Thus,

Zout = (rO + RS)[1 + gm(RS ||rO )A1] (8.184)

= rO + RS + gmrO RS A1 (8.185)

= (1 + gmrO )A1 RS + rO (8.186)

To the first order, the factor 1 + gmrO is “boosted” by another factor of A1.
�

� Example 8.27

Determine the output impedance of the source follower shown in Fig. 8.79(a). Assume that � = � = 0.

VDD

M1

Vout

Vin

I1V1 I1V1

(c)(a) (b)
Figure 8.79
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Solution

With gm = 0, the output impedance, and hence A, are infinity. The two loop gains are obtained from Figs. 8.79(b)
and (c) as Tsc = 0 and Toc = �, respectively. These difficulties arise because the proof of Blackman’s theorem
divides by A, tacitly assuming that A < �. One can avoid this situation by placing a resistor in parallel with the
port of interest and letting it approach infinity in the end result. This is left as an exercise for the reader.

�

� Example 8.28

Using Blackman’s theorem, determine the input impedance of the circuit shown in Fig. 8.37(a). Assume that � =
� = 0.

Solution

We set gm2 to zero to compute A, observing that A = �! Since the derivation of Blackman’s expression relies
on dividing by A, we know that A = � may invalidate the result. This is one drawback of Blackman’s approach.
The situation becomes even more interesting if we attempt to compute Toc. As depicted in Fig. 8.80, we apply an
independent small-signal circuit source I1 and seek V1. The voltage at the gate of M1 is equal to �I1 RDC1/(C1+C2),
yielding a drain current of �gm1 I1 RDC1/(C1 + C2). This current must be equal to I1, and hence

�
1 + gm1 RD

C1

C1 + C2

�
I1 = 0 (8.187)

This relation cannot hold because gm1 RDC1/(C1 + C2) is not necessarily zero and I1 itself is an external stimulus
and nonzero. This nonsensical result arises because two ideal current sources, namely, I1 and M1, are placed in
series. Similarly, V1 cannot be calculated because the drain voltage of M1 is not defined.

RD

C1

C2

VDD

M1

I1V1

P

Figure 8.80

�

� Example 8.29

A student wrestling with the above example decides to attach a resistance from the drain of M1 to ground and let its
value go to infinity in the final result. Does this rescue Blackman’s theorem?

Solution

As shown in Fig. 8.81, A = RT . Moreover, we can now compute Toc by writing a KCL at the drain of M1:

�gm1 I1 RD
C1

C1 + C2
�

V1

RT
= I1 (8.188)

and hence

Toc = �gm2
V1

I1
= gm2

�
1 + gm1 RD

C1

C1 + C2

�
RT (8.189)
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RD

C1

C2

VDD

M1

I1V1

P RT

Figure 8.81

This result suggests that Toc � � as RT � �. Since Tsc = 0 (why?), we have

Rin = A
1 + Tsc

1 + Toc
(8.190)

= RT
1

1 + gm2(1 + gm1 RD
C1

C1 + C2
)RT

(8.191)

If RT � �, Rin approaches 1/gm2 divided by the loop gain.
It is peculiar that the return ratio of M2 is not equal to that of M1 even though the circuit appears to have only

one feedback mechanism. But looks can be deceiving: M2 is degenerated by RT , experiencing local feedback. We
can say M2 sees infinite degeneration if RT = �, and hence has an infinite return ratio.

�

� Example 8.30

Using Blackman’s theorem, determine Rin in Fig. 8.82(a). Assume that � = 0.

M1

RD

rO rO

VDD

RD

VDD

Vb

Rin

I1V1

(a) (b)
Figure 8.82

Solution

With gm = 0, we have A = RD + rO . If the input port is shorted, no feedback is present and Tsc = 0. With the input
port open [Fig. 8.82(b)], we observe that no current flows through RD , I1 generates a voltage of �I1rO across rO ,
and V1 = �I1rO . That is, Toc = gmrO . It follows that

Rin =
RD + rO

1 + gmrO
(8.192)

as expected.
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It is interesting to note that Toc > 0 even though the feedback through rO is positive. This occurs because the
circuit contains two feedback mechanisms, one through rO and another due to degeneration of M1 by an infinite
source resistance. In such a case, the sign of Toc does not reveal the polarity of feedback. This point becomes clearer
in the next example.

�

� Example 8.31

Determine the return ratios of M1 and M2 in Fig. 8.83(a), assuming � = � = 0.

M1

VDD

M2
M2

M1
V2 I2Vin

Vout

RD RD

RS RS

RD

RS

I1V1

(c)(a) (b)
Figure 8.83

Solution

In this circuit, RS degenerates both M1 and M2, and M2 returns a voltage to the source of M1 with positive
feedback. Injecting a current as shown in Fig. 8.83(b), we note that RS carries a current of �V1/RS , leading to
ID2 = �I1 � V1/RS , and hence VGS2 = (�I1 � V1/RS)/gm2. Adding the voltage drops across RD and RS to VGS2,
we have

I1 RD �
I1

gm2
�

V1

gm2 RS
� V1 = 0 (8.193)

and

R R1 = �gm1
V1

I1
(8.194)

=
1 � gm2 RD

1 + gm2 RS
gm1 RS (8.195)

For R R2, the arrangement in Fig. 8.83(c) yields ID1 = �I2 RS/(RS + 1/gm1) = �I2gm1 RS/(1 + gm1 RS). Adding
the voltage drops across RD and RS to V2, we obtain

�
I2gm1 RS

1 + gm1 RS
RD + V2 + I2

1/gm1

RS + 1/gm1
RS = 0 (8.196)

It follows that

R R2 =
1 � gm1 RD

1 + gm1 RS
gm2 RS (8.197)

The return ratios are unequal and can assume positive or negative values independently.
�
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8.7 Middlebrook’s Method

Middlebrook exploits the “Dissection Theorem” to derive the closed-loop transfer function without
breaking the loop and while revealing the effect of backward (reverse) propagation in non-unilateral
loops [5, 6]. This theorem states that any transfer function, H(s), can be dissected into a product of
the form

H(s) = H�

1 +
1

T2

1 +
1

T1

(8.198)

where Hin f ty, T1, and T2 are simpler transfer functions corresponding to special cases, e.g., with some
signal in the loop forced to zero. These quantities are computed as follows. As shown in Fig. 8.84, we
insert a voltage source, Vt , in series with a branch of the circuit and inject a current, It , to either side
of Vt . We now have four new quantities, namely, V1, V2, I1, and I2. (Note the polarity of V1.) The key
point here is that the loop is not broken, and hence loading effects are immaterial. The “ideal” transfer
function, H�, is obtained as follows:

H�(s) =
Vout

Vin
|V 1=0,I 1=0 (8.199)

VoutVin
Vt

V1

I1 I2

V2
It

Figure 8.84 Illustration of Middle-
brook’s method.

i.e., we choose Vt and It such that V1 and I1 are forced to zero. The other two transfer functions are more
involved. Middlebrook shows that

1

T1
=

1

Ti
+

1

Tv
+

1

T �
i T �

v
(8.200)

where Vin = 0 and

Ti =
I1

I2
|V 1=0 (Short-circuit forward current loop gain) (8.201)

Tv =
V1

V2
|I 1=0 (Open-circuit forward voltage loop gain) (8.202)

1

T �
i

=
I2

I1
|V 2=0 (Short-circuit reverse current loop gain) (8.203)

1

T �
v

=
V2

V1
|I 2=0 (Open-circuit reverse voltage loop gain) (8.204)
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The computation of T2 is similar, except that it requires Vout (rather than Vin) to be forced to zero. We
observe that Middlebrook’s approach is generally more laborious than Bode’s method.

Middlebrook’s formulation provides insight regarding the forward (usually desirable) and reverse
(usually undesirable) signal propagation around a nonunilateral loop. With no reverse propagation, we
have 1/T �

i = 1/T �
v = 0 and T1 = Ti ||Tv , e.g., the parallel combination of the two forward loop gains.

Middlebrook denotes this quantity by T f wd . In a similar fashion, we can define the total reverse loop gain
as Trev = (1/T �

i )||(1/T �
v) and manipulate Eq. (8.200) to reach

T1 =
T f wd

1 + Trev
(8.205)

The interesting observation here is that the equivalent loop gain is degraded if the reverse loop gain,
Trev , becomes comparable to unity—even if it remains much less than T f wd . Middlebrook, however,
recognizes that this interpretation is valid only if (a) Vt and It are injected such that V1 and I1 are the
“error” signal, a vague definition, and (b) Vt and It are injected inside the major loop and outside any
minor loops, again a vague condition. For example, a degenerated CS stage with � > 0 eludes both of
these conditions.

8.8 Loop Gain Calculation Issues

8.8.1 Preliminary Concepts

The loop gain plays a central role in feedback systems, as evidenced by the universal factor 1+� A in the
closed-loop expressions of gain, bandwidth, input and output impedances, and nonlinearity. In addition,
if the poles and zeros in the loop are considered, then the loop gain [called the “loop transmission,” T (s),
in this case] reveals the circuit’s stability properties. For these reasons, we must often determine the loop
gain even if we are not interested in the open-loop parameters of the circuit.

According to the procedure illustrated in Fig. 8.5, the loop gain calculation should be straightforward:
we set the input to zero, break the loop at some point, apply a test signal, follow this signal around the
loop (in the proper direction), and obtain the returned signal. However, in some cases, the situation is
more complex, eliciting two questions: (1) Can we break the loop at any arbitrary point? (2) Should the
test signal be a voltage or a current? We remind the reader that in such a test, the actual input and output
disappear; i.e., the loop gain does not depend on where the main input and output ports are.

For example, consider the two-stage amplifier shown in Fig. 8.85(a), where the resistive divider
consisting of R1 and R2 senses the output voltage and returns a fraction thereof to the source of M1.
As illustrated in Fig. 8.85(b), we set Vin to zero, break the loop at node X , apply a test signal to the
right terminal of R1, and measure the resulting VF .16 But is this test setup correct? First, we note that
in Fig. 8.85(a), R1 draws an ac current from RD2, but in Fig. 8.85(b), it does not. That is, the gain
associated with the second common-source stage has been altered. Second, why did we decide to apply
a test voltage? Can we apply a test current and measure a returned current?

To address the first issue, we surmise that it is best to break the loop at the gate of a MOSFET. We
can break the loop at the gate of M2 [Fig. 8.85(c)] and thus not alter the gain associated with the first
stage—at least at low frequencies. The reader is encouraged to derive the loop gain using Figs. 8.85(b)
and (c) and show that they are not equal.

What if we must include CGS of M2 [Fig. 8.86(a)]? Then, we break the loop after CGS2 [Fig. 8.86(b)]
to ensure that the load seen by M1 remains unchanged. But is it always possible to break the loop at the

16It is clear that, upon breaking the loop, we must apply the test signal to R1 and travel clockwise around the circuit. If we
apply Vt to the drain of M2 and travel counterclockwise, the result is meaningless.
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(b)(a)

M1

VDD

RD1

Vin

R2

M2
M1 M1

M2 M2

RD2

R1 R2 R2
R1 R1

Vout

VDD

RD1 RD1

RD2

VDD

RD2

Vout

(c)

X
VF

VF

Vt

Vt

Figure 8.85 (a) Two-stage feedback amplifier, (b) breaking the loop at the left terminal of R1, and (c) breaking
the loop at the gate of M2.

Vt

VF

M1
M1

VDD

RD1

Vin

R2

RD1

R2

M2
M2

RD2

VDD

RD2

R1 R1

Vout

X

CGS2
CGS2

(a) (b)
Figure 8.86 (a) Two-stage amplifier including CGS2, and (b) breaking the loop at the gate of M2.

gate of a MOSFET? Yes, indeed. For the feedback to be negative, the signal must be sensed by at least
one gate in the loop because only the common-source topology inverts signals.

Let us now turn our attention to the second issue, namely, the type of the test signal. In the foregoing
study, we naturally chose a test voltage, Vt , because we replaced the controlling voltage of a MOSFET
with an independent source. Under what condition can we apply a test current? In Fig. 8.85(a), for
example, we can break the loop at the drain of M2, inject a current It , and measure the current returned
by M2 [Fig. 8.87(a)]. The reader can prove that IF/It in this case is the same as VF/Vt in Fig. 8.85(c).

But what exactly should we do with the drain node of M2 in Fig. 8.87(a)? If tied to ac ground, this
node does not experience the voltage excursions present in the closed-loop circuit—an issue when rO2

is taken into account. We can merge rO2 with RD2 in this case, but not if M2 is degenerated. Thus, in
general, we cannot inject It without altering some aspects of the circuit.

Not all hope is lost yet. Suppose we replace the controlled current source of M2 with an independent
current source, It , and compute the returned VGS as VF [Fig. 8.87(b)]. Since in the original circuit,
the dependent source and VGS2 were related by a factor of gm2, we can now write the loop gain as
(�VF/It ) × gm2. This approach is feasible even if M2 is degenerated. We recognize that this result is the
same as the return ratio of M2.

At low frequencies, the loop gain can be computed with the aid of the following observation. Since the
circuit incorporates negative feedback, the loop must traverse the gate of a transistor (only the CS stage
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M1

RD1

R2

M2

RD2

R1

M1

RD1

R2 R1

It

IF

VDD

RD2

VDD

ItVF

(b)(a)
Figure 8.87 (a) Breaking the loop at the drain of M2, and (b) replacing dependent source of M2 with an
independent source.

inverts).17 We can therefore break the loop at this gate without the need for including loading effects. Of
course, this method applies only if the loop has only one feedback mechanism.

In summary, the “best” place to break a feedback loop is (a) the gate-source of a MOSFET if voltage
injection is desired, or (b) the dependent current source of a MOSFET if current injection is desired
(provided that the returned quantity is VGS of the MOSFET). Of course, these two methods are related
because they differ by only a factor of gm .

Unfortunately, the foregoing techniques face difficulties in some cases. For example, suppose we
include CG D2 in Fig. 8.85(a). We inject a test voltage or current as before, but the issue is that CG D2 does
not allow a “clean” break. As shown in Fig. 8.88, even though we provide the gate-source voltage by the
independent source, Vt , CG D2 still creates “local” feedback from the drain of M2 to its gate, raising the
question of whether the loop gain should be obtained by nulling all feedback mechanisms. We should
also mention that the method of current and voltage injection proposed by Middlebrook in [3] applies
only if the loop is unilateral.

M1

RD1

R2

RD2

R1

VDD

CGD2

Vtgm2Vt

VF

Figure 8.88 Two-stage amplifier
including CD2.

8.8.2 Difficulties with Return Ratio

Bode’s method enables us to compute the closed-loop transfer function in terms of four simpler transfer
functions—without the need for breaking the loop. But we are also interested in the loop gain as it

17One exception are source-degenerated devices (in CS or follower stages).
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VDD

RD1

R2

M2
M1

RD2

VDD

RD1

RD2

R1 R2
R1

I1V1

I1V1

(a) (b)
Figure 8.89 Equivalent circuits for the calculation of the return ratios for (a) M1, and (b) M2.

determines the consequences of applying feedback to a given circuit, e.g., the increase in the bandwidth,
the reduction in the nonlinearity, and the stability behavior.

We may view the return ratio associated with a given dependent source as the loop gain, but circuits
containing more than one feedback mechanism may exhibit different return ratios for different sources.
As an example, we consider again the two-stage amplifier shown in Fig. 8.85(a), recognizing that R1

and R2 provide both “global” feedback and “local” feedback (by degenerating M1). With the aid of the
equivalent circuits shown in Fig. 8.89, the reader can show that the return ratios for M1 and M2 are
respectively given by

Return Ratio|M1 =
gm1 R2(R1 + RD2 + gm2 RD2 RD1)

R1 + R2 + RD2
(8.206)

and

Return Ratio|M2 =
gm1gm2 R2 RD1 RD2

(1 + gm1 R2)(R1 + RD2) + R2
(8.207)

If, as in our standard loop gain calculations, we break the loop at the gate of M2, we obtain a value equal
to the return ratio for M2. It is unclear which return ratio should be considered the loop gain.

Why are the two return ratios different here? This is because disabling M1 (by making I1 an inde-
pendent source) removes both feedback mechanisms whereas disabling M2 still retains the degeneration
experienced by M1.

Another method of loop gain calculation is to inject a signal without breaking the loop, as shown in
Fig. 8.90, and write Y/W = 1/(1 + � A0), and hence

Loop Gain =
�

Y

W

��1

� 1 (8.208)

�

A0

W

Y

Figure 8.90 Another method of loop
gain calculation.
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M1

VDD

RDRF

RS
M1

VDD

RDRF

RS

W
Y

W

Y

(a) (b)
Figure 8.91 Different injection points in a nonunilateral circuit.

But this method tacitly assumes a unilateral loop, yielding different loop gains for different injection
points if the loop is not unilateral. For example, the circuit of Fig. 8.71(a) can be excited as shown in
Figs. 8.91(a) or (b), producing different values for (Y/W )�1 � 1.

The exact calculation of the loop gain for non-unilateral or multiloop circuits is beyond the scope of
this book.

8.9 Alternative Interpretations of Bode’s Method

Bode’s results can be manipulated to produce other forms that offer new insights.

Asymptotic Gain Form Let us return to Vout/Vin = A+gm BC/(1�gm D) and note that Vout/Vin = A
if gm = 0 (the dependent source is disabled) and Vout/Vin = A � BC/D if gm � � (the dependent
source is very “strong”). We denote these values of Vout/Vin by H0 and H�, respectively, and �gm D by
T . It is helpful to consider H0 as the direct feedthrough and H� as the “ideal” gain, i.e., if the dependent
source were infinitely strong (or the loop gain were infinite). It follows that

Vout

Vin
= H0 +

gm BC

1 + T
(8.209)

= H0
1 + T

1 + T
+

gm BC

1 + T
(8.210)

=
H0

1 + T
+

T (H0 + gm BC/T )
1 + T

(8.211)

Since H0 + gm BC/T = A � gm BC/(gm D) = A � BC/D = H�, we have

Vout

Vin
= H�

T

1 + T
+ H0

1

1 + T
(8.212)

Called the “asymptotic gain equation” [4], this form reveals that the gain consists of an ideal value
multiplied by T/(1+T ) and a direct feedthrough multiplied by 1/(1+T ). The calculations are somewhat
simpler here if we recognize from V1 = CVin + DI1 and I1 = gm V1 that V1 = CVin/(1 � gm D) � 0 if
gm � � (provided that Vin < �). This is similar to how a virtual ground is created if the loop gain is
large.

� Example 8.32

Calculate the voltage gain of the circuit shown in Fig. 8.92(a) using the asymptotic gain method. Assume that
� = � = 0.
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M1

VDD

RD

M2

RSR2 R2 R2

R1 R1 R1

Vin Vin Vin
Vout

Vout Vout

A0 = �� �gm1 RD
+1

(c)(a) (b)

X

Figure 8.92

Solution

Suppose M1 is the dependent source of interest. If gm1 = 0, then Vin propagates through R1 and R2 and sees an
impedance of (1/gm2)||RS at the source of M2. Thus,

H0 =
(1/gm2)||RS

(1/gm2)||RS + R1 + R2
(8.213)

If gm1 = �, then VGS1 = 0 (like a virtual ground), yielding a current of Vin/R1 through R1 and R2. That is

H� = �
R2

R1
(8.214)

an expected result because M1 and M2 operate as an op amp with an infinite open-loop gain [Fig. 8.92(b)]. To
determine the return ratio for M1, we set Vin to zero, replace M1’s dependent source with an independent source, I1,
and express VX as �I1 RD . Since M2 sees a load resistance of RS ||(R1 + R2), we have Vout = �I1 RD[RS ||(R1 +
R2)]/[1/gm2 + RS ||(R1 + R2)]. The gate voltage of M1 is equal to Vout R1/(R1 + R2), leading to

T1 = gm1 RD
gm2[RS ||(R1 + R2)]

1 + gm2[RS ||(R1 + R2)]
R1

R1 + R2
(8.215)

We must now substitute for H�, T, and H0 in Eq. (8.212) to obtain the closed-loop gain—a laborious task left for
the reader. This example suggests that the direct analysis of the circuit (without knowledge of feedback) may in fact
be simpler in some cases, as is true for this circuit.

It is instructive to repeat the foregoing calculations if M2 is the dependent source of interest. For gm2 = 0, Vin is
simply divided according to

H0 =
RS

RS + R1 + R2
(8.216)

For gm2 = �, we have VGS2 = 0, VX = Vout, and hence a current of �Vout/RD flowing through M1. It follows
that VGS1 = �Vout/(gm1 RD) and [Vin + Vout/(gm1 RD)]/R1 = [�Vout/(gm1 RD) � Vout]/R2. We therefore have

H� =
�gm1 R2 RD

R1 + R2 + gm1 R1 RD
(8.217)

This result is also expected if we consider M2 an ideal unity-gain buffer (due to its infinite gm ) and redraw the circuit
as shown in Fig. 8.92(c).

The return ratio for M2 can be found as

T2 =
gm2 RS(gm1 R1 RD + R1 + R2)

RS + R1 + R2
(8.218)

Again, these values must be substituted in (8.212) to compute the closed-loop gain.
�
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Double-Null Method Blackman’s impedance theorem raises an interesting question: Can we write
the transfer function of a circuit in a form similar to A(1 + Tsc)/(1 + Toc)? In other words, can we
generalize the result to a case in which Iin is replaced by an arbitrary input and Vin by an arbitrary output?
To understand the rationale for this question, let us observe that (1) Toc is the return ratio with Iin = 0,
i.e., Toc denotes the RR with the input set to zero in Fig. 8.76(a); and (2) Tsc is the RR with Vin = 0,
i.e., Tsc represents the return ratio with the output forced to zero. Figure 8.93 conceptually illustrates the
setups for these two measurements, with one “nulling” the input and the other, the output. We make a
slight change in our notation and postulate that the transfer function of a given circuit can be written as

Vout

Vin
= A

1 + Tout,0

1 + Tin,0
(8.219)

where A = Vout/Vin with the dependent source set to zero, and Tout,0 and Tin,0 respectively denote the
return ratios for Vout = 0 and Vin = 0.

V1 I1 V1 I1

Tin,0 Tout,0

Short Vin Vout = 0 

(a) (b)
Figure 8.93 Conceptual illustration of Tin,0 and Tout,0.

The proof of (8.219) is similar to that of Blackman’s theorem. Beginning from

Vout = AVin + B I1 (8.220)

V1 = CVin + DI1 (8.221)

we recognize that, if Vin = 0, then V1/I1 = D, and hence Tin,0 = �gm D. On the other hand, if Vout = 0,
then Vin = (�B/A)I1, and hence V1/I1 = (AD� BC)/A, i.e., Tout,0 = �gm(AD� BC)/A. Combining
these results indeed yields (8.219). Note that division by A in these calculations assumes that A 	= 0, a
critical point revisited below.

Equation (8.219) offers interesting insights. The quantity Tout,0 reveals that, even though Vin and I1

are chosen so as to drive Vout to zero, there is still an “internal” feedback loop emanating from I1 and
producing a finite value for V1. The generic system of Fig. 8.1, on the other hand, does not lend itself to
this perspective because its feedback network, G(s), directly senses the output. The following example
illustrates this point.

� Example 8.33

Determine Vout/Vin in Fig. 8.94(a), assuming � = � = 0. Note that the feedback network does not sense the main
output here.

Solution

If M1 is the dependent source of interest and gm1 = 0, then the voltage at the source of M2 is equal to Vin(RS ||g�1
m2)/

(RS ||g�1
m2 + R1 + R2), yielding

A = gm2 RD2
RS ||g�1

m2

RS ||g�1
m2 + R1 + R2

(8.222)
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M1
M2

RD1

M2

RSR2 RSR2

VDD
RD2

RD1

VDD
RD2

R1

R1Vout

Vin

Vin

I1V1

0

(a) (b)
Figure 8.94

To obtain Tout,0, we choose Vin and I1 so as to produce Vout = 0, and hence VGS2 = 0 and ID2 = 0 [Fig. 8.94(b)].
The source voltage of M2 is therefore equal to �I1 RD1 and also equal to Vin RS/(R1 + R2 + RS). Similarly,
V1 = Vin(R2 + RS)/(R1 + R2 + RS) and

Tout,0 = �gm1
V1

I1
(8.223)

= gm1 RD1
R2 + RS

RS
(8.224)

The nonzero Tout,0 implies that I1 still controls V1 through an internal loop even though Vout = 0. The loop gain
with Vin = 0 is given by Eq. (8.215).

What if M2 is the dependent source of interest? Then, for gm2 = 0, we have Vout = 0, and hence A = 0. Equation
(8.219) thus fails to hold because its derivation has assumed that A 	= 0. This shortcoming of the double-null method
manifests itself in many CMOS circuits, even in a simple degenerated common-source stage.

�
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that VDD = 3
V where necessary. Also, assume that all transistors are in saturation.

8.1. Consider the circuit of Fig. 8.3(b), assuming that I1 is ideal and gm1rO1 cannot exceed 50. If a gain error of
less than 5% is required, what is the maximum closed-loop voltage gain that can be achieved by this topology?
What is the low-frequency closed-loop output impedance under this condition?
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8.2. In the circuit of Fig. 8.8(a), assume that (W/L)1 = 50/0.5, (W/L)2 = 100/0.5, RD = 2 k�, and C2 = C1.
Neglecting channel-length modulation and body effect, determine the bias current of M1 and M2 such that
the input resistance at low frequencies is equal to 50 �.

8.3. Calculate the output impedance of the circuit shown in Fig. 8.9(a) at relatively low frequencies if RD is
replaced by an ideal current source.

8.4. Consider the example illustrated in Fig. 8.11. Suppose an overall voltage gain of 500 is required with maximum
bandwidth. How many stages with what gain per stage must be placed in a cascade? (Hint: first find the 3-dB
bandwidth of a cascade of n identical stages in terms of that of each stage.)

8.5. If in Fig. 8.22(b), amplifier A0 exhibits an output impedance of R0, calculate the closed-loop voltage gain
and output impedance, taking into account loading effects.

8.6. Consider the circuit of Fig. 8.25(a), assuming that (W/L)1,2 = 50/0.5 and (W/L)3,4 = 100/0.5. If ISS =
1 mA, what is the maximum closed-loop voltage gain that can be achieved if the gain error is to remain below
5%?

8.7. The circuit of Fig. 8.42 can operate as a transimpedance amplifier if Iout flows through a resistor, RD2,
connected to VDD , producing an output voltage. Replacing RS with an ideal current source and assuming
that � = � = 0, calculate the transimpedance of the resulting circuit. Also, calculate the input-referred noise
current per unit bandwidth.

8.8. For the circuit of Fig. 8.51(a), calculate the closed-loop gain without neglecting G12 I2. Prove that this term
can be neglected if G12 � A0 Zin/Zout.

8.9. Calculate the loop gain of the circuit in Fig. 8.54 by breaking the loop at node X . Why is this result somewhat
different from G21 Av,open?

8.10. Using feedback techniques, calculate the input and output impedance and voltage gain of each circuit in
Fig. 8.95.

M1

M1

VDD

I1

(c)

(a) (b)

M2

Vin

RS

M2

Vin

RS

Vb

I1

Vout

VDD

I1

Vout

M1

VDD

I1

Vout

Vb2

VDD

I1

Vout

Zin

M2

Vin

RS

I1
Zin

I1
Zin

M2

Vin

RS

I1
Zin

� = � = 0 � = � = 0

� = � = 0 � = � = 0

Vb M1

(d)
Figure 8.95
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8.11. Using feedback techniques, calculate the input and output impedances of each circuit in Fig. 8.96.

� = 0� = 0 � � 0

M1

C2C1

VDD

I1

(c)(a) (b)

Vin Vout

C2

C2

C1

C1

VDD VDD

M2 I1

M1
M1

Vin

Vin

Vout

Vout

Figure 8.96

8.12. Consider the circuit of Fig. 8.54(a), assuming that (W/L)1 = (W/L)2 = 50/0.5, � = � = 0, and each
resistor is equal to 2 k�. If ID2 = 1 mA, what is the bias current of M1? What value of Vin gives such a
current? Calculate the overall voltage gain.

8.13. Suppose the amplifier of the circuit shown in Fig. 8.22 has an open-loop transfer function A0/(1 + s/�0) and
an output resistance R0. Calculate the output impedance of the closed-loop circuit and plot the magnitude as
a function of frequency. Explain the behavior.

8.14. Calculate the input-referred noise voltage of the circuit shown in Fig. 8.25(a) at relatively low frequencies.

8.15. A differential pair with current-source loads can be represented as in Fig. 8.97(a), where R0 = rO N �rO P and
rO N and rO P denote the output resistance of NMOS and PMOS devices, respectively. Consider the circuit
shown in Fig. 8.97(b), where Gm1 and Gm2 are placed in a negative feedback loop.

Gm

R0

R0

R0

R0

R0

R0

Vout

Vout

Vin

Zin

Gm1

Gm2

C1

C1

(a) (b)
Figure 8.97

(a) Neglecting all other capacitances, derive an expression for Zin . Sketch |Zin | versus frequency.
(b) Explain intuitively the behavior observed in part (a).
(c) Calculate the input-referred thermal noise voltage and current in terms of the input-referred noise voltage

of each Gm stage.

8.16. In the circuit of Fig. 8.98, (W/L)1�3 = 50/0.5, ID1 = |ID2| = |ID3| = 0.5 mA, and RS1 = RF = RD2 =
3 k�.
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M1

VDD

RD2
RF

X
Vin

M3

RS1

Vout

M2Vb

Figure 8.98

(a) Determine the input bias voltage required to establish the above currents.
(b) Calculate the closed-loop voltage gain and output resistance.

8.17. The circuit of Fig. 8.98 can be modified as shown in Fig. 8.99, where a source follower, M4, is inserted in
the feedback loop. Note that M1 and M4 can also be viewed as a differential pair. Assume that (W/L)1�4 =
50/0.5, ID = 0.5 mA, for all transistors RS1 = RF = RD2 = 3 k�, and Vb2 = 1.5 V. Calculate the
closed-loop voltage gain and output resistance, and compare the results with those obtained in the previous
problem.

M1

VDD

RD2
RF

Vin

M3

RS1

Vout

M2Vb1

M4

Vb2
Figure 8.99

8.18. Consider the circuit of Fig. 8.100, where (W/L)1�4 = 50/0.5, |ID1�4| = 0.5 mA, and R2 = 3 k�.

M1

VDD

Vin

M3

Vb

M2

M4

R2

R1

Vout

Figure 8.100

(a) For what range of R1 are the above currents established while M2 remains in saturation? What is the
corresponding range of Vin?

(b) Calculate the closed-loop gain and output impedance for R1 in the middle of the range obtained in part (a).

8.19. In the circuit of Fig. 8.101, suppose all resistors are equal to 2 k� and gm1 = gm2 = 1/(200 �). Assuming
that � = � = 0, calculate the closed-loop gain and output impedance.

8.20. A CMOS inverter can be used as an amplifier with or without feedback (Fig. 8.102). Assume that (W/L)1,2 =
50/0.5, R1 = 1 k�, R2 = 10 k�, and the dc levels of Vin and Vout are equal.
(a) Calculate the voltage gain and the output impedance of each circuit.
(b) Calculate the sensitivity of each circuit’s output with respect to the supply voltage. That is, calculate the

small-signal “gain” from VDD to Vout. Which circuit exhibits less sensitivity?
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M1

VDD

RD1

RF1

Vin

RS1

M2

RF2
RD2

Vout

Figure 8.101

M1M1

VinVin Vout

M2M2

VDD

Vout

VDD

R2R1

(a) (b)
Figure 8.102

8.21. Calculate the input-referred thermal noise voltage of the circuits shown in Fig. 8.102.

8.22. The circuit shown in Fig. 8.103 employs positive feedback to produce a negative input capacitance. Using
feedback analysis techniques, determine Zin and identify the negative capacitance component. Assume that
� = � = 0.

VDD
M3

M2

C1

I1

M1

Zin
Figure 8.103

8.23. In the circuit of Fig. 8.104, assume that � = 0, gm1,2 = 1/(200 �), R1�3 = 2 k�, and C1 = 100 pF.
Neglecting other capacitances, estimate the closed-loop voltage gain at very low and very high frequencies.

M1

Vout

M2

VDD

R3R2

Vin

R1

Vb

C1

Figure 8.104
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CHAPTER

9
Operational Amplifiers

Operational amplifiers (op amps) are an integral part of many analog and mixed-signal systems. Op amps
with vastly different levels of complexity are used to realize functions ranging from dc bias generation to
high-speed amplification or filtering. The design of op amps continues to pose a challenge as the supply
voltage and transistor channel lengths scale down with each generation of CMOS technologies.

This chapter deals with the analysis and design of CMOS op amps. Following a review of perfor-
mance parameters, we describe simple op amps such as telescopic and folded-cascode topologies. Next,
we study two-stage and gain-boosting configurations and the problem of common-mode feedback. Fi-
nally, we introduce the concept of slew rate and analyze the effect of supply rejection and noise in
op amps. The reader is encouraged to read this chapter before dealing with more advanced designs in
Chapter 11.

9.1 General Considerations

We loosely define an op amp as a “high-gain differential amplifier.” By “high,” we mean a value that is
adequate for the application, typically in the range of 101 to 105. Since op amps are usually employed to
implement a feedback system, their open-loop gain is chosen according to the precision required of the
closed-loop circuit.

Up to three decades ago, most op amps were designed to serve as “general-purpose” building blocks,
satisfying the requirements of many different applications. Such efforts sought to create an “ideal” op
amp, e.g., with a very high voltage gain (several hundred thousand), high input impedance, and low output
impedance, but at the cost of many other aspects of the performance, e.g., speed, output voltage swings,
and power dissipation.

By contrast, today’s op amp design proceeds with the recognition that the trade-offs between the
parameters eventually require a multi dimensional compromise in the overall implementation, making it
necessary to know the adequate value that must be achieved for each parameter. For example, if the speed
is critical while the gain error is not, a topology is chosen that favors the former, possibly sacrificing the
latter.

9.1.1 Performance Parameters

In this section, we describe a number of op amp design parameters, providing an understanding of why
and where each may become important. For this discussion, we consider the differential cascode circuit

344
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VDD

M5

M1 M2

ISS

Vin

M8

Vb1
M3 M4

Vout

M7

M6Vb2

Vb3

Figure 9.1 Cascode op amp.

shown in Fig. 9.1 as a representative op amp design.1 The voltages Vb1�Vb3 are generated by the current
mirror techniques described in Chapter 5.

Gain The open-loop gain of an op amp determines the precision of the feedback system employing the
op amp. As mentioned before, the required gain may vary by four orders of magnitude according to the
application. Trading with such parameters as speed and output voltage swings, the minimum required
gain must therefore be known. As explained in Chapter 14, a high open-loop gain may also be necessary
to suppress nonlinearity.

� Example 9.1

The circuit of Fig. 9.2 is designed for a nominal gain of 10, i.e., 1 + R1/R2 = 10. Determine the minimum value of
A1 for a gain error of 1%.

R2
R1

Vin Vout

A1

Figure 9.2

Solution

The closed-loop gain is obtained from Chapter 8 as

Vout

Vin
=

A1

1 +
R2

R1 + R2
A1

(9.1)

=
R1 + R2

R2

A1

R1 + R2

R2
+ A1

(9.2)

1Since op amps of this type have a high output impedance, they are sometimes called “operational transconductance amplifiers”
(OTAs). In the limit, the circuit can be represented by a single voltage-dependent current source and called a “Gm stage.”
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Predicting that A1 � 10, we approximate (9.2) as

Vout

Vin
�

�
1 +

R1

R2

��
1 �

R1 + R2

R2

1

A1

�
(9.3)

The term (R1 + R2)/(R2 A1) = (1 + R1/R2)/A1 represents the relative gain error. To achieve a gain error less than
1%, we must have A1 > 1000.

�

It is instructive to compare the circuit of Fig. 9.2 with an open-loop implementation such as that in
Fig. 9.3. While it is possible to obtain a nominal gain of gm RD = 10 by a common-source stage, it
is extremely difficult to guarantee an error less than 1%. The variations in the mobility and gate-oxide
thickness of the transistor and the value of the resistor typically yield an error greater than 20%.

M1

RD

Vout

VDD

Vin
Figure 9.3 Simple common-source
stage.

Small-Signal Bandwidth The high-frequency behavior of op amps plays a critical role in many appli-
cations. For example, as the frequency of operation increases, the open-loop gain begins to drop (Fig. 9.4),
creating larger errors in the feedback system. The small-signal bandwidth is usually defined as the “unity-
gain” frequency, fu , which can reach several gigahertz in today’s CMOS op amps. The 3-dB frequency,
f3-dB, may also be specified to allow easier prediction of the closed-loop frequency response.

f (log axis)

Av

f3�dB

0

20log

fu
Figure 9.4 Gain roll-off with
frequency.

� Example 9.2

In the circuit of Fig. 9.5, assume that the op amp is a single-pole voltage amplifier. If Vin is a small step, calculate
the time required for the output voltage to reach within 1% of its final value. What unity-gain bandwidth must the

R2
R1

Vin Vout

A(s)

t

Vin

Vout

0

Figure 9.5
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op amp provide if 1 + R1/R2 � 10 and the settling time is to be less than 5 ns? For simplicity, assume that the
low-frequency gain is much greater than unity.

Solution

Since
�

Vin � Vout
R2

R1 + R2

�
A(s) = Vout (9.4)

we have

Vout

Vin
(s) =

A(s)

1 +
R2

R1 + R2
A(s)

(9.5)

For a one-pole system, A(s) = A0/(1+ s/�0), where �0 is the 3-dB bandwidth and A0�0 the unity-gain bandwidth.
Thus,

Vout

Vin
(s) =

A0

1 +
R2

R1 + R2
A0 +

s

�0

(9.6)

=

A0

1 +
R2

R1 + R2
A0

1 +
s�

1 +
R2

R1 + R2
A0

�
�0

(9.7)

indicating that the closed-loop amplifier is also a one-pole system with a time constant equal to

� =
1�

1 +
R2

R1 + R2
A0

�
�0

(9.8)

Recognizing that the quantity R2 A0/(R1 + R2) is the low-frequency loop gain and usually much greater than unity,
we have

� �
�

1 +
R1

R2

�
1

A0�0
(9.9)

The output step response for Vin = au(t) can now be expressed as

Vout(t) � a

�
1 +

R1

R2

��
1 � exp

�t

�

�
u(t) (9.10)

with the final value VF � a(1 + R1/R2). For 1% settling, Vout = 0.99VF , and hence

1 � exp
�t1%

�
= 0.99, (9.11)

yielding t1% = � ln 100 � 4.6� . For a 1% settling of 5 ns, � � 1.09 ns, and from (9.9), A0�0 � (1+R1/R2)/� = 9.21
Grad/s (1.47 GHz).

�

The key point in the above example is that the bandwidth is dictated by both the required settling
accuracy (e.g., Vout = 0.99VF ) and the closed-loop gain (1 + R1/R2).
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� Example 9.3

A student mistakenly swaps the inverting and non-inverting inputs of the op amp in Fig. 9.5. Explain how the circuit
behaves.

Solution

Positive feedback may destabilize the circuit. For a one-pole op amp, we have

�
Vout

R2

R1 + R2
� Vin

�
A0

1 +
s

�0

= Vout (9.12)

and hence

Vout

Vin
(s) =

A0

1 �
R2

R1 + R2
A0

1 �
s

(1 +
R2

R1 + R2
A0)�0

(9.13)

Interestingly, the closed-loop amplifier contains a pole in the right half plane, exhibiting a step response that grows
exponentially with time:

Vout(t) � a

�
1 +

R1

R2

��
exp

t

�
� 1

�
u(t) (9.14)

This growth continues until the op amp output saturates.
�

Large-Signal Behavior In many of today’s applications, op amps must operate with large transient
signals. Under these conditions, nonlinear phenomena make it difficult to characterize the speed merely
by small-signal properties such as the open-loop response shown in Fig. 9.4. As an example, suppose
the feedback circuit of Fig. 9.5 incorporates a realistic op amp (i.e., with finite output impedance) while
driving a large load capacitance. How does the circuit behave if we apply a 1-V step at the input? Since the
output voltage cannot change instantaneously, the voltage difference sensed by the op amp itself at t � 0
is equal to 1 V. Such a large difference momentarily drives the op amp into a nonlinear region of operation.
(Otherwise, with an open-loop gain of, say, 1000, the op amp would produce 1000 V at the output.)

As explained in Sec. 9.9, the large-signal behavior is usually quite complex, calling for careful simu-
lations.

Output Swing Most systems employing op amps require large voltage swings to accommodate a wide
range of signal amplitudes. For example, a high-quality microphone that senses the music produced
by an orchestra may generate instantaneous voltages that vary by more than four orders of magnitude,
demanding that subsequent amplifiers and filters handle large swings (and/or achieve a low noise).

The need for large output swings has made fully differential op amps popular. Similar to the circuits
described in Chapter 4, such op amps generate “complementary” outputs, roughly doubling the available
swing. Nonetheless, as mentioned in Chapters 3 and 4 and explained later in this chapter, the maximum
voltage swing trades with device size and bias currents and hence speed. Achieving large swings is the
principal challenge in today’s op amp design.

Linearity Open-loop op amps suffer from substantial nonlinearity. In the circuit of Fig. 9.1, for example,
the input pair M1–M2 exhibits a nonlinear relationship between its differential drain current and its input
voltage. As explained in Chapter 14, the issue of nonlinearity is tackled by two approaches: using fully
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differential implementations to suppress even-order harmonics and allowing sufficient open-loop gain
for the closed-loop feedback system to achieve adequate linearity. It is interesting to note that in many
feedback circuits, the linearity requirement, rather than the gain error requirement, governs the choice of
the open-loop gain.

Noise and Offset The input noise and offset of op amps determine the minimum signal level that can
be processed with reasonable quality. In a typical op amp topology, several devices contribute noise and
offset, necessitating large dimensions or bias currents. For example, in the circuit of Fig. 9.1, M1–M2

and M7-M8 contribute the most.
We should also recognize a trade-off between noise and output swing. For a given bias current, as

the overdrive voltage of M7 and M8 in Fig. 9.1 is lowered to allow larger swings at the output, their
transconductance increases and so does their drain noise current.

Supply Rejection Op amps are often employed in mixed-signal systems and sometimes connected to
noisy digital supply lines. Thus, the performance of op amps in the presence of supply noise, especially
as the noise frequency increases, is important. For this reason, fully differential topologies are preferred.

9.2 One-Stage Op Amps

9.2.1 Basic Topologies

All of the differential amplifiers studied in Chapters 4 and 5 can be considered op amps. Figure 9.6 shows
two such topologies with single-ended and differential outputs. The small-signal, low-frequency gain of
both circuits is equal to gm N (rO N �rO P), where the subscripts N and P denote NMOS and PMOS, respec-
tively. This value hardly exceeds 10 in nanometer technologies. The bandwidth is usually determined by
the load capacitance, CL . Note that the circuit of Fig. 9.6(a) exhibits a mirror pole (Chapter 6) whereas
that of Fig. 9.6(b) does not, a critical difference in terms of the stability of feedback systems using these
topologies (Chapter 10).

VDD

M4

M1 M2
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Figure 9.6 Simple op amp topologies.

The circuits of Fig. 9.6 suffer from noise contributions of M1–M4, as calculated in Chapter 7. Inter-
estingly, in all op amp topologies, at least four devices contribute to the input noise: two input transistors
and two “load” transistors.

� Example 9.4

Calculate the input common-mode voltage range and the closed-loop output impedance of the unity-gain buffer
depicted in Fig. 9.7.
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Figure 9.7

Solution

The minimum allowable input voltage is equal to VI SS + VGS1, where VI SS is the voltage required across the current
source. The maximum voltage is given by the level that places M1 at the edge of the triode region: Vin,max =
VDD � |VGS3| + VT H1. For example, if each device (including the current source) has a threshold voltage of 0.3 V
and an overdrive of 0.1 V, then Vin,min = 0.1 + 0.1 + 0.3 = 0.5 V and Vin,max = 1 � (0.1 + 0.3) + 0.3 = 0.9 V.
Thus, the input CM range equals 0.4 V with a 1-V supply.

Since the circuit employs voltage feedback at the output, the output impedance is equal to the open-loop value,
rO P�rO N , divided by one plus the loop gain, 1 + gm N (rO P�rO N ). In other words, for large open-loop gain, the
closed-loop output impedance is approximately equal to (rO P�rO N )/[gm N (rO P�rO N )] = 1/gm N .

It is interesting to note that the closed-loop output impedance is relatively independent of the open-loop output
impedance. This is an important observation, allowing us to design high-gain op amps by increasing the open-loop
output impedance while still achieving a relatively low closed-loop output impedance. We also observe that, if driving
a load capacitance of CL , the op amp incurs a closed-loop output pole approximately given by gm N /CL .

�

In order to achieve a high gain, the differential cascode topologies of Chapters 4 and 5 can be used.
Shown in Figs. 9.8(a) and (b) for single-ended and differential output generation, respectively, such
circuits display a gain on the order of gm N [(gm N r2

O N )�(gm Pr2
O P)], but at the cost of output swing and
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Figure 9.8 Cascode op amps.
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additional poles. These configurations are also called “telescopic” cascode op amps to distinguish them
from another cascode op amp described below. The circuit providing a single-ended output suffers from
a mirror pole at node X (and a pole at Y ), creating stability issues (Chapter 10).

As calculated in Chapter 4 , the output swings of telescopic op amps are relatively limited. In the fully
differential version of Fig. 9.8(b), for example, the output swing is given by 2[VDD � (VO D1 + VO D3 +
VI SS + |VO D5| + |VO D7|)], where VO Dj denotes the overdrive voltage of M j and VI SS the minimum
allowable voltage across ISS . We must recognize the three conditions necessary for allowing this much
swing: (1) the input CM level, Vin,C M , is chosen low enough and equal to VGS1 + VI SS , (2) Vb1 is also
chosen low enough and equal to VGS3 + (Vin,C M � VT H1), placing M1 at the edge of saturation, and (3)
Vb2 is chosen high enough and equal to VDD � |VO D7| � |VGS5|, placing M7 at the edge of saturation.
Thus, Vin,C M (and Vb1 and Vb2) must be controlled tightly, a serious issue.

Another drawback of telescopic cascodes is the difficulty in shorting their inputs and outputs, e.g., to
implement a unity-gain buffer similar to the circuit of Fig. 9.7. To understand the issue, let us consider
the unity-gain feedback topology shown in Fig. 9.9. Under what conditions are both M2 and M4 in
saturation? We must have Vout � VX +VT H2 and Vout � Vb �VT H4. Since VX = Vb �VGS4, Vb �VT H4 �
Vout � Vb � VGS4 + VT H2. Depicted in Fig. 9.9, this voltage range is simply equal to Vmax � Vmin =
VT H4 � (VGS4 � VT H2) (one threshold minus one overdrive), maximized by minimizing the overdrive of
M4 but always less than VT H2.
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VGS4 � VTH2

Vb

Vb � VTH4

VTH4
Allowable

Range

Figure 9.9 Telescopic cascode op amp with input and output shorted.

� Example 9.5

For the circuit of Fig. 9.9, explain in which region each transistor operates as Vin varies from below Vb � VT H4 to
above Vb � VGS4 + VT H2.

Solution

Since the op amp attempts to force Vout to be equal to Vin , for Vin < Vb � VT H4, we have Vout � Vin , and M4 is
in the triode region while other transistors are saturated. Under this condition, the open-loop gain of the op amp is
reduced.

As Vin and hence Vout exceed Vb � VT H4, M4 enters saturation and the open-loop gain reaches a maximum. For
Vb � VT H4 < Vin < Vb � (VGS4 � VT H2), both M2 and M4 are saturated, and for Vin > Vb � (VGS4 � VT H2), M2
and M1 enter the triode region, degrading the gain.

�
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While a cascode op amp is rarely used as a unity-gain buffer, some other topologies (such as the
switched-capacitor circuits of Chapter 13) reduce to the configuration shown in Fig. 9.9 for part of their
operation period, as illustrated by the following example.

� Example 9.6

Figure 9.10(a) shows a closed-loop amplifier utilizing a telescopic op amp.2 Assuming that the op amp has a high
open-loop gain, determine the maximum allowable output voltage swing.

t

VX

VCM Vb � VTH3,4
M3 and M4
in Triode
Region

t

VX

VCM Vb � (VGS3,4 �VTH1,2) 

Vb � VTH3,4

(c)

R3

R4

R1

R2

Vb

M1 M2

M3
M4R3 R4

R1 R2

X Y

(a) (b)

(d)

Figure 9.10

Solution

Let us draw the circuit as shown in Fig. 9.10(b), noting that its input and output common-mode levels are equal
(why?). Recall from the foregoing discussion that the voltage at the drains of M3 and M4 is bounded by Vb � VT H3,4
to keep M3 and M4 in saturation and Vb � (VGS3,4 � VT H1,2) to keep M1 and M2 in saturation. How should we set
the output CM level, VC M , in this range to maximize the output swing? If VC M = Vb � VT H3,4, then M3 and M4
reside at the edge of the triode region and cannot tolerate any downward swing [Fig. 9.10(c)]. On the other hand, if
we select VC M = Vb � (VGS3,4 � VT H1,2) (placing M1 and M2 at the edge), then VX or VY can fall to Vb � VT H3,4
while maintaining M3 and M4 in saturation [Fig. 9.10(d)].

With the latter choice, how high can VX or VY go? If the gain of the op amp is large, the gate voltages of M1
and M2 swing negligibly. Thus, VX and VY can arbitrarily rise from VC M = Vb � (VGS3,4 � VT H1,2) without
driving M1 and M2 into the triode region. (Of course, the PMOS loads constrain the upswing.) For symmet-
ric up- and downswings, therefore, the circuit allows a voltage excursion of –(one threshold � one overdrive)
around VC M .

�

2The input capacitors ensure that the bias conditions are not disturbed by the preceding stage.
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9.2.2 Design Procedure

At this point, the reader may wonder how exactly we design an op amp. With so many devices and
performance parameters, it may not be clear where the starting point is and how the numbers are chosen.
Indeed, the actual design methodology of an op amp somewhat depends on the specifications that the
circuit must meet. For example, a high-gain op amp may be designed quite differently from a low-noise
op amp. Nevertheless, in most cases, some aspects of the performance, e.g., output voltage swings and
open-loop gain, are of primary concern, pointing to a specific design procedure. We will deal extensively
with five parameters for each transistor: ID , VGS � VT H , W/L , gm , and rO .

In the design of op amps (and many other circuits), it is helpful to begin with a power budget, even
if none is specified. As seen later in this section, the resulting design can readily be “scaled” for lower
or higher power dissipations. We describe a simple design here and deal with nanometer op amps in
Chapter 11.

� Example 9.7

Design a fully differential telescopic op amp with the following specifications: VDD = 3 V, peak-to-peak differential
output swing = 3 V, power dissipation = 10 mW, voltage gain = 2000. Assume that µnCox = 60 µA/V2, µpCox =
30 µA/V2, �n = 0.1 V�1, �p = 0.2 V�1 (for an effective channel length of 0.5 µm), � = 0, and VT H N = |VT H P | =
0.7 V.

Solution

Figure 9.11 shows the op amp topology along with two current mirrors defining the drain currents of M7–M9. We begin
with the power budget, allocating 3 mA to M9 and the remaining 330 µA to Mb1 and Mb2. Thus, each cascode branch
of the op amp carries a current of 1.5 mA. Next, we consider the required output swings. Each of nodes X and Y must be
able to swing by 1.5 Vpp without driving M3–M6 into the triode region. With a 3-V supply, therefore, the total voltage
available for M9 and each cascode branch is equal to 1.5 V, i.e., |VO D7|+ |VO D5|+ VO D3 + VO D1 + VO D9 = 1.5 V.
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M1 M2Vin
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Vb1 M3 M4

M7

M6Vb2

Mb2

IREF2

M9Mb1

IREF1

X YVout

Figure 9.11

Since M9 carries the largest current, we choose VO D9 � 0.5 V, leaving 1 V for the four transistors in the cascode.
Moreover, since M5–M8 suffer from low mobility, we allocate an overdrive of approximately 300 mV to each,
obtaining 400 mV for VO D1 + VO D3. As an initial guess, VO D1 = VO D3 = 200 mV.

With the bias current and overdrive voltage of each transistor known, we can easily determine the aspect ratios from
ID = (1/2)µCox (W/L)(VGS � VT H )2 or simulated I/V characteristics. To minimize the device capacitances, we
choose the minimum length for each transistor, obtaining a corresponding width. We then have (W/L)1�4 = 1250,
and (W/L)5�8 = 1111, and (W/L)9 = 400.
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The reader may think that the above choice of overdrives is arbitrary and leads to a wide design space. However,
we must emphasize that each of the overdrives has but a small range. For example, we can change the allocated
values by only a few tens of millivolts before the device dimensions become disproportionately large.

The design has thus far satisfied the swing, power dissipation, and supply voltage specifications. But, how about the
gain? Using Av � gm1[(gm3rO3rO1)�(gm5rO5rO7)] and assuming minimum channel length for all of the transistors,
we have Av = 1416, quite a lot lower than the required value.

In order to increase the gain, we recognize that gmrO =
�

2µCox (W/L)ID/(�ID). Now, recall that � � 1/L ,
and hence gmrO �

�
W L/ID . We can therefore increase the width or length or decrease the bias current of the

transistors. In practice, speed or noise requirements may dictate the bias current, leaving only the dimensions as
the variables. Of course, the width of each transistor must at least scale with its length so as to maintain a constant
overdrive voltage.

Which transistors in the circuit of Fig. 9.11 should be made longer? Since M1–M4 appear in the signal path, it
is desirable to keep their capacitances to a minimum. The PMOS devices, M5–M8, on the other hand, affect the
signal to a much lesser extent and can therefore have larger dimensions.3 Doubling the (effective) length and width
of each of these transistors in fact doubles their gmrO because gm remains constant while rO increases by a factor
of 2. Choosing (W/L)5�8 = 2222 µm/1.0 µm and hence �p = 0.1 V�1, we obtain Av � 4000. Thus, the PMOS
dimensions can be somewhat smaller. Note that with such large dimensions for PMOS transistors, we may revisit
our earlier distribution of the overdrive voltages, possibly reducing that of M9 by 100 to 200 mV and allocating more
to the PMOS devices.

In the op amp of Fig. 9.11, the input CM level and the bias voltages Vb1 and Vb2 must be chosen so as to allow
maximum output swings. The minimum allowable input CM level equals VGS1 +VO D9 = VT H1 +VO D1 +VO D9 =
1.4 V. The minimum value of Vb1 is given by VGS3 + VO D1 + VO D9 = 1.6 V, placing M1–M2 at the edge of the
triode region. Similarly, Vb2,max = VDD � (|VGS5| + |VO D7|) = 1.7 V. In practice, some margin must be included
in the value of Vb1 and Vb2 to allow for process variations. Also, the increase in the threshold voltages due to body
effect must be taken into account. Finally, we should remark that this op amp requires common-mode feedback
(CMFB) (Section 9.7).

�

9.2.3 Linear Scaling

How do we modify the above design if the power budget is different but all other specifications remain
the same? Suppose we are allowed to double the power dissipation and hence the bias current of each
transistor. The key concept behind “linear scaling” is to double the widths of all of the transistors in the
circuit while keeping the lengths constant. Returning to our five device design parameters, we observe
that, in this example, (1) ID is doubled, (2) W/L is doubled, (3) VGS � VT H is constant, and so are the
allowable voltage swings, (4) gm is doubled because both the bias current and the width are doubled (as
if two identical transistors were placed in parallel), and (5) rO is halved (for the same reason that gm

is doubled). We therefore conclude that linear scaling by adjusting the transistor widths simply scales
the power dissipation while retaining the gain and swing values. This concept is used in Chapter 11 to
optimize the performance of op amps.

� Example 9.8

An engineer seeking a low-power op amp design scales down the transistor widths in Example 9.7 by a factor of 10.
Explain what aspects of the performance degrade.

Solution

Since the gm of each transistor falls by a factor of 10, two aspects are sacrificed: (1) the speed of the op amp in
driving a capacitive load (e.g., the output pole in Example 9.4) degrades proportionally, and (2) the input-referred
noise voltage of the op amp rises by a factor of

�
10 (Sec. 9.12).

�

3This point is studied in Chapter 10.
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In nanometer technologies, op amp design can still follow the above procedure, but with greater
reliance on simulated device characteristics. Unfortunately, the lower supply voltage severely limits the
output swing, making the telescopic cascode less attractive. We return to these points in Chapter 11.

The gate bias voltages Vb1 and Vb2 in the telescopic cascode of Fig. 9.11 must be generated with some
precision. We note that if, for example, Vb1 is less than its nominal value, then M1 and M2 enter the triode
region. The same occurs even if Vb1 is fixed, but the input CM level is slightly higher than expected.
To ensure that Vb1 “tracks” the input CM level, we can generate Vb1 as shown in Fig. 9.12(a). Here, a
small current I1 flows through the diode-connected device, Mb1, producing Vb1 = VP + VGS,b1. Since
VP tracks the input CM level (VP = Vin,C M � VGS1,2), we have

Vb1 = Vin,C M � VGS1,2 + VGS,b1 (9.15)

which should be chosen equal to Vin,C M � VT H1,2 + VGS3,4 to allow M1 and M2 to operate in saturation.
It follows that

VGS,b1 = (VGS1,2 � VT H1,2) + VGS3,4 (9.16)

indicating that Mb1 must be “weak” enough to sustain a VGS equal to one overdrive plus the gate-source
voltage of M3 and M4. This is accomplished by choosing Mb1 to be a narrrow, long device.

Vb1

M1 M2

M4M3

Mb1

I1

VDD

ISS

P

Figure 9.12 Generation of cascode
gate voltage.

9.2.4 Folded-Cascode Op Amps

In order to alleviate the drawbacks of telescopic cascode op amps, namely, limited output swings and
difficulty in choosing equal input and output CM levels, a “folded-cascode” op amp can be used. As
described in Chapter 3 and illustrated in Fig. 9.13, in an NMOS or PMOS cascode amplifier, the input
device is replaced by the opposite type while still converting the input voltage to a current. In the four
circuits shown in Fig. 9.13, the small-signal current generated by M1 flows through M2 and subsequently
the load, producing an output voltage approximately equal to gm1 RoutVin . The primary advantage of the
folded structure lies in the choice of the voltage levels because it does not “stack” the cascode transistor
on top of the input device. We will return to this point later.

The folding idea depicted in Fig. 9.13 can easily be applied to differential pairs, and hence to operational
amplifiers as well. Shown in Fig. 9.14, the resulting circuit replaces the input NMOS pair with a PMOS
counterpart. Note two important differences between the two circuits. (1) In Fig. 9.14(a), one bias current,
ISS , provides the drain current of both the input transistors and the cascode devices, whereas in Fig. 9.14(b),
the input pair requires an additional bias current. In other words, ISS1 = ISS/2+ ID3 = ISS/2+ I1. Thus,
the folded-cascode configuration generally consumes more power. (2) In Fig. 9.14(a), the input CM level
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Figure 9.13 Folded-cascode amplifiers.
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Figure 9.14 (a) Telescopic and (b) folded-cascode op amp topologies.

cannot exceed Vb1 � VGS3 + VT H1, whereas in Fig. 9.14(b), it cannot be less than Vb1 � VGS3 � |VT H P |.
It is therefore possible to design the latter to allow shorting its input and output terminals with negligible
swing limitation. This is in contrast to the behavior depicted in Fig. 9.9. In Fig. 9.14(b), it is possible to
tie the n-wells of M1 and M2 to their common source point. We return to this idea in Chapters 14 and 19.

Let us now calculate the maximum output voltage swing of the folded-cascode op amp shown in
Fig. 9.15, where M5–M10 replace the ideal current sources of Fig. 9.14(b). With proper choice of Vb1 and
Vb2, the lower end of the swing is given by VO D3 + VO D5 and the upper end by VDD � (|VO D7|+ |VO D9|).
Thus, the peak-to-peak swing on each side is equal to VDD � (VO D3 + VO D5 + |VO D7| + |VO D9|). In the
telescopic cascode of Fig. 9.14(a), on the other hand, the swing is less by the overdrive of the tail current
source. We should nonetheless note that, carrying a large current, M5 and M6 in Fig. 9.15 may require a
high overdrive voltage if their capacitance contribution to nodes X and Y is to be minimized.

We now determine the small-signal voltage gain of the folded-cascode op amp of Fig. 9.15. Using the
half circuit depicted in Fig. 9.16(a) and writing |Av| = Gm Rout, we must calculate Gm and Rout. As shown
in Fig. 9.16(b), the output short-circuit current is approximately equal to the drain current of M1 because
the impedance seen looking into the source of M3, that is, (gm3 + gmb3)�1�rO3, is typically much lower
than rO1�rO5. Thus, Gm � gm1. To calculate Rout, we use Fig. 9.16(c), with RO P � (gm7 + gmb7)rO7rO9,
to write Rout � RO P�[(gm3 + gmb3)rO3(rO1�rO5)]. It follows that

|Av| � gm1{[(gm3 + gmb3)rO3(rO1�rO5)]�[(gm7 + gmb7)rO7rO9]} (9.17)
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Figure 9.15 Folded-cascode op amp with cascode PMOS loads.

Vb1

X

M3

M1

ROP

Vb1

Vout

X

Vb2

Vb3

VDD

M9

M7

M3

Vin

M1

rO5

(a)

rO1 rO5 rO1 rO5 rO1

Vb1

X

M3

Vin

M1

(b) (c)

Iout

Rout

Figure 9.16 (a) Half circuit of folded cascode op amp, (b) equivalent circuit for Gm calculation, and
(c) equivalent circuit for Rout calculation.

The reader is encouraged to repeat this calculation without neglecting the current drawn by rO5||rO1 in
Fig. 9.16(b).

How does this value compare with the gain of a telescopic op amp? For comparable device dimensions
and bias currents, the PMOS input differential pair exhibits a lower transconductance than does an NMOS
pair. Furthermore, rO1 and rO5 appear in parallel, reducing the output impedance, especially because M5

carries the currents of both the input device and the cascode branch. As a consequence, the gain in (9.17)
is usually two to three times lower than that of a comparable telescopic cascode.

It is also worth noting that the pole at the “folding point,” i.e., the sources of M3 and M4, is quite
closer to the origin than that associated with the source of cascode devices in a telescopic topology. In
Fig. 9.17(a), Ctot arises from CGS3, CSB3, CDB1, and CG D1. By contrast, in Fig. 9.17(b), Ctot contains
additional contributions due to CG D5 and CDB5, typically significant components because M5 must be
wide enough to carry a large current with a small overdrive.
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Figure 9.17 Effect of device capacitance on the nondominant pole in telescopic and folded-cascode op amps.

A folded-cascode op amp may incorporate NMOS input devices and PMOS cascode transistors.
Illustrated in Fig. 9.18, such a circuit potentially provides a higher gain than the op amp of Fig. 9.15
because of the greater mobility of NMOS devices, but at the cost of lowering the pole at the folding
points. To understand why, note that the pole at node X is given by the product of 1/(gm3 + gmb3) and the
total capacitance at this node (if the output pole is dominant). The magnitude of both of these components
is relatively high: M3 suffers from a low transconductance, and M5 contributes substantial capacitance
because it must be wide enough to carry the drain currents of both M1 and M3. In fact, for comparable
bias currents, M5–M6 in Fig. 9.18 may be several times wider than M5–M6 in Fig. 9.15. For applications
sensitive to flicker noise, the PMOS-input op amp is preferable (Sec. 9.12).
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Figure 9.18 Realization of a folded-cascode op amp.

9.2.5 Folded-Cascode Properties

Our study thus far suggests that the overall voltage swing of a folded-cascode op amp is only slightly
higher than that of a telescopic configuration. This advantage comes at the cost of higher power dissipation,
lower voltage gain, lower pole frequencies, and, as explained in Sec. 9.12, higher noise. Nonetheless,
folded-cascode op amps are used more widely for two reasons: (1) their input and output CM levels can
be chosen equal without limiting the output swings, and (2) compared to telescopic cascodes, they can
accommodate a wider input CM range. Let us elaborate on these properties.

Consider the closed-loop amplifier of Fig. 9.19(a), assuming a folded-cascode op amp. We can draw
the circuit as shown in Fig. 9.19(b) or Fig. 9.19(c), noting that the input and output CM levels are equal.
With a high open-loop gain, the gate voltages of M1 and M2 swing negligibly while VX and VY can reach
within two overdrives of ground or VDD . This should be compared with the swings in Fig. 9.10.



Razavi-3930640 book December 17, 201516:59 359

Sec. 9.2 One-Stage Op Amps 359

(a)

M1 M2

R3

R1

R4

R2

M3 M4

X Y

R3

R4

R1

R2

M1 M2

R3

R1

R4

R2

VDD

M3

M10

M6

M9

M4

X

Y

M7 M8

M5

(c)(b)
Figure 9.19 (a) Feedback amplifier, (b) implementation using a folded-cascode op amp, and (c) alternative
drawing to find allowable swings.

In feedback topologies where the input and output CM levels need not be equal, the folded cascode
allows a wider input CM range than does the telescopic cascode. In Fig. 9.18, for example, Vin,C M must
exceed VGS1,2 + (VGS11 � VT H11), but it can be as high as Vb2 +|VGS3|+ VT H1,2 before M1 and M2 enter
the triode region. Note that this upper bound can be greater than VDD (why?). Similarly, a PMOS-input
configuration can handle input CM levels as low as zero.

9.2.6 Design Procedure

We now deal with the design of folded-cascode op amps to reinforce the foregoing concepts.

� Example 9.9

Design a folded-cascode op amp with an NMOS input pair (Fig. 9.18) to satisfy the following specifications:
VDD = 3 V, differential output swing = 3 V, power dissipation = 10 mW, and voltage gain = 2000. Use the same
device parameters as in Example 9.5.

Solution

As with the telescopic cascode of the previous example, we begin with the power and swing specifications. Allocating
1.5 mA to the input pair, 1.5 mA to the two cascode branches, and the remaining 330 µA to the three current mirrors,
we first consider the devices in each cascode branch. Since M5 and M6 must each carry 1.5 mA, we allow an
overdrive of 500 mV for these transistors so as to keep their width to a reasonable value. To M3–M4, we allocate
400 mV and to M7–M10, 300 mV. Thus, (W/L)5,6 = 400, (W/L)3,4 = 313, and (W/L)7�10 = 278. Since the
minimum and maximum output levels are equal to 0.6 V and 2.1 V, respectively, the optimum output common-mode
level is 1.35 V.

The minimum dimensions of M1–M2 are dictated by the minimum input common-mode level, VGS1 + VO D11.
For example, if the input and the output CM levels are equal (Fig. 9.20), then VGS2 + VO D11 = 1.35 V. With
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M1 M2Vin

M6

M8

M4

M11

Y

M10

VDD

Figure 9.20 Folded-cascode op amp
with input and output shorted.

VO D11 = 0.4 V as an initial guess, we have VGS1 = 0.95 V, obtaining VO D1,2 = 0.95 � 0.7 = 0.25 V, and hence
(W/L)1,2 = 400. The maximum dimensions of M1 and M2 are determined by the tolerable input capacitance and
the capacitance at nodes X and Y in Fig. 9.18.

We now calculate the small-signal gain. Using gm = 2ID/(VGS � VT H ), we have gm1,2 = 0.006 A/V, gm3,4 =
0.0038 A/V, and gm7,8 = 0.05 A/V. For L = 0.5 µm, rO1,2 = rO7�10 = 13.3 k�, and rO3,4 = 2rO5,6 = 6.67 k�.
It follows that the impedance seen looking into the drain of M7 (or M8) is equal to 8.8 M� whereas, owing to the
limited intrinsic gain of M3 (or M4), that seen looking into the drain of M3 is equal to 66.5 k�. The overall gain is
therefore limited to about 400.

In order to increase the gain, we first observe that rO5,6 is quite lower than rO1,2. Thus, the length of M5–
M6 must be increased. Also, the transconductance of M1–M2 is relatively low and can be increased by widening
these transistors. Finally, we may decide to double the intrinsic gain of M3 and M4 by doubling both their length
and their width, but at the cost of increasing the capacitance at nodes X and Y . We leave the exact choice of the
device dimensions as an exercise for the reader. Note that the op amp must incorporate common-mode feedback
(Sec. 9.7).

�

Telescopic and folded-cascode op amps can also be designed to provide a single-ended output. Shown
in Fig. 9.21(a) is an example, where a PMOS cascode current mirror converts the differential currents of M3

VDD

M6

M1 M2

ISS

M5

Vin

M8M7

Vb M3 M4

Vout X

(a) (b)

VDD

M6

M1 M2

ISS

M5

Vin

M8M7

Vb1 M3 M4

Vout

Vb2

X

Figure 9.21 Cascode op amps with single-ended output.
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and M4 to a single-ended output voltage. In this implementation, however, VX = VDD �|VGS5|� |VGS7|,
limiting the maximum value of Vout to VDD � |VGS5| � |VGS7| + |VT H6| and “wasting” one PMOS
threshold voltage in the swing (Chapter 5). To resolve this issue, the PMOS load can be modified to a
low-voltage cascode (Chapter 5), as shown in Fig. 9.21(b), so that M7 and M8 are biased at the edge of
the triode region. Similar ideas apply to folded-cascode op amps as well.

The circuit of Fig. 9.21(a) suffers from two disadvantages with respect to its differential counterpart
in Fig. 9.8(b). First, it provides only half the output voltage swing. Second, it contains a mirror pole
at node X (Chapter 5), thus limiting the speed of feedback systems employing such an amplifier. It is
therefore preferable to use the differential topology, although it requires a feedback loop to define the
output common-mode level (Sec. 9.7).

9.3 Two-Stage Op Amps

The op amps studied thus far exhibit a “one-stage” nature in that they allow the small-signal current
produced by the input pair to flow directly through the output impedance, i.e., they perform voltage-to-
current conversion only once. The gain of these topologies is therefore limited to the product of the input
pair transconductance and the output impedance. We have also observed that cascoding in such circuits
increases the gain while limiting the output swings.

In some applications, the gain and/or the output swings provided by cascode op amps are not adequate.
For example, a modern op amp must operate with supply voltages as low as 0.9 V while delivering single-
ended output swings as large as 0.8 V. In such cases, we resort to “two-stage” op amps, with the first
stage providing a high gain and the second, large swings (Fig. 9.22). In contrast to cascode op amps, a
two-stage configuration isolates the gain and swing requirements.

Stage 1 Stage 2Vin Vout

High Gain High Swing

Figure 9.22 Two-stage op amp.

Each stage in Fig. 9.22 can incorporate various amplifier topologies studied in previous sections,
but the second stage is typically configured as a simple common-source stage so as to allow maximum
output swings. Figure 9.23 shows an example, where the first and second stages exhibit gains equal to
gm1,2(rO1,2�rO3,4) and gm5,6(rO5,6�rO7,8), respectively. The overall gain is therefore comparable to that

VDD

M4

M1 M2

ISS

M3

Vb1

Vin

M7 M8

Vb2

M5 M6

Vout2Vout1

X Y

Figure 9.23 Simple implementation of a two-stage op amp.
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of a cascode op amp, but the swing at Vout1 and Vout2 is equal to VDD � |VO D5,6| � VO D7,8, the highest
possible value.4

To obtain a higher gain, the first stage can incorporate cascode devices, as depicted in Fig. 9.24. With
a gain of, say, 10 in the output stage, the voltage swings at X and Y are quite small, allowing optimization
of M1–M8 for higher gain. The overall voltage gain can be expressed as

Av � {gm1,2[(gm3,4 + gmb3,4)rO3,4rO1,2]�[(gm5,6 + gmb5,6)rO5,6rO7,8]}

× [gm9,10(rO9,10�rO11,12)] (9.18)

Vb4

M10

Vout2Vout1

VDD

M5

M1 M2

ISS

Vin

M8

Vb1 M3 M4

M7

M6Vb2

Vb3

Vb4M11 M12

M9 X Y

Figure 9.24 Two-stage op amp employing cascoding.

A two-stage op amp can provide a single-ended output. One method is to convert the differential
currents of the two output stages to a single-ended voltage. Illustrated in Fig. 9.25, this approach maintains
the differential nature of the first stage, using only the current mirror M7–M8 to generate a single-ended
output.

VDD

M4

M1 M2

ISS

M3

Vb

Vin

M5 M6

Vout

M7 M8 Figure 9.25 Two-stage op amp with
single-ended output.

4One can replace M7 and M8 with resistors to allow greater swings, but the gain would be limited.
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Can we cascade more than two stages to achieve a higher gain? As explained in Chapter 10, each
gain stage introduces at least one pole in the open-loop transfer function, making it difficult to guarantee
stability in a feedback system using such an op amp. For this reason, op amps having more than two
stages are rarely used. Exceptions are described in [1, 2, 3].

9.3.1 Design Procedure

The design of two-stage op amps is somewhat more complex. We present a simple example here and
more detailed designs in Chapter 11.

� Example 9.10

Design the two-stage op amp of Fig. 9.23 for VDD = 1 V, P = 1 mW, a differential output swing of 1 Vpp , and a gain
of 100. Use the same device parameters as in Example 9.7, but assume that VT H N = 0.3 V and VT H P = �0.35 V.

Solution

We allocate a bias current of 960 µA to M1–M8, leaving 40 µA for the bias branches that generate Vb1 and Vb2. Let
us split the current budget equally between the first and second stages, i.e., assume that ID1 = • • • = I8 = 120 µA.

Since the second stage is likely to provide a voltage gain of 5 to 10, the output swing of the first stage need not
be large. Specifically, if the second stage is designed for a gain of 5 and a single-ended output swing of 0.5 Vpp ,
the first stage need only sustain 0.1 Vpp at X (or Y ). The choice of overdrive voltages for M1–M4 and ISS is
therefore quite relaxed, i.e., |VO D3| + |VO D1| + VI SS = 1 V � 0.1 V = 0.9 V. But we must consider two points: (1)
recall from Chapter 7 that the noise contributed by current sources M3 and M4 is minimized by maximizing their
overdrive voltage, and (2) the gain (and noise) requirements dictate a high gm for M1 and M2 and, inevitably, a low
overdrive voltage. In fact, the latter point typically translates to subthreshold operation for the input devices, yielding
a maximum gm of ID/(�VT ) � (325 �)�1 with � = 1.5. But, we ignore subthreshold operation in this example.

How large can the overdrive of M3 and M4 be? Since VDS3,4 = VGS5,6 in this case, the upper bound may be
imposed by M5 and M6 rather than by the first stage. For example, if the design of the second stage eventually yields
|VGS5,6| = 400 mV, and if VX (or VY ) can rise by 50 mV (for a 100-mVpp swing), then M3 and M4 experience a
minimum |VDS | of 350 mV. We must therefore revisit this allocation after the second stage is designed.

For a single-ended output swing of 0.5 Vpp , we can choose 200 mV and 300 mV for the overdrives of the output
NMOS and PMOS devices, respectively. With ID = 120 µA, we then compute the W/L values of these transistors.
However, this allocation faces two issues: (1) the large overdrive of M5 and M6 may translate to an inadequately
low gm = 2ID/(VGS � VT H ), and (2) the small overdrive of M7 and M8 gives them a high noise current. For these
reasons, we swap the overdrive allocation, giving 300 mV to M7 and M8 and 200 mV to M5 and M6. The penalty is
the larger W/L of the latter pair and hence a greater capacitance at X and Y .

We begin the calculations from the output stage. With |ID | = 120 µA and the above overdrives, we have
gm5,6 = 2|ID/(VGS � VT H )| = (833 �)�1, rO5,6 = 1/(�|ID |) = 42 k�, and rO7,8 = 83 k� (for the minimum
channel length of 0.5 µm). The second stage thus provides a gain of about 33, allowing even smaller voltage swings
for the first stage. The corresponding device dimensions are (W/L)5,6 = 200 and (W/L)7,8 = 44.

Returning to the first stage in Fig. 9.23, we note that VDS3,4 = |VGS5,6| = 550 mV. Transistors M3 and M4 can
therefore operate with an overdrive as high as 500 mV (if we still assume VX or VY can rise by 50 mV from the bias
value) but require a |VGS | of 500 mV + |VT H P | = 850 mV, and hence Vb1 = 150 mV. Such a low Vb1 may cause
difficulty in the design of the current mirror driving M3 and M4. Instead, we choose |VGS3,4 � VT H P | = 400 mV,
obtaining (W/L)3,4 = 50, gm3,4 = 1/(1.7 k�), and rO3,4 = 83 k� (for L = 0.5 µm).

The input transistors, M1 and M2, exhibit an output resistance of 83 k� (with L = 0.5 µm) and can have an
overdrive as large as 0.5 V. However, with such an overdrive, gm1,2/gm3,4 = |VGS3,4 � VT H P |/(VGS1,2 � VT H N ) =
4/5, implying that the PMOS devices contribute substantial noise. For this reason, we choose an overdrive of 100
mV for M1 and M2, arriving at gm1,2 = 1/(420 �), (W/L)1,2 = 400, and a voltage gain of gm1,2(rO1||rO3) = 66
for the first stage.

This design provides an overall gain of more than 2,000, primarily because of the low bias current and the use of
an older technology. As explained in Chapter 11, nanometer two-stage op amps suffer from much lower gains.

�
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9.4 Gain Boosting

9.4.1 Basic Idea

The limited gain of the one-stage op amps studied in Sec. 9.2 and the difficulties in using two-stage op
amps at high speeds have motivated extensive work on new topologies. Recall that in one-stage op amps,
such as telescopic and folded-cascode topologies, the objective is to maximize the output impedance so
as to attain a high voltage gain. The idea behind gain boosting is to further increase the output impedance
without adding more cascode devices [4, 5]. We neglect body effect for simplicity, but it can be readily
included at the end.

First Perspective Suppose a transistor is preceded by an ideal voltage amplifier as shown in Fig. 9.26(a).

M2

Iout
Vin

A1

M2

Iout

Vin

A1

V1 rOA1gmV1

Iout

(a) (b)
Figure 9.26 (a) Transistor preceded by a voltage amplifier, and (b) equivalent circuit.

We note that the overall circuit exhibits a transconductance of A1gm and a voltage gain of�A1gmrO (why?).
We thus surmise that this arrangement can be viewed as a three-terminal device (a “supertransistor”)
having a transconductance of A1gm and an output resistance of rO [Fig. 9.26(b)]. We neglect body effect
in this section.

Let us now incorporate this new device in a familiar topology and examine the circuit’s behavior.
We begin with the degenerated stage depicted in Fig. 9.27(a) and wish to compute its transconductance
(with the output shorted to ac ground). Since RS carries Iout, the small-signal gate voltage is given
by (Vin � RS Iout)A1, yielding a gate-source voltage of (Vin � RS Iout)A1 � RS Iout and hence Iout =
gm[(Vin � RS Iout)A1 � RS Iout]. It follows that

Iout

Vin
=

A1gm

1 + (A1 + 1)gm RS
(9.19)

M2

Iout

Vin

A1

RS

M2
A1

RS

VX

rO

I0

IX

(a) (b)
Figure 9.27 Arrangements for calculation of (a) transconductance, and (b) output resistance.
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Without A1, the transconductance would be equal to gm/(1+gm RS). Interestingly, the equivalent transcon-
ductance has risen by a factor of A1 in the numerator and A1 + 1 in the denominator, revealing that the
model shown in Fig. 9.26(b) is not quite correct. However, since in practice A1 � 1, the error introduced
by this model is acceptably low.

How about the output resistance of the degenerated stage? From the setup in Fig. 9.27(b), we can
express the voltage drop across RS as IX RS and the gate voltage of M2 as �A1 IX RS . That is, I0 =
(�A1 RS IX � RS IX )gm . Also, rO carries a current equal to (VX � RS IX )/rO . We now have

IX = (�A1 RS � RS)gm IX +
VX � RS IX

rO
(9.20)

and

Rout = rO + (A1 + 1)gmrO RS + RS (9.21)

Without A1, the output resistance would be equal to rO + gmrO RS + RS .
Equation (9.21) is a remarkable result, suggesting that the output resistance of the circuit is “boosted,”

as if the transconductance of M2 were raised by a factor of A1 + 1. This increase in Rout is afforded while
the degenerated stage retains its voltage headroom. We can see that the allowable voltage swing at the
drain of M2 is approximately the same for this structure and a simple degenerated transistor.

� Example 9.11

Determine the resistance seen at the source of M2 in Fig. 9.28(a) if � = 0.

M2
Vin

A1

VDD

RD

RX

RD

VX

IX

M2
A1

rO

I0

(a) (b)

IX

Figure 9.28

Solution

In the setup shown in Fig. 9.28(b), the small-signal gate voltage is equal to�A1VX , and hence I0 = (�A1VX �VX )gm .
Also, RD carries a current of IX , generating a voltage equal to IX RD at the drain with respect to ground. Since the
current flowing downward through rO is given by (IX RD � VX )/rO , we have at the source node

IX RD � VX

rO
+ (�A1VX � VX )gm + IX = 0 (9.22)

and

RX =
RD + rO

1 + (A1 + 1)gmrO
(9.23)

Without A1, this resistance would be equal to (RD + rO )/(1 + gmrO ). This example too suggests that the transcon-
ductance of M2 is raised by a factor of A1 + 1.

�
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In summary, the addition of the auxiliary amplifier in Fig. 9.26(b) raises the equivalent gm of M2 by a
factor of A1 + 1, thereby boosting the output impedance of the stage. We surmise from Av = �Gm Rout

that the voltage gain can also be boosted, but where should the input be applied? As in a simple cascode
stage, let us replace the degeneration resistor with a voltage-to-current converter (Fig. 9.29), obtaining
an output impedance equal to rO2 + (A1 + 1)gm2rO2rO1 + rO1. The short-circuit transconductance is
nearly equal to gm1 because the resistance seen looking into the source of M2 is obtained from (9.23)
with RD = 0 and is given by rO2/[1 + (A1 + 1)gm2rO2] � [(A1 + 1)gm2]�1, a value much less than rO1.
It follows that

|Av| � gm1[rO2 + (A1 + 1)gm2rO2rO1 + rO1] (9.24)

� gm1gm2rO1rO2(A1 + 1) (9.25)

As explained later in this section, this “gain-boosting” technique can be applied to cascode differential
pairs and op amps as well.

M2

A1

M1

VDD

Vout

Vb

P

Super Transistor

Vin

Figure 9.29 Basic gain-boosted stage.

Second Perspective Consider the degenerated stage shown in Fig. 9.30(a). We wish to increase the
output resistance without stacking more cascode devices. Recall from Chapter 3 that if the drain voltage
changes by �V , then the source voltage changes by �VS = RS/[rO + (1 + gmrO)RS] (with � = 0),
producing a change in the voltage across RS and hence in the drain current. We can loosely view the
effect as voltage division between RS and gmrO RS .

M2
A1

RS

VX

rO

I0

IX

Vb

�V

P

M2

RS

VX

rO

I0

IX

Vb

�V

P
�VS

(a) (b)

RS

gm rO RS VX

�V

RS

VX

�V

A1 gm rO RS

Figure 9.30 Response of (a) degenerated CS stage and (b) gain-boosted stage to a change in output voltage.

We now make an important observation. The change in the drain current in response to �V can be
suppressed if two conditions hold: (a) the voltage across RS remains constant, and (b) the current flowing
through RS remains equal to the drain current.5 How should we keep VP constant? We can compare VP to

5A constant voltage source tied from P to ground allows the former condition but not the latter.
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a “reference” voltage by means of an op amp and return the resulting error to a point in the circuit so as to
ensure that VP “tracks” the reference. Illustrated in Fig. 9.30(b), the idea is to apply the error, A1(Vb�VP),
to the gate of M2, forcing VP to be equal to Vb if the loop gain is large. The above two conditions are thus
satisfied. For example, if the drain voltage rises, VP also tends to rise, but, as a result, the gate voltage
falls, reducing the current drawn by M2. As derived below, this effect can be approximately viewed as
voltage division between RS and A1gmrO RS . For A1 	 
, VP is “pinned” to Vb and the drain current is
exactly equal to Vb/RS regardless of the drain voltage. This topology is also called a “regulated cascode”
as amplifier A1 monitors and regulates the output current.

� Example 9.12

Figure 9.31 shows the regulated cascode subjected to an output impedance test. Determine the small-signal values
of VP , VG , I0, and Iro. Assume that (A1 + 1)gmrO RS is large.

M2
A1

RS

VX

rO

I0

IX

P

VG

Iro

Figure 9.31

Solution

We know from our analysis of Fig. 9.27(b) that

VX = [rO + (A1 + 1)gmrO RS + RS]IX (9.26)

and hence

VP = IX RS (9.27)

=
RS

rO + (A1 + 1)gmrO RS + RS
VX (9.28)

If (A1 + 1)gmrO RS is large, then VP � VX /[(A1 + 1)gmrO ], implying that the amplifier suppresses the change in
the voltage across RS by another factor of A1 + 1 compared to the case of a simple degenerated transistor. We also
have

VG = �A1VP (9.29)

=
�A1 RS

rO + (A1 + 1)gmrO RS + RS
VX (9.30)

The small-signal gate-source voltage is equal to VG � VP � �VX /(gmrO ), yielding I0 � �VX /rO . Moreover,

Iro =
VX � VP

rO
(9.31)

=
rO + (A1 + 1)gmrO RS

rO + (A1 + 1)gmrO RS + RS

VX

rO
(9.32)

�
VX

rO
(9.33)
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Interestingly, I0 and Iro are nearly equal and opposite. That is, the amplifier adjusts the gate voltage such that the
change in the intrinsic drain current, I0, almost cancels the current drawn by rO . We say that the small-signal current
of M2 circulates through rO .

�

In summary, the above two perspectives portray two principles behind the gain-boosting technique: the
amplifier boosts the gm of the cascode device, or the amplifier regulates the output current by monitoring
and pinning the source voltage.

9.4.2 Circuit Implementation

In this section, we deal with the implementation of the auxiliary amplifier in the regulated cascode and
extend the gain-boosting technique to op amps. The simplest realization of A1 is a common-source stage, as
shown in Fig. 9.32(a). If I1 is ideal, then |A1| = gm3rO3, yielding |Vout/Vin| � gm1rO1gm2rO2(gm3rO3+1),
as in a triple cascode. However, this topology limits the output voltage swing because the minimum
voltage at node P is dictated by VGS3 rather than the overdrive of M1. We note that Vout must remain
above VGS3 + (VGS2 � VT H2) here.

I3
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M1Vin

VDD

Vout

P

I1

G

I2

M3M4
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Vb

A1

(c)
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M1Vin

VDD
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P

I1

A1
G

I2

M3M2

M1Vin

VDD

Vout

P

G

I2

M3

VDD

I1

A1

(a) (b)

Figure 9.32 Gain-boosted amplifier using (a) an NMOS CS stage, (b) a PMOS CS stage, and
(c) a folded-cascode stage.

To avoid this headroom limitation, we consider a PMOS common-source stage for A1 [Fig. 9.32(b)].
The operation and gain-boosting properties remain the same, but VP can now be as low as the overdrive
of M1. Unfortunately, M3 may enter the triode region here because the gate voltage of M2 tends to be too
high for the drain of M3. Specifically, if we target VP = VGS1 � VT H1, then VG = VGS2 + VGS1 � VT H1,
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revealing that the drain of M3 is higher than its gate by VGS2. If VGS2 > |VT H3|, M3 resides in the triode
region.

The above analysis implies that we must insert one more stage in the feedback loop so as to reach
compatible bias levels between consecutive stages. Let us interpose an NMOS common-gate stage be-
tween M3 and the gate of M2 [Fig. 9.32(c)]. The reader recognizes the resulting A1 topology as a folded
cascode, but we also observe that M4 provides an upward level shift from its source to its drain, allowing
VG to be higher than the drain voltage of M3.

� Example 9.13

Determine the allowable range for Vb in Fig. 9.32(c).

Solution

The minimum value of Vb places I1 at the edge of the triode region, i.e., Vb,min = VGS4 + VI 1. The maximum value
biases M4 at the edge of the triode region, i.e., Vb,max = VGS2 + VP + VT H4. Thus, Vb has a comfortably wide
range and need not be precise.

�

We now apply gain boosting to a differential cascode stage, as shown in Fig. 9.33(a). Since the signals
at nodes X and Y are differential, we surmise that the two single-ended gain-boosting amplifiers A1 and
A2 can be replaced by one differential amplifier [Fig. 9.33(b)]. Following the topology of Fig. 9.32(a), we
implement the differential auxiliary amplifier as shown in Fig. 9.33(c), but noting that the minimum level
at the drain of M3 is equal to VO D3 + VGS5 + VI SS2, where VI SS2 denotes the voltage required across ISS2.
In a simple differential cascode, on the other hand, the minimum would be approximately one threshold
voltage lower.

(c)(a) (b)

M1 M2

ISS

Vin

M3 M4

M1 M2

ISS1

Vin

M3 M4

M6M5

ISS2

I2I1

M1 M2

ISS

Vin

M3 M4

X Y

A1 A2

X Y
X Y

Figure 9.33 Boosting the output impedance of a differential cascode stage.

The voltage swing limitation in Fig. 9.33(c) results from the fact that the gain-boosting amplifier
incorporates an NMOS differential pair. If nodes X and Y are sensed by a PMOS pair, the minimum
value of VX and VY is not dictated by the gain-boosting amplifier. Now recall from Sec. 9.2 that the
minimum input CM level of a folded-cascode stage using a PMOS input pair can be zero. Thus, we
employ such a topology for the gain-boosting amplifier, arriving at the circuit shown in Fig. 9.34. Here,
the minimum allowable level of VX and VY is given by VO D1,2 + VI SS1.
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M1 M2

ISS1

M3 M4

M7 M8

I2I1

Vb Vb

ISS2

M5 M6
X Y

Figure 9.34 Folded-cascode circuit used as auxiliary amplifier.

� Example 9.14

Calculate the output impedance of the circuit shown in Fig. 9.34.

Solution

Using the half-circuit concept and replacing the ideal current sources with transistors, we obtain the equivalent
depicted in Fig. 9.35. The voltage gain from X to P is approximately equal to gm5 Rout1, where Rout1 � [gm7rO7
(rO9�rO5)]�(gm11rO11rO13). Thus, Rout � gm3rO3rO1gm5 Rout1. In essence, since the output impedance of a
cascode is boosted by a folded-cascode stage, the overall output impedance is similar to that of a “quadruple”
cascode.

M1

M3

M7
M5

X

Vb1

M11

M13

Vb3

Vb4

Vb2

Vin

Rout

Auxiliary Ampli�er

M9

P

Figure 9.35

�

Regulated cascodes can also be utilized in the load current sources of a cascode op amp. Shown
in Fig. 9.36(a), such a topology boosts the output impedance of the PMOS current sources as well,
thereby achieving a very high voltage gain. To allow maximum swings at the output, amplifier A2 must
employ an NMOS-input folded-cascode differential pair. Similar ideas apply to folded-cascode op amps
[Fig. 9.36(b)].
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M1 M2

ISS

Vin

M3 M4

Vout

M5 M6

M7 M8
Vb

VDD

A2

A1

M1 M2

ISS

Vin M3 M4

Vout

M5 M6

M7 M8
Vb1

VDD

A2

A1

Vb2
M9 M10

(a) (b)
Figure 9.36 Gain boosting applied to both signal path and load devices.

9.4.3 Frequency Response

Recall that the premise behind gain boosting is to increase the gain without adding a second stage or
more cascode devices. Does this mean that the op amps of Fig. 9.36 have a one-stage nature? After all,
the gain-boosting amplifier introduces its own pole(s). In contrast to two-stage op amps, where the entire
signal experiences the poles associated with each stage, in a gain-boosted op amp, most of the signal
flows directly through the cascode devices to the output. Only a small “error” component is processed
by the auxiliary amplifier and “slowed down.”

In order to analyze the frequency response of the regulated cascode, we simplify the circuit to that
shown in Fig. 9.37, where the auxiliary amplifier contains one pole at �0, A1(s) = A0/(1 + s/�0), and
only the load capacitance, CL , is included. We wish to determine Vout/Vin = �Gm Zout. To compute
Gm(s) (with the output node grounded), we note from Example 9.11 that the impedance seen looking
into the source of M2 is equal to rO2/[1 + (A1 + 1)gm2rO2], and divide the drain current of M1 between
this impedance and rO1:

Gm(s) = gm1
rO1

rO1 +
rO2

1 + (A1 + 1)gm2rO2

(9.34)

=
gm1rO1[1 + (A1 + 1)gm2rO2]

rO1 + (A1 + 1)gm2rO2rO1 + rO2
(9.35)

M2

A1(s)

M1Vin

Vb

P

CL

Vout

Zout

Figure 9.37 Circuit for analysis of fre-
quency response.
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Now, we calculate Zout(s) as the parallel combination of CL and the impedance seen looking into the
drain of M2. From Eq. (9.21), we have

Zout = [rO1 + (A1 + 1)gm2rO2rO1 + rO2]||
1

CLs
(9.36)

It follows that

Vout

Vin
(s) = �Gm(s)Zout(s) (9.37)

=
�gm1rO1[1 + (A1 + 1)gm2rO2]

(rO1 + rO2)CLs + (A1 + 1)gm2rO2rO1CLs + 1
(9.38)

While it is tempting to assume that A1 � 1 and hence neglect some terms, we must bear in mind that A1

falls at high frequencies. Replacing A1 with A0/(1 + s/�0) yields

Vout

Vin
(s) =

�gm1rO1[(1 + gm2rO2)
s

�0
+ (A0 + 1)gm2rO2 + 1]

(rO1 + rO2)CL

�0
[1 + gm2(rO2||rO1)]s2 + [(rO1 + rO2)CL + (A0 + 1)gm2rO2rO1CL +

1

�0
]s + 1

(9.39)

It is interesting to note that, if we had assumed A1 to be large for Gm and Zout calculations, we would
have obtained a first-order transfer function. The circuit exhibits a zero in the left half plane given by

|�z| � (A0 + 1)�0 (9.40)

if gm2rO2 � 1. Produced by the path through A1, this zero is on the order of the unity-gain bandwidth of
the auxiliary amplifier.

To estimate pole frequencies, we assume that one is much greater than the other and apply the dominant-
pole approximation (Chapter 6). The dominant pole is given by the inverse of the coefficient of s in the
denominator of (9.39):

|�p1| =
1

[rO1 + (A0 + 1)gm2rO2rO1 + rO2]CL +
1

�0

(9.41)

�
1

A0gm2rO2rO1CL
(9.42)

The first time constant in the denominator of (9.41) corresponds to the output pole if A1 were ideal, i.e.,
if �0 = 
. The nondominant pole is equal to the ratio of the coefficients of s and s2:

|�p2| =
[rO1 + (A0 + 1)gm2rO2rO1 + rO2]CL +

1

�0
(rO1 + rO2)CL

�0
[1 + gm2(rO1||rO2)]

(9.43)

� (A0 + 1)�0 +
1

gm2rO2rO1CL
(9.44)

if gm2(rO1||rO2) � 1 (not necessarily a good approximation, but just to see trends). We observe that
the second pole is somewhat above the unity-gain bandwidth of the original cascode, (gm2rO2rO1CL)�1.
Note that the term 1/(gm2rO2rO1CL) also represents the output pole in the absence of A1.
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� Example 9.15

Is the dominant-pole approximation valid here?

Solution

Assuming (A0 + 1)gm2rO2rO1 � rO1, rO2, we find the ratio of (9.44) and (9.41):

�p2

�p1
�

�
(A0 + 1)�0 +

1

gm2rO2rO1CL

��
(A0 + 1)gm2rO2rO1CL +

1

�0

�
(9.45)

� (A0 + 1)2gm2rO2rO1CL�0 + 2(A0 + 1) +
1

gm2rO2rO1CL�0
(9.46)

The second term is typically much greater than unity, making the approximation valid.
�

Figure 9.38 plots the approximate frequency response of the cascode structure before and after gain
boosting. The key point here is that the auxiliary amplifier contributes a second pole located above the
original �3-dB bandwidth by an amount equal to A0�0.

1 �
(log scale)

Vout
Vin

(log scale)

0 dB

A0gm1rO1gm2rO2

gm1rO1gm2rO2

A0gm1rO1gm2rO2CL

gm2rO2rO1CL
1

gm2rO2rO1CL
1  + A0�0

Regulated
Cascode

Original
Cascode

Figure 9.38 Frequency response of gain-boosted stage.

9.5 Comparison

Our study of op amps in this chapter has introduced four principal topologies: telescopic cascode, folded
cascode, two-stage op amp, and gain boosting. It is instructive to compare various performance aspects
of these circuits to gain a better view of their applicability. Table 9.1 comparatively presents important
attributes of each op amp topology. We study the speed differences in Chapter 10.

9.6 Output Swing Calculations

In today’s low-voltage op amp designs, the output voltage swing proves the most important factor. We
have seen in previous sections how to assume a certain required output swing and accordingly allocate
overdrive voltages to the transistors. But how do we verify that the final design indeed accommodates the
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Table 9.1 Comparison of performance of various op amp topologies.

Telescopic
Folded�Cascode
Two�Stage
Gain�Boosted

Gain
Output
Swing

Speed
Power

Dissipation
Noise

Medium
Medium

Medium
Medium

High
High

Highest
Medium

Highest
High
Low

Medium Medium

Low
Medium
Medium

Low
Medium

Low
High

specified swing? To answer this question, we must first ask, what exactly happens if the circuit cannot
sustain the swing? Since the border between the saturation and triode regions begins to diminish in
nanometer devices, we cannot readily decide on the operation region of the transistors at the extremes of
the output swing. A more rigorous approach is therefore necessary.

If the output voltage excursion pushes a transistor into the triode region, then the voltage gain drops. We
can thus use simulations to examine the gain as the output swing grows. Illustrated in Fig. 9.39(a), the idea
is to apply to the input a growing sinusoid (or different sinusoidal amplitudes in different simulations),
monitor the resulting output, and calculate |Vout/Vin| as Vin and Vout grow. The gain begins to drop as
the output swing reaches its maximum “allowable” voltage, V1. We may even choose V1 to allow a small
drop in the gain, say, 10% (about 1 dB). Beyond V1, the gain falls further, causing significant nonlinearity.

Vin

Vout
Vin

V1

R2

R1

Vout

(a) (b)
Figure 9.39 (a) Simulation of gain versus input amplitude, and (b) feedback amplifier.

The reader may wonder how much gain reduction is acceptable. In some applications, the reduction
of the open-loop gain, and hence the gain error of the closed-loop system, are critical (Chapter 13).
In other applications, we are concerned with the output distortion of the closed-loop circuit. In such a
case, we place the op amp in the closed-loop environment of interest, e.g., the inverting configuration
of Fig. 9.39(b), apply a sinusoid to the input, and measure the distortion (harmonics) at the output
in simulations. The maximum output amplitude that yields an acceptable distortion is considered the
maximum output swing.

9.7 Common-Mode Feedback

9.7.1 Basic Concepts

In this and previous chapters, we have described many advantages of fully differential circuits over their
single-ended counterparts. In addition to greater output swings, differential op amps avoid mirror poles,
thus achieving a higher closed-loop speed. However, high-gain differential circuits require “common-
mode feedback” (CMFB).

To understand the need for CMFB, let us begin with a simple realization of a differential amplifier
[Fig. 9.40(a)]. In some applications, we short the inputs and outputs for part of the operation [Fig. 9.40(b)],
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M1 M2

RD

VDD

RD

Vout

ISS

Vin
M1 M2

RD

VDD

RD

Vout

ISS

(a) (b)
Figure 9.40 (a) Simple differential pair; (b) circuit with inputs shorted to outputs.

providing differential negative feedback. The input and output common-mode levels in this case are fairly
well defined, equal to VDD � ISS RD/2.

Now suppose the load resistors are replaced by PMOS current sources so as to increase the differential
voltage gain [Fig. 9.41(a)]. What is the common-mode level at nodes X and Y ? Since each of the input
transistors carries a current of ISS/2, the CM level depends on how close ID3 and ID4 are to this value. In
practice, as exemplified by Fig. 9.41(b), mismatches in the PMOS and NMOS current mirrors defining
ISS and ID3,4 create a finite error between ID3,4 and ISS/2. Suppose, for example, that the drain currents
of M3 and M4 in the saturation region are slightly greater than ISS/2. As a result, to satisfy Kirchhoff’s
current law at nodes X and Y , both M3 and M4 must enter the triode region so that their drain currents
fall to ISS/2. Conversely, if ID3,4 < ISS/2, then both VX and VY must drop so that M5 enters the triode
region, thereby producing only 2ID3,4.

VDD

M1 M2

ISS

Vb

Vout

VDD

M1 M2

Vout
XX YY

M4M3 M4M3

M5Mb1

2

W
L

W
L

W
L

W
L

W
L

Mb2

(a) (b)

ISS

Figure 9.41 (a) High-gain differential pair with inputs shorted to outputs, and (b) effect of current mismatches.

The above difficulties fundamentally arise because in high-gain amplifiers, we wish a p-type current
source [e.g., M3 and M4 in Fig. 9.41(b)] to balance an n-type current source (e.g., M5). As illustrated
in Fig. 9.42, the difference between IP and IN must flow through the intrinsic output impedance of the
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IP

IN

RP

RN

IP � IN

VDD

Figure 9.42 Simplified model of high-
gain amplifier.

amplifier, creating an output voltage change of (IP � IN )(RP�RN ). Since the current error depends on
mismatches and RP�RN is quite high, the voltage error may be large, thus driving the p-type or n-type
current source into the triode region. As a general rule, if the output CM level cannot be determined by
“visual inspection” and requires calculations based on device properties, then it is poorly defined. This
is the case in Fig. 9.41 but not in Fig. 9.40. We emphasize that differential feedback cannot define the
CM level.

Students often make two mistakes here. First, they assume that differential feedback corrects the output
common-mode level. As explained for the simple circuit of Fig. 9.41(a), differential feedback from X
and Y to the inputs cannot prohibit the output CM level from taking off toward VDD or ground. Second,
they finely adjust Vb in simulations so as to bring VX and VY to around VDD/2 concluding that the circuit
does not need CM feedback. We have recognized, however, that random mismatches between the top
and bottom current sources cause the CM level to fall or rise considerably. Such mismatches are always
present in actual circuits and cause the op amp to fail if no CMFB is used.

� Example 9.16

Consider the telescopic op amp designed in Example 9.5 and repeated in Fig. 9.43 with bias current mirrors. Suppose
M9 suffers from a 1% current mismatch with respect to M10, producing ISS = 2.97 mA rather than 3 mA. Assuming
perfect matching for other transistors, explain what happens in the circuit.

VDD

M5

M1 M2Vin

M8

Vb1 M3 M4

Vout

M7

M6Vb2

M11

M9

X Y
R1

300 µA

M10
ISS = 2.97 mA

Figure 9.43

Solution

From Example 9.5, the single-ended output impedance of the circuit equals 266 k�. Since the difference between
the drain currents of M3 and M5 (and M4 and M6) is 30 µA/2 = 15 µA, the output voltage error would be
266 k�× 15 µA= 3.99 V. Since this large error cannot be produced, VX and VY must rise so much that M5–M6 and
M7–M8 enter the triode region, yielding ID7,8 = 1.485 mA. We should also mention that another important source
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of CM error in the simple biasing scheme of Fig. 9.43 is the deterministic error between ID7,8 and ID11 (and also
between ID9 and ID10) due to their different drain-source voltages. This error can nonetheless be reduced by means
of the current mirror techniques of Chapter 5.

�

The foregoing study implies that in high-gain amplifiers, the output CM level is sensitive to device
properties and mismatches and it cannot be stabilized by means of differential feedback. Thus, a common-
mode feedback network must be added to sense the CM level of the two outputs and adjust one of the
bias currents in the amplifier. Following our view of feedback systems in Chapter 8, we divide the task
of CMFB into three operations: sensing the output CM level, comparison with a reference, and returning
the error to the amplifier’s bias network. Figure 9.44 conceptually illustrates the idea.

M1 M2

VDD

CM Level
Sense
Circuit

VREF

Vout1

Vout2

Figure 9.44 Conceptual topology for
common-mode feedback.

9.7.2 CM Sensing Techniques

In order to sense the output CM level, we recall that Vout,C M = (Vout1 +Vout2)/2, where Vout1 and Vout2 are
the single-ended outputs. It therefore seems plausible to employ a resistive divider as shown in Fig. 9.45,
generating Vout,C M = (R1Vout2 + R2Vout1)/(R1 + R2), which reduces to (Vout1 + Vout2)/2 if R1 = R2.
The difficulty, however, is that R1 and R2 must be much greater than the output impedance of the op
amp so as to avoid lowering the open-loop gain. For example, in the design of Fig. 9.43, the output
impedance equals 266 k�, necessitating a value of several megaohms for R1 and R2. As explained in
Chapter 18, such large resistors occupy a very large area and, more important, suffer from substantial
parasitic capacitance to the substrate.

R1 R2
Vout2Vout1

Vout,CM

Figure 9.45 Common-mode feedback
with resistive sensing.

To eliminate the resistive loading, we can interpose source followers between each output and its
corresponding resistor. Illustrated in Fig. 9.46, this technique produces a CM level that is in fact lower
than the output CM level by VGS7,8, but this shift can be taken into account in the comparison operation.
Note that R1 and R2 or I1 and I2 must be large enough to ensure that M7 or M8 is not “starved” when
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R1 R2

Vout,CM

VDD

M8M7

I1 I2
M3 M4

M5 M6

Vout1 Vout2

Figure 9.46 Common-mode feedback using source followers.

a large differential swing appears at the output. As conceptually depicted in Fig. 9.47, if, say, Vout2 is
quite higher than Vout1, then I1 must sink both IX � (Vout2 � Vout1)/(R1 + R2) and ID7. Consequently, if
R1 + R2 or I1 is not sufficiently large, ID7 drops to zero and Vout,C M no longer represents the true output
CM level.

M8

M7

VDD

R1

R2

I1

I2IX

Vout1

Vout2Vout,CM

Figure 9.47 Current starvation of
source followers for large swings.

The sensing method of Fig. 9.46 nevertheless suffers from an important drawback: it limits the differ-
ential output swings (even if R1,2 and I1,2 are large enough). To understand why, let us determine the min-
imum allowable level of Vout1 (and Vout2), noting that without CMFB, it would be equal to VO D3 + VO D5.
With the source followers in place, Vout1,min = VGS7 + VI 1, where VI 1 denotes the minimum voltage
required across I1. This is roughly equal to two overdrive voltages plus one threshold voltage. Thus, the
swing at each output is reduced by approximately VT H , a significant value in low-voltage design.

Looking at Fig. 9.45, the reader may wonder if the output CM level can be sensed by means of
capacitors, rather than resistors, so as to avoid degrading the low-frequency open-loop gain of the op
amp. This is indeed possible in some cases and will be studied in Chapter 13.

Another type of CM sensing is depicted in Fig. 9.48(a). Here, identical transistors M7 and M8 operate
in the deep triode region, introducing a total resistance between P and ground equal to

Rtot = Ron7�Ron8 (9.47)

=
1

µnCox
W

L
(Vout1 � VT H )

����
1

µnCox
W

L
(Vout2 � VT H )

(9.48)

=
1

µnCox
W

L
(Vout2 + Vout1 � 2VT H )

(9.49)
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Vout2
Vout1 P

M7 M8

P

M7 M8
Vout1

VTH

Vout2

(a) (b)
Figure 9.48 (a) Common-mode sensing using MOSFETs operating in the deep triode region, and (b) output
levels placing M7 at the edge of saturation.

where W/L denotes the aspect ratio of M7 and M8. Equation (9.49) indicates that Rtot is a function
of Vout2 + Vout1 but independent of Vout2 � Vout1. From Fig. 9.48(a), we observe that if the outputs rise
together, then Rtot drops, whereas if they change differentially, one Ron increases and the other decreases.
This resistance can thus be utilized as a measure of the output CM level.

In the circuit of Fig. 9.48(a), the use of M7 and M8 limits the output voltage swings. Here, it may seem
that Vout,min = VT H7,8, which is relatively close to two overdrive voltages, but the difficulty arises from
the assumption above that both M7 and M8 operate in the deep triode region. In fact, if, say, Vout1 drops
from the equilibrium CM level to about one threshold voltage above ground [Fig. 9.48(b)] and Vout2 rises
by the same amount, then M7 enters the saturation region, thus exhibiting a variation in its on-resistance
that is not counterbalanced by that of M8.

It is important to bear in mind that CM sensing must produce a quantity independent of the differential
signals. The following example illustrates this point.

� Example 9.17

A student simulates the step response of a closed-loop op amp circuit [e.g., that in Fig. 9.48(a)] and observes the
output waveforms shown in Fig. 9.49. Explain why Vout1 and Vout2 do not change symmetrically.

t

Vout1

Vout2

t1 t2

VCM

Figure 9.49

Solution

As evident from the waveforms, the output CM level changes from t1 to t2, indicating that the CM sensing mechanism
is nonlinear and interprets the CM levels at t1 and t2 differently. For example, if M7 or M8 in Fig. 9.48 does not
remain in the deep triode region at t2, then Eq. (9.49) no longer holds and VC M becomes a function of the differential
signals.

�
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Another CM sensing method is illustrated in Fig. 9.50. Here, the differential pairs compare the inputs
with VREF, generating a current, IC M , in proportion to the input CM level. To prove this point, we write
the small-signal drain currents of M2 and M4 as (gm/2)Vout1 and (gm/2)Vout2, respectively, concluding
that IC M � Vout1 + Vout2. This current can be copied to current sources within the op amp with negative
feedback so as to keep Vout,C M approximately equal to VREF.

M1 M2 M4 M3

Vb

Vout1 Vout2

ICM

To Current Sources
in Op Amp

Figure 9.50 CM sensing circuit with high nonlinearity.

The foregoing topology faces serious issues. As Vout1 and Vout2 experience large swings, Iout no longer
remains proportional to Vout1 +Vout2 due to the nonlinearity of the differential pairs. In fact, if ID1 and ID2

are expressed as f (Vout1 � VREF) and f (Vout2 � VREF), respectively, we observe that ID1 + ID2 depends
on the individual values of Vout1 and Vout2 unless f () is a linear function. As a result, the reconstructed
CM level does not remain constant in the presence of large differential output swings.

9.7.3 CM Feedback Techniques

We now study techniques of comparing the measured CM level with a reference and returning the error to
the op amp’s bias network. In the circuit of Fig. 9.51, we employ a simple amplifier to detect the difference
between Vout,C M and a reference voltage, VREF, applying the result to the NMOS current sources with
negative feedback. If both Vout1 and Vout2 rise, so does VE , thereby increasing the drain currents of M3–M4

and lowering the output CM level. In other words, if the loop gain is large, the feedback network forces the
CM level of Vout1 and Vout2 to approach VREF. Note that the feedback can be applied to the PMOS current
sources as well. Also, the feedback may control only a fraction of the current to allow optimization of

R1 R2
Vout2Vout1

Vout,CM
M1 M2

ISS

Vin

VREF

VDD

M3 M4

V
E

Figure 9.51 Sensing and controlling output CM level.
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the settling behavior. For example, each of M3 and M4 can be decomposed into two parallel devices, one
biased at a constant current and the other driven by the error amplifier.

In a folded-cascode op amp, the CM feedback may control the tail current of the input differential pair.
Illustrated in Fig. 9.52, this method increases the tail current if Vout1 and Vout2 rise, lowering the drain
currents of M5–M6 and restoring the output CM level.

R1 R2
Vout2Vout1Vout,CMM1 M2

Vin

VDD

VREF

M5

M6

Figure 9.52 Alternative method of controlling output CM level.

How do we perform comparison and feedback with the sensing scheme of Fig. 9.48? Here, the output
CM voltage is directly converted to a resistance or a current, prohibiting comparison with a reference
voltage. A simple feedback topology utilizing this technique is depicted in Fig. 9.53, where Ron7�Ron8

adjusts the bias current of M5 and M6. The output CM level sets Ron7�Ron8 such that ID5 and ID6 exactly
balance ID9 and ID10, respectively. For example, if Vout1 and Vout2 rise, Ron7||Ron8 falls and the drain
currents of M5 and M6 increase, pulling Vout1 and Vout2 down. Assuming that ID9 = ID10 = ID , we must
have Vb � VGS5 = 2ID(Ron7�Ron8), and hence Ron7�Ron8 = (Vb � VGS5)/(2ID). From (9.49),

1

µnCox

�
W

L

�

7,8
(Vout2 + Vout1 � 2VT H )

=
Vb � VGS5

2ID
(9.50)

Vout2

P

M7 M8

Vout1

M5 M6

VDDM9 M10

Vb

Figure 9.53 CMFB using triode
devices.
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that is,

Vout1 + Vout2 =
2ID

µnCox

�
W

L

�

7,8

1

Vb � VGS5
+ 2VT H (9.51)

The CM level can thus be obtained by noting that VGS5 =
�

2ID/[µnCox (W/L)5] + VT H5.
The CMFB network of Fig. 9.53 suffers from several drawbacks. First, the value of the output CM

level is a function of device parameters. Second, the voltage drop across Ron7�Ron8 limits the output
voltage swings. Third, to minimize this drop, M7 and M8 are usually quite wide devices, introducing
substantial capacitance at the output. The second issue can be alleviated by applying the feedback to the
tail current of the input differential pair (Fig. 9.54), but the other two remain.

Vout2

M7 M8

Vout1
M1 M2

Vin

VDD

VbM9

M3 M4

M5

M6

M12

M13

M10 M11

Figure 9.54 Alternative method of controlling output CM level.

How is Vb generated in Fig. 9.54? We note that Vout,C M is somewhat sensitive to the value of Vb: if
Vb is higher than expected, the tail current of M1 and M2 increases and the output CM level falls. Since
the feedback through M7 and M8 attempts to correct this error, the overall change in Vout,C M depends on
the loop gain in the CMFB network. This is studied in the following example.

� Example 9.18

For the circuit of Fig. 9.54, determine the sensitivity of Vout,C M to Vb, i.e., dVout,C M/dVb.

Solution

Setting Vin to zero and opening the loop at the gates of M7 and M8, we simplify the circuit as shown in Fig. 9.55.
Note that gm7 and gm8 must be calculated in the triode region: gm7 = gm8 = µnCox (W/L)7,8VDS7,8, where VDS7,8
denotes the bias value of the drain-source voltage of M7 and M8. Since M7 and M8 operate in the deep triode region,
VDS7,8 is typically less than 100 mV.

In a well-designed circuit, the loop gain must be relatively high. We therefore surmise that the closed-loop gain
is approximately equal to 1/	, where 	 represents the feedback factor. We write from Chapter 8:

	 =
V2

V1
|I 2=0 (9.52)

= �(gm7 + gm8)(Ron7�Ron8) (9.53)
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Feedback Network

M1 + M2 M5 + M6

M9Vb

Ron7 Ron8

rO3 rO4

Vout,CM
gm12 rO12 rO10

2
IF

IF = (gm7 + gm8)  Vout,CM 

Vout,CM

Figure 9.55

= �2µnCox

�
W

L

�

7,8
VDS7,8 •

1

2µnCox (W/L)7,8(VGS7,8 � VT H7,8)
(9.54)

= �
VDS7,8

VGS7,8 � VT H7,8
(9.55)

where VGS7,8 � VT H7,8 denotes the overdrive voltage of M7 and M8. Thus,

				
dVout,C M

dVb

				
closed

�
VGS7,8 � VT H7,8

VDS7,8
(9.56)

This is an important result. Since VGS7,8 (i.e., the output CM level) is typically in the vicinity of VDD/2, the above
equation suggests that VDS7,8 must be maximized to minimize this sensitivity, but at the cost of the loop gain.

�

We now introduce a modification to the circuit of Fig. 9.54 that both makes the output level relatively
independent of device parameters and lowers the sensitivity to the value of Vb. Illustrated in Fig. 9.56(a),
the idea is to define Vb by a current mirror arrangement such that ID9 “tracks” I1 and VREF. For simplicity,
suppose (W/L)15 = (W/L)9 and (W/L)16 = (W/L)7+(W/L)8. Thus, ID9 = I1 only if Vout,C M = VREF.
In other words, as with Fig. 9.52, the circuit produces an output CM level equal to a reference but it requires
no resistors in sensing Vout,C M . The overall design can be simplified as shown in Fig. 9.56(b).

In practice, since VDS15 �= VDS9, channel-length modulation results in a finite error. Figure 9.57 depicts
a modification that suppresses this error. Here, transistors M17 and M18 reproduce at the drain of M15 a
voltage equal to the source voltage of M1 and M2, ensuring that VDS15 = VDS9.

To arrive at another CM feedback topology, let us consider the simple differential pair shown in
Fig. 9.58(a). Here, the output CM level, VDD � |VGS3,4|, is relatively well defined, but the voltage gain is
quite low. To increase the differential gain, the PMOS devices must operate as current sources for differ-
ential signals. We therefore modify the circuit as depicted in Fig. 9.58(b), where for differential changes
at Vout1 and Vout2, node P is a virtual ground and the gain can be expressed as gm1,2(rO1,2�rO3,4�RF ). We
preferably choose RF � rO1,2||rO3,4. For common-mode levels, on the other hand, M3 and M4 operate
as diode-connected devices. The circuit proves useful in low-gain applications.
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Figure 9.56 Modification of CMFB for more accurate definition of output CM level.
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Figure 9.57 Modification to suppress error due to channel-length modulation.
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Vin
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RF RF

P
VDD

M4M3
RF RF

P

(c)(a) (b)
Figure 9.58 (a) Differential pair using diode-connected loads, (b) resistive CMFB, and (c) modification to allow
low-voltage operation.

� Example 9.19

Determine the maximum allowable output swings in Fig. 9.58(b).

Solution

Each output can fall to two overdrive voltages above ground if Vin,C M is chosen to place ISS at the edge of
the triode region. The highest level allowed at the output is equal to the output CM level plus |VT H3,4|, i.e.,
VDD � |VGS3,4| + |VT H3,4| = VDD � |VGS3,4 � VT H3,4|. �

In some applications, we wish to operate the circuit of Fig. 9.58(b) with a low supply voltage, but for
small signals. This stage dictates a minimum VDD of |VGS3,4| plus two overdrive voltages. We modify the
circuit by drawing a small current from the two resistors and PMOS devices as illustrated in Fig. 9.58(c).
Here, VP is still equal to VDD � |VGS3,4|, but the drain voltages are higher than VP by an amount equal
to I1 RF/2. For example, if I1 RF/2 = |VT H3,4|, then the PMOS devices operate at the edge of saturation,
allowing a minimum VDD of three overdrive voltages.

� Example 9.20

Facing voltage headroom limitations, a student constructs the circuit shown in Fig. 9.59(a), where the tail current
source is replaced by two triode devices that sense the output CM level, Vout,C M . Determine the small-signal gain
from the input CM level to the output CM level.

M4

M1 M2

M3

VDD

M5 M6

M5 + M6
M5 + M6

M1 + M2

M1 + M2

M3 + M4

VDD

Vin,CM

Vout,CM

P

Vin,CM

Vout,CM

rO3,4
2

Rtail

P
gm,tailVout,CM

(c)(a) (b)

P

Figure 9.59
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Solution

If the circuit is symmetric, the output nodes can be shorted, leading to the topology in Fig. 9.59(b).6 To model the com-
posite transistor M5 + M6, we define a transconductance gm,tail = gm5 + gm6 = 2µnCox (W/L)5,6VP , where VP is
the dc voltage at node P . We also approximate their total channel resistance by Rtail = [2µnCox (W/L)5,6(Vout,C M �
VT H5,6)]�1. The circuit therefore reduces to that shown in Fig. 9.59(c).

Assuming for simplicity that � = � = 0 for M1 and M2, we express the small-signal current drawn by
M1 + M2 as �Vout,C M/(rO3,4/2). This current translates to a gate-source voltage of �Vout/(2gm1,2rO3,4/2) =
�Vout/(gm1,2rO3,4), yielding a voltage of Vin,C M + Vout/(gm1,2rO3,4) at node P and hence a current of [Vin,C M +
Vout/(gm1,2rO3,4)]/Rtail through Rtail . Since this current and gm,tail Vout,C M must add up to �Vout,C M/(rO3,4/2),
we obtain

Vout,C M

Vin,C M
= �

1
2Rtail

rO3,4
+ gm,tail Rtail + (gm1,2rO3,4)�1

(9.57)

It is important to note that all of the three terms in the denominator are less than one (why?), revealing that
Vout,C M/Vin,C M is roughly around unity. That is, an error in the input CM level reaches the output without significant
attenuation. This observation suggests a poor CMRR; the reader is encouraged to assume a gm mismatch between
M1 and M2 and compute the CMRR as outlined in Chapter 4.

�

9.7.4 CMFB in Two-Stage Op Amps

Offering nearly rail-to-rail output swings, two-stage op amps find wider application than other topologies
in today’s designs. However, such op amps require more complex common-mode feedback. To understand
the issues, we consider three different CMFB methods in the context of the simple circuit shown in
Fig. 9.60(a).

First, suppose the CM level of Vout1 and Vout2 is sensed and the result is used to control only Vb2; i.e.,
the second stage incorporates CMFB, but not the first stage [Fig. 9.60(b)]. In this case, no mechanism
exists that controls the CM level at X and Y . For example, if ISS happens to be less than the sum
of the currents that M3 and M4 wish to draw, then VX and VY rise, driving these transistors into the
triode region so that ID3 + ID4 eventually becomes equal to ISS . This effect also reduces |VGS5,6|,
establishing in M5–M8 a current that may be well below the nominal value. This CMFB method is therefore
not desired.

Second, we still sense the CM level Vout1 and Vout2 but return the result to the first stage, e.g., to ISS

[Fig. 9.60(c)]. Suppose, for example, that Vout1 and Vout2 begin too high. Then, the error amplifier, Ae,
reduces ISS , allowing VX and VY to rise, |ID5| and |ID6| to fall, and Vout1 and Vout2 to go down. It is
interesting to note that here M5 and M6 in fact sense the CM level at X and Y , helping the global loop
control both stages’ CM level. (If M3 and M4 had a tail current, as in a regular differential pair, this
property would vanish and the CMFB loop would fail.)

While used in some designs, the second technique suffers from a critical drawback. Let us draw the
equivalent circuit for common-mode levels (Fig. 9.61). How many poles does the CM feedback loop
contain? We count one pole at X or Y , one at the main output, and at least one associated with the
error amplifier. Moreover, since RC M is so large as not to load the second stage, it forms with the input
capacitance of Ae a pole that may not be negligible. Thus, even if the pole at the source of M1 and M2

is discounted, the CMFB loop still contains three or four poles. As explained in Chapter 10, this many
poles make it difficult for the loop be stable.

In order to avoid stability issues, we can employ two separate CMFB loops for the first and second stages
of the op amp. Figure 9.62 illustrates a simple example [7], where, in a manner similar to Fig. 9.58(b),

6We use the notation M j + M j+1 to denote the parallel combination of M j and M j+1.
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Figure 9.60 (a) Two-stage op amp, (b) CMFB around second stage, and (c) CMFB from second stage to first
stage.
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M7 + M8

M3 + M4 M5 + M6
X, Y

VDD

RCM

Vout1, Vout2

Ae VREFError Amp.

CM
Sense 

Figure 9.61 Equivalent CMFB loop to determine the number of poles.

R1 and R2 provide CMFB for the first stage and R3 and R4 for the second. Interestingly, all of the
drain currents in this topology are copied from ISS . Assuming a symmetric circuit, we recognize that (1)
resistors R1 and R2 adjust VGS3,4 until |ID3| = |ID4| = ISS/2; (2) since VGS3,4 = VGS5,6, M5 and M6

copy their currents from M3 and M4 as in a current mirror; and (3) resistors R3 and R4 adjust VGS7,8 until
ID7 = ID8 = |ID5| = |ID6|. The differential voltage gain is equal to gm1(rO1||rO3||R1)gm5(rO5||rO7||R3).

Another CMFB technique for two-stage op amps is described in Chapter 11.
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Vout1 Vout2

YX R1 R2

R3 R4

Q Figure 9.62 Simple CMFB loops
around each stage.

� Example 9.21

A student delighted by the simplicity of the op amp in Fig. 9.62 designs the circuit for a given power budget, but
realizes that the output CM level is inevitably well below VDD/2, and hence the output swings are limited. Explain
why and devise a solution.

Solution

The output CM level is equal to VG7,8 (recall that R3 and R4 carry no current in the absence of signals). Since M7
and M8 are chosen wide enough for a small overdrive voltage, VGS7,8 is only slightly greater than one threshold
voltage and far from VDD/2.

This issue can be resolved by drawing a small current from node Q (Fig. 9.63). Now, R3 and R4 sustain a drop
of R3 IQ/2 (= R4 IQ/2), producing an upward shift of the same amount in the output CM level [7]. Thus, IQ can be
chosen to create an output CM level around VDD/2.

M7 M8

Vout1 Vout2

R3 R4
Q

IQ

Figure 9.63

�

If the first stage incorporates a telescopic cascode to achieve a high gain, then the CMFB loops can
be realized as shown in Fig. 9.64. While not precise, the CM sensing of X and Y avoids loading the high
impedances at these nodes, thereby maintaining a high voltage gain.

9.8 Input Range Limitations

The op amp circuits studied thus far have evolved to achieve large differential output swings. While the
differential input swings are usually much smaller (by a factor equal to the open-loop gain), the input
common-mode level may need to vary over a wide range in some applications. For example, consider the
simple unity-gain buffer shown in Fig. 9.65, where the input swing is nearly equal to the output swing.
Interestingly, in this case the voltage swings are limited by the input differential pair rather than the output
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Figure 9.64 CMFB loops around cascode and output stages.
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Figure 9.65 Unity-gain buffer.

cascode branch. Specifically, Vin,min � Vout,min = VGS1,2 + VI SS , approximately one threshold voltage
higher than the allowable minimum provided by M5–M8.

What happens if Vin falls below the minimum given above? The MOS transistor operating as ISS enters
the triode region, decreasing the bias current of the differential pair and hence lowering the transconduc-
tance. We then postulate that the limitation is overcome if the transconductance can somehow be restored.

A simple approach to extending the input CM range is to incorporate both NMOS and PMOS dif-
ferential pairs such that when one is “dead,” the other is “alive.” Illustrated in Fig. 9.66, the idea is to
combine two folded-cascode op amps with NMOS and PMOS input differential pairs. Here, as the input
CM level approaches the ground potential, the NMOS pair’s transconductance drops, eventually falling
to zero. Nonetheless, the PMOS pair remains active, allowing normal operation. Conversely, if the input
CM level approaches VDD , M1P and M2P begin to turn off, but M1 and M2 function properly.

An important concern in the circuit of Fig. 9.66 is the variation of the overall transconductance of
the two pairs as the input CM level changes. Considering the operation of each pair, we anticipate the
behavior depicted in Fig. 9.67. Thus, many properties of the circuit, including gain, speed, and noise,
vary. More sophisticated techniques of minimizing this variation are described in [8].
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Figure 9.66 Extension of input CM range.
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Figure 9.67 Variation of equivalent
transconductance with the input CM
level.

9.9 Slew Rate

Op amps used in feedback circuits exhibit a large-signal behavior called “slewing.” We first describe
an interesting property of linear systems that vanishes during slewing. Consider the simple RC network
shown in Fig. 9.68, where the input is an ideal voltage step of height V0. Since Vout = V0[1�exp(�t/�)],
where � = RC , we have

dVout

dt
=

V0

�
exp

�t

�
(9.58)

That is, the slope of the step response is proportional to the final value of the output; if we apply a larger
input step, the output rises more rapidly. This is a fundamental property of linear systems: if the input
amplitude is, say, doubled while other parameters remain constant, the output signal level must double
at every point, leading to a twofold increase in the slope.

t

R1

C1
VoutVin

Vin

Vout

t

Vin

Vout

Figure 9.68 Response of a linear circuit to an input step.
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Figure 9.69 Response of linear op amp
to step response.

The foregoing observation applies to linear feedback systems as well. Shown in Fig. 9.69 is an example,
where the op amp is assumed linear. Here, we can write

��
Vin � Vout

R2

R1 + R2

�
A � Vout

�
1

Rout
=

Vout

R1 + R2
+ VoutCLs (9.59)

Assuming R1 + R2 � Rout, we have

Vout

Vin
(s) �

A�
1 + A

R2

R1 + R2

� �
1 +

RoutCL

1 + AR2/(R1 + R2)
s

� (9.60)

As expected, both the low-frequency gain and the time constant are divided by 1 + AR2/(R1 + R2). The
step response is therefore given by

Vout � V0
A

1 + A
R2

R1 + R2




���1 � exp
�t

CL Rout

1 + AR2/(R1 + R2)




��� u(t) (9.61)

indicating that the slope is proportional to the final value. This type of response is called “linear settling.”
With a realistic op amp, on the other hand, the step response of the circuit begins to deviate from

(9.61) as the input amplitude increases. Illustrated in Fig. 9.70, the response to sufficiently small inputs
follows the exponential of Eq. (9.61), but with large input steps, the output displays a linear ramp having
a constant slope. Under this condition, we say that the op amp experiences slewing and call the slope of
the ramp the “slew rate.”

t

Vin

Vout

Rout

R1

R2

A
Vin Vout

CL

Actual Op Amp

ExponentialRamp

Figure 9.70 Slewing in an op amp circuit.
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To understand the origin of slewing, let us replace the op amp of Fig. 9.70 by a simple CMOS
implementation (Fig. 9.71), assuming for simplicity that R1 + R2 is very large. We first examine the
circuit with a small input step. If Vin experiences a change of �V , ID1 increases by gm�V/2 and ID2

decreases by gm�V/2. Since the mirror action of M3 and M4 raises |ID4| by gm�V/2, the total small-
signal current provided by the op amp equals gm�V . This current begins to charge CL , but as Vout rises,
so does VX , reducing the difference between VG1 and VG2 and hence the output current of the op amp.
As a result, Vout varies according to (9.61).

VDD

M1 M2

M3 M4

ISS

Vout

CLR1

R2

X

gm�V

gm�V

Vin �V

2
gm�V

2
gm�V

2

Figure 9.71 Small-signal operation of a simple op amp.

Now suppose �V is so large that M1 absorbs all of ISS , turning off M2. The circuit then reduces to
that shown in Fig. 9.72(a), generating a ramp output with a slope equal to ISS/CL (if the channel-length
modulation of M4 and the current drawn by R1 + R2 are neglected). Note that so long as M2 remains off,
the feedback loop is broken and the current charging CL is constant and independent of the input level.
As Vout rises, VX eventually approaches Vin , M2 turns on, and the circuit returns to linear operation.
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X

ISSISS
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ISS
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Vin
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(a) (b)
Figure 9.72 Slewing during (a) low-to-high and (b) high-to-low transitions.

In Fig. 9.71, slewing occurs for falling edges at the input as well. If the input drops so much that M1

turns off, then the circuit is simplified as in Fig. 9.72(b), discharging CL by a current approximately equal
to ISS . After Vout decreases sufficiently, the difference between VX and Vin is small enough to allow M1

to turn on, leading to linear behavior thereafter.
The foregoing observations explain why slewing is a nonlinear phenomenon. If the input amplitude,

say, doubles, the output level does not double at all points because the ramp exhibits a slope independent
of the input.
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Slewing is an undesirable effect in high-speed circuits that process large signals. While the small-signal
bandwidth of a circuit may suggest a fast time-domain response, the large-signal speed may be limited
by the slew rate simply because the current available to charge and discharge the dominant capacitor in
the circuit is small. Moreover, since the input-output relationship during slewing is nonlinear, the output
of a slewing amplifier exhibits substantial distortion. For example, if a circuit is to amplify a sinusoid
V0 sin �0t (in the steady state), then its slew rate must exceed V0�0.

� Example 9.22

Consider the feedback amplifier depicted in Fig. 9.73(a), where C1 and C2 set the closed-loop gain. (The bias network
for the gate of M2 is not shown.) (a) Determine the small-signal step response of the circuit. (b) Calculate the positive
and negative slew rates.

VDD

M4

M1 M2

M1

ISS

ISS

ISS
ISS

ISS

M3

Vout

Vout
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X
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X
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Figure 9.73

Solution

(a) Modeling the op amp as in Fig. 9.73(b), where Av = gm1,2(rO2�rO4) and Rout = rO2�rO4, we have VX =
C1Vout/(C1 + C2), and hence

VP =
�

Vin �
C1

C1 + C2
Vout

�
Av (9.62)

obtaining

��
Vin �

C1

C1 + C2
Vout

�
Av � Vout

�
1

Rout
= Vout

C1C2

C1 + C2
s (9.63)
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It follows that

Vout

Vin
(s) =

Av

1 + Av
C1

C1 + C2
+

C1C2

C1 + C2
Routs

(9.64)

=
Av/

�
1 + Av

C1

C1 + C2

�

1 +
C1C2

C1 + C2
Routs/

�
1 + Av

C1

C1 + C2

� (9.65)

revealing that both the low-frequency gain and the time constant of the circuit have decreased by a factor of
1 + AvC1/(C1 + C2). The response to a step of height V0 is thus given by

Vout(t) =
Av

1 + Av
C1

C1 + C2

V0

�
1 � exp

�t

�

�
u(t) (9.66)

where

� =
C1C2

C1 + C2
Rout/

�
1 + Av

C1

C1 + C2

�
(9.67)

(b) Suppose a large positive step is applied to the gate of M1 in Fig. 9.73(a) while the initial voltage across C1 is
zero. Then, M2 turns off and, as shown in Fig. 9.73(c), Vout rises according to Vout(t) = ISS/[C1C2/(C1 + C2)]t .
Similarly, for a large negative step at the input, Fig. 9.73(d) yields Vout = �ISS/[C1C2/(C1 + C2)]t . �

As another example, let us find the slew rate of the telescopic op amp shown in Fig. 9.74(a). When a
large differential input is applied, M1 or M2 turns off, reducing the circuit to that shown in Fig. 9.74(b).
Thus, Vout1 and Vout2 appear as ramps with slopes equal to –ISS/(2CL), and consequently Vout1 � Vout2

exhibits a slew rate equal to ISS/CL . (Of course, the circuit is usually used in closed-loop form.)
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Figure 9.74 Slewing in telescopic op amp.

It is also instructive to study the slewing behavior of a folded-cascode op amp with single-ended output
[Fig. 9.75(a)]. Figures 9.75(a) and (b) depict the equivalent circuit for positive and negative input steps,
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Figure 9.75 Slewing in folded-cascode op amp.

respectively. Here, the PMOS current sources provide a current of IP , and the current that charges or
discharges CL is equal to ISS , yielding a slew rate of ISS/CL . Note that the slew rate is independent of
IP if IP � ISS . In practice, we choose IP � ISS .

In Fig. 9.75(a), if ISS > IP , then during slewing, M3 turns off and VX falls to a low level such that M1

and the tail current source enter the triode region. Thus, for the circuit to return to equilibrium after M2

turns on, VX must experience a large swing, slowing down the settling. This phenomenon is illustrated
in Fig. 9.76.

M3

M1

M9

X

ISS

IP

ISS

Figure 9.76 Long settling due to overdrive recovery after slewing.

To alleviate this issue, two “clamp” transistors can be added as shown in Fig. 9.77(a) [9]. The idea is
that the difference between ISS and IP now flows through M11 or M12, requiring only enough drop in VX

or VY to turn on one of these transistors. Figure 9.77(b) illustrates a more aggressive approach, where
M11 and M12 clamp the two nodes directly to VDD . Since the equilibrium value of VX and VY is usually
higher than VDD � VT H N , M11 and M12 are off during small-signal operation.

What trade-offs are encountered in increasing the slew rate? In the examples of Figs. 9.74 and 9.75,
for a given load capacitance, ISS must be increased, and to maintain the same maximum output swing,
all of the transistors must be made proportionally wider. As a result, the power dissipation and the
input capacitance are increased. Note that if the device currents and widths scale together, gmrO of each
transistor, and hence the open-loop gain of the op amp, remain constant.

How does an op amp leave the slewing regime and enter the linear-settling regime? Since the point
at which one of the input transistors “turns on” is ambiguous, the distinction between slewing and linear
settling is somewhat arbitrary. The following example illustrates the point.
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M10M9

M4

(a)
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M10M9

M4

M11 M12

VDD
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X Y X Y

Figure 9.77 Clamp circuit to limit swings at X and Y .

� Example 9.23

Consider the circuit of Fig. 9.73(a) in the slewing regime [Fig. 9.73(c)]. As Vout rises, so does VX , eventually turning
M2 on. As ID2 increases from zero, the differential pair becomes more linear. Considering M1 and M2 to operate
linearly if the difference between their drain currents is less than 
 ISS (e.g., 
 = 0.1), determine how long the circuit
takes to enter linear settling. Assume the input step has an amplitude of V0.

Solution

The circuit displays a slew rate of ISS/[C1C2/(C1 + C2)] until |Vin1 � Vin2| is sufficiently small. From Chapter 4,
we can write


 ISS =
1

2
µnCox

W

L
(Vin1 � Vin2)

����
4ISS

µnCox
W

L

� (Vin1 � Vin2)2 (9.68)

obtaining

�V 4
G � �V 2

G
4ISS

µnCox
W

L

+

�

��
2
 ISS

µnCox
W

L

�

��

2

= 0 (9.69)

where �VG = Vin1 � Vin2. Thus,

�VG � 


����
ISS

µnCox
W

L

(9.70)

(Recall that
�

ISS/[µnCox (W/L)] is the equilibrium overdrive voltage of each transistor in the differential pair.)
Alternatively, we recognize that for a small difference, 
 ISS , between ID1 and ID2, a small-signal approximation is
valid: 
 ISS = gm�VG . Thus, �VG = 
 ISS/gm � 
 ISS/

�
µnCox (W/L)ISS . Note that this is a rough calculation

because as M2 turns on, the current charging the load capacitance is no longer constant.
Since VX must rise to V0 ��VG for M2 to carry the required current, Vout increases by (V0 ��VG)(1+C2/C1),

requiring a time given by

t =
C2

ISS

�

��V0 � 


����
ISS

µnCox
W

L

�

�� (9.71)

�
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In the earlier example, the value of 
 that determines the onset of linear settling depends, among other
things, on the actual required linearity. In other words, for a nonlinearity of 1%, 
 can be quite a lot larger
than for a nonlinearity of 0.1%.

The slewing behavior of two-stage op amps is somewhat different from that of the circuits studied
earlier. This case is studied in Chapter 10.

9.10 High-Slew-Rate Op Amps

Our formulation of the slew rate in various op amp topologies implies that, for a given capacitance, slew-
limited settling can be improved only by raising the bias current and hence the power consumption. This
trade-off can be mitigated if the current available to charge the capacitor of interest automatically rises
during slewing and falls back to its original value thereafter. In this section, we study op amp topologies
that exploit this idea.

9.10.1 One-Stage Op Amps

We begin with a simple common-source stage incorporating a current-source load biased at a value of I0

[Fig. 9.78(a)]. In the absence of an input signal, ID1 = I0, but if Vin jumps down to turn M1 off, then I0

flows through CL , yielding a slew rate of I0/CL .7 Can we automatically increase the drain current of M2

during this transient? To this end, we must allow Vb to change and, in fact, follow the jump in Vin . For
example, as shown in Fig. 9.78(b), we can simply apply Vin to both transistors so that a downward jump
in Vin also raises |ID2|. This complementary topology was studied in Chapter 3 and found to suffer from
poor power supply rejection. We pursue other topologies here.

M1

CL
M1

CL

M2

M2Vb

VDD VDD

Vout Vout

I0

Vin

Vin

(a) (b)
Figure 9.78 Slewing in (a) a simple CS stage and (b) a complementary CS stage.

Let us control M2 in Fig. 9.78(a) by current mirror action, as depicted in Fig. 9.79(a), and ask how Ib

must be controlled by Vin . Can Ib be derived from another common-source device [Fig. 9.79(b)]? No;
as Vin jumps down in this circuit, Ib decreases. We must therefore include an additional signal inversion
in the path controlling Ib. Alternatively, we can consider a differential topology, where both the input
signal, V +

in , and its inverted version, V �
in , are available. Illustrated in Fig. 9.79(c), the idea is to control

the bias current of M2 by V �
in and that of M4 by V +

in . For example, if V +
in jumps down and V �

in jumps up,
then (1) M5 draws less current from M8, lowering |ID4|, (2) M3 draws more current, discharging its load
capacitance, (3) M6 draws more current from M7, raising |ID2|, and (4) M1 draws less current, allowing
its drain capacitance to be charged by M2.

The circuits of Figs. 9.78(b) and 9.79(c) are called “push-pull” stages as they turn the load current
source into an “active” pull-up device. Loosely speaking, we also refer to them as “class-AB” amplifiers.8

7If Vin jumps up, M1 must absorb both I0 and the current flowing out of CL .
8By contrast, topologies with a constant bias current are called “class-A” amplifiers.
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M3 M8
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M3 M6

VDD M4 M8
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YX

YX

ISS1ISS2

Vin

Vin

Vin

Vin

(c)

(a) (b)

(d)

Vout1 Vout2

Figure 9.79 (a) CS stage with current mirror biasing, (b) injection of signal into the mirror with incorrect
polarity, (c) injection of signal into the mirror with ccrrect polarity, and (d) addition of tail current sources.

By virtue of the temporary boost in the slew rate, such circuits alleviate the trade-off between the speed
and the average power consumption.

In order to improve the input common-mode rejection, we add tail current sources to M1 and M3 and
to M5 and M6 [Fig. 9.79(d)]. We now wish to calculate the circuit’s slew rate with a large input step. If,
for example, V +

in jumps up and M1 and M5 absorb all of their respective tail currents, then M2 is off and
Vout1 falls at a rate of ISS1/CL while M3 is off and Vout2 rises at a rate of ISS2(W4/W8)/CL (if L4 = L8).
The differential slew rate is thus equal to [ISS1 + ISS2(W4/W8)]/CL . Without the push-pull action, on
the other hand, this slew rate would be limited to ISS1/CL . If we choose W4/W8 equal to, say, 5 and ISS2

equal to ISS1, then the SR increases by a factor of 6 with a twofold power penalty.9

� Example 9.24

Calculate the small-signal voltage gain of the class-AB op amp shown in Fig. 9.79(d).

Solution

In addition to the main path, the mirror path contributes gain as well. Since the mirror action amplifies the drain
currents of M5 and M6 by a factor of W4/W8, we approximate the gain in this path as (W4/W8)gm5(rO3||rO4) and
add it to that of the main path:

|Av | � gm1(rO3||rO4) + (W4/W8)gm5(rO3||rO4) (9.72)

� [gm1 + (W4/W8)gm5](rO3||rO4) (9.73)

The mirror path thus raises the apparent transconductance from gm1 to gm1 + (W4/W8)gm5.
�

9One can argue that the fixed tail currents no longer allow class-AB operation, but we disregard this subtlety for now.
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Let us now determine the transfer function of the above circuit and examine the effect of the mirror
pole. We write the transfer function from the input through the mirror path to the output as

Hmirr (s) =
W4

W8
gm5(rO3||rO4)

1

1 +
s

�p,X

1

1 +
s

�out

(9.74)

where �p,X � gm8/CY and �out = [(rO3||rO4)CL ]�1. For the main path, we simply have

Hmain(s) = gm1(rO3||rO4)
1

1 +
s

�out

(9.75)

It follows that

Htot (s) = Hmain(s) + Hmirr (s) (9.76)

=
rO3||rO4

1 +
s

�out




��
W4

W8

gm5

1 +
s

�p,X

+ gm1




�� (9.77)

=
rO3||rO4

1 +
s

�out

•
(W4/W8)gm5 + gm1 + gm1s/�p,X

1 +
s

�p,X

(9.78)

As seen in other examples in Chapter 6, the presence of the additional signal path leads to a zero in the
transfer function. This zero frequency is given by

|�z| =
�

W4

W8

gm5

gm1
+ 1

�
�p,X (9.79)

Unfortunately, it is not possible to equate �z to �p,X because (W4/W8)(gm5/gm1) is typically around
unity or higher. Also, in practice, �out < �p,X .

It is tempting to raise the SR in Fig. 9.79(d) by increasing W4/W8, but we must note that, as a result,
the pole frequency associated with the mirror nodes falls. Approximating this pole by gm8/CY and writing
gm8 =

�
ISS2µnCox (W/L)8 and CY � 2(W4 + W8)LCox + CDB8 + CDB5, we recognize that the mirror

pole frequency is inversely proportional to W4.

9.10.2 Two-Stage Op Amps

In order to achieve a high slew rate, we can apply push-pull operation to the second stage of a two-
stage op amp. To this end, we view the arrangement shown in Fig. 9.79(c) as the second stage and
precede it with a differential pair, arriving at the topology depicted in Fig. 9.80. This circuit provides a
voltage gain of

|Av| = gm9(rO9||rO11)[gm1 + (W4/W8)gm5](rO1||rO2) (9.80)

But how about the slew rate? Suppose, for example, Vin1 and Vin2 experience a large differential step such
that the entire ISS flows through node P . If this node is “agile” enough, i.e., if its capacitance is relatively
small, VP rises rapidly, applying a large overdrive to M1 and M5 and creating a high slew rate at the
output. In other words, since VP (or VQ) can reach near VDD when only M9 (or M10) is on, the available
current is much larger than the bias current of the output stage. This behavior stands in contrast to that
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Figure 9.80 Two-stage op amp with slew enhancement.

of the circuit in Fig. 9.79(d), where the available current is a multiple of the tail currents and cannot be
raised further “upon demand.”

We return to this two-stage op amp in Chapter 10 and analyze its slew rate in the presence of frequency
compensation.

9.11 Power Supply Rejection

As with other analog circuits, op amps are often supplied from noisy lines and must therefore “reject” the
noise adequately. For this reason, it is important to understand how noise on the supply manifests itself
at the output of an op amp.

Let us consider the simple op amp shown in Fig. 9.81, assuming that the supply voltage varies slowly.
If the circuit is perfectly symmetric, Vout = VX . Since the diode-connected device “clamps” node X to
VDD , VX and hence Vout experience approximately the same change as does VDD . In other words, the
gain from VDD to Vout is close to unity. The power supply rejection ratio (PSRR) is defined as the gain
from the input to the output divided by the gain from the supply to the output. At low frequencies:

PSRR � gm N (rO P�rO N ) (9.81)

VDD

M4

M2M1

ISS

M3

X
Vout

Figure 9.81 Supply rejection of differ-
ential pair with active current mirror.

� Example 9.25

Calculate the low-frequency PSRR of the feedback circuit shown in Fig. 9.82(a).
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Figure 9.82

Solution

From the foregoing analysis, we may surmise that a change �V in VDD appears unattenuated at the output. But, we
should note that if Vout changes, so do VP and ID2, thereby opposing the change. Using Fig. 9.82(b) and neglecting
channel-length modulation in M1–M3 for simplicity, we can write

Vout
C1

C1 + C2
� V2 = �V1 (9.82)

and gm1V1 + gm2V2 = 0. Thus, if the circuit is symmetric,

V2 =
Vout

2

C1

C1 + C2
(9.83)

We also have

�
gm1V1

gm3
gm4 �

VDD � Vout

rO4
+ gm2V2 = 0 (9.84)

It follows that

Vout

VDD
=

1

gm2rO4
C1

C1 + C2
+ 1

(9.85)

Thus,

PSRR � (1 +
C2

C1
)(gm2rO4

C1

C1 + C2
+ 1) (9.86)

� gm2rO4 (9.87)

�

The denominator of Eq. (9.85) looks like one plus a loop gain. Is that true? Let us set the main
input in Fig. 9.82(a) to zero and view the path from VDD to Vout as an amplifier [Fig. 9.83(a)], omitting
C1 and C2. In this case, the gain, �Vout/�VDD , is equal to unity. Now, as depicted in Fig. 9.83(b), we
sense Vout by means of a capacitive divider and return the result to some node within the amplifier.
We expect the gain to drop by one plus the loop gain associated with the feedback loop. Indeed, this
loop gain is equal to [C1/(C1 + C2)]gm2rO4 if channel-length modulation is neglected for M1–M3. We
therefore recognize that feedback reduces �Vout/�VDD and �Vout/�Vin by the same factor, leaving the
PSRR relatively constant.
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VDD

Vout

VDD

Vout

C2

C1

(a) (b)
Figure 9.83 Equivalent circuits for path from VDD to output.

9.12 Noise in Op Amps

In low-noise applications, the input-referred noise of op amps becomes critical. We now extend the noise
analysis of differential amplifiers in Chapter 7 to more sophisticated topologies. With many transistors
in an op amp, it may seem difficult to intuitively identify the dominant sources of noise. A simple rule
for inspection is to (mentally) change the gate voltage of each transistor by a small amount and predict
the effect at the output.

Let us first consider the telescopic op amp shown in Fig. 9.84. At relatively low frequencies, the
cascode devices contribute negligible noise, leaving M1–M2 and M7–M8 as the primary noise sources.
The input-referred noise voltage per unit bandwidth is therefore similar to that in Fig. 7.59(a) and given by

V 2
n = 4kT

�

2
�

gm1,2
+ 2

� gm7,8

g2
m1,2

�

+ 2
KN

(W L)1,2Cox f
+ 2

K P

(W L)7,8Cox f

g2
m7,8

g2
m1,2

(9.88)

where KN and K P denote the 1/ f noise coefficients of NMOS and PMOS devices, respectively.

VDD

M5

M1 M2

ISS

Vin

M8

Vb1 M3 M4

Vout

M7

M6
Vb2

Vb3

Figure 9.84 Noise in a telescopic
op amp.

Next, we study the noise behavior of the folded-cascode op amp of Fig. 9.85(a), considering only
thermal noise at this point. Again, the noise of the cascode devices is negligible at low frequencies,
leaving M1–M2, M7–M8, and M9–M10 as potentially significant sources. Do both pairs M7–M8 and
M9–M10 contribute noise? Using our simple rule, we change the gate voltage of M7 by a small amount
[Fig. 9.85(b)], noting that the output indeed changes considerably. The same observation applies to M8–
M10 as well. To determine the input-referred thermal noise, we first refer the noise of M7–M8 to the
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Figure 9.85 Noise in a folded-cascode op amp.

output:

V 2
n,out

		
M7,8 = 2

�
4kT

�
gm7,8

g2
m7,8 R2

out

�
(9.89)

where the factor 2 accounts for the (uncorrelated) noise of M7 and M8 and Rout denotes the open-loop
output resistance of the op amp. Similarly,

V 2
n,out

		
M9,10 = 2

�
4kT

�
gm9,10

g2
m9,10 R2

out

�
(9.90)

Dividing these quantities by g2
m1,2 R2

out and adding the contribution of M1–M2, we obtain the overall noise:

V 2
n,int = 8kT

�
�

gm1,2
+ �

gm7,8

g2
m1,2

+ �
gm9,10

g2
m1,2

�

(9.91)

The effect of flicker noise can be included in a similar manner (Problem 9.15). Note that the folded-
cascode topology potentially suffers from greater noise than its telescopic counterpart. In applications
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where flicker noise is critical, we opt for a PMOS-input op amp as PMOS transistors typically exhibit
less flicker noise than do NMOS devices.

As observed for the differential amplifiers in Chapter 7, the noise contribution of the PMOS and
NMOS current sources increases in proportion to their transconductance. This trend results in a trade-
off between output voltage swings and input-referred noise: for a given current, as implied by gm =
2ID/(VGS � VT H ), if the overdrive voltage of the current sources is minimized to allow large swings,
then their transconductance is maximized.

VDD

M4

M1 M2

ISS

M3

Vb

Vin

M7 M8

Vb

M5 M6

Vout2Vout1

Figure 9.86 Noise in a two-stage op amp.

As another case, we calculate the input-referred thermal noise of the two-stage op amp shown in
Fig. 9.86. Beginning with the second stage, we note that the noise current of M5 and M7 flows through
rO5�rO7. Dividing the resulting output noise voltage by the total gain, gm1(rO1�rO3) × gm5(rO5�rO7),
and doubling the power, we obtain the input-referred contribution of M5–M8:

V 2
n

		
M5�8 = 2 × 4kT � (gm5 + gm7)(rO5�rO7)2 1

g2
m1(rO1�rO3)2g2

m5(rO5�rO7)2
(9.92)

= 8kT �
gm5 + gm7

g2
m1g2

m5(rO1�rO3)2
(9.93)

The noise due to M1–M4 is simply equal to

V 2
n

		
M1�4 = 2 × 4kT �

gm1 + gm3

g2
m1

(9.94)

It follows that

V 2
n,tot = 8kT �

1

g2
m1

�
gm1 + gm3 +

gm5 + gm7

g2
m5(rO1�rO3)2

�
(9.95)

Note that the noise resulting from the second stage is usually negligible because it is divided by the gain
of the first stage when referred to the main input.

� Example 9.26

A simple amplifier is constructed as shown in Fig. 9.87. Note that the first stage incorporates diode-connected—rather
than current-source—loads. Assuming that all of the transistors are in saturation and (W/L)1,2 = 50/0.6, (W/L)3,4 =
10/0.6, (W/L)5,6 = 20/0.6, and (W/L)7,8 = 56/0.6, calculate the input-referred noise voltage if µnCox =
75 µA/V2, µpCox = 30 µA/V2, and � = 2/3.
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Figure 9.87

Solution

We first calculate the small-signal gain of the first stage:

Av1 �
gm1

gm3
(9.96)

=

�
50 × 75

10 × 30
(9.97)

� 3.54 (9.98)

The noise of M5 and M7 referred to the gate of M5 is equal to 4kT (2/3)(gm5 + gm7)/g2
m5 = 2.87 × 10�17 V2/Hz,

which is divided by A2
v1 when referred to the main input: V 2

n |M5,7 = 2.29 × 10�18 V2/Hz. Transistors M1 and M3

produce an input-referred noise of V 2
n |M1,3 = (8kT/3)(gm3 + gm1)/g2

m1 = 1.10 × 10�17 V2/Hz. Thus, the total
input-referred noise equals

V 2
n,in = 2(2.29 × 10�18 + 1.10 × 10�17) (9.99)

= 2.66 × 10�17 V2/Hz (9.100)

where the factor of 2 accounts for the noise produced by both odd-numbered and even-numbered transistors in the
circuit. This value corresponds to an input noise voltage of 5.16 nV/

�
Hz.

�

The noise-power trade-off described in Chapter 7 is present in op amps as well. Specifically, the
devices and bias currents in an op amp can be linearly scaled so as to trade power consumption for noise.
For example, if all of the transistor widths and ISS in Fig. 9.87 are halved, then so is the power, while
V 2

n,in is doubled and the voltage gain and swings remain unchanged. This simple scaling can be applied
to all of the op amps studied in this chapter. We exploit this principle in the nanometer op amps designed
in Chapter 11.
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that VDD = 3 V
where necessary. Also, assume that all transistors are in saturation.

9.1. (a) Derive expressions for the transconductance and output resistance of a MOSFET in the triode region. Plot
these quantities and gmrO as a function of VDS , covering both triode and saturation regions.

(b) Consider the amplifier of Fig. 9.6(b), with (W/L)1�4 = 50/0.5, ISS = 1 mA, and input CM level
of 1.3 V. Calculate the small-signal gain and the maximum output swing if all transistors remain in
saturation.

(c) For the circuit of part (b), suppose we allow each PMOS device to enter the triode region by 50 mV so as
to increase the allowable differential swing by 100 mV. What is the small-signal gain at the peaks of the
output swing?

9.2. In the circuit of Fig. 9.9, assume that (W/L)1�4 = 100/0.5, ISS = 1 mA, Vb = 1.4 V, and � = 0.
(a) If M5–M8 are identical and have a length of 0.5 µm, calculate their minimum width such that M3 operates

in saturation.
(b) Calculate the maximum output voltage swing.
(c) What is the open-loop voltage gain?
(d) Calculate the input-referred thermal noise voltage.

9.3. Design the folded-cascode op amp of Fig. 9.15 for the following requirements: maximum differential swing
= 2.4 V, total power dissipation = 6 mW. If all of the transistors have a channel length of 0.5 µm, what is the
overall voltage gain? Can the input common-mode level be as low as zero?

9.4. In the op amp of Fig. 9.21(b), (W/L)1�8 = 100/0.5, ISS = 1 mA, and Vb1 = 1.7 V. Assume that � = 0.
(a) What is the maximum allowable input CM level?
(b) What is VX ?
(c) What is the maximum allowable output swing if the gate of M2 is connected to the output?
(d) What is the acceptable range of Vb2?
(e) What is the input-referred thermal noise voltage?

9.5. Design the op amp of Fig. 9.21(b) for the following requirements: maximum differential swing = 2.4 V, total
power dissipation = 6 mW. (Assume that the gate of M2 is never shorted to the output.)

9.6. If in Fig. 9.23, (W/L)1�8 = 100/0.5 and ISS = 1 mA,
(a) What CM level must be established at the drains of M3 and M4 so that ID5 = ID6 = 1 mA? How does

this constrain the maximum input CM level?
(b) With the choice made in part (a), calculate the overall voltage gain and the maximum output swing.
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9.7. Design the op amp of Fig. 9.23 for the following requirements: maximum differential swing = 4 V, total power
dissipation = 6 mW, ISS = 0.5 mA.

9.8. Suppose the circuit of Fig. 9.24 is designed with ISS equal to 1 mA, ID9–ID12 equal to 0.5 mA, and
(W/L)9�12 = 100/0.5.
(a) What CM level is required at X and Y ?
(b) If ISS requires a minimum voltage of 400 mV, choose the minimum dimensions of M1–M8 to allow a

peak-to-peak swing of 200 mV at X and at Y .
(c) Calculate the overall voltage gain.

9.9. In Fig. 9.88, calculate the input-referred thermal noise if I1 and I2 are implemented by PMOS devices.

M2

M3

I1

VDD

M1Vin

I2
Vout

X

Figure 9.88

9.10. Suppose that in Fig. 9.88, I1 = 100 µA, I2 = 0.5 mA, and (W/L)1�3 = 100/0.5. Assuming that I1 and I2
are implemented with PMOS devices having (W/L)P = 50/0.5,
(a) Calculate the gate bias voltages of M2 and M3.
(b) Determine the maximum allowable output voltage swing.
(c) Calculate the overall voltage gain and the input-referred thermal noise voltage.

9.11. In the circuit of Fig. 9.53, each branch is biased at a current of 0.5 mA. Choose the dimensions of M7 and M8
such that the output CM level is equal to 1.5 V and VP = 100 mV.

9.12. Consider the CMFB network in Fig. 9.51. The amplifier sensing Vout,C M is to be implemented as a different
pair with active current mirror load.
(a) Should the input pair of the amplifier use PMOS devices or NMOS devices?
(b) Calculate the loop gain for the CMFB network.

9.13. Repeat Problem 9.9.12b for the circuit of Fig. 9.52.

9.14. In the circuit of Fig. 9.73(a), assume that (W/L)1�4 = 100/0.5, C1 = C2 = 0.5 pF, and ISS = 1 mA.
(a) Calculate the small-signal time constant of the circuit.
(b) With a 1-V step at the input [Fig. 9.73(c)], how long does it take for ID2 to reach 0.1ISS?

9.15. It is possible to argue that the auxiliary amplifier in a gain-boosting stage reduces the output impedance.
Consider the circuit as drawn in Fig. 9.89, where the drain voltage of M2 is changed by �V to measure the
output impedance. It seems that, since the feedback provided by A1 attempts to hold VX constant, the change
in the current through rO2 is much greater than in the original circuit, suggesting that Rout � rO2. Explain
the flaw in this argument.

Vb

A1

X

M2

rO2

�V

�VX

�V

rO1

Figure 9.89
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9.16. Calculate the CMRR of the circuit shown in Fig. 9.73(a).

9.17. Calculate the input-referred flicker noise of the op amp shown in Fig. 9.85(a).

9.18. In this problem, we design a two-stage op amp based on the topology shown in Fig. 9.90. Assume a power
budget of 6 mW, a required output swing of 2.5 V, and Lef f = 0.5 µm for all devices.

VDD

M6

Vout

M5

Vb

Vin

M4M3

M1 M2

X Y

M7

Figure 9.90

(a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to M5 and M6,
determine (W/L)5 and (W/L)6. Note that the gate-source capacitance of M5 is in the signal path, whereas
that of M6 is not. Thus, M6 can be quite a lot larger than M5.

(b) Calculate the small-signal gain of the output stage.
(c) With the remaining 1 mA flowing through M7, determine the aspect ratio of M3 (and M4) such that

VGS3 = VGS5. This is to guarantee that if Vin = 0 and hence VX = VY , then M5 carries the expected
current.

(d) Calculate the aspect ratios of M1 and M2 such that the overall voltage gain of the op amp is equal to 500.

9.19. Consider the op amp of Fig. 9.90, assuming that the second stage is to provide a voltage gain of 20 with a bias
current of 1 mA.
(a) Determine (W/L)5 and (W/L)6 such that M5 and M6 have equal overdrive voltages.
(b) What is the small-signal gain of this stage if M6 is driven into the triode region by 50 mV?

9.20. The op amp designed in Problem 9.9.18d is placed in unity-gain feedback. Assume that |VGS7 � VT H7| =
0.4 V.
(a) What is the allowable input voltage range?
(b) At what input voltage are the input and output voltages exactly equal?

9.21. Calculate the input-referred noise of the op amp designed in Problem 9.9.18d.

9.22. It is possible to use the bulk terminal of PMOS devices as an input [10]. Consider the amplifier shown in
Fig. 9.91 as an example.

M3 M4

M1 M2

Vin

VDD

Vb1 Vb1

Vout

Vb2

Figure 9.91

(a) Calculate the voltage gain.
(b) What is the acceptable input common-mode range?
(c) How does the small-signal gain vary with the input common-mode level?
(d) Calculate the input-referred thermal noise voltage and compare the result with that of a regular PMOS

differential pair having NMOS current-source loads.
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9.23. The idea of the active current mirror can be applied to the output stage of a two-stage op amp as well. That is,
the load current source can become a function of the signal. Figure 9.92 shows an example [11]. Here, the first
stage consists of M1–M4, and the output is produced by M5–M8. Transistors M7 and M8 operate as active
current sources because their current varies with the signal voltage at nodes Y and X , respectively.
(a) Calculate the differential voltage gain of the op amp.
(b) Estimate the magnitude of the three major poles of the circuit.

X

VDD

Vin

M1 M2

M3 M4

Vb

M8

M6

M12

Vout2M10

M5

M7

Vout1 M9

M11

Y

Figure 9.92

9.24. The circuit of Fig. 9.93 employs a fast path (M �
1 and M �

2) in parallel with the slow path. Calculate the differential
voltage gain of the circuit. Which transistors typically limit the output swing?

VDD

M3 M4

Vb

M2M1

M1 M2

Vin

M8

M6

Vout2

Vb

M5

M7

Vout1

Vb
� �

Figure 9.93

9.25. Calculate the input-referred thermal noise of the op amp in Fig. 9.93.

9.26. Determine the slew rate of a fully-differential folded-cascode op amp.

9.27. Calculate the slew rate in Fig. 9.75 if ISS > IP .
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CHAPTER

10
Stability and Frequency
Compensation

Negative feedback finds wide application in the processing of analog signals. As described in Chapter 8,
feedback suppresses the effect of the variations of the open-loop characteristics. Feedback systems,
however, suffer from potential instability; that is, they may oscillate.

In this chapter, we deal with the stability and frequency compensation of linear feedback systems to the
extent necessary to understand the design issues of analog feedback circuits. Beginning with a review of
stability criteria and the concept of phase margin, we study frequency compensation, introducing various
techniques suited to different op amp topologies. We also analyze the impact of frequency compensation
on the slew rate of two-stage op amps. The chapter ends with a study of Nyquist’s stability criterion.

10.1 General Considerations

Let us consider the negative-feedback system shown in Fig. 10.1(a), where � is assumed constant. Writing
the closed-loop transfer function as

Y

X
(s) =

H(s)
1 + � H(s)

(10.1)

we note that if � H(s = j�1) = �1 at �1 �= 0, then the closed-loop “gain” goes to infinity, and the
circuit can amplify its own noise until it eventually begins to oscillate. In other words, if the loop gain
at �1, � H( j�1), is equal to �1, then the circuit may oscillate at frequency �1. This condition can be
expressed as

|� H( j�1)| = 1 (10.2)

� � H( j�1) = �180� (10.3)

X (s) Y(s) Y(s)H(s) H(s)X(s)

� �

180°

180°

(a) (b)
Figure 10.1 (a) Basic negative-feedback system, and (b) phase shift around the loop at �1.

410
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which are called “Barkhausen’s Criteria.” Note that (1) these equations relate only to the loop gain (more
precisely, the loop transmission)1 and are independent of where the input and output are located, and
(2) the total phase shift around the loop at �1 is 360� because negative feedback itself introduces 180� of
phase shift [Fig. 10.1(b)]. The 360� phase shift is necessary for oscillation since the feedback signal must
add in phase to the original noise to allow oscillation buildup. By the same token, a loop gain of unity
(or greater) is also required to enable growth of the oscillation amplitude. These oscillation requirements
are studied further in Chapter 15. The key point here is that the loop transmission, which can often be
found from the open-loop system, reveals the stability of the closed-loop system.

In summary, a negative-feedback system may oscillate at �1 if (1) the phase shift around the loop
at this frequency is so great that the feedback becomes positive and (2) the loop gain is still enough to
allow signal buildup. Illustrated in Fig. 10.2(a), the situation can be viewed as excessive loop gain at the
frequency at which the phase shift reaches �180� or, equivalently, excessive phase at the frequency at
which the loop gain drops to unity. Thus, to avoid instability, we must minimize the total phase shift so
that if |� H | = 1, then � � H is still more positive than �180� [Fig. 10.2(b)]. In this chapter, we assume
that � is less than or equal to unity and does not depend on the frequency.

0

0

�180°

Unstable

0

0

Stable

(a) (b)

�H(�)

�180°

�H(�)

Excessive
Gain

Excessive
Phase

� (log scale)

� (log scale)

� (log scale)

� (log scale)

�1 �2

20log��H(�)� 20log��H(�)�

Figure 10.2 Bode plots of loop transmission for (a) unstable and (b) stable systems.

The frequencies at which the magnitude and phase of the loop gain are equal to unity and �180�,
respectively, play a critical role in the stability and are called the “gain crossover frequency” and the
“phase crossover frequency,” respectively. In a stable system, the gain crossover must occur well before
the phase crossover. For the sake of brevity, we denote the gain crossover by GX and the phase crossover
by PX. It is helpful to note that the gain crossover frequency is the same as the unity-gain bandwidth of
the loop transmission.

� Example 10.1

Explain whether the system depicted in Fig. 10.2(a) becomes more or less stable if the feedback is weakened, i.e., if
� is reduced.

1The terms “loop gain” and “loop transmission” [� H(s)], respectively, refer to the low-frequency value and the transfer function
of the gain around the loop, but we sometimes use them interchangeably.
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Solution

As illustrated in Fig. 10.3, a lower � shifts the plot of 20 log |� H(�)| down and the GX to the left. Since � � H(�)
does not change, the system becomes more stable. After all, if we apply no feedback around an op amp, the circuit
has no tendency to oscillate. Thus, the worst-case stability corresponds to � = 1, i.e, unity-gain feedback. For this
reason, we often analyze the magnitude and phase plots for � H = H .

log �

log �

0

0

Lower �

�H(�)

20log��H(�)�

Figure 10.3

�

Before studying more specific cases, let us review a few basic rules for constructing Bode plots. A
Bode plot illustrates the asymptotic behavior of the magnitude and phase of a complex function according
to the magnitude of the poles and zeros. The following two rules are used. (1) The slope of the magnitude
plot changes by +20 dB/dec at every zero frequency and by �20 dB/dec at every pole frequency. (2) For a
pole (zero) frequency of �m , the phase begins to fall (rise) at approximately 0.1�m , experiences a change
of �45� (+45�) at �m , and approaches a change of �90� (+90�) at approximately 10�m . The key point
here is that the phase is much more significantly affected by high-frequency poles and zeros than the
magnitude is.

It is also instructive to plot the location of the poles of a closed-loop system on a complex plane.
Expressing each pole frequency as sp = j�p + �p and noting that the impulse response of the system
includes a term exp( j�p + �p)t , we observe that if sp falls in the right half plane (RHP), i.e., if �p > 0,
then the system oscillates because its time-domain response exhibits a growing exponential [Fig. 10.4(a)].
Even if �p = 0, the system sustains oscillations [Fig. 10.4(b)]. Conversely, if the poles lie in the left half
plane (LHP), all time-domain exponential terms decay to zero [Fig. 10.4(c)].2 In practice, we plot the
location of the poles as the loop gain varies, thereby revealing how close to oscillation the system may
come. Such a plot is called a “root locus.”

We now study a feedback system incorporating a one-pole forward amplifier. Assuming H(s) =
A0/(1 + s/�0), we have from (10.1)

Y

X
(s) =

A0

1 + � A0

1 +
s

�0(1 + � A0)

(10.4)

2We ignore the effect of zeros for now.



Razavi-3930640 book December 17, 201517:11 413

Sec. 10.1 General Considerations 413
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��p
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��p t

(c)

(a) (b)

�

Figure 10.4 Time-domain response of a system versus the position of poles: (a) unstable with growing
amplitude; (b) unstable with constant-amplitude oscillation; (c) stable.

In order to analyze the stability behavior, we plot |� H(s = j�)| and � � H(s = j�) (Fig. 10.5), observing
that a single pole cannot contribute a phase shift greater than 90� and the system is unconditionally stable
for all nonnegative values of �. Note that � � H is independent of �.

0

0

20log�A0

�0

�0

�90°

�45°

�H(�)

20log��H(�)�

� (log scale)

� (log scale)

Figure 10.5 Bode plots of loop
transmission for a one-pole system.

� Example 10.2

Construct the root locus for a one-pole system.

Solution

Equation (10.4) implies that the closed-loop system has a pole sp = ��0(1 + � A0), i.e., a real-valued pole in the
left half plane that moves away from the origin as the loop gain increases (Fig. 10.6).
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�

j�

� = 0�

��0
Figure 10.6

�

10.2 Multipole Systems

Our study of op amps in Chapter 9 indicates that such circuits generally contain multiple poles. In two-
stage op amps, for example, each gain stage introduces a “dominant” pole. It is therefore important to
study a feedback system whose core amplifier exhibits more than one pole.

Let us consider a two-pole system first. For stability considerations, we plot |� H | and � � H as a
function of the frequency. Shown in Fig. 10.7, the magnitude begins to drop at 20 dB/dec at � = �p1

and at 40 dB/dec at � = �p2. Also, the phase begins to change at � = 0.1�p1, reaches �45� at � = �p1

and �90� at � = 10�p1, begins to change again at � = 0.1�p2 (if 0.1�p2 > 10�p1), reaches �135� at
� = �p2, and asymptotically approaches �180�. The system is therefore stable because |� H | drops to
below unity at a frequency where � � H < �180�.

0

0

�p1 �p2

Gain
Crossover 

�180°

�90°

�H(�)

� (log scale)

� (log scale)

20log��H(�)�

Figure 10.7 Bode plots of loop trans-
mission for a two-pole system.

What happens if the feedback is made “weaker”? To reduce the amount of feedback, we decrease �,
obtaining the gray magnitude plot in Fig. 10.7. As the feedback becomes weaker, the gain crossover point
moves toward the origin while the phase crossover point remains constant, resulting in a more stable
system. The stability is obtained at the cost of weaker feedback.

� Example 10.3

Construct the root locus for a two-pole system.
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Solution

Writing the open-loop transfer function as

H(s) =
A0�

1 +
s

�p1

��
1 +

s

�p2

� (10.5)

we have

Y

X
(s) =

A0�
1 +

s

�p1

��
1 +

s

�p2

�
+ � A0

(10.6)

=
A0�p1�p2

s2 + (�p1 + �p2)s + (1 + � A0)�p1�p2
(10.7)

Thus, the closed-loop poles are given by

s1,2 =
�(�p1 + �p2) –

�
(�p1 + �p2)2 � 4(1 + � A0)�p1�p2

2
(10.8)

As expected, for � = 0, s1,2 = ��p1, ��p2. As � increases, the term under the square root drops, taking on a value
of zero for

�1 =
1

A0

(�p1 � �p2)2

4�p1�p2
(10.9)

As shown in Fig. 10.8, the poles begin at ��p1 and ��p2, move toward each other, coincide for � = �1, and
become complex for � > �1. The closed-loop system does not become unstable because the poles do not reach the
j� axis.

�

�

j�

� = �1

� = 0� = 0

��p1��p2

Figure 10.8

�

The foregoing calculations point to the complexity of the algebra required to construct a root locus for
higher-order systems. For this reason, many root locus techniques have been devised so as to minimize
such computations.

We now study a three-pole system. Shown in Fig. 10.9(a) are the Bode plots of the magnitude and
phase of the loop gain. The third pole gives rise to additional phase shift, possibly moving the phase
crossover to frequencies lower than the gain crossover and leading to oscillation.

Since the third pole also decreases the magnitude of the loop gain at a greater rate, the reader may
wonder why the gain crossover does not move as much as the phase crossover does. As mentioned before,
the phase begins to change at approximately one-tenth of the pole frequency, whereas the magnitude begins
to drop only near the pole frequency. For this reason, additional poles (and zeros) affect the phase to a
much greater extent than they do the magnitude.



Razavi-3930640 book December 17, 201517:11 416

416 Chap. 10 Stability and Frequency Compensation
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Figure 10.9 (a) Bode plots of loop transmission for a three-pole system and (b) closed-loop response.

As with a two-pole system, if the feedback factor in Fig. 10.9 decreases, the circuit becomes more
stable because the gain crossover moves toward the origin while the phase crossover remains constant.
For this reason, a feedback amplifier designed for a higher closed-loop gain tends to be more stable
(why?).

It is important not to confuse the � H plots with the closed-loop frequency response, Y/X . As an
example, consider a system with the loop response shown in Fig. 10.9(b), where the gain and phase
crossover frequencies coincide. The closed-loop response, |Y/X |, exhibits infinite gain at �0, predicting
oscillation at this frequency.

10.3 Phase Margin

We have seen that to ensure stability, |� H | must drop to unity before � � H crosses �180�. We may
naturally ask: How far should PX be from GX? Let us first consider a “marginal” case where, as depicted
in Fig. 10.10(a), GX is only slightly below PX; for example, at GX, the phase equals �175�. How does
the closed-loop system respond in this case? Noting that at GX, � H( j�1) = 1 × exp(� j175�), we have
for the closed-loop system

Y

X
( j�1) =

H( j�1)
1 + � H( j�1)

(10.10)

=

1

�
exp(� j175�)

1 + exp(� j175�)
(10.11)

=
1

�
•
�0.9962 � j0.0872

0.0038 � j0.0872
(10.12)
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Figure 10.10 Closed-loop frequency and time response for (a) small and (b) large margin between gain and
phase crossover points.

and hence

����
Y

X
( j�1)

���� =
1

�
•

1

0.0872
(10.13)

�
11.5
�

(10.14)

Since at low frequencies, |Y/X | � 1/�, the closed-loop frequency response exhibits a sharp peak in the
vicinity of � = �1. In other words, the closed-loop system is near oscillation, and its step response, y(t),
exhibits a very underdamped behavior. This point also reveals that a second-order system may suffer
from ringing although it is stable.

Now suppose, as shown in Fig. 10.10(b), GX precedes PX by a greater margin. Then, we expect a
relatively “well-behaved” closed-loop response in both the frequency domain and the time domain. It
is therefore plausible to conclude that the greater the spacing between GX and PX (while GX remains
below PX), the more stable the feedback system. Alternatively, the phase of � H at the gain crossover
frequency can serve as a measure of stability: the smaller |� � H | at this point, the more stable the system.

This observation leads us to the concept of “phase margin” (PM), defined as PM = 180� + � � H(� =
�1), where �1 is the gain crossover frequency. We see that stability calls for a positive and large PM.

� Example 10.4

A two-pole feedback system is designed such that |� H(�p2)| = 1 and |�p1| � |�p2| (Fig. 10.11). How much is
the phase margin?
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Figure 10.11

Solution

Since � � H reaches �135� at � = �p2, the phase margin is equal to 45�. The key point to remember is that, if the
loop gain drops to unity at a frequency above the second pole, the phase margin is less than 45�. As explained below,
since PM = 45� is typically inadequate, we say that the ultimate unity-gain bandwidth cannot exceed the second
pole of the open-loop op amp if a well-behaved time response is desired.

�

The above example suggests that for a phase margin greater than 45�, the gain crossover frequency
must lie between the first pole and the second (in the absence of zeros). That is, the unity-gain bandwidth
cannot exceed the second pole frequency.

How much phase margin is adequate? It is instructive to examine the closed-loop frequency response
for different phase margins [1]. For PM = 45�, at the gain crossover frequency � � H(�1) = �135� and
|� H(�1)| = 1 (Fig. 10.12), yielding

Y

X
=

H( j�1)
1 + 1 × exp(� j135�)

(10.15)

=
H( j�1)

0.29 � 0.71 j
(10.16)
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��H(�)�
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�
1 �

1.3
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�

�

� Figure 10.12 Closed-loop frequency
response for 45� phase margin.
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It follows that

����
Y

X

���� =
1

�
•

1

|0.29 � 0.71 j |
(10.17)

�
1.3
�

. (10.18)

Consequently, the frequency response of the feedback system suffers from a 30% peak at � = �1.
It can be shown that for PM = 60�, Y ( j�1)/X ( j�1) = 1/�, suggesting a negligible frequency

peaking. This typically means that the step response of the feedback system exhibits little ringing,
providing a fast settling. For greater phase margins, the system is more stable, but the time response
slows down (Fig. 10.13). Thus, PM = 60� is typically considered the optimum value.

t

y(t)

t t

PM = 45°
y(t)

PM = 60°
y(t)

PM = 90°

(c)(a) (b)
Figure 10.13 Closed-loop time response for 45�, 60�, and 90� phase margins.

The concept of phase margin is well suited to the design of circuits that process small signals. In practice,
the large-signal step response of feedback amplifiers does not follow the illustration of Fig. 10.13. This is
not only due to slewing but also because of the nonlinear behavior resulting from large excursions in the
bias voltages and currents of the amplifier. Such excursions in fact cause the pole and zero frequencies
to vary during the transient, leading to a complicated time response. Thus, for large-signal applications,
time-domain simulations of the closed-loop system prove more relevant and useful than small-signal ac
computations of the open-loop amplifier.

As an example of a feedback circuit exhibiting a reasonable phase margin but poor settling behavior,
consider the unity-gain amplifier of Fig. 10.14, where the aspect ratio of all transistors is equal to 50 µm /
0.6 µm. With the choice of the device dimensions, bias currents, and capacitor values shown here, SPICE
yields a phase margin of approximately 65� and a unity-gain frequency of 150 MHz. The large-signal
step response, however, suffers from significant ringing.

VDD

M4

M1 M2

M3

M5

Vin

1.6 pF

0.5 mA 0.3 mA

Vout

1 pF

t

Vin

Vout

Figure 10.14 Unity-gain buffer.
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10.4 Basic Frequency Compensation

Typical op amp circuits contain many poles. In a folded-cascode topology, for example, both the folding
node and the output node contribute poles. For this reason, op amps must usually be “compensated,” that
is, their open-loop transfer function must be modified such that the closed-loop circuit is stable and the
time response is well behaved.

The need for compensation arises because |� H | does not drop to unity well before � � H reaches
�180�. We then postulate that stability can be achieved by (1) minimizing the overall phase shift, thus
pushing the phase crossover out [Fig. 10.15(a)]; or (2) dropping the gain with frequency, thereby pushing
the gain crossover in [Fig. 10.15(b)]. The first approach requires that we attempt to minimize the number
of poles in the signal path by proper design. Since each additional stage contributes at least one pole, this
means that the number of stages must be minimized, a remedy that yields low voltage gain and/or limited
output swings (Chapter 9). The second approach, on the other hand, retains the low-frequency gain and
the output swings, but it reduces the bandwidth by forcing the gain to fall at lower frequencies.

log�
0

log�
0

ModiÞed
Design

ModiÞed
Design

(a) (b)

20log��H(�)�

�180°

�H(�)

log�
0

log�
0

20log��H(�)�

�180°

�H(�)

Figure 10.15 Frequency compensation by (a) moving PX out and (b) pushing GX in.

In practice, we first try to design an op amp so as to minimize the number of poles while meeting
other requirements. Since the resulting circuit may still suffer from insufficient phase margin, we then
compensate the op amp, i.e., modify the design so as to move the gain crossover toward the origin.
These efforts proceed with the � value chosen according to the final design requirements. For example,
a closed-loop gain of 4 in some cases translates to � � 0.25 if the loop gain is large.3 In other words, we
need not compensate the circuit for � = 1 if the closed-loop gain is always higher.

Let us apply the above concepts to the telescopic-cascode op amp shown in Fig. 10.16, where a PMOS
current mirror performs differential to single-ended conversion. We identify a number of poles in the
signal paths: path 1 contains a high-frequency pole at the source of M3, a mirror pole at node A, and
another high-frequency pole at the source of M7, whereas path 2 contains a high-frequency pole at the
source of M4. The two paths share a pole at the output.

It is instructive to estimate the relative position of these poles. Since the output resistance of the op
amp is much higher than the small-signal resistances seen at the other nodes in the circuit, we expect

3But in “switched-capacitor” circuits, the closed-loop gain changes from one mode to another (Chapter 13).
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Figure 10.16 Telescopic op amp with
single-ended output.

that, even with a moderate load capacitance, the output pole, �p,out , is the closest to the origin. Called
the “dominant pole,” �p,out usually sets the open-loop 3-dB bandwidth.

We also surmise that the first “nondominant pole,” i.e., the closest pole to the origin after the dominant
pole, arises at node A. This is because the total capacitance at this node, roughly equal to CGS5 + CGS6 +
CDB5 + 2CG D6 + CDB3 + CG D3, is typically quite a lot larger than that at nodes X, Y , and N , and the
small-signal resistance of M5, approximately 1/gm5, is also relatively large.

Which node yields the next nondominant pole: N or X (and Y )? Recall from Chapter 9 that, to obtain
a low overdrive and consume a reasonable voltage headroom, the PMOS devices in the op amp are
typically wider than the NMOS transistors. Comparing M4 and M7 and neglecting body effect, we note
that since gm = 2ID/|VGS �VT H |, if the two transistors are designed to have the same overdrive, they also
exhibit the same transconductance. However, from square-law characteristics, we have W4/W7 = µp/µn ,
which is about 1/2 to 1/3. Thus, nodes N and X (or Y ) see roughly equal small-signal resistances to
ground, but node N suffers from much more capacitance. It is therefore plausible to assume that node N
contributes the next nondominant pole. Figure 10.17 illustrates the results, denoting the capacitance at
nodes A, N , and X by CA, CN , and CX , respectively. The poles at nodes X and Y are nearly equal, and
their corresponding terms in the transfer functions of path 1 and path 2 can be factored out. Thus, they
count as one pole rather than two.

�

j�

gm5
CA

�
gm7
CN

�
gm3
CX

�
RoutCL

1�

Figure 10.17 Pole locations for the op amp of Fig. 10.16.

With the position of the poles roughly determined, we can construct the magnitude and phase plots
for � H , using � = 1 for the worst case. Shown in Fig. 10.18, such characteristics indicate that the mirror
pole typically limits the phase margin because its phase contribution occurs at lower frequencies than
that of other nondominant poles.
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Figure 10.18 Bode plots of loop transmission for op amp of Fig. 10.16.

Recall from Chapter 6 that differential pairs using active current mirrors exhibit a left-half-plane zero
located at twice the mirror pole frequency. The circuit of Fig. 10.16 contains such a zero as well. Located
at 2�p,A, the zero impacts both the magnitude and phase characteristics. The analysis is left to the reader.

Compensation Procedure How should we compensate the telescopic-cascode op amp? Recall that
our ultimate goal is to ensure a loop gain sufficiently less than unity at the phase crossover frequency. Let
us assume that the number and location of the nondominant poles and hence the phase plot at frequencies
higher than roughly 10�p,out , remain constant. We begin with the original response shown in Fig. 10.19,
which has a negative phase margin. We must force the loop gain to drop such that the gain crossover point
moves toward the origin. To accomplish this, we simply lower the frequency of the dominant pole, �p1,
by increasing the load capacitance. The key point is that the phase contribution of the dominant pole in
the vicinity of the gain or phase crossover point is close to 90� and relatively independent of the location
of the pole. That is, as illustrated in Fig. 10.19, translating the dominant pole toward the origin affects the
magnitude plot, but not the critical part of the phase plot. If �p1 is lowered sufficiently, the PM reaches
an acceptable value, but at the cost of bandwidth.

log�
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log�
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PM < 0
PM > 0

20log��H(�)�

�180°

�H(�)

�p1

Figure 10.19 Translating the
dominant pole toward the origin.

In order to determine how much the dominant pole must be shifted down as well as arrive at an
important conclusion, let us assume that (1) the second nondominant pole (�p,N ) in Fig. 10.16 is much
higher than the mirror pole so that the phase shift at � = �p,A is equal to �135�, and (2) a phase
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margin of 45� (which is usually inadequate) is necessary. To compensate the circuit, we begin from
� � H(�) = �180� + PM = �135� and identify the corresponding gain crossover frequency, in this
case, �p,A (Fig. 10.20). Since the dominant pole must drop the gain to unity at �p,A with a slope of
20 dB/dec, we draw a straight line from �p,A toward the origin with such a slope, thus obtaining the new
magnitude of the dominant pole, ��

p,out . Therefore, the load capacitance must be increased by a factor of
�p,out/��

p,out .

0

0

�20 dB/dec

�'p,out �p,out �p,A � (log scale)

� (log scale)

20log��H(�)�

�135°

�H(�)

Figure 10.20 Translating the dominant pole toward the origin for 45� phase margin.

From the new magnitude plot, we note that the unity-gain bandwidth of the compensated (open-loop)
op amp is equal to the frequency of the first nondominant pole (of course with a phase margin of 45�).
This is a fundamental result, indicating that to achieve a wide bandwidth in a feedback system employing
a multipole op amp, the first nondominant pole must be as far as possible. For this reason, the mirror pole
proves undesirable.

We should also mention that although �p,out = (Rout CL)�1, increasing Rout does not compensate the
op amp. As shown in Fig. 10.21, a higher Rout results in a greater low-frequency loop gain, only affecting
the low-frequency portion of the characteristics. Also, moving one of the nondominant poles toward the
origin does not improve the phase margin. (Why?)

log �
0

log �
0

Rout

�p,out

20log��H(�)�

�180°

�H(�) Figure 10.21 Bode plots of loop gain
for higher output resistance.

In summary, frequency compensation moves the dominant pole of the open-loop amplifier to suffi-
ciently low values so that the unity-gain bandwidth is well below the phase crossover frequency. Also,
the compensated bandwidth cannot exceed the first nondominant pole frequency since a phase margin of
greater than 45� is typically required.
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� Example 10.5

An op amp is compensated to have a phase margin of 60� with unity-gain feedback. By what factor can the compen-
sation be relaxed if the circuit is to operate with a feedback factor of � < 1 [Fig. 10.22(a)]?
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log��p1 log��p1 log�p1

20log��H(�)�

20logA0

20log(�A0)

Figure 10.22

Solution

As illustrated in Fig. 10.22(b), the original compensation identifies the frequency at which � � H = �120�, draws a
line from this frequency at a slope of 20 dB/dec toward the vertical axis, and hence moves the dominant pole from
�p1 to ��

p1. With a feedback factor of �, the uncompensated magnitude response is shifted down by �20 log �,
requiring a dominant pole at ���

p1. To obtain this value, we equate the slope of the line C D to 20 dB/dec:

�20 log �
log ���

p1 � log ��
p1

= 20 (10.19)

and hence ���
p1 = ��

p1/�. That is, the compensation capacitor can be reduced by approximately a factor of 1/�. This,
of course, does not mean that the new feedback circuit settles faster; the weaker feedback translates to a proportionally
smaller extension of the bandwidth. In fact, we can write the closed-loop �3-dB bandwidths as (1+A0)��

p1 � A0��
p1

for the original op amp and (1+� A0)���
p1 � � A0���

p1 � A0��
p1 for the newly-compensated counterpart, concluding

that the closed-loop speed remains roughly the same.
A related question that we address in Problem 10.23 is the following: If an op amp is compensated to have

PM = 60� with unity-gain feedback, by how much does its PM increase if the feedback factor is reduced
to � < 1?

�

Now consider the fully differential telescopic cascode depicted in Fig. 10.23. In addition to achieving
various useful properties of differential operation, this topology avoids the mirror pole, thereby exhibiting
stable behavior for a greater bandwidth. In fact, we can identify one dominant pole at each output node and
only one nondominant pole arising from node X (or Y ). This suggests that fully differential telescopic-
cascode circuits are stable and do not need compensation.

But how about the pole at node N (or K ) in Fig. 10.23? Considering one of the PMOS cascodes as
shown in Fig. 10.24(a), we may think that the capacitance at node N , CN = CGS5 + CSB5 + CG D7 + CDB7,
shunts the output resistance of M7 at high frequencies, thereby dropping the output impedance of the
cascode. To quantify this effect, we first determine Zout in Fig. 10.24(a):

Zout = (1 + gm5rO5)Z N + rO5 (10.20)
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Figure 10.24 Effect of device capacitance at internal node of a cascode current source.

where body effect is neglected and Z N = rO7||(CN s)�1. Assuming the first term is much greater than
the second, we have

Zout � (1 + gm5rO5)
rO7

rO7CN s + 1
(10.21)

Now, as illustrated in Fig. 10.24(b), we take the output load capacitance into account:

Zout ||
1

CLs
=

(1 + gm5rO5)
rO7

rO7CN s + 1
•

1

CLs

(1 + gm5rO5)
rO7

rO7CN s + 1
+

1

CLs

(10.22)

=
(1 + gm5rO5)rO7

[(1 + gm5rO5)rO7CL + rO7CN ]s + 1
(10.23)

Thus, the parallel combination of Zout and the load capacitance still contains a single pole corresponding
to a time constant (1 + gm5rO5)rO7CL + rO7CN . Note that (1 + gm5rO5)rO7CL is simply due to the low-
frequency output resistance of the cascode. In other words, the overall time constant equals the “output”
time constant plus rO7CN . The key point in this calculation is that the pole in the PMOS cascode (at node
N ) is merged with the output pole, thus creating no additional pole. It merely lowers the dominant pole



Razavi-3930640 book December 17, 201517:11 426

426 Chap. 10 Stability and Frequency Compensation

by a slight amount. For this reason, we loosely say that the signal does not “see” the pole in the cascode
current sources.4

Comparison of the circuits shown in Figs. 10.16 and 10.23 now reveals that the fully differential
configuration avoids both the mirror pole and the pole at node N . With the approximation made in (10.23),
the circuit of Fig. 10.23 contains only one nondominant pole located at relatively high frequencies owing
to the high transconductance of the NMOS transistors. This is a remarkable advantage of fully differential
cascode op amps.

We have thus far observed that nondominant poles give rise to instability, requiring frequency com-
pensation. Is it possible to cancel one or more of these poles by introducing zeros in the transfer function?
For example, following the analysis of Fig. 6.41, we surmise that if a low-gain but fast path is placed in
parallel with the main amplifier, a zero is created that can be positioned atop the first nondominant pole.
However, cancellation of a pole by a zero in the presence of mismatches leads to long settling components
in the step response of the closed-loop circuit. This effect is studied in Problem 10.19.

10.5 Compensation of Two-Stage Op Amps

Our study of op amps in Chapter 9 indicates that two-stage topologies may prove inevitable if the output
voltage swing must be maximized. This is especially true in today’s low-voltage op amps. Thus, the
stability and compensation of such op amps is of interest.

Consider the circuit shown in Fig. 10.25. We identify three poles: a pole at X (or Y ), another at E (or
F), and a third at A (or B). From our foregoing discussions, we know that the pole at X lies at relatively
high frequencies. But how about the other two? Since node E exhibits a high small-signal resistance,
even the capacitances of M3, M5, and M9 can create a pole relatively close to the origin. At node A, the
small-signal resistance is lower, but CL may be large. Consequently, we say that the circuit contains two
dominant poles.
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Figure 10.25 Two-stage op amp.

From these observations, we can construct the magnitude and phase plots shown in Fig. 10.26. Here,
�p,E is assumed more dominant, but the relative positions of �p,E and �p,A depend on the design and
the load capacitance. Note that, since the poles at E and A are relatively close to the origin, the phase

4If the second term in Eq. (10.20) is included in subsequent derivations, a pole and a zero that are nearly equal appear in the
overall output impedance. Nonetheless, for gmrO � 1 and CL > CN , their effect is negligible.
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Figure 10.26 Bode plots of loop gain
of two-stage op amp.

approaches �180� well below the third pole. In other words, the phase margin may be close to zero even
before the third pole contributes significant phase shift.

Let us now investigate the frequency compensation of two-stage op amps. In Fig. 10.26, one of
the dominant poles must be moved toward the origin so as to place the gain crossover well below the
phase crossover. However, recall from Sec. 10.4 that the unity-gain bandwidth after compensation cannot
exceed the frequency of the second pole of the open-loop system for PM > 45�. Thus, if in Fig. 10.26
the magnitude of �p,E is to be reduced, the available bandwidth is limited to approximately �p,A, a low
value. Furthermore, the very small magnitude of the new dominant pole translates to a large compensation
capacitor.

Fortunately, a more efficient method of compensation can be applied to the circuit of Fig. 10.25.
To arrive at this method, we note that, as illustrated in Fig. 10.27(a), the first stage exhibits a high
output impedance, Rout1, and the second stage provides a moderate gain, Av2, thereby creating a suitable
environment for Miller multiplication of capacitors. Shown in Fig. 10.27(b), the idea is to create a large
capacitance at node E , equal to (1+Av2)CC , moving the corresponding pole to R�1

out1[CE+(1+Av2)CC ]�1,
where CE denotes the capacitance at node E before CC is added. As a result, a low-frequency pole can
be established with a moderate capacitor value, saving considerable chip area. This technique is called
“Miller compensation.”

Rout1

Av1 Av2 Av1 Av2

CC

(a) (b)

E A
E

A

Figure 10.27 Miller compensation of a two-stage op amp.

In addition to lowering the required capacitor value, Miller compensation entails a very important
property: it moves the output pole away from the origin. Illustrated in Fig. 10.28, this effect is called
“pole splitting.” To understand the underlying principle, we simplify the output stage of Fig. 10.25 as
in Fig. 10.29, where RS denotes the output resistance of the first stage and RL = rO9||rO11. From our



Razavi-3930640 book December 17, 201517:11 428

428 Chap. 10 Stability and Frequency Compensation

�

j�

�

j�
Before

Compensation 
After

Compensation

Figure 10.28 Pole splitting as a result of Miller compensation.

M9

CE

CC

CL

Vin

RS

VDD

Vout

RL

M9

CE

CL

RS

VDD

Vout

RL

(a) (b)
Figure 10.29 (a) Simplified circuit of a two-stage op amp, and (b) a rough model at high frequencies.

analysis in Chapter 6, we note that this compensated circuit contains two poles:

��
p1 �

1

RS[(1 + gm9 RL)(CC + CG D9) + CE ] + RL(CC + CG D9 + CL)
(10.24)

��
p2 �

RS[(1 + gm9 RL)(CC + CG D9) + CE ] + RL(CC + CG D9 + CL)
RS RL [(CC + CG D9)CE + (CC + CG D9)CL + CE CL)]

(10.25)

These expressions are based on the assumption that |��
p1| � |��

p2|. Before compensation, however, �p1

and �p2 are of the same order of magnitude. For CC = 0 and relatively large CL , we may approximate
the magnitude of the output pole as �p2 � 1/(RLCL).

To compare the magnitudes of ��
p2 before and after compensation, we consider a typical case: CC +

CG D9 � CE , reducing (10.25) to ��
p2 � gm9/(CE + CL). Noting that typically CE � CL , we conclude

that Miller compensation increases the magnitude of the output pole by roughly a factor of gm9 RL ,
a relatively large value. Intuitively, this is because at high frequencies, CC provides a low impedance
between the gate and drain of M9, reducing the resistance seen by CL from RL to roughly RS||g�1

m9 ||RL �
g�1

m9 [Fig. 10.29(b)]. From another perspective, CC provides feedback around the second stage by sensing
the output voltage; as a result, the output resistance falls and the second pole moves to higher frequencies.5

In summary, Miller compensation moves the interstage pole toward the origin and the output pole
away from the origin, allowing a much greater bandwidth than that obtained by merely connecting the
compensation capacitor from one node to ground. In practice, the choice of the compensation capacitor
for proper phase margin requires some iteration because both poles move. The following example gives
a rough estimate.

� Example 10.6

The two-stage op amp of Fig. 10.25 incorporates Miller compensation to reach a phase margin of 45�. Estimate the
compensation capacitor value.

5This capacitor returns a current to the input of the second stage, thus lowering its input impedance as well.
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Solution

After frequency compensation, the dominant pole moves down to approximately (gm9 RL CC RS)�1, where RS

denotes the output resistance of the first stage, and the second pole moves up to roughly gm9/CL . For a phase margin
of 45�, the loop gain must drop to unity at the second pole. With a low-frequency loop gain of �gm1 RS gm9 RL , we
consider the postcompensation plot in Fig. 10.30 (on linear axes) and write

|� H(�)| �
�gm1 RS gm9 RL�

1 + �2/�,2
p1

(10.26)

where the effect of ��
p2 on the magnitude is neglected. At � = ��

p2, the second term under the square root dominates,
and

�gm1 RS gm9 RL

��
p2/�

�
p1

= 1 (10.27)

�

�gm1RSgm2RL

1

��p1 ��p2

��H(�)�

Figure 10.30

Substituting for the pole frequencies and assuming that � = 1, we obtain

CC =
gm1

gm9
CL (10.28)

Note that gm1 and gm9 are the transconductances of the two stages. The reader can prove that, if the effect of ��
p2 is

included, then CC = [gm1/(
�

2gm9)]CL . Of course, CC must generally be greater than this value so as to establish
a higher phase margin, but this estimate serves as a reasonable starting point in the design.

This result assumes that � = 1; in practice, most op amps are configured for a closed-loop gain of 2 or higher,
thus requiring a smaller CC .

�

Our study of stability and compensation has thus far neglected the effect of zeros of the transfer function.
While in cascode topologies, the zeros are far from the origin, in two-stage op amps incorporating
Miller compensation, a nearby zero appears in the circuit. Recall from Chapter 6 that the circuit of
Fig. 10.29 contains a right-half-plane zero at �z = gm9/(CC + CG D9). This is because CC + CG D9 forms
a “feedforward” signal path from the input to the output. What is the effect of such a zero? The numerator
of the transfer function reads (1 � s/�z), yielding a phase of � tan�1(�/�z), a negative value because
�z is positive. In other words, as with poles in the left half plane, a zero in the right half plane contributes
additional negative phase shift, thus moving the phase crossover toward the origin. Furthermore, from
Bode approximations, the zero slows down the drop of the magnitude, thereby pushing the gain crossover
away from the origin. As a result, the stability degrades considerably.

To better understand the foregoing discussion, let us construct the Bode plots for a third-order system
containing a dominant pole �p1, two nondominant poles �p2 and �p3, and a zero in the right half plane
�z . For two-stage op amps, typically |�p1| < |�z| < |�p2|. As shown in Fig. 10.31, the zero introduces
significant phase shift while preventing the gain from falling sufficiently.
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Figure 10.31 Effect of right-half-plane zero.

� Example 10.7

Noting that the Miller compensation in Fig. 10.29(a) yields �p2 � gm9/CL and �z � gm9/CC , a student decides to
choose CC = CL , aiming to cancel the second pole by the zero. Explain what happens.

Solution

Recall that the zero is located in the right half plane and the poles in the left half plane. The compensated loop
transmission can therefore be expressed as

� H(s) =
� A0(1 �

s

�z
)

(1 +
s

�p1
)(1 +

s

�p2
)

(10.29)

We recognize that the zero does not cancel the pole and still affects |� H | and � � H .
�

The right-half-plane zero in two-stage CMOS op amps, given by gm/(CC + CG D), is a serious issue
because gm is relatively small and CC is chosen large enough to position the dominant pole properly.
Various techniques for eliminating or moving the zero have been invented. Illustrated in Fig. 10.32,
places a resistor in series with the compensation capacitor, thereby modifying the zero frequency. The
output stage now exhibits three poles, but for moderate values of Rz , the third pole is located at high
frequencies and the first two poles are close to the values calculated with Rz = 0. Moreover, it can be

M9

CE

CL

Vin

RS

VDD

RL

CCRz
Vout

Figure 10.32 Addition of Rz to move
the right-half-plane zero.
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shown (Problem 10.8) that the zero frequency is given by

�z �
1

CC
�
g�1

m9 � Rz
� (10.30)

Thus, if Rz 	 g�1
m9, then �z 
 0. While Rz = g�1

m9 seems a natural choice, in practice we may even move
the zero well into the left half plane so as to cancel the first nondominant pole. This occurs if

1

CC
�
g�1

m9 � Rz
� =

�gm9

CL + CE
(10.31)

that is

Rz =
CL + CE + CC

gm9CC
(10.32)

�
CL + CC

gm9CC
(10.33)

because CE is typically much less than CL + CC .
The possibility of canceling the nondominant pole makes this technique attractive, but in reality

two important drawbacks must be considered. First, it is difficult to guarantee the relationship given
by (10.33), especially if CL is unknown or variable. Mismatch between the pole and zero frequencies
leads to the “doublet problem” (Problem 10.19). For example, as explained in Chapter 13, the load
capacitance seen by an op amp may vary from one part of the period to another in switched-capacitor
circuits, necessitating a corresponding change in Rz and complicating the design. The second drawback
relates to the actual implementation of Rz . Typically realized by a MOS transistor in the triode region
(Fig. 10.33), Rz changes substantially as output voltage excursions are coupled through CC to node X ,
thereby degrading the large-signal settling response.

M9

CE

VDD

CCRz

Vb

X

Figure 10.33 Effect of large output
swings on Rz .

Generating Vb in Fig. 10.33 is not straightforward because RZ must remain equal to (1+CL/CC)/gm9

despite process and temperature variations. A common approach is illustrated in Fig. 10.34 [2], where
diode-connected devices M13 and M14 are placed in series. If I1 is chosen with respect to ID9 such
that VGS13 = VGS9, then VGS15 = VGS14. Since gm14 = µpCox (W/L)14(VGS14 � VT H14) and Ron15 =
[µpCox (W/L)15(VGS15 � VT H15)]�1, we have Ron15 = g�1

m14(W/L)14/(W/L)15. For pole-zero cancella-
tion to occur,

g�1
m14

(W/L)14

(W/L)15
= g�1

m9

�
1 +

CL

CC

�
(10.34)
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M9

CE

VDD

CCRZ

Vb
CL

M13

M14

I1

M15

Vb2
M11 Figure 10.34 Generation of Vb for

proper temperature and process tracking.

and hence

(W/L)15 =
�

(W/L)14(W/L)9

	
ID9

ID14

CC

CC + CL
(10.35)

If CL is constant, (10.35) can be established with reasonable accuracy because it contains only the ratio
of quantities.

Another method of guaranteeing Eq. (10.33) is to use a simple resistor for RZ and define gm9 with
respect to a resistor that closely matches RZ [3]. Depicted in Fig. 10.35, this technique incorporates
Mb1–Mb4 along with RS to generate Ib � R�2

S . (This circuit is studied in detail in Chapter 12.) Thus,
gm9 �

�
ID9 �

�
ID11 � R�1

S . Proper ratioing of RZ and RS therefore ensures that (10.33) is valid even
with temperature and process variations.

Mb1

VDD

Ib

Mb2

Mb4Mb3

M9

CE

CC

CL

M11

RZ

RS

Figure 10.35 Method of defining gm9
with respect to RS .

The principal drawback of the two methods described above is that they assume square-law charac-
teristics for all of the transistors. As described in Chapter 17, short-channel MOSFETs may substantially
deviate from the square-law regime, creating errors in the foregoing calculations. In particular, tran-
sistor M9 is typically a short-channel device because it appears in the signal path and its raw speed
is critical.

An attribute of two-stage op amps that makes them inferior to “one-stage” op amps is the susceptibility
to the load capacitance. Since Miller compensation establishes the dominant pole at the output of the first
stage, a higher load capacitance presented to the second stage moves the second pole toward the origin,
degrading the phase margin. By contrast, in one-stage op amps, a higher load capacitance brings the
dominant pole closer to the origin, improving the phase margin (albeit making the feedback system more
overdamped). Illustrated in Fig. 10.36 is the step response of a unity-gain feedback amplifier employing
a one-stage or a two-stage op amp, suggesting that the response approaches an oscillatory behavior if the
load capacitance seen by the two-stage op amp increases.
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CC

Vout
VinVin

CLCL

Vout

t t

Larger CL Larger CL 

Figure 10.36 Effect of increased load capacitance on step response of one- and two-stage op amps.

10.6 Slewing in Two-Stage Op Amps

It is instructive to study the slewing characteristics of two-stage op amps. Before delving into the details,
let us consider the simple circuit shown in Fig. 10.37(a), where Iin is a current step given by ISSu(t) and
CF has a zero initial condition. If A is large, node X is a virtual ground and the voltage across CF is
approximately equal to Vout . Receiving a constant current equal to ISS , CF generates an output voltage
given by

Vout (t) �
ISS

CF
t (10.36)

A�

CF

Iin

Vout
Vout

Mout

CF

Iin

I1

VDD

rOX
X

t0

gm + rO�1
�ISS

ISS

gm rO
CF(1 + 1

(c)(a) (b)

Vout(t)

Figure 10.37 (a) Simplified circuit for slew study, (b) realization of (a), and (c) output waveform during slewing.

We now consider the implementation depicted in Fig. 10.37(b)6 and write Vout/rO + gm VX + Iin = I1

and CF d(Vout � VX )/dt = Iin . Substituting for VX from the former equation in the latter, we have

CF

�
1 +

1

gmrO

�
dVout

dt
= Iin �

CF

gm

d Iin

dt
(10.37)

6The bias network for Mout is not shown.
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We consider the terms on the right-hand side as two inputs and apply superposition, obtaining

Vout (t) =
ISS

CF (1 +
1

gmrO
)
tu(t) �

ISS

gm +
1

rO

u(t) (10.38)

(This voltage, of course, rides on top of a bias value.) As illustrated in Fig. 10.37(c), Vout initially jumps to
�ISS/(gm +r�1

O ) and subsequently ramps up with a slope equal to ISS/[CF (1+g�1
m r�1

O )]. It is interesting
to note that (1) at t = 0+, CF acts as a short circuit, allowing Iin to flow through (1/gm)||rO and
creating a downward step at the output; (2) the slope of the ramp suggests an equivalent capacitance of
CF (1 + g�1

m r�1
O ), revealing the Miller effect of CF at the output; and (3) Eq. (10.38) does not depend on

I1 because this current simply serves as the bias current of Mout . We approximate the output voltage as
Vout (t) � (ISS/CF )tu(t).

Let us return to a two-stage op amp and suppose that in Fig. 10.38(a), Vin experiences a large positive
step at t = 0, turning off M2, M4, and M3. The circuit can then be simplified to that in Fig. 10.38(b),
revealing that CC is charged by a constant current ISS if parasitic capacitances at node X are negligible.
Recognizing that the gain of the output stage makes node X a virtual ground, we write Vout (t) �
(ISSt/CC)u(t). Thus, the positive slew rate7 equals ISS/CC . Note that during slewing, M5 must provide
two currents: ISS and I1. If M5 is not wide enough to sustain ISS + I1 in saturation, then VX drops
significantly, possibly driving M1 into the triode region.

CC

Vin
Vout

VDD

M4

M1 M2

M3

M5

Vin Vout

CC

ISS
I1

VDD

Vout

CC

I1

M5M3

ISS

(a) (c)

X

VDDM5

Vout

CC

I1

M1

Vin

ISS

X

(b)

ISS + I1

Figure 10.38 (a) Simple two-stage op amp, (b) simplified circuit during positive slewing, and (c) simplified
circuit during negative slewing.

For the negative slew rate, we simplify the circuit as shown in Fig. 10.38(c). Here I1 must support
both ISS and ID5. For example, if I1 = ISS , then VX rises so as to turn off M5. If I1 < ISS , then M3 enters
the triode region and the slew rate is given by ID3/CC .

7The term “positive” refers to the slope of the waveform at the output of the op amp.
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� Example 10.8

Op amps typically drive a heavy load capacitance. Repeat the slew rate analysis if the circuit of Fig. 10.37(b) sees a
load capacitance of CL . For simplicity, neglect channel-length modulation.

Solution

We consider two cases: Iin flows into or out of node X . With � = 0, the steady-state gain from VX to Vout is
infinite, forcing X to be a virtual ground node. In the first case [Fig. 10.39(a)], Iin = ISSu(t) flows through CF ,
generating a ramp voltage across it. Since VX is constant, the voltage at the right terminal of CF , Vout , must fall at
a rate of ISS/CF . This also means that CL is discharged at the same rate, requiring that the transistor draw three
currents: I1, ISS , and CL dVout/dt = (CL/CF )ISS . Thus, so long as Mout remains in saturation, the output slew
rate is approximately equal to ISS/CF .

Mout

CF
Vout

I1

VDD

CF

I1

VDD

X

ISSu(t)

ISSu(t) ISSu(t)

CL Mout

Vout

CL

CF

I1

VDD

Vout

CL
X X I1 � ISS

(c)(a) (b)
Figure 10.39

Now, let us study the second case [Fig. 10.39(b)]. If X is a virtual ground, Vout must rise at a rate of ISS/CF ,
and CL must also receive a current of CL dVout/dt = (CL/CF )ISS . We observe that, if I1 > ISS(CL/CF ) + ISS ,
then Mout remains on, VX varies little, and the output slew rate is equal to ISS/CF . On the other hand, if I1 <
(1 + CL/CF )ISS , Mout turns off, the difference between I1 and ISS charges CL [Fig. 10.39(c)], and the slew rate is
given by (I1 � ISS)/CL , a low value.

�

Two-Stage Class-AB Op Amps The two-stage class-AB op amp studied in Chapter 9 can incorporate
Miller compensation as well. Recall, however, that the current mirrors in the signal path contribute an
additional pole, degrading the phase margin. For this reason, two-stage class-AB op amps are typically
slower than their class-A counterparts.

We wish to compute the slew rate of two-stage class-AB op amps. Let us redraw the circuit of
Fig. 10.39(b) for this op amp topology (Fig. 10.40). In this case, too, the slew rate is equal to (I1� ISS)/CL

if Mout turns off, but, by virtue of class-AB operation, I1 itself can be quite large. The current mirror
action yields I1 = (Wp1/Wp2)� Iin and hence a slew rate of [�(Wp1/Wp2) � 1]ISS/CL .

Mout

CF
Vout

X CL

Iin = ISSu(t)

VDD

�Iin

Mp1Mp2

I1

Figure 10.40 Simplified class-AB op
amp.
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10.7 Other Compensation Techniques

The difficulty in compensating two-stage CMOS op amps arises from the feedforward path formed by the
compensation capacitor [Fig. 10.41(a)]. If CC could conduct current from the output node to node X but
not vice versa, then the zero would move to a very high frequency. As shown in Fig. 10.41(b), this can be
accomplished by inserting a source follower in series with the capacitor. Since the gate-source capacitance
of M2 is typically much less than CC , we expect the right-half-plane zero to occur at high frequencies.
Assuming that � = � = 0 for the source follower, neglecting some of the device capacitances, and
simplifying the circuit as shown in Fig. 10.42, we can write �gm1V1 = Vout (R�1

L + CLs), and hence

V1 =
�Vout

gm1 RL
(1 + RLCLs) (10.39)

M1

M1

I1
CC

VDD

X

I1

VDD

X

I2
Vout

Vout

(a) (b)

M2

CC

Figure 10.41 (a) Two-stage op amp with right-half-plane zero due to CC ; (b) addition of a source follower to
remove the zero.

M1
X

gm2
1

CC

Iin RS
V1

CLRL

Vout+1

Figure 10.42 Simplified equivalent
circuit of Fig. 10.41(b).

We also have

Vout � V1

1

gm2
+

1

CC s

+ Iin =
V1

RS
(10.40)

Substituting for V1 from (10.39) yields

Vout

Iin
=

�gm1 RL RS(gm2 + CC s)
RLCLCC(1 + gm2 RS)s2 + [(1 + gm1gm2 RL RS)CC + gm2 RLCL ]s + gm2

(10.41)

Thus, the circuit contains a zero in the left half plane, which can be chosen to cancel one of the poles.
The zero can also be derived as illustrated in Fig. 6.18.
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We can also compute the magnitudes of the two poles, assuming that they are widely separated. Since
typically 1 + gm2 RS � 1 and (1 + gm1gm2 RL RS)CC � gm2 RLCL , we have

�p1 �
gm2

gm1gm2 RL RSCC
(10.42)

�
1

gm1 RL RSCC
(10.43)

and

�p2 �
gm1gm2 RL RSCC

RLCLCC gm2 RS
(10.44)

�
gm1

CL
(10.45)

Thus, the new values of �p1 and �p2 are similar to those obtained by simple Miller approximation. For
example, the output pole has moved from (RLCL)�1 to gm1/CL .

The primary issue in the circuit of Fig. 10.41(b) is that the source follower limits the lower end of
the output voltage to VGS2 + VI 2, where VI 2 is the voltage required across I2. For this reason, it is
desirable to utilize the compensation capacitor to isolate the dc levels in the active feedback stage from
that at the output. Such a topology is depicted in Fig. 10.43, where CC and the common-gate stage M2

convert the output voltage swing to a current, returning the result to the gate of M1 [4]. If V1 changes
by �V and Vout by Av�V , then the current through the capacitor is nearly equal to Av�V CC s because
1/gm2 can be relatively small. Thus, a change �V at the gate of M1 creates a current change of Av�V CC s,
providing a capacitor multiplication factor equal to Av .

Assuming that � = � = 0 for the common-gate stage, we redraw the circuit of Fig. 10.43 in Fig. 10.44,
where we have

Vout +
gm2V2

CC s
= �V2 (10.46)

M1

X

V1

I1
CC

VDD

I3

I2

Vb M2

Vout

RS

First Stage

Figure 10.43 Compensation technique
using a common-gate stage.

Iin RS

M1

X

V1

CLRL

Vout

CC

gm2V2
V2

Figure 10.44 Simplified equivalent
circuit of Fig. 10.43.
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and hence

V2 = �Vout
CC s

CC s + gm2
(10.47)

Also,

gm1V1 + Vout

�
1

RL
+ CLs

�
= gm2V2 (10.48)

and Iin = V1/RS + gm2V2. Solving these equations, we obtain

Vout

Iin
=

�gm1 RS RL(gm2 + CC s)
RLCLCC s2 + [(1 + gm1 RS)gm2 RLCC + CC + gm2 RLCL ]s + gm2

(10.49)

As with the circuit of Fig. 10.41(b), this topology contains a zero in the left half plane. Using similar
approximations, we compute the poles as

�p1 �
1

gm1 RL RSCC
(10.50)

�p2 �
gm2 Rs gm1

CL
(10.51)

Interestingly, the second pole has considerably risen in magnitude — by a factor of gm2 RS with respect
to that of the circuit of Fig. 10.41. This is because at very high frequencies, the feedback loop consisting
of M2 and RS in Fig. 10.43 lowers the output resistance by the same factor. Of course, if the capacitance
at the gate of M1 is taken into account, pole splitting is less pronounced. Nevertheless, this technique can
potentially provide a high bandwidth in two-stage op amps.

The op amp of Fig. 10.43 entails important slewing issues. For positive slewing at the output, the
simplified circuit of Fig. 10.45(a) suggests that M2 and hence I1 must support ISS , requiring that I1 	
ISS + ID1. If I1 is less, then VP drops, turning M1 off, and if I1 < ISS , M0 and its tail current source must
enter the triode region, yielding a slew rate equal to I1/CC .

M1

X

I1
CC

VDD

I3

I2 I2

Vb
M2

M1

Vb
M2

Vout

I1
CC

VDD

I3

Vout

M0

ISS

ISS

P

ISS

X

P

M00

(a) (b)

I3 = I2 = I1 I3 = I2 = I1

Figure 10.45 Circuit of Fig. 10.43 during (a) positive and (b) negative slewing.

For negative slewing, I2 must support both ISS and ID2 [Fig. 10.45(b)]. As ISS flows into node P , VP

tends to rise, increasing ID1. Thus, M1 absorbs the current produced by I3 through CC , turning off M2

and opposing the increase in VP . We can therefore consider P a virtual ground node. This means that,
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for equal positive and negative slew rates, I3 (and hence I2) must be as large as ISS , raising the power
dissipation.

Op amps using a cascode topology as their first stage can incorporate a variant of the technique
illustrated in Fig. 10.43. Shown in Fig. 10.46(a), this approach places the compensation capacitor between
the source of the cascode devices and the output nodes. Using the simplified model of Fig. 10.46(b) and
the method of Fig. 6.18, the reader can prove that the zero appears at (gm4 Req)(gm9/CC), a much greater
magnitude than gm9/CC . If other capacitances are neglected, it can also be proved that the dominant
pole is located at approximately (Req gm9 RLCC)�1, as if CC were connected to the gate of M9 rather the
source of M4. The first nondominant pole is given by gm4gm9 Req/CL , an effect similar to that described
by Eq. (10.51). In reality, the capacitance at X may create a significant pole because the resistance seen
at this node is quite large. The analysis of the slew rate is left as an exercise for the reader. (One can also
insert a resistor in series with each CC to move the zero frequency.)

It is possible to combine two compensation techniques. As shown in Fig. 10.46(a), both CC and C �
C

provide greater flexibility in the design.

VDD

M8

M1 M2

ISS

M6

M5

M3 M4
Vout2

X

CL

Y

M7

M9M10

Vin

CL

Vout1
CCCC

M4

X M9

CC

CLRL

Vout

Req

Iin

(a) (b)

C�C C�C

Figure 10.46 (a) Alternative method of compensating two-stage op amps; (b) simplified equivalent circuit of (a).

10.8 Nyquist’s Stability Criterion8

10.8.1 Motivation

Our analysis of stability in negative-feedback systems has drawn upon Bode’s view of the loop transmis-
sion, namely, the magnitude and phase plots as a function of frequency, but only for s = j�. To understand
the shortcomings of this approach, let us consider the loop transmission plots shown in Fig. 10.47, where
� = 1 and |H | is equal to 3 at the phase crossover frequency, �0. Our previous studies suggest that such a
feedback system is unstable because it has a negative phase margin. However, if we write the closed-loop
transfer function as Y/X = H(s)/[1 + H(s)] and assume that s = j�0, then we have

Y

X
( j�0) =

�3

1 � 3
(10.52)

=
3

2
(10.53)

8This section can be skipped in a first reading.
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log �
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�H(�)�
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H(�)

Figure 10.47 Unstable system Bode plots.

Since the closed-loop gain is less than infinity at �0, the circuit cannot oscillate at this frequency. In fact,
for no value of s = j� in Fig. 10.47 can we find the condition Y/X = �. For example, at �u , we have
Y/X = exp( j	)/[1 + exp( j	)] < � if 	 �=x × 180�.

Should we conclude that this system does not oscillate?! This difficulty arises because Bode plots
confine s to imaginary values, i.e., they predict the behavior with only simple sinusoids. Indeed, this
study shows that no simple sinusoid can circulate around the loop indefinitely. This, however, does not
preclude other unstable waveforms. For example, suppose s is equal to �1+ j�1 with �1 > 0, representing
a growing sinusoid. It is possible that in the system of Fig. 10.47, H(s = �1 + j�1) = �1; that is, Y/X
goes to infinity for a growing sinusoid, allowing such a waveform to survive. Whether or not s = �1 + j�1

exists is predicted by Nyquist’s theorem but not by Bode plots.
We can exploit Nyquist’s stability analysis, for it provides greater insight and, more important, tackles

complex circuits more clearly. For a loop transmission � H(s), this analysis predicts how many zeros
1 +� H(s) has in the right half plane (RHP) or on the j� axis. If it has none, then the closed-loop system
is stable.

Nyquist’s method, however, is less intuitive and demands additional background in complex number
theory. The reader should study this section patiently. We remind the reader that the poles and zeros of a
transfer function can be shown on the complex s plane (Fig. 10.48).

�

j�

Figure 10.48 The s plane with poles
and zeros.

10.8.2 Basic Concepts

Bode’s approach to stability analysis plots the magnitude and phase of the loop gain versus frequency in
Cartesian coordinates. We can also plot these two parameters in polar coordinates, in which every point
is defined by an angle, 	 , and a radius, r , rather than by x and y [Fig. 10.49(a)]. As the frequency varies,
so do � H and |H |, creating a “contour” in these coordinates [Fig. 10.49(b)]. The horizontal and vertical
axes in Fig. 10.49(a) also carry a meaning: the projections of the vector on the two are expressed as
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P

r =
 �H

�

(a) (b)

H Contour
Im{H}

Re{H}

Im{H}

Re{H}

H� =

Figure 10.49 (a) One value of H(s) shown in polar coordinates, and (b) contour of H(s) as the frequency varies.

|H | cos(� H) and |H | sin(� H), respectively, with the former being the real part of H and the latter, the
imaginary part. We thus denote the two axes by Re{H} and I m{H}, respectively. We call the polar plot
of H(s) the “H contour.” We initially assume that s = j�, but later allow it to become complex.

As an example, let us plot H(s) = A0/(1 + s/�p) in polar coordinates if s is replaced with j�
and � varies from 0 to +�. The phase, � tan�1(�/�p), begins at zero and approaches �90� while the

magnitude, A0/
�

1 + �2/�2
p, varies from A0 to zero. Figure 10.50 sketches both the Bode plots and the

polar plot, highlighting the corresponding points at � = 0 (M) and � = � (N ). The reader may wonder
how we know that the polar plot is a semicircle. It is possible to prove this by calculating I m{H} and
Re{H}, but, as seen later, we do not have any interest in the actual shape. The beauty of Nyquist’s method
is that it primarily considers � = 0 and � = –�, avoiding the need for lengthy algebra.

0

0

MA0

N

M

N

Im{H}

Re{H}
MN
(A0, 0)

�90°

�H(�)�

H(�)

H = �90°�

�

Figure 10.50 Bode and polar plots of H as s = j� goes from zero to infinity.

This simple example readily demonstrates various decisions that we must make while plotting the H
contour: (1) the contour begins at (A0, 0) for � = 0 and travels to the left because it must eventually
reach the origin for � = �; (2) the contour falls below the horizontal axis because � H is negative; and
(3) the contour approaches the origin at an angle of �90�.

Since calculating |H | and � H is generally cumbersome, we wish to construct polar plots by considering
only the poles and zeros of the transfer function. To understand the objective, consider the complex s
plane for the above example, where the pole is real and equal to ��p (Fig. 10.51). As � goes from 0 to
+�, we begin at the origin and travel upward on the j� axis.9 Can we construct the polar plot of H by
examining what happens in the s plane?

Let us first see whether � H can be directly computed in the s plane. To this end, we consider one
value for s and denote it by s1 = �1 + j�1, a complex value. Shown in Fig. 10.52 for a one-pole system,

9Recall that H(�) is in fact H(s = j�); i.e., the s values are confined to the j� axis and the input is assumed to be a sinusoid.
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�

j�

��p
Figure 10.51 The s plane with
one pole.

 �–�p �1

s1j�1

j�

 �

�1 + �p
Figure 10.52 Phase shift produced by
a pole at frequency s1.

the s plane can yield a value for � H(s = s1). Since

H(s1) =
A0

1 +
�1 + j�1

�p

(10.54)

=
A0�p

�1 + �p + j�1
(10.55)

we have

� H(s1) = � tan�1 �1

�1 + �p
(10.56)

Thus, the angle 	 in Fig. 10.52 is equal to �� H(s1). That is, to determine � H(s1) in the s plane, we
draw a vector from the pole to s1, measure the angle of this vector with respect to the positive � axis,
and multiply the result by �1. For the phase contributed by a zero, the procedure is the same, except that
the result is not multiplied by �1. If H contains multiple poles and zeros, then their phase contributions
simply add algebraically.

It is possible to calculate |H | from the s plane as well,10 but, fortunately, the exact knowledge of |H |
is not necessary in Nyquist’s approach.

10.8.3 Construction of Polar Plots

In this section, we study examples of plotting H(s) in polar coordinates so as to prepare ourselves for
Nyquist’s stability criterion.

General First-Order System Suppose H(s) = A0(1 + s/�z)/(1 + s/�p) and �p > �z . We first plot
H for s = j� as � varies from 0 to +�. At � = 0, |H(s)| = A0. Also, as shown in Fig. 10.53(a),
the vectors going from the pole and the zero to s = 0 contribute equal and opposite angles, yielding

10The magnitude of H can be determined as the product of the lengths of the vectors emanating from the zeros divided by the
product of the lengths of the vectors emanating from the poles.
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H(�) 

H(�) 

0
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 �z  �z �p

Figure 10.53 (a) Phase shifts contributed by a pole and a zero at s = 0, (b) phase shifts at s = j�1, (c) contour of
H as s goes from zero to j�1, (d) phase shifts as s 
 j�, (e) correct contour of H , (f) corresponding Bode plots,
and (g) complete H contour.

� H(0) = 0. Now, if s rises to j�1 [Fig. 10.53(b)], the angle contributed by the zero, 	z , is greater than
that contributed by the pole, 	p. That is, � H = 	z � 	p remains positive. We have thus far constructed
the H contour shown in Fig. 10.53(c). The reader may wonder whether |H( j�1)| is greater or less than
A0, but we do not concern ourselves at this point.

What happens as s goes toward + j�? As depicted in Fig. 10.53(d), the angles arising from the
zero and the pole approach 90�, producing a net value of 0 for � H . The magnitude of H , on the other
hand, approaches A0�p/�z > A0. This means that the H contour returns to the � axis, but at a more
positive real value. Our guess in Fig. 10.53(c) is therefore not quite correct and must be revised to that in
Fig. 10.53(e). For completeness, we also show the Bode plots in Fig. 10.53(f).

It is necessary to repeat this procedure as s = j� goes from 0 to � j�. Since the s plane contents
are always symmetric with respect to the � axis for a physical system (due to conjugate symmetry of the
poles and zeros), the polar plot is also symmetric, emerging as shown in Fig. 10.53(g).

What if �p < �z? As shown in Fig. 10.54(a), the net angle is now negative as s travels upward on the
j� axis. Moreover, since |H( j� = 0)| = A0 and |H( j� = + j�)| = A0�p/�z < A0, the H contour
begins from A0 on the real axis, rotates downward, and shrinks in magnitude [Fig. 10.54(b)]. For s = 0
to � j�, this plot is reflected around the real axis in a manner similar to that in Fig. 10.53(g). The Bode
plots are also constructed in Fig. 10.54(c) to highlight the correspondences.

We have mostly confined the s values in H(s) to the j� axis. In general, however, s can travel on
an arbitrary path (contour) in the s plane, assuming complex, real, or imaginary values. It is there-
fore beneficial to consider the behavior of the foregoing first-order system in such a case. For exam-
ple, suppose s travels clockwise on a closed contour in the right half plane [Fig. 10.55(a)]. How does
H(s) = A0(1 + s/�z)/(1 + s/�p) behave if �p > �z? At point M , s is real and equal to �M , yielding
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j�

��z

s = j�1

(a) (b)

 �
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H(�)
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 �  
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H(�)

A0

�p �z

Re{H }

Im{H } 

A0
�p
�z

A0

s = 0s = +j	

��p

(c)

�p �z

Figure 10.54 System with �p < �z , (b) contour of H , and (c) corresponding Bode plots.

j�

��p ��z

Re{H }   Re{H }   

Im{H }   

s Contour

M N

M N

 ��N�M Re{H }   

Im{H }

M

?

H(�M) H(�N)

Im{H }

H(�N)
N M

(c)

(a) (b)

(d)

H(�M)

Figure 10.55 (a) s contour excluding pole and zero, (b) possible trajectories for H , (c) actual H contour, and
(d) H contour if ��z < ��p .

H(s) = A0(1 + �M/�z)/(1 + �M/�p), a real point in the polar plot of H [Fig. 10.55(b)]. As s departs
from M , the net angle becomes more positive because the zero contributes more phase than the pole does,
but we do not know whether the H contour rises to the left or to the right. We therefore continue the s
contour to point N , noting that the angle returns to zero and H(s) = A0(1 + �N /�z)/(1 + �N /�p),
which is greater than H(s = �M) if �p > �z . Thus, the H contour must rise to the right, i.e.,
rotate clockwise. Figure 10.55(c) depicts the complete plot as s traverses clockwise the contour in
the s plane from M to N and from N back to M . For the case of �p < �z , H rotates counterclock-
wise [Fig. 10.55(d)] because H(�N ) < H(�M). The reader is encouraged to repeat this analysis for
H(s) = A0/(1 + s/�p).

Let us consider another s contour that encloses the pole and the zero of the transfer function. As
illustrated in Fig. 10.56(a), we begin at point M and observe a net angle of zero and H(�M) = A0(1 +
�M/�z)/(1 + �M/�p). Since �M is more negative than ��z and ��p, H(�M) > 0, yielding a point on
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the real axis for the polar plot of H [Fig. 10.56(b)]. As we travel clockwise on the s contour, say to point
s1, the net angle becomes positive (why?), eventually returning to zero as we reach point N . Since �N is
less negative than ��z and ��p, H(�N ) > 0. The reader can prove that H(�N ) > H(�M). If we now
continue on the s contour from N toward M , the polar plot of H becomes negative and returns to zero.
It is important to note that the H contour does not enclose the origin. We say that H does not “encircle”
the origin. The s contours in both Figs. 10.55(a) and 10.56(a) lead to H contours that do not encircle the
origin. The significance of this point becomes clear later.

j�

��p Re{H }��z

M N
�N�M M N

(a)

�

s1

(b)

Im{H }

Figure 10.56 (a) s contour enclosing pole and zero, and (b) H contour.

What happens if the first-order system has no zero? As shown in Fig. 10.57(a), � H is equal to �180�

at point M , reaching �90� at s1 and zero at N . Also, H(�M) = A0/(1 + �M/�p) < 0 and H(�N ) > 0
[Fig. 10.57(b)]. We thus observe that H(s) encircles the origin in this case, and that the encirclement is
in the counterclockwise direction. Similarly, if the system has only one zero and no pole, a clockwise
s contour containing the zero maps to an H contour that encircles the origin in the clockwise direction
[Fig. 10.57(c)]. We hereafter assume that the s contours are symmetric around the � axis, obtaining polar
plots that are symmetric around the real axis.

M N

j�

��p

M N
�N�M

(a)

�

s1

Re{H}

Im{H}

Im{H}

(b)

H(�N)H(�M)

H(s1)

j�

M N
�N�M �

s1

Re{H}
M N

H(�N)H(�M)

H(s1)

��z

(c)
Figure 10.57 (a) System with one pole, (b) H contour, and (c) s and H contours if system has only one zero.
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We now study a first-order system that has both a zero and a pole while the s contour encircles only
the pole. We note from Fig. 10.58(a) that the polar plot of H(s) assumes a positive value at M , as it
did in Fig. 10.56(b). As s begins from point M and traverses the contour clockwise, � H becomes more
positive, reaching 180� at point N [Fig. 10.58(b)]. (It is helpful as a crosscheck to show that H(�N ) < 0.)
Thus, the H contour encircles the origin counterclockwise in a manner similar to that in Fig. 10.57(b).
The reader can repeat this exercise with an s contour enclosing only the zero and prove that the plot of
H(s) encircles the origin clockwise.

j�

��p

M N
�M

(a)

� Re{H }

Im{H }

(b)

H(�N)��z

N M

Figure 10.58 (a) s contour enclosing only one pole, and (b) H contour.

Second-Order System Consider H(s) = A0[(1 + s/�p1)(1 + s/�p2)]�1 and assume that s travels
upward on the j� axis [Fig. 10.59(a)]. We recognize that |H(s)| begins at A0 and falls as s 
 + j�.
Also, � H(s) begins at 0 and becomes more negative, reaching �90� and, asymptotically, �180�. As
depicted in Fig. 10.59(b), the H contour begins at A0, rotates clockwise, crosses the j� axis when

�

j�

j�

��p1��p2

��p1��p2

(a) (b)

Re{H }   

Im{H }   

A0

s = 0s = + j	

H = �90°

M N
�N�M �

s1

Re{H }   

Im{H }   

MN
H(�M)

s2

s3

H(s3)

H(s1)
H(s2)

(c) (d)
Figure 10.59 (a) Two-pole system, (b) H contour as s travels up on the j� axis, (c) s contour chosen to enclose
both poles, and (d) corresponding H contour.
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� H = �90�, enters the third quadrant, and eventually returns to the origin at a 180� angle. For s = 0 to
� j�, this plot is reflected around the real axis.

What if the contour of s encloses both poles? From Fig. 10.59(c), we note that � H = �360� at M and
H(�M) > 0. As we travel clockwise on the s contour to some point s1, the angle becomes less negative,
e.g., equal to �320� = +40�. Thus, the H contour rotates counterclockwise [Fig. 10.59(d)]. At some
point, s2, the net angle is around �270� = +90�, and at some other point, s3, we have � H(s3) = �180�.
As s approaches point N , H(s) reaches a real, positive value. The other symmetric half is shown in gray
for clarity. We observe that the polar plot encircles the origin twice in the counterclockwise direction if
the s contour encircles two poles in the clockwise direction.

10.8.4 Cauchy's Principle

From the foregoing studies, we postulate that, if the s contour encircles P poles and Z zeros of H(s) in
the clockwise direction, then the polar plot of H(s) encircles the origin Z � P times in the same direction.
This is known as “Cauchy’s Principle of Argument.” For example, if the s contour encircles clockwise
three zeros and no poles, then the H contour encircles the origin 3 � 0 = 3 times clockwise. As seen
earlier, the H contour is constructed primarily from the angles contributed by the poles and zeros, with
little need for the exact knowledge of |H |.

We have thus far assumed that we know the locations of the poles and zeros of a transfer function and
we construct the polar plot to see how many times it encircles the origin. One can embark on a different
task: suppose we know that an s contour contains P poles but do not know the number of zeros within
the contour. If we still manage to draw the polar plot of the transfer function and find that it encircles
the origin clockwise N times, we can conclude that the number of zeros within the s contour is equal to
Z = N + P . This is the key to Nyquist’s stability theorem.

10.8.5 Nyquist's Method

Having studied the foregoing concepts patiently, the reader is now ready to learn Nyquist’s stability
analysis. A negative-feedback system whose closed-loop transfer function is given by

Y

X
(s) =

H(s)
1 + � H(s)

(10.57)

becomes unstable if it has any poles on the j� axis or in the right half plane, both of which we call herein
the “critical region.” In other words, if 1 + � H(s) has any zeros in this critical region, then the system is
unstable.

How do we determine whether 1 + � H(s) has any zeros in the critical region? Let us construct an
s contour containing this region (Fig. 10.60). From Cauchy’s principle, we know that the polar plot of

�

j�
Critical
Region Im{1 + �H(s)}

Re{1 + �H(s)}   

Polar Plot of
1 + �H(s)

Figure 10.60 Critical region in the s plane and the corresponding H contour.
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1 + � H(s) encircles the origin Z � P times, where Z and P respectively denote the number of zeros
and poles that 1 + � H(s) contains within the s contour. We thus proceed as follows: (1) independently
determine P , (2) draw the polar plot of 1 + � H(s) as s traverses the contour shown in Fig. 10.60,
(3) determine the number of times, N , that 1 +� H(s) encircles the origin clockwise, and (4) find P + N
as the number of zeros that 1 + � H(s) has in the critical region.

We must recognize a point that simplifies our task. The poles of 1 + � H(s) are in fact the same as the
poles of H(s). If the open-loop system is stable (as is the case in most of our circuits), then H(s) has no
poles in the critical region and N = Z . Unless otherwise stated, we assume this to be true.

Before studying examples of the above procedure, we make one change that leads us to Nyquist’s
theorem: if the polar plot of 1 + � H(s) encircles the origin, then the polar plot of � H(s) encircles the
point (�1, 0) (Fig. 10.61) because the latter is obtained by shifting the former to the left by one unit.
Nyquist’s theorem articulates this result as for a closed-loop system, H(s)/[1 + � H(s)], to be stable,
the polar plot of � H(s) must not encircle the point (�1, 0) clockwise as s traverses a contour around the
critical region clockwise.

Polar Plot of
1+ �H(s) Polar Plot of

�H(s)

(0, 0) (�1, 0)

Im  Im  

ReRe

Figure 10.61 Polar plots of 1 + � H(s) and � H(s).

In applying Nyquist’s theorem, we must choose the s contour so as to minimize the mathematical
labor. One possibility is depicted in Fig. 10.62: we begin at the origin, travel on the j� axis to + j�,
go around the RHP on a very large radius, continue to j� = � j�, and return to the origin on the j�
axis. The reader may wonder what exactly happens now that the contour does not enclose the j� axis.
If 1 + � H(s) has any zeros on this axis, then the polar plot of � H(s) goes through the point (�1, 0)
rather than encircle it. [Recall from Bode plots that 1 + � H( j�1) = 0 translates to |� H( j�1)| = 1 and
� H( j�1) = 180�.] Since the s contour is symmetric around the � axis, we construct the � H contour
only as s goes from the origin to M and N , and simply reflect the result around the real axis to complete
the task.

�

j�

M

N

Figure 10.62 Simple contour
enclosing the j� axis and RHP.

� Example 10.9

Study the closed-loop stability if H(s) = A0/(1 + s/�p1).



Razavi-3930640 book December 17, 201517:11 449

Sec. 10.8 Nyquist’s Stability Criterion 449

Solution

For the s contour shown in Fig. 10.63(a), � H(s) begins at � A0 for s = 0. As s = j� moves upward, the phase
becomes more negative. At + j�, the phase goes to �90� and the magnitude drops to zero, i.e., the polar plot reaches
the origin at an angle of �90� [Fig. 10.63(b)]. What happens as s enters the right half plane? Traveling in the RHP
at a very long radius, s keeps � H(s) at zero. That is, the entire RHP contour from M to N maps to the origin. We
reflect this polar plot around the real axis to obtain the complete � H contour. Since the contour does not encircle
(�1, 0), the closed-loop system is always stable.

�

j�

M

N
��p

Im{�H(s)}

Re{�H(s)}
s = +j	

s = 0 

 �A0

(a) (b)
Figure 10.63 (a) s contour for a one-pole system, and (b) � H contour.

�

� Example 10.10

Study the closed-loop stability if H(s) = A0/[(1 + s/�p1)(1 + s/�p2)].

Solution

At s = 0, � H(s) = � A0. As s = j� moves upward, the two poles contribute negative phase (Fig. 10.64). At
s = + j�, the phase goes to �180� and the magnitude falls to zero, i.e., the polar plot reaches the origin at an angle
of 180�. The � H contour remains at the origin as s traverses the RHP at a very long radius from M to N . Since the
contour does not encircle (�1, 0), the closed-loop system is stable for any value of the feedback factor, �. The reader
is encouraged to repeat this exercise for increasingly larger values of �p2.

 �

j�

M

N
��p1

(a)

��p2

Im{�H(s)}

s = + j	 

s = 0

 �A0

(b)

Re{�H(s)}

Figure 10.64 s plane and � H contours for a two-pole system.

�

� Example 10.11

Study the closed-loop stability if H(s) = A0/[(1 + s/�p1)(1 + s/�p2)(1 + s/�p3)].
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Solution

The polar plot of � H(s) begins at � A0 and rotates clockwise, reaching an angle of �270� = +90� and a magnitude
of zero at s = + j� [Fig. 10.65(a)]. The reflection of this half around the real axis completes the plot, revealing
that the � H contour can encircle (�1, 0) depending on the location of the intersection point, Q. At this point,
� � H = �180�, i.e., tan�1(�Q/�p1) + tan�1(�Q/�p2) + tan�1(�Q/�p3) = 180�. With the pole values known,
one can compute �Q and hence |� H(s = j�Q)| so as to determine whether point Q is to the right or to the left of
(�1, 0). The corresponding calculation on Bode plots is illustrated in Fig. 10.65(b).

What happens to the � H contour in Fig. 10.65(a) if different values of � are chosen? Since the radius at every
point on the plot is proportional to �, the contour contracts as � decreases and expands as � increases. Illustrated in
Fig. 10.65(c), this trend confirms that a higher feedback factor can make a three-pole system unstable.
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�p1 �p2 �p3

�H(�)

�H (�)

�90°
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<>
?

1

Point Q

Im{�H(s)}

(c)

Larger � 

Smaller � 

Figure 10.65 (a) s and H contours for three-pole system, (b) corresponding Bode plots, and (c) H contour for
different values of �.

�

In some cases, it may not be straightforward to determine how many times the � H contour encircles
(�1, 0) clockwise. The general procedure for counting the number of encirclements is as follows: (1) draw
a straight line from (�1, 0) to infinity in any direction, (2) count the number of times the contour crosses
this line in clockwise and counterclockwise directions, and (3) subtract the latter from the former.

10.8.6 Systems with Poles at Origin

Some open-loop systems contain one or more poles at the origin. For example, the integrator shown in
Fig. 10.66 has the following transfer function:

H(s) =
�1

R1C1s
(10.58)
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C1

R1

Vout
Vin

Figure 10.66 Integrator.

if the op amp is ideal. When such systems are placed in a negative-feedback loop, their Nyquist sta-
bility analysis must choose a slightly different s contour. We begin with a one-pole system as depicted
in Fig. 10.67(a) and seek a contour that does not go through the origin so as to avoid an infinite value
for � H(s). Rather than begin at (0, 0), we travel on an infinitesimally small circle around it given by

 exp( j�) until we reach the j� axis and then move upward. The key point here is that 
 is very small,
simplifying the calculations.

 �

j�

Pole at
Origin


e j�

Im{�H(s)}

Re{�H(s)}



A0

�H(
e j90°)

(a) (b)

s = 


�

Figure 10.67 (a) s plane contour bypassing pole at origin, and (b) corresponding � H contour.

If H(s) = A0/s and we choose s = 
 exp( j�), then � H(s) = �(A0/
) exp(� j�). At � = 0, s = 
,
and � H is real and very large [Fig. 10.67(b)]. As s traverses the circle, � rotates toward +90� and
�(A0/
) exp(� j�) remains at a very large radius, approaching �90�. This behavior is indicated by a
dashed curve in Fig. 10.67(b) to emphasize the large radius. Now, s travels upward on the j� axis, still
retaining a phase of �90� (due to the pole at the origin), while |� H | falls, i.e., � H goes toward the origin
at an angle of �90� and remains at (0, 0) as s enters the RHP (not shown in the s plane). The other half of
the contour is obtained if s begins from the RHP (not shown), arrives at � j�, travels toward the origin
on the j� axis, and traverses the circle 
 exp( j�) from � = �90� to � = 0. Note that the polar plot of
� H does not encircle (�1, 0).

� Example 10.12

Analyze the closed-loop stability of H(s) = A0(1 + s/�z)/s. The zero can be created, for example, by inserting a
resistor in series with C1 in Fig. 10.66.

Solution

With s = 
 exp( j�) in Fig. 10.68(a), � H(s) � �(A0/
) exp(� j�) because 
 is small. Shown in Fig. 10.68(b) is
the � H contour. Even at � = 90�, the zero contributes negligible phase because the circle’s radius is very small. As
we travel upward on the j� axis, the zero begins to add positive phase, and � H(s) = � A0(1 + s/�z)/s approaches
a real value equal to � A0/�z at s = + j�. In contrast to the case illustrated in Fig. 10.67, this contour is deflected
away from the origin by the zero.
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Im{�H(s)}

Re{�H(s)}
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Figure 10.68

�

� Example 10.13

A negative-feedback loop employs two ideal integrators, i.e., H(s) = A0/s2. Study the closed-loop stability of the
system.

Solution

We begin with s = 
 exp( j�), � = 0, and hence � H = � A0/
2 (Fig. 10.69). As � goes to +45� (point N ),
� H(s) = �(A0/
2) exp(�2 j�) rotates by �90�, still at a very large radius. For � = +90� (point P), � H(s)
returns to the real axis. Now, as s = + j� travels upward, the angle remains unchanged, but the magnitude,
�|H( j�)| = � A0/�2, falls. That is, � H continues on the real axis toward the origin, passing through (�1, 0) at
� =

�
� A0. The closed-loop system therefore contains two poles on the j� axis because it crosses (�1, 0) twice.

After all, we can write H(s)/[1 + � H(s)] = A0/(s2 + � A0), observing two imaginary poles at – j
�

� A0. Thus, a
two-pole system can oscillate if it has two poles at the origin.

(a) (b)

Two Poles at
Origin

M

N
P

Q � = �A0

(�1, 0) M

N

P

Q
�

j�


e j�

s = 


Im{�H(s)}

Re{�H(s)}��

2
A0

�

2
A0

Figure 10.69

�

� Example 10.14

Repeat the previous example if a zero is added to one of the integrators, i.e., H(s) = A0(1 + s/�z)/s2.
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Solution

With s = 
 exp( j�) and � = 0, we have � H � � A0/
2. The behavior of � H is similar to that in the previous
example up to point P (Fig. 10.70). As s = + j� travels upward, the zero begins to contribute appreciable phase
and |� H( j�)| = � A0

�
1 + �2/�2

z /�2 continues to fall. As s 
 + j�, � � H approaches �90�, suggesting that
the � H contour must reach the origin at an angle of �90�. As shown in Fig. 10.70, the zero ensures that � H does
not cross or encircle (�1, 0), stabilizing the closed-loop system.

�

(a) (b)

M

N
P

Q

M

N

P

� = �A0

j�


e j�

(�1, 0)

s = 


Im{�H(s)}

Re{�H(s)}��

2
A0

�

2
A0

Figure 10.70

�

The foregoing example sheds light on a common paradox that the Bode plots of the two-integrator
system conjure up, especially in the context of phase-locked loops (Chapter 16). As shown in Fig. 10.71,
it appears that the above closed-loop system is capable of oscillation at a frequency �1, at which |� H |
is greater than unity and � � H = �180�. But we observe from the Nyquist plot in Fig. 10.70 or from
� H( j�1) = �� A0(1 + j�1/�z)/�2

1 that, owing to the zero, the phase of � H never reaches exactly
180�. That is, at point P in Fig. 10.70, the infinitesimal phase contributed by the zero causes |� � H | to
be less than 180�. Similarly, even though the approximate Bode plots of Fig. 10.71 suggest a phase of
180� for �1 � �z , in reality this amount of phase occurs only at � = 0. The story, however, does not
end here. The next section provides a more fundamental understanding.

20log

log �  
0

log �  
0

�H(�)

�H(�)

�z

�40 dB/dec

�20 dB/dec

�180°

�90°

�1

�1

Figure 10.71 Bode plots of a system
with two poles at origin and one zero.
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10.8.7 Systems with Multiple 180� Crossings

Consider a system whose loop transmission has three poles and two zeros as shown in Fig. 10.72(a).
Illustrated in Fig. 10.72(b), the Bode plots reveal that the phase crosses �180� twice while the gain
remains higher than unity. Is this system stable when placed in a negative-feedback loop?

20log

log �

log �

0

0

H(�)

�p1 �p2 �p3 �z1 �z2

�180

�

j�

 �p1 �p2 �p3�z1�z2

B C

�H(�)

Im{�H(s)}

Re{�H(s)}

Re{�H(s)}

Re{�H(s)}

B

C
D

Im{�H(s)}

s = + j	 s = + j	 

s = + j	 

B

C D

(c)

(a)

(b)

(�1, 0)

Im{�H(s)}

B

C D

(�1, 0)

(d) (e)

P Q

A

A A

A
D

	 	

Figure 10.72 (a) System with three poles and two zeros, (b) Bode plots, (c) � H contour, (d) case where C is to
the left of (�1, 0), and (e) case where C is to the right of (�1, 0).

In the absence of the zeros, the � H contour crosses �180� and approaches the origin at an angle of
�270� [Fig. 10.65(a)]. We now construct the Nyquist plot as follows. As we begin from the origin in
Fig. 10.72(a) and travel up on the j� axis, the phase starts at zero and the � H contour at point A in
Fig. 10.72(c). Due to the higher number of poles, � � H becomes negative, reaching �180� (point B) for
some value of j�. As � increases further, � � H becomes more negative, but, due to the contribution of
the zeros, it deflects, forcing the � H contour to return to the real axis (point C). The phase then becomes
more positive and, for � 
 �, approaches �90� (point D). Drawing the other symmetric half, we
distinguish between two cases.

1. Point C is to the left of (�1, 0) [Fig. 10.72(d)]; if we draw a line from (�1, 0) to infinity, it crosses
the contour twice (at P and Q), but the contour has opposite directions at these two points. The
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closed-loop system therefore has no poles in the RHP. Since both B and C are to the right of
(�1, 0), this case corresponds to the Bode plots of Fig. 10.72(b).

2. Point (�1, 0) lies between C and B [Fig. 10.72(e)]. In this case, the system is unstable.

We summarize the above results as follows. If � � H crosses 180� an even (odd) number of times while
|� H | > 1, then the system is stable (unstable).
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Problems
Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume that VDD = 3 V
where necessary. Also, assume that all transistors are in saturation.

10.1. An amplifier with a forward gain of A0 and two poles at 10 MHz and 500 MHz is placed in a unity-gain
feedback loop. Calculate A0 for a phase margin of 60�.

10.2. An amplifier with a forward gain of A0 has two coincident poles at �p . Calculate the maximum value of A0
for a 60� phase margin with a closed-loop gain of (a) unity and (b) 4.

10.3. An amplifier has a forward gain of A0 = 1000 and two poles at �p1 and �p2. For �p1 = 1 MHz, calculate
the phase margin of a unity-gain feedback loop if (a) �p2 = 2�p1 and (b) �p2 = 4�p1.

10.4. A unity-gain closed-loop amplifier exhibits a frequency peaking of 50% in the vicinity of the gain crossover.
What is the phase margin?

10.5. Consider the transimpedance amplifier shown in Fig. 10.73, where RD = 1 k�, RF = 10 k�, gm1 = gm2 =
1/(100 �), and CA = CX = CY = 100 fF. Neglecting all other capacitances and assuming that � = � = 0,
compute the phase margin of the circuit. (Hint: break the loop at node X .)

M1

RD

CX

VDD

M2

RF
CA CY

Vout

Iin
X

A

Y

Figure 10.73

10.6. In Problem 10.5, what is the phase margin if RD is increased to 2 k�?
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10.7. If the phase margin required of the amplifier of Problem 10.5 is 45�, what is the maximum value of (a) CY ,
(b) CA, and (c) CX while the other two capacitances remain constant?

10.8. Prove that the zero of the circuit shown in Fig. 10.32 is given by Eq. (10.30). Apply the technique illustrated
in Fig. 6.18.

10.9. Consider the amplifier of Fig. 10.74, where (W/L)1�4 = 50/0.5 and ISS = I1 = 0.5 mA.
(a) Estimate the poles at nodes X and Y by multiplying the small-signal resistance and capacitance to

ground. Assume that CX = CY = 0.5 pF. What is the phase margin for unity-gain feedback?
(b) If CX = 0.5 pF, what is the maximum tolerable value of CY that yields a phase margin of 60� for

unity-gain feedback?

M3

M1 M2Vin

Vb

CX

VDD

M4

CY

VoutY

X

ISS I1

Figure 10.74

10.10. Estimate the slew rate of the op amp of Problem 10.9 for both parts (a) and (b).

10.11. In the two-stage op amp of Fig. 10.75, W/L = 50/0.5 for all transistors except for M5,6, for which W/L =
60/0.5. Also, ISS = 0.25 mA and each output branch is biased at 1 mA.
(a) Determine the CM level at nodes X and Y .
(b) Calculate the maximum output voltage swing.
(c) If each output is loaded by a 1-pF capacitor, compensate the op amp by Miller multiplication for a phase

margin of 60� in unity-gain feedback. Calculate the pole and zero positions after compensation.
(d) Calculate the resistance that must be placed in series with the compensation capacitors to position the

zero atop the nondominant pole.
(e) Determine the slew rate.

M3

M1 M2Vin

Vb1

VDD

ISS

M4

M8M7 Vb1Vb1

Vout2Vout1

M5 M6

X Y

Figure 10.75

10.12. In Problem 10.11, the pole-zero cancellation resistor is implemented with a PMOS device as in Fig. 10.34.
Calculate the dimensions of M13–M15 if I1 = 100 µA.

10.13. Calculate the input-referred thermal noise voltage of the op amp shown in Fig. 10.75.
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CHAPTER

19
Layout and Packaging

In the past 40 years, analog CMOS circuits have evolved from low-speed, low-complexity, small-signal,
high-voltage topologies to high-speed, high-complexity, low-voltage “mixed-signal” systems containing
a great deal of digital circuitry. While device scaling has enhanced the raw speed of transistors, unwanted
interaction between different sections of integrated circuits as well as nonidealities in the layout and
packaging are increasingly limiting both the speed and the precision of such systems. Today’s analog
circuit design is very heavily influenced by layout and packaging.

In this chapter, we study principles of layout and packaging, emphasizing the effects that manifest
themselves when analog and digital circuits coexist on a chip. For the sake of brevity, we use the term
“analog” to mean both “analog” and “mixed-signal.” Beginning with an overview of layout design rules,
we study a number of topics related to the layout of analog circuits, including multifinger transistors,
symmetry, reference distribution, passive device layout, and interconnects. Next, we deal with the problem
of substrate coupling. Finally, we describe packaging issues, analyzing the effect of self- and mutual
inductance and capacitance of external connections to integrated circuits.

19.1 General Layout Considerations

The layout of an integrated circuit defines the geometries that appear on the masks used in fabrication.
From Chapter 18, the geometries include n-well, active, polysilicon, n+ and p+ implants, interlayer
contact windows, and metal layers.

Figure 19.1 shows an example, where the mask geometries required for a PMOS transistor are drawn.
It is important to note the following: (1) the n-well surrounds the device with enough margin to ensure
that the transistor is contained in the well for all expected misalignments during fabrication; (2) each

n�well

Poly n+ Implant

p+ Implant

Active

Metal 1 

Contact

Figure 19.1 Layout of a PMOS
transistor.
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Index

A
abstraction levels, circuit design, 5–6
active current mirrors, 146–60; common-mode properties,

156–59; large-signal analysis of, 149–52;
small-signal analysis of, 152–56; small-signal
behavior in, 146–49

active devices, 718–21; back-end processing, 720–21; basic
transistor fabrication, 718–20; fabrication, 718–21

active load, common-source stage with, 59–60
ADC. See analog-to-digital converter (ADC)
amplification mode: noninverting amplifiers, 562, 566;

unity-gain sampler/buffer, 555–56, 559–60
amplifiers: applications, 45; auxiliary, 366, 368–69; cascade

of, 179; categories, 47; continuous-time feedback,
539–40; current, 282–84; differential. See differential
amplifiers; frequency response of, 173–214;
high-speed, 495–507; low-noise, 45; noninverting,
562–67; nonlinear. See nonlinearity; nonlinear,
input-output characteristic of, 281; one-pole
feedforward, 412; operational. See operational
amplifiers (op amps); power, 45; single-stage. See
single-stage amplifiers; single-stage, noise in, 243–54;
switched-capacitor, 555–68; transconductance,
282–84; transimpedance, 282–84; two-stage feedback,
332–33; types of, 282–84; variable gain, 126–28;
voltage, 282–84, 589

amplitude: distribution, 224–25; limiting, 612–18;
output, 632

analog design: challenges, 4; demand for, 3–4;
introduction to, 1–6; octagon, 46, 47

analog layout techniques, 736–59; multifinger transistors,
737–39; passive devices, 746–53; reference
distribution, 744–46; shallow trench isolation issues,
743–44; symmetry, 739–43; well proximity
effects, 744

analog-to-digital converter (ADC), 1–2
antenna effect, 736
asymmetry, 119–23, 152. See also symmetry
auxiliary amplifiers, 366, 368–69
average power, 220

B
back-end processing, 720–21
bandgap references, 509–35. See also reference distribution;

case study, 533–35; defined, 521; floating, 534; general
considerations, 509; low-voltage, 529–33; speed and
noise issues, 525–29; temperature-independent
references, 515–22

bandwidth: modification, 279–80; noise, 264; small-signal,
346–49

Barkhausens Criteria, 411, 608, 612
biasing, 160–66; circuit, 477; common-gate, 164–65;

common-source, 161–64; constant-Gm , 524–25;
differential pair, 166; source followers, 165–66;
supply-independent, 509–12

binary data, 2–3
Blackmans theorem, 325–30, 338–39
Bode plots, 411, 413, 422, 423, 427, 439–40, 664
Bodes analysis of feedback circuits, 315–31
body effect, 20–22; source follower, 71
bonding pads, 757–59
bootstrapping, 680, 681
bottom-plate sampling, 555
BSIM (Berkeley Short-Channel IGFET Model ), 702, 706
bulk, 8; NFETs/PFETs, 34
bulk voltage, 20–22

C
cancellation, offset, 598–602
capacitance modeling, MOS device models, 707–8
capacitances: fringe, 729; MOS devices, 27–31; parallel, 729;

parasitic, 180
capacitor nonlinearity, 583–84
capacitors. See also switched-capacitor circuits: behavior of

MOS devices as, 37–38; layout in passive devices,
750–53; monolithic, 555; in passive MOS devices,
724–27

cascode current mirrors, 139–46
cascode current source, 140–46
cascode devices, layout, 739
cascode differential pair, 126
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782 Index

well proximity effects, 744
white noise, 223
wide-range tuning, 640–41
width, layout, 734

Y
Y model, 303–4

Z
zero: calculation in common-source stage, 185–86; in right

half plane, 430–31, 436
zero-offset switches, 547
zero-value time constant (ZVTC) method, 208–12
Z model, 303–4, 310

ZVTC method. See zero-value time constant (ZVTC) method
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