CIRCUIT IDEAS

PC-BASED OSCILLOSCOPE

M.M. VIJAI ANAND

his circuit conditions different sig-

nals of frequency below 1 kHz and

displays their waveforms on the PC’s
screen. The hardware is used to condition
the input waveform and convert it to the
digital format for interfacing to the PC. The
software for acquiring the data into the PC
and displaying the same on its screen is
written in Turbo C.

The input waveform (limited to 5V
peak-to-peak) is first applied to a full-wave
rectifier comprising op-amps Al and A2 of
quad op-amp LM324 (IC4) and a zero-
crossing detector built around LM3914 dot/
bar display driver (IC8) simultaneously.

put signal such that the negative half cycle
of the input signal is available in the posi-
tive side itself, so both the half cycles are
read as positive when it is given as input
to the ADC. During positive half cycle,
diode D3 is on and diode D4 is off, and
op-amps Al and A2 act as inverters. Thus
the output is a replica of the input. During
the negative half cycle, diode D3 is off
and diode D4 is on. With
R2=R3=R4=R5=R6=R=330 ohms, the
voltage (V) at inverting pin 2 of op-amp
Al is related to the input voltage (Vi) as
follows:
Vi/R +V/(2R) +V/R=0

A

AT

The final output voltage (Vo) at pin 7
of op-amp A2 is given by the following
relationship:

Vo= (1+R/2R)(-2Vi/3) = -Vi
As Vi is negative, the output voltage is
positive.

The zero-crossing detector detects
whether the cycle is positive or negative.
It is the most critical part of the circuit
and if it operates improperly, the symme-
try of the analogue signal displayed in the
PC monitor gets affected. At the zero-cross-
ing instant when the input signal transits
to negative side, the zero-crossing detec-
tor informs the PC by taking pin 15 of 25-

The full-wave rectifier rectifies the in- V= -(2/3)Vi pin ‘D’ connector of the parallel port high.
v N |, 7|g025 OUT (+5V) SAMPLE AND HOLD CIRCUIT
2
o1 o CcoM o CONVERSION
1000pT TO' o CIRCUIT
25 PIN 25V 4]EL
D-CONNECTOR 10 piN 17 16
TOPIN 2 — — . R7
TN 14 oF | [iNTR Vee [V 7 ™
g o ! 20 oeo| ° 2 ° 150¢ [o
pS TOPIN 13 18 2 18 0p
o© TOPIN 12 16 4 DB1},; ANV
° TOPIN 10 14 6 ng 16 1c3 o
TOPIN 11 12 IC1 8 15 '
o s 74244 11 oe4|,, ADC 19 |CLKR D2 S|_T11oo
° ; 1s|—o8s|,; 0804 R1 Tn400t
o 6 15 |—08844, 108 —W—¢
o LKIN
° 5 17 DB7]4 PR R6
o D1 19 10 38 2 101 7
1N40DT == — —TT—T~ - _——c4
13} TOPIN 16 | E2 GND WRl GND| RD [aNp| CS | Viy T 150p 2
—) o) Z
—— TOPIN1 D4 5
- TOPIN9 1N4001
NOTE: PINS 18-25 CRARAR SRR SRS W
(25 PINS D-CONNECTOR) el leklliERIE ZERO CROSSING B FULL WAVE
SHORTED TOGETHER 3 |13 = J 1= = = = 1= = DETECTOR RECTIFIER
AND CONNECTED %\Ll[\& A\ A VA VO W VAT WA
TO CIRCUIT GROUND $ $ 3 33 25 2 3 MS |_—| v
R17& & $ S & 22 R8
+5V T <& < e T T ¢ 2 9 3
Q 1 IC4 (A1, A2) = LM324
18 N IC5 (A3-Ad) = LM324
5 IC6 = CD4016
17 IC7 (A5) = LM324
16 DIVIDER (H) R2, R3, R4, R5, R6 = 3300
TOPIN 15 —¢ -
5 1c8 - _— R8-R17 = 4700
14 LM3914 “[out 1 (D
13 SR8
12 S 1K
T o | FEF
= 1 ADJ
>
o, VRIS,
- 10KS
v DIVIDER
®

ELECTRONICS FORYOU | DECEMBER 2002

The input at pin 15 of ‘D’ connector goes
low when the input signal transits to posi-
tive side. The zero-crossing detector com-
municates with the PC through bit D3 of
the status port 379Hex.

The zero-crossing detector has been
realised using LM3914 IC. You may adjust
VRI such that the last LED (LED10) goes
off when the input signal transits negative
side of the input waveform. The LM3914
itself rectifies the input signal and allows
only positive half of the cycle.

The output from the full-wave rectifier
is applied to the input of a sample-and-hold
circuit comprising op-amps A3 and A4 of
the LM324 (IC5), capacitor C3, transistor
T1 (SL100), and analogue switch IC6
(CD4016). This circuit samples the input
signal, i.e. it divides the waveform into a
number of voltages or points and inputs
each voltage level (with a delay) to the
ADC for conversion into the digital format.
Op-amps A3 and A4, along with a switch
from IC CD4016 and a 1500pF capacitor
with sampling time of 20 ps, are used as
voltage followers/buffers.

When the base of transistor T1 is made
low via strobe pin 1 (bit Do of I/0 port
37A) of 25-pin D connector of the parallel
port, the transistor stops conducting and
the voltage at its collector goes high. The
high voltage at the collector of transistor
T1 closes the switch inside CD4016. As a
consequence, the analogue input signal is
applied to the capacitor, which charges to-
wards the signal voltage.

When the switch is subsequently
opened by applying a logic-high voltage
from pin 1 of ‘D’ connector to the base of
transistor T1, the capacitor retains the volt-
age with a loss of about 20 mV/sec and
this voltage is given to input pin 6 of the
ADC0804 (IC3) via buffer A4 for conver-
sion to the digital format. When the num-
ber of sampling points in the input signal
waveform is increased, the reconstructed
waveform becomes more accurate.

The ADC0804 is compatible with mi-
croprocessors. It is a 20-pin IC that works
with 5V supply. It converts the analogue
input voltage to 8-bit digital output. The
data bus is tristate buffered. With eight
bits, the resolution is 5V/255 = 19.6 mV.

The inbuilt clock generator circuit pro-
duces a frequency of about 640 kHz with

R1=10 kilo-ohms and C4 =150 pF, which
are the externally connected timing com-
ponents. The conversion time obtained is
approximately 100 ps. The functions of
other pins are given below:

Pin 1 (CS): This is active-

Printer

. . LPT1
low chip-select pin. LPT2
Pin 2 (RD): This active-low LPT3

pin enables the digital output
buffers. When high, the 8-bit bus will be
in Hi-Z state.

Pin 3 (WR): This active-low pin is used
to start the conversion.

Pin 9 (Vref/2): This is optional input
pin. It is used only when the input signal
range is small. When pin 9 is at 2V, the
range is 0-4V, i.e. twice the voltage at pin 9.

Pin 6 (V+), Pin 7(V-): The actual in-
put is the difference in voltages applied to
these pins. The analogue input can range
from 0 to 5V.

In this circuit, pins 1 and 2 are always
made low, so the IC and the buses are
always enabled. Pin 9 is made open, as
we use analogue input with 0-5V range.
Pin 7 is grounded.

Pin 5 (INTR): This active-low pin indi-
cates the end of conversion. It is connected
to pin 17 (bit D3 of I/0 port 37A) of ‘D’
connector. (Note that this bit is inverted.)

The start-of-conversion command via
pin 16 of ‘D’ connector is applied to pin 3
of the ADC0804. Since we cannot read 8-
bit digital data output from ADC through
the 4-bit status port at a time, we divide it
in two 4-bit parts and read. Hence the
ADC data output is multiplexed through
two 4-bit sections of octal buffers of IC1
(74244) with the help of output-enable sig-
nals from pins 2 and 9 of ‘D’ connector to
pins 1 and 19 (OE1 and OE2, respectively)
of IC1. The digital data output from IC1 is
interfaced to the PC via pins 13 (D4), 12
(D5), 10 (D6), and 11 (D7) of status input
port 379H of ‘D’ connector.

The circuit uses 9V and 5V regulated
DC supply voltages as shown in the cir-
cuit diagram.

A PC printer port is an inexpensive
platform for implementing low-frequency
data acquisition projects. Each printer port
consists of data, status, and control port
addresses. These addresses are in sequen-
tial order; for example, if the data port
address is 0x0378, the corresponding sta-

CIRCUIT IDEAS

tus port address is 0x0379 and the
control port address is 0x037a. The port
addresses for parallel ports are summarised
below:

Data port Status port Control port
0x0378 0x0379 0x037a
0x0278 0x0279 0x027a
0x03bc 0x03bd 0x03be

(EFY Lab note. For details of the par-
allel port pins, refer ‘PC-based Dial Clock
with Timer’ project published in June 2002
issue of EFY.)

The software, written in C program-
ming language, is user-friendly and easy-
to-understand. It gets data from the devel-
oped hardware circuit and displays it in
the graphical screen with some changes.

The C program includes two user-de-
fined functions with the main function:
graphics() and settings(). The settings()
function is used to adjust the voltage and
time scale. The graphics() function is used
to display the waveform on the screen. The
sample control signal is used to close the
switch in the sample-and-hold circuit, so the
capacitor charges towards the analogue in-
put voltage. After the sampling is over, the
switch is opened using the same signal.
Then the start-of-conversion control signal
is given to start the conversion. The sam-
pling time is approximately 20 ps and the
conversion time is approximately 100 ps.

After the conversion is over, the 8-bit
binary data for the specific voltage sample
is available in the data bus of the ADC.
Since the PC accepts only 4-bit data through
the status port (379H), the 8-bit data must
be split into two 4-bit data, which are ac-
cepted one after another. This is done by IC
74244, which is controlled by DO and D7
bits of the data port. Then the two 4-bit
data are packed to get the final 8-bit data.

The default BGI directory path is set
as ‘c:\tc\bgi’. The sampling time is de-
cided by the ‘for’ loop that uses the samp
value. The maximum delay produced
should be greater than 20 ps, which is the
maximum acquisition time of the capaci-
tor. When the sample value is increased,
the number of points on the input signal
decreases and therefore the accuracy de-
creases. The time scale may be calibrated
with 50Hz sine wave as reference.

This circuit costs around Rs 400.

PROGRAM IN 'C' FOR PC OSCILLOSCOPE

/* PROGRAM FOR PC OSCILLOSCOPE */
/*by M.M.VIJAI ANAND B.E (E.E.E) C.LT */
#include < dos.h >

#include < time.h >

#include < stdio.h >
#include <graphics.h>
#include < string.h >
#include < stdlib.h >

#define data 0x0378
#define stat 0x0379
#define cont 0x037a

DECEMBER 2002 ELECTRONICS FOR YOU

CIRCUIT IDEAS

void graphics (int[], mt[]) //FUNCTION TO DIS-
FORM

PLAY GRAPH AND WAVE

void settm% //FUNCTION TO CHANGE
THE SETHN S(TIME AND VOLT-
AGE

long int samp=7000; //PLEASE CHECK THESE VAL-
UES WHEN CONVERSION 1S

// NOT PROPER(+-
3000)

float scale=1;
float times = 1;
char again="a’;
int number = 800;

void main()

{
int 1,j,k,a[1700],b[1700],c[1700],e[1700]; //This value
1700 is given when we want to compress the waveform

//done when we compress the time scale
long int bl;
clrser();
settings();
while%again =="a)

for(i=0;i < number;i + +)

outportb(cont,0x05*0x0b);
outportb(cont,0x04*0x0b);

e[i] = (inportb (stat) “0x80) &0x08;
for(b1=0;bl < =samp;bl + +)

//sampling
tin{1§ is approximately 50 psec

outportb(cont,0x05*0x0b);
outportb(cont,0x01°0x0b);
outportb(cont,0x05"0x0b);
while((inportb(cont) &0x08) =
time is approximately 100 psec

}

outportb(data,0xf0);
ali] = (inportb (stat) *0x80) &0xf0;
outportb(data,0x01);
b[1]p (inportb (stat) A0x80) &0xf0;
outportb(data,0xff);

=0x00) //converstion

for(i=0;i <number;i + +)
ali] =ali] > > 4;

cli] =ali] +blil;

cli] =c[i]*0.0196*45/scale;

?aphics (c.e);

}

void graphics(int al[],int el[])

int gd = DETECT,gm,max,may,a,b,c.im,error,get =5;

char str[10],*st="-".d;

clrser();

initgraph (&gd,&gm,” c:\\tc\\bgi");
default bgi path

error = graphresult();
if(error I = grOk)

//use

printf(“Graphics error %s /n” grapherrormsg(error));
//reports error when

raphics is not set
printf(" PRESg ANY KEY TO EXIT");
getch();
exit(1);

}
setbkcolor (LIGHTCYAN);
setcolor(MAGENTA);

settextstyle(0,0,2);

max = getmaxx();

may = getmaxy()

may

outtextxy%() may,” OSCILLOSCOPE”);
settextstyle(0,0,1);

setcolor LUE);

outtextxy(max-200,may + 2,”press ‘a’ for next
sample”);
| ELECTRONICS FORYOU | DECEMBER 2002

setcolor(BROWN)

outtextxy (max- 200 may + 10, "press any key to exit”);
setcolor{GREEN)

settextstyle(0,0,0);

for(a=0;a< =may;a+ =get)

{line(0,a,800,a);

for(a=0;a< =max;a+ =get)
line(a,0,a,may);

setcolor(BROWN);

setlinestyle(0,3,0);
line(max/2,0,max/2,may);

line (0,may/2,max,may/2);
setcolor(RED);

for(a=0,c=0;a< =max;a+ =50,c+ +)

{

putpixel (a,may/2,BLUE);
itoa((a-c*30) *times/2,str,10);
outtextxy (@ +3,may/2 + 3,str);

}
for(b=(may/2)-45,c=1;b> =0;b-=45,c+ +)

itoa((c*scale) str,10);
putpixel((max/2) ,b,BLUE);
outtextxy((max/2) +3,b+ 3 str);

}
for(b= (may/2) +45,c=1;b< =800;b+ =45,c+ +)

itoa((c*scale),str,10);

streat (st,str);
putpixel((max/2) ,b,BLUE);
outtextxy(max/ 2) +2,b+2,5st);
strepy (st, -

setcolor(MAGENTA);

outtextxy (max-80,may/2 + 30, time (msec) ") ;
settextstyle(0,1,0);
outtextxy((max/ 2 -10,0,”volt(s)”);

setlinestyle(0,0,0);

setcolor(RED);

moveto(0,may/2);

for(b=0,c=0b< =number;c+ =1, b+ +)

{

if(e1[b]! = 0x08)

l}ineto (c*times, ((may/2)-al[b]));
else

{
l}ineto (c*times, ((may/2) +al[b]));

}

again = getch();
closegraph();
restorecrtmode();

}
void settings()

int gd = DETECT ,gmerror,max,may,b;

char c,d,e[2],m,*n;

times=1;

initgraph (&gd,&gm,”c:\\tc\\bgi");
directory path

error = graphresult();

if(error 1= grOk)

//default bgi

printf(“Graphics error %s /n apherrormsg (error));
printf(“PRESS ANY KEY TO E)gr

getch();

exit(1);

max = getmaxx();

setbkcolor (LIGHTBLUE) ;
settextstyle(1,0,0);

setcolor(BROWN);

outtextxy (max/2-60,20,"SETTINGS");
line(0,60,800,60);

setcolor(MAGENTA) ;

settextstyle(1,0,1);

outtextxy ((max/4)-70,80, " Voltage Scale”);
settextstyle(0,0,0);

setcolor BROWN)
outtextxy(10,120,”"DEFAULT ~ :");
outtextxy(10,120,” 1 unit = 1 volt”);

setcolor(RED);

outtextxy(10,170,”TYPE ‘C’ TO CHANGE AND ‘D’ TO
DEFAULT");

c=getch();

if(c=="c)

{

outtexU(y(IO,ZOO,"TYPE 1 for 1 unit = 2 volt”);
outtextxy(10,240,"TYPE 2 for 1 unit = 4 volt”);
outtextxy(10,300,"TYPE 3 for user defined”);
switch (getch()

{

case ‘1" :
{ scale=2;
break;
case ‘2" :
{scale = 4;
break;
}
case ‘3" :

{

outtextxy(10,340,"TYPE VALUES FROM 1 TO 9
(minimize) or m to (magnify)”)

d= getch()

if(d=="m’)

outtextxy(10,360,”TYPE a (1 unit = 0.5 volt) or b
(1 unit = 0.25 volt)”);

switch(getch())
{
case ‘a”:
scale=0.5;
break;
case ‘b’
scale =0.25;
break;
}
}
else
{ e[0]="0";
ell]= "0
e[2]=d;
scale =atoi(e);
break;
i
}
}
setcolor(BROWN)

outtextxy(10,380," TYPE C TO CHANGE TIME SET-
TINGS");

m=getch();

if(m=="c)

cleardevice();

outtextxy(10,20,"X AXIS 1 unit="10msec CHANGE
TO x(10msec)”);

outtextxy(10,40,"TYPE ‘a’ IF x IS (2t0 9) ,'b’ IF x IS
(10 to 99) AND ‘¢’ IF x IS (.5 TO .9)");

sw1t{ch (getch()

case ‘a’:
outtextxy(10,60,"x value is");
n[0] =getch();
times =atoi(n);
itoa(times,n,10);
outtextxy(10,70,n);
break;

case ‘b
outtextxy(10,60,"x value is");
n[0] =getch();
n[1] =getch();
times =atoi(n);
itoa(times,n,10);
outtextxy(10,70,n);
break;

case ‘c’:
outtextxy (10,60, "x value is...");
getch();
n[0] =getch();
times = at01(n)*0 1;
outtextxy (10,70, scale decremented”);
break;

b

number = 800;

if(times < 1)

{number = number/times;

getch();

closegraph();
restorecrtmode();

