Make a low-cost benchtop power meter

JIM TODSEN, BURR-BROWN CORP, TUCSON, AZ

With a few inexpensive ICs and passive components, you can easily make a multirange power meter suitable for use on your benchtop. The circuit in **Figure 1** measures currents from microamps to amps and voltages as high as 100V. The voltage at V_{OUT} , which you can monitor with a DVM, indicates the load's power. Two 9V batteries can run the circuit (\pm V= \pm 9V), which has a current drain of 10 mA.

The circuit performs an analog multiplication of current and voltage to cal-

culate the power. The load that you want to measure connects between +OUT and –OUT. The supply to the load connects between +IN and –IN. The PGA amplifier (IC₁) produces a voltage proportional to the load current (I_{LOAD}) sensed across R_{SENSE}, which sits on the ground side of the supply. R₁, R₂, and IC_{3D} generate a scaled version of the load voltage equal to V_{LOAD}/20. The output of IC₁ and V_{LOAD}/20 are the inputs to IC₂'s precision analog multiplier. IC₂ has a built-in scale factor of ¹/₁₀. R₄, R₅, and R₆ provide additional gain. A

TABLE 1—POWER METER RANGES AND SETTINGS

S ₀	S ₁	PGA GAIN	I _{MAX}	V _{MAX}	P _{MAX}	V _{out} scale
Open	Open	1000	10 mA	100V	50 mW	10 mW/V
Closed	Open	100	100 mA	100V	500 mW	100 mW/V
Open	Closed	10	1A	100V	5W	1W/V
Closed	Closed	1	10A (see note)	100V	50W	10W/V

NOTE: I_{MAX} may be lower, depending on the rating of R_{SENSE}.

lowpass filter at the output helps reduce noise and provides protection to $\rm IC_2$ in case $\rm V_{_{OUT}}$ accidentally shorts to ground. Combining all the scaling factors gives

$$\begin{split} V_{OUT} &= (I_{LOAD} R_{SENSE} \overset{a}{\underset{e}{b}} V_{LOAD} \frac{R_2}{R_1 + R_2} \overset{\bar{o}}{\Rightarrow} PGA_{GAIN} \overset{a}{\underset{e}{b}} \frac{1}{10} \overset{\bar{o}}{\overset{e}{\Rightarrow}} \frac{R_6 + R_4}{R_5} \overset{\bar{o}}{\overset{e}{\Rightarrow}} = \\ & I_{LOAD} V_{LOAD} \frac{PGA_{GAIN}}{10}. \end{split}$$

The circuit works equally well for positive and negative

load currents and voltages. If the load is producing rather than dissipating power, V_{OUT} reads negative. The scale of V_{OUT} is the same for positive and negative power readings. **Table 1** shows the ranges.

The maximum load-current setting (I_{MAX}) limits the output of IC₁ to 5V to meet head-room requirements when using 9V supplies. D₁ through D₅, R₃, and an LED provide a positivecurrent-overload warning. When the LED turns on, you should decrease the PGA's gain. A similar string of diodes with opposite polarity can monitor negative-current overloads. Make sure R_{SENSE} has a sufficient rating to handle the maximum current you use. Also, remember that for high I_{LOAD}, there is a significant voltage drop across R_{SENSE}.

The maximum load voltage (V_{MAX}) of this circuit is 100V, limiting the voltage at IC₂'s input to 5V. You can adjust the ratio of R₁ and R₂ for a different V_{MAX}. Keep the sizes of R₁ and R₂ large to minimize current through them. Their currents add to I_{LOAD} and cause an error in the power reading. IC_{3D} prevents IC₂'s input-bias current from flowing through R₁ and R₂. The maximum power (P_{MAX}) setting limits IC₂'s output to 5V.

 IC_{3A} through $IC_{3C'}$ IC_{4A} and $IC_{4B'}$ and potentiometers R_7 through R_{10} provide offset cancellation. R_6 provides gain calibration. The circuit must remove various offsets and gain

errors to achieve the best accuracy, which is better than $\frac{1}{2}$ of full-scale over most of the ranges. If lower accuracy is acceptable, you can remove some or all of the offset cancellation circuitry. To fully calibrate the circuit:

- 1. Short the load (place a short between +OUT and –OUT) with V_{IN} =0. Adjust R_{10} until V_{OUT} =0, which nulls the offset of the output of IC₂.
- 2. Remove the short, set PGA=1, and apply a large V_{IN} with no load. Adjust R_7 until V_{OUT} =0, which nulls the offset of the I_{LOAD} input to IC₂.
- 3. Set PGA=1000 and continue applying V_{IN} with no load. Adjust R₈ until V_{OUT}=0, which nulls the offset of the front end of IC₁. If the PGA gain remains the same, R₈ is unnecessary because R₇ cancels the offset.
- 4. Short the load. Apply V_{IN} , and increase I_{LOAD} until the LED starts to turn on. (For PGA=1000, I_{LOAD} is 10 mA to turn on LED.) Adjust R_9 until V_{OUT} =0, which nulls the offset of the V_{LOAD} input to IC₂.
- 5. Finally, calibrate the gain. Set the PGA=100, the load=2k, and V_{LOAD} =25V. Adjust R_6 until V_{OUT} matches the calculated power.(DI #2250)

To Vote For This Design, Circle No. 377

A programmable-gain amplifier, an analog multiplier, and a handful of other active and passive components implement a benchtop, multirange power meter.