IC provides versatile toggle functions

Louis Vlemincq, Belgacom, Evere, Belgium

The circuit in Figure 1 offers not only as many as six channels in a single IC package, but also a high level of additional flexibility. The configuration of Output 1 is a "plain-vanilla" toggle. A resistive divider comprising R₁ and R₂ provides a midsupply bias to all the channels through resistors R₃, R₆, R₇, R₁₀, and R₁₂. Because the bias voltage of R₁/R₂ is within the hysteresis range of the gates, they behave as flip-flops, retaining their high or low state in a stable manner.

Debouncing capacitors C_2 , C_3 , C_4 , and C, charge to the level of the output. Pushing switch S, inverts the output state because of the inverting action of the gate. This state remains stable because, in the first gate's circuit, for example, Ra's value is larger than that of R₃, and R₄ cannot overcome the hysteresis threshold of the gate. Only the discharge of C, can accomplish that task. When you release the pushbutton, C, fully charges after the debouncing delay, and the circuit is ready for another inversion. C, provides a general power-on-reset feature to all the channels. If your circuit requires only one channel, you can directly connect R, and R, to the input of the gate, omitting R₃.

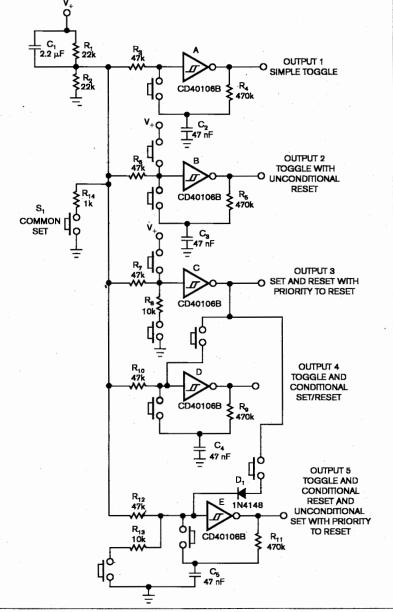


Figure 1 This circuit shows multiple Schmitt-trigger inverters functioning as a variety of set/reset toggles.

designideas

Output 2 has the same toggle function as Output 1 but also includes a direct reset. Output 3 works only in a set/ reset mode; the position of R_o determines the priority state. Output 4 also has a toggle action, but you can set or reset it to a state opposite that of Output 3. Output 5 works in a similar manner, except it allows only a conditional reset because of the position of D₁. Output 5 also includes a forced, non-priority set. You can mix and match all these functions, providing almost unlimited versatility.

The IC in Figure 1 is a Fairchild Semiconductor (www.fairchildsemi. com) CD4000-series circuit, suitable for supplies of 3 to 15V, but it could also

be a 74AC14 or 74HC14 from NXP (www.nxp.com), for example. Any CMOS-input gate having a Schmitttrigger action is suitable. You must take care to bias the inputs in the middle of their hysteresis range. HCMOS circuits would require an average bias of approximately 1.2V for a 5V supply, for example.EDN