
f [A T U R E

One of the less than obvious aspects of C programming is how return values are
handled. This month we'll scrutinize the registers.

A C language program ultimately
consists of functions called by func­

tions called by functions and so on until
you work your way back up the tree to the
main function, which is called by DOS.
This structure imposes a simple, easy to
understand order on the potential spaghetti
dinner of writing a program. A function is
any black box which accepts zero or more
values and optionally returns something.

Under C, the nature of' 'something''
is largely left up to your imagination, and
the way in which you deal with the things
your functions return will influence the
structure of the code you write in C. The
effective use of return values will go a
long way towards making your programs
compact, understandable ... and function­
al.

Unfortunately, without under­
standing how return values really do their
magic, it's quite easy to tell C to perform
something with one that it can't do. It's
just as easy to pass over opportunities to
create moreeffectivecode.

What Goes Up ...
There's a very simple rule for return values
under C. Things passed to a function are
stored on the stack, using the techniques

34

Steve Rimmer

we have discussed previously. Things
which are returned from a function areal­
ways stored in the machine registers of the
processor of your computer. In this way,
the return value of a function can be ig­
noredorusedatthediscretionofthecalling
function.

You might consider the getchD
library function under C, a function which
waits for a keyboard character when it's
called and returns it as the low order byte
of an integer when someone actually
wakes up and belts a key. Now, you can
use this to actually see what the next key is
by doing something like this.

a=getchO;

or you can just wait for a keypress ...

getchO;

In the first case, the variable a,
presumably some memory on the stack,
will be loaded with the value returned by
getch. In the second, the registers are all
ignored when getchreturns.

The return values of C functions al­
ways appear in predictable registers. For
sixteen bit values such as ints and pointers

under the small memory model, the return
value is stored in the AX register. For
functions which return char values, the
returned value can be found in the AL
register. For functions which return thirty­
two bit values, or far pointers consisting of
segment and offset values, the low order
word is returned in AX and the high order
wordinDX.

If you keep in mind that whatever you
return must fit into the available
registers ... into thirty-two bits for most ap­
plications which do not involve floating
point numbers ... you 'II avoid a number of
obvious problems.

In theory, any object can be returned
by a function. In practice, as we've seen,
this is not so. For example, this would not
work.

struct ffblk getflrst(s)
char*s;
{
structffblkf;
/"' ".somecodegoeshere*/
retum(t);
}

This function returns a forty byte
struct variable ... or, at least, it thinks it

E&TTMarch1990

' J

does. As we've just seen, you can'tactual­
lydothis. Whatyoucoulddoisthis:

structft'blk *getflrst(s)
char*s;
{
structft'blkf;
I* .. .somecodegoeshere*/
return(t);
}

This second function returns a
pointer to a forty byte struct, which is
something C can do. In this case, the actual
returned value is a sixteen or thirty-two bit
value, which will fit in the available
registers.

As an aside, if you're interested in
seeing what the actual returned values
from functions are, you might want to
nose around using some ''pseudo­
variables" provided under Turbo C. If
you were to put this line of code in your
program,

printf(" AX=%X" ,_AX);

the value of the AX register at that
point in your code would be displayed.
There are similar pseudo-variables for all
the useful8088 registers under Turbo C ...
you can use them to see what really comes
back from C functions if you like.

The second version of our imaginary
function, above, has a problem too ... but
it's very obscure.lf you were to write such
a function, the results would probably be
useless. They would be correct when the
function returned... the returned value
would point to a validffb/k struct in this
case ... but it wouldn't stay that way very
long.

Recall that variables allocated within
functions are actually placed on the stack
for the life of the function and then thrown
away. The returned value of our function,
then, would point into a stack variable
which would have been deallocated just
before the function returned. If you call
another function before you use the data ...
or if a keyboard interrupt were to be
thrown, for example ... the data in this vari­
able would be overwritten and the value
returned by the function would find itself
pointing to garbage.

The solution to this problem is to have
C allocate the variable in a place which
will not be overwritten. This type of
storage is called static ... it's allocated
when the program starts up and survives
untouched even when the function which
owns it isn't being used. Here's how this
works.

E&TTMarch1990

structft'blk *getflrst(s)
char*s;
{
staticstructft'blk f;
I* .. .somecodegoeshere*/
return(t);
}

This function will return a pointer to
valid data. When you return pointers from
functions, it's extremely important that
you take care to make sure that whatever
you're pointing to will actually exist when
it ultimate! y gets used.

Pointer Checking
Unless it's told otherwise, C assumes that
all functions returned signed integers. You
can tell it otherwise by declaring at least a
partial prototype for a function like the one
we've been looking at somewhere near the
top of yourprogram. You would say this:

structft'blk *getflrst();

This tells C to expect a pointer to an
ffb/k struct from geifirst, rather than an int.
In a large model program, this means to
expect a thirty-two bit number rather than
a sixteen bit one, and failing to do this can
result in some pretty spectacular system
crashes if you attempt to write to an illegal
pointercreatedinthisway.

This prototype also helps C type­
check your code. Not only does it know
that geifirst returns a pointer, but it also
knows whatsortofpointeritcan legally be
assigned to without a cast. This would
cause the compiler to complain,

char*p;

p=getf"Irst("*·*");

whereas this would not.

structft'blk *p;

p=getflrst("* .*");

Both variables actually have the same
structure, but C keeps you from acciden­
tally interchanging them.

Return Ticket
It's important to realize that a return value
can be used just like a variable. For ex­
ample, allowing that a hypothetical func­
tion called message returned a pointer to a
string, you could print the string this way.

char*p;

p=message();
puts(p);

Youcouldalsodoitthisway.

puts(messageO);

Let's further hypothesize that the
function message returns a string based on
an error code, as returned by the function
screwup. Youcouldsothis,

inti;
char*p;

i=screwupO;
p=message(i);
puts(p);

or you could be much more elegant.

puts(message(screwup()));

In nesting return values like this, it's
important to note that the innermost func­
tion will always be called first, its return
value evaluated and then passed as an ar­
gument to the next innermost function,
and soon.

You might well ask whether the
nested version actually creates better or
tighter code ... or if it just looks like it does.
The answer is not all that clear. In theory,
the registers set by screwup should be
pushed directly onto the stack and mes­
sage should be called. This would be
decidedly more efficient than saving each
value in a dedicated stack variable. In
practice, your complier may or may notal­
ways handle things this way. It very often
likes to create temporary stack variables
behind your back to hold the results of
nested function calls like this one, mini­
mizing the actual space and time saving of
such a structure. This will usually be the
case if your nested functions involve one
or more functions which accept more than
one argument.

In the above example, the compiler
should not have to use any temporary vari­
ables, and the result should be much
tighter code through using nested return
values.

The most important thing to remem­
ber about using the values that are returned
by your functions is that they behave like
normal C values ... ints, pointers and so
on ... and should be treated as such. As long
as you apply the same rational to them
what you would to other C numerical en­
tities they won't creep up behind you and
grab you ~Y the ears .•

35

