
f [A T U R E

ie'sGu·
14

Thismonthwe'regoingtohavealookatsomeofthemoreintricatebitsofindirection,
pointer notation and otherC language nasties.

Steve Rimmer

T stand it... it's not all thatimportantat the rna­
he nature of C, with its local variables ment. For the most part, C insulates you
and structurally isolated blocks of from having to know how big a pointer ac­

code, makes for creating programs quickly tuallyis.
and with far fewer bugs than would crop up This bit of C code will print a string
underalanguagelikeBASIC.Calsoletsyou which you have subsequently stored in b,
keepallyourdatatogetherindatastructures, above. We'll assume that you've actually
afacilitywhich makes dealing with complex done so.
blocks of data a lot more practical.

The notation for using complex data puts(b);

charname[40];
doubleannual income;
intnumber or dogs;
}HUMAN; -

This is all the pertinent information
about a person for a program which corre­
lates annual income with the number of dogs
the person in question owns. The ultimate
usefulness of such a piece of software will
be left for discussion some time in the far fu­
ture.

We can begin by declaring a variable of
this type.

structures under C is a bit obtuse, perhaps
made more so by the responsibility the com­
piler places on the shoulders of program­
mers for differentiating between objects and
pointers to objects.

This month we're going to try to make
sense of the pointer problem, looking at ex­
actly what a pointer is and what it points to.

Now, as you 'II recall from previous in­
stallments of this series, when you do some­
thing like this, C actually copies the argu­
ment... b in this case ... onto the stack so the
function it's calling, puts, can find it. If we HUMANh;

It's Rude to Point
If you have a line ofC code like this

charb[64];

were to pass bas an object, this would mean
copying sixty-four bytes onto the stack. . At this pomt, hIS an obJect. ~s such, _we
More than this, though, it would mean that ~Ight .set the name of the person m questiOn
the compiler would have to keep track of the like this.
size of every object it uses, and there are
several sorts of objects which it cannot strcpy(h.name," AugustusL.Fizzbatt");

know about.
For this reason, the compiler stores The expression h.name appears as a

pointers to large objects. Simple objects, string pointer in this case, a pointer to the
you will set up a sixty-four·byte buff- such as ints, doubles and chars are passed part of the variable h where the string called

er ... or more proper~y, an array of char vari- directly on the stack. Everybody else gets to name is to be stored.
ables ... somewherei~memory.However,C usepointers. Now, here's where things let a bit
never lets you ~eal with complex data types, Because arrays are always dealt with tricky. Let's say that we have written a func­
such~sarray,drr~tly.As~result .• bdoesnot through the use of pointers, c lets you treat ~ion which takes a HUMAN variable as
contain the .array If:Self. Its a pomter to the them pretty loosely. Data structs, which ~nputandretum.samuttfactor .. Amuttfactor
~ay. The siZe of b IS two or four, ratherthan we've discussed previously, are declared as IS a nu~ber wht.ch relat~s the mcome of the
stxty-four.. . . objects and passed through pointers, soC person m question to.his.o~ her dog coun.t,

The siZe of b, and of any pomter, IS forces you to distinguish between them theexactnatureofwhichtsrrrelevanttothis
determined .by the number of by~s needed when you use struct variables. discussion. Here's the function.
to form a pomter under Y?ur ~omptler' s cur- Keeping this straight is one the biggest
rent m.emory ~od~l. This wtll be two bytes headachesfornewCprogrammers.
f?ra stxteen bit pomter underthe small and Let's see how these pointers work.
tt~y ~odels and four bytes for a thirty-two Here'sastructvariabletypebeingdeclared.
bit pomter under the large and huge models.
Don't worry about this if you don't under- typedefstruct{

32

mutt factor(n)
HUMAN*n;
{
intmutt;

/*calculatethemuttfactor*/

E& TTFebruary1990

return(mutt);
}

Now, in this function, n is not a struct
variable of the type HUMAN, but rather a
pointer to it. As such, if we wanted to change
the contents of the name field in the variable
from within this function, we would have to
use slightly different notation.

strcpy(n-name,"lvor X. Wombdecker");

Likewise, if the calculation of the mutt
factor involved multiplying the two
numeric values together, it would be done
with this "arrow" notation.

mutt= (int)(n-annual_income /1000) *
n-number _of_ dogs;

charpointerasitsfirstargument.
A struct variable can have any com­

bination of objects as its component fields.
This includes other structs. For example,
you might define a new struct variable like
this ...

typedefstruct{
charbreed[32];
intage;
int brain_ cell_ count;
}DOG;

We can now redefine our HUMAN
struct to include this new information.

typedefstruct{
charname[40];
doubleannual income;
intnumber _ o(dogs;
DOGthe_dog;
}HUMAN;

charname[40];
double annual_ income;
intnumber _of_ dogs;
D0Gthe_dog[4];
}HUMAN;

This allows for up to four dogs per
owner, which seems like it should take care
of even the most masochistic possibilities.

This is how you would change the
breeds for all four dogs in a HUMAN vari­
able.

strcpy(h.the _ dog[O].breed,"Dead poodle");
strcpy(h.the _ dog[l].breed,"Bralnlessset­
ter");
strcpy(h.the _ dog[2].breed," Overfed mas­
tift'');
strcpy(h.the _ dog[3].breed,"Plastic
spaniel");

Type Checking This struct now allows you to store in­
Another of the things which confuses new c formation about one dog. You would access
programmers is C's propensity for type the DOG variable just like any other van­
checking. In the process of compiling your able, but the notation for getting at its com­
program, the compiler will make sure that ponentpartsmaybeabitobtuse.
you don't attemptto use a pointer to one sort In order to change the breed of the dog

On Bounds and Arrays
Under BASIC, if you declare an array

with twenty-five elements and you attempt
to access the twenty-sixth, BASIC will
complain and stop the program. C does not
do this. If you have an array of HUMAN
variables with twenty-five humans in it and
you attempt to write to something beyond
this, C will go ahead and let you. If there's
some useful data after the declared space for
the array it will be trashed. If there's some
code there, your program will probably
detonate.

ofobjecttoreferenceanother. in the HUMAN variable h, you would do
For example, if you create a pointer and this.

a struct like this,

char*p;
HUMANh;

the compiler will not allow you to do
this withoutspittingoutafew warnings.

p=h;

In reality, all pointers are the same
under the skin, but the foregoing use of p is
almost guaranteed to cause some problems
later on.

There are certainly occasions in which
it's desirable to interchange pointers, but in
these cases C wants your assurance that
you're doing so explicitly, and that you
know what you're up to. This process is
called casting.

Thisisalegalcast.

p=(char*)&h;

There are all sorts of perfectly respect­
able reasons for doing this sort of thing. For
example, if you wanted to zero all the fields
in the struct variable h, you could do it this
way.

memset((char*)&h,O,sizeof(HUMAN));

The memset function expects to have a

E& TTFebruar)t1990

strcpy(h.the _ dog.breed," Dead poodle");

You can nest structures like this for as
many levels as you like.

Structs can be placed in arrays, and you
can have arrays of structs. This declaration
creates an array of sixteen HUMAN vari­
ables.

HUMANh[16];

Having done this, you would access the
eighth entry in this array as follows.

strcpy(h[7].the_dog.breed,"Deadpoodle");

C does not check array bounds because
it rarely knows what they are. For example,
let's say that you wanted to store an array of
two thousand HUMAN variables. You
could do this.

HUMANh[2000];

You compiler would probably reply
with this.

Toomuchstaticdataallocated.

Note that under C, arrays start with the
zero'th element. If you want to access the Evenifitdidn't, this is a very inefficient
eighth element, you would specify element way to handle a big array. It would be much
seven. better to use the malloc function to allocate a

The problem with this declaration for big buffer, put your HUMAN variables in it
the HUMAN variable is that itdoesn 'tallow and then blow the buffer away when you no
formorethanonedogperowner.It'shardto longer need it. However, even though this
understand why anyone would want more buffercanbemadetobehavejustlikeanex-
than one dog ... or even one dog at all, come plicitly allocated array, C can't know how
tothinkofit ... butyoumightwanttochange big you've made the buffer and, hence, it
the declaration to allow for this possibility can'tknowtheboundsofthearray.
anyway. This involves having an array of It's exceedingly important, in dealing
DOG variables in the declaration for the with arrays and complex variables, that you
HUMAN variable. keep in mind that under C you are respon-

sible for keeping you data within the bounds
typedefstruct{ you'vesetupforit.

33

