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The behind the scenes working of your C compiler can be 
interesting and ultimately useful in understanding how C operates. 

I n discussions of how various things work 
inC, you will occasionally glimpse what's 

going on behind the scenes. Detractors of C 
have described it as being little more than a 
glorified assembler, and in a sense this is 
true. C allows you to work just a few layers 
above the actual machine level of your 
programming environment. This is, in fact, 
one of its main strengths ... it gives you ac
cess to almost the same level of your 
hardware that assembly language does, 
without necessitating that you write every 
byte of code explicitly. 

It's quite possible to work in C and 
never really know how it does things, but 
to do so is to deny yourself understanding 
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of a very powerful aspect of the language. 
Knowing how things are passed, how C 
uses its stack and memory and so on will 
make you more able to bend it to your 
needs. 

It's important to keep in mind that 
once you have compiled a C program, the 
resulting EXE file is just a big machine 
language program and, as such, C doesn't 
do anything magical or beyond the scope 
of what you could write in assembly lan
guage. C just lets you do it more con
veniently and.. . hopefully... in a more 
structured and organized way. 

This month we're going to peek be
hind the lexical fiction of C to understand 

what the language is really doing when 
your programs run. 

Stack of Stacks 
A stack is one of the fundamental struc
tures of any computer. Early processors, 
such as the 6502 which drove the Apple 
] [ + and the eight bit Commodore 
machines, were crippled by their severely 
restricted stacks. The 8086 series of 
processors which drive the PC and its des
cendants were designed with languages in 
mind which use the stack extensively. 

A stack is simply a chunk of memory. 
The 8088 always has a stack going some
where, and this is referred to as the stack. 
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As you will realize in a while, you can 
create synthetic stacks within a program if 
you want to, and this is often a powerful 
programming approach once you fully un
derstand the usefulness of stack structures. 
On the other hand, C allows you to make 
some pretty clever use of the stack, the 
processor's stack. 

For our purposes, a stack really con
sists of a chunk of memory and pointer 
into that memory, which we'll call the 
"stack pointer". Initially, the stack pointer 
points to the highest location in the stack's 
memory. In practice, the stack is usually 
the highest object in memory, so the initial 
stack pointer points to the top of free 
RAM. 

A stack is called a "first in last out" 
structure. If we "push'' a number onto the 
stack, that number will be stored at the 
place where the stack pointer points, and 
the stack pointer will be decremented to 
point to the next location down the stack. 
Stacks always grow downward Note that 
we haven't specified how big a position on 
the stack is yet... that will come in a mo
ment. 

Subsequent numbers which are 
pushed onto the stack will cause the stack 
pointer to be further decremented. 

When we "pop" the stack, we get the 
last number pushed onto the stack back, 
and the stack pointer is incremented to 
point to the previously pushed number. 
All the numbers on the stack below the 
current location of the stack pointer are 
considered to be garbage. Once popped 
off the stack, a number is no longer valid 

Here's what this might look like in C. 
In this example, each element on the stack 
isanint. 

' 
#define stack size256 
int stack[stack-=_size] 
int stack _pointer =stack_ size-1; 

push(i) 
inti; 
{ 
if(stack_pointer = = 0) { 
puts("*** Stack overflow***"); 
exit(l); 
} 
stack[ stack _pointer--]=~ 
} 

popQ 
{ 
if(stack_pointer = = stack_size) { 
puts("*** Stack underflow***"); 
exit(l); 
} 
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return(stack[stack_pointer+ + ]); 
} 

This is actually a bit simplistic... the 
stack pointer isn't even a pointer, but 
rather and index into an array of stack ele
ments ... but it illustrates two of the com
mon problems with stacks. If the stack is 
pushed too often it will exceed the space 
allocated for it and trample on something 
else ... most often your program ... creating 
what is called a "stack overflow'' condi
tion. If it's popped too often it will 
"underflow'', and the stack pointer will 
back up over whatever is above the stack. 

In the case of the PC, the top of the 
stack usually resides at the top of a seg
ment, so a stack underflow condition will 
usually trample something lower down in 
memory. Don't worry if you don't see why 
that is just yet. 

Accessing the real processor's stack is 
handled by special machine language in
structions, of course. You do not manipu
late it directly from C. 

The stack is used for a number of 
purposes. The most basic of these handles 
the calling and returning from of sub
routines or, in C terminology, functions. 
Consider this simple program. 

mainO 
{ 
print("Steal your face"); 
} 

print(s) 
char *s; 
{ 
while(putch(*s+ + )); 
} 

When main calls the function print ... 
and, indeed, when print calls putch, a 
hbrary function ... the processor executes a 
machine language CALL instruction to 
where the actual machine language code 
which will do what print says to do is 
stored in memory. The mechanism of the 
CALL instruction is as follows. 

First off, it takes the address of the 
next instruction after the CALL and 
pushes its onto the stack. Next it takes the 
address of that which is to be called and 
puts it in the IP register of the processor. 
The IP register ... the instruction pointer ... 
tells the processor where the next thing it's 
to do is located in memory. Then it returns 
control to the processor, which executes 
the code for the function. The "return 
address", the place where main is to 
resume after the call to print, is now stored 

on the stack. 
The last thing in the code for print is a 

machine language RET, or return, in
struction. Under C, a RET is implicitly 
placed at the end of every function by the 
compiler. The action of a machine lan
guage RET is to pop the most recent 
number off the stack ... hopefully the return 
address we spoke of a moment ago ... and 
put it in the IP register of the processor. 
As such, the processor returns to the next 
instruction after the CALL. 

The second use of the stack is to store 
numbers. Consider this bit of code. In this 
function, we have a variable, a, which for 
reasons not adequately explained herein 
we want to use for two things in the course 
of the function. 

my_function(n) 
intn; 
{ 
int a; 

a= n * n; 
push( a); 

if(a = = 0){ 
for(a = O;a; + +a) puts("A equals 

zero!!!"); 
} 

a=popQ; 
return( a); 
} 

Delightfully pointless, this function 
will return the square of its argument, and 
it will print out a warning ten times if its ar
gument is zero. There are lots of better 
ways to do this even if you could think up a 
reason why you'd want to do it at all The 
important thing, here, is that we've used 
our push. and pop functions to temporarily 
save a on our make- believe stack and then 
restore it. 

This is a use of the stack which is seen 
frequently in machine language, because 
the processor has a limited number of 
registers, its equivalent of variables. If a 
program wants to save the contents of one 
for a while and then get it back, it will 
usually do so by pushing it onto the stack 
and popping it off later. 

Here's the third use of the stack. This 
one is important. If you execute this bit of 
code ... 

my_ function(12); 

... have· you ever wondered exactly 
what happens to the number twelve? Ob-
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viously, it has to go somewhere. In fact, the 
process for passing arguments to functions 
under C is brilliantly flexible, but so weird 
you'd wonder how anyone ever thought it 
up. 

When our program calls my Junction, 
the first thing it actually does is to push 
twelve up onto the processor's stack. Then 
it calls the code which actually makes 
my Junction go. Finally, it pops twelve off 
the stack and throws it away. 

In between all this, my Junction ac
cesses the twelve on the stack by taking the 
current stack pointer and peeking back up 
the stack to fmd out what was pushed up 
there prior to the numbers which repre
sent the return address of the function. 
This is a bit of dance, to be sure. One of 
the complexities of C is that each function 
has to know what sort of arguments to ex
pect because it has to know how to peek 
back up the stack. This is why when we 
write a function with arguments, we must 
declare what each argument's type is. 

The final use of the stack under C is 
as a place to store local variables. If we 
write a function like this ... 

dog_ breathO 
{ 
inti; 

for(i = 0~; + + i) puts("Dogbreath"); 
} 

upon execution, the function will allo
cate some variable space for i. It does so 
by subtracting one from the current stack 
pointer, thus creating a gap in the stack. 
This gap will be used to hold the value of i 
for the duration of the function. When the 
function is complete, it will add one to the 
current stack pointer, thus closing up the 
gap, throwing away whatever was in i and 
restoring the stack to what it was, all ready 
to have the return address popped off it. 

In this way, space for variables is allo
cated only for as long as they're needed 

The astute reader will note that vari
ables passed as arguments to a function 
exist as numbers on the stack and variables 
created by the function itself also exists as 
numbers on the stack. This is why C is able 
to treat them the same way. Handy, isn't 
it ... 

Real Stacking 
The stack of an 8088 is sixteen bits wide. 
This means that every time a program 
pushes a number onto it, one sixteen bit int 
is stored The stack pointer moves by two 
bytes. You cannot push an eight bit ... one 
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byte ... number onto the processor's stack ... 
rather, you must save it in part of a sixteen 
bit number and push this. 

Larger objects, such as thirty-two bit 
long numbers or sixty-four bit floating 
point values are pushed onto the stack six
teen bits at a time, so that if you pass a long 
value to a function, two things actually get 
pushed onto the stack. 

Knowing this, we can optimize our 
programs a bit. For example, there is no 
space saving in declaring a single char 
value rather than a single int, because any 
variable allocated from within a function ... 
excluding static variables, which we won't 
talk about now ... must have its space allo
cated on the stack, and that space comes 
in int size chunks. likewise, there's no 
saving in writing a function which accepts 
char values over ints as arguments, nor one 
which returns them. 

Let's look a bit further into this. This 
allocation takes up one sixteen bit position 
on the stack, as we've seen. 

inta; 

What about this one? 

int *a; 

In this second case, a is a pointer to 
an int. The question, then is, how much 
space a pointer takes up. The answer ... 
depends. 

On the PC, a location in memory is 
pointed to by two numbers. The first one is 
called the "offset". This tells us the local 
position of the number. In fact, it's relative 

to the current "segment" value, which is 
the second of the two numbers. 

The memory in a PC is "segmented". 
This is a bit nasty. It happened for the fol
lowing reason... more or less. When the 
8088 chip which drove the first PC was 
designed, the trolls in marketing thought 
that it would be nice if it could access a 
megabyte of memory, which, in those days 
seemed like an awful lot. Unfortunately ... 
said the engineers ... the chip only had six
teen bit registers, which even a troll from 
marketing could see would only access 
sixty-four kilobytes. Actually, the trolls 
from marketing couldn't see this, 'coz they 
didn't know a register from an RRSP. 

The engineers came up with a solu
tion to this. They combined two sixteen bit 
registers to form one bigger twenty bit 
register. Yes, I know... when I went to 
school a couple of sixteens was good for 
thirty-two as well, but they only needed 
twenty bits to address all that memory. 
However, just to get back at those market
ing suits, they used the upper bits in a sort 
of weird way. They divided a megabyte by 
sixty-four kilobytes and called the resulting 
number ... sixteen ... a segment. The upper 
part of the number, then, would be the 
number of sixteen byte segments in the ad
dress, and the lower part of the number 
would be the address in the current seg
ment. A segment encompasses the sixty
four kilobytes directly above it. 

A pointer under C, then, can be of 
several types. If the program and all its 
data will fit in a single sixty-four kilobyte 
segment, we can use what is called a 
"small model" for the program and all the 
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pointers will be sixteen bits wide... one 
place on the stack. If the program will fit in 
one segment but the data for the program 
will not, then we must use the "medium 
model", which means that the pointers 
must be thirty-two bits wide, although all 
the calls to functions can be done with six
teen bits, which saves one place on the 
stack for each call. This can be handled 
the other way around under some C com
pilers. .. sixteen bit pointers and thirty-two 
bit calls for big programs with small 
amounts of data. 

Under the large memory model, both 
pointers and function calls are handled as 
thirty-two bit numbers. Most program
ming is done under this memory model. 
There is another memory model, the 
''huge" mode~ which we'll speak of at 
another time. 

The advantage of the small model is 
that its programs take up less space and 
run faster. The advantage of the large 
model is that its programs and their result
ing data can be bigger than a single seg
ment. 

The great thing about C is that you 
can change memory models... in most 
cases... by just telling your compiler that 
you want to. In the case of Turbo C, it's a 
single menu option. Change from the 
small model to the large model and on the 
next compile everything will be adjusted 
for you. You never have to worry about 
how much space to allow on the stack and 
soon. 

Flapjacks 
If you understand the fundamentals 

of stack manipulation under C, you will be 
a lot closer to understanding how the lan
guage works. You will also understand 
how to avoid a lot of the potential 
problems which C programs are heir to, 
because a lot of them involve misuses of 
the underlying stack structure of C. 

In addition, as you get a bit more ad
vanced in C, you'll learn how to optimize 
your programs by thinking about how the 
code you write interacts with the real time 
world of the processor that, ultimately, 
makes everything go. 

To finish our discussion of the C lan
guage stack off with something interesting, 
you might want to check out the following 
little program. This is written in Turbo C, 
and uses the Turbo graphics library. Other 
compilers might require a few trivial chan
ges to the code to make it compile. It 
generates the accompanying picture when 
it runs, and you can change the default 
parameters by giving the program com-
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mand line arguments to see how the pic
ture changes. 

The important part about this 
program, though. .. aside form the fact that 
it creates pretty pictures ... is how it uses its 
stack. Recalling that we said that calling a 
function causes its return address to be 
pushed up onto the stack. .. not to mention 
its local variables allocated there... what 
would you think would happen in a 
program where a function repeatedly calls 
itself? This is what happens in this 
program. 

To make this go, type the source code 
into a file called curve.c. Create a second 
file called curve. prj, and type the following 
two lines into it. 

curve 
graphics.lib 

Set the Turbo C project to 
CURVE.PRJ and compile the program. 
If all goes weR you'll see a text message 
and, upon hitting a key, the curve will start 
to form on your screen. 

When you get tired of playing with 
the curves, you might go back to figuring 
out how this program is using the stack. 

I* 
C Curve generator 
copyright (c) 1988,1989 Alchemy 

Mindworks Inc. 
*I 

#include "stdio.h" 
#include "graphics.h" 
#include "math.h" 
#include "conio.h" 

#defineTHET A45 

double SINTH,COSTH; 
double prm[5] = { 250,50,400,50,2 }; 

main( argc,argv) 
int argc; 
char *argv[]; 
{ 
int d,m,e = 0; 

cprintf("C curve generator copyright 
(c)" 

"1988, 1989 Alchemy Mindworks 
Inc.\n"); 

if(argc1) for( d = 1;dargc; + +d) 
prm[e+ +] = atof(argv[d]); 

cprintf("Parameters are %g %g %g 
%gRESOLUTION %g\n", 

prm[O],prm[1],prm[2],prrn[3],prm[4] 
); 

*I 

cprintf("Hit any key ... "); 
if(getch() = = 27) exit(O); 
init(); 

COSTH = cos(THETA *M _PI/180); 
SINTH = sin(THETA *M _ Pl/180); 

curve(prm[O],prm[1],prm[2],prm[3]); 
getch(); 
deinit(); 
} 

curve(x1,y1,x2,y2)1* draw one curve 

double xl,x2,y1,y2; 
{ 
double xd,yd; 
double mx,my; 
double xdr,ydr; 

xd=x2-x1; 
yd=y2-y1; 
if(((xd*xd) + (yd*yd)) 

(prm[4]*prm[4]) II kbhit()) 
line( (int )x1,(int )y1,(int )x2,(int )y2); 

else { 
xdr = xd/2/COSTH; 
ydr = yd/2/COSTH; 
mx x1+xdr*COSTH-

ydr*SINTH; 
my 

y1 +xdr*SINTH +ydr*COSTH; 
curve(x1,y1,mx,my);/* it calls .... *I 
curve(mx,my,x2,y2);/* ... itself!!! *I 
} 
} 

init()/* get into graphics mode *I 
{ 
int d,m,e = 0; 

detectgraph( &d,&m); 
if( d) { 
puts("No graphics card"); 
exit(1); 
} 
printf("d = %d\n",d); 
initgraph( &d,&m,""); 
e = graphresult(); 

if( e) { 
printf("Graphics error %d: %s", 

e,grapherrormsg( e)); 
exit(1); 
} 
setcolor(getmaxcolor()); 
} 

deinit()/* get out of graphics mode *I 
{ 
closegraph(); 
} • 
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