
f [A T U R [

•
m1

The behind the scenes working of your C compiler can be
interesting and ultimately useful in understanding how C operates.

I n discussions of how various things work
inC, you will occasionally glimpse what's

going on behind the scenes. Detractors of C
have described it as being little more than a
glorified assembler, and in a sense this is
true. C allows you to work just a few layers
above the actual machine level of your
programming environment. This is, in fact,
one of its main strengths ... it gives you ac
cess to almost the same level of your
hardware that assembly language does,
without necessitating that you write every
byte of code explicitly.

It's quite possible to work in C and
never really know how it does things, but
to do so is to deny yourself understanding
38

SUV[RIMMfR
of a very powerful aspect of the language.
Knowing how things are passed, how C
uses its stack and memory and so on will
make you more able to bend it to your
needs.

It's important to keep in mind that
once you have compiled a C program, the
resulting EXE file is just a big machine
language program and, as such, C doesn't
do anything magical or beyond the scope
of what you could write in assembly lan
guage. C just lets you do it more con
veniently and.. . hopefully... in a more
structured and organized way.

This month we're going to peek be
hind the lexical fiction of C to understand

what the language is really doing when
your programs run.

Stack of Stacks
A stack is one of the fundamental struc
tures of any computer. Early processors,
such as the 6502 which drove the Apple
] [+ and the eight bit Commodore
machines, were crippled by their severely
restricted stacks. The 8086 series of
processors which drive the PC and its des
cendants were designed with languages in
mind which use the stack extensively.

A stack is simply a chunk of memory.
The 8088 always has a stack going some
where, and this is referred to as the stack.

E& TT August 1989

As you will realize in a while, you can
create synthetic stacks within a program if
you want to, and this is often a powerful
programming approach once you fully un
derstand the usefulness of stack structures.
On the other hand, C allows you to make
some pretty clever use of the stack, the
processor's stack.

For our purposes, a stack really con
sists of a chunk of memory and pointer
into that memory, which we'll call the
"stack pointer". Initially, the stack pointer
points to the highest location in the stack's
memory. In practice, the stack is usually
the highest object in memory, so the initial
stack pointer points to the top of free
RAM.

A stack is called a "first in last out"
structure. If we "push'' a number onto the
stack, that number will be stored at the
place where the stack pointer points, and
the stack pointer will be decremented to
point to the next location down the stack.
Stacks always grow downward Note that
we haven't specified how big a position on
the stack is yet... that will come in a mo
ment.

Subsequent numbers which are
pushed onto the stack will cause the stack
pointer to be further decremented.

When we "pop" the stack, we get the
last number pushed onto the stack back,
and the stack pointer is incremented to
point to the previously pushed number.
All the numbers on the stack below the
current location of the stack pointer are
considered to be garbage. Once popped
off the stack, a number is no longer valid

Here's what this might look like in C.
In this example, each element on the stack
isanint.

'
#define stack size256
int stack[stack-=_size]
int stack _pointer =stack_ size-1;

push(i)
inti;
{
if(stack_pointer = = 0) {
puts("*** Stack overflow***");
exit(l);
}
stack[stack _pointer--]=~
}

popQ
{
if(stack_pointer = = stack_size) {
puts("*** Stack underflow***");
exit(l);
}

E& TT August 1989

return(stack[stack_pointer+ +]);
}

This is actually a bit simplistic... the
stack pointer isn't even a pointer, but
rather and index into an array of stack ele
ments ... but it illustrates two of the com
mon problems with stacks. If the stack is
pushed too often it will exceed the space
allocated for it and trample on something
else ... most often your program ... creating
what is called a "stack overflow'' condi
tion. If it's popped too often it will
"underflow'', and the stack pointer will
back up over whatever is above the stack.

In the case of the PC, the top of the
stack usually resides at the top of a seg
ment, so a stack underflow condition will
usually trample something lower down in
memory. Don't worry if you don't see why
that is just yet.

Accessing the real processor's stack is
handled by special machine language in
structions, of course. You do not manipu
late it directly from C.

The stack is used for a number of
purposes. The most basic of these handles
the calling and returning from of sub
routines or, in C terminology, functions.
Consider this simple program.

mainO
{
print("Steal your face");
}

print(s)
char *s;
{
while(putch(*s+ +));
}

When main calls the function print ...
and, indeed, when print calls putch, a
hbrary function ... the processor executes a
machine language CALL instruction to
where the actual machine language code
which will do what print says to do is
stored in memory. The mechanism of the
CALL instruction is as follows.

First off, it takes the address of the
next instruction after the CALL and
pushes its onto the stack. Next it takes the
address of that which is to be called and
puts it in the IP register of the processor.
The IP register ... the instruction pointer ...
tells the processor where the next thing it's
to do is located in memory. Then it returns
control to the processor, which executes
the code for the function. The "return
address", the place where main is to
resume after the call to print, is now stored

on the stack.
The last thing in the code for print is a

machine language RET, or return, in
struction. Under C, a RET is implicitly
placed at the end of every function by the
compiler. The action of a machine lan
guage RET is to pop the most recent
number off the stack ... hopefully the return
address we spoke of a moment ago ... and
put it in the IP register of the processor.
As such, the processor returns to the next
instruction after the CALL.

The second use of the stack is to store
numbers. Consider this bit of code. In this
function, we have a variable, a, which for
reasons not adequately explained herein
we want to use for two things in the course
of the function.

my_function(n)
intn;
{
int a;

a= n * n;
push(a);

if(a = = 0){
for(a = O;a; + +a) puts("A equals

zero!!!");
}

a=popQ;
return(a);
}

Delightfully pointless, this function
will return the square of its argument, and
it will print out a warning ten times if its ar
gument is zero. There are lots of better
ways to do this even if you could think up a
reason why you'd want to do it at all The
important thing, here, is that we've used
our push. and pop functions to temporarily
save a on our make- believe stack and then
restore it.

This is a use of the stack which is seen
frequently in machine language, because
the processor has a limited number of
registers, its equivalent of variables. If a
program wants to save the contents of one
for a while and then get it back, it will
usually do so by pushing it onto the stack
and popping it off later.

Here's the third use of the stack. This
one is important. If you execute this bit of
code ...

my_ function(12);

... have· you ever wondered exactly
what happens to the number twelve? Ob-

39

Techie'sGuidetoC Programming, PartS
viously, it has to go somewhere. In fact, the
process for passing arguments to functions
under C is brilliantly flexible, but so weird
you'd wonder how anyone ever thought it
up.

When our program calls my Junction,
the first thing it actually does is to push
twelve up onto the processor's stack. Then
it calls the code which actually makes
my Junction go. Finally, it pops twelve off
the stack and throws it away.

In between all this, my Junction ac
cesses the twelve on the stack by taking the
current stack pointer and peeking back up
the stack to fmd out what was pushed up
there prior to the numbers which repre
sent the return address of the function.
This is a bit of dance, to be sure. One of
the complexities of C is that each function
has to know what sort of arguments to ex
pect because it has to know how to peek
back up the stack. This is why when we
write a function with arguments, we must
declare what each argument's type is.

The final use of the stack under C is
as a place to store local variables. If we
write a function like this ...

dog_ breathO
{
inti;

for(i = 0~; + + i) puts("Dogbreath");
}

upon execution, the function will allo
cate some variable space for i. It does so
by subtracting one from the current stack
pointer, thus creating a gap in the stack.
This gap will be used to hold the value of i
for the duration of the function. When the
function is complete, it will add one to the
current stack pointer, thus closing up the
gap, throwing away whatever was in i and
restoring the stack to what it was, all ready
to have the return address popped off it.

In this way, space for variables is allo
cated only for as long as they're needed

The astute reader will note that vari
ables passed as arguments to a function
exist as numbers on the stack and variables
created by the function itself also exists as
numbers on the stack. This is why C is able
to treat them the same way. Handy, isn't
it ...

Real Stacking
The stack of an 8088 is sixteen bits wide.
This means that every time a program
pushes a number onto it, one sixteen bit int
is stored The stack pointer moves by two
bytes. You cannot push an eight bit ... one

40

byte ... number onto the processor's stack ...
rather, you must save it in part of a sixteen
bit number and push this.

Larger objects, such as thirty-two bit
long numbers or sixty-four bit floating
point values are pushed onto the stack six
teen bits at a time, so that if you pass a long
value to a function, two things actually get
pushed onto the stack.

Knowing this, we can optimize our
programs a bit. For example, there is no
space saving in declaring a single char
value rather than a single int, because any
variable allocated from within a function ...
excluding static variables, which we won't
talk about now ... must have its space allo
cated on the stack, and that space comes
in int size chunks. likewise, there's no
saving in writing a function which accepts
char values over ints as arguments, nor one
which returns them.

Let's look a bit further into this. This
allocation takes up one sixteen bit position
on the stack, as we've seen.

inta;

What about this one?

int *a;

In this second case, a is a pointer to
an int. The question, then is, how much
space a pointer takes up. The answer ...
depends.

On the PC, a location in memory is
pointed to by two numbers. The first one is
called the "offset". This tells us the local
position of the number. In fact, it's relative

to the current "segment" value, which is
the second of the two numbers.

The memory in a PC is "segmented".
This is a bit nasty. It happened for the fol
lowing reason... more or less. When the
8088 chip which drove the first PC was
designed, the trolls in marketing thought
that it would be nice if it could access a
megabyte of memory, which, in those days
seemed like an awful lot. Unfortunately ...
said the engineers ... the chip only had six
teen bit registers, which even a troll from
marketing could see would only access
sixty-four kilobytes. Actually, the trolls
from marketing couldn't see this, 'coz they
didn't know a register from an RRSP.

The engineers came up with a solu
tion to this. They combined two sixteen bit
registers to form one bigger twenty bit
register. Yes, I know... when I went to
school a couple of sixteens was good for
thirty-two as well, but they only needed
twenty bits to address all that memory.
However, just to get back at those market
ing suits, they used the upper bits in a sort
of weird way. They divided a megabyte by
sixty-four kilobytes and called the resulting
number ... sixteen ... a segment. The upper
part of the number, then, would be the
number of sixteen byte segments in the ad
dress, and the lower part of the number
would be the address in the current seg
ment. A segment encompasses the sixty
four kilobytes directly above it.

A pointer under C, then, can be of
several types. If the program and all its
data will fit in a single sixty-four kilobyte
segment, we can use what is called a
"small model" for the program and all the

E&TT August 1989

pointers will be sixteen bits wide... one
place on the stack. If the program will fit in
one segment but the data for the program
will not, then we must use the "medium
model", which means that the pointers
must be thirty-two bits wide, although all
the calls to functions can be done with six
teen bits, which saves one place on the
stack for each call. This can be handled
the other way around under some C com
pilers. .. sixteen bit pointers and thirty-two
bit calls for big programs with small
amounts of data.

Under the large memory model, both
pointers and function calls are handled as
thirty-two bit numbers. Most program
ming is done under this memory model.
There is another memory model, the
''huge" mode~ which we'll speak of at
another time.

The advantage of the small model is
that its programs take up less space and
run faster. The advantage of the large
model is that its programs and their result
ing data can be bigger than a single seg
ment.

The great thing about C is that you
can change memory models... in most
cases... by just telling your compiler that
you want to. In the case of Turbo C, it's a
single menu option. Change from the
small model to the large model and on the
next compile everything will be adjusted
for you. You never have to worry about
how much space to allow on the stack and
soon.

Flapjacks
If you understand the fundamentals

of stack manipulation under C, you will be
a lot closer to understanding how the lan
guage works. You will also understand
how to avoid a lot of the potential
problems which C programs are heir to,
because a lot of them involve misuses of
the underlying stack structure of C.

In addition, as you get a bit more ad
vanced in C, you'll learn how to optimize
your programs by thinking about how the
code you write interacts with the real time
world of the processor that, ultimately,
makes everything go.

To finish our discussion of the C lan
guage stack off with something interesting,
you might want to check out the following
little program. This is written in Turbo C,
and uses the Turbo graphics library. Other
compilers might require a few trivial chan
ges to the code to make it compile. It
generates the accompanying picture when
it runs, and you can change the default
parameters by giving the program com-

E& TT August 1989

mand line arguments to see how the pic
ture changes.

The important part about this
program, though. .. aside form the fact that
it creates pretty pictures ... is how it uses its
stack. Recalling that we said that calling a
function causes its return address to be
pushed up onto the stack. .. not to mention
its local variables allocated there... what
would you think would happen in a
program where a function repeatedly calls
itself? This is what happens in this
program.

To make this go, type the source code
into a file called curve.c. Create a second
file called curve. prj, and type the following
two lines into it.

curve
graphics.lib

Set the Turbo C project to
CURVE.PRJ and compile the program.
If all goes weR you'll see a text message
and, upon hitting a key, the curve will start
to form on your screen.

When you get tired of playing with
the curves, you might go back to figuring
out how this program is using the stack.

I*
C Curve generator
copyright (c) 1988,1989 Alchemy

Mindworks Inc.
*I

#include "stdio.h"
#include "graphics.h"
#include "math.h"
#include "conio.h"

#defineTHET A45

double SINTH,COSTH;
double prm[5] = { 250,50,400,50,2 };

main(argc,argv)
int argc;
char *argv[];
{
int d,m,e = 0;

cprintf("C curve generator copyright
(c)"

"1988, 1989 Alchemy Mindworks
Inc.\n");

if(argc1) for(d = 1;dargc; + +d)
prm[e+ +] = atof(argv[d]);

cprintf("Parameters are %g %g %g
%gRESOLUTION %g\n",

prm[O],prm[1],prm[2],prrn[3],prm[4]
);

*I

cprintf("Hit any key ... ");
if(getch() = = 27) exit(O);
init();

COSTH = cos(THETA *M _PI/180);
SINTH = sin(THETA *M _ Pl/180);

curve(prm[O],prm[1],prm[2],prm[3]);
getch();
deinit();
}

curve(x1,y1,x2,y2)1* draw one curve

double xl,x2,y1,y2;
{
double xd,yd;
double mx,my;
double xdr,ydr;

xd=x2-x1;
yd=y2-y1;
if(((xd*xd) + (yd*yd))

(prm[4]*prm[4]) II kbhit())
line((int)x1,(int)y1,(int)x2,(int)y2);

else {
xdr = xd/2/COSTH;
ydr = yd/2/COSTH;
mx x1+xdr*COSTH-

ydr*SINTH;
my

y1 +xdr*SINTH +ydr*COSTH;
curve(x1,y1,mx,my);/* it calls *I
curve(mx,my,x2,y2);/* ... itself!!! *I
}
}

init()/* get into graphics mode *I
{
int d,m,e = 0;

detectgraph(&d,&m);
if(d) {
puts("No graphics card");
exit(1);
}
printf("d = %d\n",d);
initgraph(&d,&m,"");
e = graphresult();

if(e) {
printf("Graphics error %d: %s",

e,grapherrormsg(e));
exit(1);
}
setcolor(getmaxcolor());
}

deinit()/* get out of graphics mode *I
{
closegraph();
} •

41

