
f f A T U R [ 

ie's 
• u 

• ramm1 
Part two, in which Doctor Max O'Biivion locates an ancient map 

which promises of vast treasure and many 
parenthetical digressions. Danger lurks everywhere. 

lot of very zen-like things have 
been said about programming in C 
language. I doubt that the greater 
part of them were original 
thoughts at the time - zen-like 
things rarely are. They're simply 
adapted from previously uttered 
zen-like things said about re-

lated subjects. This, to a large extent, fur­
ther enhances the zen-like nature of their 
uttering, somehow suggesting the univer­
sality of all human experiences. After all, if 
you can say roughly the same thing about 
C language programming and ox gelding 
there has to be some sort of intelligent 
design to the universe. 

This is how quite a few of those clever 
sounding slogans for coffee mugs and tote 
bags come to pass, methinks. 

My favourite of these zen-like ut­
terances, which I think I mentioned last 
month, is the all but immortal "real men 
don't use Pascal". Add to this that no one 
over the age of four programs. in BASIC 
and that only people who like pain enjoy 
assembler and there's little left. We'll dis­
count the yuppie languages like Forth, 
Ada, COBOL, SnoBOL, Fortran, 
BUNK, Yawn, gROUCH and Queeg for 
the moment. 

As the gods have clearly indicated 

16 

SUVf RIMMfR 
that C is their preferred way of dealing 
with computers, one can do little else but 
get on with it. As such, in this feature we're 
going to look at a few new aspects of the 
language and learn a bit more about com­
pilers. 

How To Kill Cats Quickly 
The structure of C programs can be a bit 
elusive until your brain attaches itself to 
the nature of the language. It's helpful to 
remember that everything under C ul­
timately represents some sort of value, 
with the largest part of what you find in the 
average program representing an integer. 

This program will echo everything 
you type on your keyboard to the screen. 
Let's see how it works. 

main( ) 
{ 
while(putch(getch( ))); 
} 

Anyone with an ounce of common 
sense, or a millilitre of common sense if 
you've caved in and gone metric, will see 
that this works by black magic, and that 
there's little sense in any further discus­
sion. Fortunately, few people willing to in­
vest several thousand dollars in a television 

set that only displays letters can be said to · 
be that sensible, so we'll press on. 

It will be helpful to start by knowing 
that putch, as we saw last month, will take 
the character passed to it and print it to 
the screen of your computer. Thus, if we 
said putch(65), the letter A would appear 
on the screen, the number sixty five being 
the ASCII code for the letter A. Under C, 
by the way, we could also say putch('A'). A 
single character in single quotes will be in­
terpreted by C as working out to a 
numeric value, rather than as a string. 

Note that we can only pass putch 
numeric values - ASCII codes - not 
strings. It prints one character at a time. 

The getch function is another thing 
which is built into C. When you call getch 
your program will wait until a key is 
pressed on your keyboard and it will 
"return" the ASCII code when getch 
returns. This may be a bit confusing. 

This program callsgetch. 

main( ) 
{ 
getch( ); 
} 

In this case, getch waits for a key press 

E&TT February 1989 



and the program ends and returns to 
DOS. The actual value of the key hit gets 
thrown away, as there's nothing to catch it. 

In this case, something more hap­
pens. 

main( ) 
{ 
inti; 

i=getch( ); 
} 

This program assigns the value 
returned by getch to the integer variable i. 
However, nothing happens to i in this 
program either. 

In theory, every function under C 
returns something. Much of the time this 
returned value is of no use to us, and we 
ignore it. In the case of getch, we may or 
may not use it for anything, depending on 
whether we're usinggetch to wait for a key 
press or actually to see which key has been 
belted 

Let's expand the program a bit fur­
ther. 

main( ) 
{ 
inti; 

i=getch( ); 
putch(i); 
} 

This program will get a keyboard 
character and print it to the screen. It 
waits for a key press withgetch, assigns the 
keyboard character to i and then uses 
putch to send it to the tube. 

We can write this another way. 

main( ) 
{ 
putch(getch( )); 
} 

Daring souls who've been awake for a 
few hours might well ask where the integer 
went. It's still there, sort of. It's just hiding 
in the depths of C. 

In order to properly understand this 
latest example, we have to know before 
hand that presented with a set of nested 
functions like this, C will always resolve the 
innermost one first. In this case, it will ex­
ecute getc/1 first, derive its returned value ... 
a character code ... and then execute putch 
with the returned value of getch passed to 
it. The program itself will create a place to 
store the returned value of getch in the in-

E&TT February 1989 

File Edit Run Compile Project Options 

~------------------------------- Edit ------------------Line 184 Col 25 
} 

Insert Indent Tab C:CPM.C 

switch(c=GetKey()) { 
case '1": 

viewdisk(); 
break; 

case '2': 
dirdisk(); 
break; 

case '3': 
select_ files(); 
break; 

case '4': 
setup_menu(); 
break; 

case '5': 
f·fessage -----------

Alt-F1-Last help Alt-F3-Pick Alt-F5-Saved screen Alt-F9-Comp 

Figure 1. This is an example of a switch statement .. or ]Xllt of one ... in a real C program 
being developed in Twbo C. The GetKey( ) function is an expanded version of getch, dis­
russed in this aTtic/e. 

terim. Variables that appear and disap­
pear for these sorts of purposes are called 
"temporaries", and, as we'll see a bit later 
in this series, we can often use them to 
make C do very clever things. 

As we noted last month, the while 
statement under C will execute something 
repeatedly until the condition it's testing 
becomes false, that is, until it is zero. Thus, 
this line will execute forever 

while(l); 

and should probably be avoided un­
less you just happen to like rebooting your 
computer. 

This line ... as seen in the first example 
we looked at, actually... will also exetute 
forever. 

while(putch(getch( ))); 

but at least it'll do something. This 
will cause getch and putch to be called 
repeatedly, echoing what you type to your 
tube. Actually, you can break out of this 
loop on a PC by hitting control break. 

As it turns out, this isn't really a per­
fect dumb typewriter program. For ex­
ample, if you hit Enter ... a carriage return ... 
the cursor will go back to the beginning of 
the current line, not down to the start of 
the next one, as is usually the case when 
one hits Enter. The reason for this is that 

C... and your PC... interpret a carriage 
return literally. The cursor simply returns 
to the start of the current line. We're used 
to hitting Enter and having DOS or 
whatever we're typing into issue both a 
carriage return and a line feed. 

Alien Swan1p Monsters 
Let's change our program a bit. This is 
how little, elegantly simple programs 
quickly swell into huge, multi-headed alien 
swamp monsters that engulf whole mid­
Western American towns. What fun. .. 

main( ) 
{ 
inti; 

while((i = getch( ))) { 
putch(i); 
if(i = =13) putch(lO); 
} 
} 

There's a lot of new stuff happening 
here. First off, as you'll notice, we're back 
using a variable once more. Again, we're 
testing the returned value from getc/1 for 
the validity which drives our while loop -
not all that sensible, as you can't actually 
type character zero at the keyboard to end 
the loop, but never mind that for now. 

The line after the first putch is an ex­
ample of an if statement in C. This says 

17 



The Techie's Guide to C Programming 

Figure 2. Here are some actual uses of the #define directive in a C program. Note that they 
define not only numeric values, but strings as well. This program, in its entirety, fl'anslates 
CP/M diskettes into PC ones. 

that if the value of i is thirteen, the 
program is to print character ten as well. If 
we bear in mind that the ASCII code for a 
carriage return is thirteen and that of a line 
feed is ten, the purpose of this line be­
comes pretty obvious. It causes every car­
riage return to be followed up by a line 
feed 

However, the way we test the value of 
i may seem a bit odd. In BASIC, equal 
signs can be used in two ways. We might 
say A= 21 to assign one thing to another 
thing. We also might say IF A = 21 
GOSUB 1000 to test the value of a thing. 
Under C, we differentiate between these 
two uses. 

If we say a= 21 under C, this can only 
mean that the variable a is being assigned 
the value twenty one. If we wish to test the 
value of a, we must use two equal signs, as 
in if(a= =21). This makes C happy ... 
don't argue with it. 

Smart compilers, knowing the 
propensity of the human digit to miss keys 
whilst typing more rapidly than the human 
brain can properly thlnk, check to make 
sure that these two uses are not inter­
changed. For example, if we say 
while(i=getch( )), a good compiler will 
complain, as this is ambiguous at best. 
What we want to do, in fact, as we've seen 
in the example above, is to assign i the 
return value of getch and then test the 

18 

value of i to see if it's true. However, this 
could also mean that the while statement is 
to regard things as being true so long as 
the value of i is the same as that of the 
return value from getch, which is very 
clearly not what we want to do. 

For this reason, the contents of the 
tested part of the while loop above is 
enclosed in an additional set of paren­
theses to force C to evaluate it first and 
remove the ambiguity. 

We might improve this line, actually, 
and we'll see how the two uses of the equal 
sign are properly employed. If we change 
the line with the while loop to 

while( (i = getch( ) ) ! = 27){ 

we will have modified to pro!lfam to 
allow for an escape clause - quite literal­
ly. This means that the while loop should 
assign i the value ofgetch and keep looping 
so long as i does not equal twenty seven. 
This is the value returned when you hit the 
escape key. As such, hitting Esc will end 
the program. 

The exclamation point is something 
different as well When we wish to see if 
one thing equals another, we use two 
equal signs. We when wish to see if one 
thing does not equal another, we use an 
exclamation point and an equal sign. 

There's another problem with this 

program. We can't backspace. We also 
can't deal with tabs. We need more if 
clauses. This is going to start getting a little 
messy. 

Having to program many possible 
reactions to the value of something, 
depending on the value, is something 
which happens quite commonly. As such, 
C provides us with a very elegant... and 
somewhat daunting... construct called the 
switch statement. This allows us to do 
away with a lot of ifs, as well as tightening 
up our code a bit in the bargain. 

Let's rehash the program once more. 

main( ) 
{ 
inti; 

while( (i = getch( ) ) ! = 27 ) { 
switch(i) { 
caseS: 
putch(8); 
putch(32); 
putch(8); 
break; 
case9: 
printf(" "); 
break; 
case 13: 
putch(13); 
putch(lO); 
break; 
default: 
putch(i); 
break; 
} 
} 
} 

I said it was daunting. With each 
iteration through the while loop, the switch 
will evaluate the contents of i. If it matches 
one of the three specific cases we've set up 
- eight is a backspace character, nine is a 
tab and thirteen is, as we've seen, a car­
riage return, it will do whatever is in those 
cases. Otherwise, it will execute the defmtlt 
case, which is simply to print the character 
to the screen. 

The word default here is a specific 
case defined by C. You have to have it 
called defmtlt in order for it to behave as a 
catch all for numbers that don't conform 
to any of the other, specific cases. 

Each case starts with the case: state­
ment, naturally enough, and ends with a 
break;. The break tells C that the case is 
done with, and that it should skip ahead to 
the end of the switch immediately. If you 
leave the break statement off, C will ex­
ecute the contents of the next case in the 

Continued on page 58 
E&TT February 1989 



ORIGINAL TRI-M ODE parts $89.95, 
SB3 Parts $69.95, Notch Filters $39.95, 
Catalogues $1.00, GENIE,Box 522, 
Montreal, PQ,H3S 2V3 

Electronic Design/Computer program­
ming. Call Bob (416) 665-4288. 

Modems for PCOCf/AT HaHcard 2400B 
-$230., 12008-$110. 2 year warranty 
with cable software, C.O.D., Plus $8.00 
S&H, H.E.S. P.O. Box 2752, Station B, 
Kitchener, ON N2H 6N3. 

FREEZING SPRAYS 16 oz. $4.20 
TV Booster made CallOOa $65.00 both 
units. Coax RG59 $84/1.000ft.; Antennas 
from $39.00, Rotors $69.00, and more 
37c for catalogue postage 
ANTECO Ltd. POB 3014 Willo'MJ<ile "D" 
ONT. M2R 3GO. 

PRINTED CIRCUIT BOARDS 
for Ell, Rooio Electronics, and Ham 
Rooio projects. Full list $1.00, 
refunded with first order. 
B.CD ELECTRONICS, P.O. Box 6326 
Station F, Hamilton, Ontario L9C 6L9. 

58 

For Advertising Information Call: 
(416) 445-5600 Or Fax: 

416-445-8149 

Advertiser's 
Index 

Duncan Instruments of Canada Ltd.62 

EMJ Data SystelllS ............................... 64 

Future Interface Inc ............................. 57 

In1y SystelllS ........................................... 51 
Kaientai Electronics Ltd ................... ..41 

KB Electronics Ltd ................................ 7 

McGraw Hill ................................... insert 
National Technical Schools ................. 5 
Orion Electronics ................................. 52 

The Hunter Group ................................. 6 

Tosluba of Canada Ltd ...................... 63 

Trebas Institute of Recording Arts .... 2 

For Advertising 
Information 

Call (416) 445-5600 
Fax: 416-445-8149 

The Techie's Guide to C continued from page JB 

list when it finishes with the current one. 
This is actually useful sometimes. 

You'll probably note that, strictly 
speaking, there is no break needed after 
the default case, as it's the last case in the 
list, and there's no where for C to fall 
through to if the break had been left off. 
This is true enough. In this case, C actually 
ignores the existence of the last break 
when it compiles the program. However, if 
we were to tack another case onto this 
switch some time in the future, we might 
forget to go back and add the necessary 
break to the default case. As such, it's a 
good rule to always end cases with breaks, 
whether they're really needed or not, un­
less there's a good reason to omit them. 

The contents of the three cases 
should be pretty easy to work out. The 
case for eight, the backspace, prints a 
backspace, a space and another back­
space, so it moves to the previous charac­
ter, blows it away and then moves back 
into the now vacant position. The case for 
nine, the tab, just prints five spaces. You'll 
recall this use of printf from last month. 
Finally, the case for thirteen, the carriage 
return, should be pretty obvious. 

Definition of Tenns 
Before we vanish into the swirling mists of 
eternity, let's consider a bit of compiler 
lore. This has nothing to do with the above 
example; it's just a useful thing to have 
your head around when you're writing 
programs. 

One of the slickest features of C is its 
#define statement. This is properly called 
a "pre-processQr directive", which is a 
term that means that the authors of the 
language liked big words. Like the #in­
chtde directive we saw last month, this is 
something which happens before the com­
piler starts worrying about the contents of 
your program. 

Here's a common use of #define 

#define pi3.1415926 

main( ) 
{ 
printf('The value of pi is %f',pi); 
} 

The syntax for the printf statement is a 
little weird; don't sweat it right now. The 
important point is that the #define state­
ment has associated the number 3.1415926 
with the label pi. 

This may seem like just another sort 
of variable. It's not. What actually happens 
here is that before it compiles the program 

the compiler goes through it and finds 
every occurrence of the label pi. It then 
mechanically replaces each one with the 
number 3.1415926. This results in a lot 
faster code than would have come to pass 
if we'd used a variable for pi. 

If you had a program with lots of oc­
currences of pi in it, you would use a 
#define to initially establish what pi actual­
ly is. You might want to experiment and 
see what effect changing the precision of 
pi, the number of digits after the decimal 
point, has on the working of your program. 
In this case, all you need do is to change 
the number in the #define. 

You can assign anything to a label in a 
defme. For example, 

#define name "Wombat Mc­
Angleiron" 

tells C that name should be replaced 
with the string Wombat McAngleiron. 
Now, if you attempt to use name in your 
program in some place where a string 
would not be appropriate, C will most cer­
tainly complain. 

Finally, you can even use this facility 
to meddle with function names. For ex­
ample, if you print character seven to the 
screen, the speaker on your PC will beep. 
Thus, we might 

#define beep( ) putch(7) 

This will appear to create a function 
called beep which makes the speaker 
sound. This is slightly more efficient of 
space and speed in your program than 
would be creating a real function called 
beep. 

Beam Me Up, Scotty 
If you're not exactly illuminated about C 
language programming as yet, don't sweat 
it. It's a bit like listening to rock 'n roll ... 
you have to let it wash over you for a while 
until the lyrics start to make sense. Unfor­
tunately, depending on the rock 'n roll you 
check out, when they fmally do make 
sense, the lyrics might turn out to be telling 
you to go eat live sheep. At least C lan­
guage, when it fmally does become clear to 
you in a flash of blinding insight, won't in­
volve mutilating livestock. 

Next month, we'll have a look at some 
specific PC compatible C language com­
pilers. If you're just itching to be able to 
actually write some code, you'll want to get 
the next edition of ET &T to fmd out 
what's best to write it in. 

Bye ... • 

E& TT February 1989 




