
Structured 
Programming 

Suresh K. Basandra Data processing managers are increasingly realis¬ 
ing the importance of programming function in 
computer installations. A lot of effort in terms 
of time, money and manpower is involved in 

programming and systems analysis. In addition, much of the 
programming effort is directed towards program mainte¬ 
nance, i.e. changes in, or modifications to, existing pro¬ 
grams. In such an environment, traditional programming 
comes into conflict with cost management objectives. 

Traditional programming means programming generated 
as a form of personal art without adherence to established 
concepts and principles. The traditional way has been to 
view programming as a personal creation by an individual. It 
is quite possible for a programmer to write a clever program 
for solving a problem—the word ‘clever’ is often synonymous 
with ‘complex’ and ‘obscure’. The difficulty with such a 
program is that it is hard to understand by persons other 
than the author and even the author may find it difficult to 
follow it after a long gap of time. 

The recent past has seen a spectacular decrease in the 
hardware costs of computers. This trend is still continuing. 
As a result, cost of personnel relative to the hardware costs is 
increasing at a rapid rate. This calls for methods that can 
increase the personnel performance and thereby reduce the 
cost of program development. Quite often, the purpose for 
which a program is developed gets changed. In such cases, 
there are two alternatives: either the program should be 
declared obsolete and a new program developed in its place 
or the program should be modified incorporating the neces¬ 
sary changes. 

The cost of personnel being on the increase, the question 
of discarding a program altogether does not arise. So, the 
program should be maintained by modifying it. This again 
calls for methods for program development so that the pro¬ 
gram is understood and modified easily. Programmers have, 
therefore, been attempting to find ways and means of writing 

correct programs which can be easily maintained, modified 
and debugged; for, such factors tend to become very impor¬ 
tant, especially in a rapidly changing business environment 
where similar programs have to be run frequently. This 
effort has led to the development of a programming disci¬ 
pline called structured programming. 

As with all new concepts, there is considerable disagree¬ 
ment and misunderstanding as to what structured program¬ 
ming means. In fact, there is no standard definition oi 
structured programming except that it is a disciplined 
approach to programming. In general, the term ‘structured 
programming' has come to mean a collection of principles 
and practices that are directed towards developing correct 
programs which are easy to understand and maintain. 

Some programmers insist that they have been using this 
technique for a long time. This may well be true, but the 
recent emergence of this technique has evolved from an 
attempt to formalise the process of designing programs in 
the same manner as the logic design has been formalised. 
The techniques used are, in general, not new but the formal 

* basis definitely is. 

Design considerations 

The process of designing and writing a program can be 
sub-divided into a number of tasks such as: 

(a) understanding the problem; 

(b) producing an algorithm to solve the problem; 
(c) coding the algorithm in a particular language; 
(d) testing the resultant program; and 
(e) iterating round the above tasks until the program is 

correct. 
In conventional programming, tasks (a) and (b) are under¬ 

taken by the systems analyst and (c) and (d) by the pro¬ 
grammer, with (e) being shared between both. This 
decomposition process can be thought of in a number of 



ways but structured programming would suggest that it 
should be looked at as a top-down analysis, i.e. each stage is 
an elaboration of the previous stage with a greater degree of 
detail and complexity. I his means that the problem is 
initially specified at a relatively low level of complexity and 
detail, and that the problem is gradually elaborated to pro¬ 
duce the final program by stepwise refinement. 

I he nature of the difficulties involved in each step depends 
upon the problem and on the constraints on its solution, 
such as the resources available. The main difficulty in any 
problem-solving situation is to contain the complexity of the 
problem. It is this complexity which provides the intellectual 
challenge for programming. In structuring the solution, an 
attempt is made to simplify the complexity and to aid under¬ 
standing. This approach is more likely to result in a correct 

solution. 
Structured programming oilers a number of benefits to its 

users. In this programming, each step is independent of the 
other steps, hence allowing separate checks at each step. 
Hach step may be verified by checking the elaboration stage 
by stage and an error may, therefore, be detected in a syste¬ 
matic manner. At any one time, only a small amount of 
information has to be remembered and manipulated and the 
structure evolved is suitable for a rigorous proof of the 
correctness of the entire algorithm. 

Objective and principles 

The objective of structured programming is to provide 
methodologies so that: 

(a) programs are developed quickly and with fewer 
mistakes; 

(h) programs arc read and understood easily; and 

(c) a portion of the program can be modified without 
upsetting the functions of other portions. 

In other words, the objective is to meet the challenge 
offered by the changing trends in data processing. The princi¬ 
ples of structured programming are as follows: 

(a) structuring of control flow; 
(b) decomposing a program into‘modules’or‘partitions'; 

and 
;c) top-down approach towards program designing. 

I ru se principles and the methodologies to implement 
then. ,i:r outlined below. 

Program structure 

A compute! pi ogram is a set of instructions to the compu¬ 
ter. But while the instructions are to be executed by the 
computer, the language in which we communicate these 
instructions is meant to be comprehensible to humans. 
High-level languages like COBOL are intended for human 

use in their direct form and are intended for machine use 
only indirectly, thtough the process of compilation. There¬ 
fore, a basic principle of good programming is that the 
program be easily understood. 

A program that can be understood can also be analysed 

and tested for correctness. Incorrect programs have plagued 
computing from its early days. Another basic principle of 
good programming then is to write correct programs. In a 
more theoretical vein, we talk of proof of program correct¬ 
ness as a reflection of efforts to prove in logical and un¬ 
ambiguous terms that a piece of program code is correct, i.e. 
it does what it is intended todoand nothingelse. Theoretical 
progress has been made only in very limited contexts, and at 
present we cannot rely on a formal theory to guide us to 
produce correct programs. Instead, we rely on a number of 
rules and guides that are closer to commonsense than they 
are to a formal theory. 

Every program has a structure. If the structure is well- 
defined, the program is correct and easy to understand and 
modify. On the other hand, a poorly structured program 
may have errors that are difficult to detect, may be hard to 
read and may be troublesome to modify. In cases where a 
change has to be made, it may become necessary to scrap the 
whole program and start afresh with a new one. In contrast, 

a structured program is characterised by clarity and simplicity 
in its logical flow structure. It reads like ordinary language 
from the beginning to the end, instead of branching from 
later paragraphs to earlier ones and back again. So, a simple, 
straight flow of logic is another principle of good 
programming. 

Programming by itself is a complex task and the aim of 
structured programming is to reduce and control complexity 
as it is not possible to eliminate the complexity completely. 

Human intellect can comprehend only a limited amount of 
data at a given time. When human mind is faced with a 
complex task, it tries to manage by breaking it into a series of 
well connected smaller parts. Each smaller part or module, 
as it is called, is simple and comprehensible by itself so that 
within each module, all simplicity and clarity is achieved. So 
one of the characteristics of a well structured program is that 
it consists of a large number of small modular programs. 
Each modular program is self-contained and performs a 
single function. Each module can be tested and debugged 
independently. 

This means that every module has only one input and one 
output point, though within the module there may be 
branches and loops. Of course, the programmer has to use 
his commonsense in dividing the complex program into a 
large number of smaller self-contained units or modules. 
Since each module has a specific independent function, it 
can be perfected separately without mixing it with the other 
parts of the program. This is indeed a simplification of the 
programming art. 

How is a modular structure developed? In practice, a 
modular structure is developed by proceeding from the gen¬ 
eral to the specific, or by using what is widely known as the 
top-down approach. Starting with the barest specification of 
the problem, one goes about filling the details. Suppose we 
are to develop a pay-roll processing problem utilising the 

top-down approach. The most abstract statement of the task 

ELECTRONICS FOR YOU, 



is ‘write pay-roll’. Then one can proceed to breakdown this 
general statement to more specific statements, such as: 

Edit input data 
Process against master file 
Output pay-roll checks and other reports 

Each of these broad functions can be subdivided into 
more specific ones, as for example, we can divide the first job 

still further as follows: 
Check the valid employee number 
Check time card data against job tickets 
Check for valid department number, and so on. 

The first program module which may be called the Read 
Module performs a certain function after making all checks 
rs given by commands or statements within that module. 
The main point is that the execution of commands or state¬ 
ments within the module has nothing to do with statements 
in other modules and that is why we say each module can be 
independently developed, tested and debugged. In the over¬ 
all structure of the program each module is taken as a single 

instruction. 

Fig. 1: Modular hierarchy diagram. 

If a problem can be divided into, say, five modular func¬ 
tions, the main program can be considered to be made of five 
independent instructions, each instruction performing a 
module. A program organisation is, therefore, first divided 
into modular organisation and then each module is further 
divided into a statement organisation. Just as a government 
organisation performs the governing function by a hierarchy 
of officials at different levels, a complex programming task 
is achieved by dividing the job among different modules 
organised in a particular hierarchical structure. This is the 
top-down approach and this seems to work well in all human 
tasks. Fig. 1 shows what is called modular level or modular 
hierarchy diagram of the above problem. 

It should be noted that no programming language is used 
when developing a programming structure. The thoughts 
are simply written in ordinary language with or without 
graphic aids such as arrows, boxes, brackets etc and the 
whole function is divided into a large number of simpler 
functions in a logical way. So, structured programming is 
not concerned with any particular language. It is concerned 
with programming in general. 

Structuring of control flow 

Except for the most trivial examples, programs are highly 
complex systems of logic. The ability to design loop opera¬ 
tions and to take alternative courses of action depending on 
a condition can make a program very complex. This is 
because, quite often, loops are used within alternative paths 
or lobps and alternative paths are used within loops or other 
alternative paths. The large size of a program and the inter¬ 
connections between its various parts through the transfer of 
control also increase the program complexity. 

The idea behind the structuring of control flow is to keep 
this complexity under control so that the design and under¬ 
standing of the program logic become easier. It has been 
demonstrated that a structured program can be completely 
developed using three basic forms of program structure, viz. 
(i) sequence structure, (ii) decision or selection structure, and 
(iii) loop structure. One may encounter these as special terms 
which are written: SEQUENCE, 1FTHENELSE, 
DOWHIL-E. 

Sequence structure. The SEQUENCE structure indicates 
the sequential flow of program logic. Each block may stand 
for a statement: it may stand for a whole module or even a 
collection of modules. In a SEQUENCE structure the state¬ 
ments are executed one after the other in the order in which 

they are written. The flowchart of such a structure is shown 
in Fig. 2. The flow of control is such that it performs the 
block A first, then the block B, and so on, from top to 
bottom in the same direction. There is only one entry point 

■Ml 
1 

d ”] 

Fig. 2: Flowchart of the SEQUENCE structure. 

Fig. 3: Flowchart of the 1FTHENELSE structure. 

APRIL 1986 57 



and one exit point for the structure anti there is no complex¬ 
ity. I he flow is in one direction and straightforward. 

Decision structure. The UTHENELSE structure indi- 
catcsconditional program flow. The program takes one path 
or another, depending on whether a condition, often 
referred to as the predicate, is true or false. I he piogiani on 
entering the test box t' in big 3 makes a decision to go 
thiough either ol the two paths A or B. After performing one 
of the two paths, the control returns to a single exit point. It 
can be seen that this structure also has one entty point and 
one exit point, even though there are multiple exit paths 

inside the structure. 
Loop structure. I he DOWHI!F. struuuie provides lor a 

looping operation, i.e. repetitive execution of a program 
segment. A loop is not infinite il it is correct The predicate 
tests for a condition. If the condition holds, we exit from the 
loop; if not, we execute the in-.li uction. 1 he flowchart of this 
structure is shown in Fig 4. Whether the operationsare to be 

Fig. 4: Flowchart of the I JO Will LF structure. 

Fig. 5: Flowchart of the nested structure. 

58 

repeated or stopped is decided in the decision box. 
Any program can be written by using these three struc¬ 

tures as the basic building blocks. In complex programs, one 
structure may be embedded in the other. For example, in 
Fig. 5, a nested structure is shown. When selection between 
the two available paths is made in the decision block Cl, the 
control enters either a loop structure on the left ora sequence 
structure on the right. After performing anyone of the two 
paths, the control returns to a single exit point. In a similar 
manner, any number of structures can be embedded, pro¬ 
vided the combination as a whole has one entry point and 

one exit point. 

Modular programming 

Modular programming is a programming strategy where 
a program is divided into a number of identifiable partitions 

or modules. Thus, a module in itself is a proper program 
structure. It has one entry and one exit, reads naturally from 
top to bottom, and may consist of any of the three basic 
program structures (SEQUENCE, IFTHENELSE, DO¬ 
WHI LE). f he module is referenced by a name which should 
be as descriptive as possible. In COBOL that name is a 
paragraph or section name. A module should not exceed one 
page in length so that it is easily read. Finally, each module is 
executed by reference to it lrorn another part of the program, 
usually through the PERFORM verb. 

Fig. 6 depicts a general outline of structured programming 
logic. Note that there is a main logic module and a numberof 
other dependent modules. The main logic paft provides a 
summary of the program, and it is generally short enough so 
that the essence ol the entire program can be understood in 
the context of the main module. Notice that module A, for 
instance, is executed under control of the main program 

module. If the name of module A is meaningful, say. 
Compute total-deductions, we need not bother with the 
details o! module A. 

It may very well be the ease that, as in this example, 
module A is sufficiently large or complex so that we need to 
bieak a module X out of it. Thus, module X is executed 
under the control of module A which in turn is executed 
under the contiol of the main module. This nesting of 
modules is permissible and desirable We only need to keep 

in nund that as soon as the end of a module has been reached, 
wc should turn to the module which issued the execute 
instruction. Thus, when module X has been executed, we 
return to instruction 2 of module \ and, to the PERFORM 
MODULE B instruction of the sriain program module. 

The program structure described above is adequate ior 
most data processing. However, there arc two conditions 
that restrict its use. Some tasks are common to more than 
one program. Repeating the same instructions in each such 
program is undesirable. The second case concerns large pro¬ 
gramming tasks. It is difficult fora team of programmers to 
work on the same program at the same time. It is easier to 
sub-divide the composite task into independent program 

ELECTRONICS FOR YOU 



modules that can be written,compiled, and tested by individ¬ 
ual programmers working independently of one another. 

This latter objective is achieved by using program subrou¬ 
tines, or subprograms. A program subroutine is a program 
just like any other program, except that it is not executable 
by itself; it can only be executed under control of another 
program. It should be clear, however, that with or without 
the use of program subroutines, the COBOL programmer 
can create modular, well-structured programs. 
Begin Main Program Module 
instruction t 

• 
Instruction M 
PERFORM Module A 
PERFORM Module B 
• 

• 
Instruction n 
End Main Program Module 
Begin Module A 
Instruction I 
PERFORM Module X 
• 

• 
Instruction n 
End Module A 

Begin Module B 
Instruction I 

Instruction n 
End Module B 

Begin Module X 
Instruction I 

Instruction n 
End Module X 

Fig. 6: A general outline of structured programming logic. 

The advantage of modular programming depends on how 
effectively the modules are designed. Each module must be 
designed to accomplish a distinct function. This gives the 
program a rather high modification potential. For example, 
in a pay-roll program there may be a module that calculates 
the dearness allowance from the basic pay using certain 
rules. If these rules get changed on a later dale, the modifica¬ 
tion will be limited to the s^id module and/or to its subordi¬ 
nate modules, if any. It fias been seen that it is easier to 
replace a module by a modified one than to make corrections 
in one particular part of a conventional program without 
upsetting the functions of the other parts. 

Top-down approach 

The above description of modular programming presup¬ 
poses a hierarchical structuring of modules. The process of 
designing a program consisting of a hierarchical structure of 

modules can be vlewecTiff two ways: top-down, and bottom- 
up. 

The top-down approach towards program design starts 
with the specification of the function to be performed by a 
program and then breaks it down into progressively subsi¬ 
diary functions. The division of the function progresses with 
increasing levels of details. Each function at each level is 
ultimately realised in the form of a module. 

In this approach, the calling module is always designed 
before the called module. At the time of designing a module, 
the broad functions to be performed by its immediate subor¬ 
dinate modules are assumed. The details of how a subordi¬ 
nate module can perform the specified functions are not 
considered until the subordinate module is taken up for 
design. Thus, the top-down approach represents a successive 
refinement of functions and this process of refinement is 
continued until the lowest modules can be designed without 
further analysis. 

The top-down structure can be viewed as a tree structure, 
a typical example of which is shown in Fig. 7. Each box in 
this figure is a module. The topmost module denoted by 1 
represents the program which can be called as main-line 
module or main-control module. In this case, the main- 
control module is divided into three subordinate modules 
denoted by 2,3 and 4. The modules 2 and 4 require further 
divisions and in this process, the terminal modules are 5,6,7 
and 8. The functions of these terminal modules are assumed 
to be simple enough to be easily programmed in the source 
language. 

The botlom-up approach is the reverse of the top-down 
one. The process starts with the identification of a set of 
modules which are either available or to be constructed. An 
attempt is made to combine the modules to form modules of 
a higher level. This process of combining modules is con¬ 
tinued until the program is realised. The basic drawback of 
the bottom-up approach is the assumption that the'lowest 
level modules can be completely specified beforehand, which 
in reality is seldom possible. Thus in the bottom-up 
approach, quite often it is found that the final program 
obtained by combining the predetermined lowest level 

APRIL 1966 59 



modules does not meet all the requirements of the desired 

program. 
No attempt is made here to compare the advantages and 

disadvantages of the two approaches. However, program 
development through top-down approach is widely accepted 
to be better than the bottom-up approach. The top-down 
approach has the following advantages: 

1. It imitates the human tendency to solve a problem by 
outlining the broad concepts first and then subsequently 

going into the details. 
2. The details of a module can be worked out with no (or 

minimum) change of the previously outlined concepts 

regarding its (unctions 
3. The programmer never loses sight of the assumptions 

made at the previous levels. 1 he development of modules 

can take place in parallel. 
These advantages sugge?l that if the top-down approach is 

taken for program design, the programs can be developed 
easily and quickly, commuting minimum of errors. 

Constrained use of GO TO 

The proponents of structured programming appear to be 
divided on the question of using the GO TO statement in 
structured programs. While some recommend the total avoida¬ 
nce of GO TOs in structured programs, others favour its 
constrained use. Without entering into this controversy, it 
rnay be stated that the GO TO statements need not be 
avoided just for the sake of avoiding them. Only when their 
use requires a compromise with the readability of the pro¬ 
gram, must they be eliminated. 

Some general rules for the constrained use of GO TOs in 
COBOL programs are given below (It may be noted that 
each rule is more restrictive than the proceeding one.): 

1. Use GO TO to transfer the control within a module 
without crossing its boundaries. In other words, a short- 
range GO TO statement whose object is either the name of 
the paiagraph in which it appears or the name of any other 
paragraph in a series of paragraphs that constitutes a 
module is allowed according to this rule. 

2. Use GO TO to transfer the control in the forward 
direction within a module This rule is more restrictive than 
the previous one as it does not allow the use of the statement 
to t- ’isfer the control in the backward direction. 

3.1 'C GO IO to transfer the control to theexit paragraph 
of a senes v‘i paragraphs constituting a module. 

It is wottliu lull* to note that these rules ensure a localised 
flow of ccntioi so that the readability of the module is not 
likely to be seriously affected. Moreovei, the module as a 
whole can stilt be viewed to have a single entry and single 
exit. 

Fig. 8: Block structures (numbers represent the levels). 

tion must contain a structure of ‘boxes within boxes’ in a 
pictorial representation where boxes within boxes represent 
the lower level elaboration at the upper level (Fig. 8). This 
means that we have a modular structure where modules can 

be tested independently. 
It should be pointed out here that we have a structure 

which looks, in some respects, similar to a flowchart which 
gives a pictorial representation of the program structure. 
T he main difference is that the concepts in structured pro¬ 
gramming place restraints on the equivalent flowchart 
representation. The shortcomings of flowcharts are that they 
are too general and do not constrain the structure to be 
“well-formed”. The main problem is the undisciplined use of 
the GO TO or JUMP instructions which may cause convo¬ 
luted flowcharts. Here structured flowcharts may be used to 

good advantage. 

Structured flowcharts 

Traditionally, flowcharts have been used for two main 
purposes: to help the programmer develop the program 
logic, and to serve as documentation for a completed pro¬ 
gram. In recent years there has been some tendency to min¬ 

imise the need or even the usefulness of flowcharts. A case 
can be made that if a programmer utilises principles of good' 
program structure, the program is self-documenting and 
theref ore a flowchart is superfluous. Further, there are those 
who argue that in an environment where program modifica- 

PHOCESS OR FUNCTION 

DECISION OR PREDICATE 

COLLECTOR OR REFERENCE POINT 

Programming considerations 

How do the concepts of structured programming produce 
better programs? If we take the division of a problem into its 

^.’programming solution, we see that the programming solu- 

CASE 

ARROW 

Fig. 9: IBM structured program flowcharting symbols. 

ELECTRONICS FOR YOU 



tions are frequent, redrawing flowcharts becomes cumber¬ 
some. Instead of subscribing to the extreme view that 
flowcharts are useless, flowcharting can be viewed as a very 
useful tool for program development and documentation. 
But tnis programming aid should not be indiscriminately 
used. 

Structured flowcharts are intended to focus on the pro¬ 
gram logic rather than on the specific tasks to be performed 
by the program. As such, structured flowcharts tend to do 
away with special symbols for input/output, and the like. 
While there is no standard set of symbols. Fig. 9 presents a 
set of flowcharting symbols adopted by IBM. A complete 
flowchart can be drawn using these symbols alone, although 
one may use standard flowcharting symbols as well. In any 
case, a structured flowchart is clear, simple and easy to 
understand. It has one clear beginning and one clear end and 
the advantage of utilising the five bask structures 
(SEQUENCE, IFTHENELSE, DOWHll.F., DOUN TIL, 
and CASE). 

Structured programming is a good approach for writing 
correct programs. The strategy behind this technique is: 
when the foe is formidable, divide and conquer. Such a 
disciplined approach to programming tends to minimise 
errors and maximise output, which is the concern of all good 
programmers. 

□ 

ASSEMBLY 
LINE TABLE 

Mott useful for Electronic, 
Electrical, Optical, 
Telephone and 

Computer Industries. 

HMUKti 

* Fully Soiled laaic 
Prawn# ib 
• Mug In 

• R#ctangutar/lqiiai# 

’ Top of paillci* 

loafds/Mocfc board 
li Might KHTunawo in upv 

ploatbig colour*. 
‘ Large variety a* 
options In Drawer a 
Locker UnH*. 

■wnotHcHns, 
Spigots, Waste Hnt, 
Trays, Foot Best, 
OwnrliaadtMit wwaFISwWH M^poee 

lobbin/ipooi 

& 

Th# Itorogt Architect! 
BanaokN#-P#ntMomboy 

ELECTROMIC ASSEMBLY 
_AIDS 

PCB ASSEMBLY JIG 

UNIVERSAL FLOWLINE 

j Model Max. PCB 

Dimensions m M M Uni Flow 

IS 1 ISH 1 26b x 4(IU 

IS 2 isri 2 300 x 4bO 

IS 3 ISF L 3 200 x 300 

IS 4 ISH 4 32S x fabO 

PREFORMER 
Component Lead Cutting and Forming 

Adjustable Cutter and dies, 

Easy and rapid to set up, 
High yield Low Cost, 

jjpr 2000 Jumper links per hour. 

Operations Configuration 

Cm and Bend 

Produce verticil! 

mounting by 

bending over long 

-an»-i 
i 

leq 

cut to length —mu— 
Jumper link 

1 1 

Stiess relief 

Vertical Stand oil 
—IIIUH 

Transistor / Capacitor "\ _ 

Spread. Cut b form \J L—J 

P.B. MO. 308 MIDC Railway Station. 

Satara Village Road, AURANGABAD 431 006 INDIA. 

LET YOUR TECHNOLOGY MOVE WITH TIME 
-a Aonn' 

APRIL 1906 




