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It is worth noting that programming languages with 
the structure of ('standard') ALGOL, where each 
program is a single procedure, do not lend themselves 
to one-pass compiling, since forward jumps, for 

example, may traverse the entire length of the program. In 
contrast, languages like PL/1 or FORTRAN lend them¬ 
selves to a programming style in which large programs can 
be created as a sequence of relatively small procedures or 
subroutines. In these cases, most backpatching can be done 
on a procedure together (thus providing a hidden extra pass 
not thought of as part of the compiler). In fact, for this 
reason, among others, most ALGOL implementations add 
to the ‘standard* by allowing programs to consist of a 
sequence of procedures which may be linked. 

In this article, it is not intended to consider how much 
processing should be done in one pass or how big a given 
pass should be. The answer to this question is dependent on 
the particular environment of a given compiler. Rather, it is 
intended to study each phase of the compilation process 
shown in Fig. 3 (Part 1 of the article) as a process in itself, 
investigating algorithms and tradeoffs that are applicable to 
the phase alone. It should be kept in mind, however, that in 
any real compiler, all phases must act in concert, and that a 
strategy adopted for one phase can affect the type of process¬ 
ing that must be done in a subsequent phase. 

Lexical analysis 

The performance of lexical analysis on source program 
text is perhaps the most well understood and easiest part of 
the compilation process. As a large part of the total compila¬ 
tion time is spent in performing lexical analysis, an attempt 
must be made to simplify it as far as possible. 

The lexical analyser is the interface between the source 
program and the compiler. The lexical analyser reads the 
source program one character at a time, carving the source 
program into a sequence of atomic units called ‘tokens’. 
Each token represents a sequence of characters that can be 
treated as a single logical entity. Identifiers, keywords, con¬ 
stants, operators, and punctuation symbols such as commas 
and parentheses arc typical tokens. For example, in the 
FORTRAN statement 

IF (5. EQ. MAX) GO IO 100 (1) 
we find the following eight tokens: IF; (;5;.HQ.;MAX;); 

GOTO; 100. 
What is called a token depends on the language at hand 

and, to some extent, on the discretion of the compiler 
designer. But in general each token is a substring of the^ 
source program that is to be treated as a single unit. For. 
example, it is not reasonable to treat M or MA (of the 
identifier MAX above) as an independent entity. 

There are two kinds of tokens: specific strings such as IF 
or a semicolon; and classes of strings such as identifiers, 
constants, or labels. To handle both cases we shall treat a 
token as a pair consisting of two parts: a token type and a 

token value. 
For convenience, a token consisting of a specific string 

such as a semicolon will be treated as having a type (the 
string itself) but no value. A token such as the identifier. 
MAX above has a type ‘identifier’ and a value consisting of 
the string MAX. Frequently, we shall refer to the type or 
value as the token itself. Thus, when we talk about identifier, 
being a token, we are referring to a token type. And when we 
talk about MAX being a token, we are referring to a token 
whose value is MAX. 

The lexical analyser and the following phase, the syntax¬ 
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' analyse:, arc often grouped together into the same pass. In 
that pass, the lexical analyser operates either under the 
conti ol of the parser or, as a coroutine with the parser. The 
parset asks the lexical analyse! for the next token, whenever 
the parser needs one. The lexical analyser returns to the 
parser a code for the token that it finds. In the case that the 
token is an identifier or another token with a value, the value 
is also passed to the parser. 

I he usual method of providing this information is for the 
lexical analyser to call a book-keeping routine which installs 
the actual value in the symbol table if it is not already there. 
The lexical analyser then passes the two components of the 
token to the parser. The first is a code for the token type 
(identifiet), and the second is the value—a pointer to the 
place in the symbol table reserved for the specific value 
found. 

Finding tokens 

To find the next token, the lexical analyser examines 
successive characters in the source program, starting from 
the first charade! not yet grouped into a token. The lexical 
analyser may be required to search many characters beyond 
the next token in order to determine what the next token 
actually is. 

Syntax analysis 

We now turn to the most important part of the analysis 
phase. The problem on hand is, given a sequence of symbols, 
to find the syntactic structure that binds all of them to form 
the source program. When this structure is discovered, we 
can consider the problem of semantic transformation of the 
source program into an internal form. 

The first thing to be done is to find a 'derivation’ for the 
given sentence. An equivalent task is the construction of the 
unique 'syntax tree’ for the sentence. Another synonymous 
term for this work is 'parsing'. This is the job for the syntax 
analyser. 

A natural way of processing the input sequence of symbols 
is from lelt-lo-right. The only question which remains open 
is whether the parsing should be from the symbols in the 
sentence to the distinguished symbol, i.e. bottom-up or 
whether it should be from the distinguished symbol to the 
sentence. 

Both methods are used in syntax analysis. Each of the 
meituki» >:< named accordingly: the one which constructs 
syntax trees upwards from the input symbols to the distin¬ 
guished symbol is called ’bottom-up' parsing, and the one 
which constructs syntax trees downwards from the distin¬ 
guished symbol to the symbols in the sentence is called 
'top-down! .parsing. 

lop-down approaches to problem-solving and, espe¬ 
cially. top-down presentations of solutions to problems are 
much easier to understand. Hence top-down parsing strate¬ 
gics will or v be .considered. 

The parser hai two func|jons; First, it checks that the 

token appearing in its input, which is the output of the 
lexical analyser, occurs in patterns that are permitted by the 
specification for the source language. Secondly, it imposes 
on the token a tree-like structure that is used by the subse¬ 
quent phases of the compiler. 

For example, if a PL/1 program contains the expression 
A + / B 

then after lexical analysis this expression might appear to the 
syntax analyser as the token sequence 

id + / id 

On seeing the / , the syntax analyser should detect an error 
situation, because the presence of these two adjacent binary 
operators violates the formulation rules of a PL/1 
expression. 

1 he second aspect of syntax analysis is to make explicit 
the hierarchical structure of the incoming token stream by 
identifying which parts of the token stream should be 
grouped together. For example, the expression 

A / B * C 
has two possible interpretations: 

(a) divide A by B and then multiply by C (as in FOR¬ 
TRAN); or 

(b) multiply B by C and then use the result to divide A (as 
in APL). 

Each of these two interpretations can be represented in 

terms of parse tree, a diagram which exhibits the syntactic 
structure of the expression. Parse trees that rellect orders (a) 
and (b) are shown in Figs 4(a) and 4(b), respectively. Note 
how in each case the operands of the first operation to be 
performed meet each other at a lower level than that at which 
they meet the remaining operand. 

The language specification must tell us which of the inter¬ 
pretations (a) and (b) is to be used and, in general, what 
hierarchical structure each source program has. These rules 
form the syntactic specification of a programming language. 
It can be mentioned that context-free grammars are particu¬ 
larly helpful in specifying the syntactic structure of a lan¬ 

guage. Moreover, efficient syntactic analysers can be 

constructed automatically from certain types of context-free 
grammars. 

Intermediate code generation 

On a logical level the output of the syntax analyser is some 
representation of a parse tree. The intermediate code genera¬ 
tion phase transforms this parse tree into an intermediate- 
language representation of the source program. 

Three-address code 

One popular type of intermediate language is what is 
called 'three-address code'. A typical three-address code 
statement is 

A : = B op C 

where A, B and C are operands and op is a binary operator. 
The parse tree in Fig. 4(a) might be converted into the 

three-address code sequence: 
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EXPRESSION 

Fig. 4(a): A parse tree. 

Ti: = A - I) 
1 2; = II * C 

where Ti and I'2are names of temporary variables. 
In addition to statements that use arithmetic operators, an 

intermediate language needs unconditional and simple con¬ 
ditional branching statements, in which at most one relation 
is tested to determine whether or not a branch is to be made. 
Higher-level flow of control statements such as while-do 
statements, or if-then-else statements are translated into 
these lower-level conditional three-address statements. 

Optimisation 

Object programs that are frequently executed should be 
fast and small. Certain compilers have within them a phase 
that tries to apply transformations to the output of the 
intermediate code generator, in an attempt to produce an 
intermediate-language version of the source program from 
which a faster or smaller object-language program can ulti¬ 
mately be produced. This phase is popularly called the 
‘optimisation phase’. 

The term ‘optimisation’ in this context is a complete mis¬ 
nomer, since there is no algorithmic way of producing a 
target language program that is the best possible under any 
reasonable definition of’best’. Optimising compilers merely 
attempt to produce a better target program than would be 
produced with no optimisation. A good optimising compiler 
can improve the target piogram by perhaps a factor of two in 
overall speed, in comparison with a compiler that generates 
code carefully but without using the specialised techniques 

generally referred to as code optimisation. 

Local optimisation 

There are ‘local’ transformations that can be applied to a 
program to attempt an improvement. For example, we can 
have instances of jumps overjumps in the intermediate code, 

such as 
if A > B goto L2 

goto L3 
L2: (2) 
This sequence could be replaced by the single statement 

if A'- B goto L3 (3) 

Sequence (2) would typically be replaced in the object 
program by machine statements which: 

(a) compare A and B to set the condition codes, 
(b) jump to L2 if the code for is set, and 
(c) jump to L3. 
Sequence (3). on the other hand, would be translated to 

machine instructions which: 
(d) compare A and B to set the condition codes, and 
(e) jump to 1.3 it the code lor ot = is set. 
If wc assume A B is true half the lime, then for (2) we 

execute (a) and (b) all the time and (c) half the time, for an 
average of 2.5 instructions. For (3) wc always execute two 
instructions, a 20% savings. Also (3) provides a 33% space 
saving if we crudely assume that all instructions require the 
same space. 

tXITiriw.lUN 

Fig. 4(b): Another purse tree. 

Another important local optimisation is the elimination 
of common sub-expressions. Provided A is notan alias for B 
or C, the assignment 

A : = B + C + D 
E : s B + C + F 

might be evaluated as 
Ti : = B + C 
A : = 1 l + I) 
E : = Tl + F 

taking advantage of the common sub-expression B+C. Com¬ 
mon sub-expressions written explicitly by the programmer 
arc relatively rare, however. A more productive source of 
common sub-expressions arises from computations gener¬ 
ated by the compiler itself. Chief among these is subscript 
calculation. For example, the assignment 

A [I] : = B [I] ♦ C [I] 

will, if the machine memory is addressed by bytes and there 
are, say, four bytes per word, require (4 * 1) to be computed 
three times. 

An optimising compiler can modify the intermediate pro¬ 
gram so that the calculation of (4 * 1) is done only once. Note 
that it is impossible for the programmer to specify that this 
calculation bf (4 * 1) be done only once in the source pro¬ 
gram, since these address calculations are not explicit at the 
source level. 
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op optimisation 

1 Another important source of optimisation concerns 

'speed-ups of loops. Loops are especially good targets for 
optimisation because programs spend most of their time in 
inner loops. A typical loop improvement is to move a com¬ 
pulation that provides the same result each time around the 
loop to a point in the ptogrum just before the loop is entered, 

. rathei than once lot each interaction of the loop. Such a 
compulation is called ‘loop invariant'. 

Various kinds o| optimisation can he performed, and a list 
of a few of them is given below. Optimisation resulting in 
reduced execution time lor the resultant program are: 

(a) compilc-time evaluation of expressions involving only 
constant operands; this optimising transformation is called 
‘folding’; 

(b) eliminating common sub-expressions, 
(c) Boolean expression optimisation; 
(d) moving invariant computations outside loops (from 

within); 
(e) strength reduction of operators within loops; 
(0 initialising values of variables at compile time; 
(g) replacing a call to a produce by its body; and 
(h) unrolling a loop; etc. 
While all the above optimisations save execution time, it is 

worth noting that (a), (b) and (f) also save space, viz, they 
result in shorter programs. Optimisations (c), (d) and (e) 
result in faster programs by either not computing unrequired 
or unchanging values repeatedly, or by using simpler and 
hence faster operations. However, they do not contribute to 
any saving in space at all. Optimisations (g) and (h), result in 
faster programs but, dearly, at the expense of using more 
space to store longer programs. 

Optimisation aimed at primarily reducing the amount of 

storage used are not many. Usually, they involve the prob¬ 
lem of reducing the use of temporary storage in some form or 
the other, e.g. rearranging the operations in an arithmetic- 
expression to minimise the number of temporary locations 

used. 

Code generation 

Code generation is one of the least formalised subjects in 
compiler construction. While some cohesion seems evident 
in the trends in the evolution of higher-level programming 
languages, the same cannot be said of machine architecture. 
As a result, each machine seems to require a separate and 
exhaustive case analysis before code generation can he 

attempted for it' 
The task set for the c ode generation phase of a compiler is, 

normally, to take as input a given internal form representa¬ 
tion of the source program and to produce as output an 
equivalent sequence of instructions in the language of the 

object machine, In the case of one-pass load-and-go com¬ 
piler, the tuxujgj; of an internal form representation of source 
programs cannot be afforded. The code generation phase of 

such compilers is therefore more complex compared to those 
of multi-pass compilers and they interface directly with the 
source program semantic-analysis actions. 

It is undoubtedly appreciated that there is a great gap in 
the levels of detail of specification of the same algorithm in 
source and object languages. Object languages make explicit 
mention oi locations used for temporary storage of values 
whereas corresponding names do not exist in the source 
language. A programmer programming in an object lan¬ 
guage is expccied to be aware of internal registers of the 
machine, their function and the saving in time obtained from 
their use. Once again, the notion ol such‘word area’ is nearly 
non-existent as tai as programming in a source language is 

concerned. 
It is not intended to exhaustively list the differences 

between source and object languages. The point made here is 
that a burden of the code generator of a compiler is to make a 
note of those resources in the object language that are not 
visible in the source language. Next, the code generator 
should preserve and update a model of these resources and 
their status as it produces code (instructions in the object 
language that make use ol these (and other) resources of the 
object machine). The object of this exercise is to make an 
efficient use of the resources of the object machine. 

1 he code generation phase converts the intermediate code 
into a sequence of machine instructions. A simple-minded 
code generator might map the statement 

A : = B + C 
into the machine code sequence 

LOAD B 
ADD C 
STORE A 

However, such a straightforward macro-like expansion of 
intermediate code into machine code usually produces a 
target program that contains many redundant loads and 
stores, and thus utilises the resources of the target machine 
inefficiently. To avoid these redundant loads and stores, a 
code generator might keep track of the run-time contents of 
registers. Knowing what quantities reside in registers, the 
code generator can generate loads and stores only when 
necessary. 

Many computers have only a few high-speed registers in 
which computations can be performed particularly quickly. 
A good code generator would, therefore, attempt to utilise 
these registers as efficiently as possible. This aspect of code 
generation, called ‘register allocation’, is particularly diffi¬ 
cult to do optimally, but some heuristic approaches can give 
reasonably good results. 

Book-keeping 

A compiler needs to collect information about all the data 
objects that appear in the source program. For example, a 
compiler needs to know whether a variable represents an 
integer or a real number, what size an array has, how many 
arguments a function expects, and so forth. 
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The information about data objects may be explicit, as in 
declarations, or implicit, as in the first letter of an identifier 
or in the context in which an identifier is used. For example, 
in FORTRAN, A(I) is a function call if A has not been 
declared to be an array. 

The information about data objects is collected by the 
early phases of the compiler lexical and syntactic- 
analysis and entered into the symbol table. For example, 
when a lexical analyser sees an identifier, MAX, say, it may 
enter the name MAX into the symbol table if it is not already 
there, and produce as output a token whose value compo¬ 
nent is ,$n index to this entry of the symbol table. It the 
syntax analyser recognises a declaration 'integer' M AX, the 
action‘‘ol the syntax analyser will be to note in the symbol 
table that MAX has type 'integer'. No intermediate code is 
generated for this statement. 

The information collected about the data objects has a 
number of uses. For example, if we have the expression A + 
B, where A is of type integer and B of type real, and if the 
language permits an integer to be added to a real, then on 
most computers code must be generated to convert A from 
type integer to type real before the addition can take place. 
The addition must be done in floating point, and the result is 
real. If mixed-mode expressions of this nature are forbidden 
by the language, then the compiler must issue an error 
message when it attempts to gene rate code for this construct. 

The term 'semantic analysis' is applied to the determina¬ 
tion of the type of intermediate results, the check that argu¬ 
ments are of types that are legal for an application of an 
operator, and the determination of the operation denoted by 
the operator. {For example,'+'could denote fixed or floating 
add, perhaps logical 'or' and possibly other operations as 
well.) Semantic analysis can be done during the syntax 
analysis phase, the intermediate code generation phase, or 
the final code generation phase. 

Error handling 

One of the most important functions of a computer is the 
detection and reporting of errors in the source program. The 
error messages should allow the programmer to determine 
exactly where the errors have occurred. Errors can be 
encountered by virtually all the phases of a compiler. For 

example, 

1. The lexical analyser may be unable to proceed because 
the next token in the source program is mis-spelled. 

2. The syntax analyser may be unable to infer a structure 
for its input because a syntactic error such as a missing 

parenthesis has occurred. 
3. The intermediate code generator may detect an opera¬ 

tor whose operands have incompatible types. 
4. The code optimiser, doing control flow analysis, may 

detect that certain statements can never be reached. 
5* The code generator may find a compiler-created con¬ 

stant that is too large to fit in a word of the target machine. 
6. While entering information into the symbol table, the 

book-keeping routine may discover an identifier that has 
been multiply declared with contradictory attributes. 

Whenever a phase of the compiler discovers an error, it 
must report the error to the error handler, which issues an 
appropriate diagnostic message. Once the error has been 
noted, the compiler must modify the input to the phase 
detecting the erroi. so that the lattercan continue processing 
its input, looking for subsequent errors. 

Good error handling is difficult because certain errors can 
mask subsequent errors. Other errors, il not properly 
handled, can spawn an avalanche of spurious errors. 

Factors affecting compiler design and implementation 

Several aspects have to he considetcd in the implementa¬ 
tion of a programming language. Amongst them, the chief 
ones are syntax, semantics and pragmatic issues (like the 
relationship between the language and the users). For 
instance, whether symbol tables should be printed out and 
how errors in programs arc to be reported are pragmatic 
issues which in no way allecl the correctness of a compiler. 

Additionally, there are questions, such as, should the 
compiler be very fast and not bother too much about the 
kind of code it generates, or should il take its time in produc¬ 
ing the object program taking care that the result is an 
optimised object program with substantially reduced stor¬ 
age and run-time requirements'? All such factors play an 
important part in the design of a compiler. 

Other major factors affecting the implementation strategy 
are the language in which the compiler is written, the struc¬ 
ture of the group that writes it and the resources available, 
i.e. the size of the implementation machine, the time for the 
completion of the project, etc. 

Compiler-writing tools 

A number of tools have been developed to help construct 
compilers. These tools range from seannerand parsei gener¬ 
ators to complex systems, variously called 'compiler- 
compilers’ 'compiler-generators’ or ‘translator-writing 
systems’ which produce a compiler from some form of speci¬ 
fication of a source language and target machine. 

The input specification for these systems may contain: 
(a) a description of the lexical and syntactic structure of 

the source language; 
(b) a description of what output is to be generated for each 

source language construct; and 
(c) a description of the target machine. 

in many cases the specification is merely a collection of 
programs fitted together into a framework by the compiler- 
compiler. Some compiler-compilers, however, permit a por¬ 
tion of the specification of a language to be non-procedural 
rather than procedural. For example, instead oi writing a 
program to perform syntax analysis, the user writes a 
context-free grammar and the compiler-compiler automati¬ 
cally converts that grammar into a program for syntax 
analysis. 
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While a number of useful compiler-compilers exist, they 
have limitations. The chief problem is that there is a trade¬ 
off between how much work the compiler-compiler can do 
automatically tor its user and how flexible the system can be. 

for example, it is tempting to assume that lexical analys¬ 
ers lor all languages are really the same, except for the 
particular keywords and signs recognised. Many compiler- 
compilers do in fact pioduce fixed lexical analysis routines 
for use m the generated compiler. These routines differ only 
in the list of keywords recognised, and this list is supplied by 
the unci. I his approach is quite valid, but may be unwork¬ 
able if it is required to recognise non-standard tokens such as 
identifiers that may include characters otherthan lettersand 
digits 

More general approaches to the automatic generation of 
lexical analysers exist but these require the user to supply 
inure input to the compiler-compiler, i.e. to do more work. 

lhc principal aids provided by existing compiler- 
compilers are: 

1. Scanner generators. The “built-in' approach described 
above and regular expression based techniques are the most 
common approaches. 

2. Parser generators. Almost every compiler-compiler 
provides one. The reason is twofold. First, while parsing 
represents only a small part of compiler construction, with a 
fixed framework in which parsing is done can be a great aid 
in the organisation of the entire compiler. Secondly, the 
parsing phase is unique among the compiler phases in that a 
notation known as the context-free grammar exists which is 
sufficiently non-proccdurul to reduce the work of the com¬ 
piler writer significantly, sufficient!) general to be of use in 
any compiler, and sufficiently developed to permit efficient 
implementations to he generated automatically. One signifi¬ 
cant advantage of using a parser generator is increased 
reliability. A mechanically generated parser is more likely to 
be correct than one produced by hand. 

3. Facilities for code generation. Often a high-level lan¬ 
guage especially suitable for specifying the generation of 
intermediate, assembly or object code is provided by the 
compiler-compiler. The user writes routines in this language 
and, in the resulting compiler, the routines are called at the 
correct times by the automatically generated parser. A com¬ 
mon feature of compiler-compilers is a mechanism for speci¬ 
fying decision tables that select the object code. These tables 
become part of the generated compiler, along with an inter¬ 
preter tor these tables supplied by the compilet-compiler. 

A compiler is characterised by three languages: its source 
language, its object kmguage, and the language in which it is 
written I hese lannpges may be quite different. For exam¬ 
ple, a compiler m.i^ffuifon one machine and produce object 
code for atmther machine. Such a compiler is often called a 
‘cross-compilei'. Many minicomputer and microprocessor 
compilers are implemented this way; they run on a bigger 
machine and produce object code for the smaller machine. 
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1987 
I'rcparutiims have started for the 

next annual number whieh will bring 
together all the important information 
regarding Imliun mauufueturerw anil 
distributors of electronic goods in one 
place under the Directory section. 

besides addresses, telephone numbers, grams, 
telex etc, this section will incorporate such valu¬ 
able information us the veur of establishment, 
number of employees, st/.c of the unit and its lust 
turnover, and the products maiiufaetured/distri- 
huted/handled by each unit. 

liuyers' (snide section, whieh has 
proved Its usefulness over the years, 
will be enlarged to include the latest 
components and products. And, as 
before, this annual will also carry a 
number of Informative arid construc¬ 
tional articles. 

Names and designations of the chief executives 
of electronics Finns will be included in the I >i rec¬ 
tory section. 

The lirnnil Name Index will help you to 
loeuie the manufacturers of goods 
whose bnuiil names only are known to 
you. 

Manufacturers, distributors and representa¬ 
tives of foreign electronics linns in India are 
requested to fill up lhc Info Sheet provided on the 
next two pages of this issue and return it imme¬ 
diately. This will enable us to include the informa¬ 
tion regarding their companies, free of cost and 
obligation, in the Annual Number 1987. The fonn 
must n;ach us, duly filled, latest by October 10. 

Since (his Annual will be referred to 
by the readers for a long time, your 
advertisement in It Is likely to lie seen by 
(Item again and again. Yon may there¬ 
fore reserve the maximum |»osslhle 
space for advertising In it. 

l*lease send your instructions early to 
help ns provide a good position to your 
advertisement. 
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