
An Introduction
to Compilers

Part II

Surest! K. Bassndra

It is worth noting that programming languages with
the structure of ('standard') ALGOL, where each
program is a single procedure, do not lend themselves
to one-pass compiling, since forward jumps, for

example, may traverse the entire length of the program. In
contrast, languages like PL/1 or FORTRAN lend them¬
selves to a programming style in which large programs can
be created as a sequence of relatively small procedures or
subroutines. In these cases, most backpatching can be done
on a procedure together (thus providing a hidden extra pass
not thought of as part of the compiler). In fact, for this
reason, among others, most ALGOL implementations add
to the ‘standard* by allowing programs to consist of a
sequence of procedures which may be linked.

In this article, it is not intended to consider how much
processing should be done in one pass or how big a given
pass should be. The answer to this question is dependent on
the particular environment of a given compiler. Rather, it is
intended to study each phase of the compilation process
shown in Fig. 3 (Part 1 of the article) as a process in itself,
investigating algorithms and tradeoffs that are applicable to
the phase alone. It should be kept in mind, however, that in
any real compiler, all phases must act in concert, and that a
strategy adopted for one phase can affect the type of process¬
ing that must be done in a subsequent phase.

Lexical analysis

The performance of lexical analysis on source program
text is perhaps the most well understood and easiest part of
the compilation process. As a large part of the total compila¬
tion time is spent in performing lexical analysis, an attempt
must be made to simplify it as far as possible.

The lexical analyser is the interface between the source
program and the compiler. The lexical analyser reads the
source program one character at a time, carving the source
program into a sequence of atomic units called ‘tokens’.
Each token represents a sequence of characters that can be
treated as a single logical entity. Identifiers, keywords, con¬
stants, operators, and punctuation symbols such as commas
and parentheses arc typical tokens. For example, in the
FORTRAN statement

IF (5. EQ. MAX) GO IO 100 (1)
we find the following eight tokens: IF; (;5;.HQ.;MAX;);

GOTO; 100.
What is called a token depends on the language at hand

and, to some extent, on the discretion of the compiler
designer. But in general each token is a substring of the^
source program that is to be treated as a single unit. For.
example, it is not reasonable to treat M or MA (of the
identifier MAX above) as an independent entity.

There are two kinds of tokens: specific strings such as IF
or a semicolon; and classes of strings such as identifiers,
constants, or labels. To handle both cases we shall treat a
token as a pair consisting of two parts: a token type and a

token value.
For convenience, a token consisting of a specific string

such as a semicolon will be treated as having a type (the
string itself) but no value. A token such as the identifier.
MAX above has a type ‘identifier’ and a value consisting of
the string MAX. Frequently, we shall refer to the type or
value as the token itself. Thus, when we talk about identifier,
being a token, we are referring to a token type. And when we
talk about MAX being a token, we are referring to a token
whose value is MAX.

The lexical analyser and the following phase, the syntax¬

es AUGUST 1966

' analyse:, arc often grouped together into the same pass. In
that pass, the lexical analyser operates either under the
conti ol of the parser or, as a coroutine with the parser. The
parset asks the lexical analyse! for the next token, whenever
the parser needs one. The lexical analyser returns to the
parser a code for the token that it finds. In the case that the
token is an identifier or another token with a value, the value
is also passed to the parser.

I he usual method of providing this information is for the
lexical analyser to call a book-keeping routine which installs
the actual value in the symbol table if it is not already there.
The lexical analyser then passes the two components of the
token to the parser. The first is a code for the token type
(identifiet), and the second is the value—a pointer to the
place in the symbol table reserved for the specific value
found.

Finding tokens

To find the next token, the lexical analyser examines
successive characters in the source program, starting from
the first charade! not yet grouped into a token. The lexical
analyser may be required to search many characters beyond
the next token in order to determine what the next token
actually is.

Syntax analysis

We now turn to the most important part of the analysis
phase. The problem on hand is, given a sequence of symbols,
to find the syntactic structure that binds all of them to form
the source program. When this structure is discovered, we
can consider the problem of semantic transformation of the
source program into an internal form.

The first thing to be done is to find a 'derivation’ for the
given sentence. An equivalent task is the construction of the
unique 'syntax tree’ for the sentence. Another synonymous
term for this work is 'parsing'. This is the job for the syntax
analyser.

A natural way of processing the input sequence of symbols
is from lelt-lo-right. The only question which remains open
is whether the parsing should be from the symbols in the
sentence to the distinguished symbol, i.e. bottom-up or
whether it should be from the distinguished symbol to the
sentence.

Both methods are used in syntax analysis. Each of the
meituki» >:< named accordingly: the one which constructs
syntax trees upwards from the input symbols to the distin¬
guished symbol is called ’bottom-up' parsing, and the one
which constructs syntax trees downwards from the distin¬
guished symbol to the symbols in the sentence is called
'top-down! .parsing.

lop-down approaches to problem-solving and, espe¬
cially. top-down presentations of solutions to problems are
much easier to understand. Hence top-down parsing strate¬
gics will or v be .considered.

The parser hai two func|jons; First, it checks that the

token appearing in its input, which is the output of the
lexical analyser, occurs in patterns that are permitted by the
specification for the source language. Secondly, it imposes
on the token a tree-like structure that is used by the subse¬
quent phases of the compiler.

For example, if a PL/1 program contains the expression
A + / B

then after lexical analysis this expression might appear to the
syntax analyser as the token sequence

id + / id

On seeing the / , the syntax analyser should detect an error
situation, because the presence of these two adjacent binary
operators violates the formulation rules of a PL/1
expression.

1 he second aspect of syntax analysis is to make explicit
the hierarchical structure of the incoming token stream by
identifying which parts of the token stream should be
grouped together. For example, the expression

A / B * C
has two possible interpretations:

(a) divide A by B and then multiply by C (as in FOR¬
TRAN); or

(b) multiply B by C and then use the result to divide A (as
in APL).

Each of these two interpretations can be represented in

terms of parse tree, a diagram which exhibits the syntactic
structure of the expression. Parse trees that rellect orders (a)
and (b) are shown in Figs 4(a) and 4(b), respectively. Note
how in each case the operands of the first operation to be
performed meet each other at a lower level than that at which
they meet the remaining operand.

The language specification must tell us which of the inter¬
pretations (a) and (b) is to be used and, in general, what
hierarchical structure each source program has. These rules
form the syntactic specification of a programming language.
It can be mentioned that context-free grammars are particu¬
larly helpful in specifying the syntactic structure of a lan¬

guage. Moreover, efficient syntactic analysers can be

constructed automatically from certain types of context-free
grammars.

Intermediate code generation

On a logical level the output of the syntax analyser is some
representation of a parse tree. The intermediate code genera¬
tion phase transforms this parse tree into an intermediate-
language representation of the source program.

Three-address code

One popular type of intermediate language is what is
called 'three-address code'. A typical three-address code
statement is

A : = B op C

where A, B and C are operands and op is a binary operator.
The parse tree in Fig. 4(a) might be converted into the

three-address code sequence:

62 ELECTRONICS FOR YOU

EXPRESSION

Fig. 4(a): A parse tree.

Ti: = A - I)
1 2; = II * C

where Ti and I'2are names of temporary variables.
In addition to statements that use arithmetic operators, an

intermediate language needs unconditional and simple con¬
ditional branching statements, in which at most one relation
is tested to determine whether or not a branch is to be made.
Higher-level flow of control statements such as while-do
statements, or if-then-else statements are translated into
these lower-level conditional three-address statements.

Optimisation

Object programs that are frequently executed should be
fast and small. Certain compilers have within them a phase
that tries to apply transformations to the output of the
intermediate code generator, in an attempt to produce an
intermediate-language version of the source program from
which a faster or smaller object-language program can ulti¬
mately be produced. This phase is popularly called the
‘optimisation phase’.

The term ‘optimisation’ in this context is a complete mis¬
nomer, since there is no algorithmic way of producing a
target language program that is the best possible under any
reasonable definition of’best’. Optimising compilers merely
attempt to produce a better target program than would be
produced with no optimisation. A good optimising compiler
can improve the target piogram by perhaps a factor of two in
overall speed, in comparison with a compiler that generates
code carefully but without using the specialised techniques

generally referred to as code optimisation.

Local optimisation

There are ‘local’ transformations that can be applied to a
program to attempt an improvement. For example, we can
have instances of jumps overjumps in the intermediate code,

such as
if A > B goto L2

goto L3
L2: (2)
This sequence could be replaced by the single statement

if A'- B goto L3 (3)

Sequence (2) would typically be replaced in the object
program by machine statements which:

(a) compare A and B to set the condition codes,
(b) jump to L2 if the code for is set, and
(c) jump to L3.
Sequence (3). on the other hand, would be translated to

machine instructions which:
(d) compare A and B to set the condition codes, and
(e) jump to 1.3 it the code lor ot = is set.
If wc assume A B is true half the lime, then for (2) we

execute (a) and (b) all the time and (c) half the time, for an
average of 2.5 instructions. For (3) wc always execute two
instructions, a 20% savings. Also (3) provides a 33% space
saving if we crudely assume that all instructions require the
same space.

tXITiriw.lUN

Fig. 4(b): Another purse tree.

Another important local optimisation is the elimination
of common sub-expressions. Provided A is notan alias for B
or C, the assignment

A : = B + C + D
E : s B + C + F

might be evaluated as
Ti : = B + C
A : = 1 l + I)
E : = Tl + F

taking advantage of the common sub-expression B+C. Com¬
mon sub-expressions written explicitly by the programmer
arc relatively rare, however. A more productive source of
common sub-expressions arises from computations gener¬
ated by the compiler itself. Chief among these is subscript
calculation. For example, the assignment

A [I] : = B [I] ♦ C [I]

will, if the machine memory is addressed by bytes and there
are, say, four bytes per word, require (4 * 1) to be computed
three times.

An optimising compiler can modify the intermediate pro¬
gram so that the calculation of (4 * 1) is done only once. Note
that it is impossible for the programmer to specify that this
calculation bf (4 * 1) be done only once in the source pro¬
gram, since these address calculations are not explicit at the
source level.

AUGUST 1986 63

op optimisation

1 Another important source of optimisation concerns

'speed-ups of loops. Loops are especially good targets for
optimisation because programs spend most of their time in
inner loops. A typical loop improvement is to move a com¬
pulation that provides the same result each time around the
loop to a point in the ptogrum just before the loop is entered,

. rathei than once lot each interaction of the loop. Such a
compulation is called ‘loop invariant'.

Various kinds o| optimisation can he performed, and a list
of a few of them is given below. Optimisation resulting in
reduced execution time lor the resultant program are:

(a) compilc-time evaluation of expressions involving only
constant operands; this optimising transformation is called
‘folding’;

(b) eliminating common sub-expressions,
(c) Boolean expression optimisation;
(d) moving invariant computations outside loops (from

within);
(e) strength reduction of operators within loops;
(0 initialising values of variables at compile time;
(g) replacing a call to a produce by its body; and
(h) unrolling a loop; etc.
While all the above optimisations save execution time, it is

worth noting that (a), (b) and (f) also save space, viz, they
result in shorter programs. Optimisations (c), (d) and (e)
result in faster programs by either not computing unrequired
or unchanging values repeatedly, or by using simpler and
hence faster operations. However, they do not contribute to
any saving in space at all. Optimisations (g) and (h), result in
faster programs but, dearly, at the expense of using more
space to store longer programs.

Optimisation aimed at primarily reducing the amount of

storage used are not many. Usually, they involve the prob¬
lem of reducing the use of temporary storage in some form or
the other, e.g. rearranging the operations in an arithmetic-
expression to minimise the number of temporary locations

used.

Code generation

Code generation is one of the least formalised subjects in
compiler construction. While some cohesion seems evident
in the trends in the evolution of higher-level programming
languages, the same cannot be said of machine architecture.
As a result, each machine seems to require a separate and
exhaustive case analysis before code generation can he

attempted for it'
The task set for the c ode generation phase of a compiler is,

normally, to take as input a given internal form representa¬
tion of the source program and to produce as output an
equivalent sequence of instructions in the language of the

object machine, In the case of one-pass load-and-go com¬
piler, the tuxujgj; of an internal form representation of source
programs cannot be afforded. The code generation phase of

such compilers is therefore more complex compared to those
of multi-pass compilers and they interface directly with the
source program semantic-analysis actions.

It is undoubtedly appreciated that there is a great gap in
the levels of detail of specification of the same algorithm in
source and object languages. Object languages make explicit
mention oi locations used for temporary storage of values
whereas corresponding names do not exist in the source
language. A programmer programming in an object lan¬
guage is expccied to be aware of internal registers of the
machine, their function and the saving in time obtained from
their use. Once again, the notion ol such‘word area’ is nearly
non-existent as tai as programming in a source language is

concerned.
It is not intended to exhaustively list the differences

between source and object languages. The point made here is
that a burden of the code generator of a compiler is to make a
note of those resources in the object language that are not
visible in the source language. Next, the code generator
should preserve and update a model of these resources and
their status as it produces code (instructions in the object
language that make use ol these (and other) resources of the
object machine). The object of this exercise is to make an
efficient use of the resources of the object machine.

1 he code generation phase converts the intermediate code
into a sequence of machine instructions. A simple-minded
code generator might map the statement

A : = B + C
into the machine code sequence

LOAD B
ADD C
STORE A

However, such a straightforward macro-like expansion of
intermediate code into machine code usually produces a
target program that contains many redundant loads and
stores, and thus utilises the resources of the target machine
inefficiently. To avoid these redundant loads and stores, a
code generator might keep track of the run-time contents of
registers. Knowing what quantities reside in registers, the
code generator can generate loads and stores only when
necessary.

Many computers have only a few high-speed registers in
which computations can be performed particularly quickly.
A good code generator would, therefore, attempt to utilise
these registers as efficiently as possible. This aspect of code
generation, called ‘register allocation’, is particularly diffi¬
cult to do optimally, but some heuristic approaches can give
reasonably good results.

Book-keeping

A compiler needs to collect information about all the data
objects that appear in the source program. For example, a
compiler needs to know whether a variable represents an
integer or a real number, what size an array has, how many
arguments a function expects, and so forth.

ELECTRONICS FOR YOU 64

The information about data objects may be explicit, as in
declarations, or implicit, as in the first letter of an identifier
or in the context in which an identifier is used. For example,
in FORTRAN, A(I) is a function call if A has not been
declared to be an array.

The information about data objects is collected by the
early phases of the compiler lexical and syntactic-
analysis and entered into the symbol table. For example,
when a lexical analyser sees an identifier, MAX, say, it may
enter the name MAX into the symbol table if it is not already
there, and produce as output a token whose value compo¬
nent is ,$n index to this entry of the symbol table. It the
syntax analyser recognises a declaration 'integer' M AX, the
action‘‘ol the syntax analyser will be to note in the symbol
table that MAX has type 'integer'. No intermediate code is
generated for this statement.

The information collected about the data objects has a
number of uses. For example, if we have the expression A +
B, where A is of type integer and B of type real, and if the
language permits an integer to be added to a real, then on
most computers code must be generated to convert A from
type integer to type real before the addition can take place.
The addition must be done in floating point, and the result is
real. If mixed-mode expressions of this nature are forbidden
by the language, then the compiler must issue an error
message when it attempts to gene rate code for this construct.

The term 'semantic analysis' is applied to the determina¬
tion of the type of intermediate results, the check that argu¬
ments are of types that are legal for an application of an
operator, and the determination of the operation denoted by
the operator. {For example,'+'could denote fixed or floating
add, perhaps logical 'or' and possibly other operations as
well.) Semantic analysis can be done during the syntax
analysis phase, the intermediate code generation phase, or
the final code generation phase.

Error handling

One of the most important functions of a computer is the
detection and reporting of errors in the source program. The
error messages should allow the programmer to determine
exactly where the errors have occurred. Errors can be
encountered by virtually all the phases of a compiler. For

example,

1. The lexical analyser may be unable to proceed because
the next token in the source program is mis-spelled.

2. The syntax analyser may be unable to infer a structure
for its input because a syntactic error such as a missing

parenthesis has occurred.
3. The intermediate code generator may detect an opera¬

tor whose operands have incompatible types.
4. The code optimiser, doing control flow analysis, may

detect that certain statements can never be reached.
5* The code generator may find a compiler-created con¬

stant that is too large to fit in a word of the target machine.
6. While entering information into the symbol table, the

book-keeping routine may discover an identifier that has
been multiply declared with contradictory attributes.

Whenever a phase of the compiler discovers an error, it
must report the error to the error handler, which issues an
appropriate diagnostic message. Once the error has been
noted, the compiler must modify the input to the phase
detecting the erroi. so that the lattercan continue processing
its input, looking for subsequent errors.

Good error handling is difficult because certain errors can
mask subsequent errors. Other errors, il not properly
handled, can spawn an avalanche of spurious errors.

Factors affecting compiler design and implementation

Several aspects have to he considetcd in the implementa¬
tion of a programming language. Amongst them, the chief
ones are syntax, semantics and pragmatic issues (like the
relationship between the language and the users). For
instance, whether symbol tables should be printed out and
how errors in programs arc to be reported are pragmatic
issues which in no way allecl the correctness of a compiler.

Additionally, there are questions, such as, should the
compiler be very fast and not bother too much about the
kind of code it generates, or should il take its time in produc¬
ing the object program taking care that the result is an
optimised object program with substantially reduced stor¬
age and run-time requirements'? All such factors play an
important part in the design of a compiler.

Other major factors affecting the implementation strategy
are the language in which the compiler is written, the struc¬
ture of the group that writes it and the resources available,
i.e. the size of the implementation machine, the time for the
completion of the project, etc.

Compiler-writing tools

A number of tools have been developed to help construct
compilers. These tools range from seannerand parsei gener¬
ators to complex systems, variously called 'compiler-
compilers’ 'compiler-generators’ or ‘translator-writing
systems’ which produce a compiler from some form of speci¬
fication of a source language and target machine.

The input specification for these systems may contain:
(a) a description of the lexical and syntactic structure of

the source language;
(b) a description of what output is to be generated for each

source language construct; and
(c) a description of the target machine.

in many cases the specification is merely a collection of
programs fitted together into a framework by the compiler-
compiler. Some compiler-compilers, however, permit a por¬
tion of the specification of a language to be non-procedural
rather than procedural. For example, instead oi writing a
program to perform syntax analysis, the user writes a
context-free grammar and the compiler-compiler automati¬
cally converts that grammar into a program for syntax
analysis.

AUGUST 1986 65

While a number of useful compiler-compilers exist, they
have limitations. The chief problem is that there is a trade¬
off between how much work the compiler-compiler can do
automatically tor its user and how flexible the system can be.

for example, it is tempting to assume that lexical analys¬
ers lor all languages are really the same, except for the
particular keywords and signs recognised. Many compiler-
compilers do in fact pioduce fixed lexical analysis routines
for use m the generated compiler. These routines differ only
in the list of keywords recognised, and this list is supplied by
the unci. I his approach is quite valid, but may be unwork¬
able if it is required to recognise non-standard tokens such as
identifiers that may include characters otherthan lettersand
digits

More general approaches to the automatic generation of
lexical analysers exist but these require the user to supply
inure input to the compiler-compiler, i.e. to do more work.

lhc principal aids provided by existing compiler-
compilers are:

1. Scanner generators. The “built-in' approach described
above and regular expression based techniques are the most
common approaches.

2. Parser generators. Almost every compiler-compiler
provides one. The reason is twofold. First, while parsing
represents only a small part of compiler construction, with a
fixed framework in which parsing is done can be a great aid
in the organisation of the entire compiler. Secondly, the
parsing phase is unique among the compiler phases in that a
notation known as the context-free grammar exists which is
sufficiently non-proccdurul to reduce the work of the com¬
piler writer significantly, sufficient!) general to be of use in
any compiler, and sufficiently developed to permit efficient
implementations to he generated automatically. One signifi¬
cant advantage of using a parser generator is increased
reliability. A mechanically generated parser is more likely to
be correct than one produced by hand.

3. Facilities for code generation. Often a high-level lan¬
guage especially suitable for specifying the generation of
intermediate, assembly or object code is provided by the
compiler-compiler. The user writes routines in this language
and, in the resulting compiler, the routines are called at the
correct times by the automatically generated parser. A com¬
mon feature of compiler-compilers is a mechanism for speci¬
fying decision tables that select the object code. These tables
become part of the generated compiler, along with an inter¬
preter tor these tables supplied by the compilet-compiler.

A compiler is characterised by three languages: its source
language, its object kmguage, and the language in which it is
written I hese lannpges may be quite different. For exam¬
ple, a compiler m.i^ffuifon one machine and produce object
code for atmther machine. Such a compiler is often called a
‘cross-compilei'. Many minicomputer and microprocessor
compilers are implemented this way; they run on a bigger
machine and produce object code for the smaller machine.

□

AMUAl
NUMBER

1987
I'rcparutiims have started for the

next annual number whieh will bring
together all the important information
regarding Imliun mauufueturerw anil
distributors of electronic goods in one
place under the Directory section.

besides addresses, telephone numbers, grams,
telex etc, this section will incorporate such valu¬
able information us the veur of establishment,
number of employees, st/.c of the unit and its lust
turnover, and the products maiiufaetured/distri-
huted/handled by each unit.

liuyers' (snide section, whieh has
proved Its usefulness over the years,
will be enlarged to include the latest
components and products. And, as
before, this annual will also carry a
number of Informative arid construc¬
tional articles.

Names and designations of the chief executives
of electronics Finns will be included in the I >i rec¬
tory section.

The lirnnil Name Index will help you to
loeuie the manufacturers of goods
whose bnuiil names only are known to
you.

Manufacturers, distributors and representa¬
tives of foreign electronics linns in India are
requested to fill up lhc Info Sheet provided on the
next two pages of this issue and return it imme¬
diately. This will enable us to include the informa¬
tion regarding their companies, free of cost and
obligation, in the Annual Number 1987. The fonn
must n;ach us, duly filled, latest by October 10.

Since (his Annual will be referred to
by the readers for a long time, your
advertisement in It Is likely to lie seen by
(Item again and again. Yon may there¬
fore reserve the maximum |»osslhle
space for advertising In it.

l*lease send your instructions early to
help ns provide a good position to your
advertisement.

ELECTRONICS FOR YOU
605 ‘Slddlmrtha’, 96 Nelmi Plucc

; New Delhi 11 (KM 9

66 ELECTRONICS FOR YOU

