
I decided to use an Altera (www.
altera.com) FPGA as the central con-
troller chip. The FPGA connected 
through an FTDI (Future Technology 
Devices International, www.ftdichip.
com) USB (universal-serial-bus) chip 
to the PC on which the application 
software was running. The develop-
ment ran smoothly, and we could soon 
read and write data through the USB 
to and from the FPGA. Unfortunately, 
though, after a few seconds, the board 
hung up. I restarted it, and everything 
was fine—again for about 10 seconds. 
It soon became clear that the FPGA 
wasn’t properly responding to the 
USB chip.

The design operated with eight par-
allel data lines and four control signals 
that resided between the FPGA master 
and the USB-chip slave. The USB 
chip indicated when received data was 
ready for pickup by sending a receiver-
flag signal. Using a transmitter-enable 
signal, it indicated whether the USB 
chip’s transmitter FIFO had enough 
room for data to write to it.

When the system hung up, I hooked 
up a scope and saw that the USB chip 
indicated receive data by pulling the 
receiver-flag signal, but the FPGA didn’t 
pick it up. Not being an experienced 
digital designer, I couldn’t figure out 
the problem by examining the Verilog 

code. Simulations didn’t show any 
issues, either. The beauty of an FPGA, 
however, is that it is programmable, so 
I could connect virtually any internal 
node to free I/Os and probe them with 
the scope. Luckily, I didn’t have to wait 
too long for the hang-up; I could count 
on it. By probing all sorts of nodes, the 
scope showed that almost everything 
inside—except the interface to the 
USB—was running correctly. I could 
even probe the 4-bit state machine of 
the interface controller. In the case of 
the hang-up, it was in an undefined 
state—that is, one that wasn’t encoded 
in the state table. How did it get there?

I consulted an experienced engineer 
on our memory-design team, and, after 
a long session with him, it became 
clear: The controller state machine 
depended on the flags of the USB 
chip. If the state machine is idle and 
the receiver flag is zero, the machine 
can issue a read transaction. So, I 
typed my Verilog code exactly like that 
statement: If (RX_flag#��0)state��
RxTransaction, where RX_flag# is the 
receiver flag. In Verilog, that code all 
looks fine; in hardware, however, my 
state machine had 10 states. Therefore, 
4 bits, or four flip-flops, represent the 
current state. Each of the flip-flops 
had its own combinational logic to 
encode when to transition, and the 
flag goes to all of them. Some of those 
combinational blocks are longer and 
slower than the others, and the flag 
occasionally transitions at just the 
wrong moment. It happened that only 
three of the flip-flops recognized that 
the flag sampled at zero, but the fourth, 
slower one sampled it at one, and the 
state machine became lost.

Thanks to the experienced engi-
neer, I learned that I had committed 
one of the big no-nos in digital design: 
using an external signal directly with-
out synchronizing it with a flip-flop to 
the internal clock. That lesson really 
helped!EDN
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 I
recently was a product engineer in a DRAM company 
and usually spent my time hunting bugs in other people’s 
designs. Two years ago, however, I got an additional task: I 
had to design a measurement board with a couple of ICs, an 
ADC, and a DAC to set and measure voltages, clocks, and 
temperature. I figured that this task would give me a good 

chance to gain some additional design experience.
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