CIRCUIT IDEAS

Programmable oscillator

AN I.C. OSCILLATOR produces a range of output frequencies which are programmable using the two digital inputs. The circuit, which has a number of applications such as a multitone alarm or variable frequency clock for a digital system, is based on a single 4016 c.m.o.s. quad bilateral-switch i.c. Switches S1 and S₂ are used as invertors together with R_3 , R_6 and C_1 , to form an astable multivibrator. Frequency variation is achieved by opening either S_3 or S_4 or both, with control inputs A and B. This connects R_4 and R_5 in parallel with R_3 which changes the time constant of the multivibrator, and hence its frequency. With the components shown, output frequencies of 2, 4, 6 and 8kHz are available. By changing the capacitor and resistor values, higher or lower frequencies can also be achieved.

Frequency modulation is possible by feeding a varying digital signal into the control inputs. Also, by the addition of a second 4016 and four extra resistors in parallel with R_3 , the number of output frequencies available can be raised to 64.

D. Turner, Plymouth, Devon.

Overload protection and transient elimination

THIS CIRCUIT is suitable for use with d.c. coupled audio power amplifiers, and combines protection against current overloads with delayed switch-on for the elimination of output transients. Transistor Tr_5 is initially turned off, and C_2 charges via R_{10} . After a delay of about 1.5s the relay switches on which closes S_1 and connects the load to the amplifier. If a large current flows in Tr_1 or Tr_2 of the amplifier output stage, Tr_3 or Tr_4 will turn on. This turns on Tr_5 and the relay switches off. The circuit is reset by switching off the amplifier until

the supply has dropped to a few volts, and Tr_5/Tr_6 are no longer saturated.

Capacitor C_1 reduces the susceptibility to spurious operation, and D_5, D_6 provide protection for Tr_7 and Tr_8 . Point A is a virtual earth summing junction so other amplifier channels can be accommodated. The circuit can also be modified for different supply voltages, overload currents and delay times.

T. J. Moulsley, Barton-le-Clay, Bedford.

