> RAY MARSTON DESCRIBES THE BASIC NATURE AND BEHAVIOUR OF OPTICAL PRISMS AND LENSES IN EARI OF THIS OPTOELECTRONICS-RELATED 4-PART SERIES.

Subsiance	Refractive Index
Free Space	1.000000
Air	1.000293
Ice	1.31
Water at $20^{\circ} \mathrm{C}$	1.333
Glass	1.5 to 1.9
Diamond	2.42

Firgure 1, Table tisling typical refradive index values for varieus transparent media.

MOst of last months opening episode of this mini-series described the basic nature and behavour of light, with particufar regard to its use in modern optoelectronic systems. The remaining part of that episode dealt with twa types of light-beam manipulators, namely, mirrors and retroreliectors. This month's episode contimes the 'light-beam manupulators' theme by describing the nature and behaviour of opticai prisms and lenses.

Light-beam manipulatars.

PRISMS.

In optics, a prism is a block of transparent materiat having two or more plane (ilat) surfaces. Prisms have an innate ability to bend the paths of light. A flat sheet of glass is a very simple prism.
When light travels through a transparent
material or medium other than free space, its velocity (vl) and wavelength (1) are lower than those that pertain in free space (v0 and 10). The ratio vo/vl or $10 / 11$ is known as the mediutn's refractive index, and is notated by the symbol n. Figure I lists some fypical n values for various transparent media, including normal glass ($\mathrm{n}=1.5$ to 1.9), which is transparent to all visible light and much of the lower IR spectrum, but blocks most of the UV spectrum.
Figure 2 illustrates the eifects that 'refraction'
has on a light ray when it travels through a pane of glozs with (for simplicity) an n value of 2. In Figure 2(a) the beam enters the glass at an incident angle of 00 , is slowed down (thus reducing the light's wayelength but not its frequency) as it passes through the glass, and then returns to normal "though air" speed as it leaves the glass at an angle of 00 .

In Fggure 2(b) the dashed lines represent the normal or zero degrees angular reference line. In this diagram the ray enters tie glass at an incident angle (ai) of (say) 300 and then, as it passes froms the thinner medium (air) to the denser one (glass), the ray bends towards the normal by a refrective angle (ar) of about 150 ; when the roy passes from the denser to the
$=\sin a \mathrm{i} / \sin$ ar.
Note in Figure 2(b) that the light ray leaving the glass is shown paraflel wite - but oifset from - the path of the original input ray, which is midicated by the dotted line. The degree of offset (parallax error) increases with the angle of incidence and with the thickness of the gless. Simple mirrors, in which light rays enter and leave the mirror via the same glass surface, afe subject to this type of paraliax esror.
Most prisms have plane surfaces that are angled away from each other: as shown in Figure $3_{\text {s }}$ in which two prisms each have their maior surfaces angled at 300 to one another. This diagram shows the efiects that the prisms have on a light ray that arrives at an incident

(a) A light ray and ils wavefronts passing through a sheet of giass afier amiving at an incident angle of zero degrees.

cer
(b) A light ray passing through a sheet of glass affer artiving at an incident angle of about thiriy degrees.
Figure 2 . Diagrams ithostrating the effects of refraclion lizough a shezt ipane) of glass.
thinner medium again as it leaves the glass, tite ray bends ayay from the normal again, returning to its originat angle of 300 , thes obeying the basic Laws of Reiraction. The
angle of zero degrees. In both cases the ray passes cleanly through the glass without bending. but on leaving the glass the ray bends away from the normal by about 150 , thus obeying the basic Laws of Refraction.

Note in Figure 3 that the degree of fay bending is independent of the thickness of the prism glass and fignoring n value efiects) is detemined mainly by the angle of incidence of the ray and by the angular difference bebween the prism's input and outout surfaces.

Regarding the "n value effects? mentioned in the above paragreph, it is importank to note that the refractive index values of all transparent media
values of ai, ar, and the n values of the incident (n i) and refractive (n) regions are related by Snell's law of reiraction, which states that mr/ni other than free space vary with the wavelength of a light, and increases as wavefength shortens. The refractive index of glass is
normally measured using a yellow sodium tight with a wavelength of 589 nm ; the actual index value is higher than normal to violet light (400nm wravelengtif) and lower to red light (700 nm wavelength).
Figure 4 shows, in exaggerated form, the results of passing a narrow beam of white light through a symmetrical triangular prism. White light contains all the colours (wavelengths) of the wisible spectrum, and the prism thus (because its refractive index is wavelengthdependent) bends each individual colour of the beam by a different amount, giving the least bend to red light and the greatest bend to videt, light The prism's output thus takes the form of a vertically-expanded coloured spectrum. This scattering of white ligh's component colours is known as dispersion.
When a ray of light passes through air and enters a prism, it bends by an amount determined by its angle of incidence and by the reifactive index value of the glass. When the ray leaves the prism again and returns to the air, it bends by an amount determined by its angle of incidence and by the refractive index of the air (1.0) divided by that of the giass (say 1.5), and this value is invanably less than zero (0.667 in this example). Figure 5 shows the actual amounts of output refraction that occur on three different prisms that each have a refracìve index of 1.5 .

In Figure 5, the ray strikes the output surface of prism A at an incident angle of 300 and leayes the prism at a refractive angle of 420; this prism thus bends the ray downwards by 120. In the case of prism B, the ray strikes its output surface at an incident angle of 400 and leayes at a refractive angle of 850 , thus bending the ray downwards by 450.

Note in the case of prism B that the ray leaves the prism at an angle that is only 50 less

320 at an n value of 1.9 .
Figure 5 shows, in the Primm C diagram, what happens to the light rays when they strike the prism's output face at an incident angle of 450 . i.e.- at an angle greater than the critical angle of the surface. Under this condition a phenomenon known as total internal reflection occurs and makes the intemal surface act like a
devices such as reflex cameras, binoculars; and automatic laser-aiming controllers.
Total internal reflection can occur whenever one tramparent material interfaces with another that has a lower refractive index. thus giving a less-than unity refractive index and a positive critical anigle value at the interface junction. All modern fibre optic cables rely on this 'internal reflection' basic principle for their very efficient low-loss operation (fibre optic cable principles will be described in Part 3 of this series).

Lenses

Normal optical lenses are light-bending refractive devices that are selated to prismis but have curved (rather than flat) faces. Figure 6 shows the classic profile of a simple lens that

mirror that bends the rays by double their angle of incidence, thus (in this case) bending them through a 900 angle and projecting them through the lower face of the prism.
The insernally-reflecting type-C prism thus

Figure 7. Basic way of using two fenses in a light-bsem system.
than the angle of slope of the prism's output face, and it is obvious that if the angle of incidence is increased much more the ray will. be unable to penetrate the prism's output. suriace. The angle of incidence at which this
acts like a mirror that bends light through 900, but (since the light passes through separate inpui and output suriaces) does not sufier from parallex errors. This type of prism is widely used in high quafity optical instruments and
has two parallel faces that are each redially curved in two dimensions, to form a section of a sphere. This type if lens can focus a parallel bunde of light rays onto a single point (the focal print), as shown in Figure 6(a); the distance between the centre of the tens and the focal point is the focal length of the fens. If a lighrpoint-source is spaced from the lens by a distance equal to the focal length of this type of lens, the lens converts the light into a paraliel ('collimated') beam of light, as shown in Figure 6(b).

Figure 7 shows the basic way of using hyo simple lenses in a light-bearn alarm or commusication systern. At one end of the system, the left-fand lens converts the tranmitter's light point-spurce into a collimated (parallel) light beam, and at the other end of the system the right-hand lens converts the collimated beam hack into a point of light,

Figure 日. Four simple types of convergent spherital lors.
which is applied to the receiver's light-sensitive input. Identical lenses are used in the collimating and decollimating processes.
Systems of the above type only generate a perfectly pardlel beam if the light point-source is infinitely small, and this is an impossibility. In prectice, the beam widens with distances after leaving the collimating Iens; the amotnt of widening is proportional to the width of the light source and inversely proportional to the diameter of the lens. For minimum widening, the lens diameter must be large relative to that of the source.
Simple lenses with one or both faces shaped as a section of a sphere are known as spherical lenses and are available in convergent and divergent types; convergent types make a parallel beam of light converge towards a common focal point; divergent types make a parallel beam of light diverge outwards. Figures 8 and 9 show a variety of lenses of these types.
Figure 8 shows four simple types of convergent spherical lens. The thin biconvex lens shown in (a) is the same type as shown in Figure 6; it operates equally well either way around, but its sharp edges are rather fragile. The

Most spherical lenses are of the simple type already shown, but other types are also available. The cylindrical biconvex lens shown in Figure 10(a), tor example, is curved in one dimension only, and is used to focus a paraltel light beem into a thin line, rather than a spot, or to convert a
ten horizontal slices temoving the 'dead' material from each slice, and then bonding the tematnder onto a base of identical material that elso acts as the lens rim. In practice, most Fresnel lenses are moulded, in plastic or glass.
The foctsed images generated by simple spherical tenses suffer from spherical and chromatic defects or abberations. Spherical abberation makes a straight line appear curved in the focused image; if you wear spectactes, you can see a demonstration oi this effect by standing in front of a set of library shelves and noting how the shelves above and below your eye level appear curved when you have your glasses on, but not when finey are off.

In simple lenses, chromatic abberation makes faint coloured fringes appear around focused white or multicoloured images. The effect orcurs because the refractive index of the lens material (and thus the focal length of the lens) vares with the colour of light, as shown in Figure II (a), making it possible to sharply focals only a smatl slice of the colour spectrum; the rest of the specirtm is out of focus, producing the 'Tringe' effect. This problem cari be overcome by using a compound lens made of one converging and one diverging lens, each with a different reiractive index value, as shoun in Fgure 11(b). Such a lens can be made to give all colours the same overall focal fength, and is known as an achromatic or antispectroscopic lens.
The strangest and most recently developed lens is the graded-index (GRIN) rod lens, which is used in modem fibre optic applications and operates in a different way to a normal lens. A GRIN rod is a glass or fibre rod that has a thick biconvex type
shown in (b) gives the same performance as the (a) type, but is more rugged. The plano-convex type shown in (c) has one filat and one curved face and must be used the correct way around, with the flat face pointing in the direction of the parallee light beam and the curved face aimed towards the light's focal point. The convex mernisess type shown in (d) has a very long focal length; it is the type used in most spectacies and contact lenses.
Figure 9 shows three simple types of divergent spherical lens. The biconcave lens shown in (a) can be tssed either way around but the plano-concave type showe in (b) must be used the correct way around. A concave meniscus type is shown in (c). Lenses of these various types are often used in conjunction with convergent lenses, to make high-quality compound Jenses (as described shorily).

(a)

(b)

Figure 11. The compound achromalic tens shown in (b) is designes to minimize chromatic aterrotion of the lype suffered by the simple fol tens.
lens that performs almost es wetl as a normal lents in simple 'light-bean' types of application. Figures $10(\mathrm{~b})$ and (c) show - in cross-section form - how a plano-convex lens with a mounting rim is thensformed into its Fremel equivalent. Here, the Fresnel lens is made up by effectively dividing the original (b) lens into
refractive index that decreases progressively with distance from the rod akis. This index variation causes light rays to foliow a sinusoidal path as they travel along the rod, as shown in Figure 12(a). The length of one complete sinnusoidal cycle in the rod is called the pitch (P) of the rod; the P value is determined mainly by

in fully collimaied form, and in (c) that a collimated light beam entering the leff face leaves the right face as a focused spot. The GRIN rod lens thus has some properties of a conventional lens, but has a very short focal length.
GRIN rod lenses are widely used in modern fibre optic and laser module applications.
Figure 13 shows an example that illustraies the advantages of a GRDN rod lens over a spherical lens in a simple fibre optic applitation in which the fibre optic cahle's point-source 'light' output needs to be
collimated when fed into the outside world. In the case shown in (a), the light is collimated by a conventional lens, which must be placed a precise fixed distance from the ent of the crobe, to which it is coupted by an air gap. In the case shown in (b), the GRIN rod lens is simply bonded directly to the polished end of the cable, and no carefully spaced air gap is fequired.

> More information on fibre optic and GRIN (graded index) operating principles will be given in next month's episode of this series. which will give an in-depth explanation of fibre optic principles and practice.
the rof's diameter and refractive index profile; the value is fypically about 20 mm .

A GRIN rod lens is simply a slice of GRIN rod with a length !ess than a single pitch-length, so that its optical output signal is out of phase witt the oprical input signal. The most interesting and widely used GRIN rod lens has a quarter pitch (giving it a length oir about 5 mm) and has the interesting properties illustrated inn Figures 12(b) and (c). Note in (b) that the light from a point source in contact with the centre of tie left face of the lens emerges from the right face

