Get more than three colors from a dot-matrix LED

W Kurdthiongmee, Nakorn Si Thammarat, Thailand

Dot-matrix LEDs find wide use in advertising displays. Products now on the market range from an inexpensive 5×8 (row-by-column) single-color LED to an expensive 8×8 RGB device. The method provided here allows you to obtain more than three main colors from an 8×8 tricolor LED. In fact, tricolor dot-matrix LEDs have only two LED dies-red and green. When you apply current to one, you obtain a red or a green color. When you apply current to both, orange results. The circuit in Figure 1, used in conjunction with the MCS51 code in Listing 1, works efficiently in controlling the LED to generate various shades of the three colors.

To add tones or shades of the main colors to the tricolor LED, you do not need to modify the circuit in Figure 1; you need only consider the software. Software modifications consist of adding more color planes or pages of display buffer, adding memory locations (mapped onto the LED dots), and increasing the number of refresh times, in which the controller updates all LED dots to cover all added color planes.

Table 1-Value in color plane MAPPED TO DOT I

Red 1	Red 2	Green 1	Green 2	Color
$0(1)$	$1(0)$	0	0	Red 50\%
1	1	0	0	Red 100\%
0	0	$0(1)$	$1(0)$	Green 50\%
0	0	1	1	Green 100\%
$0(1)$	$1(0)$	$0(1)$	$1(0)$	Orange 50\%
1	1	1	1	Orange 100\%
0	0	0	0	Blank

For example, if you decide to use four color planes, divided into two red and two green planes, for dot i of the dot-matrix LED, you'll obtain the shades listed in Table 1.

In addition, by allocating eight color planes (four red and

FICURE 1

EDN DESIGN IDEAS

four green), you can obtain the color shades listed in Table 2. Note that only the number of ones in the color planes controls color appearance. Therefore, the permutations do not change the color, as long as the numbers of ones in Table 2 remain constant. For example, the values 0110, 1001, 1100, and 0011 for R1 through R4 all produce the same color: orange 50%. You can download Listing 1-as well as the MCS-51 code that produces 13 colors from an 8×8 tricolor LED-from EDN's Web site, www.ednmag.com. At the registereduser area, go to the "Software Center" to download the file from DI-SIG \#2195.

Note that, in practice, bytewide output ports control the LED. To assign a color to a dot, the routine must extract a bit from a byte and then assign the bit value of the selected color plane by plane. (DI \#2195)

Table q-Value in color plane mapped to dot i

Red 1	Red 2	Red 3	Red 4	Green 1	Green 2	Green 3	Green 4	Color
0	0	0	1	0	0	0	0	Red 25\%
0	0	1	1	0	0	0	0	Red 50%
0	1	1	1	0	0	0	0	Red 75\%
1	1	1	1	0	0	0	0	Red 100\%
0	0	0	0	0	0	0	1	Green 25\%
0	0	0	0	0	0	1	1	Green 50\%
0	0	0	0	0	1	1	1	Green 75\%
0	0	0	0	1	1	1	1	Green 100\%
0	0	0	1	0	0	0	1	Orange 25\%
0	0	1	1	0	0	1	1	Orange 50\%
0	1	1	1	0	1	1	1	Orange 75\%
1	1	1	1	1	1	1	1	Orange 100\%
0	0	0	0	0	0	0	0	Blank

To Vote For This Design, Circle No. 417

LISTING 1-MCS-51 CODE FOR SIX COLORS FROM A TRICOLOR LED

