designideas

Simple single-cell white-LED driver uses improvised transformer

Jim Grant, Scientific Controls, Orlando, FL

\pmA white LED delivers a wide color spectrum and better visibility than do monochromatic LEDs. However, a white LED presents a higher forward-voltage drop than do its colorful counterparts and thus poses problems for operation from a single 1.5 V cell. The self-oscillating step-up converter in Figure 1 features a minimal
component count and an easily assembled transformer, T_{1}.
During the time it takes to charge T 's primary inductance, resistor R_{1} and T_{1} 's added secondary winding provide sufficient base current to turn on Q_{2}. Q_{2} 's collector current increases until is base current can no longer hold the transistor in saturation. When Q_{2} comes out

Figure 1 Two transistors and an easily assembled transformer drive a white LED from a single 1.5 V battery.
of saturation, T_{1} 's magnetic flux and secondary-voltage polarity reverse. During T_{1} 's primary-discharge interval, the combination of T_{1} 's secondary voltage in series with Q_{1} 's base-emitter voltage applies reverse bias to Q_{2} 's base and turns off the transistor. When Q_{2} turns off, the voltage across T_{1} 's primary inductance adds to the battery voltage and applies a forward bias to the LED, D_{1}. The current through R_{1} determines the power applied to the LED and applies forward bias to Q_{1} 's base-emitter junction to provide temperature-compensated bias voltage for Q_{2}.
The breadboarded circuit's transformer, T_{1}, comprises eight turns of AWG \#30 insulated wire wound around the body of an unshielded 100$\mu \mathrm{H}$ axial-lead inductor, producing approximately 400 mV p-p across the secondary winding. (Editor's note: Observe the winding's polarity dots. If the circuit fails to oscillate, reverse the connections to either the primary or the secondary winding.) The circuit operates over an input voltage range from just above Q_{1} 's baseemitter voltage drop of approximately 0.6 V to the LED's forward-voltage drop of approximately 3 V . The circuit's switching frequency exceeds 340 kHz at 1.5 V input.EDN

