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PREFACE 
 Dear Readers, the book you have in your hands is a summary of 

research carried out at the Department of Computer Biomedical Systems, 

Institute of Computer Science, University of Silesia in Katowice in 

cooperation with the team of Prof. Edward Wylęgała, D.Sc., M.D. This 

cooperation resulted in the creation of methods for ophthalmologists 

support in OCT images automated analysis. These methods, like the 

application developed on their basis, are used during routine 

examinations carried out in hospital.  

The monograph comprises proposals of new and also of known 

algorithms, modified by authors, for image analysis and processing, 

presented on the basis of example of Matlab environment with Image 

Processing tools. The results are not only obtained fully automatically, 

but also repeatable, providing doctors with quantitative information on 

the degree of pathology occurring in the patient. In this case the anterior 

and posterior eye segment is analysed, e.g. the measurement of the 

filtration angle or individual layers thickness.  

To introduce the Readers to subtleties related to the implementation of 

selected fragments of algorithms, the notation of some of them in the 

Matlab environment has been given. The presented source code is shown 

only in the form of example of implementable selected algorithm. In no 

way we impose here the method of resolution on the Reader and we only 

provide the confirmation of a possibility of its practical implementation.  

The book is addressed both to ophthalmologists willing to expand 

their knowledge in the field of automated eye measurements and also 

primarily to IT specialists, Ph.D. students and students involved in the 

development of applications designed for automation of measurements 

for the needs of medicine. 

This book is available free of charge in an electronic version. The 

authors agree to disseminate, duplicate and use in any way free of charge 

this book. A commercial use of algorithms and images presented is 

protected by law. 

The authors thank cordially Prof. Edward Wylęgała, D.Sc., M.D. and 

his team for the provided images and valuable guidance and 

consultations.   
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1 INTRODUCTION 
An optical tomography is a modern, non-invasive technique for a 

tissue section imaging, in this case of anterior and posterior eye segment, 

using the light scattered on individual layers of the examined tissue. The 

spectral tomography, as compared with the hitherto solutions (e.g. time 

tomography), features much higher resolution. The elimination of a 

moving mirror, necessary to scan deep into the object examined, allows 

also shortening the examination time (object scanning) approx. a hundred 

times. A short time of scan performance as well as its sequentiality and 

maintaining a constant shift allows obtaining 3D images [7]. Many 

instruments available now allow such imaging. Instruments, used to 

acquire images used in this book, have been selected from them, i.e.:  

 SOCT Copernicus HR, 

 Zeiss Cirrus HD-OCT, 

 Zeiss Stratus OCT Zeiss Visante OCT. 

Overall, the algorithms presented below have been tested on a group 

of more than 100,000 images of patients, both healthy and with a 

significant degree of eye pathology. 

The most interesting fragments of algorithms presented have been 

recorded in the Matlab environment, version 7.2.0.232 (R2006a) and 

Image Processing Toolbox, version 5.2 (R2006a). Individual fragments 

of algorithms are separated only with text, comments and after 

integration create a whole allowing a full image analysis. Despite that, 

the authors assume that the Reader is familiar with basic functions and 

possibilities of the Matlab software, with special emphasis on the 

operations carried out on matrices. If it is not the case, the authors refer 

Readers to familiarise themselves with Matlab basics, e.g. references 

[41]. 

In terms of the imaged object, the description of OCT images analysis 

and processing methods has been divided into two parts: the anterior eye 

segment has been presented in the first part, while the posterior eye 

segment has been presented in the second part of this monograph, in 

accordance with Fig. 1-1.  
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Fig. 1-1 Cross-section of the front and back of 
the eye with a marked characteristic of the 

location areas 

 

 



 

2 ACQUISITION OF IMAGE DATA 
Difficulties with reading and appropriate interpretation of data 

recorded for individual patients in OCT equipment result primarily from 

manufacturers‟ fears of developing own competitive software. Frequently 

the information is a company secret. Fortunately the OCT equipment 

software produced nowadays more and more often records the data 

acquired in a DICOM or similar format. The Optopol OCT is an 

exception here, recording the acquisition data in one compressed file. 

On the other hand DICOM images may be read in Matlab using the 

dicomread function available in the Image Processing package. 

Unfortunately, the usability of this function, in version 5.2 of the Image 

Processing package possessed now by the authors to read DICOM 

images originating from reputed OCT manufacturers, is small. Missing 

header tags and frequently a specific record of the image (JPEG2000) are 

the reason for which the reading of files is difficult. Such files cannot be 

read also by majority of freeware available in the Internet and designed 

for viewing typical DICOM images.  

Let us look at the header read from the track 

 path_name=’D:/source/1.DICOM’ 

as follows: 

   fid = fopen(path_name, 'r'); 

 dataa = fread(fid,'uint8'); 

  fclose(fid); 

then we obtain the result directly from OCT Carl Zeiss Meditec file 

for example for the first thousand of characters  

char(dataa(1:1000)')  

we obtain the result: 

ans = 

 

DIC C ORIGINA  UI  1.2.826.0.1.3680043.2.139.3.1.1 UI: 

1.2.826.0.1.3680043.2.139.3.1.1001.1017.20070928114546359   

D 2007092 ! D 2007092 " D 2007092 0 TM11435 1 TM11452 2 

TM11452 P SH  p LO Carl Zeiss Meditec Inc.  LO& Uniwersytet 

Slaski w Katowicac SH  0LO  >LO  pPN
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 test^test^^ 

�LO

                                                             

1000 PN Koprowski^Robert^^^ L KOWALSKI ! LO  0 D 20060115@ 

CS F   @LT    

LO

                                                             

1054  L 1.2.0.1 0L Chamber    

 UI: 

1.2.826.0.1.3680043.2.139.3.1.1001.1017.20070928114359062    

UI: 

1.2.826.0.1.3680043.2.139.3.1.1001.1017.20070928114546312   

IS 0   IS 0   IS0   R UI: 

1.2.826.0.1.3680043.2.139.3.1.1001.1017.20070928114546312   

` CS OD   @LT  ( US  ( 

                                                             

CS MONOCHROME2 ( US  ( US  

                                                            

(  US  ( US  ( US  (                         US  @ SQ     

SH 

 ALL_SCANS SH 99CZM                         … 

The information available in the Internet specify clearly the place, 

where the data is located, e.g.  

 0010,0010 PatientName N    

 0020,0013 InstanceNumber N    

 0002,0010 TransferSyntaxUID N    

 0028,0100 BitsAllocated N    

 0028,0111 LargestImagePixelValueInPlane N    

This means that patient‟s Name and Surname given in hexadecimal 

notation in appropriate sequence starting from LSB and ending at MSB 

will be preceded with values read from the file, i.e.: 16 0 16 0. In the 

example file presented these are the values comprised by elements from 

480 to 506 range, i.e.: char(dataa(480:506)'), dataa(480:506)' as 

a result we obtain: 

ans = 

 PN Koprowski^Robert 

 

ans =  

 

  Columns 1 through 23  

 

    16     0    16     0    80    78    20     0    75   

111   112   114   111   119   115   107   105    94    82   

111    98   101   114 



 

 
 

10 Introduction to Anterior Eye Segment Analysis 

 

  Columns 24 through 27  

 

   116    94    94    94 

The reading of the remaining information comes down only to finding 

appropriate tag and then the record content. The skeleton of example 

function OCT_head_read, returning the information on the header 

header_dicom and the matrix Ls of image, designed to read the data 

originating from OCT Visante, are presented below: 

function [header_dicom,Ls]=OCT_head_read(dataa) 

flagi=zeros([1 100]); 

iu=1; 

header_dicom=[]; 

for i=1:30000 

    te=dataa(i:(i+3)); 

    if (sum((te'==[16 0 16 0]))==4)&(flagi(1)==0) 

        Patinet_Name=char(dataa(i+8:(i+8+dataa(i+6)-1))'); 

        header_dicom.Patinet_Name{iu}=Patinet_Name; 

        flagi(1)=1; 

    end 

    if (sum((te'==[32 0 19 0]))==4)&(flagi(2)==0) 

            Instance_Number=char(dataa(i+8)); 

        header_dicom.Instance_Number{iu}=Instance_Number; 

        flagi(2)=1; 

    end 

    if (sum((te'==[2 0 16 0]))==4)&(flagi(3)==0)     

        UID=dataa(i:i+30); 

        header_dicom.UID{iu}=char(UID)'; 

        flagi(3)=1; 

    end 

    if (sum((te'==[40 0 0 1]))==4)&(flagi(4)==0)     

        Bp=dataa(i+8); 

        header_dicom.bits_per_pixel{iu}=dataa(i+8); 

        flagi(4)=1; 

    end 

    if (sum((te'==[40 0 17 0]))==4)&(flagi(5)==0) 

        M=dataa(i+9)*256+dataa(i+8); 

        header_dicom.Mlumn{iu}=M; 

        flagi(5)=1; 

    end 

    if (sum((te'==[224 127 0 0]))==4)&(flagi(6)==0) 

        

header_dicom.length_pixel_data{iu}=dataa(i+10)*256*256+data

a(i+9)*256+dataa(i+8) ;         

        flagi(6)=1; 

    end 

    if (sum((te'==[40 0 0 1]))==4)&(flagi(7)==0) 
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        header_dicom.bits_allocated{iu}=dataa((i+8))';         

        flagi(7)=1; 

    end 

    if (sum((te'==[40 0 1 1]))==4)&(flagi(8)==0) 

        header_dicom.bits_stored{iu}=dataa((i+8))';         

        flagi(8)=1; 

    end 

    if (sum((te'==[40 0 2 1]))==4)&(flagi(9)==0) 

        header_dicom.high_bit{iu}=dataa((i+8))';         

        flagi(9)=1; 

    end 

    if (sum((te'==[40 0 2 0]))==4)&(flagi(10)==0) 

        header_dicom.samples_per_pixel{iu}=dataa((i+8))';         

        flagi(10)=1; 

    end 

    if (sum((te'==[40 0 16 0]))==4)&(flagi(11)==0) 

        N=dataa(i+9)*256+dataa(i+8); 

        header_dicom.Nws{iu}=N;                      

        flagi(11)=1; 

    end 

    if (sum((te'==[8 0 32 0]))==4)&(flagi(12)==0) 

        Date_=dataa((i+8):(i+15))'-48; 

        header_dicom.date_study{iu}=Date_;                 

        %(dataa(i:(i+28))')         

        flagi(12)=1; 

    end 

    if (sum((te'==[224 127 16 0]))==4)&(flagi(13)==0) 

        ipp=i; 

        header_dicom.pixel_start_data{iu}=i;                 

        flagi(13)=1; 

    end 

    if sum(flagi)==13; 

        break 

    end 

end 

if (length(dataa)-ipp)<N*M 

    disp('Small pixel') 

end 

if Bp==8 

    L=dataa(ipp+12:ipp+11+N*M); 

    L=reshape(L,[M N]); 

    Ls=L; 

end 

if Bp==16 

    LH=dataa(ipp+12:2:ipp+11+N*M*2); 

    LL=dataa(ipp+13:2:ipp+11+N*M*2); 

    L1L=reshape(LL,[M N]); 

    L1H=reshape(LH,[M N]); 

    Ls=L1H+L1L*256; 

    Ls(Ls>2^14)=Ls(Ls>2^14)-2^16; 
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end 

The above function reads the header from a DICOM file, seeking 

appropriate tags. The functionality of individual tags and their full list 

may be easily checked in an Internet browser entering “DICOM tags” or 

on http://medical.nema.org/ website. Having read the selected 

information from the header, it converts, reorganising the data (reshape 

function), to size M x N. The final image to be recorded  

path_name='d:/OCT/SOURCES/1.DCM'; 

fid = fopen(path_name, 'r'); 

dataa = fread(fid,'uint8');  

fclose(fid); 

 [header_dicom,Ls]=OCT_head_read(dataa); 

figure; imshow(Ls,[]); colormap('jet') 

OCT image read using the function OCT_head_read has been 

shown in Fig. 2-1. 

 

Fig. 2-1 OCT image read using the function OCT_head_read 

It is necessary to remind here that this is only an example function and 

it does not fully uses up very broad (described in the place referred to 

above) scope of possibilities to record image, video and other sequences 

in a DICOM file. 

Another way of recording is possessed by the company Optopol, 

packing the data in one file. After unpacking (using any unpacking 

software) the images of image sequences recorded in a bmp format are 

available as well as a file of inf extension containing the information on 

patient‟s data and locations of individual images on the xy axis. 

Assuming that files from OCT equipment are available in the path 

'd:/OCT/SOURCES/' and that results in the form of directories of the 

same names as names of files to be unpacked should be in 

'd:/OCT/FOLDERS/’ the script for automatic unpacking can be written 

as: 

http://medical.nema.org/
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dr=dir('d:/OCT/SOURCES/'); 

for i=1:size(dr) 

    cc=getfield(dr,{i},'name'); 

    iscc=getfield(dr,{i},'isdir'); 

    if (iscc==0)&(strcmp(cc(end-2:end),'OCT')) 

      unzip(['d:/OCT/SOURCES/',cc],['d:/OCT/FOLDERS/',cc]); 

    end 

end 

The images of anterior eye segment, obtained using the function 

presented above, have resolution of 256x1024 pixels, what at the 

example measuring range of 8mm x 16 mm gives 0.0313 mm/pixel.  In 

the case of posterior eye segment the resolution of images obtained e.g. 

from Copernicus tomograph is 1010x684. 

These functions are only examples, very limited, of methods resolving 

the problem of data reading from OCT instruments. Instead, they were 

used to enter the images to the Matlab space. 
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PART I 
 

3 ANALYSIS OF ANTERIOR EYE 
SEGMENT 

 
The first part of this monograph presents the issues related to the 

analysis of anterior eye segment in terms of selection of algorithms 

analysing the filtration angle and the anterior chamber volume. These are 

among fundamental issues not resolved so far in applications available in 

modern tomographs. These calculations are either not possible at all or 

not fully automated. The algorithms presented below not only fully 

resolve the problem mentioned but also indicate other possible ways to 

resolve it. 
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3.1 Introduction to Anterior Eye Segment Analysis 

The filtration angle, i.e. the iridocorneal angle (Fig. 3-1, Fig. 3-2), is 

the structure responsible for the aqueous humour drainage from the eye‟s 

anterior chamber. Both a correct production of the aqueous humour by 

the ciliated epithelium and a correct rate of aqueous humour drainage 

through the filtration angle are conditions for a correct intraocular 

pressure. All anatomical anomalies, the angle narrowing and the angle 

closing result in a more difficult drainage and in a pressure increase. The 

examination allowing to determine the angle width is named the 

gonioscopy. Based on the angle width the glaucoma may be broken down 

to the open angle glaucoma and to the closed angle glaucoma [16], [18]. 

ANTERIOR CHAMBER

IRIS

LENS

CORNEA

CORNEAL-SCLERAL TRABECULAE

CILIRARY MUSCLE

CILIARY PROCESSES

  

Fig. 3-1 A section of the anterior 
segment of an eye with marked 
positions of characteristic areas 

Fig. 3-2 An example of the 
image of the anterior segment 

of an eye 

The methods presented are not precisely defined and doctors each 

time must choose the measuring method used. In consequence, the results 

obtained are not reliable and difficult to verify and to compare with the 

standard and with other doctors.  
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a) b) c) 

Fig. 3-3 Methods for the filtration angle measurement: a) AOD (Angle 
Opening Distance) method, b) TIA (Trabecular-Iris Angle) method, c) TISA 

(Trabecular-Iris-Space Area) method 

So far all the measurements mentioned have been performed manually 

indicating appropriate characteristic points. However, in the cases of 

individual variation or pathology these methods have different accuracy 

and repeatability of measurements resulting primarily from their nature 

and from the measured quantities. The AOD (Angle Opening Distance) 

method (Fig. 3-3.a)) consists in the measurement of distance, TIA 

(Trabecular-Iris Angle) (Fig. 3-3.b)) in the measurement of angle and 

(Fig. 3-3.c)) TISA (Trabecular-Iris Space Area) method consists in the 

measurement of area, respectively [20] (the methods have been shown 

together in Fig. 3-4).  

 

Fig. 3-4 Methods for the filtration angle measurement: AOD (Angle 
Opening Distance) method, TIA (Trabecular-Iris Angle) method, TISA 

(Trabecular-Iris-Space Area) method 

As it can be seen from the measurement data presented (Fig. 3-3) the 

AOD method does not cope sufficiently well with pathological cases, 
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what makes that the results obtained are not reliable in diagnostic terms. 

What is even worse, using this method in accordance with the definition 

a doctor makes consciously a pretty large (depending on the degree of 

pathology) error of the method. Therefore an automatic method for the 

filtration angle measurement has been proposed and an original 

measurement method (based on the aforementioned AOD, TISA and 

TIA) free of the errors mentioned above. However, further considerations 

should be preceded by showing the hitherto methods, which are 

comprised by the software delivered with an OCT instrument. 

3.2 Review of Hitherto Filtration Angle Analysis Methods 

The hitherto filtration angle analysis methods may be easily assessed, 

because in each software attached to each tomograph these are manual 

methods. An operator indicates reference points characteristic of specific 

measurement method (Fig. 3-5). Partial automation of angle analysis 

method by “dragging” the marked measuring line to the object contour is 

rare. However, irrespective of whether the method is computer assisted 

or fully manual the measurement is not automated and its result is 

affected by the precision of point indication by the operator. Hence these 

methods are not free of errors, both of the operator and of the 

measurement methodology itself. The error related to the lack of 

measurements repeatability is especially troublesome at statistical 

calculations.  

Summing up the software available now has the following 

deficiencies: 

 missing 3D reconstruction and thereby a possibility to perform 

calculations of the volume of selected parts of anterior eye segment, 

  

Fig. 3-5  Fragments of commercial software [38], attached to OCT Visante 
instruments, operation [37] 
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 missing full automation, 

 calculations, which may be carried out manually, are possible only to a 

very limited extent, 

 large measurement errors e.g. in the case of filtration angle 

measurement for pathological conditions. 

Taking into account the aforementioned deficiencies an own profiled 

algorithm has been suggested, designed for automated analysis excluding 

any involvement of the operator. The description of the algorithm itself 

and of its parameters has been preceded by sections on reading the files 

from OCT instruments and the assessment of errors at manual 

measurements. 

3.3 Verification of the Sensitivity of the Proposed 

Methods 

 This section is aimed at the analysis of properties (mainly sensitivity 

to parameters change) of methods specified in the previous section 

(AOD, TIA and TISA). 

The need to evaluate and verify the precision of individual 

measurement methods at the presence of disturbances results from 

situations occurring in the case of inaccurate manual method for 

indication of characteristic points coordinates (marked red in Fig. 3-3). 

The location of points mentioned strictly depends on the measurement 

method chosen and on operator‟s accuracy and is forced by all types of 

software delivered by the OCT vendor. The calculated values of errors 

obtainable at manual points indication are the subject of these 

considerations. A reliable final result, documented by error values, 

consists of analysed method (AOD, TIA, TISA) sensitivity to operator‟s 

error. Conditions related strictly to the operator have been formulated in 

the summary based on that and referring to the fact, which coordinate of 

a point indicated by the operator in what way affects the final error of the 

filtration angle measurement. 

3.3.1 Methodology for Measuring Methods Sensitivity to 

Parameters Change  

The verification of AOD, TIA and TISA methods sensitivity to 

parameters change (operator‟s error) was carried out, likewise in the 

previous section, taking into account and not taking into account semi-

automation implemented in commercial software. Semi-automatic 
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marking of points characteristic of individual methods is related to 

dragging the point marked to the edge, most often using the active 

contour method. However, in both methods mentioned the result is 

affected by the place indicated by the operator. Preliminary 

measurements have confirmed, depending on the operator, an error of 

points indication of around ± 10 pixels, giving an error at the resolution 

of 32 pixels/mm of around ± 0.31 mm. For the sake of comparison of 

sensitivity to parameters change for AOD, TIA and TISA methods the 

scope of analysis and comparisons has been narrowed to two points p1 

and p2 (Fig. 3-6). 

 On this basis the following assumptions related to the studies carried 

out have been formulated: 

 the range of characteristic points position variability ± 10 pixels, 

 verified software in semi-automatic version, 

 analysis, due to comparative reasons, narrowed to points p1 and p2, 

 the analysed image resolution of 32 pixels/mm. 

The measurement error calculated for the AOD method – δAOD, for 

TIA – δTIA, for TISA – δTISA will be calculated as the difference between 

the measured and the correct value, expressed as the percentage of 

notional value, where the notional values is most often understood as the 

correct value, i.e.: 

     
     

  
 100 [%]          

     

  
 100 [%],  (1) 

  

Fig. 3-6  Location of points 
pi indicated by the operator 

Fig. 3-7   Binary test image illustrating the 
filtration angle 
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 100 [%] 

where: 

     - measured and standard distance, respectively, defined as: 

                         and   

             
           

  

(2) 
 

     - measured and standard angle, respectively 

       measured and standard area, respectively. 

The method sensitivity to parameters change will be understood as a 

change of the measured value caused by a change of one parameter, 

indicated by the points operator, referred to the measured value and 

expressed as percentage, i.e.: 

        
 

   

      
     [%] 

 

(3) 

for small increments it is possible to write 

        
 

   

      
  100 [%] (4) 

where: 

xi – coordinates of points pi indicated by the operator, the next i-th 

number in accordance with Fig. 3-6 (in accordance with the assumptions 

only two points, p1 and p2, are analysed). 

Appropriately for the other methods: 

        
 

   

      
  100 [%]          

 
   

      
  100 [%] (5) 

The calculations have been carried out for an artificial image shown in 

Fig. 3-7, which may be downloaded from this book site 

http://robert.frk.pl and which, after entering to the Matlab space, should 

be converted to sorted coordinates x,y, i.e.: 

L1=imread('D:\OCT\reference.jpg'); 

L1=1-double(L1(:,:,1)>128); 

figure; imshow(L1); 

[xx,yy]=meshgrid(1:size(L1,2),1:size(L1,1)); 

yy(L1~=1)=[]; 

xx(L1~=1)=[]; 

xy=sortrows([xx',yy'],2); 

http://robert.frk.pl/
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podz=750; 

 

xl=xy(1:podz,1); 

yl=xy(1:podz,2); 

xp=xy(podz:end,1); 

yp=xy(podz:end,2); 

figure; plot(xl,yl,'-r*'); hold on; grid on 

plot(xp,yp,'-g*'); xlabel('x'); ylabel('y') 

From the notation we obtain coordinates (xl,yl) and (xp, yp) of the left 

and right hand side of the measured angle, respectively. 

The next section will present the results obtained using this artificial 

image. 

3.3.2 Methods Sensitivity to Parameters Change 

Measurements were carried out changing the position of points p1 and 

p2 in coordinate x within xw ± 10 pixels, assuming automated dragging to 

the contour line on the y axis (Fig. 3-8). An example of measured 

quantities values variability range for individual methods has been shown 

in the following graphs (Fig. 3-9 - Fig. 3-11). 

 

 

Fig. 3-8 Contour obtained from the 
image from Fig. 3-7 with marked 

range of points p1 and p2 fluctuation 
on x axis  

Fig. 3-9 Graph of TIA error values 
changes vs. changes of p1 and p2 

points position on the x axis 
within the range of xw±10 pixels 
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Fig. 3-10 Graph of AOD error values 
changes vs. changes of p1 and p2 

points position on the x axis within 
the range of xw±10 pixels 

Fig. 3-11 Graph of TISA error 
values changes vs. changes of p1 

and p2 points position on the x 
axis within the range of xw±10 

pixels 

For coordinates of contour right and left hand side position the errors 

may be calculated as follows: 

prz=30; 

pam=[]; pam0=[]; 

xx=xp(end,:)-xp(:,:); yp(xx>(prz))=[]; yyyp=yp; 

xx=xp(end,:)-xp(:,:); xp(xx>(prz))=[]; xxxp=xp; 

xx=xl(1,:) - xl(:,:); yl(xx>(prz))=[]; yyyl=yl; 

xx=xl(1,:) - xl(:,:); xl(xx>(prz))=[]; xxxl=xl; 

po2p=round(length(xxxp)/2); 

po2l=round(length(xxxl)/2); 

pam=[]; 

for pol=1:length(xxxl) 

    for pop=1:length(xxxp) 

        xl=xy(1:podz,1); 

        yl=xy(1:podz,2); 

        xp=xy(podz:end,1); 

        yp=xy(podz:end,2); 

        xxl=xl(end):xxxl(pol); 

        xxp=xp(1):xxxp(pop); 

        Pl = POLYFIT([xl(end) xxxl(pol)],[yl(end) 

yyyl(pol)],1); 

        Yl = POLYVAL(Pl,xxl); 

        Pp = POLYFIT([xp(1) xxxp(pop)],[yp(1) 

yyyp(pop)],1); 

        Yp = POLYVAL(Pp,xxp); 

        plot(xxl,Yl) 

        plot(xxp,Yp) 

        katl=180+atan2([xl(end)-xxxl(pol)],[yl(end)-

yyyl(pol)])*180/pi; 
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        katp=atan2([xxxp(pop)-xp(1)],[yyyp(pop)-

yp(1)])*180/pi; 

        pam(pol,pop)=katl-katp; 

        if (pop==po2p)&(pol==po2l) 

            pam00=katl-katp; 

        end 

    end 

end 

pam=(pam-pam00)./pam00*100; 

sl=round(size(pam,1)); 

sp=round(size(pam,2)); 

[xx,yy]=meshgrid((1:sp)./sp*30-15, (1:sl)./sl*30-15); 

figure; mesh(xx,yy,pam);  

xlabel('\Delta x (p_1) [pixel]','fontSize',20);  

ylabel('\Delta x (p_2) [pixel]','fontSize',20);  

zlabel('\delta _{TIA} [%]','fontSize',20) 

axis([-15 15 -15 15 min(pam(:)) max(pam(:))]) 

colormap([0 0 0]) 

The results obtained, for three methods AOD, TIA and TISA, of error 

value and of sensitivity to change of points p1 and p2 position are shown 

in the table below. 

Tab 3-1 Table of methods sensitivity to points positions change  

Method      [%]      [%] 

AOD 0.12 0 

TIA 0.35 0.04 

TISA 0.55 -0.25 

The table above and the graphs presented (Fig. 3-9 - Fig. 3-11) show 

the measurement error for individual methods, AOD, TIA and TISA, 

when changing positions of points p1 and p2 in the x coordinate, 

assuming “dragging” by a semi-automatic to the correct y coordinate. 

The measurement error, at incorrect indication of points p1 and p2 

position for AOD and TISA methods, affects the result with the sign 

opposite to that for the TIA method. When moving point p1 or p2 towards 

the filtration angle, the measurement value is understated for AOD and 

TISA methods and overstated for the TIA method.  

As it can be seen from the graphs presented and from the method 

sensitivity (Tab 3-1) to a change of the points mentioned, the TISA 

method is the most sensitive to operators errors. The sensitivity value of 

around 0.55% for TISA results from the nature of measurement, where 

very small changes of point p1 and p2 position have a significant impact 

on the calculated area. The AOD methods is the least sensitive to 

operators error, because a change of point p1 and p2 position on a contour 
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nearly parallel to the line, which length is calculated, affects the result 

only slightly.  

The results obtained admittedly show an advantage of AOD method, 

in which a change of points position by the operators affects the total 

error to the least extent and at the same time this method is least sensitive 

to operators errors, but only in cases of ideal determination of the 

contour. Unfortunately it turns out that in the case of disturbances, 

personal variability and other factors causing sudden local contour 

changes/fluctuations, the situation is slightly different (Fig. 3-12 - 

Fig. 3-15). The disturbances may be added like in the case of calculations 

in the previous section, i.e.: 

xyrand=rand(size(xy))*40; 

xy=xy+xyrand; 

 
 

Fig. 3-12 Contour obtained from 
the image from Fig. 3-7 after 

adding noise of uniform 
distribution on ±20 range with 

marked range of points p1 and p2 
fluctuation on the x axis 

Fig. 3-13 Graph of TIA error values 
changes vs. changes of p1 and p2 

points position on the x axis within 
the range of xw±10 pixels 
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Fig. 3-14 Graph of AOD error 
values changes vs. changes of p1 

and p2 points position on the x 
axis within the range of xw±10 

pixels 

Fig. 3-15 Graph of TISA error values 
changes vs. changes of p1 and p2 

points position on the x axis within 
the range of xw±10 pixels 

The above measurements were carried out for the same contour 

(Fig. 3-7) adding disturbances of random nature and uniform distribution 

on ±20 range, as a result obtaining contour shown in Fig. 3-12 and results 

as error values     ,     ,      shown in Fig. 3-13, Fig. 3-14 and  

Fig. 3-15. As it is seen from the graphs presented (Fig. 3-13, Fig. 3-14, 

Fig. 3-15) the error has totally different distribution for individual 

methods AOD, TIA and TISA than in the case from Fig. 3-9, Fig. 3-10 i 

Fig. 3-11. In the case of disturbances existence the lowest error value is 

achievable for the TISA method, the largest for the TIA method. Based 

on that the following summary may be formulated. 

3.3.3 Conclusions From the Sensitivity Analysis Methods 

For AOD, TIA and TISA methods of filtration angle measurement and 

for an example contour analysed as an ideal (possible approximated in 

the software attached to the tomography) and featuring random 

disturbances the conclusions presented in the following table may be 

drawn. 
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Known Algorithms 

 

Tab 3-2 Summary of method errors impact for AOD, TIA and TISA 

measurements  

METHOD Measurement 

error without 

added 

disturbances  

Measurement 

error with 

added 

disturbances 

When xM 

increases  

When xM 

decreases 

AOD Small  Large     increases    decreases 

TIA Medium  Medium    decreases    increases 

TISA Large Small    increases    decreases 

On the basis of presented Tab 3-2 the following premises may be 

drawn for the operator – the person indicating manually the measurement 

points (supported by a semi-automatic implemented in the software 

delivered with the instrument or not): 

 the AOD method gives results burdened with the smallest error in the 

case of contour line approximation. Precise manual indication of 

measurement points makes this method to be the least accurate.  

  the TIA method, irrespective of the way of operation, help, software 

delivered with the tomography, shows average error values at the 

indication of measurement points, 

 the TISA method is burdened with the smallest error if the contour is 

not approximated and the operator indicates measurement points 

very precisely.  

Summing up, the AOD method is the best for a contour in which the 

filtration angle measured is approximated by lines, in other cases it is the 

TISA method. 

3.4 The Results of Automatic Analysis Chamber Angle 

Obtained Using Well-Known Algorithms  

The justification of the necessity to use a profiled algorithm in this 

case is related with insufficient results obtained from other known 

algorithms intended for detection of lines and/or areas on images: 

 the Hough transform enables detecting lines on images of 

predetermined shape.  

 the wavelet analysis method gives incorrect results in the case, where 

the objects are poorly visible and lines can overlap,  
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 also the methods for elongated objects analysis are not applicable here 

due to a possibility of large change of dimensions both of the object 

itself and also of its thickness and to a possibility of its division to many 

parts.  

Based on that, taking also into consideration the medical premises 

presented below, a profiled algorithm for analysis and processing of 

anterior eye segment has been proposed. 

3.5 Proposed Modifications to the Well-Known Method of 

Measuring 

Fig. 3-16 presents again the anterior chamber for different degrees of 

pathology with marked distances at various points for one selected 

method, i.e. AOD [31]. 

   

Fig. 3-16 The anterior chamber for different degrees of pathology with 
measured quantities for the AOD method and distance y marked with 

arrows 

As it can be seen (Fig. 3-16) and as previously mentioned the AOD 

method does not cope sufficiently well with pathological cases, what 

makes that the results obtained are not reliable in diagnostic terms. The 

new method, proposed by the authors, consists in continuous 

measurements via modified AOD, TIA and TISA methods. A continuous 

measurement will be understood here as a series of measurements for a 

distance of 500 µm (Fig. 3-16) decreasing by 1 pixel. At a typical 

resolution of the image of 32 pixels/1 mm this gives on average around 

16 measurements. Because of the resolution error the measurements for a 

small number of pixels are burdened with a larger error. However, this 

does not affect the advantage of the method proposed over the commonly 

used methods. For the measurement method defined this way its 

precision and sensitivity to disturbance have been verified.  To this end 
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the shape of contour analysed and also x and y coordinates have been 

preliminary modelled, e.g. as follows. 

figure 

% green plot 

x=[.1:0.1:4, -4:0.1:-0.1]; y=x.^2; 

x(x<0)=x(x<0)*2; x(x<0)=fliplr(x(x<0)); 

x(x>0)=fliplr(x(x>0)); x=x-min(x);y=max(y)-y; 

plot(x,y,'-gs'); grid on; hold on 

 

% red plot 

xs1=[sqrt(y)]; xs2=[sqrt(y)+8]; 

x=[flipud((8-(xs1*2)));(xs2)]; 

ys1=flipud(y); y=[ys1;(y)]; 

plot(x',y','-r+'); grid on; hold on 

  

% blue plot 

x=[-4:0.1:0,.1:0.1:4]; 

y=x.^2; y(x<=0)=[]; x(x<=0)=[]; 

x(x>0)=fliplr(x(x>0)); x=x+8; y=max(y)-y; 

y_=fliplr(y/max(y)*3*pi); x_=1*cos(y_)-1; 

x__=0:(6/(length(x_)-1)):6; 

x=[x,x_+8-x__]; y=[y,y_/3/pi*16];  

plot(x,y,'-b+'); grid on; hold on 

For each of these curves the filtration angle was calculated according 

to individual AOD, TIA and TISA methods, i.e.  

xl=[]; xp=[];  

TIA=[]; 

TISA=[]; 

AOD=[]; 

xr=8; yr=0;  

    for i=round(length(x)/2):-1:1 

        line([x([i,length(x)-i+1])], [y([i,length(x)-

i+1])],'Color',[0 1 0]) 

        Pl = POLYFIT([xr x(i)],[yr y(i)],1); 

        Pp = POLYFIT([xr x(length(x)-i+1)],[yr y(length(x)-

i+1)],1); 

        TIA=[TIA; [y(i) -atan(Pp(1)-Pl(1))*180/pi]]; 

        AOD=[AOD; [y(i) -(x(length(x)-i+1)-x(i))]]; 

        TISA=[TISA; [y(i) sum(AOD(:,2))]]; 

    end 

  

figure;  

plot(AOD(:,1), AOD(:,2)./max(max([AOD(:,2)])),'-r+');  

hold on; grid on 

xlabel('y [piksel]');  

ylabel('D (AOD), D (TISA),D (TIA), [\\]') 

plot(TISA(:,1), TISA(:,2)./max(max([TISA(:,2)])),'-g+');  
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plot(TIA(:,1), TIA(:,2)./max(max([TIA(:,2)])),'-b+');  

legend('AOD','TISA','TIA') 

The results obtained at pathologies for a diminishing distance y for 

images in Fig. 3-16 have been shown in the following figures. 

  

Fig. 3-17 Contours of the filtration 
angle measured for three 

examples of patients 

Fig. 3-18 Values of distance D 
measurements for the AOD method 

vs. y for different shapes of the 
filtration angle (Fig. 3-17) 

  

Fig. 3-19 Values of area s 
measurements for the TIA method 

vs. y for different shapes of the 
filtration angle (Fig. 3-17) 

Fig. 3-20 Values of angle α 
measurements for the TIA method 

vs. y for different shapes of the 
filtration angle (Fig. 3-17) 

The results obtained for an actual image case with the presence of 

noise (random steady interference in the 0†1 range) are presented in the 

following figures (Fig. 3-21 - Fig. 3-24) 
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Fig. 3-21 Contours of the filtration 
angle measured for three 

examples of patients, together 
with noise 

Fig. 3-22 Values of distance D 
measurements for the AOD method 

vs. y for different shapes of the 
filtration angle (Fig. 3-21). 

  

Fig. 3-23 Values of area s 
measurements for the TIA method 

vs. y for different shapes of the 
filtration angle (Fig. 3-17). 

Fig. 3-24 Values of angle α 
measurements for the TIA method 

vs. y for different shapes of the 
filtration angle (Fig. 3-17)  

The disturbance was random added as follows: 

x=x+rand(size(x))*2; 

y=y+rand(size(y))*2; 

The following conclusions may be drawn from the graphs presented 

above: 

 increasing value of y (place of the measurement) to the least extent 

affects the results obtained from the TIA method – Fig. 3-20 and 

Fig. 3-24. 
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 the noise introduced to the contour of the image measured to the 

least extent affects the measurement by the TISA method; 

 in the cases of moving the place of measurement, of increasing the 

value of y, the results of measurements for all TISA and AOD methods 

are overestimated, while for the TIA method they strictly depend on 

the shape of the contour measured (Fig. 3-20). 

 changes of the shape of the analysed image contour only slightly affect 

the results obtained from the TIA method; 

 the TISA method, stable in terms of the occurring noise (Fig. 3-23), has 

a drawback in the form of a nonlinear dependence of the 

measurement results on the place of measurement – the value of y. As 

it results from Fig. 3-23 this nonlinearity causes sudden changes of the 

measured value for the increasing values of y.  

 the drawback of the method used consists of necessary full 

automation of the measurement due to high amounts of time 

consumed for individual calculations.  

Summing up, the AOD method is the best for a contour in which the 

filtration angle measured is approximated by lines, in other cases it is the 

TISA method. 

The method proposed, because of the laborious obtaining of partial 

results, requires a full automation of the measurement. 

So it is already known, which of methods is most appropriate in terms 

of sensitivity to personal characteristics (degree of pathology); further on 

it is interesting to assess the sensitivity to change of parameters, but set 

by the operator (characteristic points indication). These are 

measurements necessary to assess the precision obtained during manual 

measurement of parameters. 

3.6 Algorithm for Automated Analysis of the Filtration 

Angle 

Two main directions of algorithm operation: 

 automated calculation of the filtration angle, 

 automated determination of sclera layers for 3D reconstruction. 

On the basis of the above medical premises [21], [30] and preliminary tests 

performed the following block diagram of the algorithm has been suggested 

(Fig. 3-25). 
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Acquisition of an 256x1024 image

Filtering by median filter, mask size 3x3

Analysis of maximum value in all columns

Automatic choice of threshold

Filling the holes

Detection of limits of the scleris

   Approximation of the inside
 and outside of the anterior part

Analysis of the iris and ciliary process

Detection of boundary points of the iris

Calculation with TIA, AOD and TISA methods

Result  

Fig. 3-25 Block diagram of the algorithm 

As mentioned in the introduction the input image of 256x1024 

resolution and on average of 0.0313 mm/pixel is entered in the DICOM 

format to the Matlab software space. The source code may be divided 

into two parts: the readout of the file as a set of bytes and the conversion 

to one of image recording formats including acquiring necessary 

information from the header. 

The readout of 3.dcm file was carried out in accordance with the 

information provided in the initial section, i.e.: 

path_name='d:/OCT/SOURCES/3.DCM'; 

fid = fopen(path_name, 'r'); 

dataa = fread(fid,'uint8');  

fclose(fid); 

[header_dicom,Ls]=OCT_head_read(dataa); 

Further on the algorithm comprises filtration using a median filter of 

Ls image of 3x3 mask size, changing resolution to accelerate calculations 

and individual columns analysis [32].  

Ls=medfilt2(Ls,[7 7]); 

Ls=imresize(Ls,[256 512 ]); 

figure; imshow(Ls,[]);  

L2=Ls 

This analysis results in the calculation for each column of the 

binarisation threshold (images are calibrated) as 10% of the brightest of 

the existing pixels (Fig. 3-26) i.e.: 

przed=1; 
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L22=imclose(Ls>max(max(Ls))*0.10,ones([3 3])); 

The binary values for each column are consecutively analysed 

considering the criterion of the largest object length. An example record 

to delete all objects larger than 100 pixels looks as follows: 

L2lab=bwlabel(L22); 

L33=zeros(size(L22)); 

for ir=1:max(L2lab(:)) 

    L2_=L2lab==ir; 

    if sum(L2_(:))>100 

        L33=L33|L2_; 

    end 

end 

figure; imshow(L33,[]); 

Then – to eliminate small inclusions and separations of layers – a 

method of holes filling is implemented. 

L22=bwfill(L33,'holes'); 

figure; imshow(L22,[]); 

L55=bwlabel(xor(L22,L33)); 

for ir=1:max(L55(:)) 

    L5_=L55==ir; 

    if sum(L5_(:))<100 

        L33=L33|L5_; 

    end 

end 

L22=L33; 

figure; imshow(L22,[]); 

Obviously in this case the function bwfill (…,'holes') would be 

sufficient itself, however, all holes would be filled and not only those, 

which have the number of pixels (area) smaller than 100.  

The image preliminary prepared in this way is used to perform the 

operation of the sclera boundaries determination and the approximation 

of the boundaries determined by a third degree polynomial (Fig. 3-30).: 

linie_12=[]; 

for i=1:size(L22,2) 

    Lf=L22(:,i); 

    Lff=bwlabel(Lf); 

    if sum(Lff)>0  

        clear Lnr 

        for yt=1:max(Lff(:)) 

            Lffd=Lff==yt; 

            if sum(Lffd(:))>10  

                Lnr=[(1:length(Lffd))',Lffd]; 

Lnr(Lnr(:,2)==0,:)=[]; 

                break 
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            end 

        end 

        if (exist('Lnr')>0)&(~isempty(Lnr)) 

            linie_12=[linie_12; [i Lnr(1,1) Lnr(end,1)]]; 

        end 

    end 

end 

hold on;  

plot(linie_12(:,1),linie_12(:,2),'r*'); grid on 

plot(linie_12(:,1),linie_12(:,3),'g*'); grid on 

The next stage is the filtration using a median filter, i.e.: 

linie_12(:,2)=medfilt2(linie_12(:,2),[5 1]); 

linie_12(:,3)=medfilt2(linie_12(:,3),[5 1]); 

The obtained values of (x,y) coordinates in the variable linie_12 are 

analysed with regard to differences in oy axis exceeding the threshold 

set, e.g. 5 pixels (selected taking into account medical premises), i.e.: 

x=linie_12(:,1); 

y=linie_12(:,2); 

ybw=bwlabel(abs([diff(y') 0])<5); 

For each pair of coordinate sets obtained for all combinations of 

labels, the approximation by a third degree polynomial is performed. 

    rzad=3; 

    toler=10; 

P=polyfit(x,y,rzad); 

    Y=polyval(P,x); 

    yyy=Y-y; 

pamm=[0 0 sum( abs(yyy)<toler )/length(yyy)]; 

for ir=1:(max(ybw)-1) 

    for irr=(ir+1):max(ybw) 

        y_=[y(ybw==ir); y(ybw==irr)]; 

        x_=[x(ybw==ir); x(ybw==irr)]; 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

        hold on; plot(x,Y,'-g*');  

        yyy=Y-y; 

        pamm=[pamm; [ir irr sum( abs(yyy)<toler 

)/length(yyy) ]]; 

    end 

end 

Then this combination of such pairs of coordinate sets is chosen, for 

which around the tolerance set. 

pamm_=sortrows(pamm,3); ir=pamm_(end,1); irr=pamm_(end,2); 

    if ir==0; 

        y_=y; 
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        x_=x; 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

        yyy=Y-y; 

        y_=y(abs(yyy)<toler); 

        x_=x(abs(yyy)<toler); 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

    else     

        y_=[y(ybw==ir); y(ybw==irr)]; 

        x_=[x(ybw==ir); x(ybw==irr)]; 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

        yyy=Y-y; 

        y_=y(abs(yyy)<toler); 

        x_=x(abs(yyy)<toler); 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

    end 

plot(x,Y,'b*'); grid on 

After the analysis of the iris and of the ciliary processes the analysis of 

iris endings is carried out, using the information originating within the 

sclera boundaries (Fig. 3-31). 

  

Fig. 3-26 A binary image originated 
from the original image after the 

binarisation with a threshold of 90% 
of the maximum value 

Fig. 3-27 A binary image after the 
operation of holes filling with 

approximation lines marked green, 
and the best fit marked blue 

The contour of internal boundary is analysed in a similar way: 

y_1=Y; 

x=linie_12(:,1); 

y=linie_12(:,3); 

ybw=bwlabel(abs([diff(y') 0])<5); 

rzad=3; toler=15; 

P=polyfit(x,y,rzad); pamm=[]; 

    Y=polyval(P,x); 

    yyy=Y-y; 

       if sum( (Y(:)-y_1(:))<0    )==0 
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            pamm=[0 0 sum( abs(yyy)<toler )/length(yyy)]; 

       end 

 for ir=1:(max(ybw)-1) 

    for irr=(ir+1):max(ybw) 

        y_=[y(ybw==ir); y(ybw==irr)]; 

        x_=[x(ybw==ir); x(ybw==irr)]; 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

        yyy=Y-y; 

        if sum( (Y(:)-y_1(:))<0    )==0 

            pamm=[pamm; [ir irr sum( abs(yyy)<toler 

)/length(yyy) ]]; 

        end 

    end 

 end 

if  size(pamm,1)>1 

pamm_=sortrows(pamm,3);  

ir=pamm_(end,1); irr=pamm_(end,2); 

  

    if ir==0; 

        y_=y; 

        x_=x; 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

        yyy=Y-y; 

        y_=y(abs(yyy)<toler); 

        x_=x(abs(yyy)<toler); 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

    else     

        y_=[y(ybw==ir); y(ybw==irr)]; 

        x_=[x(ybw==ir); x(ybw==irr)]; 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

        yyy=Y-y; 

        y_=y(abs(yyy)<toler); 

        x_=x(abs(yyy)<toler); 

        P=polyfit(x_,y_,rzad); 

        Y=polyval(P,x); 

    end 

else 

    x=[]; Y=[];P=[]; 

end 

plot(x,Y,'m*'); grid on 

y_2=Y; 

The results of contour analysis are shown in (Fig. 3-28). The input 

image within approximated boundaries, red – the approximation result 



 

 
 

37 ANALYSIS OF ANTERIOR EYE SEGMENT 

marked blue, and green – the approximation result marked white, 

respectively. 

  

Fig. 3-28  The input image with 
detected boundaries of anterior eye 

segment marked red and green 

Fig. 3-29 OCT image of the anterior 
eye part with marked analysis area 

(red and turquoise) 

The next phases of algorithm operation consist in analysing the area 

situated under the contour marked red in Fig. 3-28. Because of that it is 

necessary to draw a straight line normal to the tangent at each point of 

the contour. The algorithm performing such calculations is shown below, 

while the results in Fig. 3-29 i Fig. 3-30. 

figure; imshow(L33,[]); hold on 

    sf=zeros( [ 1 length(Y) ]  ); sf_=zeros( [ 1 length(Y) 

]  );pole_=zeros([1 length(Y)]); 

    pole_x=zeros([1 length(Y)]);  pole_y=zeros([1 

length(Y)]); 

      p_zn=0; zakres_=40;  

Lwys=zeros([zakres_ length(Y)-1]); 

Lwys_bin=zeros([zakres_ length(Y)-1]); 

L_gridXX=[]; L_gridYY=[]; 

for nb=1:(length(Y)-1) 

     PP=polyfit(x(nb:nb+1),Y(nb:nb+1),1); 

     PP2(2)=x(nb)/PP(1)+Y(nb); 

     PP2(1)=-1/PP(1);  

     if Y(nb)>Y(nb+1) 

        XX=x(nb):1:(x(nb)+zakres_);   

     else    

        XX=x(nb):-1:(x(nb)-zakres_); 

     end 

     YY=polyval(PP2,XX); 

     if  (max(YY)-min(YY))>(zakres_+1) 

         YY=Y(nb):1:(Y(nb)+zakres_); 

         PP3(1)=1/PP2(1); 

         PP3(2)=-PP2(2)/PP2(1); 

         XX=polyval(PP3,YY); 

        plot(XX,YY,'r*'); grid on; hold on 

        XX(round(YY)>size(L2,1))=[];  

YY(round(YY)>size(L2,1))=[]; 
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        YY(round(XX)>size(L2,2))=[];  

XX(round(XX)>size(L2,2))=[]; 

        for vc=1:length(XX);  if 

(round(YY(vc))>0)&(round(XX(vc))>0) ;Lwys(vc,nb)=L2(   

round(YY(vc)), round(XX(vc))  ); Lwys_bin(vc,nb)=L22(   

round(YY(vc)), round(XX(vc))  );   end; end 

        L_gridXX(1:length(XX),nb)=XX; 

L_gridYY(1:length(YY),nb)=YY; 

     else 

        plot(XX,YY,'c*'); grid on; hold on 

        XX(round(YY)>size(L2,1))=[];  

YY(round(YY)>size(L2,1))=[]; 

        YY(round(XX)>size(L2,2))=[];  

XX(round(XX)>size(L2,2))=[]; 

        for vc=1:length(XX);  if 

(round(YY(vc))>0)&(round(XX(vc))>0); Lwys(vc,nb)=L2(   

round(YY(vc)), round(XX(vc))  ); Lwys_bin(vc,nb)=L22(   

round(YY(vc)), round(XX(vc))  ); end; end 

        L_gridXX(1:length(XX),nb)=XX; 

L_gridYY(1:length(YY),nb)=YY; 

     end 

end 

figure; imshow(Lwys,[]); 

 

The image originated from marked area pixels is analysed in the next 

stage of algorithm operation. The area is divided into two equal parts and 

the filtration angle is analysed independently in each of them. This is the 

last common part of algorithm for both angles calculation. 

 

 

Fig. 3-30   The image of separated 
analysed area Lwys 

Fig. 3-31 The diagram of sum of pixel 
brightness values for individual 

columns (XXI,YYI) – red (XXp,YYP) – 
green 
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Lwys_bin=imopen(Lwys_bin,ones(3)); 

Lss=sum(Lwys); 

XX=1:length(Lss); 

YY=Lss; 

Lm=max(Lss(:)); 

XXl=XX(1:round(length(XX)/2)); 

XXp=XX(round(length(XX)/2):end); 

YYl=YY(1:round(length(YY)/2)); 

YYp=YY(round(length(YY)/2):end); 

YYlb=YYl>(Lm/4); 

YYpb=YYp>(Lm/4); 

nr_XXl=1:length(XXl); 

nr_XXp=1:length(XXp); 

XXl_max=nr_XXl(YYl==max(YYl)); 

XXp_max=nr_XXp(YYp==max(YYp)); 

 figure  

plot(XXl,YYl,'-r*'); hold on 

plot(XXp,YYp,'-g*'); grid on 

xlabel('XXl-red, XXp - green') 

ylabel('YYl,YYp') 

The obtained diagram of sum values calculated for individual columns 

is presented in Fig. 3-31. 

An automated finding of the filtration angle vertex and determination 

of the correspondence between contour points (pixels forming the angle 

edges) is one of more difficult fragments of the algorithm operation. This 

analysis was started from automated finding the place on the contour, in 

which a normal to the tangent zakres_=40 long for the first time 

comprises a ciliary process, i.e.: 

YYlb_=bwlabel(YYlb); 

pam_l=[]; 

for ty=1:max(YYlb_) 

    YYt=YYl(YYlb_==ty); 

    XXt=XXl(YYlb_==ty); 

    pam_l=[pam_l; [ty sum(YYt) XXt(end)]]; 

end 

if size(pam_l,1)>0 

    pam_l=pam_l(YYlb_(XXl_max),:); 

    plot(pam_l(1,3),Y(pam_l(1,3)),'rs','MarkerSize',10) 

end 

Further on, having the contour point mentioned, the fragment 

comprising the interesting measured filtration angle is analysed. For the 

filtration angle situated on the left-hand side of the image the algorithm 

has the form: 

xy_g_l=[]; 
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xy_d_l=[]; 

for vv=pam_l(1,3):-1:1 

    pp=Lwys_bin(:,vv); 

    ppl=bwlabel(pp); 

    pam_lab=[]; 

    for jk=1:max(ppl) 

        ppl_=ppl==jk; 

        y_ppl=1:length(ppl_); 

        y_ppl(ppl_==0)=[]; 

        pam_lab=[pam_lab;[vv jk y_ppl(1) sum(ppl_) 

y_ppl(end)]]; 

    end 

    if (size(pam_lab,1)>1)&(pam_lab(1,3)~=1); 

                pam_lab(1,:)=[]; 

pam_lab=sortrows(pam_lab,4);     

            if linie_12(round(L_gridXX(1,vv)),3)< 

L_gridYY(pam_lab(end,3),vv) 

                xy_g_l=[xy_g_l;[L_gridXX(1,vv) 

linie_12(round(L_gridXX(1,vv)),3)]]; 

                xy_d_l=[xy_d_l;[L_gridXX(pam_lab(end,3),vv) 

L_gridYY(pam_lab(end,3),vv) ]];       

            end 

    end 

    if (size(pam_lab,1)==1)&(pam_lab(1,3)~=1);  

            if 

linie_12(round(L_gridXX(1,vv)),3)<L_gridYY(pam_lab(1,3),vv) 

                xy_d_l=[xy_d_l;[L_gridXX(pam_lab(1,3),vv) 

L_gridYY(pam_lab(1,3),vv) ]]; 

                xy_g_l=[xy_g_l;[L_gridXX(1,vv) 

linie_12(round(L_gridXX(1,vv)),3)]];   

            end 

    end 

    if (size(pam_lab,1)==2)&(pam_lab(1,3)==1);  

            if 

L_gridYY(pam_lab(1,5),vv)<L_gridYY(pam_lab(end,3),vv) 

                xy_d_l=[xy_d_l;[L_gridXX(pam_lab(end,3),vv) 

L_gridYY(pam_lab(end,3),vv) ]]; 

                xy_g_l=[xy_g_l;[L_gridXX(pam_lab(1,5),vv) 

L_gridYY(pam_lab(1,5),vv) ]];   

            end 

            pam_lab(1,:)=[];     

    end 

    if (size(pam_lab,1)>2)&(pam_lab(1,3)==1);  

            pam_lab(1,:)=[]; pam_lab=sortrows(pam_lab,4);     

            if 

L_gridYY(pam_lab(1,5),vv)<L_gridYY(pam_lab(end,3),vv) 

                xy_g_l=[xy_g_l;[L_gridXX(pam_lab(1,5),vv) 

L_gridYY(pam_lab(1,5),vv) ]];   

                xy_d_l=[xy_d_l;[L_gridXX(pam_lab(end,3),vv) 

L_gridYY(pam_lab(end,3),vv) ]]; 
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            end 

    end 

    if (size(pam_lab,1)==1)&(pam_lab(1,3)==1) 

        pam_lab=pam_lab(1,1); 

        break 

    end 

end 

hold on; plot(pam_lab,Y(pam_lab),'k*'); hold on; grid on 

if size(xy_g_l)>1 

plot(xy_g_l(:,1),xy_g_l(:,2),'-y*') 

plot(xy_d_l(:,1),xy_d_l(:,2),'-m*') 

for ib=1:size(xy_g_l,1) 

    line([xy_g_l(ib,1) xy_d_l(ib,1)],[xy_g_l(ib,2) 

xy_d_l(ib,2)],'Color','y','LineWidth',1); 

end 

end 

Instead, the algorithm analysing the filtration angle situated on the 

right-hand side of the image is provided below. 

YYpb_=bwlabel(YYpb); 

pam_p=[]; 

for ty=1:max(YYpb_) 

    YYt=YYp(YYpb_==ty); 

    XXt=XXp(YYpb_==ty); 

    pam_p=[pam_p; [ty sum(YYt) XXt(1)]]; 

end 

if size(pam_p,1)>0 

    pam_p=pam_p(YYpb_(XXp_max),:); 

    plot(pam_p(end,3),Y(pam_p(end,3)),'rs','MarkerSize',10) 

end 

xy_g_p=[]; 

xy_d_p=[]; 

for vv=(pam_p(1,3)+1):size(Lwys_bin,2) 

    pp=Lwys_bin(:,vv); 

    ppl=bwlabel(pp); 

    pam_lab=[]; 

    for jk=1:max(ppl) 

        ppl_=ppl==jk; 

        y_ppl=1:length(ppl_); 

        y_ppl(ppl_==0)=[]; 

        pam_lab=[pam_lab;[vv jk y_ppl(1) sum(ppl_) 

y_ppl(end)]]; 

    end 

    if (size(pam_lab,1)>1)&(pam_lab(1,3)~=1);  

                pam_lab(1,:)=[]; 

pam_lab=sortrows(pam_lab,4);     

            if linie_12(round(L_gridXX(1,vv)),3)< 

L_gridYY(pam_lab(end,3),vv) 
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                xy_g_p=[xy_g_p;[L_gridXX(1,vv) 

linie_12(round(L_gridXX(1,vv)),3)]]; 

                xy_d_p=[xy_d_p;[L_gridXX(pam_lab(end,3),vv) 

L_gridYY(pam_lab(end,3),vv) ]];       

            end 

    end 

    if (size(pam_lab,1)==1)&(pam_lab(1,3)~=1);  

            if 

linie_12(round(L_gridXX(1,vv)),3)<L_gridYY(pam_lab(1,3),vv) 

                xy_d_p=[xy_d_p;[L_gridXX(pam_lab(1,3),vv) 

L_gridYY(pam_lab(1,3),vv) ]]; 

                xy_g_p=[xy_g_p;[L_gridXX(1,vv) 

linie_12(round(L_gridXX(1,vv)),3)]];       

            end 

    end 

    if (size(pam_lab,1)==2)&(pam_lab(1,3)==1);  

            if 

L_gridYY(pam_lab(1,5),vv)<L_gridYY(pam_lab(end,3),vv) 

                xy_d_p=[xy_d_p;[L_gridXX(pam_lab(end,3),vv) 

L_gridYY(pam_lab(end,3),vv) ]]; 

                xy_g_p=[xy_g_p;[L_gridXX(pam_lab(1,5),vv) 

L_gridYY(pam_lab(1,5),vv) ]];   

            end 

            pam_lab(1,:)=[];     

    end 

    if (size(pam_lab,1)>2)&(pam_lab(1,3)==1);  

            pam_lab(1,:)=[]; pam_lab=sortrows(pam_lab,4);     

            if 

L_gridYY(pam_lab(1,5),vv)<L_gridYY(pam_lab(end,3),vv) 

                xy_g_p=[xy_g_p;[L_gridXX(pam_lab(1,5),vv) 

L_gridYY(pam_lab(1,5),vv) ]];   

                xy_d_p=[xy_d_p;[L_gridXX(pam_lab(end,3),vv) 

L_gridYY(pam_lab(end,3),vv) ]]; 

            end 

    end 

    if (size(pam_lab,1)==1)&(pam_lab(1,3)==1) 

        pam_lab 

        pam_lab=pam_lab(1,1); 

        disp('kuku') 

        break 

    end 

  

end 

hold on; plot(pam_lab,Y(pam_lab),'k*'); hold on; grid on 

if size(xy_g_p)>1 

plot(xy_g_p(:,1),xy_g_p(:,2),'-y*') 

plot(xy_d_p(:,1),xy_d_p(:,2),'-m*') 

for ib=1:size(xy_g_p,1) 

    line([xy_g_p(ib,1) xy_d_p(ib,1)],[xy_g_p(ib,2) 

xy_d_p(ib,2)],'Color','y','LineWidth',1); 
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end 

end 

Based on the presented algorithm fragment it is possible to analyse 

automatically the filtration angle determined by the yellow and turquoise 

lines  

  

Fig. 3-32  The result of algorithm 
fragment automatically determining 
the walls contours (yellow and red) 
necessary to calculate the filtration 

angle – left-hand side 

Fig. 3-33  The result of algorithm 
fragment automatically determining 
the walls contours (yellow and red) 
necessary to calculate the filtration 

angle – right-hand side 

The filtration angle calculated traditionally as the angle between 

tangents formed from the edge lines (yellow and red colour - Fig. 3-33) 

may be implemented as follows: 

PPgl=polyfit(xy_g_l(:,1),xy_g_l(:,2),1); 

PPdl=polyfit(xy_d_l(:,1),xy_d_l(:,2),1); 

PPgp=polyfit(xy_g_p(:,1),xy_g_p(:,2),1); 

PPdp=polyfit(xy_d_p(:,1),xy_d_p(:,2),1); 

  

x=1:size(L33,2);  

y=polyval(PPgl,x); plot(x,y,'r*') 

y=polyval(PPdl,x); plot(x,y,'g*') 

y=polyval(PPgp,x); plot(x,y,'b*') 

y=polyval(PPdp,x); plot(x,y,'y*') 

al=atan(PPdl(1))*180/pi-atan(PPgl(1))*180/pi; 

ap=atan(PPgp(1))*180/pi-atan(PPdp(1))*180/pi; 

al=round(al*10)/10; 

ap=round(ap*10)/10; 

title(['Left - ',mat2str(al),'^o', '     Right - 

',mat2str(ap),'^o']) 

As a result, we obtain the filtration angle value calculated traditionally 

– these are values in al and ap variables. 
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Fig. 3-34  The result of algorithm 
operation, where the inclination 
angle of straight lines relative to 
each other for the right and left 
filtration angle is the measured 

value 

Fig. 3-35  Fragments selected from 
Fig. 3-34 

Based on the algorithm, presented above, for the inter-sclera analysis 

it is possible to estimate the position of filtration angles and to calculate 

AOD, TISA and TIA values during approx. 3 s/image on a computer 

with a 64-bit operating system, Intel Core Quad CPU 2.5 GHz processor, 

2GB RAM (Fig. 3-36). 

Left - 51o     Right - 56.2o

Left - 51o     Right - 56.2o

Left - 51o     Right - 56.2o
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Fig. 3-36  Algorithm operation time for consecutive images calculated on a 
computer with a 64-bit operating system, Intel Core Quad CPU 2.5 GHz 

processor, 2GB RAM 

AOD, TISA and TIA methods have drawbacks consisting in 

difficulties to cope with a large degree of pathology. Such situations 

occur in the case of partial narrowing of the filtration angle. Therefore 

the analysis of distances between appropriate points has been suggested 

in accordance with Fig. 3-38 using the previous calculations. 

dist_l=[]; 

for ib=1:size(xy_g_l,1) 

    r_x=xy_g_l(ib,1) - xy_d_l(ib,1); 

    r_y=xy_g_l(ib,2) - xy_d_l(ib,2); 

    dist_l(ib,1:2)=[ib sqrt( (r_x).^2  +  (r_y).^2  )]; 

end 

dist_p=[]; 

for ib=1:size(xy_g_p,1) 

    r_x=xy_g_p(ib,1) - xy_d_p(ib,1); 

    r_y=xy_g_p(ib,2) - xy_d_p(ib,2); 

    dist_p(ib,1:2)=[ib sqrt( (r_x).^2  +  (r_y).^2  )]; 

end 

figure; plot(dist_l(:,1), dist_l(:,2),'-r*'); hold on 

plot(dist_p(:,1), dist_p(:,2),'-g*'); grid on 
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The graph obtained using the above fragment of the algorithm is 

shown below. 

 

Fig. 3-37  Result of distance measurement at the filtration angle 
measurement 

The following images show examples of results obtained for other 

patients.  

  

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

ib

d
is

t  l 
- 

re
d
, 

 d
is

t  p
 -

 g
re

e
n



 

 
 

47 ANALYSIS OF ANTERIOR EYE SEGMENT 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-38  Result of operation of 
algorithm for automated filtration angle 

measurement 

Fig. 3-39  Result of operation of 
algorithm for automated 

filtration angle measurement 
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The results obtained for the authors‟ method show it copes much 

better with large degrees of pathology, which is confirmed by the graph 

of distance changes shown in Fig. 3-39. 

3.6.1 Advantages of the Algorithm Proposed 

An automated analysis of anterior eye segment allows obtaining 

reliable results during a period of time not longer than 3.5 s. The 

assessment of algorithm sensitivity to parameter changes, and in 

particular - to 

 The area of iridocorneal angle searching shows the largest dependence 

on the width of the iris searching area for pathological cases, 

 For 70,736 images correct results were obtained for around 55,000 

cases. An approximate result indicating the number of properly 

measured cases results from the difficulties in the assessing and 

suggesting how the algorithm should properly respond, 

 The greatest measurement error, excluding the impact of method 

errors and its sensitivity, occurred for AOD and TIA methods, 

 On the basis of experience gained in the measurement of the filtration 

angle an own authors’ measurement method has been suggested.  

Summarising this section it is necessary to emphasise the fact that the 

presented Matlab source code does not exhaust the issue. It is short of 

both protections, e.g. related to the detection of proper position of 

filtration angles and also of preliminary analysis of the analysed object 

position on the scene (Results for path_name= 

'd:/OCT/SOURCES/1.DCM' - Fig. 3-40 and Fig. 3-41). 

  

Fig. 3-40  Result of erroneous operation 
of algorithm automatically determining 

the filtration angle (yellow) 

Fig. 3-41  Enlarged fragment 
from Fig. 3-40. 
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In this place we encourage the Readers to create on their own such 

simple safeguards in the algorithm. Readers can also optimise the graph 

(Fig. 3-39.) to useful values. These are such parameters, which will allow 

rough approximation of graph Fig. 3-39. These situations apply to cases 

presented in (Fig. 3-42). 

ib

ib ib
ib

 

Fig. 3-42  Demonstrative figure showing filtration angles and problems 
with describing the results obtained using the algorithm presented 

A description of pathological cases of filtration angle prevails here, 

such, for which there are cases of local narrowing or local closure of the 

angle (Fig. 3-42). The notation, which a Reader can suggest, must consist 

of a few digits (symbols) automatically determined from the graph, 

Fig. 3-39. For example, the alphabet created may look as follows:  

- symbols: 

 / - increasing distance for consecutive id-s, 

 ^ - local minimum, 

 v – local maximum,  

 _ - invariable value of distance for a changing id. 

- numerical parameters: 

 - angular value, 

  - maximum, minimum or constant distance for defined id-s, 

 - id range, in which a specific situation does not occur. 

For example, the notation _80,100 /30 consists of two symbols “_” 

and “/”, where according to the interpretation adopted the former stands 

for a narrowing, a slit, in the filtration angle of dist = 80 value in the 

range id = 100 um and the latter – a typical angle of 30° (corresponding 

to the state from the second image in Fig. 3-42). 
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3.7 Determination of Anterior Chamber Volume Based 

on a Series of Images 

The analysis of anterior chamber (Fig. 3-43) is based on contours of 

boundaries determined in the previous section and presented in Fig. 3-27. 

They were determined on images performed at preset angles acc. to 

(Fig. 3-44). 

ANTERIOR CHAMBER

 

Fig. 3-43  Anterior chamber position in eye cross-section 

 

A

B C

D

  

Fig. 3-44  Arrangement of 
individual eye scans. 

Fig. 3-45  Contours of external 
boundary of sclera on scans A and 

B (Fig. 3-43) ) in a Cartesian 
coordinate system 
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To simplify the notation, let us further assume that the function 

determining necessary contours and the filtration angle will be defined 

as:  

[Ls,L22,xy_g_l, xy_d_l, xy_g_p, 

xy_d_p,linie_12]=OCT_angle_line(Ls); 

where the OCT image is an input parameter and at the output we 

obtain, in accordance with the previous section: 

 xy_d_l coordinates x and y of the filtration angle, left hand lower 

contour,  

 xy_g_l coordinates x and y of the filtration angle, left hand upper 

contour,  

 xy_d_p coordinates x and y of the filtration angle, right hand lower 

contour,  

 xy_g_p coordinates x and y of the filtration angle, right hand upper 

contour,  

 linie_12 contour lines. 

To obtain the result presented in Fig. 3-34 using the function defined 

this way, it is necessary to write: 

path_name='d:/OCT/SOURCES/3.DCM'; 
fid = fopen(path_name, 'r'); 
dataa = fread(fid,'uint8');  
fclose(fid); 
[header_dicom,Ls]=OCT_head_read(dataa); 
[Ls,L22,xy_g_l, xy_d_l, xy_g_p, 

xy_d_p,linie_12]=OCT_angle_line(Ls); 
figure; imshow(Ls,[]); hold on 
PPgl=polyfit(xy_g_l(:,1),xy_g_l(:,2),1); 
PPdl=polyfit(xy_d_l(:,1),xy_d_l(:,2),1); 
PPgp=polyfit(xy_g_p(:,1),xy_g_p(:,2),1); 
PPdp=polyfit(xy_d_p(:,1),xy_d_p(:,2),1); 
x=1:size(Ls,2);  
y=polyval(PPgl,x); plot(x,y,'r*') 
y=polyval(PPdl,x); plot(x,y,'g*') 
y=polyval(PPgp,x); plot(x,y,'b*') 
y=polyval(PPdp,x); plot(x,y,'y*') 
al=atan(PPdl(1))*180/pi-atan(PPgl(1))*180/pi; 
ap=atan(PPgp(1))*180/pi-atan(PPdp(1))*180/pi; 
al=round(al*10)/10; 
ap=round(ap*10)/10; 
title(['Left - ',mat2str(al),'^o', '     Right - 

',mat2str(ap),'^o']) 
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The basic difficulty in an attempt to calculate the volume of anterior 

eye chamber is a correct determination of sclera boundaries and selection 

of appropriate method for approximation of intermediate spaces 

(Fig. 3-44), existing between scans A-B, B-C, C-D, D-A.  

A method, preliminary consisting in creating the contour of internal 

and external sclera boundary, adjusted by the filtration angle boundaries, 

has been presented below, i.e.: 

linie_m_x=[flipud(xy_d_l(:,1))',xy_d_l(1,1):xy_d_p(1,1) , 

xy_d_p(:,1)']; 

linie_m_y=[flipud(xy_d_l(:,2))',linspace(xy_d_l(1,2),xy_d_p

(1,2),length(xy_d_l(1,1):xy_d_p(1,1) )) , xy_d_p(:,2)']; 

plot(linie_m_x,linie_m_y,'-c*') 

The obtained boundary is shown in Fig. 3-46 and Fig. 3-47. 

  

Fig. 3-46  Determined boundary 
after correction with the values of 

filtration angle boundary 

Fig. 3-47  Enlarged fragment from 
Fig. 3-46 

As visible in the image presented (Fig. 3-46 i Fig. 3-47) the contour 

marked with a turquoise line is not drawn in a perfect way. The 

correction consists in using the method of modified active contour 

(Fig. 3-48). 

 

Fig. 3-48  Demonstrative figure showing the idea of straight line (red) 
dragging to the lens contour 

Left - 51o     Right - 56.2o
Left - 51o     Right - 56.2o
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The method of modified active contour consists in maximisation of 

external – internal energy FZW. This energy is calculated as the difference 

between average values of pixels brightness inside and outside the 

declared area. In a general case the calculations start from the 

determination of characteristic points wi (w1, w2,…, wk-1, wk, 

wk+1,…,wK).  

For each determined point wk a straight line is drawn, perpendicular to 

adjacent points and passing the point considered. For example, for point 

wk a straight line is drawn passing through it and perpendicular to the 

straight line connecting points wk-1, wk+1. In the next stage the outside 

and inside areas are defined and weights for individual pixels are 

determined. In the simplest case this is the average value of brightness at 

weights of individual pixels calculated as 1. Any shape of inside and 

outside area may be chosen, however, a rectangular area is most often 

used - Fig. 3-49.  
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Fig. 3-49 Demonstrative diagram of pixels arrangement in the analysis of 
operation of the modified active contour method and examples of analysis 

area 

If we assume, in accordance with the nomenclature from Fig. 3-49 Lu 

as an outside area, Ld as an inside area and their dimensions in the sense 

of the number of rows and columns in a rectangular case as 

pyd x (pxl+pxp+1) and pyu x (pxl+pxp+1) then the matrix of differences may 

be written as follows: 
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where S is the difference in average values of Lu and Ld areas, i.e.: 
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(6) 

pyu - number of rows Lu, 

pyd - number of rows Ld, 

pu - range of movement and areas of the pixel Lu i Ld top, 

pd - range of movement and areas of the pixel Lu i Ld down, 

pxl - number of columns on the left part of the analyzed pixel, 

pxp - number of columns on the left part of the analyzed piel, 

ply - distance in the axis oy with yRPEC, 

pxud - distance between neighboring pixels in the axis oy. 

In the next stage elements are sorted separately for each column of 

matrix S. As a result we obtain, for example: 
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Fig. 3-50 Demonstrative figure of the method for selecting the optimum 
path 

sort(S) is the basis to determine the target new position of pixels. The 

analysis of searching for the best solution is close to a problem of path 

seeking at the criterion of maximising the difference in the average 

values and minimising the difference in adjacent pixels positions. As 

against the latter ones, a coefficient pxud has been suggested, defined as a 

permissible difference in the position on the oy axis of pixels 

neighbouring in consecutive positions on the ox axis.  Fig. 3-50 shows 

the selection of optimum path for pxud=0 – red colour, pxud=1 – black 

colour and pxud=2 – blue colour. Let us assume that we consider the case 

for pxud=2.  

Starting from the point of coordinates (1,1) we obtain positions of the 

next pixels (-1,2), because |-1-1|<= pxud, then (-1,3), (-2,4), (-2,5) and (-

4,6). While selecting the next points we should consider two elements: 

permissible change of the location on the ox axis defined by parameter 

pxud and the position of the largest values (the higher is a full element in 

the column, the better). 

Reducing the value of pxud we obtain smaller differences on the oy 

axis between consecutive pixels, at a cost of increased error of contour 

fit. Instead, increasing the value of pxud we allow a possibility of greater 

fluctuation of neighbouring pixels on the oy axis, obtaining this way 

more precise representation of the contour. Looking at the matrix sort(S) 

it is possible to notice a trend of finding the highest situated path for 

consecutive columns; this feature has been used in a practical 

implementation, i.e. in the function OCT_activ_cont 
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function 

[yy,i]=OCT_activ_cont(L1,x,y,pud,pyud,pxud,pxlp,polaryzacja

) 

x=x(:); 

y=y(:); 

pam_grd=[]; 

pam_num=[]; 

if polaryzacja==1 

for i=1:size(x,1) 

    gr_gd=[]; 

    for j=-pud:pud 

        wgp=(y(i)-pyud+j); 

        wgk=(y(i)+j); 

        kgp=(x(i)-pxlp); 

        kgk=(x(i)+pxlp); 

        wdp=(y(i)+j); 

        wdk=(y(i)+pyud+j); 

        kdp=(x(i)-pxlp); 

        kdk=(x(i)+pxlp); 

        if wgp<=0; wgp=1; end 

        if wdp<=0; wdp=1; end 

        if wgk>size(L1,1); wgk=size(L1,1); end 

        if wdk>size(L1,1); wdk=size(L1,1); end 

        if kgp<=0; kgp=1; end 

        if kdp<=0; kdp=1; end 

        if kgk>size(L1,2); kgk=size(L1,2); end 

        if kdk>size(L1,2); kdk=size(L1,2); end 

       Lu=L1(wgp:wgk,kgp:kgk); 

       Ld=L1(wdp:wdk,kdp:kdk); 

       gr_gd=[gr_gd;mean(Lu(:))-mean(Ld(:))]; 

    end 

    pam_grd=[pam_grd,gr_gd]; 

    gr_num=[gr_gd,( (y(i)-pud) : (y(i)+pud) )']; 

    gr_num=sortrows(gr_num,1); 

    pam_num=[pam_num,gr_num(:,2)]; 

end 

  

  

elseif polaryzacja==-1 

     

for i=1:size(x,1) 

    gr_gd=[]; 

    for j=-pud:pud 

        wgp=(y(i)-pyud+j); 

        wgk=(y(i)+j); 

        kgp=(x(i)-pxlp); 

        kgk=(x(i)+pxlp); 

        wdp=(y(i)+j); 

        wdk=(y(i)+pyud+j); 

        kdp=(x(i)-pxlp); 
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        kdk=(x(i)+pxlp); 

        if wgp<=0; wgp=1; end 

        if wdp<=0; wdp=1; end 

        if wgk>size(L1,1); wgk=size(L1,1); end 

        if wdk>size(L1,1); wdk=size(L1,1); end 

        if kgp<=0; kgp=1; end 

        if kdp<=0; kdp=1; end 

        if kgk>size(L1,2); kgk=size(L1,2); end 

        if kdk>size(L1,2); kdk=size(L1,2); end 

       Lu=L1(wgp:wgk,kgp:kgk); 

       Ld=L1(wdp:wdk,kdp:kdk); 

       gr_gd=[gr_gd;mean(Ld(:))-mean(Lu(:))]; 

    end 

    pam_grd=[pam_grd,gr_gd]; 

    gr_num=[gr_gd,( (y(i)-pud) : (y(i)+pud) )']; 

    gr_num=sortrows(gr_num,1); 

    pam_num=[pam_num,gr_num(:,2)]; 

end 

     

else 

    disp('polaryzation ?') 

end     

i_hh=[]; 

for hh=1:7 

i=ones([1 size(pam_num,2)]); 

i(1)=hh; 

j=1; 

while (j+1)<size(pam_num,2) 

    if abs(pam_num(i(j),j)-pam_num(i(j+1),j+1))<pxud 

            j=j+1; 

    else 

            if i(j+1)<size(pam_num,1) 

                i(j+1)=i(j+1)+1;             

            else 

                i(j+1)=i(j); 

                j=j+1;             

            end 

    end 

end 

i_hh=[i_hh;i]; 

end 

[d_,smiec]=find(sum(i_hh,2)==min(sum(i_hh,2))); 

i=i_hh(d_(1),:); 

  

yy=y; 

for i__=1:length(i) 

    yy(i__)=pam_num( i(i__),i__); 

end 
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The input arguments for the functions are:  

L1 – input image, 

x – position of input points on the ox axis, 

y – position of input points on the oy axis, 

polarisation – parameter responsible for a feature of searched contour, 

“1” stands for a white object against a dark background, while value of 

“-1” – the opposite situation. 

As a result, new coordinates on the oy axis are obtained. The 

presented implementation of modified active contour function has many 

limitations and assumptions made, related for instance to making an 

assumption that the contour searched for is situated horizontally. 

However, the function presented has very interesting properties 

depending on the parameters adopted. These properties will be the 

subject of further considerations in one of the next sections. Using the 

function as follows: 

pud=10; 

pyud=10; 

pxud=2; 

pxlp=10; 

polaryzacja=1; 

[yy,i]=OCT_activ_cont(mat2gray(Ls),linie_m_x,linie_m_y,pud, 

pyud,pxud, pxlp,  polaryzacja); 

plot(linie_m_x,yy,'-w*') 

linie_12(:,2)=medfilt2(linie_12(:,2),[15 1]); 

linie_12(:,3)=medfilt2(linie_12(:,3),[15 1]); 

linie_mm_x=[flipud(xy_g_l(:,1)); linie_12(   

(linie_12(:,1)>xy_g_l(1,1)) & (linie_12(:,1)<xy_g_p(1,1))  

,1) ; xy_g_p(:,1)];  

linie_mm_y=[flipud(xy_g_l(:,2)); linie_12(   

(linie_12(:,1)>xy_g_l(1,1)) & (linie_12(:,1)<xy_g_p(1,1))  

,3) ; xy_g_p(:,2)];  

plot(linie_mm_x,linie_mm_y,'-w*') 

We obtain the results presented in Fig. 3-51. The determined 

boundaries, marked white, have been obtained using the function 
OCT_activ_cont 
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Fig. 3-51 Determined boundaries 
marked white, using the function 

OCT_activ_cont 

Fig. 3-52  Determined boundaries 
marked white, using the function 

OCT_activ_cont 

Fig. 3-52 shows determined boundaries, marked white, obtained using 

the function OCT_activ_cont and connected corresponding points 

are marked with turquoise lines. 
To prepare the final fragment of the algorithm for anterior chamber 

volume calculation it is necessary to connect the lines and to allocate 

correspondence to individual points, which is a simple procedure, i.e.: 

if length(linie_m_x)>=length(linie_mm_x) 

    for ht=1:length(linie_mm_x) 

        linie_r=sortrows ([ abs(linie_m_x'-

linie_mm_x(ht)),linie_m_x',linie_m_y' ]); 

        line([linie_r(1,2) linie_mm_x(ht)],[linie_r(1,3) 

linie_mm_y(ht)]); 

    end 

else 

    for ht=1:length(linie_m_x) 

        linie_r=sortrows ([ abs(linie_mm_x-

linie_m_x(ht)),linie_mm_x,linie_mm_y ]); 

        line([linie_r(1,2) linie_m_x(ht)],[linie_r(1,3) 

linie_m_y(ht)]); 

    end 

end 

The above stage of inside boundaries determination on a single OCT 

image is a compact whole, which has been located in the function 

OCT_edge_inside returning values of boundaries contour line 

coordinates, i.e.: 

[linie_m_x1,linie_m_y1,linie_121,linie_mm_x1,linie_mm_y1]=O

CT_edge_inside(Ls); 

The last stage of the algorithm presented consists of calculation of 

anterior chamber volume on the basis of reconstruction presented. There 

are many practical methods used in such calculations.  



 

 
 

60 Determination of Anterior Chamber Volume Based on a Series of Images 

The first group of methods is based on the definition for calculation 

of solid of revolution volume formed as a result of function f(x) 

revolution around axis ox and using the formula for volume V: 

 

    
  

  

           (7) 

 

In this case there is a difficulty in defining the analytical shape of 

function f(x). Instead, accuracies obtained using this method are very 

high.  

The second method consists in the calculation of average value V, 

calculated from revolutions of contour solid for each image. This method 

features lower accuracy, however, the results are obtained pretty quickly.  

The third group of methods is based on the calculation of a sum of 

binary images pixels of image sequence originated on the xyo axis. This 

method is accurate and fast, but only in the case of discrete structures – 

3D matrices existence. Unfortunately in this case the necessary 

conversion to 3D matrices causes an unnecessary increase in the 

algorithm computational complexity.  

The fourth method consists of two stages:  

 digitisation of anterior chamber 3D contour calculations, 

 summing up spherical sectors formed from consecutive points of the 

wall, i.e.: 

   
  

   
  

     

 
    

(8) 

which after simple transformations for constant values =3.6° gives: 

           (9) 

The fifth method (practically implemented) consists in counting the 

areas of unit triangles formed by vertices (x1,y1,z1), (x2,y2,z2), (x3,y3,z3), 

(x4,y4,z4). By definition x1=x2=x3=x4 have been ensured for consecutive 

iterations, for which there is a unit increment in the value on the ox axis. 

The Pole (Area) variable contains the result of summing up areas of 

calculated triangles located on the oyz axis for x values featuring unit 

increments. The basic relationship for a triangle area has been used here, 

i.e.  
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(10) 
 

A demonstrative figure is shown below, presenting the methodology 

adopted in the algorithm and designed to calculate the anterior chamber 

value based on the partial areas sum. 

 

 

Fig. 3-53 Contour lines, based on 
which vertices of triangles analysed 

have been formed 

Fig. 3-54 Arrangement of triangle 
vertices (x1,y1,z1), (x2,y2,z2), 

(x3,y3,z3), (x4,y4,z4) 

To perform a practical implementation of one of the methods for 

anterior chamber volume calculation first it is necessary to use the 

function OCT_edge_inside returning the values of contour boundary 

lines to two OCT images made at an angle of 90°: 

path_name='d:/OCT/SOURCES/3.DCM'; 
fid = fopen(path_name, 'r'); 
dataa = fread(fid,'uint8');  
fclose(fid); 
[header_dicom,Ls1]=OCT_head_read(dataa); 
[linie_m_x1,linie_m_y1,linie_121,linie_mm_x1,linie_mm_y1

]=OCT_edge_inside(Ls1); 
path_name='d:/OCT/SOURCES/3.DCM'; 
fid = fopen(path_name, 'r'); 
dataa = fread(fid,'uint8');  
fclose(fid); 
[header_dicom,Ls2]=OCT_head_read(dataa); 
[linie_m_x2,linie_m_y2,linie_122,linie_mm_x2,linie_mm_y2

]=OCT_edge_inside(Ls2); 

In the results obtained it is necessary to modify the sequence of points 

coordinates occurrence, i.e.: 

xa1=[linie_mm_x1(end:-1:1)]; 
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xa2=[linie_mm_x2(end:-1:1)]; 

za1=[linie_mm_y1(end:-1:1)]; 

za2=[ linie_mm_y2(end:-1:1)]; 

Then, if we assume, that the apparatus axis is in the middle of 

coordinates correction image, i.e.: 

mm1=median(xa1); 

mm2=median(xa2); 

xa1=xa1-median(xa1); 

xa2=xa2-median(xa2); 

ya1=zeros(size(za1)); 

ya2=zeros(size(za2)); 

In the next stage, in the case of both images situated against each other 

at an angle of 90°, an appropriate correction, i.e.: 

 [THETAa,RHOa,Za] = cart2sph(xa1,ya1,za1); 

THETAa=THETAa+90*pi/180; 

[xa1,ya1,za1] = sph2cart(THETAa,RHOa,Za); 

The division, necessary to carry out further steps of the algorithm, into 

the left and right part looks as follows: 

xa1_a=xa1(ya1<=0); 

xa1_b=xa1(ya1>0); 

ya1_a=ya1(ya1<=0); 

ya1_b=ya1(ya1>0); 

za1_a=za1(ya1<=0); 

za1_b=za1(ya1>0); 

xa2_a=xa2(xa2<=0); 

xa2_b=xa2(xa2>0); 

ya2_a=ya2(xa2<=0); 

ya2_b=ya2(xa2>0); 

za2_a=za2(xa2<=0); 

za2_b=za2(xa2>0); 

figure 

plot3(xa1_a,ya1_a,za1_a,'-r*'); grid on; hold on 

plot3(xa1_b,ya1_b,za1_b,'-g*'); 

plot3(xa2_a,ya2_a,za2_a,'-b*'); 

plot3(xa2_b,ya2_b,za2_b,'-m*'); 

xlabel('x','FontSize',20); ylabel('y','FontSize',20); 

zlabel('z','FontSize',20) 

The result obtained is presented in Fig. 3-55. 
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Fig. 3-55 Determined boundaries 
xa1_a,ya1_a,za1_a, 

xa1_b,ya1_b,za1_b 

xa2_a,ya2_a,za2_a, 

xa2_b,ya2_b,za2_b, marked in 

colours 

Fig. 3-56  Figure after 
reconstruction 

For further calculations it turns out necessary to unify the number of 

elements existing for each of 4 edges visible in Fig. 3-55 as follows: 

s_m=max([length(xa1_a), length(xa1_b), length(xa2_a), 

length(xa2_b)]); 

xa1_aa=[]; xa1_bb=[]; 

ya1_aa=[]; ya1_bb=[]; 

za1_aa=[]; za1_bb=[]; 

xa2_aa=[]; xa2_bb=[]; 

ya2_aa=[]; ya2_bb=[]; 

za2_aa=[]; za2_bb=[]; 

for it=1:s_m 

    xa1_aa(it)=xa1_a( round( (length(xa1_a)/s_m) *it));  

    xa1_bb(it)=xa1_b( round( (length(xa1_b)/s_m) *it)); 

    ya1_aa(it)=ya1_a( round( (length(ya1_a)/s_m) *it)); 

    ya1_bb(it)=ya1_b( round( (length(ya1_b)/s_m) *it)); 

    za1_aa(it)=za1_a( round( (length(za1_a)/s_m) *it)); 

    za1_bb(it)=za1_b( round( (length(za1_b)/s_m) *it)); 

  

    xa2_aa(it)=xa2_a( round( (length(xa2_a)/s_m) *it)); 

    xa2_bb(it)=xa2_b( round( (length(xa2_b)/s_m) *it)); 

    ya2_aa(it)=ya2_a( round( (length(ya2_a)/s_m) *it)); 

    ya2_bb(it)=ya2_b( round( (length(ya2_b)/s_m) *it)); 

    za2_aa(it)=za2_a( round( (length(za2_a)/s_m) *it)); 

    za2_bb(it)=za2_b( round( (length(za2_b)/s_m) *it)); 

end 

plot3(xa1_aa,ya1_aa,za1_aa,'-w*'); grid on; hold on 

plot3(xa1_bb,ya1_bb,za1_bb,'-w*'); 

plot3(xa2_aa,ya2_aa,za2_aa,'-w*'); 
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plot3(xa2_bb,ya2_bb,za2_bb,'-w*'); 

The spline function is the basis for missing points reconstruction. 

Function spline returns the piecewise polynomial form of the cubic spline 

interpolan. For values xa1_aa,ya1_aa,za1_aa etc. unified in such a 

way, the following notation using the spline function has been 

introduced: 

xc=[]; yc=[]; zc=[];  

pam_p=[]; 

for i=1:s_m 

        xi = pi*[0:.5:2];  

        xyzi = [xa1_aa(end-i+1),  xa2_aa(end-

i+1),xa1_bb(i), xa2_bb(i) xa1_a(end-i+1); 

                ya1_aa(end-i+1),  ya2_aa(end-

i+1),ya1_bb(i), ya2_bb(i) ya1_aa(end-i+1); 

                za1_aa(end-i+1),  za2_aa(end-

i+1),za1_bb(i),  za2_bb(i) za1_aa(end-i+1)]; 

        pp = spline(xi,xyzi); 

        xyz_ = ppval(pp, linspace(0,2*pi,101)); 

        plot3(xyz_(1,:),xyz_(2,:),xyz_(3,:),'-*b') 

        xc=[xc,xyz_(1,:)']; 

        yc=[yc,xyz_(2,:)'];  

        zc=[zc,xyz_(3,:)'];  

end 

The result obtained is presented in Fig. 3-56. 

After calculations using the spline function the next stage comprises 

calculation of anterior chamber volume, i.e.: 

xc=round(xc); yc=round(yc); zc=round(zc); 

Objetosc=0; 

min_x=min(min(xc))-1; 

for iuu=1:(size(xc,2)-1) 

for iu=1:49 

        xq=[]; yq=[]; zq=[]; 

         

        xq1=linspace( xc(iu,iuu),xc(end-

iu,iuu),abs(xc(iu,iuu)-xc(end-iu,iuu)) ); 

        xq(1,(xc(iu,iuu)-min_x):(xc(iu,iuu)-

min_x+length(xq1)-1))=xq1; 

         

        yq1=linspace( yc(iu,iuu),yc(end-

iu,iuu),abs(xc(iu,iuu)-xc(end-iu,iuu)) ); 

        yq(1,(xc(iu,iuu)-min_x):(xc(iu,iuu)-

min_x+length(yq1)-1))=yq1; 

        zq1=linspace( zc(iu,iuu),zc(end-

iu,iuu),abs(xc(iu,iuu)-xc(end-iu,iuu)) ); 

        zq(1,(xc(iu,iuu)-min_x):(xc(iu,iuu)-

min_x+length(zq1)-1))=zq1; 
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        xq2=linspace( xc(iu,iuu+1),xc(end-

iu,iuu+1),abs(xc(iu,iuu+1)-xc(end-iu,iuu+1)) ); 

        xq(2,(xc(iu,iuu+1)-min_x):(xc(iu,iuu+1)-

min_x+length(xq2)-1))=xq2; 

        yq2=linspace( yc(iu,iuu+1),yc(end-

iu,iuu+1),abs(xc(iu,iuu+1)-xc(end-iu,iuu+1)) ); 

        yq(2,(xc(iu,iuu+1)-min_x):(xc(iu,iuu+1)-

min_x+length(yq2)-1))=yq2; 

        zq2=linspace( zc(iu,iuu+1),zc(end-

iu,iuu+1),abs(xc(iu,iuu+1)-xc(end-iu,iuu+1)) );       

        zq(2,(xc(iu,iuu+1)-min_x):(xc(iu,iuu+1)-

min_x+length(zq2)-1))=zq2; 

        xq3=linspace( xc(iu+1,iuu),xc(end-

iu+1,iuu),abs(xc(iu+1,iuu)-xc(end-iu+1,iuu)) ); 

        xq(3,(xc(iu+1,iuu)-min_x):(xc(iu+1,iuu)-

min_x+length(xq3)-1))=xq3; 

        yq3=linspace( yc(iu+1,iuu),yc(end-

iu+1,iuu),abs(xc(iu+1,iuu)-xc(end-iu+1,iuu)) ); 

        yq(3,(xc(iu+1,iuu)-min_x):(xc(iu+1,iuu)-

min_x+length(yq3)-1))=yq3; 

        zq3=linspace( zc(iu+1,iuu),zc(end-

iu+1,iuu),abs(xc(iu+1,iuu)-xc(end-iu+1,iuu)) ); 

        zq(3,(xc(iu+1,iuu)-min_x):(xc(iu+1,iuu)-

min_x+length(zq3)-1))=zq3; 

        xq4=linspace( xc(iu+1,iuu+1),xc(end-

iu+1,iuu+1),abs(xc(iu+1,iuu+1)-xc(end-iu+1,iuu+1)) ); 

        xq(4,(xc(iu+1,iuu+1)-min_x):(xc(iu+1,iuu+1)-

min_x+length(xq4)-1))=xq4; 

        yq4=linspace( yc(iu+1,iuu+1),yc(end-

iu+1,iuu+1),abs(xc(iu+1,iuu+1)-xc(end-iu+1,iuu+1)) ); 

        yq(4,(xc(iu+1,iuu+1)-min_x):(xc(iu+1,iuu+1)-

min_x+length(yq4)-1))=yq4; 

        zq4=linspace( zc(iu+1,iuu+1),zc(end-

iu+1,iuu+1),abs(xc(iu+1,iuu+1)-xc(end-iu+1,iuu+1)) );       

        zq(4,(xc(iu+1,iuu+1)-min_x):(xc(iu+1,iuu+1)-

min_x+length(zq4)-1))=zq4; 

         plot3(xq1,yq1,zq1,'r*');  

        for tu=1:size(xq,2) 

            if sum(xq(:,tu)~=0)==4  

                    Objetosc=Objetosc+0.5*... 

                        abs(det([yq(1,tu) zq(1,tu) 1; 

yq(2,tu) zq(2,tu) 1; yq(3,tu) zq(3,tu) 1]))... 

                        +0.5*... 

                        abs(det([yq(2,tu) zq(2,tu) 1; 

yq(3,tu) zq(3,tu) 1; yq(4,tu) zq(4,tu) 1])); 

            end 

        end 

end 

end 

Objetosc 
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We obtain the result for the anterior chamber expressed in pixels, 

shown in (Fig. 3-57): 

Objetosc = 

 

  2.7584e+006 

  

Fig. 3-57 Anterior chamber with 
calculated volume marked red. 

Fig. 3-58  Anterior chamber with 
calculated volume marked in a 

form of blue envelope. 

Fig. 3-58 presents the outside envelope of the measured volume, i.e.: 

figure 

fd=surf(xc,yc,zc,'FaceColor',[0 0 1],... 

'EdgeColor','none',... 

'FaceLighting','phong') 

daspect([5 5 1]) 

view(-50,30) 

camlight lef 

set(fd,'FaceAlpha',.5) 

hold on 

plot3(xa1_aa,ya1_aa,za1_aa,'-w*'); grid on; hold on 

plot3(xa1_bb,ya1_bb,za1_bb,'-w*'); 

plot3(xa2_aa,ya2_aa,za2_aa,'-w*'); 

plot3(xa2_bb,ya2_bb,za2_bb,'-w*'); 

axis equal 

xlabel('x','FontSize',20); ylabel('y','FontSize',20); 

zlabel('z','FontSize',20) 

To confirm visual correctness of calculations and of automation it is 

possible to overlap component images Ls1 and Ls2 on the envelope 

formed (Fig. 3-59) tj.:  

Ls1=imresize(Ls1,[256 512 ]); 

Ls2=imresize(Ls2,[256 512 ]); 

 [XX,YY]=meshgrid(1:size(Ls1,2),1:size(Ls1,1)); 

 Ls1=mat2gray(Ls1);  
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Ls1=uint8(round(histeq(Ls1)*255)); 

Ls1=cat(3,Ls1,Ls1,Ls1); 

surface(ones(size(XX)),XX-

mm1/(size(Ls1,1)/256),YY,(Ls1),... 

        'FaceColor','texturemap',... 

        'EdgeColor','none',... 

        'CDataMapping','direct') 

    [XX,YY]=meshgrid(1:size(Ls2,2),1:size(Ls2,1)); 

 Ls2=mat2gray(Ls2);  

Ls2=uint8(round(histeq(Ls2)*255)); 

Ls2=cat(3,Ls2,Ls2,Ls2); 

surface(XX-

mm2/(size(Ls2,1)/256),ones(size(XX)),YY,(Ls2),... 

        'FaceColor','texturemap',... 

        'EdgeColor','none',... 

        'CDataMapping','direct') 

 

Fig. 3-59 Anterior chamber with calculated volume together with 
component flat images 

The algorithm presented has numerous drawbacks and we encourage 

Readers to remove them. These drawbacks include: 

 the calculated volume is understated, 

 the shape of the top surface is not considered at all, 

 the calculated volume is expressed only in pixels – it should be 

converted to appropriate unit of volume, reading the unit of distance 

falling per pixel from the file header. 
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Summarising, the algorithm calculates the anterior chamber volume in 

a fully automated way. The computation time for a PC class computer 

with the Windows Vista operating system, Intel Core Quad CPU Q9300, 

2.5 GHz processor, 8GB RAM amounts to approx. 2 s.   
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PART II 
 

4 ANALYSIS OF POSTERIOR EYE 
SEGMENT 

 
The second part of this monograph presents the issues of posterior eye 

segment with special emphasis on automated methods for individual 

layers detection. Also the optic nerve head and the degree of retinal 

detachment will be fully automatically analysed. The measurements 

performed provide a possibility of not only obtaining quantitative data 

but also of automated determination of individual layers thickness maps. 

 

0.1mm

 

  



 

 
 

70 Introduction to the fundus of the eye analysis 

4.1 Introduction to the fundus of the eye analysis 

The analysis of the fundus of the eye in its initial part is similar to the 

analysis of the anterior eye segment [5], [11], [12], [13]. This applies to 

the DICOM image acquisition and entering to the Matlab space as well 

as to acquiring the header and comprised by it patient and other data. 

Methods and tools intended for that have been discussed in detail in the 

first section of this monograph.  The methodology for the image analysis 

has been presented below assuming that it already had been introduced to 

the Matlab space.  

The input images LGRAY acquired e.g. from an optical tomograph 

SOCT Copernicus of the following parameters: the light source 

wavelength: 840nm, spectrum width of 50nm, axial (longitudinal) 

resolution: 6µm, transverse resolution: 12-18 m, tomogram window 

width: 2mm, measurement rate: 25,000 A scans per second, the 

maximum scanning width: 10mm, the maximum number of A scans 

falling per a B scan: 10‟500, were saved as grey levels of MxN = 

722x928 resolution, where 8 bits falls per each pixel. 

Tr

NFL GCL

ELM RPEIS

 

 

0.3mm 

 

Fig. 4-1 Diagram of individual 
layers cross-section with 

marked characteristic measured 
areas, where: Tr – traction, NFL 

neural fibre layer – internal 
retina Bondary, RPE retinal 

pigment epithelium 

Fig. 4-2 Example image acquired from 
SOCT Copernicus. 

 The identification of individual layers position, starting from the 

nerve fibre layer (NFL), ganglion cell layer (GCL), inner plexiform layer 

(IPL), inner nuclear layer (INL), outer plexiform layer (OPL), inner and 
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outer segment of photoreceptors (IS/OS) and ending at retinal pigment 

epithelium (RPE) and choriocapillaris (CC) situated between the inner 

limiting membrane (ILM) and the CC has been shown in Fig. 4-1 and 

Fig. 4-2. 

 

Fig. 4-3 Example tomograph image with marked layers NFL – red, 
ONL - green, RPE – blue 

Na Fig. 4-3 shows layers put on the LM image detected by means of 

algorithm described in this monograph, i.e. NFL, ONL and RPE. The 

position of those layers provides the grounds for further methodology, 

described in this paper. 

Further considerations will refer to methods automatically 

determining the boundaries of layers visible in Fig. 4-1 i.e.: tractions, 

internal retina boundary, RNFL/GCL boundary, IS/OS boundary, 

OS/RPE and RPE boundary preceded by the analysis of results obtained 

using known algorithms [1], [3], [17], [19], [22], [33], [36], [43]. 

4.2 Algorithm for Automated Analysis of Eye Layers in 

the Classical Method  

 The algorithm proposed by the authors, presented below, has a 

modular (block) structure, where selected blocks can operate 

independently of each other - Fig. 4-39. 
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Preprocessing

Determination
 of RPE

Determination
 of ELM

Determination
 of IS

Determination
 of GCL

Determination
 of NFL

Determination of
 analysis area

Layers range correction

ELM RPE IS GCL NFL

ELM and RPE lines
continuity correction

Determination of
'holes' on the image

ELM ISRPE GCL NFL
 

Fig. 4-4 Block diagram of fundus of the eye analysis algorithm 

The block diagram presented in Fig. 4-39 divides the algorithm 

operation into five stages: 

 Preprocessing – median filter filtration and normalisation. 

 Determination of RPE layer position and then, using a modified active 

contour method, of ONL and IS. 

 Determination of NFL internal retina boundary position and then of 

GCL areas (usually two). 

 Correction of layers obtained with regard to the analysis area – 

considering the quality by areas of the object presented. 

 Determination, based on the image qualitative analysis, of ‘holes’, local 

brightness minima. 

These stages will be the subject of considerations in the next sections. 

4.2.1 Preprocessing 

 Preliminary algorithms for image processing include filtration 

with a median filter of square mask, 21x21 in size, to eliminate noise and 

small artefacts introduced by the measuring system during the image 

acquisition. The mask size was selected arbitrarily. In addition, the image 
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was cut at the bottom to correct erroneous instrument readings for the last 

two lines of the image, i.e.: 

[Lgray,map]=imread(['D:\OCT\FOLDERS\2.OCT\SKAN7.bmp']); 
Lgray=Lgray(1:850,:); 
Lgray=ind2gray(Lgray,map); 
Lgray=double(Lgray)/255; Lorg=Lgray; 
Lmed=medfilt2(Lorg,[5 5]); 

The second component consisted of normalisation from the range of 

minimum and maximum pixel brightness to a full range between 0 and 1, 

i.e.: 

Lmed=mat2gray(Lmed); 

figure; 

imshow(Lmed) 

The LGRAY images converted this way were analysed using available 

algorithms, which in this case – the necessity to detect discontinuous line 

ranges – did not provide satisfactory results.  

4.2.2 Detection of RPE Boundary 

 The RPE layer is the first and the simplest to determine in an 

automated determination on an OCT image. It is perfectly visible on the 

OCT image as the brightest area for each column. This property has been 

used to create the first part of the algorithm. 

 The analysis of LGRAY images after images preprocessing 

(filtration and normalisation, obtaining LMED) was started analysing the 

position of maximum for consecutive columns. If m and n denote rows 

and columns of image matrix, then the new image: 



 

 

pozostaledla0

prn))(m,(Lmaxn)(m,Ldla1
n)(m,L

MED
M}{1,2,...,m

MED

BIN_RPE

 

dla n{1,2,3,...,N-1,N} 

 (11) 

 

where pr – parameter of decimal-to-binary conversion threshold, 

assumed as 0.9 (90%). 

The LBIN_RPE image contains values „1‟ in places, where pixels in a 

given column are brighter than 90% of the maximum occurring 

brightness for this column. Values „0‟ occur in the other places. The 

image obtained this way is shown below. 



 

 
 

74 Algorithm for Automated Analysis of Eye Layers in the Classical Method 

  

Fig. 4-5 Sum of LBIN_RPE images with weight 50% and LMED with 50%; a) 
image with properly detected Ip area and b) image, where RPE area is 

discontinuous in ranges. 

In the next stage the position of the longest section centre for each 

column of LBIN_RPE image was calculated, obtaining yRPE, i.e.: 

     



M

1m

BIN_RPE

M

1m

WRPE nm,L/nm,yny

 

(12) 

where: 

 
 
 









0nm,Ldla0

0nm,Ldlam
nm,y

BIN_RPE

BIN_RPE

W

 

 

(13) 

n{1,2,3,...,N-1,N} 

The obtained course of yRPE and the source code are shown below: 

x=(1:size(Lmed,2))'; 

yyy=(1:size(Lmed,1))'; 

yrpe=[]; 

Lk=zeros(size(Lmed)); 

for ik=1:size(Lmed,2) 

    xx_best=[]; 

    Llabp=bwlabel(Lmed(:,ik)>(max(Lmed(:,ik))*0.9)); 

    Lk(:,ik)=Llabp; 

    for tt=1:max(Llabp) 

       xxl=yyy(Llabp==tt); 

       xx_best=[xx_best;mean(xxl)] ; 
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    end 

    if ~isempty(xx_best) 

        yrpe(ik)=max(xx_best); 

    else 

        yrpe(ik)=0; 

    end 

end 

figure; imshow(mat2gray(Lk*0.5+Lmed));hold on; 

plot(yrpe,'r*-') 

  

Fig. 4-6 Sum of LBIN_RPE images with 
weight 50% and LMED with 50% and 

marked course of yRPE 

Fig. 4-7  Sum of LBIN_RPE images with 
weight 50% and LMED with 50% and 

marked course of yRPES 

The course of yRPE function is further analysed for clusters using k-

means method, obtaining yRPES
(k)

 for each k-cluster. Then (yRPES
(k1,k2)

) is 

approximated by a 3
rd

 order polynomial for each pair yRPES
(k1) 

and 

yRPES
(k2)

 for k1k2. All obtained polynomial functions yRPES
(k1,k2)

 

determined for all possible cluster pairs (k1, k2) are shown in Fig. 4-8 and 

an appropriate part of algorithm is given below: 

yg=gradient(yrpe); 

ygg=ones([1 length(yrpe)]); ygg(abs(yg)>20)=0; 

ygl=bwlabel(ygg); 

figure; imshow(mat2gray(Lbinrpe*0.5+Lmed));hold on;  

palett=jet(max(ygl)); 

for iiih=1:max(ygl(:)) 

        plot(x(ygl==iiih), 

yrpe(ygl==iiih),'Color',palett(iiih,:),'LineWidth',4); 

end 

pam_dl=[]; 
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figure; imshow(mat2gray(Lbinrpe*0.5+Lmed)); hold on 

for iiik=1:max(ygl(:)) 

    for iiikk=iiik:max(ygl(:)) 

        if iiik<=iiikk 

            ygk=[yrpe(ygl==iiik),yrpe(ygl==iiikk)]; 

            xgk=[x(ygl==iiik);x(ygl==iiikk)]; 

        else 

            ygk=[yrpe(ygl==iiikk),yrpe(ygl==iiik)]; 

            xgk=[x(ygl==iiikk);x(ygl==iiik)]; 

        end 

        if length(ygk)>10 

            P = POLYFIT(xgk',ygk,2); yrpes = 

round(POLYVAL(P,x)); 

            plot(yrpes,'g*-') 

            pam_dl=[pam_dl;[iiik iiikk sum(abs(yrpe-

yrpes')<20)]]; 

        end 

    end 

end 

  

Fig. 4-8 3
rd

 order functions 
yRPES(k1,k2) for all possible cluster 

pairs 

Fig. 4-9  Enlarged fragment of 
image from Fig. 4-8 

The number of points
     




M

1m

BIN_RPE

M

1m

WRPE nm,L/nm,yny  

from the 

range ±15 pixels, i.e. pr1=15 and pr2=15 is determined for each function.

 

 

 



 

 
 

77 ANALYSIS OF POSTERIOR EYE SEGMENT 

    nyk,ks
k2)(k1,

RPEB21

 

 (14) 

 
 



 


otherdla0

prnyprdla1
ny 2

)k,(k

RPES1)k,(k

RPEB

21

21  
(15) 

Then this pair (k1,k2) is determined, for which: 

    21
k,k

*

2

*

1 k,ksmaxk,ks
21


 

(16) 

The pair determined achieves the maximum value at selected 

yRPES
(k1*,k2*)

 later on named simply yRPEC function. The implementation of 

the algorithm fragment described above is provided below:  

pam_s=sortrows(pam_dl,-3); 

if size(pam_s,1)==1 

        ygk=[yrpe(ygl==pam_s(1,1))]; 

        xgk=[x(ygl==pam_s(1,1))]; 

else 

        ygk=[yrpe(ygl==pam_s(1,1)),yrpe(ygl==pam_s(1,2))]; 

        xgk=[x(ygl==pam_s(1,1));x(ygl==pam_s(1,2))]; 

end 

    P = POLYFIT(xgk',ygk,2); yrpes = round(POLYVAL(P,x)); 

    plot(x,yrpes,'w*-');  

yrpe=yrpe(:); 

    plot(x,yrpe,'m*-');  

In further considerations also these points of yRPE are important, which 

fall within the tolerance predetermined regarding yRPES
(k1*,k2*)

, i.e.: 

dx=x; dx(abs(yrpe-yrpes)>20)=[]; 

yrpe(abs(yrpe-yrpes)>20)=[]; 

dxl=bwlabel(diff(dx)<125); 

pdxl=[]; 

for qw=1:max(dxl) 

   pdxl=[pdxl;[qw, sum(dxl==qw)]];  

end 

pdxl(pdxl(:,2)<50,:)=[]; 

dxx=[]; dyy=[]; 

for wq=1:size(pdxl,1) 

    dxx=[dxx; dx(dxl==pdxl(wq,1))]; 

    dyy=[dyy; yrpe(dxl==pdxl(wq,1))]; 

end 

dx=dxx; yrpe=dyy; 

    plot(dx,yrpe,'c*-');  
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figure 

imshow(Lgray); hold on 

    plot(dx,yrpe,'c*-');  

The results obtained are presented in the following figure (Fig. 4-10, 

Fig. 4-11). 

  

Fig. 4-10 Function yRPEC satisfying 
the conditions given 

Fig. 4-11 Enlargement of image 
from Fig. 4-10 

The yRPEC values will further, in the next section, provide the basis to 

determine IS and ONL boundaries. 

4.3 Detection of IS, ONL Boundaries 

Boundaries of IS and ONL were determined on the basis of yRPEC 

limit. In both cases algorithms were very similar and in their largest 

fragment applied to the modified active contour method [29], [41]. This 

method was used to analyse the anterior eye segment in the first part of 

this monograph and the function intended for its proper operation noted 

as OCT_activ_cont. This operation could also be performed (obtaining 

similar results) using other methods, e.g. of the convolution with mask h 

presented below (Fig. 4-12) or of filtration by a median filter and 

calculating differences between pixels situated on the oy axis distant 

from each other by the number of mask rows. 
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Fig. 4-12 Mask h 
used for 

independent 
calculations of 
modified active 
contour method 

Fig. 4-13 Artificial input image with yIS courses 
for parameters pyu= pyd changing within the 

range from 2 – blue colour to 20 – red colour 

The change of operation selectivity in the sense of individual layers 

distinction accuracy is obtained depending on the selection of parameters 

pyu and pyd. Such situation is illustrated by Fig. 4-13 where pyu and pyd 

were changing between 2 and 20 for an artificial image created as 

follows: 

L1=rand([201 200]); 

xx=-1:0.01:1; 

y=gauss(xx+0.5,0.2)+0.5*gauss(xx-0.1,0.05); 

Ly=y'*ones([1 200]); 

Ly=mat2gray(Ly); 

Lw1=L1.*Ly; 

L1=rand([201 200]); 

y=gauss(xx,0.2)+0.5*gauss(xx-0.4,0.05); 

Ly=y'*ones([1 200]); 

Ly=mat2gray(Ly); 

Lw2=L1.*Ly; 

Lw=[Lw1,Lw2]; 

Lw(:,300:350)=Lw(:,300:350)*.5; 

Lw(:,50:100)=Lw(:,50:100)*.2; 

Lw=imrotate(Lw,5,'crop'); 

figure; imshow(Lw) 
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where the gauss function has the following form: 

function y = gauss(x,std) 

y = exp(-x.^2/(2*std^2)) / (std*sqrt(2*pi)); 

The change of parameters pyu and pyd values affects the selectivity of 

algorithm operation. The remaining parameters, such as pu or pd, 

determine the range of search on the vertical axis. Parameters pxl and pxp 

are the range on the ox axis, from which values Lu and Ld are calculated. 

They have a direct influence on the algorithm behaviour in places, where 

shadows occur. Fig. 4-14 shows the influence of parameters pxl and pxp 

settings on the results obtained. 

  

Fig. 4-14 Artificial input image with 
yIS courses for parameters 

pu= pd=50, pxud=∞ and pxl =pxp 
changing within the range from 

1 – blue colour to 70 – red colour 

Fig. 4-15 Artificial input image with 
yIS courses for parameters 

pu= pd=50, pxud=2 and pxl =pxp 
changing within the range from 

1 – blue colour to 70 – red colour 

Images have been obtained at the following implementation in 

Matlab: 

x=1:size(Lw,2); 

y=round(   [ones([1 size(Lw,2)/2])*size(Lw,1)/3 ones([1 

size(Lw,2)/2])*size(Lw,1)/2]   ); 

map=jet(70); 

for pyud=1:4:70 

pud=50; 

pxud=2; 

pxlp=1; 

polaryzacja=-1; 

[yy,i]=OCT_activ_cont(Lw, x,y+20, pud,  pyud, pxud,  pxlp,   

polaryzacja); 

hold on 

plot(x,yy,'Color',map(pyud,:),'LineWidth',3) 

pause(0.001) 

end 
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As can be seen from Fig. 4-14 and Fig. 4-15 small values of pxl and 

pxp in the range from around 110 result in the origination of large 

changes in positions of its consecutive values on the oy axis of yIO 

course. Values of parameters pxl and pxp changed in the range from 

around 1070 „stabilise‟ the course of yIO due to which it becomes less 

sensitive to sudden changes of brightness (e.g. shadows) on the image. 

The influence of parameters pxl, pxp and pyu, pyd can be best followed 

on the graph of error IO(pxl=pxp, pyu=pyd) defined as: 

     
 

100
ny

nyny

N

1
pp,ppδ

N

1n IOW

IOWIO
udyuxpxlIO 


 

 % 

 (17) 

where yISW – a model course of yIS. 

  

Fig. 4-16 Graph of error IS values 
changes for changes of parameters 
pxl =pxp within the range 1-70 and pyu 
=pyd within the range 1-20 for pxud=∞ 

Fig. 4-17 Graph of error IS values 
changes for changes of 

parameters pxl =pxp within the 
range 1-70 and pyu =pyd within the 

range 1-20 for pxud=1 

In accordance with the graph presented in Fig. 4-16 parameter 

pxl = pxp for pxud=∞ has the largest influence on the value of IS error. 

Because of two characteristic areas visible on the LGRAY image 

(Fig. 4-16) the course of error has a local maximum for pxl=pxp40. The 

course of error IS value for pxud=1  (Fig. 4-17) is similar, where 

parameter pxud had no significant impact on its value. 

The graphs discussed were generated using the function: 

L1=rand([201 200]); 

xx=-1:0.01:1; 

y=gauss(xx+0.5,0.2)+0.5*gauss(xx-0.1,0.05); 
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Ly=y'*ones([1 200]); 

Ly=mat2gray(Ly); 

Lw1=L1.*Ly; 

Lw=Lw1; 

Lw(:,50:100)=Lw(:,50:100)*.2; 

figure; imshow(Lw) 

x=1:size(Lw,2); 

y=round(   [ones([1 size(Lw,2)/2])*size(Lw,1)/3 ones([1 

size(Lw,2)/2])*size(Lw,1)/2]   ); 

map=jet(70); 

hold on 

plot(x,y,'r','LineWidth',3) 

d3_wy=[]; 

        pub=50; 

        pxud=1; 

        polaryzacja=-1; 

jj=1; 

for pxlp=2:1:20 

    ii=1; 

    for pyud=1:2:70 

        [yy,i]=OCT_activ_cont(Lw, x,y+20,  pub, pyud, pxud, 

pxlp, polaryzacja);  

        d3_wy(ii,jj)=sum(abs(119-yy)./119)/length(yy)*100; 

        ii=ii+1; 

        [ii,jj] 

    end 

    jj=jj+1; 

  

end 

[XX,YY]=meshgrid(2:1:20,1:2:70); 

figure; mesh(XX,YY,d3_wy); 

ylabel('p_{xl}=p_{xp}','FontSize',20) 

xlabel('p_{yu}=p_{yd}','FontSize',20) 

zlabel('\delta _{IO} [%]','FontSize',20) 

colormap([0 0 0]) 

set(gca,'FontSize',15) 

The sensitivity to a Gaussian noise, which may appear on the image, is 

a totally different feature of the algorithm discussed. To evaluate the 

quality of algorithm proposed a Gaussian noise of variance ζ changed 

between 0 and 0.9 was added to the LGRAY image. 
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Fig. 4-18 Graph of error IS values 
changes for changes of parameters 
pxl =pxp within the range 1-70 and of 
variance σ within the range 0÷0.9 for 

pxud=2 

Fig. 4-19 Graph of error IS values 
changes for changes of 

parameters pxl =pxp within the 
range 1-70 and of variance σ 

within the range 0÷0.9 for pxud=∞ 

Graphs in Fig. 4-18 and Fig. 4-19 show changes of error IS values for 

changes of parameters pxl=pxp within the range 1-70 and of variance ζ 

within the range 0†0.9 for pxud=2 pixels and pxud=∞.  For both graphs at 

the change of ζ values within the range 0-0.3 and pxl=pxp within 50-70 

pixels the IO error does not exceed 5%. The dependence of error IS 

value on pxud is insignificant, mainly due to its definitions  ), where large 

changes of isolated points of yIS course have no significant impact on the 

IS error. The nature of error IS values changes shown in Fig. 4-16 and 

Fig. 4-17 as well as in Fig. 4-18 and Fig. 4-19 regarding changes of 

parameters pxl=pxp within their full range depends mainly on the nature 

and arrangement of objects on the scene and therefore it will not be 

discussed here. The form of algorithm intended to generate the above 

results is similar to the previous case.  

4.4 Detection of NFL Boundary 

The NFL boundary position was determined in two stages, of which 

the second stage of individual points positions correction is the most 

complicated and the analysis laborious. 

The first stage comprises determination of decimal to binary 

conversion for each column of LMED image acc. to previously mentioned 

relationship for parameter pr assumed arbitrarily around 0.1 (10%). Then, 

for each column of LBIN_NFL image, the position of the first pixel for each 
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kn- cluster of value „1‟ for each column – n is calculated. Assuming 

further that each column n has Kn clusters it is possible to write:  

    
nNFL_W

M)(1,m
nNFL_P kn,m,yminnm*,,ky




 
(18) 

where: 

 
 
 









nET_N

nET_N

nNFL_W knm,Ldlam

knm,LdlaM
kn,m,y

 

(19) 

and LET_N - image formed as a result of labelling each cluster for each 

column irrespective of LBIN_NFL image for kn{1,2,3,...,Kn-1,Kn}. 

Fig. 4-20 and Fig. 4-22 show LET_N images for artificial input image 

LMED without the added noise (Fig. 4-21) and with added Gaussian noise 

of variance ζ=0.2 (Fig. 4-23). 

  

Fig. 4-20 Image LET_N formed from the 
input LMED image shown in Fig. 4-21 

Fig. 4-21 Image LMED resulting 
from the filtration, using a 

median filter, of artificial image 
LGRAY with marked blue points 

yNFL_P 
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Fig. 4-22 Image LET_N formed from the 
input LMED image shown in Fig. 4-23 

Fig. 4-23 Image LMED resulting 
from the filtration, using a 

median filter, of artificial image 
LGRAY with added Gaussian 
noise and with marked blue 

points yNFL_P 

The image from Fig. 4-23 originated at the following implementation: 

L1=rand([201 200]); 
xx=-1:0.01:1; 
y=gauss(xx+0.5,0.2)+0.5*gauss(xx-0.1,0.05); 
Lmed=y'*ones([1 200]); 
Lmed=mat2gray(Lmed); 

Lmed(:,50:100)=Lmed(:,50:100)*.2; 

Lmed = imnoise(Lmed,'gaussian',0.02); 

Lmed=medfilt2(Lmed,[3 3]); 

figure; imshow(Lmed); hold on 

xyinfy=[]; 

xyinfdl=[]; 

for ik=1:size(Lmed,2) 

        grL1=Lmed(:,ik)>(max(Lmed(:,ik))*0.1); 

        lgrL1=bwlabel(grL1); 

            for jju=1:max(lgrL1) 

                 xyinfdl(jju,ik)=sum(lgrL1==jju);                

                 cuu=1:length(lgrL1);    

cuu(lgrL1~=jju)=[]; 

                 xyinfy(jju,ik)=cuu(1); 

                 plot(ik,cuu(1),'b*') 

            end 

end 

As shown in Fig. 4-20 - Fig. 4-23 the relationship (18) and (19) is very 

sensitive to noise and to small artefacts on the image, which are the 

reason for origination of additional erroneous points yNFL_P. In practice, 
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however, this problem is not too arduous because even in the case of 

proper distribution of points yNFL_P the determination of NFL line is not 

an unambiguous and simple process, which is illustrated by Fig. 4-24.  

  

Fig. 4-24 Image LMED of actual image 
LGRAY with marked blue 

corresponding points yNFL_P 

Fig. 4-25 Enlarged LMED image 
from Fig. 4-25 

This figure was obtained from the following algorithm. 

 [Lgray,map]=imread(['D:\OCT\FOLDERS\2.OCT\SKAN7.bmp']); 
Lgray=Lgray(1:850,:); 
Lgray=ind2gray(Lgray,map); 
Lgray=double(Lgray)/255; Lorg=Lgray; 
Lmed=medfilt2(Lorg,[5 5]); 
Lmed=mat2gray(Lmed); 
figure; imshow(Lmed) 
grad_y_punkt=30; 
figure; imshow(Lmed); hold on 
[xNFL,yNFL,xyinfdl,xyinfy,ggtxnn,ggtynn,ggdlnn,xyinfdl_o

ld,xyinfy_old]=OCT_NFL_line(Lmed,grad_y_punkt); 
plot(xNFL,yNFL,'r','LineWidth',2) 

where function OCT_NFL_line is intended to analyse the course of 

NFL line and is described below. 
The second stage of NFL line determination is related to the analysis 

of yNFL_P points on the ox axis. For the next yNFL_P points a derivative for 

the ox axis was calculated and then the clusters analysis was performed, 

obtaining this way km clusters and yNFL_D where for each 

km{1,2,3,...,Km-1,Km} the following condition is satisfied: 
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where prd is the threshold limiting the maximum value of the 

derivative for consecutive points on the ox axis. This threshold is directly 

responsible for the obtained number of clusters and thereby the number 

of sections analysed in further part of the algorithm. 

Clusters containing too small number of elements (less than 20% of 

the largest cluster) are automatically cut off. Instead, the others are 

analysed in terms of arrangement on the image (coordinate m) and of the 

number of pixels existing in a specific cluster (yNFL_H). 

    
 


N

1n

M

1m

mNFL_DmNFL_H nm,,kyky

 

(21) 

So analysing the position of individual yNFL_S points and the number 

of pixels in specific yNFL_H cluster for which they were determined it is 

possible to create weights yW for analysed clusters (points groups), i.e.: 

            SmNFL_S
),1(

mNFL_SPmNFL_H
),1(

mNFL_HmW εkymax/kyεkymax/kyky 
 mmmm KkKk

 
(22) 

where S and P are constants arbitrarily selected from the 0-1 range 

and 

    nm,,kymaxky mNFL_D
N)(1,nM),(1,m

mNFL_S



 

(23) 

In the next stage this cluster km is selected, which has the largest 

weight km*. Later on it is used as a start vector for the modified active 

contour method described in section 0. This way the results presented in 

Fig. 4-26 are obtained. 
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Fig. 4-26 Image LMED with marked 
red yNFL points for the best, with 

respect to the criterion set, cluster 
km* (turquoise) and with results 
obtained for the active contour 

method (red) 

Fig. 4-27 Demonstrative images of 
layers arrangement on an OCT 
image, for which the algorithm 
described operates improperly 

Fig. 4-26 shows points for the best, with respect to the criterion set, 

cluster km* in turquoise and yNFL results obtained for the active contour 

method in red.  

Taking into account the above analysis the final shape of 

OCT_NFL_line function was formulated as follows: 

function 
[xNFL,yNFL,xyinfdl,xyinfy,ggtxnn,ggtynn,ggdlnn,xyinfdl_old,

xyinfy_old]=OCT_NFL_line(Lmed,grad_y_punkt) 

xyinfy=[]; 

xyinfdl=[]; 

for ik=1:size(Lmed,2) 

        grL1=Lmed(:,ik)>(max(Lmed(:,ik))*0.1); 

        lgrL1=bwlabel(grL1); 

            for jju=1:max(lgrL1) 

                 xyinfdl(jju,ik)=sum(lgrL1==jju);                

                 cuu=1:length(lgrL1);    

cuu(lgrL1~=jju)=[]; 

                 xyinfy(jju,ik)=cuu(1); 

                 plot(ik,cuu(1),'b*') 

            end 

end 

xyinfdl_old=xyinfdl; 

xyinfy_old=xyinfy; 
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ggtxnn=[]; 

ggtynn=[]; 

ggdlnn=[]; 

while sum(sum(xyinfy(:,1:(end-1))))~=0 

    ggtx=[]; 

    ggty=[]; 

    for hvi=1:(size(xyinfy,2)-1) 

        if sum(xyinfy(:,hvi))~=0 

           break 

        end 

    end 

    for hv=hvi:(size(xyinfy,2)-1) 

        if  (min(  abs(xyinfy(1,hv)-xyinfy(:,hv+1))  

)<grad_y_punkt)&(xyinfy(1,hv)~=0) 

            vff=1:size(xyinfy,1); vff(abs(xyinfy(1,hv)-

xyinfy(:,hv+1))>=grad_y_punkt)=[]; vff=vff(1); 

xypam=xyinfy(1,hv); 

            vff__=1:size(xyinfy,1); vff__(vff)=[]; 

            xyinfy(1:end,hv+1) = [xyinfy(vff,hv+1);  

xyinfy(vff__,hv+1)]; 

            xyinfdl(1:end,hv+1)= [xyinfdl(vff,hv+1); 

xyinfdl(vff__,hv+1)]; 

            xyinfy(1:end,hv)=[xyinfy(2:end,hv);0]; 

            xyinfdl(1:end,hv)=[xyinfdl(2:end,hv);0]; 

            ggtx=[ggtx,hv]; 

            ggty=[ggty,xypam]; 

        else 

            xyinfy(1:end,hv)=[xyinfy(2:end,hv);0]; 

            xyinfdl(1:end,hv)=[xyinfdl(2:end,hv);0]; 

            break 

        end 

    end 

    if length(ggty)>10 

        ggtxnn(size(ggtxnn,1)+1,1:length(ggtx))=ggtx; 

        ggtynn(size(ggtynn,1)+1,1:length(ggty))=ggty; 

        ggdlnn=[ggdlnn;[length(ggty) min(ggty)]]; 

    end 

end 

ggdlnn_leng=ggdlnn(:,1); 

ggdlnn=[(1:size(ggdlnn,1))',ggdlnn]; 

ggdlnn(:,2)=ggdlnn(:,2)-min(ggdlnn(:,2)); 

ggdlnn(:,2)=ggdlnn(:,2)./max(ggdlnn(:,2)); 

ggdlnn_leng(ggdlnn(:,2)<(0.2),:)=[]; 

ggdlnn(ggdlnn(:,2)<(0.2),:)=[];  

for bniewazne=1:(size(ggdlnn,1).^2) 

if size(ggdlnn,1)>=2 

usun_=zeros([1 size(ggdlnn,1)]); 

    nr1=ggdlnn(1,1); 

    x11=ggtxnn(nr1,:);  

    y11=ggtynn(nr1,:); 
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        x11(y11==0)=[]; 

        y11(y11==0)=[]; 

    for nr_=2:size(ggdlnn,1) 

        nr2=ggdlnn(nr_,1); 

        x22=ggtxnn(nr2,:); 

        y22=ggtynn(nr2,:);  

            x22(y22==0)=[]; 

            y22(y22==0)=[]; 

        for iy=1:length(x11) 

            xbn=1:length(x22); 

            xbni=xbn(x22==x11(iy));     

            if ~isempty(xbni)  

                if y11(iy)<y22(xbni(1)) 

                    usun_(nr_)=usun_(nr_)+1; 

                end 

            end 

        end 

    end 

    if sum(usun_)~=0 

        ggdlnn(usun_>(ggdlnn_leng'*0.2),:)=[]; 

        ggdlnn_leng(usun_>(ggdlnn_leng'*0.2))=[];  

        ggdlnn=[ggdlnn(2:end,:);ggdlnn(1,:)]; 

        ggdlnn_leng=[ggdlnn_leng(2:end);ggdlnn_leng(1,:)];         

    else 

        ggdlnn=[ggdlnn(2:end,:);ggdlnn(1,:)]; 

        ggdlnn_leng=[ggdlnn_leng(2:end);ggdlnn_leng(1,:)]; 

    end 

end 

end 

ggdlnn_s=sortrows(ggdlnn,-2); 

if size(ggdlnn_s,1)==2  

    xNFL1=ggtxnn(ggdlnn_s(1,1),:); 

    yNFL1=ggtynn(ggdlnn_s(1,1),:); 

    xNFL2=ggtxnn(ggdlnn_s(2,1),:); 

    yNFL2=ggtynn(ggdlnn_s(2,1),:); 

    xNFL1(xNFL1==0)=[]; 

    yNFL1(yNFL1==0)=[];     

    xNFL2(xNFL2==0)=[]; 

    yNFL2(yNFL2==0)=[]; 

    yNFL1_poczg=yNFL1(1)+std(yNFL1); 

    yNFL1_poczd=yNFL1(1)-std(yNFL1); 

    yNFL2_poczg=yNFL2(1)+std(yNFL2); 

    yNFL2_poczd=yNFL2(1)-std(yNFL2); 

    if min(xNFL1)<min(xNFL2) 

        if (abs(yNFL1(end)-

yNFL2_poczd)<std(yNFL1))|(abs(yNFL1(end)-

yNFL2_poczg)<std(yNFL1));  

                xNFL=[xNFL1 xNFL2]; 

        else 

            if length(yNFL1)>length(yNFL2) 
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                xNFL=[xNFL1]; 

            else     

                xNFL=[xNFL2]; 

            end 

        end 

    else 

        if (abs(yNFL2(end)-

yNFL1_poczd)<std(yNFL2))|(abs(yNFL2(end)-

yNFL1_poczg)<std(yNFL2));  

                xNFL=[xNFL2 xNFL1]; 

        else 

            if length(yNFL1)>length(yNFL2) 

                xNFL=[xNFL1]; 

            else     

                xNFL=[xNFL2]; 

            end 

        end            

    end 

else 

    xNFL=ggtxnn(ggdlnn_s(1,1),:); 

    xNFL(xNFL==0)=[]; 

end 

filtr_med=50; 

[xNFL,yNFL]=OCT_NFL_line_end(xNFL,xyinfdl_old,xyinfy_old,gr

ad_y_punkt,filtr_med); 

przyci_po_obu_x_proc=0.2; 

y_dd=abs(diff(yNFL)); 

y_dd_lab=bwlabel(y_dd<(grad_y_punkt)/2); 

num_1=y_dd_lab(round(length(y_dd_lab)*przyci_po_obu_x_proc)

); 

num_end=y_dd_lab(round(length(y_dd_lab)*(1-

przyci_po_obu_x_proc))); 

x_sek=1:length(y_dd_lab); 

x_sek_1=x_sek(y_dd_lab==num_1); x_sek_1=x_sek_1(1); 

x_sek_end=x_sek(y_dd_lab==num_end); 

x_sek_end=x_sek_end(end); 

xNFL=xNFL(x_sek_1:x_sek_end); 

yNFL=yNFL(x_sek_1:x_sek_end); 

and function OCT_NFL_line_end intended for filtration of the left and 

right side of the course: 

function 

[xNFL,yNFL]=OCT_NFL_line_end(xNFL_old,xyinfdl,xyinfy,grad_y

_punkt,filtr_med) 

x_start=xNFL_old(round(end/2)); 

xNFL=[]; 

yNFL=[]; 

xyinfy(1,:)=medfilt2(xyinfy(1,:),[1 filtr_med]); 

    for hv=x_start:(size(xyinfy,2)-1) 



 

 
 

92 Detection of NFL Boundary 

        if  (min(  abs(xyinfy(1,hv)-xyinfy(:,hv+1))  

)<grad_y_punkt)&(xyinfy(1,hv)~=0) 

            vff=1:size(xyinfy,1); vff(abs(xyinfy(1,hv)-

xyinfy(:,hv+1))>=grad_y_punkt)=[]; vff=vff(1); 

xypam=xyinfy(1,hv); 

            vff__=1:size(xyinfy,1); vff__(vff)=[]; 

            xyinfy(1:end,hv+1) = [xyinfy(vff,hv+1);  

xyinfy(vff__,hv+1)]; 

            xyinfdl(1:end,hv+1)= [xyinfdl(vff,hv+1); 

xyinfdl(vff__,hv+1)]; 

            xyinfy(1:end,hv)=[xyinfy(2:end,hv);0]; 

            xyinfdl(1:end,hv)=[xyinfdl(2:end,hv);0]; 

            xNFL=[xNFL;hv]; 

            yNFL=[yNFL;xypam]; 

        else 

            xyinfy(1:end,hv)=[xyinfy(2:end,hv);0]; 

            xyinfdl(1:end,hv)=[xyinfdl(2:end,hv);0]; 

            break 

        end 

    end 

    for hv=(x_start-1):-1:2 

        if  (min(  abs(xyinfy(1,hv)-xyinfy(:,hv-1))  

)<grad_y_punkt)&(xyinfy(1,hv)~=0) 

            vff=1:size(xyinfy,1); vff(abs(xyinfy(1,hv)-

xyinfy(:,hv-1))>=grad_y_punkt)=[]; vff=vff(1); 

xypam=xyinfy(1,hv); 

            vff__=1:size(xyinfy,1); vff__(vff)=[]; 

            xyinfy(1:end,hv-1) = [xyinfy(vff,hv-1);  

xyinfy(vff__,hv-1)]; 

            xyinfdl(1:end,hv-1)= [xyinfdl(vff,hv-1); 

xyinfdl(vff__,hv-1)]; 

            xyinfy(1:end,hv)=[xyinfy(2:end,hv);0]; 

            xyinfdl(1:end,hv)=[xyinfdl(2:end,hv);0]; 

            xNFL=[hv;xNFL]; 

            yNFL=[xypam;yNFL]; 

        else 

            xyinfy(1:end,hv)=[xyinfy(2:end,hv);0]; 

            xyinfdl(1:end,hv)=[xyinfdl(2:end,hv);0]; 

            break 

        end 

    end 

xNFL=round(xNFL); 

yNFL=round(yNFL); 

Unfortunately, the method described provides the expected results not 

in all analysed cases. The situation presented in Fig. 4-27 is an example 

here, fortunately seldom occurring in practice. Such situations occur for 

actual images if there is a lot of noise on them or if large eye pathologies 

exist or shadows are strongly visible. Such cases (where even for an OCT 
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operator it is difficult to answer clearly a question where an individual 

layer starts and ends) occur pretty seldom in practice. 

4.5 Correction of Layers Range 

yIO, yRPE, yNFL obtained at earlier stages will be now subject to 

common analysis to eliminate additional disturbances and to improve 

their quality. The yIO, yRPE, yNFL courses must fulfil the following 

conditions resulting from medical premises of eye structure (the 

conditions will be given in a Cartesian coordinate system): 

 yRPE<yIO<yNFL for each x, 

 yIO - yRPE0.1 mm – being the initial value starting the operation of 

modified active contour method, 

 yNFL - yIO  from 0 to 1 mm, for different x may be even yIO>yNFL or/and 

yRPE>yNFL. 

The implementation of this moderately simple correction of layers 

arrangement we leave to the Reader.  

4.6 Final Form of Algorithm 

Based on considerations carried out in previous sections the final form 

of algorithm was formulated in the following form: 

 [Lgray,map]=imread(['D:\OCT\FOLDERS\2.OCT\SKAN7.bmp']); 
Lgray=Lgray(1:850,:); 
Lgray=ind2gray(Lgray,map); 
Lgray=double(Lgray)/255; Lorg=Lgray; 
Lmed=medfilt2(Lorg,[5 5]); 
Lmed=mat2gray(Lmed); 
[xRPE,yRPE,xRPEz,yRPEz]=OCT_global_line(Lmed); 
grad_y_punkt=30; 
[xNFL,yNFL,xyinfdl,xyinfy,ggtxnn,ggtynn,ggdlnn,xyinfdl_o

ld,xyinfy_old]=OCT_NFL_line(Lmed,grad_y_punkt); 
z_gd1=60;  
z_gd2=60;  
z_sr1=16;  
z_sr2=16;  
z_kat1=12;   
z_kat2=12;  
z_us_xy1=12;  
z_us_xy2=12;  
[yRPEd,ygRPEd]=OCT_activ_cont(Lmed,xRPE,yRPE+50,z_gd1,z_

sr1,z_kat1,z_us_xy1,-1); 
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[yONL,ygONL]=OCT_activ_cont(Lmed,xRPE,yRPE-

50,z_gd2,z_sr2,z_kat2,z_us_xy2,1); 
figure; imshow(Lmed); hold on 
plot(xRPE,yRPE,'-r*','LineWidth',2); 
plot(xRPEz,yRPEz,'-g*','LineWidth',2);  
plot(xNFL,yNFL,'b','LineWidth',2) 
plot(xRPE,yONL,'y','LineWidth',2) 
plot(xRPE,yRPEd,'m','LineWidth',2) 

Consequently, the following results were obtained - Fig. 4-28 and 

Fig. 4-29. 

  

Fig. 4-28 Image LMED with marked 
in colours layer boundaries yNFL, 
yRPE, yONL and yRPED as the limit of 

RPE layer analysis 

Fig. 4-29 Enlarged image LMED from 
Fig. 4-28 

In the source code presented the following functions have been used, 

previously presented OCT_activ_cont and OCT_global_line, which has 

the following form: 

function [x,yrpes,dxx,dyy]=OCT_global_line(Lmed) 

x=(1:size(Lmed,2))'; 

yyy=(1:size(Lmed,1))'; 

yrpe=[]; 

Lbinrpe=zeros(size(Lmed)); 

for ik=1:size(Lmed,2) 

    xx_best=[]; 

    Llabp=bwlabel(Lmed(:,ik)>(max(Lmed(:,ik))*0.9)); 

    Lbinrpe(:,ik)=Llabp; 

    for tt=1:max(Llabp) 

       xxl=yyy(Llabp==tt); 

       xx_best=[xx_best;mean(xxl)] ; 

    end 
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    if ~isempty(xx_best) 

        yrpe(ik)=max(xx_best); 

    else 

        yrpe(ik)=0; 

    end 

end 

figure; imshow(mat2gray(Lbinrpe*0.5+Lmed));hold on; 

plot(yrpe,'r*-') 

yg=gradient(yrpe); 

ygg=ones([1 length(yrpe)]); ygg(abs(yg)>20)=0; 

ygl=bwlabel(ygg); 

figure; imshow(mat2gray(Lbinrpe*0.5+Lmed));hold on;  

palett=jet(max(ygl)); 

for iiih=1:max(ygl(:)) 

        plot(x(ygl==iiih), 

yrpe(ygl==iiih),'Color',palett(iiih,:),'LineWidth',4); 

end 

pam_dl=[]; 

figure; imshow(mat2gray(Lbinrpe*0.5+Lmed)); hold on 

for iiik=1:max(ygl(:)) 

    for iiikk=iiik:max(ygl(:)) 

        if iiik<=iiikk 

            ygk=[yrpe(ygl==iiik),yrpe(ygl==iiikk)]; 

            xgk=[x(ygl==iiik);x(ygl==iiikk)]; 

        else 

            ygk=[yrpe(ygl==iiikk),yrpe(ygl==iiik)]; 

            xgk=[x(ygl==iiikk);x(ygl==iiik)]; 

        end 

        if length(ygk)>10 

            P = POLYFIT(xgk',ygk,2); yrpes = 

round(POLYVAL(P,x)); 

            plot(yrpes,'g*-') 

            pam_dl=[pam_dl;[iiik iiikk sum(abs(yrpe-

yrpes')<20)]]; 

        end 

    end 

end 

pam_s=sortrows(pam_dl,-3); 

if size(pam_s,1)==1 

        ygk=[yrpe(ygl==pam_s(1,1))]; 

        xgk=[x(ygl==pam_s(1,1))]; 

else 

        ygk=[yrpe(ygl==pam_s(1,1)),yrpe(ygl==pam_s(1,2))]; 

        xgk=[x(ygl==pam_s(1,1));x(ygl==pam_s(1,2))]; 

end 

    P = POLYFIT(xgk',ygk,2); yrpes = round(POLYVAL(P,x)); 

    plot(x,yrpes,'w*-');  

yrpe=yrpe(:); 

    plot(x,yrpe,'m*-');  

dx=x; dx(abs(yrpe-yrpes)>20)=[]; 
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yrpe(abs(yrpe-yrpes)>20)=[]; 

dxl=bwlabel(diff(dx)<125); 

pdxl=[]; 

for qw=1:max(dxl) 

   pdxl=[pdxl;[qw, sum(dxl==qw)]];  

end 

pdxl(pdxl(:,2)<50,:)=[]; 

dxx=[]; dyy=[]; 

for wq=1:size(pdxl,1) 

    dxx=[dxx; dx(dxl==pdxl(wq,1))]; 

    dyy=[dyy; yrpe(dxl==pdxl(wq,1))]; 

end 

The result presented is affected mainly by the arguments of 

OCT_activ_cont function, which in accordance with the description 

quoted determine the type of layer recognised.  

The algorithm presented makes a uniform whole related to the 

analysis of layers within the fundus of the eye on flat OCT images. The 

results obtained may be enhanced by an automated analysis of „holes‟ on 

the image – presented below. 

4.7 Determination of ‘Holes’ on the Image 

To determine holes on the image a method of binary image LBIN_IP 

labelling was applied  (11) obtaining image LET shown in Fig. 4-30. 

 

ko mo no Po 

1 28 420 307 

2 26 375 116 

3 64 428 387 

4 131 415 81 

5 201 459 714 

6 460 390 100 

7 546 359 118 

8 626 330 110 

9 664 315 99 

10 717 295 560 

11 740 287 70 

Fig. 4-30 LET image Fig. 4-31 Table of results obtained for 
consecutive clusters ko (position of 

the centre of gravity (mo,no) and area 
of surface Po) 
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Examples of results obtained are shown in the specification in 

Fig. 4-31. Each object (cluster) ko received a label and determined 

coordinates (mo, no) of its centre of gravity position. In addition, the area 

of surface Po is also calculated. The source code is provided below: 

[Lgray,map]=imread(['D:\OCT\FOLDERS\2.OCT\SKAN7.bmp']); 

Lgray=Lgray(1:850,:); 

Lgray=ind2gray(Lgray,map); 

Lgray=double(Lgray)/255; Lorg=Lgray; 

Lmed=medfilt2(Lorg,[5 5]); 

Lmed=mat2gray(Lmed); 

[xRPE,yRPE,xRPEz,yRPEz]=OCT_global_line(Lmed); 

L11=filter2(ones(3),Lmed)/(3*3); 

L12=imregionalmin(L11); 

L13=~imopen(L12,ones(9)); 

[Lbin,L18]=OCT_areaa(L13,xRPE,yRPE); 

Let=bwlabel(Lbin); 

Let_=Let;  

Let_(edge(double(L13))==1)=max(Let(:))+1; 

figure; imshow(Let_,[]); pall=jet(max(Let(:))); 

colormap([pall; [1 1 1]]); colorbar; hold on 

[XX,YY]=meshgrid(1:size(Let,2),1:size(Let,1)); 

kmnp=[]; 

for ju=2:max(Let(:)) 

    Let4=Let==ju; 

    Letx=Let4.*XX; Letx(Letx==0)=[]; 

    Lety=Let4.*YY; Lety(Lety==0)=[]; 

    

text(median(Letx),median(Lety),mat2str(sum(Let4(:))),'FontS

ize',15,'Color',[1 1 1]) 

    kmnp=[kmnp;[ju 

median(Letx),median(Lety),sum(Let4(:))]]; 

end 

kmnp 

For diagnostic reasons the position of clusters analysed (given in 

Fig. 4-30) was narrowed to those, which position of the centre of gravity 

falls within the range between yRPE and yNFL. 

4.8 Assessment of Results Obtained Using the Algorithm 

Proposed 

An example of algorithm implementation intended for analysis of 

layers occurring on an OCT image has been presented. This methodology 

has been applied to the analysis of around 500 cases, where during 

verification it has erroneously determined layers for 5% of images. 
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Examples of properly and improperly recognised layers are shown in 

Fig. 4-32 and Fig. 4-33. 

 

 

 

 

 

 

Fig. 4-32 Examples of OCT 
resultant images with marked 

properly recognised yRPE, yIO, yNFL 

Fig. 4-33 Examples of OCT resultant 
images with marked improperly 

recognised yRPE, yIO, yNFL 

The algorithm proposed was implemented in the Matlab environment 

and operates at a rate of one image per 15s for a P4 CPU 3GHz 

processor, 2GB RAM. Additionally, an application in language C was 

developed, which after time optimisation on the same computer analyses 

the same image within 0.85s. 

The Reader implementing the above function must notice delays 

introduced by the graphic card during image displaying. In particular, the 

resultant images are the point here, for which results were presented in 

the form of graphs or points on a flat image in greyness levels. 

4.9 Layers Recognition on a Tomographic Eye Image 

Based on Random Contour Analysis 

4.9.1 Determination of Direction Field Image 

Like in [25] and [40] the input image LGRAY is initially subject to 

filtration using a median filter of (MhxNh) size of h=3x3 mask. The 

obtained image LM is subject to the analysis presented in the next 

sections. 

The first stage of the edge detection method used [14], [35], [41] 

consists of making a convolution of input image LM of MMxNM 

resolution, i.e. 
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with Gauss filters masks, e.g. of 3x3 size [14], [35], [41]. Based on 

that the matrix of gradient in both directions, necessary to determine the 

edges, has been determined in accordance with a classical dependence: 

     2GY

2

GXGXY nm,Lnm,Lnm,L 
 

(26) 

And in particular its normalised form, i.e.: 
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(27) 

The image of Lα direction field has been determined for each pair of 

pixels LGX(m,n) and LGY(m,n), and in general LGX and LGY images, i.e.: 
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(28) 

The implementation of the above relationships in Matlab looks as 

follows: 

Lm=zeros(100); Lm(10:30,10:20)=1; Lm(40:80,50:70)=1;  

Lm=imnoise(Lm,'gaussian',0.2); 

Lm=medfilt2(Lm,[3 3]); 

Lm=mat2gray(Lm); 

figure; imshow(Lm,'notruesize') 

     Nx1=5; 

     Sigmax1=24; 

     Nx2=5; 

     Sigmax2=24; 

     Theta1=pi/2; 

     Ny1=5; 

     Sigmay1=24; 

     Ny2=5; 

     Sigmay2=24; 

     Theta2=0; 

     alfa=0.15; 
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hx=OCT_NOISE_gauss(Nx1,Sigmax1,Nx2,Sigmax2,Theta1); 

Lgx= conv2(Lm,hx,'same'); 

hy=OCT_NOISE_gauss(Ny1,Sigmay1,Ny2,Sigmay2,Theta2); 

Lgy=conv2(Lm,hy,'same');  

Lalp=atan2(Lgy,Lgx); 

Lalp=Lalp*180/pi; 

Lg=mat2gray(abs(Lgx)+abs(Lgy)); 

figure; imshow(Lg,[],'notruesize'); colormap('jet'); 

colorbar 

figure; imshow(Lalp,[],'notruesize'); colormap('jet'); 

colorbar 

 

where OCT_NOISE_gauss 

 

function h = OCT_NOISE_gauss(n1,sigma1,n2,sigma2,theta) 

r=[cos(theta) -sin(theta); 

   sin(theta)  cos(theta)]; 

for i = 1 : n2  

    for j = 1 : n1 

        u = r * [j-(n1+1)/2 i-(n2+1)/2]'; 

        h(i,j) = gauss(u(1),sigma1)*OCT_gauss(u(2),sigma2); 

    end 

end 

h = h / sqrt(sum(sum(abs(h).*abs(h)))); 

  

function y = OCT_gauss(x,std) 

y = -x * gauss(x,std) / std^2; 

  

function y = gauss(x,std) 

y = exp(-x.^2/(2*std^2)) / (std*sqrt(2*pi)); 

As a result the images presented below are obtained. 

   

Fig. 4-34 Artificial 
Lm image 

Fig. 4-35 Artificial LG 
image 

Fig. 4-36 Artificial Lα 
image 

Those images, Lα and LG, are further used in the analysis, where the 

starting points random selection is the next step. 
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4.9.2 Starting Points Random Selection and Correction 

Starting points, and – based on them – the next ones will be used in 

consecutive stages of algorithm operation to determine parts of layers 

contours. The initial position of starting points was determined at 

random. Random values were obtained from uniform range (0,1) for each 

point of image matrix Lo with image resolution LM, i.e.: MxN. For a 

created this way (random) image Lo a decimal to binary converion is 

carried out with threshold pr, which is the first and one of matched 

(described later) parameters of the algorithm, the obtained binary matrix 

Lu is described by the relationship: 

 
   



 


otherdla0

pnm,Lnm,Ldla1
nm,L

rMG

u  
(29) 

In this case: 

figure; imshow(Lg,[],'notruesize'); hold on 

pr=0.3; 

Lrand=rand(size(Lg)); 

[n,m]=meshgrid(1:size(Lrand,2),1:size(Lrand,1)); 

n(Lrand>(Lg*pr))=[]; 

m(Lrand>(Lg*pr))=[]; 

plot(n,m,'r.'); 

The result obtained is presented in the following figure (Fig. 4-37). 

  

Fig. 4-37 Image LG with marked 
random selected points 

Fig. 4-38 Image LG with random 
selected points marked red and 
their correction marked green 
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Starting points o*i,j (where index „i‟ marks the next starting point, 

while „j‟ subsequent points created on its basis) satisfy condition 

Lu(m,n)=1 – that is starting points are o*i,1. This way the selection of the 

threshold value pr within the range (0,1) influences the number of starting 

points, which number is the larger, the brighter is the grey level (contour) 

in the LG image. In the next stage the starting points‟ position is modified 

in the set area H of MHxNH size. Modification consists in the correction 

of points o*i,1 position of coordinates (m*i,1, n*i,1) to new coordinates 

(mi,1, ni,1), where shifts within the range mi,1= m*i,1(MH)/2 and ni,1= 

n*i,1(NH)/2 are possible. A change of coordinates occurs in the area of 

(MH)/2 and (NH)/2, in which the highest value is achieved 

LG(m*i,1(MH)/2, n*i,1(NH)/2 ), i.e.: 
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(30) 

Then the correction of repeating points is carried out – points of the 

same coordinates are removed. The source code looks here as follows: 

H=ones(5); 

[n,m]=OCT_NOISE_area(n,m,Lg,H); 

plot(n,m,'g.'); hold on 

where  OCT_NOISE_area 

function [n,m]=OCT_NOISE_area(n,m,Lg,H) 

xn=[]; 

yn=[]; 

[xr,yr]=meshgrid(1:size(H,2),1:size(H,1)); 

for iw=1:length(n) 

    ddx=size(H,2)/2; 

    ddy=size(H,1)/2; 

    xp=round(n(iw)-ddx); xk=round(n(iw)+ddx-1); 

    yp=round(m(iw)-ddy); yk=round(m(iw)+ddy-1); 

     

    if (xp<1)|(yp<1)|(xk>size(Lg,2))|(yk>size(Lg,1)) 

        xn(iw)=n(iw); 

        yn(iw)=m(iw); 

    else 

        Lff=Lg(yp:yk,xp:xk); 

        xr_=xr; yr_=yr; 

        xr_(Lff~=max(max(Lff)))=[]; 

        yr_(Lff~=max(max(Lff)))=[]; 

        xn(iw)=n(iw)+xr_(1)-ddx; 

        yn(iw)=m(iw)+yr_(1)-ddy; 

    end 
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end 

n=round(xn); m=round(yn); 

n(n<=0)=1; m(m<=0)=1; 

n(n>size(Lg,2))=size(Lg,2); 

m(m>size(Lg,1))=size(Lg,1); 

The obtained results are presented in Fig. 4-38. 

4.9.3  Iterative Determination of Contour Components  

To determine layers on an OCT image, contour components have been 

determined in the sense of its parts subject to later modification and 

processing in the following way. For each random selected point o*i,1 of 

coordinates (m*i,1, n*i,1) and then modified (in the sense of its position) 

to oi,1 of coordinates (mi,1, ni,1) an iterative process is carried out 

consisting in looking for consecutive points oi,2 oi,3 oi,4 oi,5 etc. and local 

modification of their position (described in the previous section) starting 

from oi,1 in accordance with the relationship: 
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(31) 

A demonstrative illustration of the iterative process is shown in 

Fig. 4-39. 

 

Fig. 4-39 Demonstrative diagram of iterative process of contour 
components determination 
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Analysis 

In the case of described iterative process of contour components 

determination it is necessary to introduce a number of limitations (next 

parameters), comprising: 

 jMAX – maximum iterations number – limitation aimed at elimination of 

algorithm looping if each time points oi,j of different position are 

determined and the contour will have the shape of e.g. a spiral.  

 Stopping the iterative process, if it is detected that mi,j = mi,j+1 and 

ni,j = ni,j+1. Such situation happens most often if Ai,j is close to or higher 

than MH or NH. Like in the case of starting points random selection and 

correction, also here a situation may occur that after the correction 

mi,j = mi,j+1 and ni,j = ni,j+1. 

Stopping the iterative process if mi,j > MM or ni,j > NM that is in the 

cases, when indicated point oi,j will be outside the image. 

Stopping the iterative process if |L(mi,j, ni,j) - L(mi,j+1, ni,j+1)|> 

where Δα is the next parameter set for acceptable contour curvature. 

At this stage consecutive contour components for set parameters are 

obtained. These parameters comprise: 

 mask size hx and hy ((24), (25)) closely related to the image resolution 

and to the size of areas identified, adopted for MMxNM = 864x1024 on 

MHxNH=23x23, 

 pr – threshold responsible for the number of starting points (29) – 

changed practically within the range 0-0.1, 

 jMAX – the maximum acceptable iterations number – set arbitrarily at 

100, 

  - angle range set within the range 10-70°, 

 MHxNH – size of the correction area, a square area, changed within the 

range from MHxNH=5x5 to MHxNH=25x25, 

 Aij – amplitude, constant for individual i,j, set at Ai,j=MH, 

  - acceptable maximum change of angle between consecutive 

contour points, set within the range 10-70°. 

For the artificial image presented in Fig. 4-40 an iterative process of 

contours determination has been performed, assuming pr=0.1, =45
o
, 

MHxNH=5x5. The results obtained are presented in Fig. 4-40. 
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Fig. 4-40 Artificial input image with 
marked contour components 

Fig. 4-41 Artificial input image with 
marked overlapping contour 
components – the number of 

overlapping points of the same 
coordinates is shown in 

pseudocolours 

The source code of the iterative process of contour components 

determination is presented below: 

Lz=zeros(size(Lalp)); 

Lz2=zeros(size(Lalp)); 

A=5; 

delta_alph=50; 

n_1=[]; m_1=[]; 

al_1=[]; 

for i=1:length(n) 

    ns_=[]; 

    ms_=[]; 

    ks_=[]; 

    ns_(1)=[n(i)]; 

    ms_(1)=[m(i)]; 

    ii=1; 

    alp_1=Lalp(ms_(ii),ns_(ii)); 

    al_1(i,1)=[alp_1]; 

    kat_r=0;  

    while kat_r<delta_alph 

        alp_1=Lalp(ms_(end),ns_(end)); 

        n_p1=round(ns_(end)+A*cos((alp_1+90)*pi/180)); 

        m_p1=round(ms_(end)+A*sin((alp_1+90)*pi/180)); 

        if 

(n_p1<1)|(m_p1<1)|(n_p1>size(Lalp,2))|(m_p1>size(Lalp,1)) 

            break 

        end 
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        [n_pp1,m_pp1]=OCT_NOISE_area(n_p1,m_p1,Lg,H);     

        if 

sum(sum([round(m_pp1)==ms_',round(n_pp1)==ns_'],2)==2)>1 

            disp('zabezpiecz') 

            break 

        end 

        if ii>100 

            [i, ii] 

            break 

        end     

        ii=ii+1; 

        

[nss,mss]=OCT_NOISE_line([ns_(end),n_pp1],[ms_(end),m_pp1])

; 

        ns_=[ns_;round(nss')]; 

        ms_=[ms_;round(mss')]; 

        ks_(ii)=alp_1; 

        kat_r=abs(alp_1-Lalp(ms_(end),ns_(end))); if 

kat_r>180; kat_r=180-kat_r; end 

    end 

        n_1(i,1:length(ns_))=ns_; 

        m_1(i,1:length(ms_))=ms_; 

        al_1(i,1:length(ks_))=ks_; 

        for im=1:length(ns_) 

            Lz(ms_(im),ns_(im))=Lz(ms_(im),ns_(im))+1; 

        end 

    plot(ns_,ms_,'g-*','LineWidth',3) 

    pause(0.0000001) 

end 

figure; imshow(Lz,[],'notruesize'); colormap('jet'); 

colorbar 

where OCT_NOISE_line is a function intended for generation of 

discrete points on the section connecting the points given, i.e.: 

function [n_,m_]=OCT_NOISE_line(n,m) 

if (abs(n(1)-n(2))==0)&(abs(m(1)-m(2))==0) 

    n_=n; m_=m; 

else 

    if abs(n(1)-n(2))<abs(m(1)-m(2)) 

        if m(1)<m(2) 

            m_=m(1):m(2); 

        else 

            m_=m(1):-1:m(2); 

        end 

        if n(1)~=n(2) 

            n_=n(1):((n(2)-n(1))/(length(m_)-1)):n(2); 

        else 

            n_=ones(size(m_))*n(1); 

        end 
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    else 

        if n(1)<n(2) 

            n_=n(1):n(2); 

        else 

            n_=n(1):-1:n(2); 

        end 

        if m(1)~=m(2) 

            m_=m(1):((m(2)-m(1))/(length(n_)-1)):m(2); 

        else 

            m_=ones(size(n_))*m(1); 

        end 

    end 

end 

When analysing results presented in Fig. 4-40 it should be noticed that 

the iterative process is stopped only when mi,j = mi,j+1 and ni,j = ni,j+1 (as 

mentioned before). That is only if points oi,j and oi,j+1 have the same 

position. Instead, this condition does not apply to points oi,j which have 

the same coordinates but for different „i‟ that is originated at specific 

iteration point from various starting points. Easing of this condition leads 

to origination of overlapping contour components (Fig. 4-41) which will 

be analysed in the next sections. 

4.9.4 Determination of Contours from Their Components 

As presented in Fig. 4-41 in the previous section, the iterative process 

carried out may lead to overlapping of points oi,j of the same coordinates 

originated from various starting points (mi,j, ni,j). This property is used for 

final determination of layers contour on an OCT image. In the first stage 

the image Lz from Fig. 4-41, is subject to decimal to binary conversion, 

i.e. the image that originated as follows: 

 


 


other0

nn  mmjezeli1
nm,L

ji,ji,

jZ,  
(32) 

For j=1,2,3,… and finally Lz(m,n): 

   
j

jZ,Z nm,Lnm,L

 
(33) 

    bZZB pnm,Lnm,L 
 (34) 
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Where LZB is a binary image originated from decimal to binary 

conversion of image Lz with threshold pb. The selection of threshold pb is 

a key element for further analysis and correction of the contour 

generated. In a general case a situation may occur, where despite 

relatively low value pr of threshold assumed a selected starting point oi,1 

is situated outside the object‟s edge. Then the next iterations may 

„connect‟ it (in consecutive processes (32), (33), with the remaining part. 

In such case the process of protruding branches removing should be 

carried out – like branch cutting in skeletonisation. In this case the 

situation is a bit easier – there are two possibilities of this process 

implementation: increasing the threshold value pb or considering the 

brightness value LG(mi,j, ni,j) - Fig. 4-42. 

  

Fig. 4-42 Artificial input image including an enlargement of example area 
with contour components marked in green, and preliminary random 

selected points – in red 

4.9.5 Setting the Threshold of Contour Components Sum 

Image 

The selection of threshold pb during image LZB receiving on the one 

hand for high values leads to obtaining those contour components, for 

which the largest number of points overlapped at various „i‟ of oi,j points 

(Fig. 4-43, Fig. 4-44). On the other hand contour discontinuities may 

occur. Therefore the second mentioned method of obtaining the final 

form of contour, which consists of considering values LG(mi,j, ni,j) for 

Lz(mi,j, ni,j) = 1 and higher, was selected. 
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Fig. 4-43 Protruding contour branch 
(green) as an artefact occurring for 
the method described particularly 

visible for noise-affected images and 
results of removing the protruding 

branches (black) 

Fig. 4-44 Protruding contour 
branch as an artefact occurring for 

the method described in a real 
OCT image 

Assuming that two non-overlapping points o1,j and o2,j have been 

random selected, such that m1,j  m2,j or n1,j  n2,j, LM(m1,j, n1,j) and 

LM(m2,j, n2,j) values were determined for consecutive j – Fig. 4-45.  

 

 

Fig. 4-45 Graph of LM(m1,j, n1,j) – red 
and LM(m2,j, n2,j) – green values 

changes for consecutive points j 

Fig. 4-46 Example of results 
obtained for a real OCT image for 

pr=0.02, =80
o
, MHxNH=35x35, 

pb=2, pj=0.8 

Then a maximum value was determined for each sequence of oi,j 

points: 

    
ji,ji,M

j
m n,mLmaxiO 

 
(35) 
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Then all oi,j points were removed, which satisfied the condition 

oi,j<(Om(i)pj), where pj is the threshold (precisely the percentage value of 

Om(i) below which all points are removed). To prevent introduction of 

discontinuities, only points at the beginning of the component contour are 

removed. The value was arbitrarily set to pj=0.8. The obtained results are 

shown in Fig. 4-43 and Fig. 4-46. Example results shown in Fig. 4-46 are 

obtained for a real OCT image for pr=0.02, =80°, MHxNH=35x35, pb=2, 

pj=0.8. Correctly determined contour components and other contour 

fragments, which because of the form of relationship (34) and limitation 

for Om(i) have not been removed, are visible. However, on the other hand 

the number and form of parameters available allows pretty high freedom 

in such their selection as to obtain the expected results. The final form of 

algorithm was formulated on this basis. 

[Lgray,map]=imread(['D:\OCT\FOLDERS\2.OCT\SKAN7.bmp']); 

Lgray=Lgray(1:850,:); 

Lgray=ind2gray(Lgray,map); 

Lgray=double(Lgray)/255; Lorg=Lgray; 

L=imresize(Lgray,0.5); 

Lm=medfilt2(L,[3 3]); 

Lm=mat2gray(Lm); 

figure; imshow(Lm) 

     Nx1=5; 

     Sigmax1=24; 

     Nx2=5; 

     Sigmax2=24; 

     Theta1=pi/2; 

     Ny1=5; 

     Sigmay1=24; 

     Ny2=5; 

     Sigmay2=24; 

     Theta2=0; 

     alfa=0.15; 

hx=OCT_NOISE_gauss(Nx1,Sigmax1,Nx2,Sigmax2,Theta1); 

Lgx= conv2(Lm,hx,'same'); 

hy=OCT_NOISE_gauss(Ny1,Sigmay1,Ny2,Sigmay2,Theta2); 

Lgy=conv2(Lm,hy,'same');  

Lalp=atan2(Lgy,Lgx); 

Lalp=Lalp*180/pi; 

Lg=mat2gray(abs(Lgx)+abs(Lgy)); 

figure; imshow(Lg,[],'notruesize'); colormap('jet'); 

colorbar 

figure; imshow(Lalp,[],'notruesize'); colormap('jet'); 

colorbar 

figure; imshow(Lg,[],'notruesize'); hold on 

pr=0.05; 

Lrand=rand(size(Lg)); 
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[n,m]=meshgrid(1:size(Lrand,2),1:size(Lrand,1)); 

n(Lrand>(Lg*pr))=[]; 

m(Lrand>(Lg*pr))=[]; 

plot(n,m,'r.'); 

H=ones(5); 

[n,m]=OCT_NOISE_area(n,m,Lg,H); 

plot(n,m,'g.'); hold on 

Lz=zeros(size(Lalp)); 

A=5; 

delta_alph=50; 

n_1=[]; m_1=[]; 

al_1=[]; 

for i=1:length(n) 

    ns_=[]; 

    ms_=[]; 

    ks_=[]; 

    nma_=[]; 

    ns_(1)=[n(i)]; 

    ms_(1)=[m(i)]; 

    ii=1; 

    alp_1=Lalp(ms_(ii),ns_(ii)); 

    al_1(i,1)=[alp_1]; 

    kat_r=0;  

    while kat_r<delta_alph 

        alp_1=Lalp(ms_(end),ns_(end)); 

        n_p1=round(ns_(end)+A*cos((alp_1+90)*pi/180)); 

        m_p1=round(ms_(end)+A*sin((alp_1+90)*pi/180)); 

        if 

(n_p1<1)|(m_p1<1)|(n_p1>size(Lalp,2))|(m_p1>size(Lalp,1)) 

            break 

        end 

        [n_pp1,m_pp1]=OCT_NOISE_area(n_p1,m_p1,Lg,H);     

        if 

sum(sum([round(m_pp1)==ms_',round(n_pp1)==ns_'],2)==2)>1 

            disp('zabezpiecz') 

            break 

        end 

        if ii>100 

            [i, ii] 

            break 

        end     

        ii=ii+1; 

        [nss,mss]=line_([ns_(end),n_pp1],[ms_(end),m_pp1]); 

        ns_=[ns_;round(nss')]; 

        ms_=[ms_;round(mss')]; 

        ks_(ii)=alp_1; 

        kat_r=abs(alp_1-Lalp(ms_(end),ns_(end))); if 

kat_r>180; kat_r=180-kat_r; end 

    end 

        n_1(i,1:length(ns_))=ns_; 
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        m_1(i,1:length(ms_))=ms_; 

        al_1(i,1:length(ks_))=ks_; 

        for im=1:length(ns_) 

            Lz(ms_(im),ns_(im))=Lz(ms_(im),ns_(im))+1; 

            nma_(im)=Lg(ms_(im),ns_(im)); 

        end 

    ns_s=ns_; ms_s=ms_; m_nma_=max(nma_(:)); 

    for bg=1:length(nma_) 

        if nma_(bg)<(m_nma_*0.8) 

            ns_s(1)=[];ms_s(1)=[]; 

        else 

            break 

        end 

    end     

    plot(ns_s,ms_s,'r','LineWidth',3) 

pause(0.0000001) 

end 

In most cases the obtaining of intended contour shape is possible for 

one fixed MHxNH value. However, it may turn out necessary to use a 

hierarchical approach, for which the MHxNH size will be reduced, thanks 

to which a higher precision of the proposed method will be obtained and 

the weight (hierarchy) of individual contours importance will be 

introduced. Examples of results obtained for the algorithm given 

ultimately in this form are as follows.  

  

Fig. 4-47 Image LG Fig. 4-48 Image Lα 
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Fig. 4-49 Image Lz with determined 
contours marked red 

Fig. 4-50 Enlarged fragment of Lz 
image 

4.9.6 Properties of the Algorithm Proposed 

The algorithm created is presented in a block diagram – Fig. 4-51. 

 

Fig. 4-51 Block diagram of proposed contour detection algorithm (and 
hence layers on an OCT eye image) 
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The assessment of proposed algorithm properties (Fig. 4-51) was 

carried out evaluating error δ in contour determination for changing 

parameters pr, Δα, MHxNH, pb, pj within the range pr(0,0.1), , 

MHxNH(3,35) pb, pj. An artificial image of rectangular object located 

centrally in the scene (Fig. 4-52) has been used in the assessment. 

  

Fig. 4-52 Artificial input image 
used for error assessment  

Fig. 4-53 Graph of error  values 

changes and its minimum min and 

maximum max value vs. MMxNM 

Instead, the error was defined as follows: 

  
j

jw,ji,jw,ji, nnmm
j

1
δ

 

(36) 

 jw,ji,jw,ji,
j

min nnmmminδ 
 

(37) 

 jw,ji,jw,ji,
j

max nnmmmaxδ 
 

(38) 

assuming that only one point, i.e. i=1, was random selected. The 

second part of the assessment consists of points of discontinuity against 

the standard contour.   

Fig. 4-53 shows the graph of error δ values changes and its minimum 

min and maximum max value vs. MMxNM changing between 3 and 35. 

The algorithm intended for properties analysis comprises the already 

presented source code (as a fundamental part) supplemented with 

fragments related to the specific nature of the object (Fig. 4-42) and 

measurements of its properties.   
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for MN=3:34 

L1=zeros(100);  

L1(40:80,10:70)=1; 

[xw,yw]=meshgrid(1:size(L1,2),1:size(L1,1)); 

L111=xor(L1,imerode(L1,ones(3))); 

xw(L111==0)=[]; 

yw(L111==0)=[]; 

L2=imnoise(L1,'gaussian',0.2); 

L3=medfilt2(L2,[3 3]); 

L4=mat2gray(L3); 

     Nx1=8; 

     Sigmax1=MN; 

     Nx2=8; 

     Sigmax2=MN; 

     Theta1=pi/2; 

     Ny1=8; 

     Sigmay1=MN; 

     Ny2=8; 

     Sigmay2=MN; 

     Theta2=0; 

     alfa=0.15; 

hx=OCT_NOISE_gauss(Nx1,Sigmax1,Nx2,Sigmax2,Theta1); 

Lgx= conv2(L4,hx,'same'); 

hy=OCT_NOISE_gauss(Ny1,Sigmay1,Ny2,Sigmay2,Theta2); 

Lgy=conv2(L4,hy,'same');  

alp=atan2(Lgy,Lgx); 

Lalp=alp*180/pi; 

Lg=mat2gray(abs(Lgx)+abs(Lgy)); 

figure; imshow(L4,'notruesize'); 

hold on 

Lrand=rand(size(Lg)); 

[n,m]=meshgrid(1:size(Lrand,2),1:size(Lrand,1)); 

n(Lrand>(Lg*0.02))=[]; 

m(Lrand>(Lg*0.02))=[]; 

plot(n,m,'b.'); 

Lz=zeros(size(Lalp)); 

delta_alph=50; 

Lz2=zeros(size(Lalp));  

H=ones(5); 

A=5;  

z_kat=80; 

[n,m]=OCT_NOISE_area(n,m,Lg,H); 

plot(n,m,'g.'); hold on 

n_1=[]; m_1=[]; 

al_1=[]; 

… 

… 

    plot(xw,yw,'k*','LineWidth',3) 

nmabs_=[]; 

for jjx=1:size(n_1,1) 
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    for jjy=1:size(n_1,2) 

        if (m_1(jjx,jjy)+n_1(jjx,jjy))>0 

      nmabs_(jjx,jjy)=Lg(m_1(jjx,jjy),n_1(jjx,jjy));   

        end 

    end 

end 

blad_=[]; 

for cd=1:length(xw) 

    blad_(cd)=min(min(abs(n_1-xw(cd))+abs(m_1-yw(cd)))); 

end 

MN_w=[MN_w;[MN, sum(blad_)./length(blad_) min((blad_)) 

max((blad_))]]; 

end 

figure;  

[AX1,H1,H2] = 

plotyy(MN_w(:,1),MN_w(:,2),MN_w(:,1),MN_w(:,4),'plot'); 

set(get(AX1(1),'Ylabel'),'String','\delta','FontSize',20,'C

olor','k') 

set(get(AX1(2),'Ylabel'),'String','\delta_{min},\delta_{max

}','FontSize',20,'Color','k') 

set(H1,'LineStyle','-','Marker','s','LineWidth',2) 

set(H2,'LineStyle','-','Marker','+') 

set(AX1(2),'Ylim',[min(min(MN_w(:,3:4))),max(max(MN_w(:,3:4

)))]) 

xlabel('M_MxN_M','FontSize',20) 

grid on 

hold on 

[AX2,H1,H2] = 

plotyy(MN_w(:,1),MN_w(:,2),MN_w(:,1),MN_w(:,3),'plot'); 

set(H2,'LineStyle','-','Marker','v'); 

set(AX2(2),'Ylim',[min(min(MN_w(:,3:4))),max(max(MN_w(:,3:4

)))]); 

legend([AX1,AX2(2)],'\delta','\delta_{min}','\delta_{max}') 

As it can be seen (Fig. 4-53) ) the values of δ error fall within the 

0.5-0.7 range, what is a small value as compared with the error 

originating during the algorithm operation for wide changes of other 

parameters. 
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Fig. 4-54 Graph of error  values 

changes and its minimum min and 

maximum max value vs. pr 

Fig. 4-55 Graph of error  values 

changes and its minimum min and 

maximum max value vs. MHxNH 

Fig. 4-54 shows the graph of error δ values changes and its minimum 

min and maximum max value vs. pr. As it results from (29), the change of 

threshold pr value is directly connected with the number of selected 

points. For pr=0.02 and higher values the number of random selected 

points is that large that it is possible to assume that starting from this 

value their number does not have a significant influence on error  value. 

Fig. 4-55 shows the graph of error δ values changes and its minimum min 

and maximum max value vs. MHxNH. Both the choice of the points 

position correction area MHxNH and the amplitude Ai,j which in practical 

application is constant for various „i‟ and „j‟ is a key element affecting 

the error and thereby the precision of contours reconstruction. As may be 

seen from Fig. 4-55 the value of δ versus MHxNH is relatively large for 

Ai,j=const=9 (for variables „i‟ and „j‟), for which the computations were 

carried out. A strict relationship between error δ values changes vs. 

MHxNH and Ai,j is visible in Fig. 4-56 and Fig. 4-57 the maximum value 

δmax Fig. 4-57. Based on this it is possible to determine the relationship 

between MH=NH and Ai,j, i.e.: MH=NH1.4*Ai,j (in graphs in Fig. 4-56 

and Fig. 4-57 for the minimum error value it may read e.g. MH=NH=25 at 

Ai,j=35). 
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Fig. 4-56 Graph of error  values 
changes versus MHxNH and Ai,j 

Fig. 4-57 Graph of maximum error 

max values changes versus MHxNH 
and Ai,j 

From Fig. 4-56 and Fig. 4-57 it may be noticed that high error values 

occur for small MHxNH values and high Ai,j. This results from the fact 

that the consecutive points oi,j+1 are separated from oi,j by Ai,j and their 

local position correction occurs within a small MHxNH range. At high Ai,j 

the rounding originating in computations of Lα value formula (28) causes 

large deviations of oi,j+1 points from the standard contour, what 

substantially affects the δ and δmax error. Verification of these parameters 

may be implemented in a similar way as the previous source code with 

modifications in appropriate places. An attentive Reader will 

successfully introduce necessary modifications in appropriate place of 

the previous source code. 

4.9.7 Assessment of Results Obtained from the Random 

Method 

The method described gives correct results at contours determination 

(layers separation) both on OCT images as well as on others, for which 

classical methods of contours determination do not give results or the 

results do not provide a continuous contour. The algorithm drawbacks 

include a high influence of noise on the results obtained. This results 

from relationship (29) where pixels of pretty high value, resulting from a 

disturbance, increase the probability of selecting in this place a starting 

point and hence a component contour. The second drawback is the 

computations time, which is the longer the larger is the number of 

selected points and/or the reason, for which searching for the next points 

oi,j+1 was stopped (these are limitations specified in section 4).   
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Fig. 4-58 below presents the enlarged results obtained for an example 

of OCT image. 

 

Fig. 4-58 Example of final enlarged result obtained for a real OCT image 

for pr=0.02, =45
o
, MHxNH=35x35, pb=2, pj=0.8, Ai,j=25 

The algorithm presented may be further modified and parametrised, 

e.g. through Ai,j change for various „i‟ and „j‟ acc. to the criterion 

suggested or having considered weights of individual oi,j points and 

taking them into account as the iteration stopping condition etc. 

4.10 Layers Recognition on Tomographic Eye Image Based 

on Canny Edge Detection 

4.10.1 Canny Filtration 

The input image Lgray is initially subject to filtration using a median 

filter of (MhxNh) size of h=13x13 mask. The obtained LMED image is 

subject to another filtration using a modified Canny filter, for which the 

next filtration stages are presented in the next sections – as a reminder: 

[Lgray,map]=imread(['D:\OCT\FOLDERS\2.OCT\SKAN7.bmp']); 
Lgray=Lgray(1:850,:); 
Lgray=ind2gray(Lgray,map); 
Lgray=double(Lgray)/255; 
Lmed=medfilt2(Lgray,[13 13]); 
Lmed=mat2gray(Lmed); 
figure; imshow(Lmed) 

 The first stage of the edge detection method used [14], [35], [40], 

[41] consists of making a convolution of input image LMED [6], i.e.: 

      
 
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(39) 
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(40) 

with the following Gauss filters masks, e.g. of dimensions 3 x 3 

(Fig. 4-59, Fig. 4-60): 
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Fig. 4-59. Mask hx of filter for the ox 
axis 

Fig. 4-60. Mask hy of filter for the oy 
axis 

The matrix of gradient in both directions necessary to determine the 

edges has been determined in accordance with a classical dependence: 

     2GY

2

GXGXY nm,Lnm,Lnm,L 
 

(41) 

and pxy threshold: 
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
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

 
  

(42) 

where ε is a coefficient selected within the range  0,1ε . 

A practical implementation of this, initial, phase of algorithm should 

not give rise to any difficulties: 

    Nx1=13; 

    Sigmax1=2; 

    Nx2=13; 

    Sigmax2=2; 

    Theta1=pi/2; 

    Ny1=13; 

    Sigmay1=4; 

    Ny2=13; 

    Sigmay2=4; 

    Theta2=0; 

    epsilon=0.15; 

hx=OCT_NOISE_gauss(Nx1,Sigmax1,Nx2,Sigmax2,Theta1); 

Lgx= conv2(Lmed,hx,'same'); 

Lgx(Lgx<0)=0; 

figure; imshow(Lgx,[]) 
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hy=OCT_NOISE_gauss(Ny1,Sigmay1,Ny2,Sigmay2,Theta2); 

Lgy=conv2(Lmed,hy,'same');  

Lgy(Lgy<0)=0; 

figure; imshow(Lgy,[]) 

Lgxy=sqrt(Lgx.*Lgx+Lgy.*Lgy); 

figure; imshow(Lgxy) 

I_max=max(max(Lgxy)); 

I_min=min(min(Lgxy)); 

pxy=epsilon*(I_max-I_min)+I_min; 

Lgxym=max(Lgxy,pxy.*ones(size(Lgxy))); 

figure; imshow(Lgxym,[]) 

 The obtained images are shown below (Fig. 4-61 - Fig. 4-64). 

  

Fig. 4-61 Image LMED Fig. 4-62 Image LGX 

  

Fig. 4-63 Image LGY Fig. 4-64 Image LGXYM 

  For the final form of the formula for the matrix of edges containing 

image, i.e. LBIN_KR it is necessary to define LGXYM, i.e.: 



 

 
 

122 Layers Recognition on Tomographic Eye Image Based on Canny Edge 

Detection 

 
 
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(43) 

and (xi,yi) and (xj,yj) coordinates of ixy and jxy values, respectively, 

determined from the relationship 

  nm,αcosxi   oraz   nm,αcosx j   (44) 

  nm,αsinyi   oraz   nm,αsiny j   (45) 

where angle α was determined for each pair of pixels LGX and LGY: 
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(46) 

and then the ixy and jxy values, which assume the level of saturation 

acc. to values interpolated on the plane determined from the area of 3 x 3 

resolution from LGXYM(mm, nn), where m and n are equal to 1 

(Fig. 4-65, Fig. 4-66).  

  

Fig. 4-65 Graphic interpretation of ixy 
and jxy points location in a fragment 

of LGXYM(m1, n1) image 

Fig. 4-66 Input image LMED and 
white pixels of LBIN_KR image 

Hence the output image of edges determined using the Canny method 

LBIN_KR is equal to: 
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An example of OCT image generated for  = 0.15, where for better 

assessment of results obtained white pixels of LBIN_KR image have been 

shown in Fig. 4-66. The source code of this part is given below 

[M,N]=size(Lgxym); 

Lkr=zeros(size(Lgxym)); 

for m=2:M-1, 

for n=2:N-1, 

    if Lgxym(m,n) > pxy, 

        X=[-1,0,+1;-1,0,+1;-1,0,+1]; 

        Y=[-1,-1,-1;0,0,0;+1,+1,+1]; 

        Z=[Lgxym(m-1,n-1),Lgxym(m-1,n),Lgxym(m-

1,n+1);Lgxym(m,n-1),Lgxym(m,n),Lgxym(m,n+1);Lgxym(m+1,n-

1),Lgxym(m+1,n),Lgxym(m+1,n+1)]; 

        alp=atan2(Lgy(m,n),Lgx(m,n)); 

        ss=sin(alp); 

        cc=cos(alp); 

        XI=[cc, -cc]; 

        YI=[ss, -ss]; 

        ZI=interp2(X,Y,Z,XI,YI); 

        if Lgxym(m,n) >= ZI(1) & Lgxym(m,n) >= ZI(2) 

            Lkr(m,n)=I_max; 

        else 

            Lkr(m,n)=I_min; 

        end 

    else 

        Lkr(m,n)=I_min; 

    end 

end 

end 

figure; imshow(Lkr,[]); 

Lbin_kr=Lkr>0; 

figure; imshow(Lbin_kr) 

The results obtained are presented in Fig. 4-67, Fig. 4-68. 
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Fig. 4-67 Image LKR Fig. 4-68 Image LBIN_KR imposed on 
image LMED 

The LBIN_KR image further on provides the basis for the next steps of 

the algorithm operation. 

4.10.2 Features of Line Edge 

For the LBIN_KR image a labelling operation has been carried out, 

where each cluster (of values „1‟) has its label et = 1, 2,...,Et-1, Et. 

Lind=bwlabel(Lbin_kr); 

figure; imshow(Lind,[]); colormap('jet'); colorbar 

Then for each label et a dilatation operation is performed for a 

rectangular structural element SEd of dimension 5 x 1 oriented acc. to the 

value of angle α(m,n), where the origin of coordinates was placed in its 

first row [26]. The obtained LIND image in pseudocolours is shown in 

Fig. 4-69. 

 

et Pet Iet 

1 26 0.2524 

2 33 1.000 

3 43 0.2038 

4 25 0.1344 

5 4 0.1250 

6 1 0.1250 

7 10 0.1250 

8 16 0.1250 

9 36 0.1250 
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Fig. 4-69 Image LIND in pseudocolours 
(label 178) 

Fig. 4-70 Table of weights with 
examples of values for objects 

with first labels et 

Fig. 4-70 shows weight values for consecutive (from among the initial 

ones) labels of LIND image (Fig. 4-69) i.e. binary images Let, where Pet is 

the surface of object for label et and Iet is the average value of its level of 

grey, i.e.: 
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(49) 

The determined Pet and Iet values will be later on used as features 

during ultimate analysis of edge lines. These values have been written in 

order in the data variable in the following source code: 

data=[]; xd=[]; xdpk=[]; yd=[]; ydpk=[]; 

Let_=zeros(size(Lind)); 

for et=1:max(Lind(:)) 

Let=(Lind==et); 

[xx_,yy_]=meshgrid(1:size(Let,2),1:size(Let,1)); 

xx_(Let==0)=[]; 

yy_(Let==0)=[]; 

xd(et,1:length(xx_))=xx_; 

yd(et,1:length(yy_))=yy_; 

xdpk(et,1:2)=[xx_(1),xx_(end)]; 

ydpk(et,1:2)=[yy_(1),yy_(end)]; 

Let2=Let; 

Let3=Let; 

for i=8:(size(Let,1)-8) 

    for j=8:(size(Let,2)-8) 

        p=Let(i,j); 

        if p>0; 

            alp=atan2(Lgy(i,j),Lgx(i,j)); 

            ss=sin(alp); 

            cc=cos(alp); 

            Let2(round(i+ss),round(j+cc))=p;  

            Let2(round(i+2*ss),round(j+2*cc))=p;  

            Let2(round(i+3*ss),round(j+3*cc))=p;  

            Let2(round(i+4*ss),round(j+4*cc))=p;  

            Let2(round(i+5*ss),round(j+5*cc))=p;  

            Let2(round(i+6*ss),round(j+6*cc))=p;  

            Let2(round(i+7*ss),round(j+7*cc))=p;  
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            Let3(round(i-ss),round(j-cc))=p;  

            Let3(round(i-2*ss),round(j-2*cc))=p;  

            Let3(round(i-3*ss),round(j-3*cc))=p;  

            Let3(round(i-4*ss),round(j-4*cc))=p;  

            Let3(round(i-5*ss),round(j-5*cc))=p;  

            Let3(round(i-6*ss),round(j-6*cc))=p;  

            Let3(round(i-7*ss),round(j-7*cc))=p;  

        end 

    end 

end 

Let_((Let2+Let3)>0)=et; 

data(et,1)=et; 

data(et,2)=sum(sum(Let)); 

Lmed_1=Let2.*Lmed; Lmed_1(Let2==0)=[]; 

Lmed_2=Let3.*Lmed; Lmed_2(Let3==0)=[]; 

Lmed_3=Let.*Lmed; Lmed_3(Let3==0)=[]; 

data(et,4)=mean(Lmed_1)-mean(Lmed_2); 

data(et,3)=mean(Lmed_3); 

end         

figure; imshow(Let_,[]); colormap('jet'); colorbar 

Matrices Let2 and Let3 have been used in the above source code, being 

the result of dilatation on the one and on the other side of analysed pixel 

of the et area. In addition, coordinates of the beginning and of the end of 

the analysed et area have been written in variables zdpk and ydpk. This data 

will be necessary at a further stage of connecting individual contour 

fragments. 

4.10.3 Contour Line Correction 

Each solid line of edge visible in Let image for labels et=1,2,...,Et-1,Et 

is transformed into the form of xet and yet vector of points‟ coordinates in 

a Cartesian coordinate system. The method of contour line correction is 

applied to „elongation‟ of each edge in both directions. To this end for 

the first two pairs of coordinates of the first edge (x1(1), y1(1)) and 

(x1(2), y1(2)) as well as for the last two (x1(end-1), y1(end-1)) and 

(x1(end), y1(end)) a straight line passing through those points is 

determined (end – means the last element), i.e. in accordance with 

demonstrative illustration below (Fig. 4-71): 
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Fig. 4-71 Graphic interpretation of the contour correction method to 
determine consecutive points starting from the position of points (x1(end-
1),y1(end-1)) and (x1(end),y1(end)) for a new point (pixel) to be determined 

(x1,k(1),y1,k(1)). To simplify, the angle of inclination of end points of the 

edges has been set as =0° 

Fig. 4-71 presents the ideas of contour correction method, where 

starting from the position of points (x1(end-1),y1(end-1)) and 

(x1(end),y1(end)) the straight line passing through them is determined 

with a slope β1, i.e.: 
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(50) 

and at the distance of Δxy the position of new point (x1,k(1), y1,k(1)) is 

determined for its various potential positions (within the angle range 

β1(1)α every ). The selection of right position of a contour point 

obtained by adding consecutive points to the existing edge is obtained 

based on the analysis of mean value from eu1(xu,yu,,1) and eu1(xd,yd,,1) 

areas of Me x Ne size. The difference ΔS is determined for each position 

of point (x1,k(1), y1,k(1)): 
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(51) 

where:  
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xu, yu – coordinates of consecutive elements of matrix eu and hu 

situated atop relative to the analysed point (x1,k(1),y1,k(1)), for which 

xu{1,2,..., Nu–1,Nu} and yu{1,2,..., Nu–1,Nu} 

xd, yd – coordinates of consecutive elements of matrix ed and hd 

situated at the bottom relative to the analysed point (x1,k(1),y1,k(1)), for 

which xd{1,2,..., Nd–1,Nd} and yd{1,2,..., Nd–1,Nd} 

and hu and hd masks for MexNe =3x2 
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Fig. 4-72  Mask hu for MexNe =3x2 Fig. 4-73 Mask hd for MexNe =3x2 

The areas (matrices) eu and ed of MexNe size are created based on 

angle β and α every Δα in the following way: 
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where xu{1,2,3,... Ne-1,Ne} and xu{1,2,3,... Ne-1,Ne} and 1(1), in 

general 1(v1): 
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(54) 

for v1{2,3,... V1-1,V1}, V1 – a total number of points of contour 

correction implemented for line 1 of the contour. 

The angle, for which there is the best fit of the analysed point 

(x1,k(v1), y1,k(v1)), is calculated as α* for which S(v1,) reaches a 

maximum or minimum depending on the position and brightness of the 

analysed object. 
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
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Consecutive points determined for increasing v1 must be limited. The 

minimum value S(v1, *) limited by threshold pr is this bound. 

The suggested method of contour correction has very interesting 

properties. Parameters of this part of algorithm include: 

 - the angle, within which the best fit is sought with regard 

to the given criterion,   

 - accuracy, with which the best fit is sought,   

xy - the distance between the current and the next sought 

point of the active contour, 

Me - height of analysed area eu and ed, 

Ne - width of analysed area eu and ed. 

The function constructed on this basis is presented below. 

function 

[x_out,y_out,wagi,iter]=OCT_COR_LINE(Lmed,x_in,y_in,udxy_,m

ene,alpha,iter_,pr,dxy) 

wagi=[]; 

xi=x_in(end); yi=y_in(end); 

beta=atan2((y_in(end)-y_in(end-1)),(x_in(end)-x_in(end-

1)));  

x_out=xi;y_out=yi; 

for iter=1:iter_  

    eu=[]; ed=[]; deltaS=[]; 

   for alpha_=-alpha:alpha  

       for udxy=0:udxy_ 

            yi_=yi+udxy*sin(beta+alpha_*pi/180); 

            xi_=xi+udxy*cos(beta+alpha_*pi/180); 

            al_be=beta+(alpha_+90)*pi/180; 

            ss=sin(al_be); 

            cc=cos(al_be); 

            for mene_=1:mene 

                yy=round(yi_+mene_*ss); 

                xx=round(xi_+mene_*cc); 

                if 

(yy>1)&(yy<=size(Lmed,1))&(xx>1)&(xx<=size(Lmed,2)) 

                    eu(udxy+1,mene_)=Lmed(yy,xx)/mene_; 

                else 

                    eu(udxy+1,mene_)=0; 

                end 

            end 

            for mene_=1:mene 

                yy=round(yi_-mene_*ss); 

                xx=round(xi_-mene_*cc); 

                if 

(yy>1)&(yy<=size(Lmed,1))&(xx>1)&(xx<=size(Lmed,2)) 

                    ed(udxy+1,mene_)=Lmed(yy,xx)/mene_; 

                else 
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                    ed(udxy+1,mene_)=1; 

                end 

            end 

       end 

            deltaS=[deltaS;[alpha_,mean(ed(:))-

mean(eu(:))]]; 

   end 

    deltaS=sortrows(deltaS,2);   

    if  deltaS(1,2)>pr 

        break 

    end 

        wagi(iter)=deltaS(1,2); 

    al_be_=beta+deltaS(1,1)*pi/180; 

            yi=yi+dxy*sin(al_be_); 

            xi=xi+dxy*cos(al_be_); 

    beta=al_be_; 

    xyxy=[x_out',y_out']; 

    if  sum(((round(xyxy(:,1))==round(xi))  +  

(round(xyxy(:,2))==round(yi)))==2)>=2 

        break 

    end 

    x_out=[x_out,xi]; 

    y_out=[y_out,yi]; 

end 

end 

Fig. 4-74 - Fig. 4-77 below present the results obtained for an artificial 

image of a square for modified aforementioned parameters α, Δ, xy, 

Me, Ne changed within the range {1,2,3,...,19,20}, 

Δxy=Ne{1,2,3,...,19,20}, Me{1,2,3,...,19,20} for Δα=1, and pr=-0.001. 

Also the number of iterations was limited to 50. 

  

Fig. 4-74 Artificial image and 
fragment of contour correction 
action for α=40, Δα=1, Me=10, 

Δxy=Ne changed within the range 

Fig. 4-75 Artificial image and 
fragment of contour correction 

action for α=40, Δα=1, Δxy=Ne=4, Me 
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(1,20) changed within the range (1,20) 

  

Fig. 4-76 Artificial image and 
fragment of contour correction 

action for α=40, Me=10, Δxy=Ne=10, 
Δα changed within the range (1,20) 

Fig. 4-77 Artificial image and 
fragment of contour correction 

action for α=45, Me=10, Ne=10, Δα=1, 
and Δxy changed within the range 

(1,20) 

The presented contour correction method has the following properties: 

 - angle defining the range sought in the sense of degree of object 

edge curvature,   

 - accuracy, with which the degree of edge curvature is sought,   

xy - distance between the current and next sought point affecting the 

extent of generalisation and approximation of intermediate values 

(placed between points), 

Me - height of analysed area affecting the algorithm capability to find 

objects of higher level of detail, 

Ne - width of analysed area averaging the contour sought along edges. 

The experiments and algorithm parameters measurements presented 

(Fig. 4-74 - Fig. 4-77) can be easily followed using a short source code: 

Lmed=zeros(300); Lmed(200:250,100:250)=1; 

Lmed=conv2(Lmed,ones(19))./sum(sum(ones(19)));Lmed(220:end,

:)=0; 

figure; imshow(Lmed) 

x_in=[100,101]; y_in=[200,200]; 

hold on; plot(x_in,y_in,'*g-') 

map=jet(20); 

udxy_=4; 

iter_=70; 

pr=-0.0001; 

dxy=4; 

alpha=45; 
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for mene=1:20 

[x_out,y_out,wagi,iter]=OCT_COR_LINE(Lmed,x_in,y_in,udxy_,m

ene,alpha,iter_,pr,dxy) 

    hold on; plot(x_out,y_out,'*-','color',map(mene,:)) 

    axis([222 275 186 236]) 

    pause(0.05) 

end 

We encourage Readers here to perform independent changes of 

x_in,y_in,udxy_,mene,alpha,iter_,pr,dxy values and to experimentally 

verify these parameters influence on the result obtained. 

4.10.4 Final Analysis of Contour Line 

The obtained individual lines of edges et and corresponding values Iet 

and Pet (average value of brightness and surface) have been adjusted. 

Because those edges have been removed, which have 

 et
Etet

ret IpI
},...,3,2,1{

max


  and for which  et
Etet

ret PpP
},...,3,2,1{

max


  where 

threshold pr was arbitrarily taken as 0.2 (20%). For the other edges ek, 

which have not been removed, the adjustment was made using on their 

ends the active contour method. The values of active contour parameters 

were taken as =45, =1, xy=1, Me=11, Ne=11. Iterations for 

individual ek edges of active contour method were interrupted, when one 

of the following situations occurred: 

 the acceptable iterations number was exceeded – set arbitrarily at 

1000, 

 for that point the condition S(vek, *)<ps has not been met, where ps 

was set at -0.02, 

 at least two points have the same coordinates – this prevents looping 

of the algorithm. 

Results obtained for parameters determined this way are presented 

below (Fig. 4-78, Fig. 4-79). 
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Fig. 4-78 Action of modified active 

contour on a real image for =40, 

=1, xy=Ne=11, Me =10. The green 
line marks the contour obtained 

from the Canny method, the red line 
marks consecutive points of active 

contour method 

Fig. 4-79 Action of modified active 
contour after the described 

correction on a real image for =40, 

=1, xy=Ne=11, Me =11 

As shown in the figures above (Fig. 4-78, Fig. 4-79) the method 

suggested correctly detects individual layers on an OCT eye image. 

Further stages, which are planned in this approach continuation, are 

related to a deeper analysis of the algorithm in terms of parameters 

selection. The discussed algorithm fragment looks as follows: 

figure; imshow(Lmed,[]); hold on 

hh=waitbar(0,'Please wait...') 

for et=1:max(Lind(:)) 

    Let=(Lind==et); 

    [x_in,y_in]=meshgrid(1:size(Let,2),1:size(Let,1)); 

    x_in(Let==0)=[]; 

    y_in(Let==0)=[]; 

    mene=15; 

    udxy_=10; 

    alpha=45; 

    dxy=1; 

    pr=-0.01; 

        if length(x_in)>5  

        [x_out,y_out,wagi,iter]=OCT_COR_LINE(Lmed,   

x_in,y_in, udxy_,mene,alpha,1275,pr,  dxy); 

        hold on;  

        plot(x_out,y_out,'w.') 

        pause(0.1) 

        end 

  waitbar(et/max(Lind(:)))       

end 

close(hh) 
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We encourage the Reader again to modify parameters of function 

OCT_COR_LINE allowing obtaining proper results and enabling learning 

the function capabilities. A few artefacts, resulting from improper 

selection of OCT_COR_LINE function parameters, are presented below. 

  

  

Fig. 4-80 Examples of artefacts resulting from improper selection of 

function OCT_COR_LINE parameters 

The presented method of combination of Canny edge detection 

algorithm with the modified active contour algorithm is applied in 

detection of external limiting membranes on tomographic OCT eye 

images. The method proposed may be used during images segmentation 

into other contents than presented, provided that values of parameters 

mentioned are modified [23]. Despite satisfactory results presented above 

there is a pretty large area for research related to modification of the 

algorithm presented in terms of operation time optimisation. The time of 

analysis in this, as well as in many other cases of image analysing 

applications, is of crucial importance in practical use. In terms of 

functionality, implementation difficulties, the speed of operation, this 

method may be classified as an average one. 
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4.11 Hierarchical Approach in the Analysis of 

Tomographic Eye Image 

4.11.1 Image Decomposition  

 Images originating from a Copernicus tomograph due to its 

specific nature of operation are obtained in sequences of a few, a few 

dozen 2D images within approx. 1s, which provide the basis for 3D 

reconstruction [42]. Because of their number, the analysis of a single 2D 

image should proceed within a time not exceeding 10, 20, 30, 40, 50 ms, 

so that the time of operator‟s waiting for the result would not be onerous 

(as it could be easily calculated for the above value, for a few dozen 

images of resolution usually M x N = 740 x 820 in a sequence, this time 

will be shorter than 1 s).  

At the stage of image preprocessing the input image LGRAY is initially 

subject to filtration using a median filter of (MhxNh) size of mask h equal 

to MhxNh=3x3 (in the final software version this mask may be set as 

MhxNh=5x5 to obtain a better precision of algorithm operation for certain 

specified group of images), i.e.:.  
 [Lgray,map]=imread(['D:\OCT\FOLDERS\2.OCT\SKAN7.bmp']); 

Lgray=Lgray(1:850,:); 

Lgray=ind2gray(Lgray,map); 

Lgray=double(Lgray)/255; 

Lm=medfilt2(Lgray,[3 3]); 

Lm=mat2gray(Lm); 

figure; imshow(Lm) 

Image LM obtained this way is subject consecutively to decomposition 

to an image of lower resolution and analysed in terms of layers detection.  

As an assumption, different than those presented in previous algorithm 

sections, the algorithm described should provide satisfactory results 

mainly from the operation speed criterion point of view. Although 

methods (algorithms) described feature high precision of computations, 

however, they are not fast enough (it is difficult to obtain the speed of 

single 2D image analysis on a PII 1.33 GHz processor in a time not 

exceeding 10 ms). Therefore a reduction of image LM resolution by 

approx. a half was proposed to such value of pixels number in lines and 

columns, which is a power of „2‟, i.e.: MxN=256x512 (LM2) applying 

further on its decompositions to image LD16 (where symbol „D‟ means 

decompositions, while „16‟ the size of block, for which it was obtained), 

i.e.: 

d=16; 

fun = @(x) median(x(:)); 
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Ld16 = blkproc(Lm,[d d],fun); 

Each pixel of the input image after decomposition has a value equal to 

a median of the area (block) of 16x16 size of the input image, acc. to 

Fig. 4-81.  

 

 

Fig. 4-81 Blocks arrangement on 
the LM image 

Fig. 4-82 OCT image after 
decomposition – LD16 

An example of result LD16 is presented in Błąd! Nie można odnaleźć 

ródła odwołania.Fig. 4-82. Image LD16 is then subject to determination 

of pixels position of maximum value for each column, i.e.: 

 
    



 


other0

nm,Lmaxnm,Lif1
nm,L

D16
m

D16

DM16  
(56) 

where  m – means a row numbered from one, 

  n – means a column numbered from one. 

Appropriate record in Matlab 

Ldm16=Ld16==(ones([size(Ld16,1) 1])*max(Ld16)); 

figure; imshow(Ldm16,'notruesize') 

Using the described method of threshold setting for the maximum 

value in lines, in 99 percent of cases only one maximum value in a 

column is obtained (Fig. 4-83). 
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Fig. 4-83 Example of LDM16 image Fig. 4-84 Example of LDB16 image 

To determine precisely the position of NFL and RPE boundaries 

(Fig. 4-82) it turned out necessary to use one more LDB16 image, i.e.:   

 
   



 


other0

pn1,mLnm,Lif1
nm,L rD16D16

DB16  
(57) 

for m(1,M-1), n(1,N), where pr – the threshold assumed within the 

range (0, 0.2). 

A record in Matlab looks as follows: 

Ldb16_=zeros(size(Ld16)); 

for n=1:size(Ld16,2)-1 

        Ldb16_(1:end-1,n)=diff(Ld16(:,n)); 

end        

pr=0.1; 

Ldb16=Ldb16_>pr; 

figure; imshow(Ldb16,'notruesize') 

As a result, coordinates of NFL and RPE boundaries position points 

are obtained as such positions of values „1‟ on LDB16 image, for which 

yNFLyRPE and yRPE is obtained from LDB16 image in the same way. 

This method for pr threshold selection at the level of 0.01 gives 

satisfactory results in around 70 percent of cases of not composed images 

(i.e. such, which are not images with a visible pathology). Unfortunately 

for the other 30 percent cases the selection of pr threshold in the adopted 

limits does not reduce the originated errors (Fig. 4-84).  

The correction on this level of erroneous recognitions of NFL and 

RPE layers is that important, that for this approach these errors will not 

be duplicated (in the hierarchical approach presented below) for the 

subsequent more precise approximations. 
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4.11.2 Correction of Erroneous Recognitions 

In LDB16 image (Fig. 4-84) white pixels are visible in an excess 

number for most columns. Two largest objects arranged along „maxima‟ 

in columns entirely coincide with NFL and RPE limits position. Based on 

that and having carried out the above analysis for several hundred 

images, the following limitations were adopted: 

 for coordinates yRPE found on LDM16 image there must be at the same 

time LDM16(m,n)=1 in other cases this point is considered as disturbance 

or as a point of Gw(n) layer, 

 if only one pixel of value ‘1’ occurs on image LDM16 and LDB16 for the 

same position, i.e. for the analysed n there is LDM16(m,n) = LDB16(m,n) 

the history is analysed for n>1 and it is checked, whether |yNFL(n-1) - 

yNFL(n)|> |yRPE(n-1) - yRPE(n)|, i.e.: 

 
   

       














other0

ny1-nyny1-ny

1nm,Lnm,L
ifm

nRp
RPERPENFLNFL

DM16DB16

 
(58) 

 for m(1,M), n(2,N) 

 if |yNFL(n-1)-yNFL(n)||yRPE(n-1)-yRPE(n)|, the condition yNFL(n-1)-

yNFL(n)= 1 is checked (giving thereby up fluctuations against history n-

1 within the range 1 of area A (Fig. 4-81)). If so, then this point is the 

next yNFL(n) point. In the other cases the point is considered as a 

disturbance. It is assumed that lines coincide yNFL(n)=yRPE(n) if yRPE(n-1)-

yRPE(n)=1 and only one pixel occurs of value ‘1’ on LDM16 image. 

 in the case of occurrence in specific column of larger number of pixels 

than 2, i.e. if    2nm,Lsum DB16
m

  a pair is matched (if occurs) yNFL(n-

1), yRPE(n-1) so that |yNFL(n-1)-yNFL(n-1)|- |yRPE(n)-yRPE(n)|=1 would 

occur. In this case it may happen that lines yNFL(n) and yRPE(n) will 

coincide. However, in the case of finding more than one solution, that 

one is adopted, for which LD16(yNFL(n),n)+LD16(yRPE(n),n) assumes the 

maximum value (the maximum sum of weights in LD16 occurs). 

The presented correction gives for the above class of images the 

effectiveness of around 99% of cases. Despite adopted limitations the 

method gives erroneous results for the initial value n=1, unfortunately 

these errors continue to be duplicated.  
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Fig. 4-85 Examples of LDB16 images for pr=0.01 with incorrectly marked 
yNFL(n), yRPE(n) points (layers) 

Unfortunately, the adopted relatively rigid conditions of acceptable 

difference |yNFL(n-1)-yNFL(n-1)| or |yRPE(n)-yRPE(n)| cause origination of 

large errors for another class of tomographic images, on which a 

pathology occurs in any form (Fig. 4-86). 

  

Fig. 4-86 Examples of LDB16 images for pr=0.01 with incorrectly marked 
yNFL(n), yRPE(n) points (layers) 

As it may be seen in Fig. 4-85 and Fig. 4-86 problems occur not only 

for the initial n values, but also for the remaining points. The reason for 

erroneous recognitions of layers positions consists of difficulty in 

distinguishing proper layers in the case of discovering three „lines‟, three 

points in a specific column, which position changes in acceptable range 

for individual n. 

These errors cannot be eliminated at this stage of decomposition into 

16x16 pixels areas (or 32x32 image resolution). They will be the subject 

of further considerations in the next sections.  

The present form of algorithm is a little extended as against the 

description presented above, what results from the necessity to introduce 

numerous limitations and algorithm blocks. As the blocks mentioned are 
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not technically related to the OCT image analysis, they will not be 

discussed here in detail. However, we encourage the Reader to follow 

this, apparently, complicated algorithm.   

pr=0.005;  

[mss,nss,waga_p,L5,L6]=HIERARHICALL_STEP(Lm,fun,d,pr); 

fg=figure; imshow(Lm); hold on 

plot(nss'*d-d/2,mss'*d-d/2,'-*') 

where function HIERARHICALL_STEP is: 

function 

[ynfl_rpe,xnfl_rpe,waga_p,Ld16d,Ldb16z]=HIERARHICALL_STEP(L

m,fun,d,pr) 

ynfl_rpe=[]; xnfl_rpe=[]; waga_p=[]; 

Ld16 = blkproc(Lm,[d d],fun); 

fun2=@(x) max(x(:)); 

Ld16__ = blkproc(Lm,[d d],fun2); 

Ld16__=[Ld16__(2:end,:);Ld16__(end,:)]; 

Ldm16=Ld16__==ones([size(Ld16__,1),1])*max(Ld16__); 

for n=1:size(Ld16,2); Ld16(:,n)=mat2gray(Ld16(:,n)); end 

Ld16d=zeros(size(Ld16)); 

for n=1:size(Ld16,2) 

        Ld16d(1:end-1,n)=diff(Ld16(:,n)).*Ld16(2:end,n); 

end 

Ldm16=zeros(size(Ld16d)); 

for n=1:size(Ld16d,2) 

        Ldm16(1:end,n)=Ld16d(1:end,n)==max(Ld16d(1:end,n)); 

end 

Ldb16=Ld16d>pr; 

Ldb16=bwmorph(Ldb16,'clean'); 

figure; imshow(Ldb16,[],'notruesize'); hold on 

Ldb16_lab=bwlabel(Ldb16); 

Ldb16z=zeros(size(Ldb16_lab)); 

for et=1:max(Ldb16_lab(:)) 

    Ldb16i=(Ldb16_lab==et); 

    if sum(sum(Ldb16i.*Ldm16))>0 

        Ldb16z=Ldb16z|Ldb16i; 

    end 

end 

Ldb16z=bwmorph(Ldb16z,'clean'); 

Ldb16_lab2=bwlabel(Ldb16); 

L77=zeros(size(Ldb16z)); 

for iw=1:size(Ldb16z,2) 

    L77(:,iw)=bwlabel(Ldb16z(:,iw)); 

end 

if (max(L77(:))<2)&(max(Ldb16_lab2(:))==2) 

    Ldb16z=Ldb16;  

end 

ynfl_rpe=[]; xnfl_rpe=[];  
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for iu=1:size(Ld16d,2) 

if sum(Ldb16z(:,iu))>0  

        Ldb16z_lab=bwlabel(Ldb16z(:,iu)|Ldm16(:,iu)); 

        if max(Ldb16z_lab(:))<=2 

            Ldb16z_nr=1:size(Ld16d,1); 

            Ldb16z_nr(Ldb16z(:,iu)==0)=[]; 

            Ld16d_nr=1:size(Ld16d,1); 

            Ld16d_nr(Ldb16(:,iu)==0)=[]; 

            if Ld16d_nr(1)==Ldb16z_nr(end) 

                if size(ynfl_rpe,2)>0  

                    if min(abs(ynfl_rpe(:,end)-

Ldb16z_nr))<=2 

                        if  abs(ynfl_rpe(1,end)-

Ld16d_nr(1))<abs(ynfl_rpe(2,end)-Ld16d_nr(1)) 

                            

ynfl_rpe=[ynfl_rpe,[Ld16d_nr(1);ynfl_rpe(2,end)]]; 

                            xnfl_rpe=[xnfl_rpe,[iu;iu]];                         

                        else 

                            

ynfl_rpe=[ynfl_rpe,[Ld16d_nr(1);Ldb16z_nr(end)]]; 

                            xnfl_rpe=[xnfl_rpe,[iu;iu]]; 

                        end 

                    end 

                else 

                    

ynfl_rpe=[ynfl_rpe,[Ld16d_nr(1);Ldb16z_nr(end)]]; 

                    xnfl_rpe=[xnfl_rpe,[iu;iu]];                 

                end 

            else 

                 

ynfl_rpe=[ynfl_rpe,[Ld16d_nr(1);Ldb16z_nr(end)]]; 

                 xnfl_rpe=[xnfl_rpe,[iu;iu]];                             

            end 

        else 

            et_Ldb16=[]; 

            for et=1:max(Ldb16z_lab) 

                

et_Ldb16=[et_Ldb16;[et,max((Ldb16z_lab==et).*Ld16__(:,iu))]

]; 

            end 

            et_Ldb16=sortrows(et_Ldb16,-2); 

            if et_Ldb16(2,2)*8>et_Ldb16(1,2)  

                if size(ynfl_rpe,2)>0  

                    Ld16d_nr2=1:size(Ld16d,1); 

                    

Ld16d_nr2(Ldb16z_lab~=et_Ldb16(1,1))=[]; 

                    if abs(ynfl_rpe(2,end)-

Ld16d_nr2)<abs(ynfl_rpe(1,end)-Ld16d_nr2)  

                        

et_Ldb16(et_Ldb16(:,1)>et_Ldb16(1,1),:)=[]; 
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                        et_Ldb16=sortrows(et_Ldb16,-2); 

                    else  

                        et_Ldb16=sortrows(et_Ldb16,-2); 

                    end 

                end 

            end 

            et_Ldb16(3:end,:)=[]; 

            et_Ldb16=sortrows(et_Ldb16,1);             

            Ldb16z_nr=1:size(Ld16d,1); 

            if size(et_Ldb16,1)==1 

                Ldb16z_nr(Ldb16z_lab~=et_Ldb16(1,1))=[];                 

            else 

                Ldb16z_nr(Ldb16z_lab~=et_Ldb16(2,1))=[]; 

            end 

            Ld16d_nr=1:size(Ld16d,1); 

            Ld16d_nr(Ldb16z_lab~=et_Ldb16(1,1))=[]; 

            

ynfl_rpe=[ynfl_rpe,[Ld16d_nr(1);Ldb16z_nr(end)]]; 

            xnfl_rpe=[xnfl_rpe,[iu;iu]]; 

        end     

end 

end 

4.11.3 Reducing the Decomposition Area  

The increasing of accuracy and thereby reducing the Am,n area size 

(Fig. 4-81) – block on LM image is a relatively simple stage of 

tomographic image processing with particular focus on the operating 

speed. It has been assumed that Am,n areas will be sequentially reducing 

by half in each iteration – down to 1x1 size. The reduction of Am,n area is 

equivalent to performance of the next stage of lines NFL and RPE 

position approximation.  

The increasing of accuracy (precision) of NFL and RPE lines position 

determined in the previous iteration is connected with two stages: 

 concentration of (m,n) coordinates in the sense of determining 

intermediate ((m,n) points situated exactly in the centre) values by 

means of linear interpolation method; 

 change of concentrated points position so that they would better 

approximate the limits sought. 

If the first part is intuitive and results only in resampling, the second 

requires more precise clarifications. The second stage consists in 

matching individual points to the layer sought. As on the ox axis the 

image by definition is decomposed and pixel‟s brightness on the image 

analysed corresponds to the median value of the original image in 
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window A (Fig. 4-81), the modification of points RPE and NFL position 

occurs only on the vertical axis. The analysis of individual RPE and NFL 

points is independent in the sense of dependence on n-1 point position, as 

was the case in the previous section. 

 

 

Fig. 4-87 Demonstrative diagram 
of the process of RPE course 

matching to the edge of the layer 
sought. Individual pixels 

independent of each other may 
change the position within the 

pu range 

Fig. 4-88 Results of matching for two 
iterations White colour marks input 

RPE points and red and green – 
consecutive approximations 

Each of RPE points, left from the previous iteration, and newly 

created from interpolation, in the consecutive algorithm stages is 

matched with increasingly high precision to the RPE layer.  Point‟s 

RPE(n) position changes within the range of pu (Fig. 4-87) where the 

variation range does not depend on the scale of considerations (size of A 

area) and strictly results from the distance between NFL and RPE 

(Fig. 4-88). For blocks A of 16x16 to 1x1 size pu is constant and amounts 

to 2. This value has been assumed on the basis of, typical for the 

analysed several hundred LGRAY images, average distance between NFL 

and RPE, equal to around 32 pixels, what means that after decomposition 

into blocks A of 16x16 size these are two pixels, that is pu=2. The 

maximum on the LDM image is sought in this ±2 range and a new position 

of RPE or NFL point is assumed for it. Thus the course of RPE or NFL is 

closer to the actual course of the layer analysed. 
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The obtained results of matching are presented in Fig. 4-88. White 

colour shows input RPE values as input data for this stage of algorithm 

and decomposition into blocks A of size 16 x 16 (LDM16 and LDB16 

images), red colour – results of matching for blocks A of size 8 x 8 (LDM8 

and LDB8 images), and green colour – results of matching for blocks A of 

size 4 x 4 (LDM4 and LDB4 images). As may be seen from Fig. 4-88 the 

next decompositions into consecutive smaller and smaller areas A and 

thus image of higher resolution, a higher precision is obtained at the cost 

of time (because the number of analysed RPE, NFL points and their 

neighbourhoods ±pu increases). 

This method for A of 16 x 16 size has that good properties of global 

approach to pixels brightness that there is no need to introduce at this 

stage additional actions aimed at distinguishing layers situated close to 

each other (which have not been visible so far due to image resolution). 

While at areas A of 4x4 size other layers are already visible, which 

should be further properly analysed. At increased precision, ONL layer is 

visible, situated close to RPE layer (Fig. 4-88). Thereby in the area 

marked with a circle there is a high position fluctuation within the oy axis 

of RPE layer. Because of that the next step of algorithm has been 

developed, taking into account separation into RPE and ONL layers for 

appropriately high resolution. In a practical implementation this fragment 

looks as follows: 

function 
[mss2,nss2]=HIERARHICALL_PREC(Lm,mss,nss,fun,d,z,pu) 

mss=mss*z; 

nss=nss*z; 

[mss,nss]=HIERARHICALL_DENSE(mss,nss); 

Ld16 = blkproc(Lm,[d/z d/z],fun); 

Ld16d=zeros(size(Ld16)); 

for n=1:size(Ld16,2) 

        Ld16d(1:end-1,n)=diff(Ld16(:,n)); 

end  

mss2=[]; nss2=[]; 

for m=1:size(mss,1) 

for n=1:size(mss,2) 

    if mss(m,n)~=0 % 

        ms2=mss(m,n); 

        ns2=nss(m,n); 

        m2=ms2+pu; 

        m1=ms2-pu; 

        if m1<=0; m1=1; end  

        if m2>size(Ld16d,1); m2=size(Ld16d,1); end 

            mm12=round(m1:m2); 

            if ~isempty(mm12) 
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                Ld16dmm=Ld16d(mm12,ns2); 

                mm12(Ld16dmm~=max(Ld16dmm))=[]; 

                if ~isempty(mm12) 

                    mss2(m,n)=mm12(1); 

                    nss2(m,n)=ns2; 

                end 

            end 

    end 

end 

end 

Where function HIERARHICALL_DENSE designed to condense the 

number of points on determined layers has the following form: 

    function [y_out,x_out]=HIERARHICALL_DENSE(y_in,x_in) 

    y_out=[0;0]; x_out=[0;0]; 

    y_in(:,x_in(1,:)==0)=[]; 

    x_in(:,x_in(1,:)==0)=[]; 

    for i=1:(size(y_in,2)-1) 

        m_1=y_in(1,i:i+1); 

        n_12=x_in(1,i:i+1); 

        m_2=y_in(2,i:i+1); 

        

x_out(1:2,1:end+length(n_12(1):n_12(2)))=[[x_out(1,:),n_12(

1):n_12(2)];[x_out(2,:),n_12(1):n_12(2)]]; 

        x_out(:,end)=[]; 

        if (m_1(2)-m_1(1))~=0 

            w1=m_1(1):(m_1(2)-

m_1(1))/(length(n_12(1):n_12(2))-1):m_1(2);         

        else 

            w1=ones([1 length(n_12(1):n_12(2))])*m_1(1); 

        end 

        if (m_2(2)-m_2(1))~=0 

            w2=m_2(1):(m_2(2)-

m_2(1))/(length(n_12(1):n_12(2))-1):m_2(2);         

        else 

            w2=ones([1 length(n_12(1):n_12(2))])*m_2(1); 

        end 

        

y_out(1:2,1:end+length(n_12(1):n_12(2)))=[y_out(1:2,:),[w1;

w2]]; 

        y_out(:,end)=[]; 

    end 

    y_out=y_out(:,2:end); 

    x_out=x_out(:,2:end); 

Hence the function HIERARHICALL_PREC is designated to „match‟ 

layers position at any precision. 
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Both functions – HIERARHICALL_PREC and nested 

HIERARHICALL_DENSE – will be used below in the next stages of detected 

layers approximation to the proper position. 

z=2;  

pu=2;  

[mss,nss]=HIERARHICALL_PREC(Lm,mss,nss,fun,d,z,pu); 

    plot(nss'*d/z-d/z/2,  mss'*d/z,'-r*') 

  

z=4;  

pu=3; 

[mss,nss]=HIERARHICALL_PREC(Lm,mss/2,nss/2,fun,d,z,pu); 

plot(nss'*d/z-d/z/2,  mss'*d/z,'-g*') 

The obtained results are shown below in Fig. 4-89 and Fig. 4-90. 

  

Fig. 4-89 Obtained results of RPE, 
NFL layers detection on the Lm 

image 

Fig. 4-90 Obtained results of NFL 
layer detection on the Lm image – 

enlargement of Lm image 

The results shown in Fig. 4-89 and Fig. 4-90 are not perfect. A visible 

minimum of NFL layer results from the lack of filtration at the initial 

stage of yNFL course. Because of that function HIERARHICALL_MEDIAN 

presented below has been suggested, intended to filtrate using a median 

filter. 

function [m_s,n_s]=HIERARHICALL_MEDIAN(mss,nss,Z) 

for j=1:size(nss,1) 

    for io=1:size(nss,2) 

        p=io-round(Z/2); k=io+round(Z/2); if k>size(nss,2); 

k=size(nss,2); end; if p<1; p=1; end 

        m_s(j,io)=median(mss(j,p:k)); 

    end 

end 
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n_s=nss; 

The considerations presented above, related to a hierarchical 

approach, lead to suggesting the final version of algorithm detecting the 

ONL, RPE and NFL layers. 

[Lgray,map]=imread(['D:\OCT\SOURCES\3.bmp']); 

Lgray=ind2gray(Lgray,map); 

Lgray=double(Lgray)/255; 

Lorg=Lgray; 

Lm=medfilt2(Lorg,[5 5]); 

Lm=mat2gray(Lm);  

szer_o=16; 

Lm=[Lm(:,1)*ones([1 szer_o]),Lm,Lm(:,end)*ones([1 

szer_o])]; 

fun = @(x) median(x(:));  

[mss,nss,waga_p,L5,L6]=HIERARHICALL_STEP(Lm,fun,szer_o,0.03

); 

[mss,nss]=HIERARHICALL_PREC(Lm,mss,nss,fun,szer_o,2,2); 

[mss,nss]=HIERARHICALL_PREC(Lm,mss/2,nss/2,fun,szer_o,4,3); 

[yrpe_onl,xrpe_onl]=HIERARHICALL_MEDIAN(mss(1,:)*4,nss(1,:)

*4,5); 

[ynfl,xnfl,Lgr]=HIERARHICALL_PREC2(Lm,mss*4,nss*4,20,20); 

xnfl(:,xnfl(1,:)==0)=[]; 

ynfl(:,ynfl(1,:)==0)=[]; 

xnfl(:,xnfl(2,:)==0)=[]; 

ynfl(:,ynfl(2,:)==0)=[]; 

[ynfl,xnfl]=HIERARHICALL_MEDIAN(ynfl,xnfl,5); 

figure; imshow(Lm,'notruesize'); hold on 

plot(xnfl',ynfl','LineWidth',2) 

plot(xrpe_onl,yrpe_onl,'r','LineWidth',2) 

where function HIERARHICALL_PREC2 looks as follows: 

function 

[mss2,nss2,Lgr]=HIERARHICALL_PREC2(Lm,mss,nss,pu,pu2)         

[mss,nss]=HIERARHICALL_DENSE(mss,nss); 

mss2=[]; nss2=[]; 

Lgr=[];ngr=[]; 

for n_=1:size(mss,2); 

    n=round(nss(2,n_)); 

    m1=round(mss(2,n_))-pu; 

    m2=round(mss(2,n_))+pu; 

    if m1<1; m1=1; end; if m2>size(Lm,1); m2=size(Lm,1); 

end 

    Lmn=Lm(m1:m2,n); 

    Lmnr2=1:length(Lmn); 

    Lmf=[Lmnr2',Lmn]; 

    Lmf=sortrows(Lmf,-2); 

Lmf(Lmf(:,2)<(0.9*Lmf(1,2)),:)=[]; Lmf=sortrows(Lmf,-1); 

    Lmnr2=Lmf(1,1); 
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    nss2=[nss2,n]; 

    mss2=[mss2,m1+Lmnr2(1)-1]; 

    m11=m1+Lmnr2(1)-1-pu2; 

    m22=m1+Lmnr2(1)-1+pu2; 

    if m11<1; m11=1; end; if m22>size(Lm,1); 

m22=size(Lm,1); end 

    if length(m11:m22)==(pu2*2+1) 

        Lmn=Lm(m11:m22,n); 

        Lgr=[Lgr,Lmn]; 

        ngr=[ngr,n_]; 

    end     

end      

    Lgr=filter2(ones([3 3]),Lgr)/9; 

for n=1:size(Lgr,2)  

   po_=Lgr(:,n);  

    P = POLYFIT(1:length(po_),po_',5); 

   po = POLYVAL(P,1:length(po_)); 

   dpo=diff(po); 

   dpo(round(length(dpo)/2):end)=0; 

   dnr=1:length(dpo); 

   if max(dpo)>0.03 

        dnr(dpo~=max(dpo))=[]; 

        dnr_=dnr; 

    nss2(2,ngr(n))=nss2(1,ngr(n)); 

    mss2(2,ngr(n))=mss2(1,ngr(n))+dnr-pu2; 

        for itt=(n+1):size(Lgr,2)     

            po_=Lgr(:,itt);  

            P = POLYFIT(1:length(po_),po_',4); 

            po = POLYVAL(P,1:length(po_)); 

            dpo2=diff(po); 

            dnr1=dnr-3; 

            dnr2=dnr+3; 

            if dnr1<1; dnr1=1; end; if dnr2>length(dpo2); 

dnr2=length(dpo2); end 

            dpo2([1:dnr1,dnr2:end])=0; 

            dnr2=1:length(dpo2); 

            if max(dpo2)>0 

                dnr2(dpo2~=max(dpo2))=[]; 

                dnr=dnr2(1); 

    nss2(2,ngr(itt))=nss2(1,ngr(itt)); 

    mss2(2,ngr(itt))=mss2(1,ngr(itt))+dnr-pu2; 

            end 

        end 

           dnr=dnr_; 

        for itt=(n-1):-1:1    

            po_=Lgr(:,itt);  

            P = POLYFIT(1:length(po_),po_',4); 

            po = POLYVAL(P,1:length(po_)); 

            dpo2=diff(po); 

            dnr1=dnr-4; 
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            dnr2=dnr+4; 

            if dnr1<1; dnr1=1; end; if dnr2>length(dpo2); 

dnr2=length(dpo2); end 

            dpo2([1:dnr1,dnr2:end])=0; 

            dnr2=1:length(dpo2); 

            if max(dpo2)>0 

                dnr2(dpo2~=max(dpo2))=[]; 

                dnr=dnr2(1); 

    nss2(2,ngr(itt))=nss2(1,ngr(itt)); 

    mss2(2,ngr(itt))=mss2(1,ngr(itt))+dnr-pu2; 

            end 

        end 

        break 

   end 

end                         

The results obtained are shown in Fig. 4-91 and Fig. 4-92. 

  

Fig. 4-91 Detected ONL, RPE and 
NFL layers 

Fig. 4-92 Enlargement of detected 
ONL, RPE and NFL layers from the 

image aside 

4.11.4 Analysis of ONL Layer 

This analysis consists in separating line ONL from line RPE 

originating from previously executed stages of the algorithm. The issue is 

facilitated by the fact that on average approx. 80, 90% pixels on each 

tomographic image have the maximum value in each column exactly at 

point RPE (this property has been already used in the previous section). 

So the only problem is to detect the position of ONL line. One of 

possible approaches consists of an attempt to detect the contour of the 

layer sought on LIR image. This image originated from LM image thanks 

to widening of yRPE(n) layer range within oy axis within the range of 

pI=20 pixels. LIR image has been obtained with the number of columns 
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consistent with the number of LM image columns and with the number of 

lines 2pI+1. Fig. 4-93 shows image LIR=LM(m-yRPE(n),n) originating 

from LM image from Fig. 4-88.  

 

 

Fig. 4-93 Image LIR=LM(m-
yRPE(n),n) 

Fig. 4-94 Courses of LIRS=LMS(m-yRPE(n),n) 
versus m 

The upper layer visible in Fig. 4-93 as a pretty sharp contour is the 

sought course of ONL. Unfortunately, because of a pretty high individual 

variation within the ONL layer position relative to RPE, the selected pI 

range in further stages of the algorithm may be increased even twice (that 

will be described later). To determine consecutive points of ONL layer 

position interpolations with 4
th

 degree polynomial of grey level degree 

for individual columns of LIR image obtaining this way LIRS, which 

changes of grey levels in individual columns are shown in Fig. 4-94. The 

position of point ONL(n) occurs in the place of the highest gradient 

occurring within the range (RPE(n)- pI)  RPE(n) relative to LMS image 

or 1 pI relative to LIRS image. 
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Fig. 4-95 Parts of LM images with marked courses of NFL – red, RPE – 
blue, and ONL - green 

As may be seen in Fig. 4-95 the method presented perfectly copes 

with detecting NFL, RPE and ONL layers marked in red, blue and green, 

respectively.  

There is another solution of this problem – presented below. 

4.11.5 Determination of the Area of Interest and 

Preprocessing 

Having coordinates for consecutive n-columns, points yNFL(n) and 

yRPE(n) the area of interest has been determined as the area satisfying the 

condition yNFL(n)<y<yRPE(n). An example of area LGR originated from 

the LM image presented in Fig. 4-3 after filtration using a median filter of 

7x7 size (the size was arbitrarily chosen) is shown in Fig. 4-96. The LGR2 

image is related to a similar fragment of LM image, but before filtration. 

 

Fig. 4-96 Image LGR 



 

 
 

152 Hierarchical Approach in the Analysis of Tomographic Eye Image 

 

Fig. 4-97 Image LGR2 

Images presented in Fig. 4-96 and Fig. 4-97 originated from the 

algorithm 

yrpe_onl=round(yrpe_onl); 

xrpe_onl=round(xrpe_onl); 

[yrpe_onl,xrpe_onl]=HIERARHICALL_DENSE2(yrpe_onl,xrpe_onl); 

ynfl=round(ynfl(1,:)); 

xnfl=round(xnfl(1,:)); 

Lgr=[]; 

Lgr2=[]; 

fun2 = @(x) median(x(:))*ones(size(x)); 

Lmf=blkproc(Lm,[3 3],[3 3],fun2); 

m1n2=[]; 

for ix=1:length(yrpe_onl) 

    m1=yrpe_onl(ix); n1=xrpe_onl(ix); 

    xynfl=[ynfl',xnfl']; xynfl_=xynfl(xynfl(:,2)==n1,:); 

    m1n2(ix,1:2)=[m1,0]; 

    if ~isempty(xynfl_) 

       m2=xynfl_(1,1); n2=xynfl_(1,2);   

        Lgr2(1:(m2-m1+1),ix)=Lm(m1:m2,n2); 

        Lgr(1:(m2-m1+1),ix)=Lmf(m1:m2,n2); 

        m1n2(ix,1:2)=[m1,n2]; 

    end 

end 

figure; imshow(Lgr); 

figure; imshow(Lgr2); 

where function HIERARHICALL_DENSE2 

function [y_out,x_out]=HIERARHICALL_DENSE2(y_in,x_in) 

y_out=[0]; x_out=[0]; 

y_in(:,x_in==0)=[]; 

x_in(:,x_in==0)=[]; 

for i=1:(length(y_in)-1) 

    m_1=y_in(i:i+1); 

    n_12=x_in(i:i+1); 

    

x_out(1:end+length(n_12(1):n_12(2)))=[x_out(:)',n_12(1):n_1

2(2)]; 

    x_out(:,end)=[]; 

    if (m_1(2)-m_1(1))~=0 
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        w1=m_1(1):(m_1(2)-m_1(1))/(length(n_12(1):n_12(2))-

1):m_1(2);         

    else 

        w1=ones([1 length(n_12(1):n_12(2))])*m_1(1); 

    end 

    y_out(1:end+length(n_12(1):n_12(2)))=[y_out(:)',[w1]]; 

    y_out(end)=[]; 

end 

y_out=y_out(2:end); 

x_out=x_out(2:end); 

The first stage of algorithm operation is sequential performance of 

convolution with mask h, i.e.: 
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for angles θ from the range 80° to 100°, every 1°. 
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


  

(61) 

where m – row, n – column, θ – angle of mask h rotation, Mh,Nh – 

number of mask h rows and columns. 

This fragment implementation is presented below: 

t=-4:1:4; f=OCT_GAUSS(t,1); f=f/max(f(:)); f=f*(4+1)-

abs(2); 

h=ones([9 1])*f; 

h=imresize(h,[3 3],'bicubic'); 

h(:,round(size(h,2)/2):end)=max(h(:)); 

h=imresize([-2 -2 0 2 2],[15 5],'bicubic'); 

Lggr=zeros(size(Lgr)); 

Lphi=zeros(size(Lgr)); 

for phi=-100:10:-80 

    h_=imrotate(h,phi,'bicubic'); 

    Lsgr=conv2(Lgr,h_,'shape'); 

    Lpor=Lggr>Lsgr; 

    Lphi=Lpor.*Lphi+(~Lpor)*phi; 

    Lggr =max(Lggr,Lsgr); 
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end 

figure 

imshow([mat2gray(Lggr)]);  

figure; 

imshow(Lggr,[0 0.5]) 

where OCT_GAUSS: 

function y = OCT_GAUSS(x,std) 

y = exp(-x.^2/(2*std^2)) / (std*sqrt(2*pi)); 

 The resultant images are shown in Fig. 4-98 and Fig. 4-99. 

  

Fig. 4-98 Image LGGR Fig. 4-99 Image LGGR after 
normalisation to [0 0.5] range 

The range of θ angle values was selected because of the position of 

layers sought, which in accordance with medical premises should be 

„nearly‟ parallel with small angular deviations. Because each pathology 

featuring a significant angular change of yNFL(n) and yRPE(n) layers will 

be corrected after the conversion to the LGR image. The methodology for 

consecutive convolutions performance (60) for successively changing θ 

angle values and then the calculation of the maximum occurring for 

consecutive resultant images (61) was described in detail in [25] and 

[40]. The created resultant image Lθ obtained on the basis of code 

presented above and: 

figure; imshow(Lphi,[-100 -80]); colormap('jet'); colorbar 

 is shown in Fig. 4-100. 

 

Fig. 4-100 Image L 

The division into individual layers consists here in tracking changes of 

individual points position of individual layers changing their position for 

consecutive n-columns of the LGGR image. This issue is not a trivial one, 

mainly due to difficulties in identification of both (in a general case) of 



 

 
 

155 ANALYSIS OF POSTERIOR EYE SEGMENT 

the number of layers visible and due to the lack of their continuity and 

also very often due to their decay because of e.g. existing shadows [2], 

[4], [18]. These issues are illustrated by the graph of changes of LGGR 

image grey level changes presented in Fig. 4-101. The change of grey 

levels has been marked in red and in green for consecutively occurring 

columns on the LGGR image (for example for presented n=120 and 121). 

The tracking consists here in suggesting a method to connect individual 

peaks of courses presented, what will happen in the next section. 

4.11.6 Layers Points Analysis and Connecting 

The localisation and determination of layer position, having NFL, 

RPE and ONL layers, is one of the most difficult issues. The graph 

shown in Fig. 4-101 clearly confirms this presumption.  

In the first stage it is necessary to find the maximums positions on the 

graph from Fig. 4-101. To this end the following operation was carried 

out: 

     nm,Lnm,Lnm,L SRGGRUGR   (62) 

where LSR is the image originated as a result of LGGR image filtration 

using an averaging filter of mask with experimentally chosen 9x9 size, 

i.e.: 

Lgr=(Lggr-conv2(Lggr,ones(9),'same')/81); 

The procedure enables cutting out the unevenness of lighting visible 

on the image Fig. 4-96 and thereby on the graph from Fig. 4-101. The 

graph of the same range of rows and columns, i.e. n=120 and n=121 for 

m(5,35) of the LUGR image is shown in Fig. 4-101. 

 
 

Fig. 4-101 Examples of grey level 
changes for n=120 – red and n=121 

– green colour of LUGR image for 

m(5,35) 

Fig. 4-102 Image LUGR with marked 
points p(i,n) of the maximum 

position for consecutive areas and 
its enlargement 
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The implementation in Matlab of the course described looks as 

follows: 

figure;  

    plot(Lggr(:,121),'-g*'); grid on; hold on 

    plot(Lggr(:,121-1),'-r*'); hold off 

ylabel('L_{GGR}(m,120), L_{GGR}(m,121)','FontSize',20) 

xlabel('m','FontSize',20) 

Lugr=(Lggr-conv2(Lggr,ones(9),'same')/81); 

figure;  

    plot(Lugr(:,121),'-g*'); grid on; hold on 

    plot(Lugr(:,121-1),'-r*'); hold off 

ylabel('L_{UGR}(m,120), L_{UGR}(m,121)','FontSize',20) 

xlabel('m','FontSize',20) 

Points p(i,n) (where i – index of a consecutive point in the n
th

 column) 

are shown in Fig. 4-102 on the LUGR image. The position of individual 

p(i,n) points for the LUGR image was determined based on the method of 

finding consecutive maximum values for binary columns (the decimal to 

binary conversion threshold was set at 0). The source code responsible 

for this part is presented below: 

 figure 

imshow(Lugr); hold on 

for n=1:size(Lugr,2) 

    Lnd=Lugr(:,n); 

    Llab=bwlabel(Lnd>0.01); 

    Lnr=1:length(Llab); 

    for io=1:max(Llab) 

       Lnd_=Lnd; 

       Lnd_(Llab~=io)=0; 

       Lnrio=Lnr(Lnd_==max(Lnd_(:))); 

       plot(n,Lnrio(1),'.r') 

    end 

end 

The image generated is shown below 

 

Fig. 4-103 LUGR image with marked p(i,n) points 

The following assumptions were made in the process of individual 

p(i,n) points connecting: 
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 pzx – parameter responsible for permissible range of points 

connecting (analysing) on the ox axis, 

 pzy – parameter responsible for permissible range of points 

connecting (analysing) on the oy axis, 

 pzc – parameter responsible for permissible range on the ox axis, 

where the optimum connection points are sought.  

 each new point, if it does not fulfil the assumptions on pzx and pzy 

distance, is assumed as the first point of a new layer, 

 each point may belong to only one line, what by definition limits 

a possibility of lines division or connection.  

As an illustration the process of connecting for typical and extreme 

cases is shown below (Fig. 4-104). 

    

a) b) c) d) 

 

 

e) f) 

Fig. 4-104 Demonstrative diagrams of typical and extreme cases of 
individual layers’ p(i,n) points connecting. Results are shown for 

parameters pzx=2, pzy=2, pzc=6 

Fig. 4-104 shows demonstrative diagrams of typical and extreme cases 

of p(i,n) points connecting into lines marked as w(j,n), where j – is the 

line number and n – column. Fig. 4-104 a) shows a typical case, where 

having two points p(1,1) and p(2,1) because of a smaller distance on the 

oy axis p(1,1) was connected with p(1,3). Fig. 4-104 b) shows a reverse 
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more difficult situation as compared with Fig. 4-104 a), because points 

p(1,1) and p(2,1) are equidistant. In this case, because points p(i,n) for 

each column are determined top-down, this connection will be carried out 

between p(1,1) and p(1,3). Fig. 4-104 c) shows a similar situation to 

Fig. 4-104 b). In Fig. 4-104 d) the system of connections is visible for the 

case, where there are points of discontinuity in determination of points 

comprised by individual layers. Parameter pzc is responsible for that. In 

the case of Fig. 4-104 e) there was an erroneous lines crossing. Points 

p(2,2), p(1,4) and p(2,6) were properly connected, while point p(1,2) was 

improperly connected with p(2,6). Such action results in adopting a 

principle of connecting with the nearest point and in a too large range of 

pzc parameter values, which in this case „allowed‟ connecting p(1,2) and 

p(2,6). Fig. 4-104 f) is a typical example, where the line formed from 

points p(2,2) and p(2,4) ends and a new line starts from point p(1,6). This 

example is interesting to the extent that if parameters pzx, pzx and pzx 

would allow that, as a result lines created from points p(1,2), p(1,4) and 

p(1,6) should be obtained as well as the second line p(2,2), p(2,4) and 

p(2,6). Obviously, having only such data (p(i,n) points coordinates) it is 

not possible to determine, which solution is the right one. Situations 

presented in Fig. 4-104 a), b) and c) have another significant feature, by 

definition they do not allow individual analysed layers (Fig. 4-104 a), b)) 

to be connected and to be divided (Fig. 4-104 c)). 

For parameters pzx=2, pzy=2, pzc=6 and points p(i,n) of LUGR image 

shown in Fig. 4-102 the following results were obtained - Fig. 4-105. 

 

 

Fig. 4-105 Image LUGR with marked 
grouped p(i,n) points for parameters 

pzx=2, pzy=2, pzc=6 and its enlargement 

Fig. 4-106 Image LM and its 
enlargement with marked 
groups of connected p(i,n) 

points for consecutive j
th

 w(j,n) 
lines 
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The implementation of the discussed algorithm fragment is presented 

below. The Reader should be familiar with the first part from the 

previous implementation, i.e.: 

figure 

imshow(Lugr); hold on 

rr_d_o=0; 

rr_u_o=0; 

r_pp=[]; 

rrd=[]; rru=[];  

rrd_pol=[];rrd_nr=[];  

rrd_pam=[]; 

rru_pam=[]; 

for n=1:size(Lugr,2) 

    Lnd=Lugr(:,n); 

    Llab=bwlabel(Lnd>0.01); 

    Lnr=1:length(Llab); 

    rr_d=[]; 

    for io=1:max(Llab) 

       Lnd_=Lnd; 

       Lnd_(Llab~=io)=0; 

       Lnrio=Lnr(Lnd_==max(Lnd_(:))); 

       rr_d=[rr_d,Lnrio(1)]; 

    end 

… 

Instead, in the second part there is the right part of described problem 

solution, i.e.: 

… 

pzc=10; 

pzy=4; 

    rrd_pol(1:length(rr_d),n)=rr_d; 

if n==1 

    rrd_nr(1:length(rr_d),n)=(1:length(rr_d))'; 

else 

    rrd_nr(1:length(rr_d),n)=0;     

end 

wu=[]; wd=[]; 

wuiu=[]; wdiu=[]; 

rrd(1:length(rr_d),n)=rr_d; 

rr_dpp=rr_d; 

for ni=(n-1):-1:(n-pzc) 

    if ni>0 

            rr_d=rrd(:,n); 

            rr_d_o=rrd(:,ni);  

            rrd_nr_iu=rrd_nr(:,ni); 

            if (~isempty(rr_d))&(~isempty(rr_d_o)) 

                uu=ones([length(rr_d) 1])*rr_d_o'; 

                nrnr=ones([length(rr_d) 1])*rrd_nr_iu'; 
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                dd=rr_d*ones([1 length(rr_d_o)]); 

                ww=ones([size(dd-uu,1) 1])*min(abs(dd-

uu))==abs(dd-uu); 

                ww_=min(abs(dd-uu),[],2)*ones([1 size(dd-

uu,2)])==abs(dd-uu); 

                ww=ww_.*ww; 

                ww(abs(dd-uu)>pzy)=0; ww(dd==0)=0; 

ww(uu==0)=0; ww(rr_d==0,:)=0; ww(:,rr_d_o==0)=0; 

                wu_=ww.*uu; wu_(wu_==0)=[]; wu=[wu,wu_]; 

                wd_=ww.*dd; wd_(wd_==0)=[]; wd=[wd,wd_]; 

                wuiu_=ones(size(wu_))*(ni); 

wuiu=[wuiu,wuiu_]; 

                wdiu_=ones(size(wd_))*(n); 

wdiu=[wdiu,wdiu_]; 

                nrnr=sum(nrnr.*ww,2);  

                nrnrw=sum(ww,2); 

                niu=max(rrd_nr(:))+1; 

                for gf=1:length(nrnr) 

                    if (nrnr(gf)==0)&&(nrnrw(gf)==1)  

                            nrnr(gf)=niu; 

                            wvv=ww(gf,:);  

                            rrd_nr(wvv==1,ni)=niu; 

                            niu=niu+1; 

                    end 

                end                             

                rpnr=rrd_nr(:,n);  rpnr=rpnr+nrnr; 

rrd_nr(:,n)=rpnr;  

                rr_d(sum(ww,2)~=0)=0;  

                rr_d_o(sum(ww,1)~=0)=0;  

                rrd(1:length(rr_d),n)=rr_d;  

                rrd(1:length(rr_d_o),ni)=rr_d_o;  

                 

            end 

    end 

end 

rrd(1:length(rr_dpp),n)=rr_dpp; 

for j=1:length(wu) 

    line([wuiu(j)  wdiu(j)],[wu(j) 

wd(j)],'LineWidth',2,'Color','r') 

end 

n 

end 

Fig. 4-106 shows the arrangement of individual j
th

 w(j,n) lines on the 

input image LM. Instead, Fig. 4-107 shows other results of points p(i,n) 

grouping for parameters pzx=2, pzy=2, pzc=6 at other LUGR images. 
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Fig. 4-107 Example LUGR images with marked grouped p(i,n) points for 
parameters pzx=2, pzy=2, pzc=6 and its enlargement 

Two characteristic elements may be noticed. The first of them is 

related to the existence of short lines, which are a disturbance (short is 

understood here as such, which are not longer than 10, 20 points). The 

second characteristic element is the determination of transition borders 

(looking in the sequence of rows occurrence – top-down) by a lighter and 

darker area. This is caused by an asymmetric form of mask h (59). Hence 

a supplementary approach consists of performance of operations 

presented starting from the relationship (59) for the suggested h but for 

angles θ from the range -80° to -100° every 1°. The results obtained are 

presented below (Fig. 4-108). 
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Fig. 4-108 Image LM and its enlargement with marked groups of 
connected p(i,n) points for consecutive j

th
 w(j,n) lines at h for θ angles 

from the -80° to -100° range 

Further on, denoting w(j,n) lines obtained for h rotated within θ angles 

from the range -80° to -100° as w1(j1,n) and w(j,n) lines obtained for h 

rotated within θ angles from the range 80° to 100° as w2(j2,n), the 

following operations were performed: 

 the location of last p(i,n) points positions of consecutive w1(j1,n) and 

w2(j2,n) lines has been checked, 

 the approximation by the second degree polynomial of the last points 

of w1(j1,n) and w2(j2,n) lines was carried out, 

 it has been checked, whether the obtained next points extending the 

analysed line j1* connect with another line j1 j1* (or similarly j2 j2*). 

These operations have been precisely described in the next section. 

4.11.7 Line Correction 

The determined w1(j1,n) and w(j,n) lines are shown as an example in 

Fig. 4-108. The lines correction consists in connecting them, provided 

that the extension of consecutive points of the approximated line 
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coincides in a specific range with the beginning of the next one. The 

following assumptions were made in the process of individual w(i,n) 

lines connecting: 

 Pkx – parameter responsible for permissible range of lines connecting 

(analysing) on the ox axis, 

 Pky – parameter responsible for permissible range of lines connecting 

(analysing) on the oy axis, 

 pkc – parameter responsible for the range on the ox axis, in which the 

line end is approximated, 

 pko – parameter responsible for the size of ox axis analysis window, 

 the process of lines connecting applies only to those, which end and 

start – branches connecting is not carried out, 

 only those lines are connected, which have minimum 90% of analysed 

points falling within the range  pky with respect to the approximated 

line (Fig. 4-109), 

 lines connection consists in changing their labels – in the case of 

connecting e.g. w(1,n) with w(2,n) lines, the label is changed from ‘2’ 

to ‘1’. 

The presented methodology works pretty well for tested image 

resolutions in the case, when the approximation is carried out using a first 

or second degree polynomial and when the following values of 

parameters are assumed pkx=20, pky=4, pkc=10, pko=10. The obtained 

example results for the last two points (marked - wa„), three last points 

(marked – wa„‟) and four last points (marked – wa„‟‟) are shown in 

Fig. 4-110. 

 

 

Fig. 4-109 Demonstrative lines 
correction diagram with marked 
algorithm parameters pkc, pkx, pky 

and pko 

Fig. 4-110 Demonstrative 
diagram of lines approximation 

results using order 1 polynomial 
for different numbers of end 

points 
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Fig. 4-111 Image fragment before 
lines correction 

Fig. 4-112 Image fragment after 
lines correction obtained for 

parameters pkx=20, pky=4, pkc=10, 
pko=10 

A direct relationship between obtaining correct results from w(j,n) 

lines connecting and the number of analysed points at their end is visible 

from the results obtained at the initial analysis of approximation results. 

In particular, when allowing connecting lines, which – looking at the x 

axis – have the same values, a situation shown in Fig. 4-113 may occur. 

 

Fig. 4-113 Result of connecting lines overlapping each other for a few 
pixels with regard to the ox axis 

As this fragment implementation in Matlab is trivial, we leave this 

part to be written by the Reader. 
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4.11.8 Layers Thickness Map and 3D Reconstruction 

The analysis of LM images sequence and precisely the acquiring of 

layers NFL, RPE and ONL allows performing 3D reconstruction and 

layers thickness measurement. A designation for an image sequence with 

an upper index (i) has been adopted, where i = {1,2,3,...,k-1,k) i.e. LM
(1)

, 

LM
(2)

 , LM
(3)

 ,.., LM
(k-1)

, LM
(k)

. For a sequence of 50 images the position of 

NFL layers (Fig. 4-114), RPE (Fig. 4-115) and ONL (Fig. 4-116) was 

measured as well as ONL - RPE layer thickness (Fig. 4-117). 

  

Fig. 4-114  NFL spatial position Fig. 4-115  RPE spatial position 

  

Fig. 4-116 ONL spatial position Fig. 4-117 ONL-RPE layer thickness 

3D reconstruction performed based on LM
(i)

 images sequence is the 

key element crowning the results obtained from the algorithm suggested. 

The sequence of images, and more precisely the sequence of NFL
(i)

(n), 

RPE
(i)

(n) and ONL
(i)

(n) layers position, provides the basis for 3D 

reconstruction of a tomographic image. For an example of 50 images 
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sequence and one image resolution LM
(i)

 at the level of MxN = 256x512, 

a 3D image is obtained composed of three layers NFL, RPE and ONL of 

50x512 size. The results are shown in Fig. 4-118 for an example of 

original images reconstruction (without the sample described above) 

based on i pixels brightness Fig. 4-119 – reconstruction performed using 

the algorithm described above, on the basis of NFL
(i)

(n), RPE
(i)

(n) and 

ONL
(i)

(n) information. 

  

Fig. 4-118 Example of 3D 
reconstruction of layers NFL and 

ONL – green, RPE - red 

Fig. 4-119 Example of 3D 
reconstruction of layers NFL – blue, 

RPE – red and ONL – green 

In an obvious way a possibility of automatic determination of the 

thickest or the thinnest places between any points results from layers 

presented in Fig. 4-119. 

4.11.9 Evaluation of Hierarchical Approach 

The algorithm presented, after a minor time optimisation, detects 

NFL, RPE and ONL layers with up to a few dozen milliseconds on a 

computer with a 2.5GHz Intel Core 2 Quad processor. The time was 

measured as an average value of 700 images analysis dividing individual 

images into blocks A (Fig. 4-81) of consecutive sizes 16x16, 8x8, 4x4, 

2x2. This time may be reduced by the modification of approximation 

blocks number and at the same time increasing the layer position 

identification error – results are shown in the table below (Tab 4-1). 
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Tab 4-1 Percentage execution time of algorithm for NFL, RPE and ONL layers 

detection  

Processing stage Total time since 

processing start 

[%] 

Preprocessing 20 

Initial breakdown into NFL and RPE+ONL 26 

NFL and RPE+ONL approximation for A – 16x16 32 

NFL and RPE+ONL approximation for A – 8x8 46 

Accurate RPE and ONL breakdown 100 

The specification of individual algorithm stages‟ analysis times 

presented in the table above clearly shows the longest execution of the 

first stage of image preprocessing, where filtration with a median filter is 

of prevailing importance (in terms of execution time) as well as of the 

last stage of precise determination of RPE and ONL layers position. 

Because precise RPE and ONL breakdown is related to the analysis and 

mainly to the correction of RPE and ONL points position in all columns 

of the image for the most precise approximation (because of a small 

distance between RPE and ONL it is not possible to perform this 

breakdown in earlier approximations). So the reduction of computation 

times may occur only at increasing the error of layers thickness 

measurement. And so for example for the analysis in the first 

approximation for A of 32 x 32 size and then for 16 x 16 gross errors are 

obtained generated in the first stage and duplicated in the next ones. The 

greatest accuracy is obtained for approximations of A of 16x16 size, and 

then of 8x8, 4x4, 2x2 and 1x1, however the computation time nearly 

doubles. 

4.12 Evaluation and Comparison of Suggested Approaches 

Results 

The methods presented: classical, Canny, random [28] or hierarchical 

[27] give correct results at the detection (recognition) of RPE, IS/OS, 

NFL or OPL layers on a tomographic eye image. Differences in the 

methods proposed are visible only when comparing their effectiveness in 

the analysis of mentioned several hundred tomographic images. When 

comparing the methods mentioned it is necessary to consider the 

accuracy of layer recognition, algorithm responses to pathologies and 
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optic nerve heads and the operating speed, in this case for a computer (P4 

CPU 3GHz, 2GB RAM). 

The following table Tab 4-2 presents a cumulative comparison of 

algorithms proposed and Tab 4-3 a comparison of results obtained using 

the algorithms discussed, taking into account typical and critical 

fragments of individual algorithms operation. 

Tab 4-2 Cumulative comparison of algorithms proposed 

Algorithm/Feature classical Canny random hierarc

hical 

Total error in layers 

recognition 

5% 4% 7% 2% 

Speed of RPE layer 

recognition – MATLAB 

15 s 5s 10s 1s 

Speed of RPE layer 

recognition – C++ 

0.85 s 0.27s 1.2s 50ms 

The random method described as an example in this monograph gives 

correct results at contours determination (layers separation) both on OCT 

images as well as on others, for which classical methods of contours 

determination do not give results or the results do not provide a 

continuous contour. The algorithm drawbacks include a high influence of 

noise on the results obtained. This results from a relationship that the 

number of pixels of pretty high value, resulting from a disturbance, 

increases the probability of selecting in this place a starting point and 

hence a component contour. The second drawback is the computations 

time, which is the longer the larger is the number of selected points 

and/or the reason, for which searching for the next points oi,j+1 was 

stopped.  

The specification of hierarchical algorithm individual stages‟ analysis 

times presented in the table above clearly shows the longest execution of 

the first stage of image preprocessing, where filtration with a median 

filter is of prevailing importance (in terms of execution time) as well as 

of the last stage of precise determination of RPE and IS/OS layers 

position. Because precise RPE and IS/OS breakdown is related to the 

analysis and mainly to the correction of RPE and IS/OS points position in 

all columns of the image for the most precise approximation (because of 

a small distance between RPE and IS/OS it is not possible to perform this 

breakdown in earlier approximations). So the reduction of computation 

times may occur only at increasing the error of layers thickness 

measurement. And so for example for the analysis in the first 
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approximation for A of 32 x 32 size and then for 16 x 16 gross errors are 

obtained generated in the first stage and duplicated in the next ones. The 

greatest accuracy is obtained for approximations of A of 16x16 size, and 

then of 8x8, 4x4, 2x2 and 1x1, however the computation time nearly 

doubles.  

Tab 4-3 of results obtained using algorithms discussed 

M
et

h
o
d

 Case of wrong recognition – 

resulting from specific method 

nature 

Example of 3D 

reconstruction of layers 

NFL – blue, RPE – red and 

IS/OS – green 

cl
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a
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3D reconstruction performed based on LM
(i)

 images sequence is the 

key element crowning the results obtained from the algorithm suggested. 

The sequence of images, and more precisely the sequence of yNFL
(i)

(n), 

yRPE
(i)

(n) and yIS/OS
(i)

(n) layers position, provides the basis for 3D 

reconstruction of a tomographic image. For an example sequence of 50 

images and one LM
(i)

 image resolution of MxN= 256 x 512 a 3D image is 

obtained, composed of three NFL, RPE and IS/OS layers of 50 x 512 

size. Results are shown in Fig. 4-118 for an example reconstruction of 

original images (without processing described above) based on pixels 

brightness and in Fig. 4-119 – the reconstruction performed using the 

algorithm described above was carried out based on yNFL
(i)

(n), yRPE
(i)

(n) 

and yIS/OS
(i)

(n) information. 
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5 SUMMARY 
The considerations presented confirm the thesis that it is possible to 

develop a fully automated IT tool assisting doctor‟s work. The algorithms 

presented in fragments provide a foundation for their further 

modifications and profiling for a specific OCT instrument. These 

modifications should comprise not only the selection of algorithm 

parameters but also a change of spatial or colour resolution. It is not 

excluded that a correction of function responsible for reading a DICOM 

image will be possible. All the corrections mentioned already constitute a 

marginal contribution as compared with development and testing of a 

specific solution – what has been presented in this monograph. However, 

it is necessary to remember that the field of image analysis and 

processing has been developing very dynamically and with time better 

and faster, than presented here, methods for OCT images analysis and 

processing will be appearing. Despite that the authors hope that this 

monograph will be helpful to Readers not only during developing 

applications assisting doctors in OCT images diagnostics, but also will 

provide a basis to develop new original algorithms. 

The most recent version of the monograph will be always available for 

downloading from the site http://robert.frk.pl under „books‟ bookmark. 

In addition, examples of algorithms presented in this monograph 

including test images are displayed on this site. 

  

http://robert.frk.pl/
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6 SUPPLEMENT 
On the http://robert.frk.pl 

website under „books‟ 

bookmark also source images 

and the source code presented 

in this monograph are 

available, apart from the most 

recent monograph version.  

The source images are 

placed in the images.zip file, 

which the Reader must unzip 

onto disk D:/, to the main 

directory. Matlab files located 

in the sources.zip archive 

should be unzipped to any 

directory, to which the access 

path should be given in the 

Matlab package. Matlab files 

(m files) have been specified 

below; character „c‟ at the 

beginning of a file name 

stands for the content 

described in specific section, 

while missing character „c‟ 

stands for a function, also 

included in the text (Fig. 6-1).  

  

├───READ_DICOM 

│       OCT_head_read.m 

│       OCT_unzip.m 

│       cread_head2.m 

│       cread_head.m 

├───ANTERIOR 

│       cOCT_angle_3D.m 

│       cOCT_angle_3D_2.m 

│       cOCTplot_AOD_error.m 

│       cOCTread_oct_angle.m 

│       cOCTreferencje_method.m 

│       OCT_activ_cont.m 

│       OCT_angle_line.m 

│       OCT_edge_inside.m 

└───POSTERIOR 

    ├───STANDARD 

    │       OCT_hole.m 

    │       OCT_NFL.m 

    │       OCT_corr_line.m 

    │       OCT_ALL_GLOBAL.m 

    │       OCT_global_line.m 

    │       OCT_NFL_artyfic_noise.m 

    │       OCT_NFL_line_end.m 

    │       OCT_NFL_line.m 

    │       OCT_areaa.m 

    │       OCT_global_line_mod.m 

    │       OCT_activ_cont_noise.m 

    │       cOCT_fundus_filtr.m 

    │       OCT_activ_cont_other.m 

    │       cOCT_fundus_artyfical_pic.m 

    ├───NOISE 

    │       cOCT_NOISE_artyfical.m 

    │       OCT_NOISE_gauss.m 

    │       OCT_NOISE_area.m 

    │       OCT_NOISE_line.m 

    │       cOCT_NOISE_real.m 

    │       cOCT_NOISE_artyfical_param.m 

    ├───CANNY 

    │       cOCT_CANNY_FUN.m 

    │       OCT_COR_LINE.m 

    │       cOCT_COR_artifical.m 

    └───HIERARHICALL 

            cOCT_HIERARHICALL_RESIZE.m 

            HIERARHICALL_STEP.m 

            HIERARHICALL_DENSE.m 

            HIERARHICALL_PREC.m 

            HIERARHICALL_MEDIAN.m 

            HIERARHICALL_PREC2.m 

            HIERARHICALL_DENSE2.m 

            OCT_GAUSS.m 

            cOCT_HIERARHICALL_RPE_NFL.m 

Fig. 6-1 Files tree 

http://robert.frk.pl/
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