4Cs. Hence it is well justified to use a low-cost circuit for 4 -line to 16 -line decoding in the place of IC 74154.
F^{*} The circuit described here uses three TTL ICs. Though a Wit more of wring effort is involved, the saving in terms of Reost is considerable. The circuit should cost about Rs 25 "only. (Rs 20 for two numbers of IC 7442 and Rs 5 for IC " 7409).

Circuit shows the wiring of two IC 7442 to obtain 4-lne to " 16 -line decoding function. 1 Cl decodes the 4 -bit input in the conventional manner- -from 0 to 9 . For inputs beyond 9 , all the outputs of IC'I remain high. All the outputs of IC2 remain high for inputs from 0 to 9 . Inputs beyond 9 are decoded by IC2 giving outputs (LOW) from 10 to 15 on pins 3 to 7 and 9 . The drive logic for IC2 is provided by IC3. The truth table for the circuit is also shown.
T.K. LOKABHIRAM

Digital Combination Lock

There are several types of combination locks available but most of thent are mechanical. Here is a digital electronic combination lock which is much more reliable than the readily avalable mechanıcal combination locks. One can open a mechanical combination lock by trying again and again. But this electronic combination lock gives only one
chance to open it as it includes an alartay and han auto-ext-off system.

One has to close four switches in a definite sequence to open the lock. (In the cincuit shown here, the switch closing sequence has been pre-set as $\mathbf{S 1}, \mathbf{S 2}, \mathbf{S 3}$ and $\mathbf{S 4}$ respectively.) In case a wrong switch is closed, i.e, if this sequence is not
tRUTH TABLE

	INPUT		OUTPUT	
A	B	C	D	
0	0	0	0	
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1
			1	

followed strictuy, the alarm will start ringing and alert everyone nearby. The alarm will contınue until the stop switch S 1 ts pressed. And the lock will not open even if the right sequence is followed immediately thereafter This will defintely scard away any thief.

The circuit is built with four SN7400 NAND gate ICs. These TTL ICs are cheap and easily available in the market

The truth table is also shown. By using K-map, we get the logic functuon

$$
F=A \cdot B(C+D)+B \cdot C \cdot D
$$

Here it is evident that there are five combinations of inputs for which output becomes ' 1 '. That means for these comblnations, the alarm will not ring.
The four SN7400 ICs may be soldered on a veroboard and connected as shown in the circuit diagram. Four input cords with jack pin on one side are needed. The jack pins should be of different colours. Switches Sla, S2a, S3a, S4a and SIb, S2b, S3b, S4b are ganged respectively. Switches S1b, S2b, S3b, S4b are in series with relay RLI which opens the lock Different identification numbers (or letters) may be put on all the switches
The output is available at pin 3 of IC3. The SL 100 transistor activates the relay as soon as it gets an input at its base. The flip-flop bult by NAND gates N12 and N13, once activated, remauns in the same state. Hence T1 and RL2 also remann actuve untif swich Sl is pressed. The alarm will contunue to ring and relay RLI remans disconnected from the mains.
The power supplycircuit is also shown in circuit diagram. A $230 \mathrm{~V} / 12 \mathrm{~V}, 500 \mathrm{~mA}$ power supply transformer and IC 7805 voltage regulator have been used to get a steady 5V DC supply. When activated, the alarm gets connected to 230 V mains. Total cost of the unit is around Rs 85 .

NILANJAN BHOWMIK

Automatic Brightness Control for Seven-Segment Digital Displays

Here is a circuit which exercises automatic brightness control on LED diaplays of digtal clocks, and for that matter on

Fig. 2:

Fis. 3:
any seven-segment dispiay unt depending on the ambient lighting conditions.
The basic principle underlying this circuit is the on-off control' method of regulating the voltage and hence the brightness. The relationship portraying this is given by

$$
V_{o u t}=V_{1 N} \frac{T_{o n}}{T_{\text {on }}+T_{\text {olf }}}=V D
$$

where Vout-average/DC output voltage
Vin -input voltage
D --duty-cycle

