

^^
UBRARIES

o/ teC^^

DEWEY
HD28
.M414

rto.
3-55/-

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

Setup Optimization and Workload Balancing

for Mixed-model Electronics Assembly

Operations

Anantaram Balakrishnan

and
Fran<;ois Vanderbeck

WP# 3551-93-MSA April, 1993

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

Setup Optimization and Workload Balancing

for Mixed-model Electronics Assembly

Operations

Anantaram Balakrishnan

and
Frangois Vanderbeck

WP# 3551-93-MSA April, 1993

!dVHD:IH

M.I.T. LIBRARIES

Setup Optimization and Workload Balancing for

Mixed-model Electronics Assembly Operations^

Anantaram Balakrishnan

Sloan School of Management
M. I. T., Cambridge, MA

Francois Vanderbeck*

Center for Operations Research and Econometrics

Universite Catholique de Louvain
Louvain-la-Neuve, Belgium

April 1993

Supported in part by MTTs Leadersfor Manufacturing program

Partially supported by the College Interuniversitaire d'etudes doctorales dans les sciences

du Management (CIM), Belgium

Abstract

To cope with the rapid technological advances, product proliferation, shorter product

lifecycles, and increasing competition, electronics companies are adopting flexible assembly

strategies using multiple surface mount assembly modules to produce many different

products in small batches. The component placement machines account for over half the

investment in surface mount assembly lines, and also require considerable setup time

(comparable to the actual processing time for small lot sizes) to changeover production from

one product to another. This paper addresses a tactical planning problem for high mix, low

volume electronics assembly facilities containing several placement machines (modules)

operating in parallel. We propose an optimization model to decide which product families to

assemble on each machine in order to minimize the total setup cost per demand period while

ensuring that none of the machines is overloaded. Unlike strategic and operational models

that emphasize either workload balancing or setup optimization, our tactical planning model

simultaneously considers both these conflicting factors. To capture the impact of product

grouping decisions on setup cost, we consider a panial setup policy that is both easy to

implement in practice, and convenient to incorporate in the tactical planning model. The

policy consists of reserving cenain slots on each placement machine for permanent

components, and loading the remaining comiX)nents as needed to assemble each product.

We formulate the tactical planning problem as an integer program, and show that even

the special case of minimizing the setup cost on a single machine for a given assignment of

products is NP-hard. For the general model, we develop an optimization-based method,

combining column generation, heuristics, and lower bounding procedures, to approximately

solve the problem and assess the quality of the solution. As part of our development, we

describe solution methods for two practical subproblems-a single machine, product selection

subproblem, and the setup optimization subproblem-that might apply directly to short-term

production planning. Our computational experience with medium-sized test problems

provides insights regarding the effective implementation of column generation strategies in

this problem context, and identifies some opportunities for improvement.

Keywords: Electronics assembly, tactical planning, column generation

1. Introduction

Rapid advances in electronic product and process technologies, proliferation of products,

shorter product lifecycles, and competitive pressures to reduce cost, lot sizes, and lead time

have prompted many electronics companies to adopt flexible assembly strategies using

multiple assembly modules that can each assemble many products. With the advent of

surface mount and other advanced interconnect technologies, the level of assembly

automation has increased considerably, requiring sophisticated equipment for high speed and

precision component placement. The investment for a single surface mount assembly line

can total several millions of dollars, with placement machines (with associated tooling) alone

costing over a million dollars each. On the other hand, as companies strive towards "lot size

of one" production to better meet the customers' needs, asset utilization decreases due to

more setups. To cope with these trends and maintain their competitive position, electronics

companies require principled planning methods and operating practices that ensure efficient

and effective use of their manufacturing resources.

This paper addresses a medium-term, tactical decision facing high mix, low volume

electronics assembly facilities containing several surface mount assembly modules (one or

more placement machines in series, see Section 2.1) operating in parallel, possibly at

different sites. We consider facilities in which each module can assemble several different

products (with appropriate setups), and modules have overlapping capabilities, i.e., for each

product, we have a choice of modules to assemble that product. Furthermore, the demand

for individual products is not adequate to justify using dedicated, single-product modules.

Operations with these characteristics, which we refer to as mixed-model assembly

operations, are common in companies producing electronic subsystems for applications such

as telecommunications, computer peripherals, consumer electronics, and medical systems.

We will focus on the component placement operation since the automatic placement machines

are very expensive and also require considerable setup time. For convenience, we use the

words machine, module, and line interchangeably. Given the equipment configuration and

capacity of each machine, and the projected demand for various products, the tactical plan

determines which products to assemble on each machine.

In making this tactical decision, managers must address two conflicting objectives:

reducing the setup or changeover times, and distributing the workload evenly across the

parallel machines (relative to their available capacities). When lot sizes are small (say, tens

or hundreds of boards per lot), equipment changeover times can equal or exceed the actual

processing (placement) times. For instance, the time to change over production from one

board type to another on a placement machine can vary from 15 minutes to over an hour

depending on the number of new components to be loaded, whereas placing all the

components for a batch of 50 boards with, say, 200 placements per board, might require less

than an hour of processing time. Reducing setup times is, therefore, an important concern

both to increase productive capacity, and to provide quick response with minimal

inventories. On the other hand, balancing the workload has several benefits including

reducing overtime expenses, decreasing the lead time to supply board sets (i.e., multiple

board types that are assembled into a single unit) for final assembly, and providing safety

capacity on each machine to accommodate contingencies. These two objectives can be

contradictory. To minimize total setup time, we might assign products that share many

common components to the same machine; however, this strategy of grouping products

solely based on component commonality can result in imbalances due to uneven group sizes.

To address this tradeoff, we develop an optimization model that assigns products to

parallel placement machines (or modules) in order to minimize the total setup cost while

ensuring that the processing workload on each machine does not exceed a prespecified limit.

Most previous models either emphasize equal workload allocation but capture the setup

implications only indirectly, or optimize the setup time for each line assuming a

predetermined assignment of products to lines. In contrast, our model provides a structured

way to simultaneously consider setup and workload balancing issues. We propose a simple

setup policy that is both practical, and enables us to decouple the medium-term product

assignment decisions from the detailed (weekly or daily) sequencing and scheduling

decisions. The policy, which we call the partial setup policy, consists of reserving certain

slots on each placement machine for permanent components, and loading the remaining

components as needed to assemble each product. By treating the workload balancing

requirements as constraints while optimizing setups, our model provides the capability to

generate alternative scenarios with different setup-workload characteristics that managers can

evaluate before deciding the best tactical plan for their specific operation.

We formulate the tactical planning problem as an integer program, and develop an

optimization-based methodology, combining column generation, heuristics, and lower

bounding procedures, to approximately solve the problem and assess the quality of the

solution. We can embed this method in a branch-and-bound scheme to solve the problem

optimally. As part of our algorithmic development, we describe solution methods for two

interesting subproblems-a profit maximizing product selection problem, and a setup

minimization subproblem-that can apply directly to support shon-term planning and

scheduling decisions. Our computational experience using medium-sized problems

containing upto 20 products, 60 component types, and 4 machines provides insights

regarding the effective implementation of column generation strategies for this problem

context, and identifies some opportunities for improvement.

The rest of this paper is organized as follows. Section 2 motivates and describes our

tactical planning model. We briefly review the process flow in electronics assembly

operations, justify the structure of our model, discuss its scope and assumptions, and

introduce the problem formulation. We also discuss model variants and special cases.

Section 3 first provides an overview of the solution methodology before describing its

various components, including heuristics, lower bounding techniques, and optimization

procedures for the two subproblems. Section 4 repons computational results for our test

problems, discussing implementation variants and the performance impact of different

algorithmic options and parameters. Section 5 offers concluding remarks.

2. Tactical Planning for Mixed-model Electronics Assembly

We first present an overview of electronics assembly operations, with particular

emphasis on component placement, and briefly describe the hierarchy of planning and

scheduling decisions for electronics assembly operations. Section 2.2 defines the scope of

our tactical planning model, motivates the problem and our modeling approach, and justifies

the assumptions. We discuss the modeling challenges in capturing the impact of product

assignment decisions on setup times, and describe the panial setup policy that our model

assumes. Section 2.3 presents an integer programming formulation for the tactical planning

problem, and discusses model variants and special cases.

2.1 Overview of Electronics Assembly Operations

2.1.1 Process flow and compbnent placement operations

Electronics assembly refers to the process of populating bare printed circuit boards with

electronic and mechanical components. This paper focuses on the assembly of surface

mount components; most new products use surface mount technology (SMT) whenever

possible (instead of the older through-hole technology) due to its numerous benefits

including smaller board size, lower weight, reduction in electrical noice, improved shock and

vibration resistance, and lower board fabricadon costs. Broadly, surface mount assembly

consists of five major steps-solder paste application, high-speed and precision component

placement, soldering, cleaning, and testing. Prasad [1989] describes the process flows for

three types of surface mounting, and discusses each assembly operadon in detail.

3-

We define a placement "module" as a single component placement machine or several

placement machines connected in series by conveyors; a module might also contain dedicated

stations to perform other operations such as screen printing, manual assembly, reflow

soldering and so on. Thus, a complete assembly line corresponds to a module with

dedicated stations for all the surface mount assembly operations from screen printing to

testing. Mixed-model assembly facilities employ placement modules in a variety of

configurations ranging from a purely functional layout (containing parallel placement

modules as one stage, parallel reflow ovens as the next stage, and so on) to mini-lines or

complete assembly lines. For exposidonal ease, we assume that each module has a single

placement machine, and so we refer to machines instead of modules or lines. However, as

we note later, our model can also incorporate multiple placement machines in series.

The automatic placement machines are the most expensive (accounting for over 50% of

the investment in a typical SMT line) and often require the highest changeover time relative to

other SMT operations. The numerically-controlled sequential or sequential/simultaneous

placement machines (see Prasad [1989]) used in mixed-model assembly facilities have three

main components: (i) a table (stationary or movable) to hold the the board (or a panel of

boards), (ii) feeder input positions or slots on the periphery of the table to hold component

feeders, each containing a reeP of one component type, and (iii) one or more component

placement heads. Each printed circuit board has a bill of components specifying the types of

components it requires, the number of components of each type, and the placement location

on the board for each component. To assemble a particular board type or product, the

operator must first ensure that the feeders carrying each of the required component types are

mounted in appropriate slots on the machine. The placement head sequentially picks a

component from a feeder position, inspects (optional) and orients the component, and places

it at the appropriate location on the board. These "pick-and-place" operations are governed

by a process plan in the machine's controller which specifies the component type, X-Y

coordinates, and orientation for each placement location on the board, the location of the

feeder containing each component type, and the sequence of operations. For tactical

planning, we use two parameters-slot capacity and placement speed or placement time per

board-to characterize each machine.

The slot capacity (sometimes called the component staging capacity) of a machine is

the maximum number of feeders that it can hold. We can represent this capacity either in

terms of "standard" slots (e.g., number of 8mm tape feeder input slots) or in terms of the

^ SMT components are dispensed in a variety of formats, e.g., tape and reel, tubes, trays. For simplicity, we
refer to all the component presentation and handling formats as reels.

total width of feeders that can be loaded at one time; for convenience, we will assume the

first representation.

We refer to the total time to place all the components on a particular board (including the

initial board setup time to locate the fiducials, etc.) as the placement time or cycle time

for that board. This placement time is a function of numerous machine-specific and product-

dependent parameters including the board area, number of components to be placed on the

board, size of the components, relative location of the component feeders, number and speed

of the placement heads (and feeder movements, X-Y table), component pickup mechanism

and placement head configuration, intermediate operations (e.g., inspection, pin alignment),

and placement sequence. Ball and Magazine [1989], Bard, Clayton and Feo [1989] and

Gavish and Seidmann [1987] develop cycle time models for different placement machines.

We assume that, for each available machine, the planner can incorporate these factors to

estimate the average placement speed for each component type or the average placement time

per board for every product. We will use these placement time estimates to quantify each

machine's workload.

By changing the component feeders and the process plan, the same machine can

assemble a wide variety of products. A machine's slot capacity determines its setup

requirements. If the machine has a large slot capacity relative to the number of component

types required for each product, then we can reduce changeover time by assigning dedicated

slots to certain common component types, and keeping these reels on the machine at all

times. The setup policy that we describe in Section 2.2 exploits this observation.

2.1.2 Planning hierarchy

The growing emphasis on reducing setups, optimizing cycle time, eliminating work-in-

process inventories, and improving asset utilization has motivated considerable management

science research in recent years on models to support shon-term production planning

decisions. The vast majority of this literature deals with optimizing feeder-to- slot assignment

and placement sequencing decisions to reduce the cycle time for a single product (see, for

instance, Ahmadi, Grotzinger and Johnson [1988], Ball and Magazine [1988], Bard et al.

[1989], Drezner and Nof [1984], Francis et al. [1989], and Gavish and Seidmann [1987]).

These optimization models tend to be very machine-specific, incorporating features that

contribute most to the placement time on each machine (e.g., single versus dual delivery of

components, Euclidean versus Manhattan distance metrics to compute head travel time, etc.).

At a higher level in the planning hierarchy, researchers have studied short-term board

sequencing problems for a single machine or line, and setup strategies to reduce changeover

5-

time to produce a given set of products (e.g., Lofgren and McGinnis [1986], Carmon,

Maimon and Dar-El [1989], and Daskin, Maimon and Shtub [1991]).

Some recent literature has begun to address more strategic issues in PCB assembly using

models that consider both multiple products and multiple assembly lines. Ahmadi and

Matsuo [1992] address equipment configuration decisions in mixed-model assembly

facilities using mini-lines. A mini-line is a series of assembly stages, with each stage (e.g.,

placement, soldering, etc.) containing multiple parallel machines. Ahmadi and Matsuo

propose a hierarchical approach to decide the number of mini-lines, group the product

families, and allocate machines to each mini-line. Ahmadi and Kouvelis [1992] describe a

mathematical programming formulation to represent alternative design approaches-flexible

flow lines, mini-lines, and hybrid lines-for electronics assembly. These models minimize

makespan (i.e., the maximum processing time over all the lines) to balance the workload, but

do not explicitly incorporate the setup interactions across product families since they are

concerned mainly with long-term configuration decisions.

2.2 Tactical Planning: Problem Definition and Modeling Issues

2.2.1 Scope of model

We consider an intermediate level of decision-making that incorporates the workload

balancing feature of the strategic decision models on the one hand, but also considers a finer

grain representation of individual placement machines to capture the setup costs in a high

mix, low volume environment. For medium-term planning, we assume that the equipment

configuration is fixed, i.e., we know the number of parallel placement machines, and their

respective capabilities. We are given the bill of components for each product, and its

processing time (see Section 2.2.3) on every machine. By "product" we mean a single

board type or a fainily of similar board types (e.g., mother boards with nearly identical bill

of components)^. Unlike short-term production planning models that require detailed

information regarding the size, release date, and due date for each batch of products,

medium-term planning must rely on aggregate forecasts of production requirements. We use

two parameters to represent the production requirement for each product: (i) its projected

demand in terms of total number of boards required per period^, and (ii) its anticipated

2 Double-sided boards require two passes through the assembly line, and so we consider them as two separate

products. If necessary, we can specify that both sides must be assembled on the same or different

machines.

^The demand period (or lime unit) might be considerably shorter than the planning horizon; typically, the

period is long enough to ensure that every product is assembled at least once per period.

-6-

production frequency'^ or the average number of batches assembled during this period.

The tactical planning problem involves deciding which products to assemble on

each machine in order to minimize setup costs while maintaining a balanced

workload. We use the estimates of production frequencies and demands, respectively, as

weights in the setup cost and workload functions of the tactical planning model. We defer

discussion on how to represent the setup cost and workload in order to first clarify the

model's inputs, and motivate the decision problem.

We anticipate reviewing and revising the product-to-machine assignment decisions

whenever the demand pattern changes or new equipment is installed (e.g., quarterly or

annually). The choice of planning horizon depends on the relative stability and seasonality

of demand for different products; if demand is volatile, the planning horizon is shoner.

Maintaining stable medium-term product assignments has several advantages over

dynamically assigning individual production batches to different machines in real-time.

First, if the machines are located at different sites, then we must decide in advance which

products to assemble in each machine in order to ensure proper supply chain coordination

and timely deliveries. Second, as Skinner [1974] and others have suggested, creating

"factories within the factory" by appropriately panitioning the products and processes

reduces the complexity of managing the operations, decreases flow times, and exploits

learning effects since each module specializes in a subset of products. In the electronics

assembly context, adhering to fixed product-to-machine assignments offers additional

advantages such as lower inventories of components and tooling, fewer component retrieval

and storage transactions, lesser congestion on the floor, simpler materials handling

requirements due to streamlined flow, and easier process planning. We emphasize,

however, that the medium-term product assignment decisions merely provide guidelines or

preferred production choices, and might only apply to a subset of regular products. In the

short-term, shop floor supervisors might override the product assignment plan due to

contingencies (unexpected surges in demand, rush orders, equipment downtime, and so on);

similarly, the supervisors might make real-time assignment decisions for one-time (e.g.,

prototype boards) or low volume products based on the current status and capabilities of

different modules.

We assume that the input data-product families, demand projections, production

frequency estimates, and processing time-have the level of aggregation and accuracy that is

"* Many electronics assembly facilities use periodic scheduling policies (e.g., produce high volume products

once every week, low volume items once every four weeks, and so on) to facilitate due-date seuing, raw

materials procurement, and production scheduling. The production frequency is, therefore, a natural

parameter that planners can relate to easily.

appropriate for the chosen planning horizon. For instance, computer manufacturers often

produce a vast number of "part numbers", but many part numbers are minor variations or

enhancements of a base model, differing only in a few model-specific components or in the

programmable software. Managers typically group the individual models into a few natural

product families, and prefer to use a common processing path for all members of a product

family in order to simplify scheduling and exploit economies of scale. In this case, we treat

each family as a single "product". This aggregation of product variations into families

simplifies the demand forecasting requirements (forecasting the demand for individual

product variations is often difficult and quite inaccurate), and reduces the size of the planning

model. Similarly, if a subset of components always occurs as a group, then we can consider

a single equivalent component type (this "component" would, of course, require multiple

feeder slots on the machine).

The next two sections motivate and discuss how we represent setup cost and workload in

the tactical planning model.

2.2.2 Setup management strategies

Preparing the placement machine(s) is often the major bottleneck in the changeover

process (unless the total number of component types is small relative to the slot capacity).

Setting up a placement machine to assemble a different product involves loading all the

component types required for that product in appropriate slots on the machine, after

unloading some or all of the feeders used for the previous product; we ignore other elements

of the setup operation such as loading the process plan for the next product into the

machine's controller. Thus, the time to setup the machine for a new batch is proportional to

the number of feeders that must be loaded/unloaded. In turn, this number depends on the

setup policy that the facility uses, and the bill of components for different products.

Let us first consider two extreme feeder changeover policies-complete setup and

incremental setup. The complete setup policy involves unloading all the feeders from

the machine when a batch is completed, and mounting the next product's components in

appropriate slots. This policy has two advantages: (i) we can fine tune the feeder- to- slot

allocation and placement sequencing decisions to minimize the cycle time per board for each

product (e.g., by loading the components needed for successive placements in consecutive

slots), and (ii) the process plan for a product does not change from batch to batch since each

component tyf)e always has a fixed feeder location(s) for that product. However, the

complete setup policy ignores the commonality of components for successive products, thus

incurring long setup times.

-8

At the other extreme, the incremental setup policy exploits component commonality

by loading only those new component types that are not akeady on the machine (after

selectively unloading some of the unnecessary feeders to release slots for new components).

While this strategy can reduce the number of load/unload operations, its effectiveness

depends on proper production sequencing (i.e., we must sequence the products to minimize

sequence-dependent changover times), necessitating sophisticated scheduling methods.

More importantly, since the location and composition of feeders can vary from batch to

batch, the operator must dynamically decide which unnecessary feeders to unload from the

machine, and which free slot to use for each new component type; in turn, the system must

have the ability to dynamically change and optimize the process plan with respect to the

feeder locations for the current batch. Also, the cycle time per board can degrade since the

incremental setup policy permits only limited flexibility in selecting the slots for the new

components, and the dynamic unloading and loading operations increase the chances of

operator error (e.g., unloading the wrong feeder, loading in the wrong slot, specifying an

incorrect feeder location in the process plan). Since most facilities do not currently have

dynamic process planning and slot allocation capabilities, and since the degradation in cycle

time might outweigh the benefits of reduced setup time, the incremental setup policy as we

have described it is rarely implemented in practice.

Between these two extremes of complete and incremental setups, we might consider

intermediate policies such as the group setup schemes proposed by Carmon et al. [1989] that

attempt to use a common setup of components to assemble a group of similar products.

When all the components (on a single side of the board) must be placed in a single pass

through the placement machine, the group setup scheme corresponds to partitioning the

products assigned to a machine into groups (such that the number of component types

needed for each group does not exceed the slot capacity), and implementing the complete

setup policy for each group. This scheme requires: (i) a methodology to group products in

order to minimize setup time while ensuring that the number of component types required for

all the products in each group does not exceed the machine's slot capacity (Daskin et al.

[1991] propose an integer programming model and algorithm for this problem), (ii) a method

to optimize the feeder locations for each group (for example, to minimize the weighted

placement time for all products in the group given their relative demands), and (iii) the close

coordination of production plans so that products in a group are assembled consecutively.

The group setup policy is difficult to incorporate in a tactical planning model since we cannot

directly express the total setup time under this policy in terms of the product-to-machine

assignment decisions.

9-

We propose the following alternate policy, which we refer to as the partial setup

policy, that is both easy to implement and convenient to model. For a particular machine,

consider the set of all component types needed to assemble the products assigned to that

machine. We will partition this set into two categories: "permanent" components, and

"temporary" components. The setup policy consists of loading all the permanent

components in preassigned slots on the machine; we never unload these feeders except to

replenish components. On the other hand, temporary components remain on the machine

only when needed. Thus, to changeover from one product to another, we will unload all the

temporary components corresponding to the previous product, and load the temporary

components required for the next product. We have described a "complete temporary setup"

version of the partial setup policy, i.e., we unload all the temporary components after

completing each batch. Other variants of this policy include an incremental version that

selectively unloads unnecessary temporary components, and loads only new (temporary)

components during each changeover operation. Similarly, a group setup version would use

a common setup of temporary components for selected groups of products (Daskin et al.

[1991]). We assume that the complete temporary setup version provides an adequate

approximation of the setup cost for medium-term planning purposes.

For a given assignment of products to machines, the partial setup policy requires two

decisions: how many slots to dedicate for permanent components, and which components

are permanent or temporary. We will incorporate both these decisions in our optimization

model. Note that if the available slots on a machine can accommodate all the component

types required for every product that the machine assembles, then we can designate all

components as permanent; otherwise, our ciioice of permanent components is constrained by

the requirement that, for each product, the slot capacity must equal or exceed the total

number of permanent components plus the temporary components required for that product.

The choice of permanent and temporary components captures the setup interactions between

products that are assigned to the same machine. But, once we have classified the

components as permanent and temporary, the setup time becomes separable by product

(proportional to its number of temporary components), and we can develop optimized feeder

locations and process plans that are invariant with production sequence. Thus, the partial

setup policy provides a practical way to reap the setup time benefits due to component

commonality, and modeling its cost does not require a detailed representation of product

sequencing decisions (the incremental setup policy requires such a representation).

We define the setup cost per period of a product as the number of temporary

components for that product times its production frequency. Planners might wish to use

other product-specific weights (instead of production frequency) to define setup cost. If the

10

load/unload time is approximately the same for all components, then multiplying the setup

cost by the load/unload time per feeder gives the setup time per demand period incurred to

assemble the product (if different component types have different load/unload times, we can

redefine the setup cost as the sum of load/unload times for all temporary components

multiplied by the number of batches per period). The setup cost also serves as a surrogate

metric for other important manufacturing performance indicators such as the number of

materials transactions and handling operations (to retrieve and return component reels to

storage), the number of spare feeders required (to prepare components for the next product),

the congestion on the assembly floor (due to material movement, feeder loading operations,

and reel/feeder storage), and the in-process component inventories. Minimizing setup cost,

therefore, not only reduces the manhours to change over from one batch to the next but also

improves several other aspects of the electronics assembly operation.

2.2.3 Balancing the workload

The total processing time per demand period to assemble a product depends on its

demand, the types and number of components it requires, and the placement speed for

different component types. The exact placement or cycle time per board is sensitive to the

slot allocation (i.e., the relative locations of various component feeders) and placement

sequencing decisions. For medium-term planning purposes, we require only a rough cut

estimate of cycle time per board (including board setup time to locate fiducials, etc.) for each

product on every machine, obtained using, say, average placement rates for different

component types (e.g., 2 components per second for small, passive components, etc).

Thus, if

dj = demand (number of boards) per period for product i,

m^j = number of type j components per board required for product i,

Sjjj = average placement rate (number of components/unit time) for component j on

machine k, and

gjj^
= time to setup each board (or a panel of boards) on the machine, including the

time to locate fiducials, and so on,

then, the cycle time per board for product i on machine k is

p^ = S —i^ -(-

gjj^
time units per board,

j
Sjk

and the total processing time to produce all dj boards using machine k is Pj,^ = djPjjj.

time units per demand period. We might optionally add to P^j^ an estimate (or lower bound)

of the line changeover time per batch multiplied by the production frequency to account for

the time to setup the screen printer and other equipment, change the reflow oven's

temperature profile, and assemble and test a few pilot boards.

11

We define the workload of a machine as the sum of processing times P^^ for all

products assigned to that machine. We model the workload balancing requirement by

imposing a user-specified upper limit T^ on the total processing time for all products

assigned to each machine k. The parameter T^, which we refer to as the processing limit,

depends on the desired machine utilization level. For instance, using performance metrics

such as "placements per unit time", managers can compute the total operating hours needed

to meet the projected demand for all products; allocating the total operating hours to the

parallel placement machines (subject to the actual available processing time for each

machine), and adding an allowance for limited imbalances, gives one set of processing

limits. By parametrically varying these limits, the user can generate several (if necessary,

all) pareto-optimal product assignment scenarios with different setup and workload

characteristics. If the processing limits are "tight" (i.e., close to the minimum required

operating time) we expect some degradation in the total setup cost and vice versa.

To summarize, our tactical planning model minimizes total setup cost for all products

subject to upper limits on the processing time for each machine (workload balancing

constraints) as well as component loading and slot capacity constraints. The workload

balancing constraints provide a user-controllable means to influence the overall allocation of

products to machines. The setup cost objective represents not only the time to changeover

production from one product to another but also other factors, such as labor requirements,

materials handling effort, and component inventory levels. Next, we formulate the tactical

planning problem as an integer program.

2.3 Integer Programming Formulation of the Tactical Planning Problem

The tactical planning problem has two sets of decision variables: (i) the product

assignment decisions, specifying which products to assemble on each machine, and (ii)

the component loading decisions representing the choice of permanent and temporary

components for each machine. The model has workload balancing constraints, product

assignment constraints, component loading constraints, and slot capacity

constraints. To formulate the problem as an integer program, we introduce the following

notation.

We are given N products and K parallel machines; we use i = 1,2, ...,N and k = 1,2,

..., K, respectively, to index the products and machines. Let J = {1,2, ...,M} denote the

index set of the M component types needed to assemble all products. The tactical planning

model requires the following input parameters:

-12

Pjlj = Processing time (hours per period) for product i on machine k;

T|j = Processing limit of machine k (hours per period);

Ck = Slot capacity of machine k (number of standard feeder slots);

bj = Anticipated production frequency of product i (number of batches per period);

and,

J (i) = Subset of component types required for product i.

We define I(j) as the subset of products that use component]. We assume that each product

i must be assembled in a single pass through the machine^, implying that the number of

component types IJ(i)l needed for this product must less than or equal to the slot capacity C^

for at least one machine k (otherwise, the problem is infeasible). The model's decision

variables are:

1 if we assign product i to machine k,

'^
lo otherwise;

yjk

Z:

1 if we designate component j as permanent on machine k,

.0 otherwise; and,

1 if we load comp. j€ J(i) temporarily on machine k to assemble prod, i.

''j*^
lo otherwise.

We can then formulate the tactical planning problem as the following integer program [P]:

N K

[P] Z* = ™" lb, { I I Zjj^} (1.1)
i=l JGJ(i)k=l

J

subject to

Product assignment constraints:

K
Z Xit > 1 for all i = 1,2, ...,N, (1.2)

k=l

Workload balancing constraints:

N
Z PjXj^ < T^ for all k = 1,2, ...,K, (1.3)

i=l

5 Surface mount assembly facilities prefer single-pass assembly whenever possible since permitting multiple

passes increases routing complexity, and introduces additional board handling operations that can increase

the defect rate (e.g., due to vibrations) and flow time. If a product requires multiple passes, we assume that

the subset of components to be placed in each pass is predetermined, and so we treat each subset as a

separate product

-13-

Component loading constraints:

and k = 1,2, ...,K, (1.4)

Slot capacity constraints:

S Yit + Z Zjit < Cv for all i = 1,2, ...,N, and

k = 1,2, ...,K, and (1.5)

. yjk +
. ^,., ^ijk ^ H

jeJ j6J(i)

Integrality constraints:

'^ik' yjk' ^ijk
= ^°^^ for all i = 1,2, ...,N, j 6 J(i),

andk = 1,2, ...,K. (1.6)

The objective function (1.1) minimizes the total setup cost which is the weighted sum of

temporary component assignments for all products. The product assignment constraints

(1.2) specify that each product must be assigned to at least one machine. Since we minimize

setup cost, formulation [P] must have an optimal solution that assigns each product to

exactly one machine. The workload balancing constraints (1.3) impose the user-specified

upper bounds T,^ on the total processing time assigned to each machine k. For every product

i, the component loading constraints (1.4) ensure that, if we assign product i to machine k

(i.e., if Xjj^ = 1), then each of its components j g J(i) must be loaded on machine k either

permanently or as a temporary component for that product, i.e., we must set either yj^,
= 1 or

Zjj^ = 1. The slot capacity constraint (1.5) ensures that the component loading decisions are

feasible; it specifies that, for every product i and machine k, the number of slots reserved for

permanent components (the first term in the left-hand side of (1.5)) plus the number of

temporary components required for product i (the second term in the left-hand side, which is

zero if the optimal solution does not assign product i to machine k) must not exceed the

machine's slot capacity C^.

2.3.1 Model variants

By making minor changes to formulation [P] we can model several variants of the tactical

planning problem. For instance, to permit product splitting (i.e., assigning a product to

more than one machine) we can either relax the integrality constraints on the product

assignment variables Xjj^^ (in which case Xjj^ denotes the fraction of product i's demand that

is assigned to machine k), or define multiple products whose total demand equals the original

product's demand. To incorporate predetermined assignments of certain products to

machines, e.g., if product i is preassigned to machine k due to its special processing

^ We retain the integrality restrictions on the y and z variables.

-14-

requirements, we can either add the constraint Xjj^ = 1 to formulation [P] or eliminate the

variables Xji^, for all k = 1,2, ...,K, and subract product i's processing time P^^. from

machine k's processing limit Tj,. Similarly, adding the joint assignment constraints Xj^ =

Xj.^ or the exclusive assignment constraints (xj,^ + x,.^) < 1 for all machines k = 1,2,

...,K, models the conditions that products i and i' must or must not be assigned to the same

machine. We can incorporate component-dependent setup costs and feeder widths by

changing the coefficients in the objective function and the slot capacity constraints. The

model also applies to placement modules that contain more than one machine in series.

In this case, the slot capacity of the module is the combined slot capacity of all the machines

in series, and the processing time P^^ equals product i's demand times the cycle time per

board for product i in module k''. Finally, our model treats the number of slots allocated to

permanent components as a (implicit) decision variable. Alternatively, we can exogenously

set the number of permanent slots or specify an upper limit, say, Uj. for the number of

permanent components on machine k by adding the constraints:

Z y:^ < U,^ forallk= 1,2, ...,K.

jeJ

By solving the model for different values of Uj^, we can assess the sensitivity of setup cost

to the permanent slot reservation decisions. Our solution methodology extends to all these

model variants; however, we will consider only the basic model fP] in our subsequent

discussions.

2.3.2 Special cases
Formulation [P] also has several interesting special cases. If the slot capacities C^ are

very large (e.g., C,^ ^ M for all machines k) so that we can load all the required components

permanently on each machine, and if all the machines have the same processing limit, say, T,

then problem [P] reduces to the following recognition version of the nonpreemptive, parallel

machine scheduling problem: is there an assignment of products to machines such that the

makespan is less than or equal to T? Even with identical machines (i.e., each product has the

same processing time on every machine), this problem is NP-complete (see, for instance,

Lawler, Lenstra, and Rinnooy Kan [1982]).

Another interesting special case arises when we choose large values (say, greater than the

sum of the processing times for all the products) for the processing limits T^. In this case,

we seek the best grouping of the N products into at most K groups such that the total setup

''
If the module contains L machines in series, the smallest possible cycle time per board (achieved when all

the machines are equally utilized) is lA. times the total placement time per board. To estimate the actual

cycle time per board, we might inflate this lower bound to account for possible variations in the placement

time of each machine.

15-

cost is minimized. Unlike traditional group technology approaches based, for instance, on

similarity indices (see, for example, DeWitte [1980J, Rajagopalan and Batra [1982]) or rank

order clustering (e.g.. King [1980] and King and Nakomchai [1982]) that use component

commonality as a surrogate for setup cost, the optimization model [P] provides a more

complete representation (including an explicit setup cost function) of the grouping problem

by accounting for the limited slot capacity of each machine, and the production frequency of

each product. Of course, we might consider adapting the group technology approach,

combined with parallel machine scheduling methods, to solve problem [P] heuristically.

2.3.3 Subproblems

We now consider two single-machine subproblems of [P]-the product selection problem

and the setup optimization problem-that are central to our solution strategy. Suppose each

product i generates a "profit" (or opportunity cost) if we decide to assemble it. The net profit

for any subset of products is the total profit for all products in this subset minus the total

setup cost to assemble the products on a single machine. The following product selection

problem determines which products to accept for assembly on the machine:

Given N available products, each with a profit value, select a subset of products to

assemble on a single machine in order to maximize net profit, subject to the workload

balancing constraint (1.3), component loading constraints (1.4), and slot capacity

constraints (1.5).

This product selection problem is relevant for surface mount assembly subcontractors or

"profit center" line managers who must decide which of several available products to accept

for assembly.

For a given assignment of products to a machine, we refer to problem of selecting

permanent and temporary components as the setup optimization problem, and define it as

follows:

Given the set of products to be assembled on a machine, decide which components must

be loaded permanently in order to minimize the total setup cost for the remaining

temporary components subject to the component loading constraints (1.4) and the slot

capacity constraints (1.5).

This model has direct application for short-term process planning, and is also a subproblem

of the product selection problem. As part of our algorithmic development in Section 3, we

describe solution procedures for both these subproblems.

16

3. Solving the Tactical Planning Problem

Formulation [P] is a large-scale integer program that is difficult to solve optimally using

general-purpose integer programming methods. As we show in Section 3.2, even the setup

optimization subproblem is NP-hard. We, therefore, focus on developing an optimization-

based procedure that exploits the problem's embedded special structure to construct a good

feasible solution, and also generates a lower bound to assess the quality of this solution.

Our solution method combines column generation with greedy and local improvement

heuristics, and other lower bounding techniques.

Before describing the column generation algorithm, we note that the linear programming

relaxation of formulation [P] can have arbitrarily poor performance, i.e., the gap between the

optimal setup cost and LP value, as a proportion of the LP value, can be arbitrarily large.

For instance, suppose all K machines are identical, i.e., they all have the same slot capacity

C, processing limit T, and processing times Pj, and suppose the number of component types

M is less than or equal to K C. Then, the following fractional solution solves the LP

relaxation of formulation [P] optimally:

for all i=l,2, ...,N, and k=l,2, ...,K,

for all j € J, and k=l,2,...,K, and

for all i=l,2, ...,N, j € J(i) , and k=l,2, ...,K.

This solution assigns M/K permanent components to each machine, which by assumption

does not exceed the slot capacity C. For the original problem to be feasible, the processing

limit T must exceed 1/Kth the total processing time required to assemble all the products;

hence, the LP solution satisfies the workload balancing constraint. Since the LP solution

does not require any temporary components, its objective function value is zero; however,

we can make the optimal setup cost arbitrarily large by considering products with low

component commonality and high values for the production frequency parameters bj.

Since formulation [P] has a very weak LP relaxation, solving it using a standard LP-

based branch-and-bound method is not likely to be very effective. Instead, we reformulate

the problem as a capacitated set covering model, and solve its LP relaxation using a column

generation algorithm (see, for instance, Lasdon [1972] or Bradley, Hax, and Magnanti

[1977]). Column generation have proved to be an effective technique for solving difficult

crew scheduling, cutting stock, and vehicle routing problems (e.g., Bamhart et al. [1992],

Vance et al. [1992], and Desrochers et al. [1992]). For the tactical planning model, the

17-

^ik

column generation procedure iteratively solves the product selection subproblem heuristically

and/or using branch-and-bound. The method generates lower bounds on the optimal setup

cost, and also enables us to construct good feasible solutions. The next three sections

describe the various components of our algorithm to approximately solve the tactical

planning problem. Section 3. 1 reformulates the tactical planning problem as a capacitated set

covering problem, and provides an overview of the solution approach. Sections 3.2 and 3.3

discuss solution procedures for the two subproblems-the product selection and setup

optimization subproblems-that we must solve in order to dynamically generate columns for

the set covering formulation. Section 3.4 integrates these subproblem solution methods in

the overall algorithmic framework, and discusses our heuristic and lower bounding

strategies.

3.1 Overview of the Solution Approach

Let us first reformulate the tactical planning problem. Suppose we can enumerate all the

feasible assignment patterns for each machine. A. feasible assignment pattern (which we

often abbreviate as "pattern") for machine k is a subset of products whose total processing

time on machine k does not exceed the machine's processing limit T|^. Let H|^ be the total

number of feasible patterns for machine k. For h = 1,2, ...,H|^, let a,^ be the characteristic

vector or "column" corresponding to the h pattern for machine k, with elements ajj^^, = 1 if

product i is assigned to machine k in this pattern, and otherwise. Let Sj,jj denote the

minimum setup cost for the h pattern, obtained by optimally solving the setup optimization

problem assuming that all products i with ajj^j^ = 1 are assigned to machine k.

We can interpret the tactical planning problem as the process of choosing K patterns, one

for each machine, such that every product is included in at least one of the chosen patterns.

Using binary decision variables X^ to represent the choice of patterns {X^ is 1 if we choose

the h*^ pattern for machine k, and is otherwise), we can formulate the tactical planning

problem as the following set covering model with side constraints, which we denote as [F]:

V (3.1)IP'l

Pattern selection constraints:

n=i

Integrality constraints:

i- K^ < 1 for all k = 1,2, ...,K, and (3.3)

^hk ~ or 1 for all k = 1,2, ...,K, and

all h = 1,2, ...,Hk. (3.4)

The objective function (3.1) minimizes the total setup cost of all selected patterns. The

product covering constraints (3.2) ensure that every product belongs to at least one chosen

pattern. Constraint (3.3) specifies that we cannot choose more than one pattern for each

machine.

To simplify our subsequent discussions, we will assume that all K machines are

identical, i.e., they each have the same slot capacity C, processing times Pj, and

processing limit T. The methodology extends easily to problems with non-identical

machines (including modules containing multiple placement machines in series) although we

have not tested it for these problems. When the machines are identical, an assignment

pattern that is feasible for one machine must also be feasible and have the same setup cost for

all other machines. Hence, we can drop the subscript k for the problem parameters and

decision variables in formulation [P], and combine the K pattern selection constraints (3.3)

into a single "capacity" constraint. Let H denote the total number of feasible assignment

patterns. Performing these simplifications, we get the following Capacitated Set

Covering formulation, denoted as [CSC], for the electronics assembly tactical planning

problem with identical parallel machines.

H

[CSC] Z* = min Z slXu (3.5)

h=l

subject to

Product covering constraints:

foralli= 1,2, ...,N, (3.6)

(3.7)

As before, the binary variable X^^ denotes whether (k^^ = 1) or not (k^^ = 0) we choose pattern

h, and constraints (3.6) ensure that every product belongs to at least one chosen pattern. We
no longer associate a pattern with a particular machine, i.e., we can arbitrarily assign the

selected patterns to the available machines; constraint (3.7) limits the number of chosen

patterns to K since we cannot assign more than one pattern to each machine.

Let [LCSC] denote the linear programming relaxation of the integer program [CSC],

obtained by replacing the integrality restrictions (3.8) with nonnegativity constraints. Since

formulation [CSC] contains a very large number of columns (exponential in the number of

products N), enumerating all the columns and solving the integer program optimally is

impractical. Therefore, we: (i) solve its LP relaxation [LCSC] using an iterative column

generation procedure to generate lower bounds, and (ii) apply heuristic and optimization

procedures to generate good feasible solutions. We refer to the linear program [LCSC],

containing all the columns of [CSC], as the master problem, a restricted version of [LCSC]

containing only a subset of its columns is called a restricted master problem . Our solution

procedure consists of the following three phases:

Phase 1 : Initial Heuristic Solution

Using some greedy and local improvement heuristics we find K (or fewer) feasible

assignment patterns that together cover all the products. We refer to this solution as the

initial heuristic solution.

Phase 2 : Solving the LP relaxation of [CSC]

The optimal value [LCSC] is a lower bound on the optimal setup cost Z . We attempt to

solve this LP relaxation optimally via column generation. Starting with the columns

defined by the initial heuristic solution, the method iteratively generates additional

columns by solving the product selection subproblem; this subproblem uses "profit"

values derived from the optimal dual solution to the restricted master problem containing

only the columns generated in previous iterations.

This phase provides:

• feasible solutions at intermediate iterations whenever the optimal LP solution to the

restricted master problem is integral. We refer to these solutions as intermediate

feasible solutions;

• intermediate lower bounds on the minimum total setup cost, based on the optimal dual

solution to the restricted master problem at intermediate iterations, and

• a final lower bound if we solve [LCSC] optimally.

20-

Phase 3 : Final Feasible Solution

Since the column generation procedure in Phase 2 generates many promising assignment

patterns, we construct a final feasible solution by optimally solving the restricted CSC

integer program using all the available columns.

The first two phases require solving the setup optimization subproblem numerous times

(for every candidate assignment pattern). We first discuss this subproblem and its solution

method before returning to the overall solution procedure.

3.2 The Single Machine Setup Optimization Subproblem

The Setup Optimization (SO) subproblem is a core model for both the product

selection problem and the original tactical planning model. For a given assignment of

products to a machine, the SO model determines the number of permanent slots and selects

the components to be loaded in these slots subject to the slot capacity constraints, in order to

minimize the setup cost for the remaining "temporary" components. This section first

simplifies the formulation of the SO problem, and shows that this problem is NP-hard. We

then develop an upper bound on the number of permanent components in any feasible

solution. Adding an explicit constraint to enforce this upper bound strengthens the linear

programming relaxation of the SO model. We also describe a heuristic solution procedure,

develop a lower bounding method, and propose a branching scheme to solve the problem

optimally.

3.2.1 Notation and problem formulation

Consider any feasible assignment pattern a that assigns the product subset 1(a) to a single

machine. To simplify the notation, we omit the argument a, and let I now denote the subset

of products selected by pattern a, i.e., I = {i = 1,2,.. .,N: a^ = 1). Similarly, J is the set of

all components required to assemble products in this subset, and I(j) c I denotes the subset

of products requiring component]. Since the given assignment pattern is feasible, the total

processing time for all the products in I is less than or equal to T. The SO problem contains

the component loading, slot capacity, and integrality constraints of formulation [P], but

without the machine index k since we now consider only a single machine; we restate the SO

formulation for convenience. The model contains two sets of binary decision variables z-

and y:, for every product i e I and all components j € J. The decision variable yj takes the

value 1 if we designate component j as a permanent component, and is otherwise; z- is 1 if

component j must be loaded temporarily for product i, and otherwise. Using these

decision variables, the SO problem has the following formulation:

-21-

[SO'] s*(a) = min Z b: { Z Z::) (3.9)
iel J6J(i) ^

subject to

Component loading constraints:

yj + Zjj > 1 for all i e I, and all j e J(i), (3.10)

Slot capacity constraints:

Z y: + Z z:: < B fof all 1 G I, End (3.11)
JeJ

J
JGJ(i)

J

Integrality constraints:

yj.zjj = Oorl for all i 6 I, and all j e J(i). (3.12)

In the capacitated set covering formulation [CSC], the objective coefficient for the pattern

selection variable X^ corresponds to the minimum setup cost s (a^) obtained by solving

[SO'] for the h^ pattern a^.

Since the production frequency parameters b- are non-negative, formulation [SO'] has an

optimal solution that designates each component j e J as either permanent or temporary but

not both, i.e.,

Z-- = 1-yj foraIli€ I, andallje J(i). (3.13)

Using (3.13) we can eliminate the z variables from formulation [SO'] to get the following

more compact formulation [SO]:

[SO]

subject to

s*(a) = Z Z b: - max Z (Z bOy: (3.14)
jeJielCJ) jeJ ielO)

^

Z y: < C-IJ(i)l for all i e I, and (3.15)

JeJ(i) ^

yj = Oorl for all je J. (3.16)

The objective function now maximizes the savings in setup cost obtained by assigning

components permanently. The slot capacity constraints (3.15) state that, for each product i,

the number of slots occupied by permanent components that are not needed for product i

must be no greater than the remaining slot capacity after loading all of product i's

components.

22-

3.2.2 Computational complexity of the SO problem

Proposition 1 : The setup optimization problem is NP-hard.

Proof:

We will prove this result by transforming any instance of the following recognition version

[SP] of the set packing problem into a recognition version of formulation [SO], which we

refer to as the equivalent SO problem, in polynomial time.

Set Packing problem: [SP]

Given a set E =
{ 1,2, ,..., lEI) of elements, and integer L < lEI, and P subsets Sp c E,

for p = 1,2,. ..,P, is there a Boolean vector x€ {0,1}^ satisfying the following

conditions?

P

E x_ > L, and (3.17)

Z Xp < 1 forallee E. (3.18)

pxeS
P

Given any instance of [SP], we will consider an equivalent SO problem with N = IEI+1

products and M > 2P components. The first lEI products are regular products, indexed

from 1 to lEI, one corresponding to each element of the set E, and product N is a dummy

product. We define the component set J as J' u J", where J' = {1,2 P} is the set of

regular components, containing one component p corresponding to each subset Sp in the

original SP problem instance, and J" is a set of special components that we add in order

to ensure that every product requires the same number of component types. We construct

the set J" as follows.

For every regular product i = 1,2, ..., |E|, let ttj denote the number of subsets Sp that

contain the i**" element of E in the given SP instance. For each regular product i, we create

lEI

(P-cXj) special components; let J- denote this set of special components. If {P + Z (P-a,)

}

i=l

El

< 2P, we create P -Z(P-a;) additional special components. The set J" contains all the

1=1

special components created in this manner; these components are indexed consecutively from

(P+1). Note that by construction, the total number of components M (= IJ'I + IJ"I) in the

equivalent SO problem instance is greater than or equal to 2P.

-23

For every regular product i = 1,2, ...,IEI, we define the set of components J{i) that it

requires as follows:

J(i) = {jeJ':i€ Sj}u {J"U;'}.

The dummy product requires every regular component, but does not use any special

component, i.e., J(N) = J'. Observe that IJ(i)l = M - P for i = 1,2, ...,IEI, and IJ(N)I = P.

We set the slot capacity C of the machine equal to M - P + 1. Since C > IJ(i)l for all

products i = 1,2, ...,N, the SO problem is feasible.

The production frequency bj is 1 for every regular product i = 1,2, ...,IEI, but the

dummy product has b^ = MN+1. The equivalent SO problem, which is a recognition

version of formulation [SO], seeks a choice of permanent components (i.e., y; values for all

components j e J) such that the total setup savings is at least L bj,^ = L(MN+1), i.e., a

solution y is feasible for the equivalent SO problem if it satisfies constraints (3.15), (3.16),

and the following minimum setup savings constraint:

Z Z bjy: > L(MN+1). (3.19)
JGJielO) ^

We claim that [SP] has a feasible solution if and only if the equivalent SO problem has a

feasible solution. We will establish this claim by showing that given a feasible solution to

either problem we can construct a feasible solution to the other problem. For any feasible SP

solution X, we construct the corresponding SO solution by setting y = x for all the regular

components p = 1,2, ...,P, and y: = for all the special components j > P. Conversely,

given a feasible solution y to the equivalent SO problem, we set x^ = y for all p = 1,2, ...P

to get the corresponding SP solution.

First, note that, in the equivalent SO problem the savings for selecting a regular

component j is between (MN+1) and (MN+l+N-1), while the savings for each special

component is at most (N-1) since: (i) each of the (N-1) regular products i has bj = 1, (ii) the

dummy product has h^ = MN+1, and (iii) the dummy product requires every regular

component but no special component. Ignoring the dummy product, the maximum possible

savings even if we can select all the regular and special components as permanent is (N-

1)(M-P) which is less than bj^ =MN+1. Therefore, in order to satisfy the minimum setup

savings constraint (3.19), every feasible solution y to the equivalent SO problem must

capture the dummy product's savings for at least L permanent components, i.e., it must

select at least L regular components. Hence, the corresponding SP solution satisfies (3.17).

Conversely, since every feasible SP solution x sets at least L of the x variables to 1, the

savings for the corresponding SO solution exceeds L(MN+1), i.e., this solution satisfies the

minimum setup savings constraint (3.19).

24-

We now show that the corresponding SO and SP solutions satisfy constraints (3.15) and

(3.18) respectively. Note that the slot capacity constraint (3.15) for every regular product i

in our equivalent SO problem instance becomes

S y_ + I y: < C-tJ(i)l

p£j':ieSp
P

J6J":j«J(i) "

= (M-P+1)-(M-P)

= 1 (3.20)

for all i = 1,2, ...,IEI. The slot capacity constraint for the dummy product specifies that the

SO solution must select no more than B-IJ(N)I = (M-P+1) - P special components.

Therefore, since every feasible SP solution x satisfies constraints (3.18), the corresponding

SO solution must satisfythe slot capacity constraints (3.15). Similarly, for any feasible

solution y to the equivalent SO problem, the corresponding SP solution satisfies constraints

(3.18).

These arguments show that [SP] has a feasible solution if and only if the equivalent SO

problem has a feasible solution. Since the set packing problem is NP-complete, the setup

optimization problem [SO] is NP-hard.

3.2.3 Greedy heuristic for the SO problem

Although the SO problem is intractable in theory, our computational experiments indicate

that its linear relaxation provides a tight lower bound, and the following adaptation of the

greedy heuristic described in Nemhauser and Wolsey [1988] for the set packing problem

generates good component loading plans. We define SC: = X b-^ as the setup cost for
ie I(j)

component j. SC is the total setup cost we incur if component j is temporary (recall that, in

an optimal solution, any component Uiat is loaded temporarily for one product must be

temporary for all Uie products that use it). The heuristic seeks to maximize the setup cost

savings at each step by permanentiy loading components j that have high values of Oj =

SCj/(N-II(j)l). The denominator of C: represents the number of rows (constraints (3.15))

covered by component] in formulation [SO]. Hence, the parameter Oj represents the setup

savings per row covered if we assign a permanent slot to component j. Starting with no

permanent components, the procedure successively examines every component j in

decreasing order of C. (in case of ties, we give priority to components with higher values of

SCj), and makes component j permanent if feasible, i.e., if setting yj
= 1 and yj. = 1 for all

previously chosen permanent components j' does not violate the slot capacity constraint

(3.15) for any product i. Using a worst-case example similar to the set packing example in

25-

Nemhauser and Wolsey [1988], we can show that the performance of this greedy SO

heuristic can be arbitrarily bad relative to the optimal value. However, the method seems to

perform quite well in practice. Next, we describe a method to generate a lower bound on the

optimal setup cost Sj,.

3.2.4 Lower bound on optimal setup cost

Let Q^jn denote the minimum number of slots required for temporary components in

order to ensure feasibility of the slot capacity constraints for all products. R^^^^ == C -
Q^^jj^

is the maximum number of permanent slots in any feasible component loading scheme. We

develop a lower bound on the minimum setup cost by fu^t determining a lower limit Q on

Qmin- T^cn, R = C - Q is an upper bound on R^ax' ^^^ ^" ^^ ^^^ possible scenario we

can choose the R components with the largest setup costs SCj as permanent components.

Hence, the minimum setup cost on the machine must equal or exceed the sum of setup costs

for the remaining (M-R) components.

For any given subset of products S c I, let J(S) = u J(i) be the set of all components

required to assemble the products in S. To compute Q, we use the following proposition.

Proposition 2 :

Qmin ^ r'^^^lforall subsets of boards Scl with ISI>2. (3.21)

Proof:

Let / = ISI, and without loss of generality assume S = { 1,2,...,/}. First, we prove by

induction on / that every feasible SO solution must satisfy

IQ^-^ > IJ(S)I- Z y:. (3.22)

Consider a subset S containing only two products, say, S = {1,2}. The number of

temporary slots must be greater than or equal to the number of temporary components for

each product Hence,

Q^i„
> IJ(i)l- I y: for alii 6 I. (3.23)

jeJ(i)

Summing inequalities (3.23) for i = 1,2 gives

2Q^i„ > IJ(1)I + IJ(2)I- I yj- I yj™"
JGJ(I)

J
JGJ(2) ^

= IJ(l)uJ(2)l + IJ(l)nJ(2)l- Z yj- S
JGJ(l)uJ(2)

J JGj(l)nJ(2)

-26

= IJ(S)l + IJ(l)nJ(2)l- I y:- I Yj
jeJ(S)

J
jeJ(l)r\I(2) "

> IJ(S)I - Z y: since y, < 1 for all j e J.

jeJ(S)
J J

Hence, every subset S containing two products satisfies inequality (3.22).

Now, suppose that (3.22) is valid for all subsets containing (/-I) or fewer products (/ >

3). Consider a subset S = {1,2,...,/) containing /products, and let S' = {1,2,...,/-!}.

Adding the inequality (3.22) corresponding to subset S', and the inequality (3.23) for

product / gives

jeJ(S) jeJ(0

= IJol + IJ(S') n J(/)l - X y:- Z y:

jeJ(S)
J jeJ(S')nJ(0 ^

> IJ(S)I- Z y: sincey, < 1 forallJ€ J.

J6J(S)
J J

Therefore, (3.22) is a valid inequality for all subsets S c I with ISI > 2. Note also that

C > O + S v
J€J

> O + Z V.

Adding this inequality to (3.22) we get

(/-l)Q^i„> IJ(S)I-C. (3.24)

Dividing both sides of (3.24) by (/ - 1), and rounding up the right-hand side (since Q^,j, is

an integer) shows that (3.21) is a valid inequality for the SO problem.

Proposition 2 suggests one way to determine the lower bound Q on the minimum

number of temporary components Qmin- compute Q(S) =
I
(IJ(S)I-C)/(ISI-1) I

for every

subset S (where fgl denotes the smallest integer greater than or equal to g), and set Q equal

to the maximum value over all subsets. Note that this approach is valid even if we do not

completely enumerate all the subsets S, i.e., the maximum value of Q(S) over any limited

family of subsets S also provides a valid lower bound on Q^^^. We exploit this observation

in two of the following three lower bounding procedures.

Methods to compute the lower bound Q
Each of the following three methods generates a valid lower bound on Q^^^^- In our

computational tests, none of these three methods systematically outperforms the others in

-27-

terms of producing a superior lower bound for
Qf^^J^^,

so we apply all three methods and set

Q equal to the maximum lower bound.

1. The all pairs method computes Q(S) for all pairs of products (i.e., for all S with ISI = 2),

and selects the maximum value as the lower bound.

2. The maximal set method attempts to identify a subset S requiring the maximum number of

components IJ(S)I. Initially, the set Sj^j contains all the products. Then, for / = N-1,

...,2, we obtain a subset S^ containing / elements by dropping from the current subset

S^^j the product that results in the smallest reduction in IJ(Spi (we break ties by dropping

the product with the fewest components). The maximum value of Q(S) for these N-1

subsets provides a lower bound on Q^in-

3. For any trial value of Q, the infeasibility method attempts to show that the problem

instance cannot have a feasible solution with only Q (or fewer) slots devoted to

temporary slots. Starting with a trial value of Q = 0, the method successively increases

Q until it can no longer prove the infeasibility of the current trial value. We say that the

current value Q is infeasible if we can show that having just Q temporary slots is

inadequate. On the other hand, the current value Q is acceptable if we cannot prove

that it is infeasible. To prove that the trial value of Q is infeasible, the procedure first

applies a permanent slot reservation test to underestimate the fewest number of

permanent slots needed to assemble all products in I if only Q slots are temporary. The

test fails to prove that Q is infeasible if the underestimate is less than or equal to C-Q

(which is the number of permanent slots available if Q slots are temporary). If the

underestimate exactly equals C-Q, we try to prove the infeasibility of Q by applying a

second test, thcpermanent component identification test, which identifies specific

components that must necessarily be permanent if Q slots are temporary. Appendix A
contains the detailed description of the infeasibility method.

To apply the permanent slot reservation test (Step 2), the procedure selects the

available product i* e I' that has the maximum number of remaining components, say,

m^* (belonging to the current component set J'). If mj* exceeds the trial value of Q then

at least (m^* - Q) components of product i* must be loaded permanently. Hence, we

reduce the available permanent slot capacity y by this amount, remove product i* from I',

eliminate all its components from the current component set J', and repeat Step 2. If the

number of slots that we have reserved for the products in l\l' exceeds the available

permanent capacity (i.e., if y < 0), then we cannot satisfy the slot capacity constraints

(3.15) for all the products if we limit the number of temporary components to a

28-

maximum of Q. In this case, we increment the value of Q by 1 (in Step 4), and reapply

the infeasibility checking procedure. If mj* is less than or equal to Q in Step 2b, then the

current value of Q appears to be large enough and the procedure terminates (Step 5).

Finally, if the number of available permanent slots (C-Q) is just enough (i.e., y = in

Step 2c and the subsets of remaining products and components are not empty), then we

apply the permanent component identification test (Step 3). At the end of Step 2,

consider any remaining product i e I' that requires exactly Q components from J'; every

other component j e J(i)\I' needed for product i must be made permanent. Using this

principle for all products i € I', we build the set J" of permanent components (in Step

3c). If IJ"I exceeds the available permanent capacity (C-Q), then the current value of Q
temporary slots is infeasible, and as before we increment Q (in Step 4) and reapply the

two infeasibility tests. If the procedure reaches Step 5, we cannot prove that the current

value of Q is infeasible, and so we use this value as the lower bound on the minimum

number of temporary slots required.

Observe that if we apply the all pairs heursitic first, we can stop the search in the

maximal set heuristic at size / = 3, and then use the better of the bounds produced by these

two methods as the initial trial value in the infeasibility method. Our implementation follows

this strategy.

The sum of setup costs SC for all components except the first R = C - Q components

with the highest setup costs gives a valid lower bound on the minimum setup cost s,^ of the

SO problem. We can also add the following maximum permanent slots constraint

N
I y; < R (3.25)
1=1

J

to formulation [SO] in order to strengthen its relaxation. Adding this valid inequality raises

two interesting issues:

(i) Does constraint (3.25) eliminate any fractional solutions to the LP relaxation of

formulation [SO]?

(ii) Does this constraint define a high dimension face of the slot allocation polyhedron

conv({y G (0,1)'^': I y: < C- IJ(i)l for all i e I))?

j«J(i) ^

We can construct problem instances for which adding constraint (3.25) eliminates the

fractional LP solution to [SO]. The example described in Vanderbeck [1993], but with a slot

capacity of 6, has this property. For this example, the upper bound R equals the true

maximum value R^a^ °^ ^^^ number of permanent slots and the optimal LP solution to the

strengthened formulation is integral. Vanderbeck [1993] also shows that: (a) using up the

-29

maximum number of permanent slots is not always optimal, and (b) in general, the face

defined by (3.25) is not a facet of the setup optimization polyhedron.

This section has focussed on the setup optimization model, which is a core subproblem

to generate lower bounds as well as heuristic solutions for the tactical planning problem. We
simplified the SO problem formulation, showed that it is NP-hard, described a greedy

heuristic to generate a feasible slot allocation, and developed a lower bound for the setup cost

based on an estimate of the maximum number of permanent slots. If this lower bound

equals the cost of the heuristic slot allocation, then the heuristic solution is optimal.

Otherwise, to solve the problem optimally, we use a branch-and-bound scheme. The greedy

heuristic solution serves as the initial incumbent in this procedure, and we incorporate the

maximum permanent slots constraint (3.25) in the SO problem formulation in order to

improve the intermediate LP-based lower bounds. In our computational experience, we

found that adding a new variable W, denoting the number of permanent slots, with the

defining constraintW = Z y:, and branching first on this variable improves the performance
j€j

J

of the branch-and-bound scheme. The size of the branch-and-bound tree tends to be quite

small (no branching was necessary for over 95% of the SO problems we solved) since the

LP relaxation of the enhanced formulation (with inequality (3.25)) produces tight bounds.

In the next few sections, we describe upper and lower bounding techniques for the

higher level problems-the product selection subproblem, and the overall tactical planning

model.

3.3 Initial Product Assignment Heuristic

Phase 1 of our overall solution procedure for the tactical planning problem requires

finding a heuristic assignment of products to machines. We apply two methods and select

the better of the two solutions as our initial heuristic solution. Both these methods require

repeatedly solving (approximately or optimally) the setup optimization subproblem.

3.3.1 List processing heuristic

This method successively assigns products, in decreasing order of their maximum
potential setup cost bj IJ(i)l, to machines so as to minimize the incremental setup cost at each

step. We use a slightly different ranking of products in the first K steps in order to

heuristically differentiate the product groups that are assigned to each of the K machines.

-30

Assigning thefirst product to each machine:

The first product assigned to a machine serves as a "seed" for similar products that are

subsequendy assigned to that machine based on incremental setup cost considerations (which

depends on pan commonality). To heuristically reduce the overlap in the set of components

needed for the K final product groups, we assign "dissimilar" seed products to the K

machines using the following procedure. We begin by assigning to the first machine the

product with the maximum potential setup cost. At every subsequent step k, for k = 2,

...,K, we recompute the maximum potential setup cost for each of the remaining products,

ignoring the components required by the first (k-1) products, and assign the product with

the largest (potential) cost to the k machine.

Assigning the remaining products:

We then sort the remaining products in increasing order of h^ IJ(i)l, and assign them in

sequence to the machine that requires the smallest incremental setup cost. Ties are broken

according to the longest processing time rule since this rule has proven effective for

minimizing makespan, which is an implicit objective to meet the workload balancing

constraints. Consider an intermediate step when product i is the next product to be assigned

from the sorted list. Let Ij^ denote the current set of products assigned to machine k; Jy. is the

set of components needed to assemble these products. We define the incremental cost of

assigning product i to machine k is the increase in setup cost on machine k when we add

product i to \. If J(i) c J,^, or if IJ,^ u J(i)l < C, then the incremental setup cost for product i

on machine k is 0. Otherwise, we must solve the SO problem assuming that machine k

assembles every product in the set I,;^ u (i). Let TSj and TS2 denote, respectively, the

optimal total setup cost on machine k assuming that this machine assembles the product

subsets Ij^ and Ij^ufi). If we assign product i to machine k, then TS2-TS1 is a lower bound

on the actual setup cost for product i in the final solution. On the other hand, if we solve the

SO problem only heuristically, dien we get upper bounds on TSj and TS2. We use the

heursitic incremental cost, which is the difference in the heuristic setup costs for I,^ and

I,jU{i}, as an approximarion for product i's actual setup cost if it is assigned to machine k.

We compute the heuristic incremental cost for every machine k, and assign product i to the

machine with the lowest incremental cost.

The final assignment of products to machines suggested by the list processing heuristic

might violate the workload constraint (1.4). If it does, we attempt to transfer products from

overloaded machines to others that have slack capacity. From among the products assigned

to the most overloaded machine, we select the product whose removal gives the maximum

reduction in setup cost on that machine, and can be feasibly accommodated on another

machine, i.e., the processing time for this product must be no more than the slack time

31

available on at least one other machine. Among the machines that have adequate slack time,

we choose the machine that incurs the lowest (heuristic) incremental setup cost, and reassign

the product to this machine. Because this strategy is myopic, it might terminate without

producing a feasible product-to-machine assignment.

3.3.2 Smallest setup-to-processIng ratio heuristic

This method is better suited than the previous list processing heuristic when the

workload balancing constraints are tight. The procedure to select the first product for each

machine is the same as before. Subsequently, the algorithm iteratively selects the least

loaded machine k, and assigns to it the unassigned product i that minimizes the ratio 5^/?^

of the incremental setup cost to processing time, where b^ is the incremental setup cost if we

add product i to machine k, and the exponent (5 is a user-specified parameter. Again, we

apply the SO heuristic to approximate the incremental setup cost at each step.

Initially, we set P = 0. If the final product-to-machine assignment violates the workload

balancing constraints, we increase the value of P and repeat the algorithm. As p increases,

the algorithm resembles the Longest Processing Time (LPT) heuristic which has proven

effective for minimizing the makespan for parallel machines (see, for example, Frenk and

Rinnooy Kan [1984]). For all of our test problems, the processing Hmit T exceeds the LPT

makespan; hence, this setup-to-processing ratio heuristic always generates a feasible

heuristic solution.

We select the better (i.e., having lower heuristic setup cost) of the list processing and

smallest ratio heuristic solutions as the initial solution for the tactical planning model, and

evaluate its optimal setup cost by solving the corresponding SO problems optimally. We can

develop many other heuristic procedures for the product assignment problem such as the

group technology methods that we outlined in Section 2, or analogs of bin packing and

parallel machine scheduling algorithms. We have not pursued these alternate heuristic

strategies since we use the initial heuristic solution mainly as a starting point for the column

generation algorithm.

3.4 The Column Generation Algorithm

Having constructed an initial heuristic solution. Phase 2 attempts to solve the LP

relaxation [LCSC] of the capacitated set covering formulation [CSC] in order to generate

lower bounds on the optimal setup cost Z , and possibly improve the feasible solution.

Recall that the H columns of formulation [CSC] correspond to all the assignment patterns

with total processing time less than or equal to the processing limit T. The h' pattern

-32

consists of assigning all products with aj^ = 1 to a single machine; its cost coefficient s (a^)

in [CSC] is the minimum setup cost, obtained by solving the corresponding SO problem

optimally.

Starting with the K assignment patterns of the initial heuristic solution as the initial set of

columns, the column generation procedure iteratively generates new "promising" columns as

needed until the linear programming optimality conditions of [LCSC] are satisfied. Let H

denote the number of assignment patterns or columns available at the start of iteration t of the

column generation procedure. Initially, H^ = K, the initial heuristic solution is the current

incumbent, and the current best upper bound is the total setup cost of this solution. At

iteration t, we first solve the following restricted master problem, denoted as [RM'],

containing the H' columns generated thus far:

[RM*] Zi^ = min Z s*(aj,) \ (3.26)
h=l

subject to

value Z* of the tactical planning problem. Otherwise, we generate one or more columns with

negative reduced cost, add these columns to the restricted master problem, and perform the

next iteration. To check for optimality and generate negative reduced cost columns at each

iteration, we solve the product selection subproblem.

3.4.1 The product selection subproblem

At iteration t, the reduced cost of any column or assignment pattern a with optimal setup

cost s*(a) is

N
p(a) = s*(a) - Z aj 7i| + o\ (3.30)

i=l

Note that every column in the current restricted master [RM'] must have nonnegative reduced

cost since k\ and a' are the optimal dual values for [RM']. To verify if any other column of

[LCSC] has negative reduced cost, we attempt to find a feasible assignment of products to a

single machine that minimizes (3.30). We can formulate this minimization problem as the

following product selection subproblem [PS'] using binary variables similar to those in

formulation [P], but for a single machine. The variables of [PS'] correspond to product

selection {x^), permanent component loading (y.), and temporary component loading (z-)

decisions:

[PS(7iS] L(7t') = min Z b, { Z Z::} - Z 7t| X: (3.31)

N
z

iGl * jeJ(i) ' i=l

subject to

Maximum workload constraint:

N
ZPjXi < T, (3.32)

i=l

Component loading constraints:

y- + Zjj > Xj for all i = 1,2, ...,N, all j € J(i), (3.33)

Slot capacity constraints:

1
jeJ •* jeJ(i)

Integrality constraints:

Z y: + Z z:: < B for all 1 = 1 ,2, . . .,N, and (3.34)

J ^ ieJ(i) ^

xj. Yj, Zjj = or 1 for all i = 1,2, ...,N, all j g J(i). (3.35)

-34-

We interpret k\ as the reward or profit for assembling product i. We must decide which

products to accept (xj = 1 if we accept product i, and otherwise) in order to maximize the

"net profit", which is the total profit for all accepted products minus the total setup cost.

Having selected the products, we must also decide which of the required components to load

permanently; the remaining components are temporary, and we incur their setup costs for

each chosen product that uses these components.

Since each column in the optimal basis of [RM^] has zero reduced cost, and is feasible

for [PS(7t')], the optimal PS subproblem value L(7i') must be less than or equal to -a\ Note

that we can proceed with the next iteration of the master problem as long as we generate

some negative reduced cost column, not necessarily the optimal solution to [PS(Ji')]. Since

solving [PS(7i')] optimally using a general-purpose branch-and-bound method is very time

consuming (the LP lower bound for formulation PS(;i') is weak), we first apply heuristic

methods to find one or more product assignment patterns with negative reduced cost

(although we select the products heuristically, we compute the pattern's true setup cost by

solving the corresponding SO problem optimally). If this effon is unsuccessful (i.e., all

heuristic patterns that we generate have nonnegative reduced cost), we must solve [PS(n')]

optimally. If the branch-and-bound procedures generates a pattern with negative reduced

cost (at an intermediate or final stage), we can add the corresponding column to the restricted

master problem, and initiate the next iteration. Otherwise, if L(7r') = - a\ the current LP

solution X^ is optimal for [LCSC], and the current optimal value of the restricted master

problem is a valid lower bound on Z .

Before describing our heuristic method to solve the product selection subproblem, let us

discuss some strategies that might improve the performance of the column generation

procedure by reducing the number master of iterations needed to converge to the optimal

solution. First, although generating just one negative reduced cost column is sufficient to

initiate the next iteration of the master problem, Desrochers et al. [1992] have noted that

generating multiple columns at each iteration can accelerate convergence. Furthermore, they

recommend generating disjoint columns to improve the chances of obtaining an integer

optimal solution to the restricted master problem. In our problem context, disjoint columns

correspond to feasible single machine assignments of mutually exclusive product subsets.

A second improvement strategy consists of adapting Magnanti and Wong's [1984]

acceleration technique for Benders' decomposition to the column generation algorithm.

When the Benders' subproblem has alternate optima, the method selects pareto optimal

solutions by optimizing a subsidiary objective. This pareto optimality principle also extends

to our column generation procedure; however, it requires optimally solving the difficult

35

product selection subproblem twice. Instead, we use insights from the principle to modify

our heuristic procedure. In particular, Magnanti and Wong's pareto optimality result implies

that among the alternate optima for the product selection subproblem [PS(7i')], we prefer: (i)

a pattern that assigns more products to the machine, with ties resolved in favor of the pattern

with the lowest setup cost, or (ii) a pattern that has the smallest possible setup cost, with

preference for a pattern that assigns more products to the machine (see Vanderbeck [1993]).

We incorporate these preferences in the heuristic column generator that we describe next.

Product Selection (PS) Heuristic

For any feasible board assignment pattern satisfying (3.32), we will refer to its optimal

setup cost minus the total profit for all the chosen products as the net setup cost. Adding o^

to the net setup cost of an assignment pattern gives its reduced cost. To compute the reduced

cost of an assignment pattern, we must evaluate its true optimal setup cost by solving the

corresponding SO problem optimally. However, an approximate SO method (that provides

an upper bound on the setup cost) might be adequate for evaluating alternative assignment

patterns during the heuristic search process. If, for a particular assignment pattern, the upper

bound on net setup cost obtained using the approximate SO method is less than -a', then the

true reduced cost for this pattern must be negative, and so we can add the corresponding

column to the restricted master problem (after evaluating its true reduced cost).

The PS heuristic seeks to minimize net setup cost. The method has two components: a

sequential selection heuristic to first select a subset of products that satisfies the maximum

workload constraint, and a neighbor scanning procedure to further decrease the reduced cost

of this heuristic solution or generate other negative reduced cost columns. The Sequential

Selection heuristic successively selects products that provide the maximum incremental

benefit. At any step / of the procedure, let I^ denote the subset of (/-I) products that the

method has chosen in the previous (/-I) steps. For every remaining product i whose

processing requirement is less than the current slack capacity, we evaluate the incremental net

profit which is Tij minus the incremental setup cost if we add product i to I^. As in the initial

heuristic procedure, we estimate the incremental setup cost by applying the SO heuristic. Let

i* be the product with the maximum (heuristic) incremental net profit. If product i*'s

incremental net profit is negative, we terminate the procedure; otherwise, we add product i*

to 1/ and repeat the procedure until no remaining product has processing requirement less

than or equal to the residual time on the machine. We attempt to satisfy the pareto optimality

conditions by: (i) selecting product i* even if it has zero marginal benefit (in order to

maximize the number of products assigned to the machine), and (ii) selecting the product

with the lowest incremental setup cost when two or more products have the same marginal

benefit.

36

When the sequential selection heuristic terminates, we evaluate the true setup cost of the

chosen products by solving the SO problem optimally. If the reduced cost is negative, we

add the corresponding column to the restricted master problem. The second phase of the PS

heuristic consists of applying a neighbor scanning procedure to the sequential heuristic

solution; we apply this procedure even if the sequential heuristic solution has negative

reduced cost. Starting with the sequential heuristic solution as the initial incumbent, the

neighbor scanning procedure estimates (using the SO heuristic) the reduced cost for all the

neighbors of the incumbent. We define the neighborhood of an incumbent via 1 -exchange

and 2-exchange operations that remove one or two currently chosen products and add upto 3

new products. If the procedure finds any promising pattern with an estimated reduced cost

that is negative or lower than the incumbent's reduced cost, it scans the neighborhood of this

pattern through a recursive call to itself.

Consider an incumbent pattern whose neighborhood we want to search. Let 1' denote

the set of products chosen in this pattern, and let I" c N' be the current set of candidate

products. Initially I' is the subset of products chosen by the sequential heuristic, and I" =

N'; we delete products from the candidate set I" at selected intermediate steps of the

neighbor scanning procedure in order to generate disjoint columns. The neighbor scanning

procedure jjerforms the following steps:

Neighbor Scanning Procedure

Stage 1: 1 -exchange:

For each product i € I', and every pair of products j,k e I",

lA: check if the solutions I\{i}, I\{i}u{j), I\{i}u{k), and I\{i)u{j,k) satisfy

the maximum workload constraint (3.32);

IB: evaluate the heuristic reduced cost of each new pattern;

IC: if a new pattern has a negative or lower heuristic reduced cost than the

incumbent, evaluate its exact setup and reduced cost;

ID: if the exact reduced cost is negative, add the corresponding column to the master

problem, and remove the products chosen by that pattern from the set of

candidate products I".

IE: if the exact reduced cost is negative or lower than the incumbent's reduced cost,

call the Neighbor Scanning Procedure with the new pattern as incumbent;

If none of the new patterns generated by 1 -exchange have negative or lower reduced cost

than the incumbent pattern, go to Stage 2.

Stage 2 : 2-exchange:

For every pair of products i, j € I', and every triplet of available products u, v, w e I",

37-

2A: check if the solutions \\{i,i), I\{i,j}u{u}, I\{i.j)u{v}, A{i.j)u{w},

I\{i.j}u{u,v}, I\{i.j}u{v,w), I\{i.j)u{u,w)and I\{i,j}u{u,v,w} satisfy the

maximum workload constraint (3.32);

Apply Steps IB, IC, ID, and IE to each new pattern.

The neighbor scanning procedure recursively searches the neighborhood whenever it

generates an improved product assignment pattern with lower or negative reduced cost (see

Step IE) since this pattern is likely to have promising neighbors. Therefore, the procedure

can potentially generate numerous negative reduced cost columns at each iteration, thus

decreasing the number of master iterations, reducing the number of times we need to solve

the PS subproblem optimally, and also providing a wider choice of promising columns at the

final iteration. In order to limit the search process, we impose an upper limit called the

maximum depth of search on the number of recursive calls.

If, at a particular master iteration, the PS heuristic fails to generate a negative reduced

cost column, we must solve the PS subproblem optimally for the current set of optimal dual

values 7t' and o'. We use branch-and-bound to solve [PS(7t')] optimally; since the columns

in the current optimal basis have zero reduced cost and are feasible for [PS(jt')], we specify

-a' as the a priori upper bound for the LP-based branch-and-bound procedure. Our

implementation uses a standard branch-and-bound code (CPLEX), and therefore does not

incorporate the iterative upper and lower bounding methods (described in Section 3.2) for

the setup optimization subproblems at each node of the branch-and-bound tree. The code

permits us to assign branching priorities to different variables; we branch first on the product

assignment variables x-, next on an auxiliary variable W for the number of permanent

components, and finally on the permanent component loading variables y;.

If the PS heuristic or the subsequent branch-and-bound algorithm produces a negative

reduced cost column(s), we attempt to generate other disjoint negative reduced cost columns

by deleting from the product list all the products chosen previously by the sequential

selection heuristic or the optimal PS solution, and reapplying the PS heuristic with the

reduced set of products.

3.5 Intermediate Lower Bounds on Z*

Optimally solving the LP relaxation [LCSC] of the capacitated set covering formulation

gives the lower bound Z^p on the optimal value Z of the original tactical planning problem.

In the column generation scheme, the value Zlp of the restricted master problem at an

38-

intermediate iteration t is not a valid lower bound on Z ; we get the LP lower bound Z^p

only at the final master iteration when we have proved that no other single machine

assignment pattern has negative reduced cost. As we explain in Section 4, our

implementation limits the number of nodes in the branch-and-bound tree, and so might

terminate without solving the PS subproblem, and hence [LCSC], optimally. However, as

the following discussion shows, we can use the optimal values (or lower bounds on these

values) of the product selection subproblem at intermediate iterations to develop lower

bounds on Z .

Consider the original formulation [P] of the tactical planning problem, and suppose we

dualize the product assignment constraints (1.2) using Lagrangian multipliers Tij for all i
=

1,2,...,N. Then, the problem decomposes into K subproblems, one for each machine. For

machine k, the Lagrangian subproblem seeks a subset of products to assemble on this

machine that minimizes the net setup cost subject to the workload balancing constraint (1.3),

component loading constraints (1.4), and slot capacity constraints (1.5) for machine k. If all

the machines are identical, i.e., P^^ = P^, Tj, = T, and C|^ = C for all k =1,2,. ..,K, then the

same product assignment is optimal for all K Lagrangian subproblems. Observe that the

single-machine Lagrangian subproblem is the same as the product selection subproblem

[PS(7t)] of the column generation scheme. Therefore, if we use the optimal dual values k\ of

the restricted master problem [RM'] as the Lagrangian multipliers, we get the following valid

Lagrangian-based lower bound
N

Zii = Z Ji| + KL(7i^ (3.36)
i=l

on Z^p at every iteration t of the master problem. Assuming that all the production

t
*

frequency parameters bj are integers, we can round Z^jg up to get a valid lower bound on Z .

In our column generation scheme, we can compute this lower bound whenever we solve the

PS subproblem optimally (recall that we solve the PS subproblem optimally only when the

PS heuristic cannot identify any negative reduced cost column). Note, however, that if we

could generate a lower bound on the optimal value L(7C^) of the PS subproblem (using, say, a

Lagrangian relaxation method for this subproblem), then we can substitute this lower bound

for L(7t') in (3.36) to get a valid lower bound on Z^g, and hence Z^p.

We update the current best lower bound if the new integer lower bound is higher, i.e..

Best lower bound at iter, t = max { Best lower bound at iter, (t-1), TZlqI } . (3.37)

If this integer lower bound exceeds the current optimal value of the restricted master

problem, then we can terminate the column generation procedure since pursuing the optimal

39-

solution of [LCSC] will not produce a tighter lower bound on Z . Thus, by rounding up

Z^g, we can potentially eliminate several master iterations at the end. This strategy can

provide considerable computational savings since the optimal value of the master problem

tends to converge very slowly towards the end, and the final iterations are computationally

intensive (since they frequently require solving the PS subproblem optimally using branch-

and-bound). Finally, although Z^g is less than the optimal value Z^j> of the master problem

[RM'] at intermediate iterations t of the column generation procedure, at the final iteration tf

(assuming we pursue the column generation procedure until the optimal solution to the

restricted master problem solves [LCSC]) the lower bound Z^^ equals Z^p since L(7t'0 =

-a^f. Note also that Z^p decreases monotonically, whereas Z^g can increase or decrease at

each iteration.

3.6 Summary

Figure 1 summarizes our solution procedure for the tactical planning model. We begin

by generating an initial heuristic solution using the greedy heuristic, with the setup

optimization method as a subroutine. This solution provides the first K columns of the

master problem for the column generation algorithm. Each iteration of the column generation

method entails solving the product selection subproblem using the optimal dual values for the

current master iteration. We first attempt to generate negative reduced cost columns

heuristically using the sequendal selection and neighbor scanning procedures; this PS

heuristic also uses the setup optimization method (approximate and optimal) as a subroutine.

If we cannot find any single-machine product assignment with negative reduced cost, we

apply branch-and-bound to solve the PS subproblem optimally. In this case, we also

compute the Lagrangian-based lower bound (equation (3.36)), round it up, and update the

current best lower bound as in (3.37). Also, whenever we add a negative reduced cost

column to the restricted master problem, we remove the products chosen by this column and

reapply the PS heuristic in order to generate disjoint columns.

If the optimal LP solution to the restricted master problem at an intermediate iteration is

integral, we obtain an intermediate feasible solution. We update the current incumbent if this

solution has lower total setup cost. The column generation procedure terminates when the

best lower bound equals or exceeds the current optimal value of the restricted master

problem. We then construct a final feasible solution by solving the restricted master

problem as an integer program. The solution to this integer program is not necessarily

optimal to [CSC] since the restricted master problem does not contain all of [CSC]'s

columns. On the other hand, since the final set of columns includes the product assignments

-40

belonging to the initial and intermediate feasible solutions, the final solution must have equal

or lower setup cost than the current incumbent.

The setup optimization subroutine incorporates heuristic procedures to develop good

component loading plans as well as a method to compute a lower bound on the optimal setup

cost. The lower bound is based on an underestimate of the minimum number of temporary

slots necessary to ensure feasibility of the slot capacity constraints. We also add a valid

inequality limiting the maximum number of permanent components that strengthens the LP

relaxation of the SO problem formulation. To solve the setup optimization problem

optimally (e.g., to estimate the true reduced cost of candidate columns), we use branch-and-

bound (unless the lower bound equals the setup cost of the heuristic solution); the heuristic

upper and lower bounds serve to limit the enumeration process.

Finally, note that all the methods that we have described extend easily to

nonhomogenous machines with different processing speeds, processing limits, and slot

capacities. For instance, when the machines are not identical, each machine has its own set

of columns in formulation [CSC] and in the restricted master [RM']; instead of a single

pattern selection constraint (3.7), we now have K constraints (3.3) (with corresponding dual

values Oj^) specifying that we can select at most one pattern for each machine. At every

iteration we must solve K separate PS subproblems, and the procedure terminates only when

none of the machines has an assignment pattern with negative reduced cost, or the best lower

bound exceeds the optimal value of the restricted master problem.

4. Computational Experiments

In implementing solution methods such as column generation, we are faced with a

variety of tradeoffs and algorithmic options that can impact the performance of the algorithm.

These tradeoffs raise issues such as the following: What is the impact of initializing the

procedure with columns corresponding to a good heuristic solution versus, say, randomly

generated columns? Should we invest more effort in heuristically generating negative

reduced cost columns or is it better to solve the subproblem optimally at each iteration? To

address some of these issues and verify the column generation method's viability and

effectiveness for the electronics assembly tactical planning context, we implemented the

method and performed several computational experiments. We note that unlike many

column generation applications discussed in the literature that have easy subproblems, for the

tactical planning model even the core setup optimization subproblem is NP-hard.

-41

We implemented the heuristics and column generation procedure using the C

programming language on a Sun SPARC workstation. The program calls subroutines from

the CPLEX hnear optimizer (CPLEX Optimization Inc. [1991]) to solve the LP relaxation of

the restricted master problem at each iteration, and the product selection and setup

optimization problems whenever we need to solve these subproblems optimally. To solve

these latter integer programs, our implementation only provides an initial upper bound, and

sets the branching priorities for different variables; we rely on CPLEX's general purpose

LP-based procedure to generate lower bounds during the branch-and-bound process.

4.1 Test Problems

The tactical planning model requires the following input data (assuming identical

machines):

N: number of products;

M: total number of component types required to assemble the N products;

K: number of available machines;

C: slot capacity of each machine;

T: processing limit of each machine;

bj: expected number of batches per demand period for product i;

Pji total processing (placement) time to assemble all required units of product i; and,

J(i): set of component types required for product i.

Table 1 shows the problem size and other parameters for 20 test problems. The number

of products varies from 9 to 20, and the number of components from 1 8 to 60. The problem

name specifies the number of products and component types; we use the trailing letter to

distinguish between multiple instances of the same problem size (these instances differ in

other problem parameters). The detailed data for the problems with 9 products, 10 products,

and 20 products, 20 components are given in Vanderbeck [1993]. Of the 20 problems, we

generated the first 5 problems manually in order to study the impact of different bill of

components structures. In problems P10/18A and P10/18B, the 10 products form 3 groups

with modest overlap in the component requirements for each group; in contrast, problems

P09/18A and P09/18B have 3 groups of products with no component overlap. Finally,

problem P09/18C has a block diagonal bill of components matrix.

To generate larger problems (with 15 and 20 products), we used a random problem

generator that constructs a detailed problem instance based upon user-specified values for the

desired problem size, a seed for the random number generator, and certain control

parameters that determine the structure of the bill of components. The problem size

42

parameters are N, M, K, and C. To influence the degree of component commonality among

different products, the user specifies two parameters-Mj^jj^ and M^^^-that define the

minimum and maximum number of component types required for each product. For every

product i, the problem generator first randomly selects the number of components mj from

the interval [Mmin'^maxl' ^^^ ^^^^ chooses m^ component indices randomly (without

replacement) from the set { 1,2,. ..,M}; these component types define the set J(i). Note that

the slot capacity C must be greater than or equal to Mj^^^ in order to ensure that every

product can be assembled in a single pass on a machine. By setting M^in and M^^^ close to

the total number of component types M, we can generate problem instances that have high

commonality; in particular, if M^j^ = M^j^^^ = M < C, then all components can be

permanendy loaded on each machine, and the optimal value Z is zero. At the other extreme,

if Mj^jjj and M^^^ are very small relative to M, then the products are likely to have low

component commonality. Specifying small M^j^^ and large M^^^^ will likely increase

problem difficulty since the bill of components for different products do not have any special

commonality structure.

The problem generator randomly selects the processing times Pj and the number of

batches bj from uniform distributions: Pj ~ Unif (5,20), and b, - Unif (l,Pj). We then

apply the LP*T (longest processing time) heuristic to approximate the minimum makespan.

The LPT heuristic (Baker [1974]) sorts the products in decreasing order of Pj, and assigns

each product in sequence to the first available machine. This heuristic produces a product-to-

machine assignment with a makespan Tj^pj that is at most (4/3 - 1/3K) times the minimum

makespan (Graham [1969]). For our test problems, we set the processing limit T equal to a

T^jyj-, where a (> 1) is a user-specified tolerance factor. This method of choosing T ensures

that each problem instance has at least one feasible solution satisfying the workload

balancing constraints. For most of our test runs, we set a = 1.2, although we also

experimented with problem instances having "tight" (a = 1.05) and "loose" (a = 1.5)

processing limits.

The random problems P20/20A to P20/20E enable us to assess the sensitivity of the

algorithm's performance to slot capacity, and the level of variation in the number of

component types per board. We also use these 5 problems to test several algorithmic

variants. Problems 15/20 to P20/60 enable us to evaluate the impact of problem size on

performance.

43-

4.2 Variants of the Solution Procedure

Using a relatively flexible implementation, we were able to test several variants of the

tactical planning algorithm described in Section 3. These variants include (i) generating only

one negative reduced cost column at each master iteration, (ii) discarding all the current

columns with positive reduced cost at each master iteration, (iii) varying the tolerance factor

a, (iv) changing the depth of search and the criterion for recursive calls in the neighbor

scanning procedure of the PS heuristic, and (v) reapplying the column generation procedure

using the columns of the best feasible solution (obtained after applying a standard version of

the algorithm) as the initial set of columns.

Recall that the PS heuristic, as we described it in Section 3, first applies the sequential

search heuristic, and then invokes the neighbor scanning procedure. The neighbor scanning

procedure recursively explores the neighborhood of each generated pattern that has negative

reduced cost or a lower reduced cost than its predecessor. Our initial implementation, which

we call the basic version, does not incorporate the neighbor scanning procedure in the PS

heuristic. Our standard version performs neighbor scanning but limits the number of

recursive calls to at most 2. We also performed computational tests using different values

for the maximum depth of search, and tested a variant of the neighbor scanning

procedure we call the reduced cost updating version. If the current incumbent has

nonnegative reduced cost, the reduced cost updating version explores the incumbent's

neighborhood only if its reduced cost is lower than the current lowest reduced cost (rather

than the reduced cost of its predecessor, as in the standard version; however, both versions

explore the neighborhood of every incumbent with negative reduced cost). Therefore, the

reduced cost updating version explores much fewer neighbors than the standard version.

Our standard version generates (if possible) multiple negative reduced cost columns at

each master iteration, and retains all the columns in the restricted master. We tested two

variants of this column generation strategy-a single column version, which generates only

one column per master iteration, and a condensed master version, which limits the size of

the master problem by discarding all the columns with positive reduced cost, i.e., we only

include in the restricted master formulation those columns belonging to the current optimal

basis plus prior and new columns that price out negatively using the current dual values.

Section 4.3.2 presents the comparative results for all these algorithmic variants, as well as

other sensitivity analyses.

We now discuss some features of our implementation that is common to all the variants.

If the PS heuristic fails to produce any negative reduced cost column, we solve the PS

44

subproblem exactly using CPLEX's built-in branch-and-bound procedure. For our

computational tests, we specified a limit of 10,000 nodes for the branch-and-bound tree. We
also terminate column generation if it "stagnates", i.e., if it does not produce any

improvement in the restricted master value for 500 consecutive master iterations or after

optimally solving the PS subproblem 2N times. The PS solution procedure can, therefore,

have four outcomes: (i) the branch and bound procedure reaches its node limit without

fmding a negative reduced cost column, (ii) we generate a negative reduced cost column, but

the node limit is reached before finding and/or verifying the optimal solution, (iii) we solve

the PS subproblem optimally and find a negative reduced cost column, or (iv) the optimal

solution to the PS subproblem has zero reduced cost. In case (i), the column generation

procedure stops since we did not generate a new column for the restricted master. In this

case and also when column generation terminates due to stagnation, the optimal LP value of

the current master problem is not a valid lower bound on Z and so we must rely on the best

lower bound obtained during previous iterations to assess the quality of the heurisic solution.

In cases (ii) and (iii) we add the new negative reduced cost column to the restricted master,

and continue the iterations. Case (iv) proves the optimality of the current master solution for

[LCSC], and so column generation terminates.

To generate the final feasible solution (in Phase 3), we initially implemented a simulation

annealing algorithm to select a good subset of K assignments from the set of all columns in

the restricted master problem at the final iteration. However, we found that optimally

solving the integer version of the restricted master using branch-and-bound is relatively easy

since the LP relaxation provides tight bounds and almost integral solutions (because we

generate several disjoint columns at each master iteration). We, therefore, applied this

method to all the test problems. We expect the quality of the final feasible solution to

improve as the number of columns available at the final iteration increases.

4.3 Computational Results

We first present the computational results using the standard version of the column

generation procedure for our 20 test problems before discussing the relative performance of

some variants. We are interested in assessing both the algorithm's effectiveness in

generating near-optimal solutions, and the computational effort it requires. We measure

effectiveness in terms of the % gap, which we define as the difference between the best

upper and lower bounds, expressed as a proportion of the best lower bound. The % gap

consists of three components:

(i) the gap between the optimal value of [LCSC] and the best lower bound (computed

using (3.36) and (3.37)), which we call the dual optimality gap. This gap is positive

-45-

when the column generation procedure terminates prematurely due to the branch-and-

bound node limit or stagnation of the restricted master value. If the procedure

terminates because the best lower bound exceeds the current value of the restricted

master problem, then the dual optimality gap is negative;

(ii) the gap between the optimal value Z and the optimal value Z^p of the LP relaxation

[LCSC], which we call the duality gap; and

(iii) the gap between Z* and the setup cost of the fmal feasible solution, which we call the

primal optimality gap.

Thus, small overall gaps indicate that both the upper and lower bounding methods are

effective. To determine if the column generation-based feasible solutions significantly

improve upon the initial heuristic solution, we examine the improvement in setup cost (i.e.,

the difference in the setup costs of the initial and best fmal solutions) as a % of the initial

solution's setup cost.

To measure computational effort and identify bottlenecks, we follow Ahuja, Magnanti,

and Orlin's [1993] suggestion to use computation counts (e.g., number of iterations) for

major segments of the algorithm rather than actual CPU time which can be misleading since

it depends on the programming language, quality of implementation, computer system used,

and other characteristics of the computing environment. For each test problem we examine

the following statistics (see Table 2):

(i) number of columns generated for the master probem,

(ii) number of iterations of the master problem,

(iii) number of times we solved the PS subproblem exactiy using branch-and-bound,

(iii) number of times we solved the SO subproblem exactly using branch-and-bound,

(iv) percentage of instances when the SO heuristic produced the optimal slot allocation and

proved optimality (i.e., when heuristic cost was equal to the lower bound), and

(v) number of nodes in the branch-and-bound tree to solve the integer version of the

restricted master problem at the final step.

4.3.1 Results for standard version

Table 2 shows the results for the 20 test problems using the standard version of our

algorithm. The first column (labeled "[LCSC] Solved?") shows whether the procedure was

able to solve the LP relaxation [LCSC] optimally.

For 4 out of the 20 problems the algorithm terminated prematurely because the branch-

and-bound procedure for the PS subproblem reached its node limit before finding a negative

reduced cost column or verifying optimality. The % gap is less than 4% for 3 out of these 4

problems. Recall that, when the column generation procedure terminates prematurely, we

46-

measure the % gap relative to the best lower bound that is computed at intermediate iterations

of the column generation procedure (whenever the PS subproblem is solved optimally).

Therefore, the actual gap between the optimal value of [LCSC] and the final feasible solution

is likely to be lower. We suspect that, for Problem P20/40A, the final feasible solution is

much closer to optimality than the 20% gap suggests.

The results in Table 2 suggest that the column generation approach is very effective. It

solved 10 out of the 20 test problems optimally, and excluding Problem P20/40A the average

% gap for the remaining problems (with positive gap) is 4.6 %. This result indicates that the

L? relaxation of [CSC] is tight, and the procedure is able to generate near-optimal product-

to-machine assignments. The % gap does not show any systematic variation with the slot

capacity, the range of number of component types per board, or problem size. For all but

one test problem, the best column generation-based feasible solution, obtained as a

byproduct of solving the restricted master problem, has lower total setup cost compared to

the initial heuristic solution obtained using the list processing and smallest ratio heuristics.

On average, the final solution had 22 % lower cost than the initial heuristic solution

(admittedly, we can develop ad hoc heuristics that improve upon the initial product

assignment heuristics that we applied). As we note later when we repon the results for

algorithmic variants, generating more columns at each iteration produces better intermediate

solutions. The LP solution to the restricted master problem in the final iteration is often

integral (in 12 out of the 20 problem instances); if not, the branch-and-bound procedure

solves the integer program within less than 100 nodes.

For all the test problems we observed that solving the PS subproblem exactly is the main

computational bottieneck, requiring one or two orders of magnitude more time than the other

components of the algorithm (this assessment is based on a rough sampling of the elapsed

times; we did not record the actual computation times). In contrast, the SO problem appears

to be easy to solve. Although Table 2 shows that the % of SO problems requiring branch-

and-bound increases as the problem size increases, we observed that the SO heuristic

actually generates the optimal solution in over 85% of the instances; however, the lower

bound (based on the underestimate of the minimum number of temporary components) is not

tight enough to prove optimality of the heuristic solution. When we apply branch-and-bound

to verify optimality, the branch-and-bound tree for the SO problem has nodes in over 90%

of the cases. These observations suggest that the total computation effort will likely be more

sensitive to the number of products compared to the number of component types. Finally,

during the initial iterations of the master problem the PS heuristic readily find numerous

negative reduced cost columns. Indeed, a vast majority of the columns are quickly generated

in these initial iterations. Although the algorithm finds good assignment patterns early in the

47

iterative column generation process, proving the near-optimality of the feasible solution is

very time consuming especially since the later iterations require solving the PS subproblem

optimally using branch-and-bound.

4.3.2 Results for algorithmic variants

Table 3 contains the computational results using several variants for selected test

problems. For each test problem, we indicate with a "**" the method that is most effective

in terms of % gap; if two methods produce the same % gap, we prefer the method that entails

fewer applications of the branch-and-bound procedure to solve the PS subproblems

optimally.

The basic version, which does not incorporate the neighbor scanning procedure in its PS

heuristic, applies branch-and-bound more often to solve the PS subproblems, generates

fewer columns at each iteration thus requiring more master iterations to converge, and often

produces inferior final feasible solutions. Similarly, the single column version is not as

effective as the standard version. Our third variant, the condensed master version, has the

advantage of reducing the time to solve the restricted master problem, but greatly increases

the number of master iterations. Interestingly, although the procedure often terminates

prematurely (because the restricted master value stagnates), it generates many more columns,

thus producing better final solutions (we include all the columns before solving the integer

version of the restricted master problem at the final step).

The fourth and fifth versions reported in Table 3 represent problem instances with tight

and loose processing limits (with tolerance factor a = 1.05 and 1.5) to which we apply the

basic version. Tightening the processing limit reduces the feasible solution set, but also

limits the flexibility in optimizing setups; these opposing effects reduce the % gap for some

problems, but increase the gap for others. We also experimented with different settings for

the maximum depth of search-unrestricted^, maximum depth of 3, and maximum depth of

2-in the neighbor scanning procedure. With a maximum depth of 3, we also considered

results with and without the "reduced cost updating" option (i.e., the criterion for initiating a

recursive call to the neighborhood search subroutine, see Section 4.2). The unrestricted

depth and depth 3 versions generate more columns than the standard depth 2 version, and

require solving considerably more setup optimization subproblems, but do not produce

superior solutions (i.e., the % gap is often equal or lower for the depth 2 version). Finally,

to study the impact of selecting good initial columns for the restricted master problem, we

In the "unrestricted" depth of search option, we do not impose an explicit limit on the number of recursive

calls to the exchange heuristic. However, because we only search the neighborhood if the incumbent's

reduced cost is negative or improves upon its predecessor's, the actual depth of search is naturally limited.

-48-

compared the results using our standard version (which uses the assignments produced by

the better of our two initial greedy heuristics as the initial set of columns) with those of a

second application of the solution procedure when we use the best feasible solution from the

standard version to initialize the restricted master. This strategy does not produce lower %
gaps than the other methods, and can sometimes require considerably more computational

effort.

4.4 Potential Algorithmic Improvements

Our computational experience suggests that efforts to improve the capabilities and

performance of the algorithm should mainly focus on solving the single machine product

selection problem more effectively. In particular, because the linear programming relaxation

of formulation [PS(7i)] is relatively weak, we must incorporate special bounding procedures

and attempt to strengthen the problem formulation by adding valid inequalities that eliminate

fractional solutions.

As we noted previously, our implementation relies on CPLEX's built-in branch-and-

bound procedure to solve the PS subproblem optimally, and therefore does not exploit the

special structure of this subproblem. Implementing a custom branch-and-bound procedure

to incorporate valid inequalities and/or problem- specific bounding procedures at each node

has the potential to substantially improve performance. Let us first introduce some notation

before describing some inequalities that strengthen the formulation. At any node of the

branch-and-bound tree, let Ij, Iq, and If denote, respectively, the subsets of products that are

akeady chosen, eliminated, and free, i.e., Xj = 1 for all i € Ij, and Xj = for all i € Iq.

(i) Using the method described in Section 3.2.4, we can compute an upper bound R(I() on

the maximum possible number of permanent slots in order to ensure feasibility of the slot

capacity constraints for all products in Ij. Since selecting more products from If can only

decrease this value, we can add the valid inequality that the number of permanent slots

chosen in the current partition must not exceed R(Ij). We have observed that this

inequality markedly improves the performance of the setup optimization branch-and-

bound procedure; we expect it to be equally effective for the PS subproblem when If

contains relatively few products.

(ii) Pochet and Wolsey [1992] suggested the following class of valid inequalities to

strengthen formulation [PS(7t)]. Consider two products i and i' 6 Ij u If that together

require more components than the slot capacity, i.e., IJ(i) u J(i')l > C. If we select both

-49

products i and i', then a certain minimum number of components must be designated as

temporary. The following constraint encodes this condition:

I y^^ Z z..^ I z,>min{lJ(i)nJ(i-)l.
'^^^^'^'f

^'-^
}(x,.x,). (4.1)

j€j(i)nj(i')
J

jeJ(i)
'J

j€j(r)
'J 2 1'

When added to the original problem formulation [P], these constraints eliminate the

fractional solution (assigning 1/K th of each product to every machine) described in

Section 3. We can include these constraints a priori in formulation [PS(7i)] for all

product pairs i, i' with IJ(i) u J(i')l > B; however, the formulation size grows by 0(N)

constraints. Instead, with a custom branch-and-cut procedure, we can generate

(perhaps, using a heursitic separation routine) and add selected constraints in this class

that are violated by the LP solution at each node. We can possibly extend these

inequalities for product triples (instead of pairs), and so on.

(iii) The knapsack structure of the workload balancing constraint (3.32) motivates a third

class of inequalities. Let TPj denote the total processing time for all products in the set

I
J.

Suppose r is a subset of free products such that

Z Pj < T-TPj but > T-TPj-Pj.. (4.2)

iel'

for some i" € Ij\I'. Then, we can impose a valid inequality that limits the number of

products selected from the set I' u {i") to at most II'I, i.e.,

Z Xj < in. (4.3)

ie I'ui"

Again, a tailored branch-and-cut procedure can dynamically add these inequalities as

needed.

The previous three classes of inequalities exploit the special structure of the constraints in

the product selection subproblem. We can also use objective function information to

perform problem preprocessing and develop valid inequalities. Consider, for instance, the

following method to limit the number of temporary components associated with a product.

For a given set of dual values Jij, let 6j = LTti/bjJ for each product i € If where LgJ is the

largest integer less than or equal to g. Clearly, if an optimal solution in the current branch-

and-bound partition selects product i, then no more than Q^ of its components must be

temporary; otherwise, we can decrease the net setup cost by setting Xj = 0. We can,

therefore, add the following valid constraint to the problem formulation at the current node:

-50

Z z:: < Q- for all ie L. (4.4)

jeJ(i) ^

Furthermore, suppose we have two products i and i' 6 I^ with

IJ(i) u J(i')l - (6, + Gj.) > C; (4.5)

the left-hand side of (4.5) represents the minimum number of permanent slots needed to

satisfy (4.4) if we select both products i and i'. Therefore, an optimal solution cannot select

both products, i.e., we can add the constraint:

Xj + Xj. < 1. (4.6)

Again, we can extend inequality (4.6) to more than two products.

In addition to strengthening the formulation for the product selection problem, other

improvement options to consider include heuristically generating a wide variety of

"promising" columns before initiating the column generation procedure (our implementation

uses only the K columns generated by the initial heuristic solution), and implementing a

lower bounding procedure for the PS subproblem so that we generate valid lower bounds on

Z^p even if we do not solve the PS subproblem optimally (see Section 3.5). For instance, to

generate a lower bound for the PS subproblem, we might consider implementing a

Lagrangian relaxation procedure that dualizes the component loading constraints, and applies

subgradient algorithm to approximately solve the Lagrangian dual.

Finally, our primary goal has been to generate good product-to-machine assignments,

and verify the near-optimality of our feasible solution via lower bounds. To solve the tactical

planning problem optimally, we might consider using our algorithm to solve the LP

relaxation and generate upper bounds at each node of an overall branch-and-bound

procedure. We can use the following branching strategy whenever the procedure cannot

fathom a node. Consider two columns with fractional pattern selection values X. (in the

optimal LP solution at this node) that have at least one product in common. Let product 1 be

the common product, and suppose product 2 belongs to the first column but not the second.

We then create two successor nodes in the branch-and-bound tree, one requiring that

products 1 and 2 must both be assigned to the same machine, and the other requiring them to

be assigned to different machines. Using this strategy, at each node we have a set of joint

and e\c\usi\tassignment constraints that reflect the previous branching decisions leading to

this node. We can apply the column generation procedure to solve the LP relaxation of the

-51

"constrained" CSC model corresponding to this node and generate feasible solutions. The

previously generated columns that satisfy the assignment constraints can serve as the initial

set of columns in the restricted master problem, and we add the node's assignment

constraints to the PS subproblem; we can easily modify our PS solution procedure to

account for these constraints.

5. Concluding Remarks

Electronics assembly poses many important but challenging optimization problems.

Much of the management science literature dealing with electronics assembly has focussed

on operational problems of single-product cycle time optimization and single-machine setup

minimization. The tactical planning issues raised in this paper become increasingly important

as electronics companies strive towards agile manufacturing- emphasizing quick response,

flexibility, high quality, and cost effective assembly of many different products in small lot

sizes-in order to maintain their competitive position and cope with the rapid changes in the

product and process technologies. We have presented a model that incorporates both

workload balancing and setup optimization issues. Unlike traditional group technology

methods that focus on component commonality, our model explicitly considers product

demands, production frequencies and machine capacities. The partial setup policy that we

considered is practical, and enables us to capture the setup interactions across product

families. Managers might find our tactical planning model inherently useful as a framework

to address product grouping issues in electronics assembly. The model is quite versatile,

capable of incorporating many compHcating feanjres of practical problems.

We developed a composite solution procedure that integrates several successful discrete

optimization techniques-column generation, lower bounding procedures, and adding valid

inequalities-to exploit the special structure of the problem. We showed that even the setup

optimization subproblem, which assumes a predetermined assignment of products to a single

machine, is NP-hard. We, therefore, focussed on developing a combination of heuristics,

lower bounding methods, and enumeration to solve the product selection and setup

optimization subproblems. These techniques have direct application to short-term production

planning. Although we described the solution method for a simplified problem context

(e.g., identical machines, with no prespecified assignments), we can readily modify it for

more complex settings such as non-identical machines with multiple placement machines in

series in each module. Our limited computational experiments show that the column

generation method is effective in generating good upper and lower bounds, but has also

identified several opportunities for improvement. Test results for several algorithmic

-52-

variants reinforce previous experience regarding effective column generation strategies such

as generating more than one negative reduced cost column per iteration. The main

computational botdeneck is solving the single machine, product selection subproblem which

has a weak linear programmig relaxation. Promising directions to pursue include exploring

some of the algorithmic improvement opportunities described in Section 4, and studying the

polyhedral structure of the problem.

Acknowledgments:

We thank Professors Thomas Magnanu, Yves Pochet, and Laurence Wolsey for illuminating

discussions on solving the tactical planning problem.

-53-

Appendix A
Infeasibility Method to Compute a Lower Bound

for the Setup Optimization Problem

The method starts with a trial value of for the lower bound Q on the minimum number

of temporary slots Q^jj, needed to satisfy the slot capacity constraints, and performs the

following steps.

Step 1: Initialization

Y = number of permanent slots currently available <— C -Q

r = current set of candidate products <— I

J' = current set of remaining components <— J

Step 2: Permanent slot reservation test

Step 2a: If I' or J n J(I') is empty, current value of Q is acceptable; go to Step 5.

Else, let i* e I' be the product with the maximum number of remaining

components, i.e., i* = argmax{IJ(i) n J'l: i € I'}

Step 2b: If IJ(i*) n J'l < Q, current value of Q is acceptable; go to Step 5.

Step 2c: Else, update y 4- y- (IJ(i*) n J'l -Q), I' <- Ni*}, and J' ^ J'\J(i*):

If Y > 0, go to Step 2a;

If Y < 0, then current value of Q is infeasible; go to Step 4.

Else (Y = 0),

if r or J n J(r) is empty, current value of Q is acceptable; go to Step 5;

else, go to Step 3.

Step 3: Permanent component identification test

Step 3a: Initialize

R = candidate number of permanent slots <— C - Q
J" = current set of permanent components <—

Step 3b: If I' or J n J(r) is empty, current value of Q is acceptable; go to Step 5.

Else, let i* e I' be the product with the maximum number of remaining

components, i.e., i* = argmax{IJ(i) n J'l: i e I'}; update !'<- I\{i*).

Step 3c: If IJ(i*) n J'l < Q, current value of Q is acceptable; go to Step 5;

Else, if IJ(i*) n Jl = Q, then every component in J(i*)rJ\J' must be loaded

permanently, i.e., update J" <- J" u J(i*)nJ\J'.

Step 3d: If IJ"! > R, then current value of Q is infeasible; go to Step 4.

Else go to Step 3b.

Step 4: Infeasibility

Current trial value ofQ is infeasible. Increment Q by 1, and go to Step 1.

Step 5: Termination
Current trial value ofQ is acceptable. Stop.

Figure 1: Flowchart of Column Generation Algorithm

Initial Heuristic Solution:

• List Processing heuristic

• Smallest setup- to-processing ratio heuristic

choose best solution

/
^T

/
Setup Optimization Subroutine

• Apply Greedy Heiunstic

• Compute max perm slots &
setup cost lower bound

• If heur. cost=lower bound, opt soln found
• Else, to solve optimally,

-add max perm, comp constraint

. -flpply hranch-antl-hfiund I'ennAemp. .

slot allocation

\

selected /
products y

F assignment patterns

Column Generation: Initialization

• initialize restricted master with K colimins

• initial lower bound =
• best feas soln = initial heur solution

Column Generation!:

Iterative procedure

<;

LP relaxation of CSC solved optimally

lower bound = fopt LP value of master prob}

(^LP relaxation of CSC not solvedj

Rnal Feasible solution

' solve final restricted Master as integer

program using branch-and-bound

update best feasible solution

Table 1: Test Problem parameters

Problem
Name

o

c

CO

a>
c
0)

O
c
E
3
O
o

o
«
0)
>

(0

T3
C
a
CO

c
w
3
0>
^^

3
(0
0)

oc

a
c
o

3a
E
o
u

2

c *-

References

Ahmadi, J., S. Grotzinger, and D. Johnson. 1988. Component Allocation and Partitioning

for a Dual Delivery Placement Machine. Oper. Res., 36, 176-191.

Ahmadi, R. H., and P. Kouvelis. 1992. An Analytical Framework for the Design of

Electronic Assembly Lines: Comparison of Different Design Approaches. ORSA/TIMS
Joint National Meeting, San Francisco, November.

Ahmadi, R. H., and H. Matsuo. 1992. A Mini-Line Approach for Pull Production. Working
Paper, Anderson Graduate School of Management, UCLA.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, Englewood Cliffs, New Jersey.

Baker, K. R. 1974. Introduction to Sequencing and Scheduling. John Wiley and Sons, New
York.

Ball , M. O., and M. J. Magazine. 1988. Sequencing of Insertions in Printed Circuit Board
Assemblies. Oper. Res., 36, 192-201.

Bard, J. F., R. W. Clayton, and T. A. Feo. 1989. Optimizing Machine Setup and
Component Insertion in Printed Circuit Board Assembly. Working Paper, University of

Texas, Austin.

Bamhart, C, E. Johnson, R. Anbil, and L. Hatay. 1992. Solution Techniques for Long-
Haul Crew Assignment Problem. Working Paper, Cuomputational Optimization Center,

Georgia Instimte of Technology, Atlanta, Georgia.

Bradley, S. P., A. C. Hax, and T. L. Magnanti. 1977. Applied Mathematical Programming,
Addison -Wesley, Reading, Massachusetts.

Carmon, T. F., O. Z. Maimon, and E. M. Dar-El. 1989. Group Set-Up for Printed Circuit

Board Assembly. Intl. J. Prod. Res., 27, 1795-1810.

CPLEX Optimization, Inc. 1991. Using the CPLEX Linear Optimizer, version 1.2. CPLEX
Optimization, Inc., Incline Village, Nevada.

Daskin, M. S., O. Maimon, and A. Shtub. 1991. A Branch and Bound Algorithm for

Grouping Components in Printed Circuit Board Production. Working Paper. Depanment
of Civil Engineering, Northwestern University, Evanston, Illinois.

Desrochers, M., J. Desrosiers, and M. Solomon. 1992. A New Optimization Algorithm for

the Vehicle Routing Problem with Time Windows. Operations Research, 40, 342-354.

DeWitte, J. 1980. The Use of Similarity Coefficients in Production Flow Analysis. Int. J.

Prod. Res., 18, 505-514.

Drezner, Z., and S. Nof. 1984. On Optimizing Bin Packing and Insenion Plans for

Assembly Robots. HE Trans., 16, 262-270.

-Rl

Francis, R. L., H. W. Hamacher, C-Y. Lee, and S. Yeralan. 1989. On Automating Robotic

Assembly Workplace Planning. Research Repon, Industrial and Systems Engineering

Department, University of Florida, Gainesville.

Frenk, J. B. G., and A. H. G. Rinnooy Kan. 1984. The Asymptotic Optimality of the LP
Rule. Report 8418/0, Econometric Institute, Erasmus University, Rotterdam.

Gavish, B., and A. Seidmann. 1987. Printed Circuit Boards Assembly Automation-
Formulations and Algorithms. Proc. ICPR, Cincinatti, Ohio.

Graham, R. L. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of
Applied Math., 17, 263-269.

King, J. R. 1980. Machine-component Grouping in Production Flow Analysis: An
Approach using a Rank Order Clustering Algorithm. Int. J. Prod. Res., 18, 213-232.

King, J. R., and V. Nakomchai. 1982. Machine-component Group Formation in Group
Technology: Review and Extension. Int. J. Prod. Res., 20, 1 17-133.

Lasdon, L. S. Optimization Theoryfor Large Systems. Macmillan, New York

Lawler, E. L., J. K. Lenstra, and A. H. G. Rinnooy Kan. 1982. Recent Developments in

Deterministic Sequencing and Scheduling: A Survey. In Deterministic and Stochastic

Scheduling, M. A. H. Dempster, J. K. Lenstra, and A. H. G. Rinnooy Kan (eds.),

Reidel, Dodrecht.

Lofgren, C. B., and L. F. McGinnis. 1986. Optimizing Electronics Assembly System.
Proc. HE Elec. Assembly Conf..

Magnanti, T. L., J. F. Shapiro, and M. H. Wagner. 1976. Generalized Linear Programming
Solves the Dual. Management Science, 11, 1 195-1203.

Magnanti, T. L., and R. T. Wong. 1981. Accelerating Benders Decomposition: Algorithmic

Enhancement and Model Selection Criteria. Operations Research, 11, 464-482.

Nemhauser, G. L., and L. A. Wolsey. 1988. Integer and Combinatorial Optimization. John
Wiley and Sons, New York.

Pochet, Y., and L. A. Wolsey. 1992. Personal communication.

Prasad, R. P. 1989. Surface Mount Technology: Principles and Practice. Van Nostrand
Reinhold, New York

Rajagopalan, R., and J. L. Batra. 1982. Design of Cellular Production Systems: A Graph-
theoretic Approach. Int. Journal of Prod. Res., 13, 567-579.

Skinner, W. 1974. The Focused Factory. Harvard Business Review, 1 13-122.

Vance, P. H., C. Bamhart, E. L. Johnson, and G. L. Nemhauser. 1992. Solving Binary

Cutting Stock Problems by Column Generation and Branch-and-Bound. Working paper,

Computational Optimization Center, Georgia Institute of Technology, Atlanta, Georgia.

R2-

Vanderbeck, F. A Decomposition Approach for Parallel Machine Assignment and Setup

Minimization in Electronics Assembly. Master's thesis. Operations Research Center,

Massachusetts Institute of Technology, Cambridge.

R3-

^

ilHiii

Date Due

Lib-26-67

