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Logic design

1— Boolean algebra and Karnaugh maps

by B. Holdsworth and L. Zissos Chelsea Co//ege, University of London

Up to 1969, when the Boolean
sequential equations were developed,
the design of sequential circuits was
achieved through an empirical choice
of unrelated informal techniques
paying little attention to engineering
constraints until, in most cases, the
implementation stage. The advent of

the sequential equations has made '

possibie the development of clear-cut
step-by-step design procedures in
which realistic circuit constraints are
taken into account at the design level.
No engineering or other specialist
knowledge is necessary to use these
design procedures.

The design philosophy adopted in this
series is one that allows the emphasis to
be placed on optimal rather than
minimal design. This is to enable
technicians, users with no specialist
knowledge of electronics, and the less
experienced designer, to produce sound
and economical designs, while at the
same time providing the means where-
by the specialist designer may improve
his technique in dealing with more
sophisticated assemblies involving such
devices as r.o.ms, r.a.ms, microproces-
sors, and so on.

The primary design objective is to
produce sound and reliable digital
systems which are meaningful not only
to the designer but also to the user.

Basic concepts

As in conventional algebra, so in

Boolean algebra variables are combined
into expressions with operators that
obey certain laws. The Boolean varia-
bles, denoted by letters of the alphabet
such as A,B,C etc., are binary variables
and may assume one of two values, 0 or
1, or they may be alternatively read as
‘false’ and ‘true’ respectively. They are
not the ‘zero’ and ‘one’ of arithmetic and
the operations that can be performed on
them are somewhat different and more
limited than the normal arithmetical
processes.

Although there exists a wide number
of Boolean operators, such as NAND,
NOR, etc., we need only consider three

operators at this stage — all other
operators can be expressed in terms of
these three. They are:

@ Boolean addition,

@ Boolean multiplication,

® Boolean inversion.

The addition operator is written as +
and may be interpreted as ‘OR’. A+B
may be read ‘A or B’ or ‘A plus B". It is
true if either A is true or B is true or both
are true, otherwise it is false. Thus,

0+0=0
0+1=1
1+1=1
1+0=1

The multiplication operator is written
as.or X, oromitted when its factors are
variables denoted by single letters, and
may be interpreted as ‘AND’. A.B (or
AB) may beread ‘A and B’ or as ‘A times
B’. Itis trueif A and B are both true, and
false otherwise. Thus,
0x0=0
0x1=0
I1x1=1
1X0=0
The inversion operator is written as a
bar over the variable and the bar may be
interpreted as “NOT”. For example, A
may be read as “NOT A”.
IfA=1 thenA=0
andif A=0 thenA=1

Boolean theorems
Redundancy.

A+AB =A

Fig. 1. The redundancy theorem
implemented in a relay circuit. From
the three relays giving f=A+ AB is
derived the single-relay circuit giving
f=A, since AB contains A and is
therefore redundant.
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A+AB =A.1+AB
=AB+B)+AB
=AB+AB+AB
=AB+AB
=A.l
=A

This theorem states that in a sum-
of-products Boolean expression, a pro-
duct that contains all the factors of

another product is redundant. As a

consequence it allows the elimination of

redundant products in a sum-of-pro-
ducts expression. For example, in the

Boolean function f=AB+ ABC+ ABD,

the products ABC and ABD can be

eliminated, because each contains all
the factors present in AB.
The application of this theorem to a

Proof:

 relay circuit is shown in Fig. 1.

Race-hazards. The main interest of the
logic designer in this theorem is in its
use in logic circuits for the suppression
of race-hazards, which result in the
generation of unwanted spikes. For
example consider the Boolean function
f=AB+AC. Following changes in A,
there is a race-hazard when B=1 and
C=1, since the function then reduces to
f=A+A. The use of an inverter to
generate A from A implies a delay
between the waveforms of A and A as
shown in Fig. 2. This leads to the
generation of a transient signal as
indicated in the same diagram.

The unwanted transient can be
averted by the introduction of an
optional product, that is a Boolean
product whose presence in an expres-
sion does not affect the value of the
Boolean function. A suitable optional
product for the function f=AB+AC is
formed by taking the product of the
coefficients A and A.

Hence, AB+AC =AB+AC+BC
P —_ Q
= 0—0 o—0
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Fig. 2. A race hazard. A is obtained by
inverting A and is subject to a delay,
resulting in the interval during which
neither A nor A is ‘up.’ The output
f=A+A is therefore not true, or ‘down’
during this time.

Proof: AB+AC +BC
=AB+AC+ (A+A)BC
=AB+AC-+ABC+ABC
=AB(1+C)+AC(l1 +B)
=AB+AC

The product BC is optional so long as
its parent products, AB and AC remain
in the expression. Should, however, one
of its parent products be eliminated (by
applying the redundancy theorem),
then such a product is no longer
optional and cannot be removed from
the expression.

If now B=C=1 the expression
f=AB+AC+BC reduces to
f=A+A+1, which always has the
value 1 irrespective of the values of A
and A.

The use of optional products will now
be demonstrated with the aid of three
examples.

(1) Elimination of parent product.

f=A-+ABC,

Form the optional product BC:
f=A+ABC+BC,
Eliminate parent product ABC using
theorem of redundancy:
f=A+BC.
(2) Elimination of non-parent product.
f=AB+AC+BCD

Form the optional product BC:
f=AB+AC +BC+BCD.
Eliminate non-parent product BCD

using theorem of redundancy:
f=AB+AC+BC.
But BC is an optidnal product and is
redundant, hence
f=AB+AC.

(3) Elimination of non-parent product
and parent product.

f=AB+ABC+BCD

Form the optional product BC:
f=AB-+ABC +BCD+ BC.
Eliminate non-parent product BCD and
parent product ARC using theorem of
redundancy:
f=AR+BC.

De Morgan’s theorem. The complement
of a Boolean expression can be obtained
by replacing each variable by its
complement in the corresponding dual
expression. For example, the dua! of
f=A+BC is obtained by replacing the

operator + by . and vice versa.
Hence the dual expression is
=A(B+C)

and - -

f =AB+C)
that this is so can be confirmed with the
aid of a truth table as shown in Fig. 3.
Examination of columns 8 and 10 of this
table show that A(B+C) is the
complement of A +BC.

A

A'BC A BCBC A+BC B+C A(B+C)
000111 0 0 1 1
0011100 0 1 1
010101 0 0 1 1
011100 1 1 0 0
100011 0 1 1 o]
101010 0O 1 1 0
1t10001 0 1 1 Q
111000 1 1 [¢] 0
Fig. 3. The truth table shows that

A(B+C) is the complement of A+ BC.

Example. Find the complement of
f = A(BC + BC +BCD).
Apply redundancy
f = A(BC + BC)
dualise: fb=A + (B+C) B+0)
invert: f=A+ (B+C) (B+C)
f=A+ BC+BC

Fan in. This theorem has its application
in those logic circuits where there is a
fan-in restriction placed on the designer
by the availability of gate inputs. This
matter will be dealt with more fully in a
later article.

It is frequently convenient, when
multiplying out two Boolean sums to
refer to one section of the sum as its
head, H, and to the remaining section as
its tail, T. The statement of the theorem
then is:

(H,+T) (H,+T, = HT,+HT,

Proof: Lh.s. = (H, +T1) (H +T,)
=Hfi,+H T+ H T +T
Now H,H, —0 and T\l is redundant by
theorem of race-hazards; therefore
Lhs. = H|T, + H,T,

This theorem allows us to multiply out
two Boolean sums, two sections of
which are the complement of each
other, without generating algebraically
redundant products.

The partition of a Boolean sum into
head and tail is arbitrary. For example
in the case of the Boolean sum A+B+C
any of “the followmg partitions is
allowable

head tail
A B+C
8 A+C
C A+B
A+B C
A+C B
B+C A

Exampte.f = (A+B+C) (A+DE +F)
LetH, = Aand T, = B+C
H, = Aand T, = DE+F,
then (A+B+C)YA+DE+F)
= A(DE+F) + A(B+C)
= ADE+AF+AB+AC
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If there are terms common to both of
the sums to be multiplied the process of
multiplication can be further simplified
by noting that such terms appear in the
product in their original form. For
example

(A+BC) (A+DE)
= AA+ADE+ABC+BCDE
= A+BCDE.
Hence, if P=(I+X) and Q=({+Y)
where I is the common term,
then PQ = (I1+XY).
Finally, if P = (H;+T\+ I) and
Q = (Hl + TZ_": I)r
then PQ = H,T,+H, T, +1

Boolean reduction

A Boolean function is said to be
irredundant, or reduced, if it contains no
optional products. For example, the
factor A in the function f = A+AB is
redundant, since A+AB = A+B. Re-
dundancies in two-level Boolean
expressions can be removed in three
steps, using the theorems of redun-
dancy and racehazards. If an expression
contains more than two levels, it is
converted into its two-level sum-of-
products form by multiplying out.

The three steps for eliminating
redundancies in Boolean expressions
are:

(1) Multiply out.

Consider the Boolean function
f=BC +(AB+C)C + A

Apply (1): ,

=BC+ABC+CC+ A

= A + BC + ABC

(2) Apply redundancy theorem:

In (1) the expression f = A+BC+ ABC
was derived. Step (2) is commenced by
considering the first product, in this
case A. Now scan the products to the-
right of A, looking for a product that
contains the factor A. Here ABC is such
a product and this is eliminated, result-
ing in f = A+BC. Since there are no
products to the right of BC the step is
not repeated. '

(3) Apply theorem of race hazards:
The first variable in the first product is
selected and the remainder of the
expression is scanned for a product that
contains the complement of the selected
variable. When such a product is found,
an optional product is formed using the
second theorem. The optional product is
used to eliminate non-parent products
and/or to replace parent products as
previously described. If a parent pro-
duct has been replaced, the optional
product is inserted at the beginning of
the expression and (3) is repeated. If the
optional product has not been used, it is
discarded. Step (3) is repeated until all
first-level optional products have been
generated. Repeat (3) if necessary using
higher level optional products'. For
example:

“f=A+ AB + BC + ABD.

Form the optional product B:
f—A+AB+BC+ABD+B
Eliminate parent product AB and non-

parent product BC:
f=B+ A + AED.
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Form optional product AD:
f—B+A+ABD+AD.

Eliminate parent product ABD:
f=AD + B + A.

Form optional product D:
f=AD+ B+ A + D.

Eliminate parent product AD:
f=A+B+D,

which is the required result.

Minimisation
- A Boolean sum-of-products expres-
sion is said to be minimal if (a) no other
sum-of-products expression for the
same function has fewer products, and
(b) of other sum-of-products expres-
sions for the same function with the
same number of products, none has
fewer factors.

There are three main methods for
minimising Boolean expressmns

These are:
® The Karnaugh map method. In this
method the function is displayed on a
map and by suitable looping arrange-
ments the minimal form is obtained.
@® The Quine-McCluskey method?. In
this method all irredundant forms of a
given Boolean function are generated
and the shortest one chosen.
® A step-by-step algebraic method?
which does not involve expansion of the
function.

In this article the Karnaugh map
method will be described.

Consider the Boolean function:

-
I

ABC + ABC + ABC + ABC +AB
(A+A) BC+(A+A) BC+AB
BC +_BC + A:B

(B+B)C+AB

C+AB

The original expression has been trans-
formed algebraically intc a simpler
Boolean function which requires less
hardware for implementation. Certainly
in the era before the advent of the
integrated circuit, minimization of
Boolean functions was a positive
advantage. In these days of integrated
circuits the advantages of Boolean
minimisation at the gate level are less
obvious and the designer is now think-
ing in terms of minimizing the number
of chips, both from the point of view of
economy of space and cost. However,
the formal process of simplification
does lead the designer to a facility for
handling Boolean equations and in that
sense it is still useful.

The simplest and most widely used
method of simplification employs a
mapping technique. Maps for two,
three, four and five variables are shown
in Fig. 4, and are called Karnaugh maps.

For the two-variable map there are
four cells, each of which represent one
of the four possible combinations of the
two variables. In the top left hand cell of
the map A=0 and B=0, that is, the cell
represents the minterm m,=AB, where
a minterm may be defined as a Boolean
product which contains all the variables
in their true or inverted form. The
decimal number in a cell is the decimal
equivalent of the binary representation
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Fig. 4. Karnaugh maps for two(a),
three(b), four (c) variables. In the case
of five variables, two maps are needed,
as shown at (d).

Fig. 5. The Karnaugh map for
f=ABC+ABC+ABC+ABC+ AB. The
ringed ‘I’s show that the expression can
be minimized to f=C+AB.

of the minterm associated with that
particular cell. For example, the min-
term associated with the top right hand
cell of the two variable Karnaugh map is
AB and its binary representation is 01
which has a decimal equivalent of 1.

Any Boolean function of a given
number of variables can be plotted on a
Karnaugh map. For example, consider
again the function:

f=ABC+ABC+ABC+ABC+AB_

The first term in the expression ABC
has a binary representation of ¢01 and
the cell corresponding to 001 on the map
shown in Fig. 5 is marked with a 1. It
follows that the terms ABC, ABC, and
ABC can be plotted on the map using
the same method. The remaining term
AB=AB(C+C)=ABC+ABC and the
binary representation of these two
terms is 011 and 010 respectively,
corresponding to cells 2 and 3, but cell 3
has already been covered by the term
ABC and it is only necessary to enter a 1
in cell 2 to complete the plot of the
function.

The above example has shown that a
3-variable term occupies one cell only
on a 3-variable map, a two variable term
occupies two adjacent cells on the map
and a single variable term will occupy
four adjacent squares on the map. For
example, the term A would be plotted in
the cells marked 4, 5, 7 and 6 on the map
and these four adjacent squares repre-
sent that term.

Fig. 6. Minimal functionof
f=BD+ABC+ABCABC+ACD + ABC

is shown to be f=BD+ AC+ AC+ BCD.

ABCD f

-
-

4 5 7 6

= ABC + ABC+ ABC + ABC+AB

The process of simplification there-
fore reduces to the process of identify-
ing plotted adjacencies on the Kar-
naugh map and then looping these
adjacencies as shown in Fig. 5. The
four-cell adjacency represents the term
C and the two cell adjacency represents
the term AB and the minimal function is

f=C+AB
as was previously determined by alge-
braic methods.

Clearly to get the minimal form of the
function the largest possible adja-
cencies should be chosen.

Example Minimize the Boolean func-
tion:
f= BD+ABC+ABC+ACD+
ABCD+ABCD.

The function is shown plotted on the.

Karnaugh map in Fig. 6 and the
adjacencies giving the minimal function
are shown looped.
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f=BD+AC+AC +BCD
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From the map _ oo
f=BD+AC+AC+BCD

or f=BD+AC+AC+ABD

Example Minimize the Boolean func-
tion shown plotted in Fig. 7.

For five-variable functions two maps
are required as shown in Fig. 7 and the
minimisation process can then be
carried out in two steps:

Step (1): Minimize the functions

plotted in the E=0 and E=1 maps as if
dealing with two separate four-variable
problems.
This gives  f, =BDE+ABDE +BCDE
and f,=BDE+ABDE+ACDE
Note that in this case there are two
equally valid minimal solutions for the
E=1 map, one of which has been
chosen.

Step 2: Look for combinations
between cells on the E=0 and E=1
maps which will lead to the elimination
of factors from any of the terms in f; or
f2.

For example, the term BDE in f;, may
be written as BDE + ABDE and the term
ABDE can be combined with the term
ABDE in f, to generate the term ABD
thus eliminating the factor E between
these two terms. The minimal sum is
then given by the logical sum of f, and f,
after all possible combinations have
been made between the two maps. This
leads to the following minimal solution.

f=BDE+BDE+ABD+BCD +
ABD + ACDE

Obviously, the process of minimiza-
tion using maps becomes more compli-
cated as the number of variables in a
problem increases. However, the meth-
od is readily usable up to six variables.

It was shown earlier in this article in
the section on the race-hazard theorem
that unwanted transient signals can be
averted by the introduction of optional
products. For example, for the Boolean
function f=AB+AC a race-hazard
occurs, following changes in A, when
B=C=1, and it is eliminated by intro-
ducing the optional product BC so that
the function becomes f=AB+ AC + BC.
The original function is shown plotted
in Fig. 8(a) and the new function
including the optional product is plotted
in Fig. 8(b).

Before the introduction of the
optional product the Boolean function
was irredundant in that it contained no
loops, when plotted on Fig. 8(a), that are
already covered by other loops. The
function was also minimal. However
with the introduction of the optional
1:roduct a loop BC is formed which is
airondy covered by the loops for AB and
AC. The function is now no longer
mininial in that it contains a redundant
product 3C. This example shows that
the introduction of redundancy into a
Boolean function is necessary to eli-
minate race hazards and that the
minimal solution is not always the best
solution.

Clearly the possibility of a race-
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Fig. 7. A further example of

minimization.
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f=AB + AC
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Fig. 8. The use of optional product BC
in (b) eliminates the race hazard with
changes in A.
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Race-hazard

t=AD + ABC +ABC

Fig. 9. More elimination of race
hazards, shown by arrows in (a) by
optional products shown at (b).

hazard occurring can easily be spotted
on a Karnaugh map plot of the Boolean
function to be minimized. =

The minimal form of the function
shown plotted _in Fig. 9(a) is
f=AD+ABC+ABC but race-hazards
will occur at the places indicated by
arrowheads on the map. To eliminate
these race-hazards two extra loops
should be added to the Karnaugh map
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f=AD+ABC+ABC+BCD+BCD

plot as shown in Fig. 9(b) and the
minimum hazard-free function becomes
f=AD+ABC+ABC+BCD + BCD
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Logic design — 2

Combinational logic

by B. Holdsworth™ and L. Zissost

tDepartment of Computing Science, University of Calgary, Canada.

*Chelsea College, University of London

Two of the most essential features
that must be met in the design of logic
circuits are the imposed gate fan-in
restrictions and hazard-free opera-
tion. Gate fan-in is the number of
imput terminals provided in a gate, i.e.
the maximum number of input signals
to a gate. Race-hazards are unwanted
transient signals (signal spikes),
which under certain changes of an
input signal and with certain relation-
ships of circuit delays appear in a
logic circuit.

Combinational circuits can be con-
structed using AND, OR and IN-
VERTER gates, NOR gates or NAND
gates. It is possible to construct curcuits
using all of the above elements but such
circuit configurations are not, at pre-
sent, common. Circuits composed
entirely of NAND or entirely of NOR
gates are generally more economical
and convenient to use than circuits
using AND, OR and INVERTER gates.
The truth table for a two-input NAND
gate is shown in Fig. 1(a) and that of a
two-input NOR gate in Fig. I(b). A
NAND gate can be used as an IN-
VERTER if all except one of the inputs
are tied to logic 1, a practice which,
though not always- necessary, is
strongly advised. For example, if the
input A of the gate shown in Fig. 1(a) is
tied to logic 1, then the output of the
gate is B as indicated by the entries in
the bottom two rows of the truth table.
Similarly a NOR gate can be used as
an INVERTER if all except one of the
inputs are tied to logic 0. The remaining
input then appears inverted at the
output of the gate. In the case of the
gate shown in Fig. 1(b), if input A is
connected to logic 0 the output of the
gate is B, as indicated by the entries in
the top two rows of the truth table.
NAND and NOR gates can also be
used to generate the OR and AND
functions. For example, the output of a
NAND gate driven by signals A and B is
A B. which may be written as A + B, as
shown in Fig. 2(a). The AND function
can be generated by connecting two
NAND gates in cascade, the first one
generating the NAND function of the
. two input variables A and B, whilst the
second gate acts as an INVERTER, as

shown in Fig. 2(b). It follows that a NOR
gate fed with inverted variables gener-
ates the AND function of the true values
of the input variables, whilst two NOR
gates in cascade generate the OR
function of the variables fed to the
inputs of the first gate.

Two levels of NAND gates generate a
two-level sum-of-products expression,
as shown in Fig. 3(a), which indicates
the one-to-one relationship that exists
between a sum-of-products expression
and its NAND implementation. The
reader’s attention is drawn to the fact
that the realisation of a minimal
sum-of-products expression does not
necessarily result in a minimal circuit.

For example, the implementation of the

“Exclusive OR” function f = AB + AB,
which is a minimal expression, requires

five gates, if inverted variables are not .

available as shown in Fig. 3(b), whereas
the NAND circuit satisfying its non-
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minimal formf = A(A + B) + B(A + B)

.requires one gate less, as’'shown in Fig.

3(0).

In order to implement a function,
such as f = (A + BC)E + (G + H)F
using NAND gates, it is simpler to work
backwards from the output gate. The
equation is of the form PQ + RS, where

R=F

P = (A + BO) .
S=(G +H

Q=E

This type of two-level sum-of-products
has already been realised in Fig. 3 (a)
and is repeated with the relevant input
signals in Fig. 4(a). The input line G + H
to gate 3 is the output line of a two-input
NAND gate, whose inputs are found by
inverting the variables G & H. Similarly,
the input line A + BC to gate 2 is the
output line of a two-input NAND gate,
whose inputs are found by inverting the
variable A and the product BC, as

A———) f=AB
(a) .
B_

A f=A+B
© 8 :D"_

. Fig. 1. Symbols and truth tables for

NAND (@) and NOR (b).
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Fig. 2. The OR function using a NAND
gate at (a) and the AND using NANDs

at (b).
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f=AB+CD

| 1

(b)

(c)

Fig. 3. The use of NAND gates to obtain a sum-of-products funct:on (a). The
minimal form of expression need not give a minimal circuit; minimal
expression f = A B + A Bin (b) needs one more gate than non-minimal
expressionf = A (A + B) + B(A + B)at (c).

A+BC

f=(A+BC)E+(G+H)F

(a)

@
nII !>.
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4 p——ro
= G+H
A
B — A+BC
6 —
— BC
S

I| |G)
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Fig. 4. Building up the expression
f=A+ BC)E + (G + H)F from the

f=(A+BC)E+ (G+H)F

(b)

DC f=(A+BC)E+(G+H)E

(c)

output end in three levels.

A

= (A+B)(C+D)

D

Fig. 5. Dualizing f = A B + C D with
NOR gates.

shown in Fig. 4(b). For the final stage in
the implementation it is only necessary
to precede gate 5 with a two-input
NAND gate whose input variables are B
and C as shown in Fig. 4(c).

If the NAND gate in Fig. 3(a) were
replaced by NOR gates as shown in Fig.
5 the output function, which the reader
can check for himself, will be

fo = (A + B)(C + D)
which is the dual of the output functiornr
of the circuit shown in Fig. 3(a). Hence

to implement the NOR circuit of a
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Boolean function first derive -the
NAND-circuit of the dual function and
replace the NAND gates by NOR gates.

Example. Implement the function
f=ABC + ABC.

Dualise: o

fo = (A+B+C)(A+B+C)

Express in Sum-of-Products form:

fD—AB+AC+AB+BC+AC+BC

mlmmlsmg using the method of Part 1:

= AB + BC + AC.
The NAND circuit of this function is
shown in Fig. 6(a) and the NOR function

- f = ABC + ABC is given by replacing:

the NAND gates by NOR gates, as
shown in Fig. 6(b)..

Hazard-free operation _
Race-hazards are unwanted transient
signals (signal spikes) which, under
certain changes of an input signal and
with certain relationships of circuit
delays, appear in a logic circuit. The
NAND circuit of Fig. 7-shows a com-
binational logic circuit 'in which
“spikes” are generated during a change
of input signal A from1to0whenB = C
= 1. The cause of the race-hazard is that
immediately following a change in the
signal A, A = A = either 0 or 1. Hence if
a Boolean expression of a signal in a
circuit reduces to either A + Aor AA, a
race-hazard exists at the output of the
corresponding gate, otherwise the sig-
nal is hazard-free.

In the example shown in Fig. 7, f =
AB + ACreducesto A + AwhenB = C
= 1, revealing the existence of a
race-hazard at the output of gate 4.
Race-hazards in a circuit can be sup-
pressed by preventing its Boolean expres-
sion from reducing to either A + A or
AA. This is achieved by the application
of the theorem of race-hazards in Part 1.
Hence

AB + AC = AB + AC + BC
or, alternatively, expressing the same
function as a product-of-sums '
A+BA+C)=@A+BA+C)(B
+ C).

The introduction of the third term
prevents the first expression from being
reducedto A + A, sincewhenB = C =
1,AB + AC + BCnowreducesto A + A"
+1=1 Slmllarly, the second expres-
sion, when B = C = 0, reduces to (A+0)
(A+0)(0+0) AAO—0

Fan-in restrictions ‘
The implication of a fan-in restriction
(the number of gate inputs) on the
realisation of a Boolean function is
equivalent to imposing a restriction on
the maximum size of the products and
sums in the expression of the function
to be satisfied. For example the direct
realisation of the function f = AB + .
AC +AD shown in Fig.-8 requ1res one
three-input NAND gate, three two-in-
put NAND gates and two single-input
NAND gates, six gates in all.

If the fan-in restriction is two,
implying the use of two-input NAND
gates, there are two possible methods.of
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Fig. 6. Generating a function using NOR gates. Functionf = A BC + A B Cis first dualized, minimized and
implemented in NAND logic, as at (a). This circuit is then converted to NOR gates to provide the required output.
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Fig. 7. Mechanism of “spike” generation.

f=AB+AC+AD
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can be unused.
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Fig. 8 “Direct” generationof f=AB+ AC+ A D when 3-input gates

rearranging the given function to

satisfy this restriction.

Method 1: bracket two of the three

products.
The functionis f= AB+AC+AD
bracketing: f (AB+AC)+AD.

The implementation of this function is
shown in Fig. 9(a). It meets the fan-in
restriction of two but it requires eight
gates, two more than in Fig. 8.

Method 2: remove a common factor:

The function can then be written
f=AB + A(C + D).

The realisation of this function is shown

in Fig. 9(b). It meets the fan-in restric-

tion of two and requires only four gates,

two less than in Fig. 8. Alternatively the

function may be written =~ _
f=AB + C) + AD.

The implementation of this function is

shown in Fig. 9(c). Again it meets the

fan-in restriction of two and it requires’

the same number of gates as realised in
Fig. 8. There is one further factorization
of interest and that is_ _

f=A®B + D) + AC
but this function has the same form as
f=AB+C)+AD and can be imple-
mented with six NAND gates, the same
number as in Fig. 8. Obviously the
optimal implementation is given when
the fuhction is written in the form f =
AB+A(C +D) even if a fan-in restric-
tion of two had not been imposed.

A systematic method can be used to
arrive at an optimal expression fora logic
function which to be realised using
gates with a specified fan-in. The
method described is based on the use of
the merging table -2,

For the case of NAND circuits the
starting point is the irredundant sum-
of-products expression of the function
to be implemented. _ _ '

f=AB + AC + AD
The function is dualised and the brack-
ets numbered:

fo=(A + B)(A + C)*A + D)
Next the change in the gate count AN,
which occurs when pairs of brackets are
merged is determined with the aid of the
merging table shown in Fig. 10, which
has been developed for the case when,
there is no increase in the size of the
sum (AZ = 0) upon merging brackets.

Merging is the process described in
the Fan-in theorem in the first article of
this series, where two brackets are
replaced by a single bracket i.e.

H+T) H, +T,) =
H,T,+H T,
It is essential to note that merging does
not affect terms which are present in
both brackets i.e:
A+X)A+Y) = I+XY

To determine the value of AN the
components of the two brackets are
counted in the following manner.

x= the number of terms in the
smaller bracket, excluding common
terms.

y= the number of terms in the larger
bracket, excluding common terms.

r= the number of terms in the head
section of the smaller bracket.

n=1 if a group of terms in one
bracket, called the head, is the comple-
ment of a group of terms in the other,
otherwise n=0.

. I= the number of variables true or
inverted countedin xandy.

t= the number of true variables in x
and y such that for each

(1) its complement does not occur

as a variable in any of the other.

brackets.
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A
b
AB+AC
A ‘ t=(AB+AC) Fig. 9. Bracketing two products in
c f=AB+ AC+ AD enables use of

2-input gates but requires eight insteaa
of six, as in (a). Removing a common’

D ' factor again meets fan-in restriction to
. 2 inputs, with varying savings in

(a) number of gates, as seen in (b) and (c).

Ol
oul»

m

t=AB+A(C+D) C > f=A(B+C)+AD

D DD
}__

Ol
4
ol

(b) (c)

L AZ=0
does not result in a change in the gate
. count but that merging brackets 2 and 3
m ) gives a reduction in the gate count by 2,
which is the same result obtained
working directly with the circuits in Fig.
9. ‘

Merging 1/2 gives f,, = (A+BC) (A+D)
redualising: f=AMB+C)+AD

AN see Fig. 9 (c) _

-3 Merging 1/3 gives f, = (A+BD)(A+C)
redualising: f=A®B+D) + AC
Merging 2/3 gives f;, = (A+CD) (A+B)

-2 redualising: f=AC+D)+AB

see Fig. 9(b).

* This part will be concluded with two
examples, the first one demonstrating
the process of minimal design using the
merging table and the second one
demonstrating the development of a
minimal, hazard-free design.

Example 1 Design a minimal two-input

. NAND circuit to realise the following

Fig. 10. Merging table for AZ = 0. Boolean function. __ _
f=AB+AC+CD

This equation is already in its minimal

+1

+2

(2) it does not occur in its true form the dual function, AN being obtained form.
in a product within the expression. from the table of Fig. 10. _ ) ) L A _
i= the number of inverted variables fo = (A+B)(A+C)(A+D) Dualise:  jp= (A+B)'(A+CY(C+D)

such that for each
(1) it is not repeated in the expres- : —
sion as an inverted variable b/p n-x y r t I i i AN

Attempt merging:

(2) it does not occur in its true form b/p n x y r t l-i AN
in a product within the expression. 1/2 611 -1 211 0
N is the gate count and AN is the 173 0 1 1 -1 2 1 1 0 1/2 1 2 2 1 2 4-2=2 +1
change in the value of N caused by 2/3 01 1 -02 2 0 -2 1/3  cannot be merged
merging two brackets. 2/3 1 2 2 1 1 4-3=1 -1
The quantities detailed above are The above tabulation shows that merg-

tabulated below for each bracket pair of ing brackets 1 and 2 or brackets 1 and 3 Merging 2 and 3 will result in a
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operation.

A
C

B
) A+C

hazard-free form of = AC + BC.

Fig. 11. Minimal circuit for f = A B (A + C(C + D), using the merging

U D
}_

Fig. 12. Two-input NANDS used to realise f = B (A+ C) + AC, which is

f=AB+(A+CNC+D)

;j}im@“‘c

reduction of the gate countby 1 _
Merge 2, and 3: f;, = (A+B) (AC+CD).
Redualise: f=AB + (A+C)(C+D)
Implement as in Fig. 11.

Example 2. Under what circumstances
will a spike be generated at the output
gate if a direct NAND implementation
of the function f=AC+BC is made?

53

Derive an equivalent hazard-free
expression that can be implemented
minimally using two-input NAND
gates. ‘

If A=0 and B=1 the function
f=AC+BCreducestof=A+Awhichis
the condition for generating a spike
when C changes from 1 to 0.

The hazard-free ex- o
. pressionis f = AC+BC+AB . _
Dualise: fp = (A+C)(B+C)*(A +B)

Attempt merging:

b/p n x y r t I-i AN
1/2 1 2 2 1 4-1=3 +2
1/3 01 1 -~ 1 2-0=2 +1
2/3 011 - 0.2-1=1 -1

Merge2and3:  f, = (B+AC)(A+C)
Redualise: ~ f=B@A+C) + AC
Implement, as in Fig. 12.
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Logic design — 3

Event-driven circuits

by B. Holdsworth® and D. Zissost

A four-step procedure based on the
sequential equations, for the design
and implementation of event-driven
logic circuits is described in this
article. Realistic circuit constraints
are automatically taken into account
by the design process.

The principal factors to be considered
in the design of event-driven circuits
are:

@ Circuit reliability. The circuit must
operate correctly and reliably.

@® Gate fan-in and fan-out restrictions.
These must be observed.

@ Speed tolerances. Gate speed toler-
ances of + 33% per cent are automati-
cally accommodated by the design
process used.

Generally speaking, the solutions
obtained do not necessarily use a
minimum number of gates, but the
design requires minimum effort. The
design steps are easy to apply and
require no specialist knowledge.

State diagrams

State diagrams can be used to describe
both the external and internal opera-
tions of event-driven sequential cir-
cuits. In a state diagram, states can be
represented by squares, rectangles or
circles and lines linking the states
represent transitions between states.
The direction of a transition is indicated
by an arrow pointing in the direction of
the destination state, and the signal
condition that initiates the transition is
indicated by its Boolean function
inserted either above or below the line.
For exampie the part of a state diagram
shown in Fig. 1 indicates that the circuit
moves from state S, to S; when XY =1,
i.e. when X=1and Y=0.

The external and internal-state dia-
grams of a circuit in which the activa-
tion of a switch X in Fig. 2(a) operates,
in turn, two lights L, and L, are shown
in Figs. 2(b) and 2c) respectively.
Variables X, and X ,, are used to
indicate the n* and (n+ 1)™ activation
of the switch. The external-state dia-
gram closely resembles a flow chart,
which can be drawn with very little

regard to circuit implementation.

There are no hard-and-fast rules for
developing internal-state diagrams.
Since such diagrams describe the
internal operation of a circuit, the
designer usually makes arbitrary
choices depending on past experience,
his understanding of the problem and
availability of components, which can
lead to different but equivalent results.

The following example is used to
illustrate typical variations in the
internal-state diagrams of the relatively
simple light circuit shown in Fig. 3(a).
The function of the circuit is to turn
lamp L, on when the two switches X and
Y are made in that order, and lamp L, on
when the switches are made in the
reverse order. Two different but correct
versions of the internal operation of the
circuit are shown in Figs. 3(b) and 3 (¢).

Most persons attempting this
problem would probably derive inter-
nal-state diagram 3(b) which uses five
internal states. State S, is used to record
that switch X has been made and state
S; that switch Y only has been made. In
both cases there is no change in the
circuit output, although clearly there is
a change in the internal-state of the
circuit. Very few designers, if any,
would arrive at Fig. 3(c) the first time
round.

As might be expected the circuit

- | . -

implementation of the state diagram of-
Fig. 3(c) is the simplest. This state
diagram can be obtained by construct-
ing a state table from the state diagram
shown in Fig. 3(b), the state table then
being reduced by the application of
Caldwell’s merger procedure. This
technique will be described later in this
article.

State variables

Each state of an event-driven logic
circuit is defined by a unique combina-’
tion of logic signals called state varia-
bles or secondary signals. Clearly one
state variable A, defines two states, one
by A=0 and the other by A=1. Two
state variable define four circuit states
each state corresponding to a combina-
tion of their values, i.e. 00, 01, 11, and 10.
In general, n variables will define 2".
circuit states. As an example of state
allocation, the states S, S, S, and S, in
Fig. 2(c) can be defined by the state
variables AB=00, 01, 11, 10. In allocat-
ing state variables to states in
event-driven circuits it is necessary to
ensure that each circuit transition
involves a change in the value of a
single variable only. The reasons for

* Chelsea College, University of London
1 Dept of Computing Science, University of
Calgary. Canada

Fig. 1. Elements of a state diagram. X7
N So N Ny
Fig. 2. Internal and external state
diagrams of a logic circuit.
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Fig. 3. Internal state diagrams of a two-switch logic circuit.
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Fig. 4. Race-free diagrams for two and
three variables.

doing this is to ensure that races
between state variables or secondary
signals are automatically avoided.

A race-free assignment of states can
be achieved with the aid of a race-free
diagram. This is a two-deminsional
diagram containing 2" coded nodes,
where all nodes whose codes differ in
one variable only are joined by inter-
rupted - lines. Hence, races between
secondary signals are automatically
avoided if each circuit transition lies on
a race-free line. Race-free diagrams for
two and three variables are shown in
Fig. 4.

Dummy states

There are certain patterns of
internal-state diagrams that cannot be
assigned race-free codes. Such a pattern
is shown in Fig. 5(a). If the state codes
for Sy, S,, and S, are AB= 00, 01, and 11
respectively the direct transition from
state S, to S, cannot be implemented as
this would involve the simultaneous
change of two variables. In this case the
link between S, and S; can be turned
into a race-free link by interposing a

M T S — - —_— e
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S1 XY S2
X L1 on
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) S < S
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Fig. 5. Use of a dummy state (S, avoids simultaneous two-variable change from

S,t0 S,

fourth state S; between S, and S, coded
A =1 and B=0. This is called a dummy
state and replaces line S,-S; with
race-free links S,—S,; and S;—S, as
shown in Fig. 5(b). The S;—S, transition
is unconditional and once the circuit
assumes state S, it moves automatically
to S;. In terms of state variables this
ensures that signal B is turned off first
and this automatically turns signal A
off.

Unused states.

If the number of states to be imple-
mented is N, where 2"~ 1<N< 2" there
will be 2°~N unused or redundant
states. For example, in the case of the
three-state diagram shown in Fig. 5(a)
there will be one unused state. It can
never be assumed in.practice that a
circuit will not move into an unused
state either when switching the circuit
on or due to the interference of a noise
signal. For example, when in state
S, =00, a noise signal may turn A on and
the circuit enters the unused state
S,=10. The circuit may be operating in
conjunction with other circuits and
moving into state S;=10 may result in
the incorrect behaviour of the overall
system.

The designer is therefore strongly
advised to take such a possibility into
account at the design level and take the
necessary action. For example, if the
misoperation of the above circuit can
result in the jamming of a production

XY
00 01 Hi 10
= [H]®
S2 S3 @ * (a)
L1=1
[~ @] -
Loa="1
XY
00 o1 1" 10
Son S3a
L1=1
(b)
©
La=1
Y
Ly=XY R L=XY| (¢)
XY

Fig. 6. State-table reduction.
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Fig. 7. SR flip-flop and its truth table.

Fig. 8 Implementation of the NAND
sequential equation for S and R primary
signals.
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Fig. 9. Determination of turn-on and.
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Fig. 11. Three-lamp circuit and its state diagram.

X
So > S'l
AB=00 1
%A ¥ X
01 10
Sq < Sy
X

(a)

57
Sq S,
LL=0 XY Ly =
La=0 » L, =0
_ [flLks= 3=
XY
So S3
Ly=0C XY L=
L2=O > Lo =1
L3=O L3=
XY S.4. . 55
L1 =0 XY L1 =
L,=0 > L,=0
L3:‘:O L3= 1
X
SO > 51
AB=00 01
X A Y X
10 k|
S3 < S
X 2

(b)

Fig. 12. Elimination of races between secondary signals.

t I AY AB

Fig. 13. Races between primary and
secondary signals.

line, a possible action would be to use
the signal AB, which defines the unused
state, to turn off all machines and raise
an alarm.

Frequently, such states are referred
to as “don’t-care” states.'Boolean
expressions defining the “don’t care”
conditions are used as optional products
to reduce the circuit equations and
hence the complexity of the circuit. This
is based on the assumption that a “don’t
care” condition does not arise in
practice, which is only valid for normal
operation. Since one cannot exclude the
possibility of circuit misoperation, the
designer is strongly advised not to leave
undefined the response of the circuit
under such conditions. In other words

Fig. 10. Implementation of NAND
sequential equations for turn-on and
turn-off sets obtained from state dia-
gram of, for example, Fig. 9.

the designer ‘“cares” about all circuit
conditions.

Summarizing, no state diagram con-_
taining other than 2r states should be
implemented. Referring to the light
circuit of Fig. 3, only the state diagram
in Fig. 3(c) can be implemented. The
implementation of the state diagrams in
Fig. 3(b) would require the addition of
three states. Additionally the reader is
strongly advised against the mathema-
tically convenient use of “don’t care”
states for circuit simplification.

State tables

The design restriction of always imple-.
menting 2" states can be met either by
introducing dummy statés or by reduc-
ing the number of internal states. State
reduction is carried out by using
Caldwell’s merging procedure which is
based on the state table. Such a table
has a row for every state of the circuit
and a column for every combination of
the input signals. The rows and columns
are headed by labels representing the
corresponding states and inputs. In
each cell the circuit destination is
entered, i.e. the next state assumed by
the circuit when it is in a state
corresponding to the row heading, and
it receives input signals defined by the.
column heading. If the designer does
not wish to specify the next state the
entry in the appropriate cell is left
blank. A second entry is made in each
cell which specifies the circuit output,
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Fig. 14. Function to be realized in
Example 1 is at (a) and its state diagram
is at (b), while the state table is shown in
(c) and in merged form at (d). Initial

state diagram based on (d) is shown at.

(e) and realization of the circuit is (f).

unless it is a blank cell. If the circuit
destination is the same as its current
state, the circuit is stable and the entry
is encircled. The state table corre-
sponding to Fig. 3(b) is shown in Fig.
6(a).

State reduction

The process of combining the rows of a
state table is made in accordance with
Caldwell’s merging rules.

Two rows may be merged if the state
numbers and the circuit outputs
appearing in corresponding columns of
each row are alike, or if the entry in one
or both of the rows is blank.

When circled and uncircled entries of
the same state number are to be
combined, the resulting entry is circled.
Thus the two rows

3 G

356
combineinto 3 ® 6
A change of state from 5 to 8 now
involves a change of the input state
only.

When a row S, is combined with row

(f)

S, the new row is marked S_,..

Examination of Fig. 6(a) indicates
that rows S, S;, and S, can be merged to
give anew row Sy, and also that rows S,
and S, can be merged to give a new row
S, The reduced state table is shown in
Fig. 6(b) with its corresponding state
diagram in Fig. 6(c), and this is identical
to the state diagram of Fig. 3(c).

Sequential equations

The sequential equations, allow a state
diagram to be translated directly into a
circuit, as a consequence, lead to a
much simpler solution of event-driven
circuit problems. These equations can
be obtained directly from a considera-
tion of the logical behaviour of an SR
flip-flop. .

The SR flip-flop is shown symbolical-
ly in Fig. 7(a), the set and reset inputs
being labelled S and R respectively,
whilst the complementary outputs are
labelled Q and Q. The truth table for the
flip-flop is shown in Fig. 7(b).

In the first three columns of this table,
all combinations of the present states of
S, R, and Q, i.e. their states at time t, are
tabulated. In the fourth column the next
state of the flip-flop, i.e. its state at time
t + dt, is tabulated.

Examination of this table shows that
a change of flip-flop state occurs in rows
4 and 5 only. In row 4 the flip-flop is
being reset, i.e. its state is being changed

from 1 to 0, by the application of inputs
S=0 and R=1. In row 5 the flip-flop is
being set, i.e. its state is being changed
from 0 to 1, by the application of inputs
S=1 and R=0. The reader should also
notice that with this type of flip-flop it is
inadmissible for S and R both to be
logical 1 simultaneously. This restric-
tion can be expressed algebraically as
SR=0.

One form of the sequential equations.
is obtained by taking the logical sum of
the combinations in the truth table for
which Qt+%=1 and adding in the
product SR=0. This does not affect the
value of Qt*% but leads to a simpler
eqlation for it.

Hence:

Qt+%=(SRQ+SRQ +SRQ+SR)t.
Minimizing:

Qt+sz= S+ '}-{Q)t.

The second form of the sequential
equations is obtained by excluding the
product SR from the equation for Qt+¥
so that

.Qt+&=(SRQ +SRQ + SRQ).

Minimizing: _
Qia=[(S+QR]"

Time is inferred in these equations
and they are written

Q=S+RQ

and Q=(+Q)R
where S is referred to as the turn-on set
of Q and R is referred to as the turn-off
set of Q.
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The most general form of the equa-

tions is:
Q==X turn-on sets of Q+

Q(S turn-off sets of Q)
and Q= (Z turn-on sets of Q + Q)
(2 turn-off sets of Q)
The first of these two equations is used
when the design is to be implemented
with NAND gates and the second
equation when NORs are to be used.

The implementation of the’ NAND
sequential equation, Q=S+RQ, is
shown in Fig. 8. In this circuit S and R,
the turn-on and turn-off signals respec-
tively, are the primary signals, whilst Q
is the secondary signals which is turned

either on or off by the primary signals.
When designing an event-driven logic
circuit the turn-on and turn-off sets are
derived directly from the state diagram,;
for example, by reference to Fig. 9.

Turn-on set of A=BX
Turn-off set of A=BX
Turn-on set of B= AX
Turn-off set of B= AX

Substituting these values in the NAND
equations

A=BX+AB+X)

B=AX+B(A+X)
and the implementation of these equa-
tions is shown in Fig. 10.

.59

. Causes of misoperation -

Circuit misoperation is said to- occur
when a circuit assumes an internal state
other than the one intended. For
example, if on leaving state S, in Fig. 11;
with X=1 and Y =1 it assumes a state
other than S, circuit misoperation
occurs. Excluding component failure,
the causes of circuit misoperation in
event-driven circuits are races between
primary signals, secondary signals or
both. The above three causes will be
examined in turn and solutions sug-
gested in the next article.
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In the last article, the procedure
needed for the design of event-driven
logic circuits was discussed. This
second half of that article goes on to
describe the causes of misoperation
in such circuits and concludes with
some examples- of design. It is
unfortunate that some of the dia-
grams concerned with this half of the
article appeared in the first half — for
this, we apologise. '

Races between primary signals. The
circuit shown in Fig. 11 is required to
operate three lamps L, L, and L,
according to the following specifica-
tions.

(1) Lamp L, is to turn-on when both X
and Y are operated, but only if switch X
is operated before switch Y.

(2) Lamp L, is to turn-on when both
input switches are operated simultan-
eously.

(3) Lamp L, is to turn-on when both X
and Y are operated, but only if switch Y
is operated first.

In practice, a logic circuit responds
with different speeds to changes in the
input signals. Hence the response time
of the circuit to a change in the input
signal X must be assumed to be different
from the response time to a changein Y.
As a consequence the circuit, instead of
assuming state S, on leaving state S,
either assumes state S,, if the circuit
responds to the change in X first, or
alternatively it enters state S;, if the
circuit responds to a changein Y first. In
both cases the circuit operation is not
according to specification.

Since there is no remedy to this
problem the circuit constraint applied is
that only one input signal is allowed to
change at a time.

Races between secondary signals. In the
internal state diagram shown in Fig.

12(a), the coding of the internal states is’

such that circuit transitions S;to S, and
S, to S; involve the change of more than
one secondary signal. In practice
because of variations in the response
times of the two secondary signals to a
change in the input signal X from 0to 1,
either A or B will change first.
Assuming that A changes first the
circuit, when it leaves S, first enters S,.

From state S,, because X =1, the circuit
assumes state S; instead of S, and this a
stable state for X=1. This is clearly
incorrect operation of the circuit:
Obviously a similar analysis of the
circuit operation can be performed for
the case when B changes faster than A.

The solution to this problem is to
ensure that each circuit transition
involves the change of one secondary
signal only and a race-free assignment
of the state variables should be used as
described earlier in this article and as
shown in Fig. 12(b). '

Races between primary and secondary‘

signals. A circuit implementation of Fig.

12(b) is shown in block schematic form

in Fig. 13. The letters a and b are

assigned to the two sections of the
circuit which generate the secondary
signals A and B.

Consider the transition from S, to S,
‘in Fig. 12(b). This transition will take’
place in the time t, which it takes to
turn-on the secondary signal B. It will
also be assumed that the time taken to
invert the primary signal X is t,, If t >,
the following sequence of events will:
‘take place.

(1) At time t, B changes to 1 and the
circuit assumes state S,.

(2) Since t,>t, X=1, and the condi-
tion for turning A on exists.

(3) A turns on causing the circuit to
move to state S,. ‘

(4) On assuming state S,, the circuit

Fig. 11. Three-lamp circuit and its state diagram.

X
L}
O—
Three-lamp
circuit
L]
O
Y
L3 T LT Ly
X
SO > S‘l
AB=00 11
XA ¥ X
01 10
Ss < S,
X

(a)

S Sa
L =0 XY Ly =
La=0 > L=
— L3=0 L=
XY
So S3
L1=0 XY Ly =0
L2=O > L2=1
L3=O L3=O
XY S, Sy
I—1 =0 XY L1 =
L,=0 > L,=0
L3=0 L3=1
X
So > S,
AB=00 01
X A L B
10 1
S3 -« S
X 2

(b)

Fig. 12. Elimination of races between secondary signals.
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moves to state S;, since X=1.-.

If t,<t; onassuming state S, the
input signal to section a has already
changed, i.e. X=0, and the circuit
remains in state S,.

Unlike the previous two cases, eli-
mination of races between primary and
secondary signals cannot be achieved,
since a change in a primary signal
initiates a change in a secondary signal.
Therefore to avoid circuit misoperation
it is necessary to ensure that t <t. It
follows that incorrect circuit behaviour
will not occur if the maximum delay
associated with a primary signal t ..., is
less than the minimum delay associated
with a secondary signal t_ ;..

Hence
fpmaxe )

smin

"The 33%% property

The sequential circuits designed with
the aid of the sequential equations are
hazard-free when implemented with
gates whose maximum speed tolerance
is *33%%. The justification for this
statement is as follows.

The maximum delay by which a
primary signal in primitive sequential
circuits can be delayed is one gate delay,
ty when it has to be inverted. Allowing

l"c—’{ A\r 48

b —>

Fig. 13. Races between primary and
secondary signals.

'x% variation due to production spread,
loading etc. tomax=r,(1+ ).

The minimum delay associated with a
secondary signal is 2t,, since at least
two levels of switching are involved, as
an examination of the NAND sequential
equation Q=S+ RQ will show. Allow-
ing x% variation, g, =2t,(1-x).

Substituting these values in the
equation developed in the last section
gives t,(1+x)/2t,(1-x)<1 for correct
circuit behaviour. The reader should
observe that this property is valid for

Fig. 14. Function to be realized in
Example 1 is at (a) and its state diagram
is at (b), while the state table is shown in
(c) and in merged form at (d). Initial
state diagram based on (d) is shown at
(e) and realization of the circuit is (f)
Output of r.h. circuit is a.
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circuits in which the sequential equa-
tions are implemented in their primitive
form. Algebraic manipulation of the
sequential equations will lead to a
modification of the relative delays of the
primary and secondary signals and
therefore invalidate the 3314% property.
Hence, .processing of the sequential
equations is not advised.

Design steps

Step 1. Draw a block diagram showing
the available input signals and the
required output signals.

Step 2. Draw a state diagram describing
the internal performance of the circuit.
Step 3. This step is optional and can be
omitted. Its purpose is to provide the
designer with a means of reducing the
number of internal states obtained in
Step 2, if such a reduction is possible or
desirable.

Step 4. With the aid of a race-free
diagram if necessary, each internal state
is given a unique code. From the coded
state diagram the turn-on and turn-off
sets for the secondary signals are
obtained and these are used to derive
the primitive sequential equations.
Expressions are also obtained for the
output signals. The implementation of

these equations is the required circuit.

7 fa
f . o1 3= 00 01 11 10
a g SO r=0 r=1 S1 S S
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p1=p2=1
Py c=0F~———
8 ——P | —
b > Logic b=0 L__" 1
circuit 1
¢ ——>| —» —
. Pa = A
(a)
b ———
B ——
A
A A
a
B———

The \design procedure will now be
applied to the solution of two problems.

Example 1

Design a fault detector with the follow-
ing terminal characteristics. The
appearance of a fault signal f activates
an alarm bell, turns a green light off and
ared light on. The operator turns off the
bell by pressing an acknowledge button
a. When the fault is cleared, the red light
turns off, the green light turns on and
the bell is reactivated to attract the
operator’s attention. The bell is turned

off when the operator presses the’

acknowledge button. Should the fault
clear before the operator has responded,
the circuit is to reset. Also if a fault
reappears before the operator has
responded the green light turns off, the
red light turns on and the bell turns off.
Step 1. See Figs. 15(a) and (b)

Step 2. A suitable state diagram is
shown in Fig. 15(c).

Step 3. The state table corresponding to
Fig. 14(b) is shown in Fig. 14(c).
Applying Caldwell’s merging rules to
the state table in Fig. 14(c), states Sy and
S, can be merged to form state Sy, and
states S, and S; can be merged to form
state S,;. The reduced state table is
shown in Fig. 14(d).

The internal state diagram based on
the reduced state table is shown in Fig.
14(e).

Step 4. By direct reference to Fig. 14(e)

|
i
T

py=0 : Py =1
P2="1 A o11P2=
00 .
A a Yo
10 11
p,=0 P Py=
DQ=O (‘.T 92=1

- Fig. 15. Function required by Example 2

is seen in (a) and (b). State diagram in
(c) provides turn-on and turn-off sets
for use in NAND realization. Circuit is
shown in (d).

the turn-on and turn-off sets are:
Turn-on set of A=af. Turn-off set of
A=af Therefore the NAND circuit
equation for A is

A=af+Adf

A=af+A@+/f)

g=f

r=f

b=fAa+fAa
The corresponding circuit is shown in
Fig. 14(f).

Example 2 ‘

Water is pumped into a water tower by
two pumps p, and p, where p, is an
auxiliary pump used for boosting pur-
poses. Both pumps are to turn on when
the water goes below level 1 and are to
remain on until the water reaches level
2, when pump p, turns off and remains
off until the water is below level I again.
Pump p, remains on until level 3 is
reached when it also turns off and
remains off until the water falls below
level 1 again.

Level sensors are used to provide -

level detection signals as follows:
Signal a=1 when the water is at or
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Py=P2=0 P1=pP2=0 -

(b)

(c)

j B=p, 3__1: D Py
—ﬁ N

B

above level 1, otherwise a=0.
Signal b=1 when the water is at or
above level 2, otherwise b=0.
Signal ¢=1 when the water is at or
above level 3, otherwise c=0.

Develop a sequential logic circuit to
control the pumps p, and p, according
to the specification given above.

Step 1. See Figs. 15(a) and (b)

Step 2. A suitable state diagram is
shown in Fig. 15(c).

Step 3. It is left as an exercise for the
reader to draw the state table and
examine the possibility .of state reduc-
tion.

Step 4. By direct reference to Fig. 15(c)
the turn-on and turn-off sets are:

Turn-on set of A=bB

Turn-off set of A=B +aB

=B+a

Turn-on set of B=aA

Turn-off set of B=cA
Therefore the NAND circuit equations
are: o

A=bB+A(B+a)
=bB+ AaB
B=aA+(¢+A)B
p;=AB
p,=AB+AB
=B
The corresponding circuit is shown in
Fig. 15(d). '

Article 5 of the series will be a
discussion of clock-driven circuits.
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A four-step algorithm for the design
of clock-driven (synchronous)
sequential circuits is described. Rea-
listic circuit constraints are automati-
cally taken into account by the design
process.

The main features to be considered in
the design of clock-driven circuits are
reliably correct functioning, observa-
tion of gate fan-in and fan-out
restrictions and ease of maintenance. It
is desirable that maintenance engineers
should understand the circuit even
though it has undergone simplification
— a process which can obscure its
function. In general the circuits
obtained do not use a minimum
number of gates, but the design effort is
minimal. The design steps are easy to
apply and do not require any specialist
knowledge.

Functionally the essential character-
istic of synchronous sequential circuits
is that their operation is synchronised
with- clock pulses between which no
changes of state can occur.

Clocked flip-flops A

Clock driven circuits depend on the use
of clocked flip-flops, the principal types
of which are described in this section. A
clocked flip-flop is a bistable element in
which the change of the output signal Q
is coincident with either the leading or
trailing edge of a pulse signal, com-
monly referred to as the clock pulse.
There are four basic types of flip-flop.
Toggle or T flip-flop (TFF); SR flip-flop
(SRFF); JK flip-flop (JKFF); D flip-flop
(DFF).

Toggle flip-flop. The flip-flop is repre-
‘sented symbolically by the diagram in
Fig. 1(a). It has no data input terminals
and physically its output “toggles” or
‘changes state with every clock pulse.
The logical behaviour of this flip-flop is
described by the truth table shown in
Fig. 1(b). If the T flip-flop is a modified
master/slave JK flip-flop it will turn-on
when Q=0 and C is changing from 1 to
0, that is on the trailing edge ofthe
C-pulse. Similarly it will turn-off when
Q=1and C is changing from 1 to 0. The
terminal behaviour of this flip-flop is
described by the state diagram shown in
Fig. 1(c).

0
0
2
2
+
Y

o
0

-\

T

———f—

Q 0O O
e
1 1
Q 1
Q o D)
1

Fig. 1. Symbol (a), truth table (b) and
state diagram for a toggle or T-type
flip-flop.

‘SR flip-flop. The sequential equation,

Q=S+RQ, for the SR flip-flop, shown
symbolically in Fig. 2(a), was developed
in Part 3 of this series. An implementa-
tion of an unclocked SR flip-flop, using
NAND gates, is shown in Fig. 2(c), and

this is frequently drawn in the form

shown in Fig. 2(d). A condensed form of
the truth table for this flip-flop, called
the steering table, is shown in Fig. 2(b)
where the entry @ in the S and R
columns means that the input can be
either O or 1.

By means of the simple modification
shown in Fig. 2(e) the SR flip-flop can be
clocked. An examination of this dia-
gram shows that if C=0 the outputs of
g, and g, will always be logical 1
irrespective of the present values of S
and R, or of any changes in these two

inputs. The flip-flop can only change its

output during a clock pulse transition
and, assuming zero gate delay, the
output Q will change state on the
leading edge of a ‘clock pulse, when C is
changing from 0 to 1.

Examination of the steering table or
the circuit shows that a clocked SR
flip-flop is turned on when S=1, R=0,
and C changes from 0to 1. Conversely it
is turned off when S=0, R=1, and C is
changing from 0 to 1. Hence the
terminal behaviour of the flip-flop can

be described with the aid of the state’

diagram shown in Fig. 2(g).

Besides the S, R and C inputs, a
clocked SR flip-flop may have one or
two additional controls which allow it
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Turn-on

Il

to assume one of its two states irres-
pective of whether C=0 or C=1. These
controls are frequently called Clear and
Preset. Most commercially-available
flip-flops are provided with a clear
control, whereas the preset control is
not nearly as common. The operation of
these controls is described by the table
shown in Fig. 2(h) and it should be
observed that in the circuit of Fig. 2(f)
these signals are active when low.

With both controls at logical 1 the
flip-flop is enabled and operates in the
normal way. If R=0 and P=1 the
output Q of g, in Fig. 2(f) becomes
‘Q=1. Hence Q=0, and the flip-flop is
unconditionally reset. If R=1 and P=0
the output Q of g, becomes Q=1, and
the flip-flop is now preset. The inclusion
of these controls leads to a modified
state diagram as shown in Fig. 2(i).

The reader should note that if a preset
facility is required when the P terminal
is not provided it is possible to inter-
change the Q and Q terminals and the
input terminals. The clear terminal can
then be used as a preset control.

Turn-off

JK flip-flop. The symbolic representa-
tion of the JK flip-flop is shown in Fig.
3(a) and the truth table describing its
logical operation in Fig. 3(b). The
operation of this flip-flop differs in one
respect from that of the SR flip-flop in
that it is allowable for J and K to be
simultaneously equal to 1. If J=K=1
the flip-flop “toggles”, that is, in row 7
the flip-flop changes state from 0 to 1,
whilst in row 8 the converse action
takes place. Inrows 4 and 5 normal reset
and set operations take place as
described for the SR flip-ilop in the iast
article.

An examination of the truth table
shows that the flip-flop is turned on in
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Fig. 2. (a) Symbol for the SR flip-flop, whose steering table is at (b), where ® indicates either 0 or 1. The SR can be realized,
in unclocked form, by NAND gates, as in (c) shown rearranged in a more familiar form at (d). A clocked type of SR is seen at
(e) and, with preset and clear, at (f). State diagram for the clocked SR is at (g) and the truth table for P and C can be seen at
(h). At (i) is the state diagram for a clocked SR with P and C controls.
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Fig. 3. The JK flip-flop is shown
symbolically at (a), with its truth table
at (b). That a JK is simply an SR with
two NANDs at the inputs is shown by
(c). State diagram for a clocked JK is
shown at (d) and the steering table at
(e). Clocked JK realised in NAND form
is at (f), in which the single-input gates
are redundant and can be replaced by a
wire.
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rows 5 and 7, whilst it is turned off in
rows 4 and 8. L _
The turn-on set of Q: S=JKQ+JKQ

The turn-off set of Q:R =TKQ +JKQ
Q

These two equations indicate that a JK
flip-flop is in practice an SR flip-flop
preceded by two AND gates which
implement the functions JQ and KQ
respectively, as shown in Fig. 3(c).

The state diagram describing the
terminal behaviour of the flip-flop is
shown in Fig. 3(d). If the flip-flop is in
the state Q=0 with J=1 and C changes
from 0 to 1, it makes a transition to the
state Q=1. Similarly if in the state Q=1
with K=1 and C changes from 0 to 1, it
makes a transition to Q=0.

A steering table for the JK flip-flop is
shown in Fig. 3(e). Comparing the
steering tables of the SR and JK
flip-flops shown in Figs. 2(b) and 3(e)
respectively, it will be observed that the
JK flip-flop has more @ or optional input
conditions and consequently this type
of flip-flop leads to simpler logic when
used in the design of clock-driven
circuits.

A JK flip-flop can be implemented by
connecting the output of the two AND
gates in Fig. 3(c) to the S and R inputs of
the SR flip-flop of Fig. 2(f). Simultan-
eously the Q and Q outputs of this
flip-flop and its clock connections are
fed to the inputs of the two AND gates,
in conjunction with the J and K lines, as
shown in Fig. 3(f). Notice that the AND
gates are formed from two pairs of
NAND gates in cascade, namely g5 and
g, and g¢ and gg Clearly gates g, and g,
and gates g4 and g, provide a double
inversion. These four gates are there-
fore redundant and can be omitted from
the implementation.

The race-around condition. Unfortun-
ately, satisfactory flip-flop operation is
not possible with the circuit shown in
Fig. 3(f), for the following reason. If the

1
c je—— t . —»
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Fig. 4. Illustration of a “race-around”,
where the output oscillates during the
duration of the trigger pulse, t.

outputs of the flip-flop, Q and y, in Fig.
3(f), change before the termination of
the clock pulse the input conditions at
gates g; and gg will also change. For
example if J=K=1 and Q=0, when the
clock pulse is first applied Q changes to
a 1. This change takes place at t=At
after the start of the clock pulse, as
shown in Fig. 4, where At is equal to the
propagation delay through two NAND
gates. Att=J\t, J=K=1,Q=landC=1,
consequently there will now be a
further change in the output to Q=0 at
t =2At. The conclusion is that the output
of Q oscillates between 0 and 1 for the
duration of the clock pulse. Further, at
the end of the clock pulse the value of Q
is indeterminate.

This phenomenon is called the
“race-around” condition. It can be
avoided if t.<At<T. Unfortunately,
with modern integrated circuits
t.>>At and the inequality is not
satisfied. This has led to the develop-
ment of the master/slave or double-
rank flip-flop.

‘Master/slave flip-flop. This consists of

two flip-flops in cascade. The leading
one, called the master, is connected as a
JK flip-flop, whilst the second one, the
slave, is connected as an SR flip-flop.
Clock pulses are used to enable the
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master whilst inverted clock pulses are
used to enable the slave.

A NAND implementation of a mas-
ter/slave flip-flop is shown in Fig. 5.
Examination of this diagram shows that
the master flip-flop changes its state on
the leading edge of a clock pulse. For
example if J=1, Q,,=0 and C is chang-
ing from 0 to 1, then the output state of
the flip-flop changes to Q= 1. Since Q_,
is also the set input of the slave flip-flop,
S=1.

The slave flip-flop is enabled when C
is changing from 0 to 1, that is on the
trailing edge of the clock pulse. If Q;=0,
S=1 and C is changing from 0 to 1 the
output state of the slave changes to
Q.=1. The change which occurred at
the output of the master on the leading
edge of the clock pulse is transferred to
the output of the slave on the trailing
edge of the same clock pulse.

The reader will observe that the slave
output cannot change state until after
the termination of the clock pulse and
consequently the race-around condition
can never occur with this type of
flip-flop.

D flip-flop. The symbolic representation
of a D flip-flop is shown in Fig. 6(a) and
its logical operation is described by the
truth table in Fig. 6(b).
From the truth

Qt+» _ (DQ+DQ),

or: Qz +it=Pt,
The interpretation of this equation is
that the output Q assumes the logical
value of the input at the time of the
clock pulse.

table:

In Fig. 6(c) the terminal behaviour of
the flip-flop is described with the aid of a
state diagram. Assuming that the
flip-flop is of the master/slave type, and
if Q=0,D=1and C changes from 1 to 0,
it makes a transition to Q= 1. Similarly
if the stateis Q=1, D=0 and C changes
from 1 to 0, it makes a transition to

Q=0.

Fig. 5. NAND embodiment of a
master/slave flip-flop.

Qs

Qs

»
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- JK versatility. A JK flip-flop can be
easily converted to a T type by con-
necting the J and K lines to logical 1, as
shown in Fig. 7(a). The flip-flop then
toggles on the receipt of every clock
pulse.

To convert a JK flip-flop to a D type
the J line, besides being connected to
the J input, is also connected to the K
input through an inverter, as seen in
Fig. 7(b). Referring to the truth table for
the JK flip-flop shown in Fig. 3(b), the
only entries valid for the configuration
‘of Fig. 7(b) are those in rows 3,4, 5and 6.
If the column headed J is identified as D
and the column headed K is omitted,
then the entries in these rows are
identical to the entries in the truth table
for the D flip-flop shown in Fig. 6(b).

Design steps
The sequence of four design steps for
clock-driven circuits is as follows:

(1) 1/0 characteristics. In this step a
block diagram is drawn to show the
available input signals and the required
output signals.

(2) Internal characteristics. In the
‘second step the designer specifies the
internal performance of the circuit with
the aid of a state diagram. The inexper-
ienced designer should be primarily
concerned that the specification of the
internal circuit operation is complete
and free of ambiguities.

(3) State reduction, This step is optional
and can be omitted. Its main purpose is
to provide the designer with the means
for reducing the number of internal
states used in step 2, if such a reduction
is possible. To avoid redundant states
this step would be used to reduce the
number of states to some power of 2.
For example, whereas it would be used
to reduce five states to four, it would not
be used to reduce four states to three.

(4) Primitive circuits. In contrast to the .

situation with event-driven circuits, the
design of clocked circuits does not
require that only one secondary signal
may change during a transition
between two states. This is based on the
assumption that all changes of secon-
dary signals take place on the trailing
(or leading) edge of the clock pulse that
initiates them, and of course before the
next clock pulse. _

Having allocated the secondary sig-
nals, the turn-on and turn-off condi-
tions are written down for each of these
signals. For example, in the state
diagram of Fig. 8, _

Turn-onset of A: S, = S X + (§,X)
Turn-off set of A: R, = $;X + (SX)
Turn-on set of B: S; = §;X + S,X
Turn-off set of B: Ry = $;X + SX

Examination of these equations
shows that the turn-on conditions of
secondary signal B, Sy, is the disjunc-
tion (ORing) of the total states which
are necessary for the next clock pulse to

55
c
D t jot+bt _
3 o il
D Q 0 0 0
> 0 1 ¢]
_ 1 0 1 Q=0 Q=1
Q T >
—
o] 1
(a) (b) (c)

Fig. 6. D type flip-flop symbol (a), truth
table (b) and state diagram (c).
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Fig. 7. Illustration of the JK usedasa T
type flip-flop (a) and as a D type (b)

i

»— S,
AB o1
00
>—<| l 4 vil |
1 10
S3 —¢ So

{1

Fig. 8. State diagram for a clock-driven
circuit.

‘cause B to change value from 0 to 1.
Similarly the turn-off condition of
secondary signal B, Ry, is the disjunc-
tion -of the total states which are
necessary to cause B to change value
from 1 to 0.

The expressions for the turn-on and
turn-off conditions of the flip-flops can
be reduced using as optional products
those terms which define “don’t care”
circuit conditions or alternatively pro-
ducts which define total states involved
in transitions in which the signal
concerned does not change its value.
For example when moving from S, to S,
in Fig. 8, signal A retains its value of 1
and its turn-on conditions can be
allowed to arise during this transition.
Hence the turn-on equation for A
consists of the disjunction of a genuine

turn-on condition S;X and an optional
product (S,X). Similarly the turn-off
condition for A consists of the disjunc-
tion of a genuine turn-off condition S;X
and an optional product (SX).

The turn-on and turn-off conditions
derived by the foregoing process define
directly the set and reset signals
respectively for a pair of SR flip-flops.
However the most readily available and
versatile flip-flop is the JK type. As this
is used extensively it is worthwhile
recalling the relationships derived
earlier in this article between S and J,
and R and K respectively. They are:

Sq = JQand R, = KQ
Clearly the expressions for J and K can
be obtained from the expressions for S
and R by dropping Q and Q respectively.
This is a very useful result and the
reader is advised to make a note of it.

The design procedure described
above will be illustrated in the next
article with the aid of a series of exam-
dles.
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Examples of clock-driven circuits

by B. Holdsworth™ and D. Zissost

*Chelsea College, University of London
1Dept. of Computing Science, University of Calgary, Canada

Some examples of the design of clock-
driven circuits using the techniques set
out in the last article can now be
considered.

Example 1. Paper Tape Reader
Design a circuit that will stop the paper
tape reader, shown in Fig. 9(a), by
turning signal m off when the character
sequence 4-5-6 is detected, and at the
same time generates a buzzer signal b.

A synchronizing pulse is generated by
the reader each time a new character is
output.

(1) 1/0 characteristics. See Fig. 9(a)

(2) Internal characteristics. A suitable
state diagram is shown in Fig. 9(b)

(3) State reduction. The state table
corresponding to Fig. 9(b) is shown in
Fig. 9(c). Examination of this table
shows that merging of rows is not
possible.

(4) Primitive circuits. Suitable binary:
codes are allocated on the state
diagram. By direct reference to this

Wireless World, July 1977

diagram the input equations to the JK
flip-flops are obtained.

Sa =S5+ (S:6)

where the term in brackets is an
optional product.

S, = AB5 + (AB6)

‘The optional product cannot be used for

reduction purposes.
Hence, S, = AB5and J, = B5
R, = SA + SA6 + (So)
=S,6 + (Sp
= AB6 + (AB)

The optional product cannot be used for
reduction purposes.

Hence, R, = AB6and K, = B6

Sp =S¢ + (S4) + (5,5) + (§A)

= AB4 + (AB4) + (AB5) +
(AB4) :

The optional product (AB4) need not be
used for simplification purposes since B
will be eliminated when converting’
from Sg to Jg.
Hence, Sy = AB4 and J; = A4

Rp =S40 + S,46 + S;6 +Sd)

S5 + S A + (Sd)

= AB45 + ABZ + (AB9)

B45 + AB4 + (AB9)

The optionél product cannot be used for
simplification purposes, hence

L

Ry =B45 + ABdandK; =45 + A
The circuit is shown in Fig. 9(d).

Example 2. One-shot circuit ‘
High-frequency clock pulses are fed to
terminal X in Fig. 10(a). Design a circuit

Fig. 9. Circuit of Example 1 is shown at
(a). Its state diagram is at (b) and its
state table at (c). The resulting circuit
is shown at (d).

20
o1 =T
4-channel Tape > Binary to S Logic
Pap‘;r‘atnanpee recorder 22> g:;gg:rl, 67 circuit b
23 >
mA Sync pulse A
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b=0 F T - b=0 A
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so that each activation of a manual
switch m allows one complete clock’
-pulse output on line Z. The duration of
signal m can be assumed to be greater
than the pulse width.

(1) 170 characteristics. These are shown
in the time diagrams of Fig. 10(b).

(2) Internal characteristics. A suitable
state diagram is shown in Fig. 10(c).

(3) State reduction. It is left as an
exercise for the reader to construct the
state table and examine the possibility
of state reduction.
(4) Primitive circuit, By direct reference
to the state diagram the following
turn-on and turn-off equations are
obtained.
Ss = S¢m = ABm. Therefore J, = Bm.
Ro=S; +S; + (Sp + (Sgm)
= AB + AB + (AB) + (ABm)
= A. Therefore, K, = 1.

Sg =S, + (S,;m) = AB + (ABm)

= AB.
Therefore J; = A,
Rp = S,m + S; + (Sp
= ABm + AB + (AB) _
= Bm + AB. Therefore Kz = m + A.

Z = $X = ABX

The circuit implementation of these
equation is shown in Fig. 10(d).

Example 3. Pulse distributor

Signal X in Fig. 11(a) is a pulse train.
The input pulses are to appear at the
output terminals as shown in Fig. 11(b).

continued on p.74

e
T

(d)

S3

(c)

Fig. 10. Problem of Example 2, (a) and the required timing at (b). The state
diagram is seen at (c) and the circuit realization is shown at (d).
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diagram (c) and state table (d) result in the circuit shown at (e).
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Designing synchronous and asynchronous counters

by B. Holdsworth™ and D. Zissost

*Chelsea College, University of London tDept. of Computing Science, University of Calgary, Canada.

Counters are cyclic sequential
circuits which return to their initial
state after a specified number of
changes in the input state. The output
of a counter in its specified code gives
the number of changes of the input
signal or the number of input puises
received since the circuit was last in
its initial state. Counters are being
used extensively in industrial plants
for such functions as controlling the
position of a machine tool or for
packing a specified number of items
in a box. They are also used in
laboratory environments for such
functions as counting frequency,
recording time, speed and accelera-
tion. ’

Codes

The most commonly used codes in
electronic counters are:

@ True binary (8-4-2-1) code,

@ Gray codes,

® B.cd. codesand

® Ordered codes, for example the
excess-3 (XS-3).,

The true binary code, often referred
to simply as the “binary code”
is the simplest because each digit is
represented in a conventional binary
system. Gray codes are those in which
adjacent numbers differ in one bit only,
eliminating races which arise when two
or more bits attempt to change simul-
taneously. The true binary code is
shown in Table 1, for four binary digits.

If all the sixteen combinations in the
sequence in Table 1 are used, the
counter is called a maximum-length
counter; if, on the other hand, only the
first ten combinations are used the
counter is called a scale-of-ten counter.

A Gray code in which only one digit
changes at a time is called a single-step
code, the best known one being the
reflected binary code. This code is
tabulated in Tables 2(a) and 2(b) for
both three and four binary digits.
Examination of Table 2(a) shows that
reflection of the three least significant
digits takes place about the centre line
of the code. All those combinations
above the centre line have a most

significant digit of 0 whilst those below
have a most significant digit of 1.
Similar comments can be made about
the three-digit code except that, in this
case, reflection of the two least signifi-
cant digits takes place.

The sequence of the 4-bit reflected
binary code is shown plotted on a

Karnaugh map in Fig. 1(a). The plot
shows that, as the code proceeds from
one combination to the next, only one
cell boundary is crossed. It is clear that
any single-step Gray code can be deve-
loped immediately from a Karnaugh
map by tracing a single step path
through the map as shown in Fig. 1(b).
The code sequence for this example is

d|DjC|B|A shown in Fig. 1(c).
dec| 8| 4 {21 In b.c.d. (binary-coded-decimal)
ololololo codes, each of the ten decimal digits 0 to
slololols 9, is represented by a binary code,
frequently the 8-4-2-1 code. For example
21010110 the b.c.d. (8-4-2-1) representation of 456
310|011 is 0100, 0101, 0110. B.c.d. codes provide a
410|11]|0]|0 useful link between the counting
510|101 systems used by digital machines and
siol1l11]0 those used by human beings.
71001111 The codes tabulated in Tables 3(a)
sl1lololo and 3(b) are examples of weighted b.c.d.
sl1l0]ol1 codes. . .
In a weighted code a weight W, is
011101110 assigned to the jt" binary digit. For
"o example, for the 8-4-2-1 code combina-
|1l1/0]|0| |‘lomensdos tion 1001, W, = 8, W, = 4, W, = 2and
irfifor| [nEEE wi=1
1“l11]1]0 Hence,
BI111]1(1
j=4
‘Table 1. True binary code, with unused Zaec = 2»,'=YVJSJ
combinations for decade counters.
dD|C|BJA d{C|BIA
0{0|0|0O|0 0|/O|0O|O
1101001 10|01
201011 2011 T '
alolol1lo Q_ slol1]o0 Reflection
401110 41111]0
51011111 5111111
610|101 T 6|1(0[1
G 7{011]10]0O Reflection 71110l 0
g8|111]0]|0 l
g|111]0]|1
w1111 1141
1M 1111110
120101110
131701111
14/ 110101
15/1]010]0

Table 2. Four-bit reflected binary (a) and three-bit (B) reflected binary code.
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d[D|C|B|A d CiB|A
oj2/4t2(1 514|211
ol0|0|0O|O o{0|0|0}{0
107001 110|001
20101110 2101011 |0
310101111 3{01011 11
4(0[1]0][0 410111010
51110111 5{1]0|01!0
61111100 6({1[010]1
711111011 711{0]1|0O
81111110 8({1]0111(1
911111141 91111]010

“Table 3. Weighted codes. 2-4-2-1 code is at

('a) while (b) shows 5-4-2-1 code.

where S, is the value of the j** binary
digit, and

Zaee=1X8+0X4+0X2+1x1=9,

The various code combinations in the
2-4-2-1 and the 5-4-2-1 codes can be
evaluated in a similar manner.

In an ordered code, the various
combinations are assigned to the differ-
ent decimal digits by means of a
mathematical equation. An example of
this is the XS-3 code. For this code

j=4

Zgee=2 yv].sj —3, where
=
W,=8,W;=4,W,=2, W, =1.

Hence, the code combination 0100=(0
X8+1X4+0X2+0Xx1)-3=1.
The XS3 code is shown tabulated in
Table 4.

Codes can be made error-detecting by
the addition of extra bits, called parity
bits. In Table 5(a) the 84-2-1 code has
an additional bit in the column headed p
which establishes odd parity in each
code combination, i.e., each code com-
bination contains an odd number of 1’s.
Similarly in Table 5(b) a parity bit has
been added to the same code which, in
this instance, establishes even parity for
each code combination. Detection
equipment is now required at the
receiving end which, in the case of odd
parity, is used to determine whether
each code combination has an odd
number of 1's.

dip|clBlaA

o|lo|O|0O}0O

10101011

BA BA 210101111
i 5

9 -t
?o{ o1 ' sf1]1(1]1
“1'¢,_,,| 11 - - 7|1]1]0]1
i
- 10 slol1}olo

Fig. 1. Karnaugh plots of reflected
binary (a) and Gray code (b).
Tabulation of Gray code is at (¢).

45
d|D|C|B|A d|D|C|BjA|pP diD[C[B{A|p
01001 (1 oflo]|o]0]0O]1 olOlO[O|0O|O
110{1101{0 11010101110 1 (0101011
2({0(110{1] 201011100 2/0]0O|1]0}1
310111110 310 (0 {1]1}1 |3]0]0{1]|110
410011111 41011101010 410111001
5/11010]|0 51011101111 51011101130
6(1/0]|0}1 6{0{111101(1 sl0O{111{0{0
711101110 7{0{111]111]0 7101111111
8(11011]|1 8{1/0|/0|0]|0 g8{1|/0/0101}1
91111100 91101011 9/110[0|1]0

Table 4. Excess-3 code (XS-3).

Codes can also be made error-cor-
recting by the addition of extra bits
whose function is to detect an error and
its position. The most important codes
of this kind are the Hamming codes, in
which the bit positions are numbered in
sequence from left to right. Those

positions numbered as a power of 2 are-

reserved for parity check bits, whilst the
remaining positions are used for the
information bits.

For a seven bit code combination:

1 2 3 45 6 7
JP1 P2 X3 Py X5 Xg Xy
p1» P;and p,are the parity bits and x,, x5,
Xg and x, are the information bits. The
parity bits are obtained from the
information bits as follows:

p, is selected to establish even parity
over bits 1,3, 5and 7

p, is selected to establish even parity
overbits 2,3,6and 7

‘P4 is selected to establish even parity
over bits 4, 5, 6.and 7
The Hamming code combinations for
the natural nb.c.d. code are shown
below in Table 6.

The correction process for this code is
carried out on the assumption that only
one bit is in error and that it is only
necessary to locate that bit. This is
achieved by checking for odd parity
over the same three code combinations
for which even parity was established at
the transmitting end. The check is
carried out with the aid of the exclusi-
ve—OR function.

For the exclusive—OR function
A@B=AB+AB and hence

Tgble 5. Parity. 8-4-2-1 code at (a) has extra
bit to give odd parity and that at (b) has
even parity.

d | P1| P2{Cs Py [26s]Ce 07
o [0|O0;0}0|0J0O]|0O
1711111011101 0]1
2011101110110
311{01010101111
4 11{0[0{1[1;0Il0
501101011101 1
6/111/0/0[1{1|0
7100101111111
8|11111]1010|0{0
91QiO0{11110(0!1

Table 6. Hamming combinations for n.b.c.d.
code.

0o=0
06h1=1
1 o=1
1®1=0
The above tabulation shows that the
value of the exclusive-OR function is 1
when either A or B are 1, and is 0 when
both A and B are either 0 or 1. In other
words the value of the exclusive-OR
function is 1 when odd parity exists.
The check functions are: .
C=P;'@DX; DX DX,
C:=P: DX DX D xy
Cs=DPs DX DXe DXy
If ¢, =1 there must be an error in p,, x,,
X5 Oor X;. The bit in error, E, may be
obtained from the table below

0O 0 0 0 1t 1 1 1.

Cq

02070110011

¢, 01 0 1 0 1 0 1

E 0 1 273 45 6 7
For example, suppose the code combin-
ation received is 1101101. Then c,=1,
¢,=0 and c,=1. Hence the 5 bit is in
error and the code combination should
read 1101001,

Synchronous counters

The design steps for synchronous
counters are (1) draw a state diagram,
(2) code the states with the selected
counting code, and (3) derive the input
equations for the counter flip-flops.
Binary counters (maximum length). For
the sake of consistency, variable A is
assigned to the 2° bit, B to the 2' bit, C’
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to the 22 bit and so on. In deriving the
general form of maximum-length bin-
ary counters, use will be made of the
. fact that the addition of higher order
counting stages does not affect the
lower order counting stages. This, of
course, is also the case in conventional
decimal counts — for example, the
“units” and “tens” of a car odometer
change at the end of every one and ten
miles travelled, irrespective of the
number of stages in the odometer.
Scale-of-2 ‘up’ counter. Figure 2(a)
shows the state diagram and codes.

The flip-flop equations are:

~- S,=5,=A, therefore, J ,=1

Ry=S,=A, therefore, K, =1
The corresponding circuit is shown in
Fig. 2(b)

Scale-of-4 ‘up’ counter. J,=K, =1, as
for a scale-of-2 counter. The state
diagram and codes are in Fig. 3(a). The
flip-flop equations are:
Sp=S,+(S,)=AB, therefore, J;=A
Rp=8;+(S;)=AB, therefore, Ky=A
The corresponding circuit is shown in
Fig. 3(b).

Scale-of-8 ‘up’ counter. J,=K,=1 and
Jy=Kg=A, as for the scale-of-4 counter.
The state diagram and codes are in Fig.
4(a) and the flip-flop equations are;
Sc=8;3+(5,)+(5;+(Sg) =ABC, there-
fore, Jc=AB

Ro=S;+(Sy) +(S)) +(S,)=ABC, there-
fore, Ko.=AB

The corresponding circuit is shown in
Fig. 4(b).

Scale-of-2" ‘up’ counter. By observa-
tion, the flip-flop equations are;
Jo=K,=1

Jg=Kg=A

Jc=Kc=AB=BJ;

Jp=K,=ABC=CJ.
Jg=K=ABCD=DJ and so on.

If speed is essential, large input gates -
must be used to implement directly the
functions in the third column.

-I__L.
ABC :

So| 000 < M |S,

Sy | 110 > 001 (S,

(a)

Fig. 4. State diagram (a) and circuit (b)
of three-stage (scale-of-eight) counter.

e
s

20
So A=0
1 |A
— A
 J
n oo .
—>Ky
Sy A=1 ]
c

(@) (b)

Fig. 2. State diagram for one-stage
(scale-of-two) counter (a) and its
circuit realization (b).
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21
_LE
B
>
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Fig. 3. Two-stage (scale-of-four)
counter state diagram and codes (a)
and circuit embodiment (b).
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Synchronous ‘down’ binary counters
(maximum length) can be designed in
precisely the same manner and the
following flip-flop equations are
obtained.

Ja=K,=1

Jg=Kp=A_ _
Je=Kc=AB=BJ;
J5=Kp=ABC=ClJ.and so on

Note that in the case of binary
counters it is possible to use an ‘up’
counter to count down by utilizing the
complementary flip-flop outputs as
shown in Table 7.

dlc|Bja|d|C|B|A
clolololz]1]1]1
1|o|lol1isl1]1]0
2(ol1]0]s|1|0f1
3loj1]1(4(1|0]j0
4111003101111
5(1]0[1}12;0(1}0
s|1/1]|o0|1]ololn
71111 ]1]oj0Oj0O}0

Table 7. Using the complementary outputs
of a chain of flip-flops to count down.

The next part of this article will continue
the treatment of counters, going on to
discuss Gray code types, up-down
counters and their control and ripple-
through counters.

20 2! 2?2
1 C
—>Ja A » Jg > Je
1 > > —-—->E
KA > KB > KC
[\ Y A
C

\ 4

(b)
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Design with m.s.i. — multiplexers and demultiplexers

by B. Holdsworth® and D. Zissost

“Chelsea College, University of London 1Dept. of Computing Science, University of Calgary, Canada

The introduction of m.s.i. circuits is
tending to result in the replacement of
the old methods of logic design.
Traditionally, the design engineer has
developed a logic function as the solution
to a particular problem. This function has
then been minimized using the methods
described earlier in this series and has
been implemented using s.s.i. circuits.
However when implementing logic
functions with m.s.i. circuits such as the
multiplexer, the Boolean function is used
in its'canonical form (i.e. each term in the
Boolean function contains all the
variables in the true or complemented
form), and is implemented directly
without minimization.

THE cosT of a digital system is
approximately proportional to the
number of i.cs in the system, hence, to
reduce the cost, the number of packages
used should be minimized. The logic
designer should therefore be looking for
the replacement of a large number of
s.s.i. circuits by one or more m.s.i.
packages. It is frequently better to use a
standard m.s.i. package even if this
introduces redundant or unused gates
rather than to design with s.s.i. circuits.

Data selector or multiplexer

The multiplexer selects one out of n
lines where n is usually 4, 8 or 16. A
block diagram of a data selector having
4 input lines, D,, D,, D, and D, and 2
output lines f and T is shown in Fig. 1(a).
The device also has 2 control lines X and
Y and may have an “enable” line E. The
selector may be regarded as a single-
pole switch which selects 1 out of 4 lines
as shown in Fig. 1(b). The implementa-
tion of the multiplexer using gates is
shown in Fig. 1(c).

In essence the circuit is an AND-OR-

INVERT gate having complementary
outputs. The Boolean function which
represents the output of this circuit is:
f=XYD,+XYD, +X¥D,+XYD,.
Data lines can be selected by applying
the appropriate binary coded signal to
the control lines X and Y: when the
control signal XY =1 the output of the
circuit is D,, and so on. Some multi-
plexers are provided with an input en-
able line as shown in Fig. 1(c). When the
input to this line is logical 0 the tfour
AND gates are enabled.

The number of data lines to be
selected can be increased either by

choosing a multiplexer with a larger
number of data lines or alternatively by
combining multiplexers. A combination
of two data-selectors, which allows the
selection of 1 out of 8 lines, is shown in
Fig. 2, the enable signal in this case

being used as an additional control
signal. The data lines are sequentially
selected with the aid of a binary
counter, the control signals X and Y
being clocked through the sequence 00,
01, 10 and 11, thus accessing the data

E
Dy——> f
Dy—>
D =————> -
————
Do——>

XK1
Ll

(a)

Dy————0
Dm0
by——o0
Dg——™ O
(b)

)
——————— >
—
Dy 7
f
Dy
Do
Fig. 1. Symbols for 4-input
multiplexer (a) and its
mechanical equivalent (b).
y y (c Circuit at (c) is multiplexer
— ® ) usitng AND, NOR and inverter
£ X v gates.
E {>C
Daa——> Ea Dig—> FB
Dop——> Ma | fa Dog— Ma fattn
Dia————» Dig————>
Dop———>| Dog————>
] ] T ]
Clock Binary
“1Counter

Fig. 2. Multiplexers can be combined to provide more inputs.
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lines in the order D, D|, —D;. A truth
table for the circuit is shown in Table 1.
This principle can be extended to allow DEF Table 1
the selection of alarger number of data : E A B E E
i i A ta
lines. For example, the selection of 1 out D . 0 6 0 0 1
of 64 lines can be achieved using nine YU 0 0 1 0 10 m
8-input multiplexers, as shown in Fig. 3, Bz————> 0 1 0 O 1({ inhibited
arranged in two levels of multiplexing. 3T o 1 1 0 1
An alternative way of looking at the 8‘;___, ! 1.0 0 1 O
multiplexer is to regard it as a device Dg ————>| 10 1 1 0\ M,
which converts parallel information D7 ——> T 1 0 1 O inhibited
into serial information. For example, in DEF t1r 1.1 0
the arrangement shown in Fig. 2(a), the l l l
two multiplexers M, and My can be
presented with an 8-bit word on the 8 BB
input lines in parallel form, and this can D%——
be taken off in serial form by using the 811 M.,
sequential accessing techmqu-e. DE | X ABC
14 1)
Multiplexer as logic function Dis v l l l
generator . _ ' _ Do
The equation for a multiplexer having —— »D1
four input lines is: 82 10t64
f=ABD,+ABD, + AED, + ABD,, Do Ms f—p
. DEF 4 inputs
where the Boolean variables A and B are Ds
used as the signals for the control lines — B?
‘X and Y. Hence A and B can be factored D !
out of any function of n variables, and S — I
the residue functions of n 2 variables Dsg——» '
can then be applied to the data lines. For ng_—"j Mg -
. . . Q>
example if n=3, four signals of one Dgy ————> ) o )
variable can be applied to each of the Dgo——» Fig. 3. Combination of multiplexers to
data lines. Assuming that the third Ds3 ’ select 1 from 64 inputs.
variable is C the possible signals that
can be applied to these lines are C, C, 0
and 1. In all there are 4* =256 possible ABC ABC ABC
combinations of four input signals 0 Ot 1 10 00 01 110 C0 01 110
which can be applied to the 4-input iG] ) opo | Ch )| ©d JIalialial
lines; a multiplexer with 4 input lines 1 ) ST 5 5 T U U U
can generate any of the 256 possible 2 3 ’ p=c D G— !
Boolean functions of 3 variables. (a) (b) (c)
For the 4-input multiplexer there are
three possible choices for the control Fig. 4. Association of data lines with control signals for 4-input multiplexer.
variables — AB, AC and BC. These Control variables are A and B in (a), A and C in (b) and B and C in (¢).
various combinations of the control
variables can be associated with in-
dividual data lines as indicated in Fig. 4. NBC c
For example, with control variables A 00 01 11 10 Do=C I
and B, the input line D, is associated 0 O1AID| D=1 Q 5 f
with those cells marked A=0 and B=0, 1 o D2=0 1Ly M
that is the two top left-hand cells on the D3=C c
K-map of Fig. 4(a). In effect, the K-map >
for 3-variables has now been split into (a) (b) T T
four 2-cell, 1-variable K-maps, each of Al B
these 2-cell maps being associated with - _ _ s
a data line. Fig. 5. Generation of f= ABC + ABC + ABC+ ABC using a 4-input multiplexer.

Fig. 6. Generation of f = 0,1,5,6,7,9,10,14,15. Association of data lines with
variable A and B is seen at (a) and the Karnaugh map is at (b). The
diagram at (c) is the implementation.

CD s} C —»
AB o AB o
o0 1 1 WO Q0 _Ol 11 10 D —— C 3

00[( go ] ool (0D Co+cD

ot P 01 GO n C—> | ;
= D —> >D >

" 03 D 11 D) = C+D M —

1ol O ) 10 @ ®  p— S
(a) (b) = B
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Example 1. Implement the 3-variable
function

f=ABC+ABC+ABC+ ABC
using a 4-input multiplexer.

Plot the function on a K-map as
shown in Fig. 5(a) and make an arbi-
trary choice of control variables, say A
and B. Next simplify the four 1-variable
functions associated with each data
line. For example, the two cells
associated with D, are both marked
with a 1, hence the input to data line D,
is C+C=1. The remaining inputs are
determined in the same manner and the
implementation of the function is
shown in Fig. 5(b).

Example 2 Implement the 4-variable
function

£=120,156,79,10,14,15
using a 4-input multiplexer.

The function has been represented as
the sum of a number of canonical terms,
each term being represented as a de-
cimal number. For example the term
ABCD, represented in binary, is0110=6
in decimal.

Since a 4-input multiplexer is to be
used, the application of two variables to
its control lines will leave residue func-
tions of two variables to be applied to
the data lines. There are six possible
ways of choosing the control variables
— AB, AC, AD, BC, BD, and CD. These
various combinations of control vari-
ables can be associated with the data
lines as indicated previously in Fig. 4. It
will be assumed in this example that A
and B are chosen as the control vari-
ables and the K-map associating these
control variables with the data lines is
shown in Fig. 6(a). The 4-variable K-
map has now been divided into four
4-cell, 2-variable maps and simplifica-
tion can only take place within the
confines of the 2-variable maps.

The K-map plot of the function is
shown in Fig. 6(b) and the data line

a9

inputs obtained from the four rows of Table 2. Determination of the inputs to -

this map are: ‘the 1st level multiplexer.
D,=C address AB _

D,=C+D address AB

D,=CD+CD address AB ... DE_ DE DE Ot
D, =C address AB f i"lA%%%EE ABC ARG
The implementation of the function is === e
R +ABCDE ABC
shown in Fig, 6(c). . o +ABCDE ABT _

It should be pointed out that it is +ABCDE ABC _
useful to examine the various possible +ABCDE ABC
choices of control variables to ascertain +ABCDE  ABC _
whether there is a simpler solution. In +ABCDE ABC _
this case it is left to the reader to show +ABCDE _ ABC
that a simpler solution is obtained if C +ABCDE  ABC  _
and D are chosen as control variables. +:ggg§ ABC -

As the number of variables associated : ABCDE ABC ABC
with the Boolean function to be imple- +ABCDE ABT
mented increases, it becomes necessary +ABCDE ABC
to use more than one level of multi-
plexing and this technique is illustrated
in the next example.

A BC A —>
o0 01 11 10 A e
> . ABC+ABC+ABC+ABC
0 M
ol 10 @ o s
1 —
A
TB C
A BC A
00 01 11 10 A—>p M /_\BC+A§C+AB§
3
0 A= My _;
1 O) @ o >
TB c 1
D IE
ABC A—>
00 01 11 10 A—> v
ol® @ A—>{ ° |RBC-ABC+ABCHABC
1 OO A—>
a
@) TB Tc (b)
Fig. 7. Five-variable multiplexer circuit to produce the function of example 3.

Fig. 8. Symbol for 4-16 demultiplexer is
shown at (a), with the logic diagram of
a 4-10 decoder at (b).
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8 7 6 5 4 3 2 1 0
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Example 3. Implement the 5-variable

function
f=20,1,3,89,11,12,13,14,20,21,22,23,26,31

For the first level of multiplexing the
control variables D and E have been
arbitrarily chosen. The function is now
listed at the left-hand side of Table 2,
which contains four columns headed
DE, DE, DE and DE respectively. In the
column headed DE are listed all those
terms of three variables A, B, and C
which are associated with DE. For
example, in the case of the term ABCDE
the entry in the DE column will be-ABC.
This procedure is repeated for each term
in the 5-variable function and an entry
is made in the appropriate column in
each case.

The input functions for the first ievel
multiplexer are now seen to be:

D,,=ABC +ABC+ABC+ ABC

D,,=ABC+ABC+ABC+ABC

D, =ABC+ABC+ABC

D, =ABC+ABTC+ABC+ ABC
These three variable functions can be
generated with 4-input multiplexers, as.
described in example 1, at the second
level of multiplexing. However it should
be noticed that Dy, =D,, and this func-
tion need only be generated once, hence
only three second level multiplexers are
required.

For the second level of multiplexing B
and C have been chosen as the control
variables. The K-maps for determining
the inputs to the data lines for the
second level multiplexers are shown in
Fig. 7(a) and from these maps the
various input signalis are found to be:

Dp=A Dy=0 Dy=A '
D;;=A Djz=A D,,=A
Dy_ A D,=A Dy=A
D32=A D33=-A Dy=A
The implementation of the function is
shown in Fig. 7(b).

'Decoders or Demultiplexers

A decoder or demultiplexér performs
the opposite function to that of a multi-
plexer. A block diagram of the device is
shown in Fig. 8(a). A single data input
line can be connected to one of many
output lines by the appropriate choice
of signal on the control lines. With 4
control lines A, B, C, and D there are
sixteen possible addresses and hence
the maximum number of output lines
that can be selected is sixteen.

A commonly used decoder has 4 input
lines and 10 output lines. The logic
diagram for this device is shown in Fig.
8(b).IfA=0,B=0,C=0and D= 0,the
output line marked 0 will be at logical 0
whilst all the other outputs will be at
logical 1.

The device illustrated in Fig. 8(b) can
be used as a decoder, but in a 4-to-16 line
demultiplexer there are additionally en-
able and data lines as shown in Fig. 8(a).
These are connected to the sixteen out-
put gates via the circuit shown in Fig. 9

which is in effect a NOR gate. This input
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> —>
00—

O—>p
oO—>|
a
| o

«i

Fig. 9. Input data and enable arrangements.

I =
‘—--P;O 5 Pa—> p
P = ) l>
——»F2 Pe—>
.—..)53 ﬁO?‘——"
4-to-10—>Ps B, o
e —>Ps - —
ecoderf— 35 =
Po——>
—>P7 T F— R
——>Pg P4
[—p, _ Po—>

Fig 10. Natural binary-coded decimal to Lorenz converter.

arrangement allows of two modes of
operation. In the first mode, if E = O &
D,=0, K=1, thus enabling all output
gates. For any other values of E & D,,
K =0, thus disabling all output gates.

In this mode the 4-t0-16 line demulti-
plexer will act as a decoder allowing, for
example, a b.c.d. input on lines A. B. C
and D to be converted to a decimal
output. Alternatively the circuit can be
operated as a generator of the sixteen
canonical terms of four Boolean vari-
ables. If P;= ABCD is the input to the
control lines then the output on line 3 =
P,.
In the second mode E=0, D,=0,
hence K=1. Control signal P,=ABCD.
The output on line2=0=D,.

. E=0, D,=1, hence K=0. Control
signal P,=ABCD. The output on line
2=1=D,.

In this mode the data on the data line
is transferred to the output gate

‘'selected by the address applied to the

control lines, in this case ABCD.
Example 4 Using a 4-to-10 line decoder-
develop a circuit for converting n.b.c.d.
to the Lorenz code.

The two codes are tabulated
alongside each other in Table 3.

NBCD Lorenz -

A B C D P Q R S T
pp O O O O 1 0 O 1 1
P, OO0 O 1 1 0 1 0 1
P, 00 1 0 1 1 0 0 1
P, 0O 01 1 0 O0 1 1 1
P, O O 0O O 1 0 .1 1
P, O1 0 1 0 1 1t O 1
P O 1 1 0 0 1 1 1 0
P, 01 1 1 1 0 1 1 0
P¢ 1 O 0 O 1 1t 0 1 O
P t OO 1T 1 1 1 0 O

From the tabulation:
P=Py+P;+P,+ P, + P+ P,
Q=P2+P4+P5+ P6+P8+P9
R=P;+P;+P;+P;+P;+ P,
S=Py+P;+P,+Ps+P;+ Py
T+Py+P,+P,+P;+P-,+P;

Now P=P;+P,+ P;+ P,

Hence P=P;+P,+ P;+ P
andP=P, P, B, P,

Similarly Q=P,P,P,P.
R=BRPF,

§ = PX Pz PST).Q
T=P;P,P;P,

|

The implementation of the code con-
verter is shown in Fig. 10. ’

The technique used in this example is
useful where there are many functions
of the same number of variables to,be
implemented. In comparison the multi-
plexer requires less additional gating,
but one multiplexer at least is required
to implement each function.

The second part of this article will
deal with the applications of read-only
memories.
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Logic design — 12
M.s.i. — applications of read-only memories

by B. Holdsworth” and D. Zissost *Chelsea College, University of London
+Dept. of Computing Science, University of Calgary, Canada

Z1

This is the second part of the article on
applications of medium-scale integrated
logic circuits. The first part was a

Z2

) A

discussion of the use of multiplexers and
decoders, and the article now continues

with a look at the use of read-only
memories as function generators.

Z3

A A

Read only memories

Za

100

THE CIRCUIT shown in Fig. 11 is that of
a 64-bit r.o.m. organised as 8 words of

Zs

Zg

8 bits each. It consists of a 3-bit address
decoder, a 64-bit memory, and 8 output

buffers. An enable input, when at logical
0, enables all the gates in the address

Z7

decoder. The vertical lines in the
memory section are called word lines
and the horizontal ones bit lines.
Words are programmed into the
r.o.m. at each address and the output on

=N
L/
N
L/
=)
~
L/
[
L/
<Y

the bit line depends on whether it is
connected to the addressed word line or

TYYYY

not, the connexion being made by the
presence of an m.o.s. or bipolar transis-

tor, depending upon which technology

is used. If connected, the bit line is
raised to a logical 1 and if not it remains
at logical 0. In this way the word pro-
grammed at the selected address is
transferred to the output.

A schematic way of representing a - ) <
programmed 64-bit r.o.m. is shown in
Fig. 12, where at those intersections
of bit lines and word lines marked by a
dot there is an OR input for the output A B C
function. For example, the output at Z,
is Py+P;5+P,. Hence ther.o.m. shown in

Fig. 12 is being used to generate eight Word Lines Fig. 11. 64-bit
3-variable functions, each of which is o r.o.m. with ad-
expressed in canonical form. Po=ABC Z8=PotPs+P7 dress decoder
If a customer wishes to realise the = P1=ABC 27 =P2+Ps and enable input.
functions shown in Fig. 12 he must P2=ABC Zs=Ps No intersections
supply the manufacturer with either a P3vABC £ 25 =Po+P2+P3+Pa+P7 are programmed.
connexion matrix, such as the one P=ABC - 24 =Po+P1+Ps+P7
shown in that diagram, or a truth table, Ps=ABC © 73 =P2+P3+P4+Ps+P7
as shown in Table 1. Alternatively, the Pe=ARC 72 =Fo+P7
customer may have his own program- P7=ABC Z1=Po+P2+P3+Ps
‘ming facilities and in those circum-
stances he would purchase a program- {a) Po Py P2 P3 P4 PsPs P7 Table 1
mable read only memory (p.r.0.m.). Fig. 12. Connexion matrix for a 64-bit Address Output functions
Addressing. The connexion matrix r.om. at and the equivalent truth table A B C 2z,2,2, 2, 2. 2, 2, Z
. f . ; in Table 1. 1 22 43 24 I3 24 2, 2,
shown in Fig. 13(a).is for a two 8-bit
word r.o.m. addressed in one dimension '8 8 ? (1} (1) 8 } ; 8 g 3
only. The total capacity of the r.om. is 0 1 01 0 1 0 1 0 1 O
16 bits and the Boolean functions 0ot 1 1 0 1t 0 1 0 0 O
generated by it are: : 8 ? ‘1’ 8 (‘) ? (1) ‘1’ ? ?
Z,=P,+Ps+P; 1100 0 1 000 0 0
and Z,=P;+P,+P;+P; 1t 1t 1 0 1 1 1 1t 0 0 1
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ABC - AB
Po AB 00
P, AB 01
Fa AB 10
Pa AB 1
P4 C
Ps C—o l o0l o1 10 11
Ps I Y VYVV¥Y l y A 4 < 4 ~input
Py ;
v v \ D multiplexer
Z4 Z3
(a)
Z=Po+Ps+P13+P1s
(b (c)
Z1 22
Table 2.
Present State Qutput Word Present State Output Word
A BCXABCZABGCXATGBTC2Z
000100000100 T1 10
000100100011 1010
10001 10001100100
1001110001 111110
110001 00610101110
1101 010010111110
01 0000O0O0OTI11T 110000 1
01010000111 10001
Table 3
Present State Output Word
A B C X P A B Cug,arg,ar,
000 O0OdO 100100 0 1
000 1dO0COOGC T OOO0O0 1
0t 00 d 01 00100 01
? : 8 ! é 1, , 8 8 g : 8 8 1 Fig. 15. Block diagram from problem of
1 1 0011117001100 Example 5 at (a) qnd state diagram at
110 i d 1 1006010 0 1 (b). State table is in Table 2 and
! 1{ ! (1‘ g 8 ! ; g 8 ; é ? 8 connexion matrix for 64-bit r.o.m. is at
- 1' 1 ‘1 1 ; 100110 0 (c). R.o.m. implementation is shown in
01 10do0O0100 100 1 d).w
11 1tdo0o 11601010
001 0doO0OO0 1 CG 10 01
001 1 .d0O0®0 3 0O0O0 0 1 Clock
10 0dd 1010010 01 T ¥ Logic f
16t 001010010 0 1 X circuit —>
101011 i 1001100 B
16 % 1 d v 0106 10 0 1
(a)
ABC
Q000
Qo1
[ohle
011
100
0%
110
»
S
% n o
Y v \ A I A 4 A 1 X y
f ]
\\\ /
(d)
A B C Z

<« Fig. 13. A 2Xx8bit word ro.m.

addressed in one dimension is shown at
(a), while at (b) is the two-dimensional
method. Generation of one 4-variable
function using two-dimensional
scheme is seen at (c).

Ay

B ,)

C » 6',};";64 ; 64x128

Dy decoder array

E 5

F

8x16-input

multrp!exers\
G—>
H——>{1616:16,116, 16,116,116, 1,
1 ; | T IS 1 T | I | IS T
J

il

2122737242526 27 Zg

Fig. 14. Reduction of number of lines to
and from r.o.m. by two-dimensional
addressing.

ABC
000
So \
LY S LI
100 oo
Sy 1L, yxJL
Ss Se A
Y on 101L L
10 nl Y
So /
XN ouml
nvy 111
010
S3 >
JL
(b)
Ju ™\ f=ABCIL
A
> 84-bit > _J
B ROM B A
C C Ka
t n
Jc — JB
Kc Ka
|-
tha La

{e)
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"An alternative two-dimensional
method of addressing a 16-bit r.o.m. is
illustrated in Fig. 13(b), in which
examination of the connexion matrix
shows that the same Boolean functions
are generated as in the previous case.
Using this technique there is a reduc-
tion in the number of address lines
required, but additional gating is
needed.

The same r.o.m. in conjunction with
one 4-input multiplexer can be used to
generate one 4-variable function as
shown in Fig. 13(c), where six address
lines only are needed as compared to the
sixteen address lines required with one-
dimensional addressing.

Clearly, large capacity r.o.ms can be
similarly addressed in two dimensions.
For example, a 1024-word by 8-bit
r.o.m., using single dimensional address-
ing, would require 1024 address lines
for the 10 input variables. On the other
hand, a two dimensional addressing
scheme such as the one shown in Fig. 14
can be used, in which the numbering of
lines entering and leaving the 64 X 128
array has been reduced from 1032 to
192. For this particular rom.alora0
can be specified in any of 8192 locations
and the number of possibie stored com-
binations is, therefore, 2812,

Sequential circuits using r.o.m.

R.o.ms are suitable devices for the
implementation of clock driven and
event driven logic circuits and their use
in this application will be illustrated
with the aid of two examples.

Example 5. Serial b.c.d. messages arrive
on line X, most significant digit first.
Each data bit is synchronised with a
clock pulse. Design a circuit using a
r.o.m. that generates a fault signal on
terminal f each time an invalid code is
received.

Step 1. 170 characteristics. These are
described in the statement of the pro-
blem and are summarised in the block
diagram Fig. 15(a).

Step 2. Internal characteristics. A suit-
able state diagram is shown in Fig. 15(b)

Step 3. State table. This is shown in
Table 2 and .is displayed in a suitable
form for r.o.m. implementation.

Step 4. Connexion matrix. This is shown
in Fig. 15(c) for a two dimensionally
addressed 64-bit r.o.m.

Step 5. Circuit implementation. This is
shown in Fig. 15(d). Besides the 64-bit
r.o.m. additional logic is required to
produce the output signal f=ABCTL.
Additionally three D-type flip-flops are
required in each feedback line to
synchronise the operation of the circuit
to the clock.

The next examplé illustrates the
implementation of an event-driven logic
circuit with a r.o.m.

(d)

Example 6. A road intersection is con-
trolled by a set of traffic lights. For each
road the light sequences are tabulated
below:

Road 1—green amber red red red red
Road 2—red red red green amber red
The lights are driven by a timing signal

X and a synchronisation signal P as

shown in Fig. 16(a).

Step 1. 1/0 characteristics. These are
described in the statement of the pro-
blem. :

Step 2. Internal characteristics. A suit-
able state diagram is shown in Fig.
16(b).

Step 3. State table. This is shown in
Table 3 and is displayed in a suitable
form for r.o.m. implementation.

Step 4. Circuit implementation. This is
shown in Fig. 16(c). In practice, r.o.ms
are manufactured in standard sizes and
a suitable r.o.m. or combination of
r.o.ms would have to be chosen from
those available.
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! 10 | 10
é I 2min sec | sec 2min [;eoc R 2min
: t—>»
P |
0
(a) t—
2min 10sec 10sec
So{d1=1 92=0 $¢[@=0 92=0 $5/91=0 92=0 9=0 g2=0
=0 a,=0 > ay=1 ay=0 > ;=0 a,=0 a,=0 a,=0
r=0 rp=1 X r=1 ry=1 X ri=1 rp=1 ri=0 rp=1
ABC=000 010 110 100
Ax YPx Y
10sec 10sec 2min
S5|91=0 g»=0 $4|91=09,=0 S3%h=09z=1 6=09,=0
a3=0 a,=0 < a,=0ay =1 —& a1=0 ap=0 < a3=0a,=0
ry=1ry=1 X ry=1r,=0 PX ri=1r;=0 PX r=1r,=1
oo oM m 101
(b)
g Fig. 1.6. Timing §ignal for Example 6 at
(a) with state diagram at (b).
— @ Implementation using r.o.m. is at (c)
s r .0.m. .
—> —>»
288-bit 92
B, RoM [—>2 :
c > T‘his arFiCIe hqs been cpnqemed with
A logic design using m.s.i. circuits and
B three specific devices, multiplexers, de-
C coders and r.o.ms have been used to
demonstrate the design techniques.

However, in conclusion, it should be
stressed that before using m.s.i. circuits
for logic design the advantages and
disadvantages of using them in pre-
ference to s.s.i. circuits should be
carefully considered.[-]




