
-----------~~-----------
16-BIT MICROCOMPUTER TECHNOLOGY

Part 6: How to Use Machine Language Programming

PREVIOUS articles in this ·series should
have convinced you that, before you can
understand, repair, or design micro­
computers that use the latest generation
of hardware, you must have had at least
an introduction to machine/assembly
language programming. By using ma­
chine language subroutines in conjunc­
tion with BASIC or other high-level
languages, it is possible to increase exe­
cution speed and, in some cases, allow
operations that are not possible using
the high-level interpreter alone. This
month we will discuss how to learn ma­
chine-language programming painlessly

TABLE Vl-1/0 PARAMETER
SETTINGS

Baud rate
110
150
300
600

1200
2400
4800
9600

S1-3
On
On
On
On
Off
Off
Off
Off

Parity disabled: S 1-4 on
Parity enabled: S 1-4 off
Parity odd: S 1-5 on
Parity even: S1-5 off

August1983

S1-2
On
On
Off
Off
On
On
Off
Off

S1-1
On
Off
On
Off
On
Off
On
Off

By George Meyerle

and we will gain some practice using it
with the monitor program resident in
the IBM-compatible, 16-bit Explorer
88/PC microcomputer.

Quickly reviewing the design of the
Explorer 88, recall that it can be set up
to operate in 3 different modes. The
first, and least expensive mode ($400),
allows accessing the monitor program
using a standard terminal connected to
the RS232 port. The second choice
(about $600 more) is to add an IBM­
compatible keyboard, color board, and
either a color or black/white monitor.
This gets you that much closer to being
truly IBM-compatible. The next step in­
volves the addition of a floppy-disk card
and up to four floppy drives. At this
point, you can run IBM-PC DOS or any
of the many IBM-compatible disk oper­
ating systems, including Digital Re­
search CP/M-86, all of which include
fine monitor or debugging programs.
The following applies to any configura­
tion selected.

Monitor Programs. In its simplest
form, a monitor program is a collection
of routines that allow programs to be
generated, tested, modified, and saved
for future use. The original microcom­
puter monitors consisted of a front pan­
el array of switches and LEDs that al­
lowed access to the CPU and memory.

However, the flashing LED approach
was hard to use and scared away many
casual observers. On the other hand,
ROM-based monitors, including that
used in the Explorer 88, are easy to use
and understand; and, with a Iitle prac­
tice, you should be able to write short
programs in 16-bit 8088 machine lan­
guage. Since it is not practical to write
long programs or subroutines without
the help of an assembler, once the basics
are learned, it is suggested that you in­
vest in one of the many available assem­
bler programs.

Monitor Overview. All 8088 micro­
processors auto-boot on power-up or re­
set to location FFFFOH. This location,
in the Explorer monitor, contains a
jump to location FEOOOH which is the
beginning address of the upper-most 8K
of ROM and of the monitor program

TABLE VII-MEMORY MAP

00000-0FFFF
FEOOO-FFFFF
00000-00003
00004-00007
00010-00013
OOOOC-OOOOF
0001 0-0002F
00030-00033
00034-0FEFF

RAM
ROM
Divide-by-zero interrupt
Single-step interrup
Overflow interrupt
Monitor-trap
System
UART interrupt
System

93

l !

... 16-B/T TECHNOLOGY

NO
\

YES

HALT r-.:.,FA:;::IL~< OR

RET

FAIL OR

RET

OR

FAIL

RET

OR

FAIL
RET

OR

RET

OR

RET

OR

RET

OR

RET

Fig. 18. Flowchart of the monitor program.

whose flowchart is shown in Fig.l8.
Note in this flowchart that, before the
program is ready to accept commands
from the keyboard, a preliminary hard­
ware check is made. If any hardware
test fails, the CPU is automatically halt­
ed. The program begins by checking the
CPU. All registers, including the flags,
are tested. If they are OK, the program
continues with a PROM check-sum

94

test. This adds the contents of all 8K of
ROM and compares the results with the
correct answer.

The next component tested is channel
1 of the timer. If the timer test is OK,
channel 1 is programmed to provide the
refresh clock signal to the DMA con­
troller. Next the DMA controller is
tested. The count and command regis­
ters are tested by writing various pat-

terns and then checking the results by
reading the registers. If all tests are
passed, the count register is set for a
64K system and channel 0 is enabled so
that the RAM refresh process can
begin.

The program then sets up the inter­
rupt controller mode registers and
masks off all interrupts. This is followed
by the initialization of the 8255 system
and timer control ports. The monitor
then sets up the data and stack segment
registers and the stack pointer. It also
clears the console input and output
buffers. The 8250 UART is then initial­
ized. This process involves reading the
switch # 1 at port B of the 8255. These
switch settings determine the baud rate
and parity selections (Table VI) to
which the UART will be initialized. The
monitor also downloads the interrupt
jump vectors to the lowest locations in
RAM as shown in the memory map in
Table VII. Note that the top 256 bytes
in the first 64K bank are reserved for the
stack and other monitor operations.

After testing the hardware and set­
ting the UART, the monitor idles at the
Command Entry Point awaiting entries
from the keyboard. The program is set
up so that it will only accept valid com­
mands. All invalid entries will result in
the display of "??" and the abortion of
the process attempted. Valid commands
are:

D Display memory contents
R Register display/ modifica­

tion
B Block move of memory
M Memory modification/

display
I Input one byte from an 1/ 0

device
0 Output one byte to an 1/ 0

device
CO Cassette output from memory

to cassette
CI Cassette input from cassette to

memory
T Trace instructions
TR Trace instructions with regis­

ter report
G Go run from memory with op­

tional breakpoint
GR Go run from memory with op­

tional breakpoint and register
report

HT Hardware tests of ROM,
RAM, cassette, interrupt con­
troller, timer, DMA control­
ler and UART.

In future issues, we will show how to
use the ROM-based monitor in practi­
cal programming.

(To be continued)

Computers & Electronics

