ey

LAST MONTH WE WENT THROUGH THE BA-
sics of digital circuit design, using Kar-
naugh maps and Quine-McCluskey ta-
bies. Now, we’ll look at multiple-output
functions and those where the output
depends on sequential input events.

Multiple-output functions

It is often the case that we wish to
design a circuit with not only multiple
inputs, but also multiple outputs, all of
which are dependent on the same inputs.
In the truth table of Fig. 17-a, we show
such an example, with three inputs, a, b
and c, and three outputs, f,, f, and f,.
Each of these functions could be treated
separately, and designed using Karnaugh
maps, as shown in Figs. 17-b and 17-c.
However, this type of design does not
lead to optimum gate use. Some gates are
repeated, and combinations of gates to
perform several functions cannot be taken
into account. To resolve this, we resort to
a modified Quine-McCluskey method.

The workings are similar to the method
described for a single-output function,
but all three functions are combined into
one table, and each entry is subscripted
with the. functions (f;, f; or f;) that it
covers. Refer to Figs. 17-a and 18-a.
Since an input of all zeroes produces no
1-outputs, we have no 0-bit group in the
input column of the Q-M table. An input
of 1 (abc = 001) causes a 1-output for
functions f;, and f,, so we enter a 1
subscripted with these functions in the
1-bit group. We continue in this manner,
filling the input column as we did for a
single-output function, subscripting each

HowTo
Design Digital
Circuits

Part 2— With digital circuitry becoming an increasingly important
factor in our everyday lives, it’s time that we learn how to design logic circuits.
Here the author discusses digital logic design—
including sequential circuits and multiple output functions.

JERRY WOOLSEY
be
a 0 01 11 10
ol o 1 1 1
171 i 6 |0
fy
INPUTS 1 OUTPUTS be
abc 1ty iy a o o1t 1
goce¢ | 000
001 iteo o0 ! ! 0
010 | 101
D1 11 vt ! 610
Teo o1 ty
101 . 01 be
110 | oo a o o 11 10
i
11 i
Topnoee sl o oo
a
[1 1

LI L

& oo & o

d

c

FIG. 177—MULTIPLE INPUTS AND OUTPUTS can also be handled. Truth table with three inputs and
three outputs is shown in a. Resulting Karnaugh maps are shown in b; logic circuit is shown in c.

1-1fy

2-f4f3
4 - f11qf3
3-fify
5 tyts
a
1-1if; 1,3(2) ~ #41,
2-fif3 1,58 ~ fy
4 - f1faf3 2,3(1) -
3-f1fy 4, 5(1) ~ fof3
5 — faf3
b

FIG. 18—MODIFIED QUINE-McCLUSKEY meth-
od is used to simplify circuit shown in Fig. 17.

with the functions that produce a 1-
output for the given input.

We now proceed to form 1-cubes as
before, except now we must make sure
that at least one subscript is common to
each of the lower cubes being combined.
(See Fig. 18-b.) Inputs 1 and 3 are adja-
cent, and also have the same subscripts, so
we enter this in the next column as a 1-
cube, also entering the subscripts. The 1

and 3 entries in the input column can be

checked off, since the 1-cube just formed
covers both of these inputs for all outputs.
Inputs 1 and S are adjacent and have a
common subscript, f,, so we enter this as
a 1-cube, but the subscript is only entered
for f,, since this is the only common
subscript and hence the only function

" which contains this 1-cube.

6161 AHVNNV(-

F.)
~

& RADIO-ELECTRONICS

We do not yet check the 1 or S in the
input column, since the higher cube does
not cover either input for all functions.
The input 5 is checked off when we
combine it with input 4, since the cube
formed has the same subscripts as 5. We
continue as in the case of single-output
functions, until there are no more cubes
that can be formed. The completed table
appears in Fig. 18-b.

it is checked in f,, because this is covered
by the 1-cube (4,5). Similarly, f; requires
rows 2 and (4,5). The completed circuit
now appears as in Fig. 21, and is a
substantial savings over the circuit shown
in Fig. 17-c.

Sequential circuits

Up to this point, we have concerned
ourselves only with circuits whose output

F, F, Fs
v v v v v v v v v v v
1 2|34 |13 | 4|5]2]|4]|s:s
* 2—fy1, v v
* At 1y, v v v
*1,3—f, 1, v v v | v
1,5—f, v v
2,3—f, v | v
*4,5—f, 15 v | v v | v

FIG. 19—COVER MAP is generated from tabie shown in Fig. 18-b.

A cover map is now made as in Fig. 19,
which includes the inputs that will pro-
duce a l-output for each separate func-
tion as column headers and the un-
checked entries of Fig. 18-b as row head-
ers. Since the row labeled 2 is subscripted
with f, and f;, we check the columns
labeled 2 under f, and f;, and so on for all
the rows. Following the covering proce-
dure outlined previously, we find that the
rows marked with an asterisk are essential
to cover all columns. The circuit can now
be drawn.

A gate is drawn for each row with an
asterisk, again with the inputs to the gates
corresponding to the nonchanging coordi-
nates of the cube formed by the row head-
er. We then draw three output gates with
no input connections, and the result is as
in Fig. 20.

) L)
R,

ol ol &

o}

a ————
_ 45
b —
FIG. 20—PARTIAL CIRCUIT is drawn showing
the outputs and inputs.

Returning to Fig. 19, we now take a
minimum cover for each separate func-
tion. For f,, we see we need the rows
labeled 2, 4 and (1,3) to cover the
columns under that function. The gates
corresponding to these rows are thus fed
to gate f;. For f,, we need only (1,3) and
(4,5) to cover all 1-outputs, so we feed
these gates to gate f,. Note that the row
labeled 4 is not needed for f, even though

b

FIG. 21—SIMPLIFIED LOGIC CIRCUIT for three
inputs and three outputs requires less gates
than circuit shown in Fig. 17-c.

© «©

0/0 10 10

OO

s 70

b

one clock pulse to the next. But sup,

we need to know not only what happened
on the previous clock pulse, but a string
of several before that. We could store the
entire string in a series of flip-flops, i.e., a
shift register, but this could be costly for
long strings and wasteful of gates, since
we do not really need to look at every bit
in the string as it comes in.

Instead, we can assign to each unique
string of bits that may appear at the input
a state number that corresponds to that
string. We know what the string was if we
know what the state number is. Thus, the
input string 0000 could be assigned a
state number of 0, the string 0001 a state
number of 1, etc. At first glance, this does
not seem to help matters much, since a
4-bit input string can have 16 possible
states, which requires 4 bits for saving the
state number, which is the same number
required to hold the input string. But this
is not necessarily so, depending on the
function, and if it is so, methods have
been devised for reducing the number of
states. What we need to do, then, is store
the state number, and update it as each
bit enters.

In implementing sequential functions,
we make use of two tools known as the
state diagram and state table. These
merely show us the possible states that
our function may assume. We start first
with the state diagram.

As an example, let us assume that we
have a string of bits entering our circuit,
and we want to know when the pattern
1101 enters. It may come at any bit time,

FIG. 22—STATE DIAGRAM is used in designing sequential logic circuits.

depends solely on its input at a given
time. However, it is often the case that a
circuit must produce an output that de-
pends not only on the present inputs to
the circuit, but also on previous inputs (or
outputs). To perform this, we must make
use of a “memory” circuit to hold the
previous information. For the experi-
menter, the simplest type of memory
circuit is the flip-flop. When fed a clock
pulse, it will store information according
to its input, and hold it until the next
clock pulse. This implies we must have a
clock running the circuit, which we will
consider later.

We can thus hold information from

i.e., it may start at the first bit entered, or
the third, etc. We start the state diagram
by assuming an initial state which we call
state A, and write this down in a circle.
See Fig. 22-a. There are two possible
occurrences at state A; we may receive
eitheraOora 1. If we receive a 0, we have
not detected the start of the string 1101,
so we draw an arrow from A back to itself
and label it 0/0 (applied input/generated
output). This means we follow this arrow
if we are at state A and receive a 0-input,
and the output of the circuit is to be 0.
The arrow, of course, brings us back to
state A to look for the first bit of the
string.

"~ his loop will continue until a 1-bit is
received. At this point, we must “remem-
ber” that we have found the first bit of
the string, so we draw an arrow to a new
state which we name B. The arrow is
labeled 1/0, and indicates that if we are at
state A and a 1 is received, we are to go to
state B and output a 0. Since we have
covered both input conditions for state A,
we move to state B. If we are at state B,
we have received the first 1 of the string.
If we now receive a 0, we must go back to
state A, and start searching for the begin-
ning of the string again.

If a 1 is received, we have received the
first two bits of the desired string, so we

Present Next State
State (NS) Output
(PS) x=0 | x=1 | x=0 | x=1
A A B 0 0
B A C 0 0
C D A 0 0
D A A 0 1

FIG. 23—STATE TABLE listing present state,
next state and output is generated from state
diagram.

NS Output
PS x=0 | x=1 x=0 | x=1
00 00 01 0 0
01 00 10 0 0
10 11 00 0 0
11 00 00 0 1

FIG. 24—BINARY NUMBERS are assigned to
present states and next states in state table.

FIG. 25—STATE DIAGRAM of circuit with multi-
ple inputs.

go to a new state, called C, which tells us
that we have received a 11 so far,anda 0
is to be output. See Fig. 22-b. We follow
the same procedure with state C. At state
D, if we receive a 0, we have received the
string of 1100 instead of 1101, so we
return to state A and output a 0. If we
receive a 1, however, we have received the
desired 1101 string. We now have two
alternatives. If we wish to continue
checking for the string, we can outputa 1
and return to state A, as in Fig. 22-d, or

we could go to a new state, E, which
simply ignores the remainder of the
incoming data and outputs a constant 1
(or it could output a constant 0 or follow
the incoming data). See Fig. 22-e.

Now, using Fig. 22-d, we put the
diagram down in a state table, as shown in
Fig. 23. The “Present State” (PS) col-
umn lists all the states that appear on the
state diagram. The “Next State” (NS)
column lists the next state to go to when
the inputis 0 (x = 0) or 1 (x = 1). For
example, if we are at state A and receive
an input of x = 0, the next state is A. If
we receive an input of x = 1, the next
state is B. The output column specifies
the output to be produced when at the
present state and an input of x = 0 or x
= 1 is received. For example, the only
time a 1 is output is‘when we are at state
D and the input x = 1 is received.

We can now assign numbers to the
state, letting A = 0,B=1,C =2and D
= 3, and obtain the Transition Table
shown in Fig. 24. Note that with only
four possible states, we need only two
flip-flops to “remember” the 4-bit se-
quence. This table will be used later to
construct the actual circuit.

Multiple input circuits can also be
designed using this method. For example,
Fig. 25 shows the state diagram for a
circuit which is to produce a 1l-output
only when two input lines simultaneously
input the string 1101. The NS and OUT-
PUT columns of the state table would
then have four sub-columns, for inputs x
=00,x =01,x = 10and x = 11.

As another example, suppose we
wished to design a circuit that would
compute odd parity for a 3-bit data word,
and set a flag when the parity bit was
ready, after which it would compute pari-
ty on the next three bits, etc. Figure 26
shows the state diagram for the circuit.
The first bit of the output is the parity
bit, and the second is a flag indicating
when the parity bit is ready to sample.
The state table is shown in Fig. 27. Look-
ing at the state table, we see that both
states D and G advance to the same state
(A) when x = 0 is input, and advance to
the same state (A) when x = 1 is input.
Also, the outputs of the two states are the
same when x = 0 is input and when x =
1 is input.

Since the entire row D (except, of
course, the PS column) is identical to G,
the two states are equivalent, and we can
strike out state D and replace all refer-
ences to it with state G. States E and F
are also equivalent, so we can eliminate
state E and replace references to it with
state F. Our reduced state table now
appears as in Fig. 28, and we number the
states to obtain the transition table shown
in Fig. 29.

We are now ready to design the actual
circuitry, using the table of Fig. 29. We
will use D-type flip-flops as memory
elements, since these have only one input,
as opposed to two for the J-K flip-flop.

When a clock pulse occurs on a D-type
flip-flop, it merely stores the value pres-
ent at its input at the time of the pulse,
and makes this available at the Q-output,
while the inverse is available at the Q-
output. Three flip-flops are needed to
hold the current state numbers.

FIG. 26—STATE DIAGRAM for a circuit that
derives odd parity for a 3-bit data word.

NS Output
PS x=0 | x=1 | x=0 | x=1
A B C 00 00
B D E 00 00
C F G 00 00
D A A 11 01
E A A 01 1
F A A 01 1
G A A 11 01

FIG. 27—STATE TABLE derived from state dia-

gram shown in Fig. 26.

NS Output
PS x=0 | x=1 x=0 | x=1
A B C 00 00
B G F 00 00
C F G 00 00
F A A 01 11
G A A 11 01

FIG. 28—REDUCED STATE TABLE is obtained

by eliminating redundant states.

NS Output
PS x=0 | x=1 x=0 | x=1
000 001 010 00 00
001 100 011 00 00
010 011 100 00 00
011 000 000 01 1
100 000 000 11 01

FIG. 29—BINARY NUMBERS are assigned to the
present states and next states.

Suppose we have the PS = 000 stored
in the Q-outputs of flip-flop 1 (FF1), FF2
and FF3, and at the next bit time the
input is x = 0. We then wish to set the
flip-flops so that the Q-output of FF1 is
0, FF2is 0, and FF3 is 1, so we know we
are now at state 001. From state 001, if x
= 1 is applied, we want to set FF1 to 0,
FF2 to 1 and FF3 to 1 to indicate the new
state, 011, etc.

We need three combinational circuits
for this, one for each flip-flop, to place a 0
or a 1 at the input of each flip-flop. The

- input to the combinational circuits will be

6261 AHVNNVYP

P
o

RADIO-ELECTRONICS

]
o

P3x P3x Pax
PP\ 0 01 1M 10 P1Py 00 1m0 P1Py o o0 110
oo| © 0 0 1 co| 0 1 0 oo t '] 1 0
0] 0 1 0 0 01| 1 (i 0 o)t 0 0 0
1| d d d d M| 4 d | d 1My d d d d
1) 0 [} ¢ | d 1) o d | d 10 ¢ o | d d
N1=P_2P3x_ N2=P_‘[§§ N3=P_1P_2x_
i P: —
+PyP3x +PaPax +PyP3x
a b <
FIG. 30—A KARNAUGH MAP is drawn for each flip-flop.
Pax INPUT x x
P1P 00 01 11 10 =
172 EA % . Py
0|0 0 17
| o o0 Z
P PARITY »p,
ol o o |1]|o0 " s
X X
Ny d d d d P2
P3
X
0] 1 0 d d
Py

01=P1Pyx+PyPyx

Pax
P1P2 00 01 1 10

0| 0 0 0 0

0| o 0 1 1

1mp d d d d

10) 1 1 d d

02=P2P3+ PPy
b

FIG. 31—OUTPUT: FUNCTIONS are derived
from the Karnaugh maps.

the outputs of the flip-flops, i.e., the PS,
and the input x. We can label the PS-bits
as p;, p,and p,, soa PS of 011 indicates p,
= 0, p, = | and p, = 1, where p; is the
Q-output of FF,. Now we can see that our
combinational circuits have four inputs,
Pi1» P2» P, 20d X, and one output, which we
can label n; to correspond to the bits of
the number of the next state.

It is thus an easy matter to draw a
Karnaugh map for each flip-flop input.
Figure 30-a shows the map for FF1. If
the PS is 000 and x = O is applied, then
n,, the first bit of the NS, is to be a2 0, so
in the box with coordinates p,p,psXx =
0000, we place a 0. Similarly, for a PS of
000 and x = 1 (p;p,psx = 0001), we
must have n;, = 0, so a 0 is placed in box
0001. When the PS is 001 and x = 0 is
applied, n,, the first bit of the NS, is to be
a 1, so a 1 is placed in box 0010. This
procedure is repeated up to p,p,p;x =
1001. Since there is no state 101, we can
enter a “d” (don’t-care) in boxes 1010
through 1111. Using the d-labeled boxes,
we get the resultant equation for n,,
which is also shown in Fig. 30-a. The
same procedure is repeated for bits n, and
n, of NS, as shown in Figs. 30-b and 30-c.
With these outputs applied to the inputs

PS=100andx =Qorx =1, wen.
change the first NS bit from 1 to 0,s0 J
= d. Due to the increased number of
don’t-cares, the circuits feeding the IJ-
and K-inputs are often simpler than those
feeding D-inputs, though there are twice
as many. (For example, the map for the
K-input of FF1 from Fig,. 29 will show K
is merely equal to 1, or always high.)

One item essentially ignored here has
been the clock pulse. In actual circuits,
the clock pulse is very important.

The frequency of the clock depends on
the data transmission (baud) rate of the

D O—> P
L 57

of

—C

D af—> P

CLOCK

FIG. 32—COMPLETE LOGIC CIRCUIT for deriving odd parity using D-type flip-flops.

of the flip-flops, they will assume the
correct next state after the next clock
pulse.

The output functions are also designed
in this way, since they depend on only the
PS = p,p,p; and the input x. Labeling the
first output bit o, and the second o,, the
equations are written from the Karnaugh
maps as shown in Figs. 31-a and 31-b.

Each of the five functions may now be
easily implemented, as shown in Fig. 32.
The outputs p; of the flip-flops are fed
back to the NAND gates as shown. In actu-
al operation, the circuit would be set to
the initial state before use by toggling the
CLEAR inputs on the flip-flops by a com-
puter command or a manual switch.

This circuit could also have been real-
ized using J-K flip-flops, using two input
circuits to each flip-flop instead of one.
Thus, we would need eight Karnaugh
maps, one for each J-input, one for each
K-input, and one for each output. These
would be derived from the truth table of a
J-K flip-flop, shown in Fig. 33.

As an example, referring to Fig. 29, if
we wish to find the J-input of FF1 to
obtain the next state (call this J,), we
draw the Karnaugh map as in Fig. 34. For
p:ip:psx = 0000, we change the first state
bit from O to 0, which requires a J-input
of 0, so we enter a 0 in box 0000. With
the PS = 001 and an input of x = 0, we
must change the first bit of the state from
a 1toa 0, which requires a J-input of 1. If

To Change Input
From To d K
Q 0 0 d
0 1 1 d
1 0 d 1
1 1 d 0

FIG. 33—TRUTH TABLE for parity circuit using
J-K flip-flops.

Pax
P1Py 00 01 | 10

| 0 0 o 1

01| 0 1] 0

1 d d d d

10| d d d d

FIG. 34—KARNAUGH MAP for J-input of flip-
fiop FF1.

data line, and must be synchronized so
that the clock pulse occurs as close to the
middle of the bit time as possible. The
clock pulse must not begin until all gates
have had time to settle after the new
input bit has arrived and must end before
the next data bit arrives.

We have now gone through the basics
of logic design, and you should be able to
design most common types of circuits
using methods that will produce a more
efficient circuit. R-E

