

COMPLETE DIGITAL DESIGN

-Balch.book Page i Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

COMPLETE
DIGITAL DESIGN

A Comprehensive Guide to Digital Electronics

and Computer System Architecture

Mark Balch

McGRAW-HILL

New York Chicago San Francisco

Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore

Sydney Toronto

-Balch.book Page iii Thursday, May 15, 2003 3:46 PM

Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-143347-3

The material in this eBook also appears in the print version of this title: 0-07-140927-0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071433473

ebook_copyright 8 x 10.qxd 8/27/03 9:20 AM Page 1

for Neil

-Balch.book Page v Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

CONTENTS

Preface xiii

Acknowledgments xix

PART 1 Digital Fundamentals

Chapter 1 Digital Logic .3

1.1 Boolean Logic /

3

1.2 Boolean Manipulation /

7

1.3 The Karnaugh map /

8

1.4 Binary and Hexadecimal Numbering /

10

1.5 Binary Addition /

14

1.6 Subtraction and Negative Numbers /

15

1.7 Multiplication and Division /

17

1.8 Flip-Flops and Latches /

18

1.9 Synchronous Logic /

21

1.10 Synchronous Timing Analysis /

23

1.11 Clock Skew /

25

1.12 Clock Jitter /

27

1.13 Derived Logical Building Blocks /

28

Chapter 2 Integrated Circuits and the 7400 Logic Families. .33

2.1 The Integrated Circuit /

33

2.2 IC Packaging /

38

2.3 The 7400-Series Discrete Logic Family /

41

2.4 Applying the 7400 Family to Logic Design /

43

2.5 Synchronous Logic Design with the 7400 Family /

45

2.6 Common Variants of the 7400 Family /

50

2.7 Interpreting a Digital IC Data Sheet /

51

Chapter 3 Basic Computer Architecture .55

3.1 The Digital Computer /

56

3.2 Microprocessor Internals /

58

3.3 Subroutines and the Stack /

60

3.4 Reset and Interrupts /

62

3.5 Implementation of an Eight-Bit Computer /

63

3.6 Address Banking /

67

3.7 Direct Memory Access /

68

3.8 Extending the Microprocessor Bus /

70

3.9 Assembly Language and Addressing Modes /

72

-Balch.book Page vii Thursday, May 15, 2003 3:46 PM

For more information about this title, click here.

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

viii

CONTENTS

Chapter 4 Memory. .77

4.1 Memory Classifications /

77

4.2 EPROM /

79

4.3 Flash Memory /

81

4.4 EEPROM /

85

4.5 Asynchronous SRAM /

86

4.6 Asynchronous DRAM /

88

4.7 Multiport Memory /

92

4.8 The FIFO /

94

Chapter 5 Serial Communications. .97

5.1 Serial vs. Parallel Communication /

98

5.2 The UART /

99

5.3 ASCII Data Representation /

102

5.4 RS-232 /

102

5.5 RS-422 /

107

5.6 Modems and Baud Rate /

108

5.7 Network Topologies /

109

5.8 Network Data Formats /

110

5.9 RS-485 /

112

5.10 A Simple RS-485 Network /

114

5.11 Interchip Serial Communications /

117

Chapter 6 Instructive Microprocessors and Microcomputer Elements121

6.1 Evolution /

121

6.2 Motorola 6800 Eight-bit Microprocessor Family /

122

6.3 Intel 8051 Microcontroller Family /

125

6.4 Microchip PIC® Microcontroller Family /

131

6.5 Intel 8086 16-Bit Microprocessor Family /

134

6.6 Motorola 68000 16/32-Bit Microprocessor Family /

139

PART 2 Advanced Digital Systems

Chapter 7 Advanced Microprocessor Concepts .145

7.1 RISC and CISC /

145

7.2 Cache Structures /

149

7.3 Caches in Practice /

154

7.4 Virtual Memory and the MMU /

158

7.5 Superpipelined and Superscalar Architectures /

161

7.6 Floating-Point Arithmetic /

165

7.7 Digital Signal Processors /

167

7.8 Performance Metrics /

169

Chapter 8 High-Performance Memory Technologies. .173

8.1 Synchronous DRAM /

173

8.2 Double Data Rate SDRAM /

179

8.3 Synchronous SRAM /

182

8.4 DDR and QDR SRAM /

185

8.5 Content Addressable Memory /

188

-Balch.book Page viii Thursday, May 15, 2003 3:46 PM

CONTENTS

ix

Chapter 9 Networking. .193

9.1 Protocol Layers One and Two /

193

9.2 Protocol Layers Three and Four /

194

9.3 Physical Media /

197

9.4 Channel Coding /

198

9.5 8B10B Coding /

203

9.6 Error Detection /

207

9.7 Checksum /

208

9.8 Cyclic Redundancy Check /

209

9.9 Ethernet /

215

Chapter 10 Logic Design and Finite State Machines .221

10.1 Hardware Description Languages /

221

10.2 CPU Support Logic /

227

10.3 Clock Domain Crossing /

233

10.4 Finite State Machines /

237

10.5 FSM Bus Control /

239

10.6 FSM Optimization /

243

10.7 Pipelining /

245

Chapter 11 Programmable Logic Devices .249

11.1 Custom and Programmable Logic /

249

11.2 GALs and PALs /

252

11.3 CPLDs /

255

11.4 FPGAs /

257

PART 3 Analog Basics for Digital Systems

Chapter 12 Electrical Fundamentals .267

12.1 Basic Circuits /

267

12.2 Loop and Node Analysis /

268

12.3 Resistance Combination /

271

12.4 Capacitors /

272

12.5 Capacitors as AC Elements /

274

12.6 Inductors /

276

12.7 Nonideal RLC Models /

276

12.8 Frequency Domain Analysis /

279

12.9 Lowpass and Highpass Filters /

283

12.10 Transformers /

288

Chapter 13 Diodes and Transistors .293

13.1 Diodes /

293

13.2 Power Circuits with Diodes /

296

13.3 Diodes in Digital Applications /

298

13.4 Bipolar Junction Transistors /

300

13.5 Digital Amplification with the BJT /

301

13.6 Logic Functions with the BJT /

304

13.7 Field-Effect Transistors /

306

13.8 Power FETs and JFETs /

309

-Balch.book Page ix Thursday, May 15, 2003 3:46 PM

x

CONTENTS

Chapter 14 Operational Amplifiers .311

14.1 The Ideal Op-amp /

311

14.2 Characteristics of Real Op-amps /

316

14.3 Bandwidth Limitations /

324

14.4 Input Resistance / 325
14.5 Summation Amplifier Circuits / 328
14.6 Active Filters / 331
14.7 Comparators and Hysteresis / 333

Chapter 15 Analog Interfaces for Digital Systems .339

15.1 Conversion between Analog and Digital Domains / 339
15.2 Sampling Rate and Aliasing / 341
15.3 ADC Circuits / 345
15.4 DAC Circuits / 348
15.5 Filters in Data Conversion Systems / 350

PART 4 Digital System Design in Practice

Chapter 16 Clock Distribution .355

16.1 Crystal Oscillators and Ceramic Resonators / 355
16.2 Low-Skew Clock Buffers / 357
16.3 Zero-Delay Buffers: The PLL / 360
16.4 Frequency Synthesis / 364
16.5 Delay-Locked Loops / 366
16.6 Source-Synchronous Clocking / 367

Chapter 17 Voltage Regulation and Power Distribution .371

17.1 Voltage Regulation Basics / 372
17.2 Thermal Analysis / 374
17.3 Zener Diodes and Shunt Regulators / 376
17.4 Transistors and Discrete Series Regulators / 379
17.5 Linear Regulators / 382
17.6 Switching Regulators / 386
17.7 Power Distribution / 389
17.8 Electrical Integrity / 392

Chapter 18 Signal Integrity. .397

18.1 Transmission Lines / 398
18.2 Termination / 403
18.3 Crosstalk / 408
18.4 Electromagnetic Interference / 410
18.5 Grounding and Electromagnetic Compatibility / 413
18.6 Electrostatic Discharge / 415

Chapter 19 Designing for Success .419

19.1 Practical Technologies / 420
19.2 Printed Circuit Boards / 422

-Balch.book Page x Thursday, May 15, 2003 3:46 PM

CONTENTS xi

19.3 Manually Wired Circuits / 425
19.4 Microprocessor Reset / 428
19.5 Design for Debug / 429
19.6 Boundary Scan / 431
19.7 Diagnostic Software / 433
19.8 Schematic Capture and Spice / 436
19.9 Test Equipment / 440

Appendix A Further Education. .443

Index 445

-Balch.book Page xi Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

PREFACE

Digital systems are created to perform data processing and control tasks. What distinguishes one
system from another is an architecture tailored to efficiently execute the tasks for which it was de-
signed. A desktop computer and an automobile’s engine controller have markedly different attributes
dictated by their unique requirements. Despite these differences, they share many fundamental
building blocks and concepts. Fundamental to digital system design is the ability to choose from and
apply a wide range of technologies and methods to develop a suitable system architecture. Digital
electronics is a field of great breadth, with interdependent topics that can prove challenging for indi-
viduals who lack previous hands-on experience in the field.

This book’s focus is explaining the real-world implementation of complete digital systems. In do-
ing so, the reader is prepared to immediately begin design and implementation work without being
left to wonder about the myriad ancillary topics that many texts leave to independent and sometimes
painful discovery. A complete perspective is emphasized, because even the most elegant computer
architecture will not function without adequate supporting circuits.

A wide variety of individuals are intended to benefit from this book. The target audiences include

• Practicing electrical engineers seeking to sharpen their skills in modern digital system design.
Engineers who have spent years outside the design arena or in less-than-cutting-edge areas often
find that their digital design skills are behind the times. These professionals can acquire directly
relevant knowledge from this book’s practical discussion of modern digital technologies and de-
sign practices.

• College graduates and undergraduates seeking to begin engineering careers in digital electronics.
College curricula provide a rich foundation of theoretical understanding of electrical principles
and computer science but often lack a practical presentation of how the many pieces fit together in
real systems. Students may understand conceptually how a computer works while being incapable
of actually building one on their own. This book serves as a bridge to take readers from the theo-
retical world to the everyday design world where solutions must be complete to be successful.

• Technicians and hobbyists seeking a broad orientation to digital electronics design. Some people
have an interest in understanding and building digital systems without having a formal engineer-
ing degree. Their need for practical knowledge in the field is as strong as for degreed engineers,
but their goals may involve laboratory support, manufacturing, or building a personal project.

There are four parts to this book, each of which addresses a critical set of topics necessary for
successful digital systems design. The parts may be read sequentially or in arbitrary order, depend-
ing on the reader’s level of knowledge and specific areas of interest.

A complete discussion of digital logic and microprocessor fundamentals is presented in the first
part, including introductions to basic memory and communications architectures. More advanced
computer architecture and logic design topics are covered in Part 2, including modern microproces-
sor architectures, logic design methodologies, high-performance memory and networking technolo-
gies, and programmable logic devices.

-Balch.book Page xiii Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

xiv PREFACE

Part 3 steps back from the purely digital world to focus on the critical analog support circuitry
that is important to any viable computing system. These topics include basic DC and AC circuit
analysis, diodes, transistors, op-amps, and data conversion techniques. The fundamental topics from
the first three parts are tied together in Part 4 by discussing practical digital design issues, including
clock distribution, power regulation, signal integrity, design for test, and circuit fabrication tech-
niques. These chapters deal with nuts-and-bolts design issues that are rarely covered in formal elec-
tronics courses.

More detailed descriptions of each part and chapter are provided below.

PART 1 DIGITAL FUNDAMENTALS

The first part of this book provides a firm foundation in the concepts of digital logic and computer
architecture. Logic is the basis of computers, and computers are intrinsically at the heart of digital
systems. We begin with the basics: logic gates, integrated circuits, microprocessors, and computer
architecture. This framework is supplemented by exploring closely related concepts such as memory
and communications that are fundamental to any complete system. By the time you have completed
Part 1, you will be familiar with exactly how a computer works from multiple perspectives: individ-
ual logic gates, major architectural building blocks, and the hardware/software interface. You will
also have a running start in design by being able to thoughtfully identify and select specific off-the-
shelf chips that can be incorporated into a working system. A multilevel perspective is critical to suc-
cessful systems design, because a system architect must simultaneously consider high-level feature
trade-offs and low-level implementation possibilities. Focusing on one and not the other will usually
lead to a system that is either impractical (too expensive or complex) or one that is not really useful.

Chapter 1, “Digital Logic,” introduces the fundamentals of Boolean logic, binary arithmetic, and
flip-flops. Basic terminology and numerical representations that are used throughout digital systems
design are presented as well. On completing this chapter, the awareness gained of specific logical
building blocks will help provide a familiarity with supporting logic when reading about higher-
level concepts in later chapters.

Chapter 2, “Integrated Circuits and the 7400 Logic Families,” provides a general orientation to in-
tegrated circuits and commonly used logic ICs. This chapter is where the rubber meets the road and
the basics of logic design become issues of practical implementation. Small design examples pro-
vide an idea of how various logic chips can be connected to create functional subsystems. Attention
is paid to readily available components and understanding IC specifications, without which chips
cannot be understood and used. The focus is on design with real off-the-shelf components rather
than abstract representations on paper.

Chapter 3, “Basic Computer Architecture,” cracks open the heart of digital systems by explaining
how computers and microprocessors function. Basic concepts, including instruction sets, memory,
address decoding, bus interfacing, DMA, and assembly language, are discussed to create a complete
picture of what a computer is and the basic components that go into all computers. Questions are not
left as exercises for the reader. Rather, each mechanism and process in a basic computer is discussed.
This knowledge enables you to move ahead and explore the individual concepts in more depth while
maintaining an overall system-level view of how everything fits together.

Chapter 4, “Memory,” discusses this cornerstone of digital systems. With the conceptual under-
standing from Chapter 3 of what memory is and the functions that it serves, the discussion
progresses to explain specific types of memory devices, how they work, and how they are applicable
to different computing applications. Trade-offs of various memory technologies, including SRAM,
DRAM, flash, and EPROM, are explored to convey an understanding of why each technology has its
place in various systems.

-Balch.book Page xiv Thursday, May 15, 2003 3:46 PM

PREFACE xv

Chapter 5, “Serial Communications,” presents one of the most basic aspects of systems design:
moving data from one system to another. Without data links, computers would be isolated islands.
Communication is key to many applications, whether accessing the Internet or gathering data from a
remote sensor. Topics including RS-232 interfaces, modems, and basic multinode networking are
discussed with a focus on implementing real data links.

Chapter 6, “Instructive Microprocessors and Microcomputer Elements,” walks through five ex-
amples of real microprocessors and microcontrollers. The devices presented are significant because
of their trail-blazing roles in defining modern computing architecture, as exhibited by the fact that,
decades later, they continue to turn up in new designs in one form or another. These devices are used
as vehicles to explain a wide range of computing issues from register, memory, and bus architectures
to interrupt vectoring and operating system privilege levels.

PART 2 ADVANCED DIGITAL SYSTEMS

Digital systems operate by acquiring data, manipulating that data, and then transferring the results as
dictated by the application. Part 2 builds on the foundations of Part 1 by exploring the state of the art
in microprocessor, memory, communications, and logic implementation technologies. To effectively
conceive and implement such systems requires an understanding of what is possible, what is practi-
cal, and what tools and building blocks exist with which to get started. On completing Parts 1 and 2,
you will have acquired a broad understanding of digital systems ranging from small microcontrollers
to 32-bit microcomputer architecture and high-speed networking, and the logic design methodolo-
gies that underlie them all. You will have the ability to look at a digital system, whether pre-existing
or conceptual, and break it into its component parts—the first step in solving a problem.

Chapter 7, “Advanced Microprocessor Concepts,” discusses the key architectural topics behind
modern 32- and 64-bit computing systems. Basic concepts including RISC/CISC, floating-point
arithmetic, caching, virtual memory, pipelining, and DSP are presented from the perspective of what
a digital hardware engineer needs to know to understand system-wide implications and design useful
circuits. This chapter does not instruct the reader on how to build the fastest microprocessors, but it
does explain how these devices operate and, more importantly, what system-level design consider-
ations and resources are necessary to achieve a functioning system.

Chapter 8, “High-Performance Memory Technologies,” presents the latest SDR/DDR SDRAM
and SDR/DDR/QDR SSRAM devices, explains how they work and why they are useful in high-per-
formance digital systems, and discusses the design implications of each. Memory is used by more
than just microprocessors. Memory is essential to communications and data processing systems. Un-
derstanding the capabilities and trade-offs of such a central set of technologies is crucial to designing
a practical system. Familiarity with all mainstream memory technologies is provided to enable a
firm grasp of the applications best suited to each.

Chapter 9, “Networking,” covers the broad field of digital communications from a digital hard-
ware perspective. Network protocol layering is introduced to explain the various levels at which
hardware and software interact in modern communication systems. Much of the hardware responsi-
bility for networking lies at lower levels in moving bits onto and off of the communications medium.
This chapter focuses on the low-level details of twisted-pair and fiber-optic media, transceiver tech-
nologies, 8B10B channel coding, and error detection with CRC and checksum logic. A brief presen-
tation of Ethernet concludes the chapter to show how a real networking standard functions.

Chapter 10, “Logic Design and Finite State Machines,” explains how to implement custom logic
to make a fully functional system. Most systems use a substantial quantity of off-the-shelf logic
products to solve the problem at hand, but almost all require some custom support logic. This chap-
ter begins by presenting hardware description languages, and Verilog in particular, as an efficient

-Balch.book Page xv Thursday, May 15, 2003 3:46 PM

xvi PREFACE

means of designing synchronous and combinatorial logic. Once the basic methodology of designing
logic has been discussed, common support logic solutions, including address decoding, control/sta-
tus registers, and interrupt control logic, are shown with detailed design examples. Designing logic
to handle asynchronous inputs across multiple clock domains is presented with specific examples.
More complex logic circuits capable of implementing arbitrary algorithms are built from finite state
machines—a topic explored in detail with design examples to ensure that the concepts are properly
translated into reality. Finally, state machine optimization techniques, including pipelining, are dis-
cussed to provide an understanding of how to design logic that can be reliably implemented.

Chapter 11, “Programmable Logic Devices,” explains the various logic implementation technolo-
gies that are used in a digital system. GALs, PALs, CPLDs, and FPGAs are presented from the per-
spectives of how they work, how they are used to implement arbitrary logic designs, and the
capabilities and features of each that make them suitable for various types of designs. These devices
represent the glue that holds some systems together and the core operational elements of others. This
chapter aids in deciding which technology is best suited to each logic application and how to select
the right device to suit a specific need.

PART 3 ANALOG BASICS FOR DIGITAL SYSTEMS

All electrical systems are collections of analog circuits, but digital systems masquerade as discrete bi-
nary entities when they are properly designed. It is necessary to understand certain fundamental top-
ics in circuit analysis so that digital circuits can be made to behave in the intended binary manner.
Part 3 addresses many essential analog topics that have direct relevance to designing successful digi-
tal systems. Many digital engineers shrink away from basic DC and AC circuit analysis either for fear
of higher mathematics or because it is not their area of expertise. This needn’t be the case, because
most day-to-day analysis required for digital systems can be performed with basic algebra. Further-
more, a digital systems slant on analog electronics enables many simplifications that are not possible
in full-blown analog design. On completing this portion of the book, you will be able to apply passive
components, discrete diodes and transistors, and op-amps in ways that support digital circuits.

Chapter 12, “Electrical Fundamentals,” addresses basic DC and AC circuit analysis. Resistors, ca-
pacitors, inductors, and transformers are explained with straightforward means of determining volt-
ages and currents in simple analog circuits. Nonideal characteristics of passive components are
discussed, which is a critical aspect of modern, high-speed digital systems. Many a digital system
has failed because its designers were unaware of increasingly nonideal behavior of components as
operating frequencies get higher. Frequency-domain analysis and basic filtering are presented to ex-
plain common analog structures and how they can be applied to digital systems, especially in mini-
mizing noise, a major contributor to transient and hard-to-detect problems.

Chapter 13, “Diodes and Transistors,” explains the basic workings of discrete semiconductors and
provides specific and fully analyzed examples of how they are easily applied to digital applications.
LEDs are covered as well as bipolar and MOS transistors. An understanding of how diodes and tran-
sistors function opens up a great field of possible solutions to design problems. Diodes are essential
in power-regulation circuits and serve as voltage references. Transistors enable electrical loads to be
driven that are otherwise too heavy for a digital logic chip to handle.

Chapter 14, “Operational Amplifiers,” discusses this versatile analog building block with many
practical applications in digital systems. The design of basic amplifiers and voltage comparators is
offered with many examples to illustrate all topics presented. All examples are thoroughly analyzed
in a step-by-step process so that you can learn to use op-amps effectively on your own. Op-amps are
useful in data acquisition and interface circuits, power supply and voltage monitoring circuits, and
for implementing basic amplifiers and filters. This chapter applies the basic AC analysis skills ex-
plained previously in designing hybrid analog/digital circuits to support a larger digital system.

-Balch.book Page xvi Thursday, May 15, 2003 3:46 PM

PREFACE xvii

Chapter 15, “Analog Interfaces for Digital Systems,” covers the basics of analog-to-digital and
digital-to-analog conversion techniques. Many digital systems interact with real-world stimuli in-
cluding audio, video, and radio frequencies. Data conversion is a key portion of these systems, en-
abling continuous analog signals to be represented and processed as binary numbers. Several
common means of performing data conversion are discussed along with fundamental concepts such
as the Nyquist frequency and anti-alias filtering.

PART 4 DIGITAL SYSTEM DESIGN IN PRACTICE

When starting to design a new digital system, high-profile features such as the microprocessor and
memory architecture often get most of the attention. Yet there are essential support elements that
may be overlooked by those unfamiliar with them and unaware of the consequences of not taking
time to address necessary details. All too often, digital engineers end up with systems that almost
work. A microprocessor may work properly for a few hours and then quit. A data link may work fine
one day and then experience inexplicable bit errors the next day. Sometimes these problems are the
result of logic bugs, but mysterious behavior may be related to a more fundamental electrical flaw.
The final part of this book explains the supporting infrastructure and electrical phenomena that must
be understood to design and build reliable systems.

Chapter 16, “Clock Distribution,” explores an essential component of all digital systems: proper
generation and distribution of clocks. Many common clock generation and distribution methods are
presented with detailed circuit implementation examples including low-skew buffers, termination,
and PLLs. Related subjects, including frequency synthesis, DLLs, and source-synchronous clock-
ing, are presented to lend a broad perspective on system-level clocking strategies.

Chapter 17, “Voltage Regulation and Power Distribution” discusses the fundamental power infra-
structure necessary for system operation. An introduction to general power handling is provided that
covers issues such as circuit specifications and safety issues. Thermal analysis is emphasized for
safety and reliability concerns. Basic regulator design with discrete components and integrated cir-
cuits is explained with numerous illustrative circuits for each topic. The remainder of the chapter ad-
dresses power distribution topics including wiring, circuit board power planes, and power supply
decoupling capacitors.

Chapter 18, “Signal Integrity,” delves into a set of topics that addresses the nonideal behavior of
high-speed digital signals. The first half of this chapter covers phenomena that are common causes
of corrupted digital signals. Transmission lines, signal reflections, crosstalk, and a wide variety of
termination schemes are explained. These topics provide a basic understanding of what can go
wrong and how circuits and systems can be designed to avoid signal integrity problems. Electromag-
netic radiation, grounding, and static discharge are closely related subjects that are presented in the
second half of the chapter. An overview is presented of the problems that can arise and their possible
solutions. Examples illustrate concepts that apply to both circuit board design and overall system en-
closure design—two equally important matters for consideration.

Chapter 19, “Designing for Success,” explores a wide range of system-level considerations that
should be taken into account during the product definition and design phases of a project. Compo-
nent selection and circuit fabrication must complement the product requirements and available de-
velopment and manufacturing resources. Often considered mundane, these topics are discussed
because a successful outcome hinges on the availability and practicality of parts and technologies
that are designed into a system. System testability is emphasized in this chapter from several per-
spectives, because testing is prominent in several phases of product development. Test mechanisms
including boundary scan (JTAG), specific hardware features, and software diagnostic routines en-
able more efficient debugging and fault isolation in both laboratory and assembly line environments.
Common computer-aided design software for digital systems is presented with an emphasis on Spice

-Balch.book Page xvii Thursday, May 15, 2003 3:46 PM

xviii PREFACE

analog circuit simulation. Spice applications are covered and augmented by complete examples that
start with circuits, proceed with Spice modeling, and end with Spice simulation result analysis. The
chapter closes with a brief overview of common test equipment that is beneficial in debugging and
characterizing digital systems.

Following the main text is Appendix A, a brief list of recommended resources for further reading
and self-education. Modern resources range from books to trade journals and magazines to web sites.

Many specific vendors and products are mentioned throughout this book to serve as examples and
as starting points for your exploration. However, there are many more companies and products than
can be practically listed in a single text. Do not hesitate to search out and consider manufacturers not
mentioned here, because the ideal component for your application might otherwise lie undiscovered.
When specific components are described in this book, they are described in the context of the discus-
sion at hand. References to component specifications cannot substitute for a vendor’s data sheet, be-
cause there is not enough room to exhaustively list all of a component’s attributes, and such
specifications are always subject to revision by the manufacturer. Be sure to contact the manufac-
turer of a desired component to get the latest information on that product. Component manufacturers
have a vested interest in providing you with the necessary information to use their products in a safe
and effective manner. It is wise to take advantage of the resources that they offer. The widespread
use of the Internet has greatly simplified this task.

True proficiency in a trade comes with time and practice. There is no substitute for experience or
mentoring from more senior engineers. However, help in acquiring this experience by being pointed
in the right direction can not only speed up the learning process, it can make it more enjoyable as
well. With the right guide, a motivated beginner’s efforts can be more effectively channeled through
the early adoption of sound design practices and knowing where to look for necessary information. I
sincerely hope that this book can be your guide, and I wish you the best of luck in your endeavors.

Mark Balch

-Balch.book Page xviii Thursday, May 15, 2003 3:46 PM

ACKNOWLEDGMENTS

On completing a book of this nature, it becomes clear to the author that the work would not have
been possible without the support of others. I am grateful for the many talented engineers that I have
been fortunate to work with and learn from over the years. More directly, several friends and col-
leagues were kind enough to review the initial draft, provide feedback on the content, and bring to
my attention details that required correction and clarification. I am indebted to Rich Chernock and
Ken Wagner, who read through the entire text over a period of many months. Their thorough inspec-
tion provided welcome and valuable perspectives on everything ranging from fine technical points to
overall flow and style. I am also thankful for the comments and suggestions provided by Todd Gold-
smith and Jim O’Sullivan, who enabled me to improve the quality of this book through their input.

I am appreciative of the cooperation provided by several prominent technology companies. Men-
tor Graphics made available their ModelSim Verilog simulator, which was used to verify the correct-
ness of certain logic design examples. Agilent Technologies, Fairchild Semiconductor, and National
Semiconductor gave permission to reprint portions of their technical literature that serve as exam-
ples for some of the topics discussed.

Becoming an electrical engineer and, consequently, writing this book was spurred on by my early
interest in electronics and computers that was fully supported and encouraged by my family.
Whether it was the attic turned into a laboratory, a trip to the electronic supply store, or accompani-
ment to the science fair, my family has always been behind me.

Finally, I haven’t sufficient words to express my gratitude to my wife Laurie for her constant emo-
tional support and for her sound all-around advice. Over the course of my long project, she has
helped me retain my sanity. She has served as editor, counselor, strategist, and friend. Laurie, thanks
for being there for me every step of the way.

-Balch.book Page xix Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

ABOUT THE AUTHOR

Mark Balch is an electrical engineer in the Silicon Valley who designs high-performance computer-
networking hardware. His responsibilities have included PCB, FPGA, and ASIC design. Prior to
working in telecommunications, Mark designed products in the fields of HDTV, consumer electron-
ics, and industrial computers.

In addition to his work in product design, Mark has actively participated in industry standards
committees and has presented work at technical conferences. He has also authored magazine articles
on topics in hardware and system design. Mark holds a bachelor’s degree in electrical engineering
from The Cooper Union in New York City.

-Balch.book Page xx Thursday, May 15, 2003 3:46 PM

P R TA 1

DIGITAL FUNDAMENTALS

-Balch.book Page 1 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

3

CHAPTER 1

Digital Logic

All digital systems are founded on logic design. Logic design transforms algorithms and processes
conceived by people into computing machines. A grasp of digital logic is crucial to the understand-
ing of other basic elements of digital systems, including microprocessors. This chapter addresses vi-
tal topics ranging from Boolean algebra to synchronous logic to timing analysis with the goal of
providing a working set of knowledge that is the prerequisite for learning how to design and imple-
ment an unbounded range of digital systems.

Boolean algebra is the mathematical basis for logic design and establishes the means by which a
task’s defining rules are represented digitally. The topic is introduced in stages starting with basic
logical operations and progressing through the design and manipulation of logic equations. Binary
and hexadecimal numbering and arithmetic are discussed to explain how logic elements accomplish
significant and practical tasks.

With an understanding of how basic logical relationships are established and implemented, the
discussion moves on to explain flip-flops and synchronous logic design. Synchronous logic comple-
ments Boolean algebra, because it allows logic operations to store and manipulate data over time.
Digital systems would be impossible without a deterministic means of advancing through an algo-
rithm’s sequential steps. Boolean algebra defines algorithmic steps, and the progression between
steps is enabled by synchronous logic.

Synchronous logic brings time into play along with the associated issue of how fast a circuit can
reliably operate. Logic elements are constructed using real electrical components, each of which has
physical requirements that must be satisfied for proper operation. Timing analysis is discussed as a
basic part of logic design, because it quantifies the requirements of real components and thereby es-
tablishes a digital circuit’s practical operating conditions.

The chapter concludes with a presentation of higher-level logic constructs that are built up from
the basic logic elements already discussed. These elements, including multiplexers, tri-state buffers,
and shift registers, are considered to be fundamental building blocks in digital system design. The
remainder of this book, and digital engineering as a discipline, builds on and makes frequent refer-
ence to the fundamental items included in this discussion.

1.1 BOOLEAN LOGIC

Machines of all types, including computers, are designed to perform specific tasks in exact well de-
fined manners. Some machine components are purely physical in nature, because their composition
and behavior are strictly regulated by chemical, thermodynamic, and physical properties. For exam-
ple, an engine is designed to transform the energy released by the combustion of gasoline and oxy-
gen into rotating a crankshaft. Other machine components are algorithmic in nature, because their
designs primarily follow constraints necessary to implement a set of logical functions as defined by

-Balch.book Page 3 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

4 Digital Fundamentals

human beings rather than the laws of physics. A traffic light’s behavior is predominantly defined by
human beings rather than by natural physical laws. This book is concerned with the design of digital
systems that are suited to the algorithmic requirements of their particular range of applications. Dig-
ital logic and arithmetic are critical building blocks in constructing such systems.

An algorithm is a procedure for solving a problem through a series of finite and specific steps. It
can be represented as a set of mathematical formulas, lists of sequential operations, or any combina-
tion thereof. Each of these finite steps can be represented by a

Boolean logic

 equation. Boolean logic
is a branch of mathematics that was discovered in the nineteenth century by an English mathemati-
cian named George Boole. The basic theory is that logical relationships can be modeled by algebraic
equations. Rather than using arithmetic operations such as addition and subtraction, Boolean algebra
employs logical operations including AND, OR, and NOT. Boolean variables have two enumerated
values: true and false, represented numerically as 1 and 0, respectively.

The AND operation is mathematically defined as the product of two Boolean values, denoted A
and B for reference.

Truth tables

are often used to illustrate logical relationships as shown for the
AND operation in Table 1.1. A truth table provides a direct mapping between the possible inputs and
outputs. A basic AND operation has two inputs with four possible combinations, because each input
can be either 1 or 0 — true or false. Mathematical rules apply to Boolean algebra, resulting in a non-
zero product only when both inputs are 1.

Summation is represented by the OR operation in Boolean algebra as shown in Table 1.2. Only
one combination of inputs to the OR operation result in a zero sum: 0 + 0 = 0.

AND and OR are referred to as

binary operators,

because they require two operands. NOT is a

unary operator

, meaning that it requires only one operand. The NOT operator returns the comple-
ment of the input: 1 becomes 0, and 0 becomes 1. When a variable is passed through a NOT opera-
tor, it is said to be

inverted

.

TABLE

1.1 AND Operation Truth Table

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

TABLE

1.2 OR Operation Truth Table

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

-Balch.book Page 4 Thursday, May 15, 2003 3:46 PM

Digital Logic 5

Boolean variables may not seem too interesting on their own. It is what they can be made to rep-
resent that leads to useful constructs. A rather contrived example can be made from the following
logical statement:

“If today is Saturday or Sunday and it is warm, then put on shorts.”

Three Boolean inputs can be inferred from this statement: Saturday, Sunday, and warm. One Bool-
ean output can be inferred: shorts. These four variables can be assembled into a single logic equation
that computes the desired result,

shorts = (Saturday OR Sunday) AND warm

While this is a simple example, it is representative of the fact that any logical relationship can be ex-
pressed algebraically with products and sums by combining the basic logic functions AND, OR, and
NOT.

Several other logic functions are regarded as elemental, even though they can be broken down
into AND, OR, and NOT functions. These are not–AND (NAND), not–OR (NOR), exclusive–OR
(XOR), and exclusive–NOR (XNOR). Table 1.3 presents the logical definitions of these other basic
functions. XOR is an interesting function, because it implements a sum that is distinct from OR by
taking into account that 1 + 1 does not equal 1. As will be seen later, XOR plays a key role in arith-
metic for this reason.

All binary operators can be chained together to implement a wide function of any number of in-
puts. For example, the truth table for a ten-input AND function would result in a 1 output only when
all inputs are 1. Similarly, the truth table for a seven-input OR function would result in a 1 output if
any of the seven inputs are 1. A four-input XOR, however, will only result in a 1 output if there are
an odd number of ones at the inputs. This is because of the logical daisy chaining of multiple binary
XOR operations. As shown in Table 1.3, an even number of 1s presented to an XOR function cancel
each other out.

It quickly grows unwieldy to write out the names of logical operators. Concise algebraic expres-
sions are written by using the graphical representations shown in Table 1.4. Note that each operation
has multiple symbolic representations. The choice of representation is a matter of style when hand-
written and is predetermined when programming a computer by the syntactical requirements of each
computer programming language.

A common means of representing the output of a generic logical function is with the variable Y.
Therefore, the AND function of two variables, A and B, can be written as Y = A & B or Y = A*B. As
with normal mathematical notation, products can also be written by placing terms right next to each
other, such as Y = AB. Notation for the inverted functions, NAND, NOR, and XNOR, is achieved by

TABLE

1.3 NAND, NOR, XOR, XNOR Truth Table

A B A NAND B A NOR B A XOR B A XNOR B

0 0 1 1 0 1

0 1 1 0 1 0

1 0 1 0 1 0

1 1 0 0 0 1

-Balch.book Page 5 Thursday, May 15, 2003 3:46 PM

6 Digital Fundamentals

inverting the base function. Two equally valid ways of representing NAND are Y = A & B and Y =
!(AB). Similarly, an XNOR might be written as Y = A

⊕

B.
When logical functions are converted into circuits, graphical representations of the seven basic

operators are commonly used. In circuit terminology, the logical operators are called

gates

. Figure
1.1 shows how the basic logic gates are drawn on a circuit diagram. Naming the inputs of each gate
A and B and the output Y is for reference only; any name can be chosen for convenience. A small
bubble is drawn at a gate’s output to indicate a logical inversion.

More complex Boolean functions are created by combining Boolean operators in the same way
that arithmetic operators are combined in normal mathematics. Parentheses are useful to explicitly
convey precedence information so that there is no ambiguity over how two variables should be
treated. A Boolean function might be written as

This same equation could be represented graphically in a circuit diagram, also called a

schematic
diagram

, as shown in Fig. 1.2. This representation uses only two-input logic gates. As already men-
tioned, binary operators can be chained together to implement functions of more than two variables.

TABLE

1.4 Symbolic Representations of
Standard Boolean Operators

Boolean Operation Operators

AND *, &

OR +, |, #

XOR

⊕

, ^

NOT !, ~, A

AND OR XOR

NAND NOR XNOR

NOT

A
B

Y
A
B

Y
A
B

Y

A
B

Y
A
B

Y
A
B

Y

A Y

FIGURE 1.1 Graphical representation of basic logic gates.

Y AB C D+ +()&E F⊕=

A
B

C

D
E
F

Y

FIGURE 1.2 Schematic diagram of logic function.

-Balch.book Page 6 Thursday, May 15, 2003 3:46 PM

Digital Logic 7

An alternative graphical representation would use a three-input OR gate by collapsing the two-input
OR gates into a single entity.

1.2 BOOLEAN MANIPULATION

Boolean equations are invaluable when designing digital logic. To properly use and devise such
equations, it is helpful to understand certain basic rules that enable simplification and re-expression
of Boolean logic. Simplification is perhaps the most practical final result of Boolean manipulation,
because it is easier and less expensive to build a circuit that does not contain unnecessary compo-
nents. When a logical relationship is first set down on paper, it often is not in its most simplified
form. Such a circuit will function but may be unnecessarily complex. Re-expression of a Boolean
equation is a useful skill, because it can enable you to take better advantage of the logic resources at
your disposal instead of always having to use new components each time the logic is expanded or
otherwise modified to function in a different manner. As will soon be shown, an OR gate can be
made to behave as an AND gate, and vice versa. Such knowledge can enable you to build a less-
complex implementation of a Boolean equation.

First, it is useful to mention two basic identities:

A & A = 0 and A + A = 1

The first identity states that the product of any variable and its logical negation must always be false.
It has already been shown that both operands of an AND function must be true for the result to be
true. Therefore, the first identity holds true, because it is impossible for both operands to be true
when one is the negation of the other. The second identity states that the sum of any variable and its
logical negation must always be true. At least one operand of an OR function must be true for the re-
sult to be true. As with the first identity, it is guaranteed that one operand will be true, and the other
will be false.

Boolean algebra also has commutative, associative, and distributive properties as listed below:

•

Commutative: A & B = B & A and A + B = B + A

•

Associative: (A & B) & C = A & (B & C) and (A + B) + C = A + (B + C)

•

Distributive: A & (B + C) = A & B + A & C

The aforementioned identities, combined with these basic properties, can be used to simplify logic.
For example,

A & B & C + A & B & C

can be re-expressed using the distributive property as

A & B & (C + C)

which we know by identity equals

A & B & (1) = A & B

Another useful identity, A + AB = A + B, can be illustrated using the truth table shown in
Table 1.5.

-Balch.book Page 7 Thursday, May 15, 2003 3:46 PM

8 Digital Fundamentals

Augustus DeMorgan, another nineteenth century English mathematician, worked out a logical
transformation that is known as DeMorgan’s law, which has great utility in simplifying and re-ex-
pressing Boolean equations. Simply put, DeMorgan’s law states

and

These transformations are very useful, because they show the direct equivalence of AND and OR
functions and how one can be readily converted to the other. XOR and XNOR functions can be rep-
resented by combining AND and OR gates. It can be observed from Table 1.3 that A

⊕

 B = AB + AB
and that A

⊕ Β = ΑΒ + Α Β

. Conversions between XOR/XNOR and AND/OR functions are helpful
when manipulating and simplifying larger Boolean expressions, because simpler AND and OR func-
tions are directly handled with DeMorgan’s law, whereas XOR/XNOR functions are not.

1.3 THE KARNAUGH MAP

Generating Boolean equations to implement a desired logic function is a necessary step before a cir-
cuit can be implemented. Truth tables are a common means of describing logical relationships be-
tween Boolean inputs and outputs. Once a truth table has been created, it is not always easy to
convert that truth table directly into a Boolean equation. This translation becomes more difficult as
the number of variables in a function increases. A graphical means of translating a truth table into a
logic equation was invented by Maurice Karnaugh in the early 1950s and today is called the

Kar-
naugh map

, or

K-map

. A K-map is a type of truth table drawn such that individual product terms can
be picked out and summed with other product terms extracted from the map to yield an overall Bool-
ean equation. The best way to explain how this process works is through an example. Consider the
hypothetical logical relationship in Table 1.6.

TABLE

1.5 A + AB = A + B Truth Table

A B AB A + AB A + B

0 0 0 0 0

0 1 1 1 1

1 0 0 1 1

1 1 0 1 1

TABLE

1.6 Function of Three Variables

A B C Y

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

A B+ A&B= A&B A B+=

-Balch.book Page 8 Thursday, May 15, 2003 3:46 PM

Digital Logic 9

If the corresponding Boolean equation does not immediately become clear, the truth table can be
converted into a K-map as shown in Fig. 1.3. The K-map has one box for every combination of in-
puts, and the desired output for a given combination is written into the corresponding box. Each axis
of a K-map represents up to two variables, enabling a K-map to solve a function of up to four vari-
ables. Individual grid locations on each axis are labeled with a unique combination of the variables
represented on that axis. The labeling pattern is important, because only one variable per axis is per-
mitted to differ between adjacent boxes. Therefore, the pattern “00, 01, 10, 11” is not proper, but the
pattern “11, 01, 00, 10” would work as well as the pattern shown.

K-maps are solved using the

sum of products

principle, which states that any relationship can be
expressed by the logical OR of one or more AND terms. Product terms in a K-map are recognized by
picking out groups of adjacent boxes that all have a state of 1. The simplest product term is a single
box with a 1 in it, and that term is the product of all variables in the K-map with each variable either
inverted or not inverted such that the result is 1. For example, a 1 is observed in the box that corre-
sponds to A = 0, B = 1, and C = 1. The product term representation of that box would be ABC. A
brute force solution is to sum together as many product terms as there are boxes with a state of 1
(there are five in this example) and then simplify the resulting equation to obtain the final result. This
approach can be taken without going to the trouble of drawing a K-map. The purpose of a K-map is
to help in identifying minimized product terms so that lengthy simplification steps are unnecessary.

Minimized product terms are identified by grouping together as many adjacent boxes with a state
of 1 as possible, subject to the rules of Boolean algebra. Keep in mind that, to generate a valid prod-
uct term, all boxes in a group must have an identical relationship to all of the equation’s input vari-
ables. This requirement translates into a rule that product term groups must be found in power-of-
two quantities. For a three-variable K-map, product term groups can have only 1, 2, 4, or 8 boxes in
them.

Going back to our example, a four-box product term is formed by grouping together the vertically
stacked 1s on the left and right edges of the K-map. An interesting aspect of a K-map is that an edge
wraps around to the other side, because the axis labeling pattern remains continuous. The validity of
this wrapping concept is shown by the fact that all four boxes share a common relationship with the
input variables: their product term is B. The other variables, A and C, can be ruled out, because the
boxes are 1 regardless of the state of A and C. Only variable B is a determining factor, and it must be
0 for the boxes to have a state of 1. Once a product term has been identified, it is marked by drawing
a ring around it as shown in Fig. 1.4. Because the product term crosses the edges of the table, half-
rings are shown in the appropriate locations.

There is still a box with a 1 in it that has not yet been accounted for. One approach could be to
generate a product term for that single box, but this would not result in a fully simplified equation,
because a larger group can be formed by associating the lone box with the adjacent box correspond-
ing to A = 0, B = 0, and C = 1. K-map boxes can be part of multiple groups, and forming the largest
groups possible results in a fully simplified equation. This second group of boxes is circled in Fig.
1.5 to complete the map. This product term shares a common relationship where A = 0, C = 1, and B

1

1

1

1

0

1

0

0

A,B

C

0

1

00 01 11 10

FIGURE 1.3 Karnaugh map for function of
three variables.

C

1

1

1

1

0

1

0

0

A,B

0

1

00 01 11 10

FIGURE 1.4 Partially completed Karnaugh map
for a function of three variables.

-Balch.book Page 9 Thursday, May 15, 2003 3:46 PM

10 Digital Fundamentals

is irrelevant: . It may appear tempting to create a product term consisting of the three boxes on
the bottom edge of the K-map. This is not valid because it does not result in all boxes sharing a com-
mon product relationship, and therefore violates the power-of-two rule mentioned previously. Upon
completing the K-map, all product terms are summed to yield a final and simplified Boolean equa-
tion that relates the input variables and the output: .

Functions of four variables are just as easy to solve using a K-map. Beyond four variables, it is
preferable to break complex functions into smaller subfunctions and then combine the Boolean
equations once they have been determined. Figure 1.6 shows an example of a completed Karnaugh
map for a hypothetical function of four variables. Note the overlap between several groups to
achieve a simplified set of product terms. The lager a group is, the fewer unique terms will be re-
quired to represent its logic. There is nothing to lose and something to gain by forming a larger
group whenever possible. This K-map has four product terms that are summed for a final result:

.
In both preceding examples, each result box in the truth table and Karnaugh map had a clearly de-

fined state. Some logical relationships, however, do not require that every possible result necessarily
be a one or a zero. For example, out of 16 possible results from the combination of four variables,
only 14 results may be mandated by the application. This may sound odd, but one explanation could
be that the particular application simply cannot provide the full 16 combinations of inputs. The spe-
cific reasons for this are as numerous as the many different applications that exist. In such circum-
stances these so-called

don’t care

 results can be used to reduce the complexity of your logic.
Because the application does not care what result is generated for these few combinations, you can
arbitrarily set the results to 0s or 1s so that the logic is minimized. Figure 1.7 is an example that
modifies the Karnaugh map in Fig. 1.6 such that two don’t care boxes are present. Don’t care values
are most commonly represented with “x” characters. The presence of one x enables simplification of
the resulting logic by converting it to a 1 and grouping it with an adjacent 1. The other x is set to 0 so
that it does not waste additional logic terms. The new Boolean equation is simplified by removing B
from the last term, yielding . It is helpful to remember that x val-
ues can generally work to your benefit, because their presence imposes fewer requirements on the
logic that you must create to get the job done.

1.4 BINARY AND HEXADECIMAL NUMBERING

The fact that there are only two valid Boolean values, 1 and 0, makes the

binary

 numbering system
appropriate for logical expression and, therefore, for digital systems. Binary is a base-2 system in

AC

1

1

1

1

0

1

0

0

A,B

0

1

00 01 11 10

FIGURE 1.5 Completed Karnaugh map for a
function of three variables.

1

1

1

1

1

1

0

0

A,B

C,D

00

01

00 01 11 10

0

0

0

0

0

1

1

0

11

10

FIGURE 1.6 Completed Karnaugh map for
function of four variables.

Y B AC+=

Y A C B C ABD ABCD+ + +=

Y A C B C ABD ACD+ + +=

-Balch.book Page 10 Thursday, May 15, 2003 3:46 PM

Digital Logic 11

which only the digits 1 and 0 exist. Binary follows the same laws of mathematics as decimal, or
base-10, numbering. In decimal, the number 191 is understood to mean one hundreds plus nine tens
plus one ones. It has this meaning, because each digit represents a successively higher power of ten
as it moves farther left of the decimal point. Representing 191 in mathematical terms to illustrate
these increasing powers of ten can be done as follows:

191 = 1

×

 10

2

 + 9

×

 10

1

 + 1

×

 10

0

Binary follows the same rule, but instead of powers of ten, it works on powers of two. The num-
ber 110 in binary (written as 110

2

 to explicitly denote base 2) does not equal 110

10

 (decimal).
Rather, 110

2

 = 1

×

 2

2

 + 1

×

 2

1

 + 0

×

 2

0

 = 6

10

. The number 191

10

 can be converted to binary by per-
forming successive division by decreasing powers of 2 as shown below:

191 ÷ 2

7

 = 191 ÷ 128 = 1 remainder 63

63 ÷ 2

6

 = 63 ÷ 64 = 0 remainder 63

63 ÷ 2

5

 = 63 ÷ 32 = 1 remainder 31

31 ÷ 2

4

 = 31 ÷ 16 = 1 remainder 15

15 ÷ 2

3

 = 15 ÷ 8 = 1 remainder 7

7 ÷ 2

2

 = 7 ÷ 4 = 1 remainder 3

3 ÷ 2

1

 = 3 ÷ 2 = 1 remainder 1

1 ÷ 2

0

 = 1 ÷ 1 = 1 remainder 0

The final result is that 191

10

 = 10111111

2

. Each binary digit is referred to as a

bit

. A group of N
bits can represent decimal numbers from 0 to 2

N

 – 1. There are eight bits in a

byte

, more formally
called an

octet

 in certain circles, enabling a byte to represent numbers up to 2

8

 – 1 = 255. The pre-
ceding example shows the eight power-of-two terms in a byte. If each term, or bit, has its maximum
value of 1, the result is 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255.

While binary notation directly represents digital logic states, it is rather cumbersome to work
with, because one quickly ends up with long strings of ones and zeroes.

Hexadecimal

, or base 16
(

hex

 for short), is a convenient means of representing binary numbers in a more succinct notation.
Hex matches up very well with binary, because one hex digit represents four binary digits, given that

1

1

1

1

1

1

0

0

A,B

C,D

00

01

00 01 11 10

x

0

x

0

0

1

1

0

11

10

FIGURE 1.7 Karnaugh map for function of four vari-
ables with two “don’t care” values.

-Balch.book Page 11 Thursday, May 15, 2003 3:46 PM

12 Digital Fundamentals

2

4

 = 16. A four-bit group is called a

nibble

. Because hex requires 16 digits, the letters “A” through
“F” are borrowed for use as hex digits beyond 9. The 16 hex digits are defined in Table 1.7.

The preceding example, 191

10

 = 10111111

2

, can be converted to hex easily by grouping the eight
bits into two nibbles and representing each nibble with a single hex digit:

1011

2

 = (8 + 2 + 1)

10

 = 11

10

 = B

16

1111

2

 = (8 + 4 + 2 + 1)

10

 = 15

10

 = F

16

Therefore, 191

10

 = 10111111

2

 = BF

16

. There are two common prefixes, 0x and $, and a common
suffix, h, that indicate hex numbers. These styles are used as follows: BF

16

 = 0xBF = $BF = BFh. All
three are used by engineers, because they are more convenient than appending a subscript “16” to
each number in a document or computer program. Choosing one style over another is a matter of
preference.

Whether a number is written using binary or hex notation, it remains a string of bits, each of
which is 1 or 0. Binary numbering allows arbitrary data processing algorithms to be reduced to
Boolean equations and implemented with logic gates. Consider the equality comparison of two four-
bit numbers, M and N.

“If M = N, then the equality test is true.”

Implementing this function in gates first requires a means of representing the individual bits that
compose M and N. When a group of bits are used to represent a common entity, the bits are num-
bered in ascending or descending order with zero usually being the smallest index. The bit that rep-
resents 2

0

 is termed the

least-significant bit

, or LSB, and the bit that represents the highest power of
two in the group is called the

most-significant bit

, or MSB. A four-bit quantity would have the MSB
represent 2

3

. M and N can be ordered such that the MSB is bit number 3, and the LSB is bit number
0. Collectively, M and N may be represented as M[3:0] and N[3:0] to denote that each contains four
bits with indices from 0 to 3. This presentation style allows any arbitrary bit of M or N to be
uniquely identified with its index.

Turning back to the equality test, one could derive the Boolean equation using a variety of tech-
niques. Equality testing is straightforward, because M and N are equal only if each digit in M
matches its corresponding bit position in N. Looking back to Table 1.3, it can be seen that the XNOR
gate implements a single-bit equality check. Each pair of bits, one from M and one from N, can be
passed through an XNOR gate, and then the four individual equality tests can be combined with an
AND gate to determine overall equality,

The four-bit equality test can be drawn schematically as shown in Fig. 1.8.

TABLE

1.7 Hexadecimal Digits

Decimal value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hex digit 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary nibble 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Y M 3[] N 3[]⊕ &M 2[] N 2[]⊕ &M 1[] N 1[]⊕ &M 0[] N 0[]⊕=

-Balch.book Page 12 Thursday, May 15, 2003 3:46 PM

Digital Logic 13

Logic to compare one number against a constant is simpler than comparing two numbers, because
the number of inputs to the Boolean equation is cut in half. If, for example, one wanted to compare
M[3:0] to a constant 10012 (910), the logic would reduce to just a four-input AND gate with two in-
verted inputs:

When working with computers and other digital systems, numbers are almost always written in
hex notation simply because it is far easier to work with fewer digits. In a 32-bit computer, a value
can be written as either 8 hex digits or 32 bits. The computer’s logic always operates on raw binary
quantities, but people generally find it easier to work in hex. An interesting historical note is that hex
was not always the common method of choice for representing bits. In the early days of computing,
through the 1960s and 1970s, octal (base-8) was used predominantly. Instead of a single hex digit
representing four bits, a single octal digit represents three bits, because 23 = 8. In octal, 19110 =
2778. Whereas bytes are the lingua franca of modern computing, groups of two or three octal digits
were common in earlier times.

Because of the inherent binary nature of digital systems, quantities are most often expressed in or-
ders of magnitude that are tied to binary rather than decimal numbering. For example, a “round num-
ber” of bytes would be 1,024 (210) rather than 1000 (103). Succinct terminology in reference to
quantities of data is enabled by a set of standard prefixes used to denote order of magnitude. Further-
more, there is a convention of using a capital B to represent a quantity of bytes and using a lower-
case b to represent a quantity of bits. Commonly observed prefixes used to quantify sets of data are
listed in Table 1.8. Many memory chips and communications interfaces are expressed in units of
bits. One must be careful not to misunderstand a specification. If you need to store 32 MB of data, be
sure to use a 256 Mb memory chip rather than a 32 Mb device!

TABLE 1.8 Common Binary Magnitude Prefixes

Prefix Definition Order of Magnitude Abbreviation Usage

Kilo (1,024)1 = 1,024 210 k kB

Mega (1,024)2 = 1,048,576 220 M MB

Giga (1,024)3 = 1,073,741,824 230 G GB

Tera (1,024)4 = 1,099,511,627,776 240 T TB

Peta (1,024)5 = 1,125,899,906,842,624 250 P PB

Exa (1,024)6 = 1,152,921,504,606,846,976 260 E EB

M[3]
N[3]

M[2]
N[2]

M[1]
N[1]

M[0]
N[0]

Y

FIGURE 1.8 Four-bit equality logic.

y M 3[]&M 2[]&M 1[]&M 0[]=

-Balch.book Page 13 Thursday, May 15, 2003 3:46 PM

14 Digital Fundamentals

The majority of digital components adhere to power-of-two magnitude definitions. However,
some industries break from these conventions largely for reasons of product promotion. A key exam-
ple is the hard disk drive industry, which specifies prefixes in decimal terms (e.g., 1 MB = 1,000,000
bytes). The advantage of doing this is to inflate the apparent capacity of the disk drive: a drive that
provides 10,000,000,000 bytes of storage can be labeled as “10 GB” in decimal terms, but it would
have to be labeled as only 9.31 GB in binary terms (1010 ÷ 230 = 9.31).

1.5 BINARY ADDITION

Despite the fact that most engineers use hex data representation, it has already been shown that logic
gates operate on strings of bits that compose each unit of data. Binary arithmetic is performed ac-
cording to the same rules as decimal arithmetic. When adding two numbers, each column of digits is
added in sequence from right to left and, if the sum of any column is greater than the value of the
highest digit, a carry is added to the next column. In binary, the largest digit is 1, so any sum greater
than 1 will result in a carry. The addition of 1112 and 0112 (7 + 3 = 10) is illustrated below.

In the first column, the sum of two ones is 210, or 102, resulting in a carry to the second column.
The sum of the second column is 310, or 112, resulting in both a carry to the next column and a one
in the sum. When all three columns are completed, a carry remains, having been pushed into a new
fourth column. The carry is, in effect, added to leading 0s and descends to the sum line as a 1.

The logic to perform binary addition is actually not very complicated. At the heart of a 1-bit adder
is the XOR gate, whose result is the sum of two bits without the associated carry bit. An XOR gate
generates a 1 when either input is 1, but not both. On its own, the XOR gate properly adds 0 + 0, 0 +
1, and 1 + 0. The fourth possibility, 1 + 1 = 2, requires a carry bit, because 210 = 102. Given that a
carry is generated only when both inputs are 1, an AND gate can be used to produce the carry. A so-
called half-adder is represented as follows:

This logic is called a half-adder because it does only part of the job when multiple bits must be
added together. Summing multibit data values requires a carry to ripple across the bit positions start-
ing from the LSB. The half-adder has no provision for a carry input from the preceding bit position.
A full-adder incorporates a carry input and can therefore be used to implement a complete summa-
tion circuit for an arbitrarily large pair of numbers. Table 1.9 lists the complete full-adder input/out-
put relationship with a carry input (CIN) from the previous bit position and a carry output (COUT) to
the next bit position. Note that all possible sums from zero to three are properly accounted for by
combining COUT and sum. When CIN = 0, the circuit behaves exactly like the half-adder.

1 1 1 0 carry bits

1 1 1

+ 0 1 1

1 0 1 0

sum A B⊕=

carry AB=

-Balch.book Page 14 Thursday, May 15, 2003 3:46 PM

Digital Logic 15

Full-adder logic can be expressed in a variety of ways. It may be recognized that full-adder logic
can be implemented by connecting two half-adders in sequence as shown in Fig. 1.9. This full-adder
directly generates a sum by computing the XOR of all three inputs. The carry is obtained by combin-
ing the carry from each addition stage. A logical OR is sufficient for COUT, because there can never
be a case in which both half-adders generate a carry at the same time. If the A + B half-adder gener-
ates a carry, the partial sum will be 0, making a carry from the second half-adder impossible. The as-
sociated logic equations are as follows:

Equivalent logic, although in different form, would be obtained using a K-map, because XOR/
XNOR functions are not direct results of K-map AND/OR solutions.

1.6 SUBTRACTION AND NEGATIVE NUMBERS

Binary subtraction is closely related to addition. As with many operations, subtraction can be imple-
mented in a variety of ways. It is possible to derive a Boolean equation that directly subtracts two
numbers. However, an efficient solution is to add the negative of the subtrahend to the minuend

TABLE 1.9 1-Bit Full-Adder Truth Table

CIN A B COUT Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A
B

CIN

sum

COUT

FIGURE 1.9 Full-adder logic diagram.

sum A B CIN⊕ ⊕=

COUT AB A B⊕()CIN[]+=

-Balch.book Page 15 Thursday, May 15, 2003 3:46 PM

16 Digital Fundamentals

rather than directly subtracting the subtrahend from the minuend. These are, of course, identical op-
erations: A – B = A + (–B). This type of arithmetic is referred to as subtraction by addition of the
two’s complement. The two’s complement is the negative representation of a number that allows the
identity A – B = A + (–B) to hold true.

Subtraction requires a means of expressing negative numbers. To this end, the most-significant
bit, or left-most bit, of a binary number is used as the sign-bit when dealing with signed numbers. A
negative number is indicated when the sign-bit equals 1. Unsigned arithmetic does not involve a
sign-bit, and therefore can express larger absolute numbers, because the MSB is merely an extra
digit rather than a sign indicator.

The first step in performing two’s complement subtraction is to convert the subtrahend into a neg-
ative equivalent. This conversion is a two-step process. First, the binary number is inverted to yield a
one’s complement. Then, 1 is added to the one’s complement version to yield the desired two’s com-
plement number. This is illustrated below:

Observe that the unsigned four-bit number that can represent values from 0 to 1510 now represents
signed values from –8 to 7. The range about zero is asymmetrical because of the sign-bit and the fact
that there is no negative 0. Once the two’s complement has been obtained, subtraction is performed
by adding the two’s complement subtrahend to the minuend. For example, 7 – 5 = 2 would be per-
formed as follows, given the –5 representation obtained above:

Note that the final carry-bit past the sign-bit is ignored. An example of subtraction with a negative
result is 3 – 5 = –2.

Here, the result has its sign-bit set, indicating a negative quantity. We can check the answer by calcu-
lating the two’s complement of the negative quantity.

0 1 0 1 Original number (5)

1 0 1 0 One’s complement

+ 0 0 0 1 Add one

1 0 1 1 Two’s complement (–5)

1 1 1 1 0 Carry bits

0 1 1 1 Minuend (7)

+ 1 0 1 1 “Subtrahend” (–5)

0 0 1 0 Result (2)

1 1 0 Carry bits

0 0 1 1 Minuend (3)

+ 1 0 1 1 “Subtrahend” (–5)

1 1 1 0 Result (–2)

-Balch.book Page 16 Thursday, May 15, 2003 3:46 PM

Digital Logic 17

This check succeeds and shows that two’s complement conversions work “both ways,” going back
and forth between negative and positive numbers. The exception to this rule is the asymmetrical case
in which the largest negative number is one more than the largest positive number as a result of the
presence of the sign-bit. A four-bit number, therefore, has no positive counterpart of –8. Similarly, an
8-bit number has no positive counterpart of –128.

1.7 MULTIPLICATION AND DIVISION

Multiplication and division follow the same mathematical rules used in decimal numbering. How-
ever, their implementation is substantially more complex as compared to addition and subtraction.
Multiplication can be performed inside a computer in the same way that a person does so on paper.
Consider 12 × 12 = 144.

The multiplication process grows in steps as the number of digits in each multiplicand increases,
because the number of partial products increases. Binary numbers function the same way, but there
easily can be many partial products, because numbers require more digits to represent them in binary
versus decimal. Here is the same multiplication expressed in binary (1100 × 1100 = 10010000):

1 1 1 0 Original number (–2)

0 0 0 1 One’s complement

+ 0 0 0 1 Add one

0 0 1 0 Two’s complement (2)

1 2

X 1 2

2 4 Partial product × 100

+ 1 2 Partial product × 101

1 4 4 Final product

1 1 0 0

X 1 1 0 0

0 0 0 0 Partial product × 20

0 0 0 0 Partial product × 21

1 1 0 0 Partial product × 22

+ 1 1 0 0 Partial product × 23

1 0 0 1 0 0 0 0 Final product

-Balch.book Page 17 Thursday, May 15, 2003 3:46 PM

18 Digital Fundamentals

Walking through these partial products takes extra logic and time, which is why multiplication and,
by extension, division are considered advanced operations that are not nearly as common as addition
and subtraction. Methods of implementing these functions require trade-offs between logic com-
plexity and the time required to calculate a final result.

1.8 FLIP-FLOPS AND LATCHES

Logic alone does not a system make. Boolean equations provide the means to transform a set of in-
puts into deterministic results. However, these equations have no ability to store the results of previ-
ous calculations upon which new calculations can be made. The preceding adder logic continually
recalculates the sum of two inputs. If either input is removed from the circuit, the sum disappears as
well. A series of numbers that arrive one at a time cannot be summed, because the adder has no
means of storing a running total. Digital systems operate by maintaining state to advance through se-
quential steps in an algorithm. State is the system’s ability to keep a record of its progress in a partic-
ular sequence of operations. A system’s state can be as simple as a counter or an accumulated sum.

State-full logic elements called flip-flops are able to indefinitely hold a specific state (0 or 1) until
a new state is explicitly loaded into them. Flip-flops load a new state when triggered by the transition
of an input clock. A clock is a repetitive binary signal with a defined period that is composed of 0
and 1 phases as shown in Fig. 1.10. In addition to a defined period, a clock also has a certain duty cy-
cle, the ratio of the duration of its 0 and 1 phases to the overall period. An ideal clock has a 50/50
duty cycle, indicating that its period is divided evenly between the two states. Clocks regulate the
operation of a digital system by allowing time for new results to be calculated by logic gates and
then capturing the results in flip-flops.

There are several types of flip-flops, but the most common type in use today is the D flip-flop.
Other types of flip-flops include RS and JK, but this discussion is restricted to D flip-flops because of
their standardized usage. A D flip-flop is often called a flop for short, and this terminology is used
throughout the book. A basic rising-edge triggered flop has two inputs and one output as shown in
Fig. 1.11a. By convention, the input to a flop is labeled D, the output is labeled Q, and the clock is
represented graphically by a triangle. When the clock transitions from 0 to 1, the state at the D input
is propagated to the Q output and stored until the next rising edge. State-full logic is often described
through the use of a timing diagram, a drawing of logic state versus time. Figure 1.11b shows a basic
flop timing diagram in which the clock’s rising edge triggers a change in the flop’s state. Prior to the
rising edge, the flop has its initial state, Q0, and an arbitrary 0 or 1 input is applied as D0. The rising
edge loads D0 into the flop, which is reflected at the output. Once triggered, the flop’s input can
change without affecting the output until the next rising edge. Therefore, the input is labeled as
“don’t care,” or “xxx” following the clock’s rising edge.

Logic 1

Logic 0

Time

0 Phase 1 Phase 0 Phase 1 Phase

Period

Finite transition time of
real clock signal

FIGURE 1.10 Digital clock signal.

-Balch.book Page 18 Thursday, May 15, 2003 3:46 PM

Digital Logic 19

Rising-edge flops are the norm, although some flops are falling-edge triggered. A falling-edge
triggered flop is indicated by placing an inversion bubble at the clock input as shown in Fig. 1.12.
Operation is the same, with the exception that the polarity of the clock is inverted. The remainder of
this discussion assumes rising-edge triggered flops unless explicitly stated otherwise.

There are several common feature enhancements to the basic flop, including clock-enable, set,
and clear inputs and a complementary output. Clock enable is used as a triggering qualifier each
time a rising clock edge is detected. The D input is loaded only if clock enable is set to its active
state. Inputs in general are defined by device manufacturers to be either active-low or active-high. An
active-low signal is effective when set to 0, and an active-high signal is effective when set to 1. Sig-
nals are assumed to be active-high unless otherwise indicated. Active-low inputs are commonly indi-
cated by the same inversion bubble used to indicate a falling-edge clock. When a signal is driven to
its active state, it is said to be asserted. A signal is de-asserted when driven to its inactive state. Set
and clear inputs explicitly force a flop to a 1 or 0 state, respectively. Such inputs are often used to ini-
tialize a digital system to a known state when it is first turned on. Otherwise, the flop powers up in a
random state, which can cause problems for certain logic. Set and clear inputs can be either synchro-
nous or asynchronous. Synchronous inputs take effect only on the rising clock edge, while asynchro-
nous inputs take effect immediately upon being asserted. A complementary output is simply an
inverted copy of the main output.

A truth table for a flop enhanced with the features just discussed is shown in Table 1.10. The truth
table assumes a synchronous, active-high clock enable (EN) and synchronous, active-low set and
clear inputs. The rising edge of the clock is indicated by the ↑ symbol. When the clock is at either
static value, the outputs of the flop remain in their existing states. When the clock rises, the D, EN,

, and inputs are sampled and acted on accordingly. As a general rule, conflicting infor-
mation such as asserting and at the same time should be avoided, because unknown re-
sults may arise. The exact behavior in this case depends on the specific flop implementation and may
vary by manufacturer.

A basic application of flops is a binary ripple counter. Multiple flops can be cascaded as shown in
Fig. 1.13 such that each complementary output is fed back to that flop’s input and also used to clock
the next flop. The current count value is represented by the noninverted flop outputs with the first
flop representing the LSB. A three-bit counter is shown with an active-low reset input so that the
counter can be cleared to begin at zero. The counter circuit diagram uses the standard convention of

D Q

(a)

Clock

D

Q

xxxInitial Value = D0

Initial Value = Q0 New Value = D0

(b)

FIGURE 1.11 Rising-edge triggered flop.

(a) (b)

D Q Clock

D

Q

xxxInitial Value = D0

Initial Value = Q0 New Value = D0

FIGURE 1.12 Falling-edge triggered flop.

CLR SET
CLR SET

-Balch.book Page 19 Thursday, May 15, 2003 3:46 PM

20 Digital Fundamentals

showing electrical connectivity between intersecting wires by means of a junction dot. Wires that
cross without a dot at their intersection are not electrically connected.

The ripple counter’s operation is illustrated in Fig. 1.14. Each bit starts out at zero if RESET is as-
serted. Counting begins on the first rising edge of CLK following the de-assertion of RESET. The
LSB, Q[0], increments from 0 to 1, because its D input is driven by the complementary output,
which is 1. The complementary output transitions to 0, which does not trigger the Q[1] rising-edge
flop, but IT does set up the conditions for a trigger after the next CLK rising edge. When CLK rises
again, Q[0] transitions back to 0, and Q[0] transitions to 1, forming a rising edge to trigger Q[1],
which loads a 1. This sequence continues until the count value reaches 7, at which point the counter
rolls over to zero, and the sequence begins again.

An undesirable characteristic of the ripple counter is that it takes longer for a new count value to
stabilize as the number of bits in the counter increases. Because each flop’s output clocks the next
flop in the sequence, it can take some time for all flops to be updated following the CLK rising edge.
Slow systems may not find this burdensome, but the added ripple delay is unacceptable in most high-
speed applications. Ways around this problem will be discussed shortly.

TABLE 1.10 Enhanced Flop Truth Table

Clock D EN CLR SET Q Q

0 X X X X Qstat ic

↑ 0 0 1 1 Qstat ic

↑ 0 1 1 1 0 1

↑ 1 1 1 1 1 0

↑ X X 0 1 0 1

↑ X X 1 0 1 0

↑ X X 0 0 ? ?

1 X X X X Qstat ic

D

Q

CLR

Q D

Q

CLR

Q D

Q

CLR

Q

RESET

CLK

Q[0] Q[1] Q[2]

FIGURE 1.13 Three-bit ripple counter.

Qstatic

Qstatic

Qstatic

-Balch.book Page 20 Thursday, May 15, 2003 3:46 PM

Digital Logic 21

A relative of the flop is the D-type latch, which is also capable of retaining its state indefinitely. A
latch has a D input, a Q output, and an enable (EN) signal. Whereas a flop transfers its input to its
output only on the active clock edge, a latch continuously transfers D to Q while EN is active.
Latches are level sensitive, whereas flops are edge sensitive. A latch retains its state while EN is in-
active. Table 1.11 shows the latch’s truth table. Latches are simpler than flops and are unsuited to
many applications in which flops are used. Latches would not substitute for flops in the preceding
ripple counter example because, while the enable input is high, a continuous loop would be formed
between the complementary output and input. This would result in rapid, uncontrolled oscillation at
each latch during the time that the enable is held high.

Latches are available as discrete logic elements and can also be assembled from simpler logic
gates. The Boolean equation for a latch requires feeding back the output as follows:

When EN is high, D is passed to Q. Q then feeds back to the second AND function, which maintains
the state when EN is low. Latches are used in designs based on older technology that was conceived
when the latch’s simplicity yielded a cost savings or performance advantage. Most state-full ele-
ments today are flops unless there is a specific benefit to using a latch.

1.9 SYNCHRONOUS LOGIC

It has been shown that clock signals regulate the operation of a state-full digital system by causing
new values to be loaded into flops on each active clock edge. Synchronous logic is the general term

TABLE 1.11 D-Latch Truth Table

EN D Q

0 X Q0

1 0 0

1 1 1

CLK

Q[0]

0

RESET

Q[1]

Q[2]

Count: Q[2:0] 1 2 3 4 5 6 7 0

FIGURE 1.14 Ripple counter timing diagram.

Q EN&D() EN&Q()+=

-Balch.book Page 21 Thursday, May 15, 2003 3:46 PM

22 Digital Fundamentals

for a collection of logic gates and flops that are controlled by a common clock. The ripple counter is
not synchronous, even though it is controlled by a clock, because each flop has its own clock, which
leads to the undesirable ripple output characteristic previously mentioned. A synchronous circuit has
all of its flops transition at the same time so that they settle at the same time, with a resultant im-
provement in performance. Another benefit of synchronous logic is easier circuit analysis, because
all flops change at the same time.

Designing a synchronous counter requires the addition of logic to calculate the next count value
based on the current count value. Figure 1.15 shows a high-level block diagram of a synchronous
counter and is also representative of synchronous logic in general. Synchronous circuits consist of
state-full elements (flops), with combinatorial logic providing feedback to generate the next state
based on the current state. Combinatorial logic is the term used to describe logic gates that have no
state on their own. Inputs flow directly through combinatorial logic to outputs and must be captured
by flops to preserve their state.

An example of synchronous logic design can be made of converting the three-bit ripple counter
into a synchronous equivalent. Counters are a common logic structure, and they can be designed in a
variety of ways. The Boolean equations for small counters may be directly solved using a truth table
and K-map. Larger counters may be assembled in regular structures using binary adders that gener-
ate the next count value by adding 1 to the current value. A three-bit counter is easily handled with a
truth-table methodology. The basic task is to create a truth table relating each possible current state
to a next state as shown in Table 1.12.

TABLE 1.12 Three-Bit Counter Truth Table

Reset Current State Next State

1 XXX 000

0 000 001

0 001 010

0 010 011

0 011 100

0 100 101

0 101 110

0 110 111

0 111 000

Next State
Logic

Count State
Flip-Flops

Count Value

Reset

Clock

FIGURE 1.15 Synchronous counter block diagram.

-Balch.book Page 22 Thursday, May 15, 2003 3:46 PM

Digital Logic 23

Three Boolean equations are necessary, one for each bit that feeds back to the count state flops. If
the flop inputs are labeled D[2:0], the outputs are labeled Q[2:0], and an active-high synchronous re-
set is defined, the following equations can be developed:

Each equation’s output is forced to 0 when RESET is asserted. Otherwise, the counter increments on
each rising clock edge. Synchronous logic design allows any function to be implemented by chang-
ing the feedback logic. It would not be difficult to change the counter logic to count only odd or even
numbers, or to count only as high as 5 before rolling over to 0. Unlike the ripple counter, whose
structure supports a fixed counting sequence, next state logic can be defined arbitrarily according to
an application’s needs.

1.10 SYNCHRONOUS TIMING ANALYSIS

Logic elements, including flip-flops and gates, are physical devices that have finite response times to
stimuli. Each of these elements exhibits a certain propagation delay between the time that an input is
presented and the time that an output is generated. As more gates are chained together to create more
complex logic functions, the overall propagation delay of signals between the end points increases.
Flip-flops are triggered by the rising edge of a clock to load their new state, requiring that the input
to the flip-flop is stable prior to the rising edge. Similarly, a flip-flop’s output stabilizes at a new state
some time after the rising edge. In between the output of a flip-flop and the input of another flip-flop
is an arbitrary collection of logic gates, as seen in the preceding synchronous counter circuit. Syn-
chronous timing analysis is the study of how the various delays in a synchronous circuit combine to
limit the speed at which that circuit can operate. As might be expected, circuits with lesser delays are
able to run faster.

A clock breaks time into discrete intervals that are each the duration of a single clock period.
From a timing analysis perspective, each clock period is identical to the last, because each rising
clock edge is a new flop triggering event. Therefore, timing analysis considers a circuit’s delays over
one clock period, between successive rising (or falling) clock edges. Knowing that a wide range of
clock frequencies can be applied to a circuit, the question of time arises of how fast the clock can go
before the circuit stops working reliably. The answer is that the clock must be slow enough to allow
sufficient time for the output of a flop to stabilize, for the signal to propagate through the combinato-
rial logic gates, and for the input of the destination flop to stabilize. The clock must also be slow
enough for the flop to reliably detect each edge. Each flop circuit is characterized by a minimum
clock pulse width that must be met. Failing to meet this minimum time can result in the flop missing
clock events.

Timing analysis revolves around the basic timing parameters of a flop: input setup time (tSU), in-
put hold time (tH), and clock-to-out time (tCO). Setup time specifies the time immediately preceding
the rising edge of the clock by which the input must be stable. If the input changes too soon before
the clock edge, the electrical circuitry within the flop will not have enough time to properly recog-
nize the state of the input. Hold time places a restriction on how soon after the clock edge the input

D 0[] Q 0[]&RESET=

D 1[] Q 0[]&Q 1[]() Q 0[]&Q 1[]()+{ }&RESET Q 0[] Q 1[]⊕()&RESET= =

D 2[] Q 2[]&Q 1[]&Q 0[]() Q 2[]&Q 1[]() Q 2[]&Q 0[]()+ +{ }&RESET=

-Balch.book Page 23 Thursday, May 15, 2003 3:46 PM

24 Digital Fundamentals

may begin to change. Again, if the input changes too soon after the clock edge, it may not be prop-
erly detected by the circuitry. Clock-to-out time specifies how soon after the clock edge the output
will be updated to the state presented at the input. These parameters are very brief in duration and
are usually measured in nanoseconds. One nanosecond, abbreviated “ns,” is one billionth of a sec-
ond. In very fast microchips, they may be measured in picoseconds, or one trillionth or a second.

Consistent terminology is necessary when conducting timing analysis. Timing is expressed in
units of both clock frequency and time. Clock frequency, or speed, is quantified in units of hertz,
named after the twentieth century German physicist, Gustav Hertz. One hertz is equivalent to one
clock cycle per second—one transition from low to high and a second transition from high to low.
Units of hertz are abbreviated as Hz and are commonly accompanied by prefixes that denote an or-
der of magnitude. Commonly observed prefixes used to quantify clock frequency and their defini-
tions are listed in Table 1.13. Unlike quantities of bytes that use binary-based units, clock frequency
uses decimal-based units.

Units of time are used to express a clock’s period as well as basic logic element delays such as
the aforementioned tSU, tH, and tCO. As with frequency, standard prefixes are used to indicate the
order of magnitude of a time specification. However, rather than expressing positive powers of ten,
the exponents are negative. Table 1.14 lists the common time magnitude prefixes employed in tim-
ing analysis.

Aside from basic flop timing characteristics, timing analysis must take into consideration the fi-
nite propagation delays of logic gates and wires that connect flop outputs to flop inputs. All real
components have nonzero propagation delays (the time required for an electrical signal to move
from an input to an output on the same component). Wires have an approximate propagation delay
of 1 ns for every 6 in of length. Logic gates can have propagation delays ranging from more than

TABLE 1.13 Common Clock Frequency Magnitude Prefixes

Prefix Definition Order of Magnitude Abbreviation Usage

Kilo Thousand 103 K kHz

Mega Million 106 M MHz

Giga Billion 109 G GHz

Tera Trillion 1012 T THz

TABLE 1.14 Common Time Magnitude Prefixes

Prefix Definition Order of Magnitude Abbreviation Usage

Milli One-thousandth 10–3 m ms

Micro One-millionth 10–6 µ µs

Nano One-billionth 10–9 n ns

Pico One-trillionth 10–12 p ps

-Balch.book Page 24 Thursday, May 15, 2003 3:46 PM

Digital Logic 25

10 ns down to the picosecond range, depending on the technology being used. Newly designed logic
circuits should be analyzed for timing to ensure that the inherent propagation delays of the logic
gates and interconnect wiring do not cause a flop’s tSU and tH specifications to be violated at a given
clock frequency.

Basic timing analysis can be illustrated with the example logic circuit shown Fig. 1.16. There are
two flops connected by two gates. The logic inputs shown unconnected are ignored in this instance,
because timing analysis operates on a single path at a time. In reality, other paths exist through these
unconnected inputs, and each path must be individually analyzed. Each gate has a finite propagation
delay, tPROP, which is assumed to be 5 ns for the sake of discussion. Each flop has tCO = 7 ns, tSU = 3
ns, and tH = 1 ns. For simplicity, it is assumed that there is zero delay through the wires that connect
the gates and flops.

The timing analysis must cover one clock period by starting with one rising clock edge and end-
ing with the next rising edge. How fast can the clock run? The first delay encountered is tCO of the
source flop. This is followed by tPROP of the two logic gates. Finally, tSU of the destination flop must
be met. These parameters may be summed as follows:

tCLOCK = tCO + 2 × tPROP + tSU = 20 ns

The frequency and period of a clock are inversely related such that F = 1/t. A 20-ns clock period
corresponds to a 50-MHz clock frequency: 1/(20 × 10–9) = 50 × 106. Running at exactly the calcu-
lated clock period leaves no room for design margin. Increasing the period by 5 ns reduces the clock
to 40 MHz and provides headroom to account for propagation delay through the wires.

Hold time compliance can be verified following setup time analysis. Meeting a flop’s hold time is
often not a concern, especially in slower circuits as shown above. The 1 ns tH specification is easily
met, because the destination flop’s D-input will not change until tCO + 2 × tPROP = 17 ns after the
rising clock edge. Actual timing parameters have variance associated with them, and the best-case
tCO and tPROP would be somewhat smaller numbers. However, there is so much margin in this case
that tH compliance is not a concern.

Hold-time problems sometimes arise in fast circuits where tCO and tPROP are very small. When
there are no logic gates between two flops, tPROP can be nearly zero. If the minimum tCO is nearly
equal to the maximum tH, the situation should be carefully investigated to ensure that the destination
flop’s input remains stable for a sufficient time period after the active clock edge.

1.11 CLOCK SKEW

The preceding timing analysis example is simplified for ease of presentation by assuming that the
source and destination flops in a logic path are driven by the same clock signal. Although a synchro-
nous circuit uses a common clock for all flops, there are small, nonzero variances in clock timing at
individual flops. Wiring delay variances are one source of this nonideal behavior. When a clock
source drives two flops, the two wires that connect to each flop’s clock input are usually not identical

D Q D Q

FIGURE 1.16 Hypothetical logic circuit.

-Balch.book Page 25 Thursday, May 15, 2003 3:46 PM

26 Digital Fundamentals

in length. This length inequality causes one flop’s clock to arrive slightly before or after the other
flop’s clock.

Clock skew is the term used to characterize differences in edge timing between multiple clock in-
puts. Skew caused by wiring delay variance can be effectively minimized by designing a circuit so
that clock distribution wires are matched in length. A more troublesome source of clock skew arises
when there are too many clock loads to be driven by a single source. Multiple clock drivers are nec-
essary in these situations, with small variations in electrical characteristics between each driver.
These driver variances result in clock skew across all the flops in a synchronous design. As might be
expected, clock skew usually reduces the frequency at which a synchronous circuit can operate.

Clock skew is subtracted from the nominal clock period for setup time analysis purposes, because
the worst-case scenario shown in Fig. 1.17 must be considered. This scenario uses the same logic
circuit in Fig. 1.16 but shows two separate clocks with 1 ns of skew between them. The worst timing
occurs when the destination flop’s clock arrives before that of the source flop, thereby reducing the
amount of time available for the D-input to stabilize. Instead of the circuit having zero margin with a
20-ns period, clock skew increases the minimum period to 21 ns. The extra 1 ns compensates for the
clock skew to restore a minimum source to destination period time of 20 ns. A slower circuit such as
this one is not very sensitive to clock skew, especially after backing off to 40 MHz for timing margin
as shown previously. Digital systems that run at relatively low frequencies may not be affected by
clock skew, because they often have substantial margins built into their timing analyses. As clock
speeds increase, the margin decreases to the point at which clock skew and interconnect delay be-
come important limiting factors in system design.

Hold time compliance can become more difficult in the presence of clock skew. The basic prob-
lem occurs when clock skew reduces the source flop’s apparent tCO from the destination flop’s per-
spective, causing the destination’s input to change before tH is satisfied. Such problems are more
prone in high-speed systems, but slower systems are not immune. Figure 1.18 shows a timing dia-
gram for a circuit with 1 ns of clock skew where two flops are connected by a short wire with nearly
zero propagation delay. The flops have tCO = 2 ns and tH = 1.5 ns. A scenario like this may be expe-
rienced when connecting two chips that are next to each other on a circuit board. In the absence of
clock skew, the destination flop’s input would change tCO after the rising clock edge, exceeding tH by
0.5 ns. The worst-case clock skew causes the source flop clock to arrive before that of the destination
flop, resulting in an input change just 1 ns after the rising clock edge and violating tH.

Solutions to skew-induced tH violations include reducing the skew or increasing the delay be-
tween source and destination. Unfortunately, increasing a signal’s propagation delay may cause tSU
violations in high-speed systems.

Source Clock

Destination Clock

Source Output Current StatePrevious State

tCO

Destination Input Previous State Current State

tPROP tSU

Margin referenced to skewed
destination clock

1 ns skew

FIGURE 1.17 Clock skew influence on setup time analysis.

-Balch.book Page 26 Thursday, May 15, 2003 3:46 PM

Digital Logic 27

Hold time may not be a problem in slower circuits, because slower circuits often have paths be-
tween flops with sufficiently long propagation delays to offset clock skew problems. However,
even slow circuits can experience hold-time problems if flops are connected with wires or compo-
nents that have small propagation delays. It is also important to remember that hold-time compli-
ance is not a function of clock period but of clock skew, tCO, and tH. Therefore, a slow system that
uses fast components may have problems if the clock skew exceeds the difference between tCO
and tH.

1.12 CLOCK JITTER

An ideal clock signal has a fixed frequency and duty cycle, resulting in its edges occurring at the ex-
act time each cycle. Real clock signals exhibit slight variations in the timing of successive edges.
This variation is known as jitter and is illustrated in Fig. 1.19. Jitter is caused by nonideal behavior
of clock generator circuitry and results in some cycles being longer than nominal and some being
shorter. The average clock frequency remains constant, but the cycle-to-cycle variance may cause
timing problems.

Just as clock skew worsens the analysis for both tSU and tH, so does jitter. Jitter must be sub-
tracted from calculated timing margins to determine a circuit’s actual operating margin. Some sys-
tems are more sensitive to jitter than others. As operating frequencies increase, jitter becomes
more of a problem, because it becomes a greater percentage of the clock period and flop timing
specifications. Jitter specifications vary substantially. Many systems can tolerate 0.5 ns of jitter
and more. Very sensitive systems may require high-quality clock circuitry that can reduce jitter to
below 100 ps.

Source Clock

Destination Clock

Source Output Current State

tCO

Next State

tH

violation

1 ns skew

FIGURE 1.18 Hold-time violation caused by clock skew.

Ideal Clock Signal

Edge Timing Variation: Jitter

FIGURE 1.19 Clock jitter.

-Balch.book Page 27 Thursday, May 15, 2003 3:46 PM

28 Digital Fundamentals

1.13 DERIVED LOGICAL BUILDING BLOCKS

Basic logic gates and flops can be combined to form more complex structures that are treated as
building blocks when designing larger digital systems. There are various common functions that an
engineer does not want to redesign from scratch each time. Some of the common building blocks are
multiplexers, demultiplexers, tri-state buffers, registers, and shift registers. Counters represent an-
other building block alluded to in the previous discussion of synchronous logic. A counter is a com-
bination of flops and gates that can count either up or down, depending on the implementation.

Multiplexers, sometimes called selectors, are combinatorial elements that function as a multiposi-
tion logical switches to select one of many inputs. Figure 1.20 shows a common schematic represen-
tation of a multiplexer, often shortened to mux. A mux has an arbitrary number of data inputs, often
an even power of two, and a smaller number of selector inputs. According to the binary state of the
selector inputs, a specific data input is transferred to the output.

Muxes are useful, because logic circuits often need to choose between multiple data values. A
counter, for example, may choose between loading a next count value or loading an arbitrary value
from external logic. A possible truth table for a 4-to-1 mux is shown in Table 1.15. Each selector in-
put value maps to one, and only one, data input.

A demultiplexer, also called a demux, performs the inverse operation of a mux by transferring a
single input to the output that is selected by select inputs. A demux is drawn similarly to a mux, as
shown in Fig. 1.21.

TABLE 1.15 Four-to-One Multiplexer
Truth Table

S1 S0 Y

0 0 A

0 1 B

1 0 C

1 1 D

A

B

C

D

Y

S1 S0

FIGURE 1.20 Four-to-one multiplexer.

A

B

C

D

Din

S1 S0

FIGURE 1.21 One-to-four demultiplexer.

-Balch.book Page 28 Thursday, May 15, 2003 3:46 PM

Digital Logic 29

A possible truth table for a 1-to-4 demux is shown in Table 1.16. Those outputs that are not se-
lected are held low. The output that is selected assumes the state of the data input.

A popular use for a demux is as a decoder. The main purpose of a decoder is not so much to trans-
fer an input to one of several outputs but simply to assert one output while not asserting those that
are not selected. This function has great utility in microprocessor address decoding, which involves
selecting one of multiple devices (e.g., a memory chip) at a time for access. The truth table for a 2-
to-4 decoder is shown in Table 1.17. The decoder’s outputs are active-low, because most memory
and microprocessor peripheral chips use active-low enable signals.

Tri-state buffers are combinatorial elements that can drive three out-
put states rather than the standard 0 and 1 states. The third state is
off, often referred to as high-impedance, hi-Z, or just Z. Tri-state
buffers enable multiple devices to share a common output wire by
cooperatively agreeing to have only one device drive the wire at any
one time, during which all other devices remain in hi-Z. A tri-state
buffer is drawn as shown in Fig. 1.22.

A tri-state buffer passes its D-input to Y-output when enabled.
Otherwise, the output will be turned off as shown in Table 1.18.

Electrically, tri-state behavior allows multiple tri-state buffers to be connected to the same wire
without contention. Contention normally results when multiple outputs are connected together be-
cause some want to drive high and some low. This creates potentially damaging electrical contention
(a short circuit). However, if multiple tri-state buffers are connected, and only one at a time is en-
abled, there is no possibility of contention. The main advantage here is that digital buses in comput-

TABLE 1.16 One-to-Four Demultiplexer
Truth Table

S1 S0 A B C D

0 0 Din 0 0 0

0 1 0 Din 0 0

1 0 0 0 Din 0

1 1 0 0 0 Din

TABLE 1.17 Two-to-Four Decoder Truth Table

S1 S0 A B C D

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

EN

D Y

FIGURE 1.22 Tri-state buffer.

-Balch.book Page 29 Thursday, May 15, 2003 3:46 PM

30 Digital Fundamentals

ers can be arbitrarily expanded by adding more devices without the need to add a full set of input or
output signals each time a new device is added. In a logical context, a bus is a collection of wires that
serve a common purpose. For example, a computer’s data bus might be eight wires that travel to-
gether and collectively represent a byte of data. Electrical contention on a bus is often called a bus-
fight. Schematically, multiple tri-state buffers might be drawn as shown in Fig. 1.23.

Each tri-state buffer contains its own enable signal, which is usually driven by some type of de-
coder. The decoder guarantees that only one tri-state buffer is active at any one time, preventing con-
tention on the common wire.

Registers are collections of multiple flops arranged in a group with a common function. They are
a common synchronous-logic building block and are commonly found in multiples of 8-bit widths,
thereby representing a byte, which is the most common unit of information exchange in digital sys-
tems. An 8-bit register provides a common clock and clock enable for all eight internal flops. The
clock enable allows external control of when the flops get reloaded with new D-input values and
when they retain their current values. It is common to find registers that have a built-in tri-state
buffer, allowing them to be placed directly onto a shared bus without the need for an additional tri-
state buffer component.

Whereas normal registers simply store values, synchronous elements called shift registers manip-
ulate groups of bits. Shift registers exist in all permutations of serial and parallel inputs and outputs.
The role of a shift register is to somehow change the sequence of bits in an array of bits. This in-
cludes creating arrays of bits from a single bit at a time (serial input) or distributing an array of bits
one bit at a time (serial output). A serial-in, parallel-out shift register can be implemented by chain-
ing several flops together as shown in Fig. 1.24.

TABLE 1.18 Tri-state Buffer Truth Table

EN D Y

0 x Z

1 0 0

1 1 1

FIGURE 1.23 Multiple tri-state buffers on a sin-
gle wire.

Clk

Din
Dout[3]

Dout[1]
Dout[0]

Dout[2]

D
Q

D
Q

D
Q

D
Q

FIGURE 1.24 Serial-in, parallel-out shift register.

-Balch.book Page 30 Thursday, May 15, 2003 3:46 PM

Digital Logic 31

On each rising clock edge, a new serial input bit is clocked into the first flop, and each flop in suc-
cession loads its new value based on its predecessor’s value. At any given time, the parallel output of
an N-bit shift register reflects the state of the last N bits shifted in up to that time. In this example
(N = 4), a serial stream of bits collected in four clock cycles can be operated upon as a unit of four
bits once every fourth cycle. As shown, data is shifted in MSB first, because Dout[3] is shown in the
last bit position. Such a simple transformation is useful, because it is often more practical to commu-
nicate digital data in serial form where only one bit of information is sent per clock cycle, but im-
practical to operate on that data serially. An advantage of serial communication is that fewer wires
are required as compared to parallel. Yet, parallel representation is important because arithmetic
logic can get overly cumbersome if it has to keep track of one bit at a time. A parallel-in, serial-out
shift register is very similar, as shown in Fig. 1.25, with the signals connected for MSB first opera-
tion to match the previous example.

Four flops are used here as well. However, instead of taking in one bit at a time, all flops are
loaded when the load signal is asserted. The 2-to-1 muxes are controlled by the load signal and de-
termine if the flops are loaded with new parallel data or shifted serial data. Over each of the next four
clock cycles, the individual bits are shifted out one at a time. If these two shift register circuits were
connected together, a crude serial data communications link could be created whereby parallel data
is converted to serial and then back to parallel at each end.

Dout

Clk

D
Q

D
Q

D
Q

D
Q

Load

Din[0] Din[1] Din[2] Din[3]

FIGURE 1.25 Parallel-in, serial-out shift register.

-Balch.book Page 31 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

33

CHAPTER 2

Integrated Circuits and the
7400 Logic Families

Once basic logic design theory is understood, the next step is transferring that knowledge to a practi-
cal context that includes real components. This chapter explains what an integrated circuit is and
how off-the-shelf components can be used to implement arbitrary logic functions.

Integrated circuits, called

chips

 by engineers and laymen alike, are what enable digital systems as
we know them. The chapter begins with an introduction to how chips are constructed. Familiarity
with basic chip fabrication techniques and terminology enables an engineer to comprehend the dis-
tinctions between various products so that their capabilities can be more readily evaluated.

A survey of packaging technology follows to provide familiarity with the common physical char-
acteristics of commercially available chips. Selecting a package that is appropriate for a particular
design can be as critical as selecting the functional parameters of the chip itself. It is important to un-
derstand the variety of available chip packages and why different types of packages are used for dif-
ferent applications.

The chapter’s major topic follows next: the 7400 logic families. These off-the-shelf logic chips
have formed the basis of digital systems for decades and continue to do so, although in fewer num-
bers as a result of the advent of denser components. 7400 family features are presented along with
complete examples of how the chips are applied in real designs. The purpose of this discussion is to
impart a practical and immediately applicable understanding of how digital system design can be ex-
ecuted with readily available components. Although these devices are not appropriate for every ap-
plication, many basic problems can be solved with 7400 chips once it is understood how to employ
them.

Having seen how real chips can be used to solve actual design problems, a closely related topic is
presented at the end of this chapter: the interpretation of data sheets. Manufacturers’ data sheets con-
tain critical information that must be understood to ensure a working design. An understanding of
how data sheets are organized and the types of information that they contain is a necessary knowl-
edge base for every engineer.

2.1 THE INTEGRATED CIRCUIT

Digital logic and electronic circuits derive their functionality from electronic switches called

transis-
tors

. Roughly speaking, the transistor can be likened to an electronically controlled valve whereby
energy applied to one connection of the valve enables energy to flow between two other connections.
By combining multiple transistors, digital logic building blocks such as AND gates and flip-flops are
formed. Transistors, in turn, are made from

semiconductors

. Consult a periodic table of elements in
a college chemistry textbook, and you will locate semiconductors as a group of elements separating
the metals and nonmetals. They are called semiconductors because of their ability to behave as both

-Balch.book Page 33 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

34 Digital Fundamentals

metals and nonmetals. A semiconductor can be made to conduct electricity like a metal or to insulate
as a nonmetal does. These differing electrical properties can be accurately controlled by mixing the
semiconductor with small amounts of other elements. This mixing is called

doping

. A semiconduc-
tor can be doped to contain more electrons (N-type) or fewer electrons (P-type). Examples of com-
monly used semiconductors are silicon and germanium. Phosphorous and boron are two elements
that are used to dope N-type and P-type silicon, respectively.

A transistor is constructed by creating a sandwich of differently doped semiconductor layers. The
two most common types of transistors, the

bipolar-junction transistor

(BJT) and the

field-effect tran-
sistor

(FET) are schematically illustrated in Fig. 2.1. This figure shows both the silicon structures of
these elements and their graphical symbolic representation as would be seen in a circuit diagram.
The BJT shown is an

NPN

 transistor, because it is composed of a sandwich of N-P-N doped silicon.
When a small current is injected into the

base

terminal, a larger current is enabled to flow from the

collector

 to the

emitter

. The FET shown is an N-channel FET; it is composed of two N-type regions
separated by a P-type substrate. When a voltage is applied to the insulated

gate

terminal, a current is
enabled to flow from the

drain

 to the

source

. It is called N-channel, because the gate voltage induces
an N-channel within the substrate, enabling current to flow between the N-regions.

Another basic semiconductor structure shown in Fig. 2.1 is a

diode,

which is formed simply by a
junction of N-type and P-type silicon. Diodes act like one-way valves by conducting current only
from P to N. Special diodes can be created that emit light when a voltage is applied. Appropriately
enough, these components are called

light emitting diodes

, or LEDs. These small lights are manufac-
tured by the millions and are found in diverse applications from telephones to traffic lights.

The resulting small chip of semiconductor material on which a transistor or diode is fabricated can
be encased in a small plastic package for protection against damage and contamination from the out-
side world. Small wires are connected within this package between the semiconductor sandwich and
pins that protrude from the package to make electrical contact with other parts of the intended circuit.
Once you have several discrete transistors, digital logic can be built by directly wiring these compo-
nents together. The circuit will function, but any substantial amount of digital logic will be very
bulky, because several transistors are required to implement each of the various types of logic gates.

At the time of the invention of the transistor in 1947 by John Bardeen, Walter Brattain, and Will-
iam Shockley, the only way to assemble multiple transistors into a single circuit was to buy separate
discrete transistors and wire them together. In 1959, Jack Kilby and Robert Noyce independently in-

FIGURE 2.1 BJT, FET, and diode structural and symbolic representations.

-Balch.book Page 34 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 35

vented a means of fabricating multiple transistors on a single slab of semiconductor material. Their
invention would come to be known as the

integrated circuit

, or IC, which is the foundation of our
modern computerized world. An IC is so called because it integrates multiple transistors and diodes
onto the same small semiconductor chip. Instead of having to solder individual wires between dis-
crete components, an IC contains many small components that are already wired together in the de-
sired topology to form a circuit.

A typical IC, without its plastic or ceramic package, is a square or rectangular silicon die measur-
ing from 2 to 15 mm on an edge. Depending on the level of technology used to manufacture the IC,
there may be anywhere from a dozen to tens of millions of individual transistors on this small chip.
This amazing density of electronic components indicates that the transistors and the wires that con-
nect them are extremely small in size. Dimensions on an IC are measured in units of micrometers,
with one micrometer (1 µm) being one millionth of a meter. To serve as a reference point, a human
hair is roughly 100 µm in diameter. Some modern ICs contain components and wires that are mea-
sured in increments as small as 0.1 µm! Each year, researchers and engineers have been finding new
ways to steadily reduce these feature sizes to pack more transistors into the same silicon area, as in-
dicated in Fig. 2.2.

Many individual chemical process steps are involved in fabricating an IC. The process begins
with a thin, clean, polished semiconductor wafer — most often silicon — that is usually one of three
standard diameters: 100, 200, or 300 mm. The circular wafer is cut from a cylindrical ingot of solid
silicon that has a perfect crystal structure. This perfect crystal base structure is necessary to promote
the formation of other crystals that will be deposited by subsequent processing steps. Many dice are
arranged on the wafer in a grid as shown in Fig. 2.3. Each die is an identical copy of a master pattern
and will eventually be sliced from the wafer and packaged as an IC. An IC designer determines how
different portions of the silicon wafer should be modified to create transistors, diodes, resistors, ca-
pacitors, and wires. This IC design layout can then be used to, in effect, draw tiny components onto
the surface of the silicon. Sequential drawing steps are able to build sandwiches of differently doped
silicon and metal layers.

Engineers realized that light provided the best way to faithfully replicate patterns from a template
onto a silicon substrate, similar to what photographers have been doing for years. A photographer
takes a picture by briefly exposing film with the desired image and then developing this film into a
negative. Once this negative has been created, many identical photographs can be reproduced by
briefly exposing the light-sensitive photographic paper to light that is focused through the negative.
Portions of the negative that are dark do not allow light to pass, and these corresponding regions of
the paper are not exposed. Those areas of the negative that are light allow the paper to be exposed.

0.01

0.10

1.00

10.00

1970 1975 1980 1985 1990 1995 2000 2005

F
ea

tu
re

 S
iz

e
(µ

m
)

FIGURE 2.2 Decreasing IC feature size over time. (Future data for years 2003 through 2005 compiled from The
International Technology Roadmap for Semiconductors, Semiconductor Industry Association, 2001.)

-Balch.book Page 35 Thursday, May 15, 2003 3:46 PM

36 Digital Fundamentals

When the paper is developed in a chemical bath, portions of the paper that were exposed change
color and yield a visible image.

Photographic processes provide excellent resolution of detail. Engineers apply this same principle
in fabricating ICs to create details that are fractions of a micron in size. Similar to a photographic
negative, a mask is created for each IC processing step. Like a photographic negative, the mask does
not have to be the same size as the silicon area it is to expose because, with lenses, light can be fo-
cused through the mask to an arbitrary area. Using a technique called

photolithography,

 the silicon
surface is first prepared with a light-sensitive chemical called

photoresist

. The prepared surface is
then exposed to light through the mask. Depending on whether a positive or negative photoresist
process is employed, the areas of photoresist that have been either exposed or not exposed to light
are washed away in a chemical bath, resulting in a pattern of bare and covered areas of silicon. The
wafer can then be exposed to chemical baths, high temperature metal vapors, and ion beams. Only
the bare areas that have had photoresist washed away are affected in this step. In this way, specific
areas of the silicon wafer can be doped according to the IC designers’ specifications. Successive
mask layers and process steps can continue to wash away and expose new layers of photoresist and
then build sandwiches of semiconductor and metal material. A very simplified view of these process
steps is shown in Fig. 2.4. The semiconductor fabrication process must be performed in a clean-
room environment to prevent minute dust particles and other contaminants from disturbing the li-
thography and chemical processing steps.

In reality, dozens of such steps are necessary to fabricate an IC. The semiconductor structures that
must be formed by layering different metals and dopants are complex and must be formed one thin
layer at a time. Modern ICs typically have more than four layers of metal, each layer separated from
others by a thin insulating layer of silicon dioxide. The use of more metal layers increases the cost of
an IC, but it also increases its density, because more metal wires can be fabricated to connect more
transistors. This complete process from start to finish usually takes one to four weeks. The chemical
diffusion step (5) is an example of how different regions of the silicon wafer are doped to achieve
varying electrical characteristics. In reality, several successive doping steps are required to create
transistors. The metal deposition step (10) is an example of how the microscopic metal wires that
connect the many individual transistors are created. Hot metal vapors are passed over the prepared
surface of the wafer. Over time, individual molecules adhere to the exposed areas and form continu-
ous wires. Historically, most metal interconnects on silicon ICs are made from aluminum. However,
copper has become a common component of leading-edge ICs.

As IC feature sizes continue to shrink, the physical properties of light can become limiting factors
in the resolution with which a wafer can be processed. Shorter light wavelengths are necessary to

Silicon Ingot

Silicon
Wafer

Dice Patterned
onto Wafer

FIGURE 2.3 Silicon wafer.

-Balch.book Page 36 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 37

meet the demands of leading-edge IC process technology. The human eye can detect electromag-
netic energy from about 700 nm (red) to 400 nm (violet). Whereas ultraviolet light (< 400 nm) was
once adequate for IC fabrication, deep UV wavelengths are now in use, and shorter wavelengths be-
low 200 nm are being explored.

Each of the process steps is applied to the entire wafer. The many dice on a single wafer are usu-
ally exposed to light through the same mask. The mask is either large enough to cover the entire wa-
fer and therefore expose all dice at once, or the mask is stepped through the dice grid (using a
machine appropriately called a

stepper

) such that each die location is exposed separately before the
next processing step. In certain cases, such as small-volume or experimental runs, different die loca-
tions on the same wafer will be exposed with different masks. This is entirely feasible but may not
be as efficient as creating a wafer on which all dice are identical.

When an IC is designed and fabricated, it generally follows one of two main transistor technolo-
gies: bipolar or metal-oxide semiconductor (MOS). Bipolar processes create BJTs, whereas MOS
processes create FETs. Bipolar logic was more common before the 1980s, but MOS technologies

silicon substrate

photoresist

(1) (2) (3)

(4)

wash

(5)

chemical diffusion

(6)

wash

(7)

photoresist

(8)

mask #2

mask #1

(9)

wash

(10)

metal deposition

(11)

wash

FIGURE 2.4 The IC fabrication process.

-Balch.book Page 37 Thursday, May 15, 2003 3:46 PM

38 Digital Fundamentals

have since accounted the great majority of digital logic ICs. N-channel FETs are fabricated in an
NMOS process, and P-channel FETs are fabricated in a PMOS process. In the 1980s, complemen-
tary-MOS, or CMOS, became the dominant process technology and remains so to this day. CMOS
ICs incorporate both NMOS and PMOS transistors.

2.2 IC PACKAGING

When the wafer has completed its final process step, it is tested and then sliced up to separate the in-
dividual dice. Dice that fail the initial testing are quickly discarded. Those that pass inspection are
readied for packaging. A package is necessary for several reasons, including protection of the die and
the creation of electromechanical connections with other circuitry. ICs are almost always mounted
onto a circuit board, and it is usually difficult to mount unpackaged ICs directly to the board. How-
ever, there are special situations in which ICs are not packaged and are directly attached to the board.
These cases are often at opposite ends of the technological spectrum. At the low end of technology,
ICs can be several process generations behind the current state of the art. Therefore, the relative com-
plexity of mounting them to a circuit board may not be as great. The savings of direct mounting are in
space and cost. A common quartz wristwatch benefits from direct mounting, because the small con-
fines of a watch match very well with the space savings achieved by not requiring a package for the
IC. These watch ICs use mature semiconductor process technologies. At the high end of technology,
some favorable electrical and thermal characteristics can be achieved by eliminating as much inter-
mediate bulk as possible between individual ICs and supporting circuitry. However, the technical dif-
ficulties of direct-mounting a leading-edge IC can be challenging and greatly increase costs.
Therefore, direct-mounting of all but very low-end electronics is relatively rare.

IC packaging technology has evolved dramatically from the early days, yet many mature package
types still exist and are in widespread use. Plastic and ceramic are the two most common materials
used in an IC package. They surround the die and its lead frame. The lead frame is a structure of metal
wires that fan out from the die and extend to the package exterior as pins for connection to a circuit
board. Plastic packages are generally lower in cost as compared to ceramics, but they have poorer
thermal performance. Thermal characteristics are important for ICs that handle large currents and dis-
sipate large quantities of heat. To prevent the IC from overheating, the heat must be conducted and ra-
diated away as efficiently as possible. Ceramic material conducts heat far better than plastic.

A very common package is the

dual in-line package

, or DIP, shown in Fig. 2.5. A DIP has two
parallel rows of pins that are spaced on 0.1-in centers. Each pin extends roughly 0.2 in below the
bottom of the plastic or ceramic body. Pins are numbered sequentially from 1 going left to right
along one side and resuming on the opposite side from right to left. There is usually at least one pin
1 marker at one end of the package. It is either a dot near pin 1 or a semicircular indentation on one
edge of the package.

DIPs are commonly manufactured in standard sizes ranging from 6 to 48 pins, and some manu-
facturers go beyond 48 pins. Smaller pin-count devices have 0.3-in wide packages, and larger de-
vices are 0.6 in wide. Because of the ubiquity of the DIP, there are many variations of pin counts and
package widths. For many years, the DIP accounted for the vast majority of digital logic packages.
Common logic ICs were manufactured in 14- and 16-pin DIPs. Memory ICs were manufactured in
16-, 18-, 24-, and 28-pin DIPs. Microprocessors were available in 40-, 44-, and 48-pin DIPs. DIPs
are still widely available today, but their use as a percentage of the total IC market has declined
markedly. However, the benefits of the DIP remain: they are inexpensive and easy to work with by
hand, eliminating the need for costly assembly tools.

If you were to carefully crack open a DIP, you would be able to see the mechanical assembly of
the die and lead frame. This is illustrated in Fig. 2.6. The die is cemented in the center of a stamped

-Balch.book Page 38 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 39

metal frame and is connected to the individual pins with extremely thin wires. Once the electrical
connections are made, the fragile assembly is encased in a plastic or ceramic body for protection and
the exterior portions of the pins are folded vertically.

All other IC packages are variations on this theme. Some packages use a similar lead-frame struc-
ture, whereas more advanced packages utilize very high-quality miniature circuit boards made from
either ceramic or fiberglass.

An oft-quoted attribute of ICs is that their density doubles every 18 months as a result of improve-
ments in process technology. This prediction was made in 1965 by Dr. Gordon Moore, a co-founder
of Intel. It has since come to be known as

Moore’s law,

 because the semiconductor industry has
matched this prediction over time. Before to the explosion of IC density, the semiconductor industry
classified ICs into several categories depending on the number of logic gates on the device:

small-
scale integration

(SSI),

medium-scale integration

(MSI),

large-scale integration

(LSI), and, finally,

very large-scale integration

(VLSI). Figure 2.7 provides a rough definition of these terms. As the
density of ICs continued to grow at a rapid pace, it became rather ridiculous to keep adding words
like “very” and “extra” to these categories, and the terms’ widespread use declined. ICs are now of-
ten categorized based on their minimum feature size and metal process. For example, one might re-
fer to an IC as “0.25 µm, three-layer metal (aluminum)” or “0.13 µm, six-layer copper.”

side view
end view

top view

pin 1 8

916

FIGURE 2.5 A 16-pin dual in-line package.

die

FIGURE 2.6 DIP lead frame.

-Balch.book Page 39 Thursday, May 15, 2003 3:46 PM

40 Digital Fundamentals

As IC densities grew at this tremendous pace, the number of pins on each IC and the speed at
which they operated began to increase as well. DIPs soon become a limiting factor in the perfor-
mance of ICs. First, the addition of more pins made the package longer, because there are only two
rows of pins. However, most chips are relatively square in shape to minimize on-chip interconnec-
tion distances. This creates a conflict: a long, narrow package that is unsuitable for increasing square
die sizes. Second, the lengths of some pins in the DIP lead frame, especially those near the corners,
are relatively long. This has an adverse impact on the quality of high-speed signals. Third, the 0.1-in
pin spacing on DIPs keeps them artificially large as circuit board technologies continue improving to
handle smaller contacts.

One solution to the pin density problem was the development of the

pin grid array

, or PGA, pack-
age. Shown in Fig. 2.8, the PGA is akin to a two-dimensional DIP with pins spaced on 0.1-in cen-
ters. Very high pin counts are achievable with a PGA, because all of its area is usable rather than just
the perimeter. Being a square, the PGA is compatible with large ICs, because it more closely
matches the proportions of a silicon chip.

The PGA provides high pin density, but its drawback is relatively high cost. Two lower-cost pack-
ages were developed for ICs that require more pins than DIPs but fewer pins than found on a PGA:
the

small outline integrated circuit

 (SOIC) and the

plastic leaded chip carrier

(PLCC). Examples of
SOIC and PLCC packages are shown in Fig. 2.9. Both SOICs and PLCCs feature pins on a 0.05-in
pitch — half that of a DIP or PGA. The SOIC is basically a shrunken DIP with shorter pins that are
folded parallel to the plane of the package instead of protruding down vertically. This enables the
SOIC to be surface mounted onto the circuit board by soldering the pins directly to metal pads on the
board. By contrast, a DIP requires that holes be drilled in the board for the pins to be soldered into.
The SOIC represents an improvement in packaging density and ease of manufacture over DIPs, but
it is still limited to relatively simple ICs due to its one-dimensional pin arrangement.

PLCCs increase pin density and ease the design of the lead frame by utilizing a two-dimensional
pin arrangement. Higher pin counts (68, 84, and 96 pins) were enabled by the PLCC, and its square

1

10

100

1000

10,000

100,000

1,000,000

SSI MSI LSI VLSI

T
ra

ns
is

to
rs

 p
er

 C
hi

p

FIGURE 2.7 Relative component count of ICs.

FIGURE 2.8 Pin grid array package.

-Balch.book Page 40 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 41

design is more capable of accepting larger silicon dice than either the DIP or SOIC. PLCC leads are
not bent outward, as in the case of a SOIC, but are curved inward in a “J” pattern. The more similar
aspect ratio of the PLCC package and the dice that are placed into them enabled lead frames with
shorter and more consistent pin lengths, reducing the degrading effects on high-speed signals.

A higher-density relative of the PLCC and SOIC is the

quad flat pack

, or QFP. A QFP resembles
a PLCC in terms of its square or rectangular shape but has leads that are bent outward like an SOIC.
Additionally, QFP leads are thinner and spaced at a smaller pitch to achieve more than twice the lead
density of a comparably sized PLCC.

Perhaps the most widely used package for high-density ICs is the

ball grid array

, or BGA. The
BGA is a surface mount analog to the PGA with significantly higher ball density. Contact is made
between a BGA and a circuit board by means of many small preformed solder balls that adhere to
contacts on the bottom surface of the BGA package. Figure 2.10 illustrates the general BGA form
factor, but numerous variants on aspect ratio and ball pitch exist. Typical ball pitch ranges from
1.27 mm down to 0.8 mm, and higher densities are on the way.

There are many variations of the packaging technologies already mentioned. Most packages com-
ply with industry standard dimensions, but others are proprietary. Semiconductor manufacturers pro-
vide detailed drawings of their packages to enable the proper design of circuit boards for their
products.

2.3 THE 7400-SERIES DISCRETE LOGIC FAMILY

With the advent of ICs in the early 1960s, engineers needed ready access to a library of basic logic
gates so that these gates could be wired together on circuit boards and turned into useful products.
Rather than having to design a custom microchip for each new project, semiconductor companies

side view end view

top view

side view

top view

pin 1

44-pin PLCC
pin 1

FIGURE 2.9 SOIC and PLCC.

FIGURE 2.10 Ball grid array.

-Balch.book Page 41 Thursday, May 15, 2003 3:46 PM

42 Digital Fundamentals

began to recognize a market for standard, off-the-shelf logic ICs. In 1963 and 1964, Sylvania and
Texas Instruments began shipment of the 7400-series discrete logic family and unknowingly started
a

de facto

 industry standard that lasts to this day and shows no signs of disappearing anytime soon.
Using the 7400 family, an engineer can select logic gates, flip-flops, counters, and buffers in individ-
ual packages and wire them together as desired to solve a specific problem. Some of the most com-
mon members of the 7400 family are listed in Table 2.1.

These are just a few of the full set of 7400 family members. Many 7400 parts are no longer used,
because their specific function is rarely required as a separate chip in modern digital electronics de-
signs. However, the parts listed above, and many others that are not listed, are still readily available
today and are commonly found in a broad range of digital designs ranging from low-end to high-
tech devices. 7400-series logic has been available in DIPs for a long time, as well as (more recently)
SOICs and other high-density surface mount packages. All flavors of basic logic gates are available
with varying numbers of inputs. For example, there are 2-, 3-, and 4-input AND gates and 2-, 3-, 4-,

TABLE

2.1 Common 7400 ICs

Part Number Function Number of Pins

7400 Quad two-input NAND gates 14

7402 Quad two-input NOR gates 14

7404 Hex inverters 14

7408 Quad two-input AND gates 14

7432 Quad two-input OR gates 14

7447 BCD to seven-segment display decoder/driver 16

7474 Dual D-type positive edge triggered flip-flops 14

7490 Four-bit decade counter 14

74138 Three-to-eight decoder 16

74153 Dual 4-to-1 multiplexer 16

74157 Quad 2-to-1 multiplexers 16

74160 Four-bit binary synchronous counter 16

74164 Eight-bit parallel out serial shift registers 16

74174 Quad D-type flip-flops with complementary outputs 16

74193 Four-bit synchronous up/down binary counter 16

74245 Octal bus transceivers with tri-state outputs 20

74373 Octal D-type transparent latch 20

74374 Octal D-type flip-flops 20

-Balch.book Page 42 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 43

8-, 12-, and 13-input NAND gates. There are numerous varieties of flip-flops, counters, multiplexers,
shift registers, and bus transceivers. Flip-flops exist with and without complementary outputs, pre-
set/clear inputs, and independent clocks. Counters are available in 4-bit blocks that can both incre-
ment and decrement and count to either 15 (binary counter) or 9 (decade counter) before restarting
the count at 0. Shift registers exist in all permutations of serial and parallel inputs and outputs. Bus
transceivers in 4- and 8-bit increments exist with different types of output enables and capabilities to
function in unidirectional or bidirectional modes. Bus transceivers enable the creation and expansion
of tri-state buses on which multiple devices can communicate.

One interesting IC is the 7447 seven-segment display driver. This component allows the creation
of graphical numeric displays in applications such as counters and timers. Seven-segment displays
are commonly seen in automobiles, microwave ovens, watches, and consumer electronics. Seven in-
dependent on/off elements can represent all ten digits as shown in Fig. 2.11. The 7447 is able to
drive an LED-based seven-segment display when given a

binary coded decimal

(BCD) input. BCD
is a four-bit binary number that has valid values from 0 through 9. Hexadecimal values from 0xA
through 0xF are not considered legal BCD values.

Familiarity with the 7400 series proves very useful no matter what type of digital system you are
designing. For low-end systems, 7400-series logic may be the only type of IC at your disposal to
solve a wide range of problems. At the high end, many people are often surprised to see a small 14-
pin 7400-series IC soldered to a circuit board alongside a fancy 32-bit microprocessor running at
100 MHz. The fact is that the basic logic functions that the 7400 series offers are staples that have di-
rect applications at all levels of digital systems design. It is time well spent to become familiar with
the extensive capabilities of the simple yet powerful 7400 family. Manufacturers’ logic data books,
either in print or on line, are invaluable references. It can be difficult to know ahead of time if a de-
sign may call for one more gate to function properly; that is when a 40-year old logic family can
save the day.

2.4 APPLYING THE 7400 FAMILY TO LOGIC DESIGN

Applications of the 7400 family are truly infinite, because the various ICs represent basic building
blocks rather than complete solutions. Up through the early 1980s, it was common to see computer
systems constructed mainly from interconnected 7400-series ICs along with a few LSI components
such as a microprocessor and a few memory chips. These days, most commercial digital systems are
designed using some form of higher-density logic IC, either fully custom or user programmable.
However, the engineer or hobbyist who has a relatively small-scale logic problem to solve, and who
may not have access to more expensive custom or programmable logic ICs, may be able to utilize
only 7400 logic in an efficient and cost-effective solution. Two examples follow to provide insight
into how 7400 building blocks can be assembled to solve logic design problems.

A hypothetical example is a logic circuit to examine three switches and turn on an LED if two and
only two of the three switches are turned on. The truth table for such a circuit is as follows in

FIGURE 2.11 Seven-segment display.

-Balch.book Page 43 Thursday, May 15, 2003 3:46 PM

44 Digital Fundamentals

Table 2.2, given that A, B, and C are the inputs, and an LED is the active-low output (assume that the
LED is turned on by driving a logic 0 rather than a logic 1).

This LED driver truth table can be converted into the following Boolean logic equation with a Kar-
naugh map or simply by inspection:

After consulting a list of available 7400 logic ICs, three become attractive for our application: the
7404 inverter, 7408 AND, and 7432 OR. The LED driver logic equation requires four inverters, six
two-input AND gates, and two 2-input OR gates. Four ICs are required, because a 7404 provides six
inverters, a 7408 provides four AND gates, and a 7432 contains four OR gates. These four ICs can
be connected according to a

schematic diagram

 as shown in Fig. 2.12. A schematic diagram illus-
trates the electrical connectivity scheme of various components. Each component is identified by a

reference designator

 consisting of a letter followed by a number. ICs are commonly identified by
reference designators beginning with the letter “U”. Additionally, each component has numerous
pins that are numbered on the diagram. These pin numbers conform to the IC manufacturer’s num-
bering scheme. Each of these 7400-series ICs has 14 pins. Another convention that remains from bi-
polar logic days is the use of the label VCC to indicate the positive voltage supply node. GND
represents ground—the common, or return, voltage supply node.

All ICs require connections to a power source. In this circuit, +5 V serves as the power supply, be-
cause the 7400 family is commonly manufactured in a bipolar semiconductor process requiring a
+5-V supply. The four rectangular blocks at the top of the diagram represent this power connection
information. Because this schematic diagram shows individual gates, the gates’ reference designa-
tors contain an alphabetic suffix to identify unique instances of gates within the same IC. Not all
gates in each IC are actually used. Those that are unused are tied inactive by connecting their inputs
to a valid logic level—in this case, ground. It would be equally valid to connect the inputs of unused
gates to the positive supply voltage, +5 V.

This logic circuit would work, but a more efficient solution is available to those who are familiar
with the capabilities of the 7400 family. The 7411 provides three 3-input AND gates, which is per-
fect for this application, allowing a reduction in the part count to three ICs instead of four. This cir-

TABLE

2.2 LED Driver Logic Truth Table

A B C LED

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

LED ABC ABC ABC+ +=

-Balch.book Page 44 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 45

cuit is shown in Fig. 2.13 with alternative notation to illustrate varying circuit presentation styles.
Rather than drawing gates as separate elements, the complete 7400-series ICs are shown as mono-
lithic blocks. Either notation is commonly accepted and depends on the engineer’s preference.

2.5 SYNCHRONOUS LOGIC DESIGN WITH THE 7400 FAMILY

The preceding LED driver example shows how state-less logic (logic without flops and a clock) can
be designed to implement an arbitrary logic equation. State-full logic is almost always required in a
digital system, because it is necessary to advance one step at a time (one step each cycle) through an
algorithm. Some 7400 ICs, such as counters, implement synchronous logic within the IC itself by
combining Boolean logic gates and flops on the same die. Other 7400 ICs implement only flops that
may be combined externally with logic to create the desired function.

An example of a synchronous logic application is a basic serial communications controller. Serial
communications is the process of taking parallel data, perhaps a byte of information, and transmit-
ting or receiving that byte at a rate of one bit per clock cycle. The obvious downside of doing this is
that it will take longer to transfer the byte, because it would be faster to just send the entire byte dur-
ing the same cycle. The advantage of serial communications is a reduction in the number of wires re-
quired to transfer information. Being able to string only a few wires between buildings instead of
dozens usually compensates for the added serial transfer time. If the time required to serially transfer
bits is too slow, the rate at which the bits are sent can be increased with some engineering work to
achieve the desired throughput. Such speed improvements are beyond the scope of this presentation.

Real serial communications devices can get fairly complicated. For purposes of discussion, a
fairly simplistic approach is taken. Once the decision is made to serialize a data byte, the problem
arises of knowing when that byte begins and ends.

Framing

is the process of placing special patterns
into the data stream to indicate the start and end of data units. Without some means to frame the in-
dividual bits as they are transmitted, the receiver would have no means of finding the first and last
bits of each byte. In this example, a single

start bit

 is used to mark the first bit. Once the first bit is

7404, U1A

7404, U1B

7404, U1C

7408, U2A

7408, U2B

7408, U2C

7408, U2D

7408, U4A

7408, U4B

7432, U3A

7432, U3B 7404, U1D

7404, U1F

7404, U1E

7408, U4D

7408, U4C

7432, U3C

7432, U3D

VCC

14

GND

7

7404, U1
VCC

14

GND

7

7408, U2
VCC

14

GND

7

7408, U4
VCC

14

GND

7

7432, U3

+5V

A

B

C
LED

1 2

3 4

5 6
9 8

11 10

13 12

1
3

2

4
6

5

1
3

2

4
6

5

9
8

10

12
11

13

9
8

10

12
11

13

9
8

10

12
11

13

1
3

2

4
6

5

FIGURE 2.12 LED driver logic implementation.

-Balch.book Page 45 Thursday, May 15, 2003 3:46 PM

46 Digital Fundamentals

detected, the last bit is found by knowing that there are eight bits in a byte. During periods of inactiv-
ity, an idle communications interface is indicated by a persistent logic 0. When the transmitter is
given a byte to send, it first drives a logic-1 start bit and then sends eight data bits. Each bit is sent in
its own clock cycle. Therefore, nine clock cycles are required to transfer each byte. The serial inter-
face is composed of two signals,

clock

and

serial data

, and functions as shown in Fig. 2.14.
The eight data bits are sent from least-significant bit, bit 0, to most-significant bit, bit 7, following

the start bit. Following the transmission of bit 7, it is possible to immediately begin a new byte by in-
serting a new start bit. This timing diagram does not show a new start bit directly following bit 7.
The corresponding output of the receiver is shown in Fig. 2.15. Here,

data out

is the eight-bit quan-

A

B

C

LED

GND
7

4Y
8

1A
1

1Y
2

3
2A

4
2Y

VCC

6A

6Y

5A

14

13

12

11

7404
U1

3A
5

5Y
10

3Y
6

4A
9

GND
7

3Y
8

1A
1

1B
2

3
2A

4
2B

VCC

1C

1Y

3C

14

13

12

11

7411
U2

2C
5

3B
10

2Y
6

3A
9

GND
7

3Y
8

1A
1

1B
2

3
1Y

4
2A

VCC

4B

4A

4Y

14

13

12

11

7432
U3

2B
5

3B
10

2Y
6

3A
9

+5V +5V

+5V

FIGURE 2.13 LED driver logic using 74111 with fewer ICs.

D7D6D5D4D3D2D1D0

FIGURE 2.14 Serial interface bit timing.

Clock
Data
Out

Data

Ready

x Data x

FIGURE 2.15 Serial receive output timing.

-Balch.book Page 46 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 47

tity that has been reconstructed from the serialized bit stream of Fig. 2.14.

Ready

indicates when
data out is valid and is active-high.

All that is required of this receiver is to assemble the eight data bits in their proper order and then
generate a

ready

signal. This ready signal lasts only one cycle, and any downstream logic waiting for
the newly arrived byte must process it immediately. In a real system, a register might exist to capture
the received byte when ready goes active. This register would then pass the byte to the appropriate
destination. This output timing shows two bytes transmitted back to back. They are separated by
nine cycles, because each byte requires an additional start bit for framing.

In contemplating the design of the receive portion of the serial controller, the need for a serial-in/
parallel-out shift register becomes apparent to assemble the individual bits into a whole byte. Addi-
tionally, some control logic is necessary to recognize the start bit, wait eight clocks to assemble the
incoming byte, and then generate a ready signal. This receiver has two basic states, or modes, of op-
eration: idle and receiving. When idling, no start bit has yet been detected, so there is no useful work
to be done. When receiving, a start bit has been observed, incoming bits are shifted into the shift reg-
ister, and then a ready signal is generated. As soon as the ready signal is generated, the receiver state
may return to idle or remain in receiving if a new start bit is detected. Because there are two basic
control logic states, the state can be stored in a single flip-flop, forming a two-state

finite state ma-
chine

(FSM). An FSM is formed by one or more

state flops

with accompanying logic to generate a
new state for the next clock cycle based on the current cycle’s state. The state is represented by the
combined value of the state flops. An FSM with two state flops can represent four unique states.
Each state can represent a particular step in an algorithm. The accompanying

state logic

 controls the
FSM by determining when it is time to transition to a new piece of the algorithm—a new state.

In the serial receive state machine, transitioning from idle to receiving can be done according to
the serial data input, which is 0 when inactive and 1 when indicating a start bit. Transitioning back to
idle must somehow be done nine cycles later. A counter could be used but would require some logic
to sense a particular count value. Instead, a second shift register can be used to delay the start bit by
nine cycles. When the start bit emerges from the last output bit in the shift register, the state machine
can return to the idle state. Consider the logic in Fig. 2.16. The arrow-shaped boxes indicate connec-
tion points, or ports, of the circuit.

Under an idle condition, the input to the shift register is zero until the start bit appears at the data
input,

din

. Nine cycles later, the ready bit emerges from the shift register. As soon as the start bit is
observed, the state machine transitions to the receiving state, changing the

idle

input to 0, effectively
masking further input to the shift register. This masking prevents nonzero data bits from entering the

ready

delay logic and causing false results.
Delaying the start bit by nine cycles solves one problem but creates another. The transition of the

state machine back to idle is triggered by the emergence of

ready

from the shift register. Therefore,
this transition will actually occur

ten

cycles after the start bit, because the state flop, like all D flip-
flops, requires a single cycle of latency to propagate its input to its output. This additional cycle will
prevent the control logic from detecting a new start bit immediately following the last data bit of the
byte currently in progress. A solution is to design

ready

with its nine-cycle delay and

ready_next

with an eight-cycle delay by tapping off one stage earlier in the shift register. In doing so, the state

Ready
Din

Idle

Ready Delay Shift Register

FIGURE 2.16 Serial receive ready delay.

-Balch.book Page 47 Thursday, May 15, 2003 3:46 PM

48 Digital Fundamentals

machine can look ahead one cycle into the future and return to idle in time for a new start bit that
may be arriving. With the logical details of the state machine now complete, the state machine can
be represented with the

state transition diagram

in Fig. 2.17.
A state transition diagram, often called a

bubble diagram

, shows all the states of an FSM and the
logical

arcs

that dictate how one state leads to another. When implemented, the arcs are translated
into the state logic to make the FSM function. With a clearly defined state transition diagram, the
logic to drive the state machine can be organized as shown in Table 2.3.

When in the idle state (1), a high on

din

(the start bit) must be observed to transition to the receiv-
ing state (0). Once in the receiving state,

ready_next

 must be high to return to idle. This logic is rep-
resented by the Boolean equation,

As with most problems, there exists more than one solution. Depending on the components avail-
able, one may choose to design the logic differently to make more efficient use of those components.
As a general rule, it is desirable to limit the number of ICs used. The 7451 provides two “AND-OR-
INVERT” gates, each of which implements the Boolean function,

This function is tantalizingly close to what is required for the state machine. It differs in that the in-
version of two inputs (

state

and

din

) and a NOR function rather than an OR are necessary. Both dif-
ferences can be resolved using a 7404 inverter IC, but there is a more efficient solution using the
74175 quad flop. The 74175’s four flops each provide both true and inverted outputs. Therefore, a
separate 7404 is not necessary. An inverted version of

din

can be obtained by passing

din

through a
flip-flop before feeding the remainder of the circuit’s logic. For purposes of notation, we will refer to
this “flopped”

din

as

din´

. Another flop will be used for the state machine. The inverted output of the
state flop will compensate for the NOR vs. OR function of the 7451. A third flop will form the ninth
bit of the

ready

delay shift register when combined with a 74164 eight-bit parallel-out shift register.

TABLE

2.3 Serial Receive State Machine Logic Truth Table

Current State din ready_next Next State

1 0 X 1

1 1 X 0

0 X 0 0

0 X 1 1

Idle
(1)

Receive
(0)

din

ready_next

FIGURE 2.17 Serial receive state machine.

Next State&Din() State&ready_next()+=

Y AB CD+=

-Balch.book Page 48 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 49

Conveniently, the 74164 contains an internal AND gate at its input to implement the idle-enable of
the start bit into the shift register.

The total parts count for this serial receiver is four 7400-family ICs: two 74164 shift registers, one
7451 AND-OR-INVERT, and one 74175 quad flop. One flop and one-half of the 7451 are unused in
this application. Figure 2.18 shows how these ICs are connected to implement the serial receive
logic. Note that a mixed-style of IC representation is used: most ICs are shown in a single block, but
the 74175 is broken into separate flops for clarity. Even if an IC is represented as a single block, it is
not necessary to draw the individual pins in the order in which they physically appear. As with the
previous example, the graphical representation of logic depends on individual discretion. In addition
to being functionally and electrically correct, a schematic diagram should be easy to understand.

All synchronous elements, the shift registers and flops, are driven by an input clock signal, clk.
The synchronous elements involved in the control path of the logic are also reset at the beginning of
operation with the active-low reset_ signal. Reset_ is necessary to ensure that the state flop and the
ready_next delay logic begin in an idle state when power is first applied. This is necessary, because
flip-flops power up in a random, hence unknown, state. Once they are explicitly reset, they hold their
state until the logic specifically changes their state. The shift register in the data path, U3, does not
require a reset, because its contents are not used until eight valid data bits are shifted in, thereby
flushing the eight bits with random power-up states. It would not hurt to connect U3’s clr_ pin to
reset_, but this is not done to illustrate the option that is available. In certain logic implementations,
adding reset capability to a flop may incur a penalty in terms of additional cost or circuit size. When
a reset function is not free, it may be decided not to reset certain flops if their contents do not need to
be guaranteed at power up, as is the case here.

A
1

B
2

QA

QB

QC

QD

3

4

5

6

VCC

14

74164
U3

CLK
8

CLR_
9

QE

QF

QG

QH

10

11

12

13
GND

7

1A
1

1B
13

9
1C

10
1D

1Y

2Y

8

6

VCC

14

7451
U2

2A
2

2B
3

4
2C

5
2D

NC

NC

12

11

GND

7

A
1

B
2

QA

QB

QC

QD

3

4

5

6

VCC

14

74164
U4

CLK
8

CLR_
9

QE

QF

QG

QH

10

11

12

13
GND

7

D
4

Q
2

74175

Q_
3

U1A

D
5

Q
7

74175

Q_
6

U1B

D
12

Q
10

74175

Q_
11

U1C

D
13

Q
15

74175

Q_
14

U1D

CLK
9 VCC

16

CLR_
1

GND

8

74175
U1

+5V

+5V

+5V

Din

Clk

Reset_

Ready

Dout[7:0]

Dout[7]

Dout[6]

Dout[5]

Dout[4]

Dout[3]

Dout[2]

Dout[1]

Dout[0]

ready_next

state

din'

+5V

FIGURE 2.18 Serial receive logic schematic diagram.

-Balch.book Page 49 Thursday, May 15, 2003 3:46 PM

50 Digital Fundamentals

In this logic circuit, the inverted output of the state flop, U1B, is used as the state bit to compen-
sate for the 7451’s NOR function. The unused clr_ and b pins of U3 are connected to +5 V to render
them neutral on the shift register’s behavior. The shift register will not clear itself, because clr_ is ac-
tive-low and, similarly, the internal input AND-gate that combines a and b, will be logically by-
passed by tying b to logic 1. The parallel byte output of this serial receiver is designated Dout[7:0]
and is formed by grouping the eight outputs of the shift register into a single bus. One common nota-
tion for assigning members of a bus is to connect each individual member to a thicker line with some
type of bus-ripper line. The bus ripper is often drawn in the schematic diagram as mitered or curved
at the bus end to make its function more visually apparent.

Designing an accompanying serial transmitter follows a very similar design process to the preced-
ing discussion. It is left as an exercise to the reader.

2.6 COMMON VARIANTS OF THE 7400 FAMILY

In the 1970s and 1980s, the 7400 family was commonly manufactured in a bipolar semiconductor
process that operated using a +5-V power supply and was known as transistor-transistor logic (TTL).
The discussion of the 7400 family thus far has included only the original +5-V bipolar type. The
7400’s popularity and broad application to digital design has kept it relevant through many improve-
ments in semiconductor process technology. As engineers learned to fabricate faster and more effi-
cient ICs, the 7400 was redesigned in many different process generations beginning in the late
1960s. Some of the more common 7400 variants are briefly discussed here.

The original 7400 discrete TTL logic family featured typical propagation delays of 10 ns per gate
and power consumption, also called power dissipation, of approximately 10 mW per gate. By mod-
ern standards, the 7400’s speed is relatively slow, and its power dissipation is relatively high. In-
creasing system complexity dictates deeper logic: more gates chained together to implement more
complex Boolean functions. Each added level of logic adds at least another gate’s worth of propaga-
tion delay. At the same time, power consumption also becomes a problem. Ten milliwatts may not
sound like a lot of power, but, when multiplied by several thousand gates, it represents a substantial
design problem in terms of both supplying a large quantity of power and cooling the radiated heat
from digital systems.

Two notable bipolar variants of the 7400 are the 74LS and 74F families. The 74LS, LS indicating
low-power Schottky, has speed comparable to that of the original 7400, but it dissipates roughly 20
percent of its power. The 74F, F indicating fast, is approximately 80 percent faster than the 7400 and
reduces power consumption by almost half. Whether the concern is reducing power or increasing
speed, these two families are useful for applications requiring 5-V bipolar technology.

CMOS technology began to emerge in the 1980s as a popular process for fabricating digital ICs
as a result of its lower power consumption as compared to bipolar. The low-power characteristics of
CMOS logic stem from the fact that a FET requires essentially no current to keep it in an on or off
state (unlike a BJT, which always draws some current when it is turned on). A CMOS gate, there-
fore, will draw current only when it switches. For this reason, the power consumption of a CMOS
logic gate is extremely low in an idle, or quiescent, state and increases with the frequency at which it
switches.

Several CMOS 7400 families were introduced, among them being the 74HCT and 74ACT, each
of which has power consumption orders of magnitude less than bipolar equivalents at low frequen-
cies. Earlier CMOS versions of the 7400 were not fully compatible with the bipolar devices, because
of voltage threshold differences between the CMOS and bipolar processes. A typical TTL output is
only guaranteed to rise above 2.5 V, depending on output loading. In contrast, a typical 5-V CMOS
input requires a minimum level of around 3 V to guarantee detecting a logic 1. This inconsistency in

-Balch.book Page 50 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 51

voltage range causes a fundamental problem in which a TTL gate driving an ordinary CMOS gate
cannot be guaranteed to operate in all situations. Both the 74HCT and 74ACT families possess the
low-power benefits of CMOS technology and retain compatibility with bipolar ICs. A 74HCT device
is somewhat slower than a 74LS equivalent, and the 74ACT is faster than a 74LS device.

There has been an explosion of 7400 variants. Most of the families introduced in the last decade
are based on CMOS technology and are tailored to a broad set of applications ranging from simple
speed to high-power bus drivers. Most types of 7400 devices share common pin-outs and functions,
with the exception of some proprietary specialized parts that may be produced by only a single man-
ufacturer. Most of the 7400 families still require +5-V supplies, but lower voltages such as 3.3 V,
2.5 V, 1.8 V, and 1.5 V are available as well. These lower-voltage families are important because of
the general trend toward lower voltages for digital logic.

2.7 INTERPRETING A DIGITAL IC DATA SHEET

Semiconductor manufacturers publish data sheets for each of their products. Regardless of the spe-
cific family or device, all logic IC data sheets share common types of information. Once the basic
data sheet terminology and organization is understood, it is relatively easy to figure out other data
sheets even when their exact terminology changes. Data sheet structure is illustrated using the
74LS00 from Fairchild Semiconductor as an example. A page from its data sheet is shown in Fig.
2.19.

Digital IC data sheets should have at least two major sections: functional description and electri-
cal specifications. The functional description usually contains the device pin assignment, or pin-out,
as well as a detailed discussion of how the part logically operates. A simple IC such as the 74LS00
will have a very brief functional description, because there is not much to say about a NAND gate’s
operation. More complex ICs such as microprocessors can have functional descriptions that fill doz-
ens or hundreds of pages and are broken into many chapters. Some data sheets add additional sec-
tions to present the mechanical dimensions of the package and its thermal properties. Digital IC
electrical specifications are similar across most types of devices and often appear in the following
four categories:

• Absolute maximum ratings. As the term implies, these parameters specify the absolute extremes
that the IC may be subjected to without sustaining permanent damage. Manufacturers almost uni-
versally state that the IC should never be operated under these extreme conditions. These ratings
are useful, because they indicate how the device may be stored and express the quality of design
and manufacture of the physical chip. Manufacturers specify a storage temperature range within
which the semiconductor structures will not break down. In the case of Fairchild’s 74LS00, this
range is –65 to 150°C. Maximum voltage levels are also specified, 7 V in the case of the 74LS00,
indicating that the device may be subjected to a 7-V potential without destructing.

• Recommended operating conditions. These parameters specify the normal range of voltages and
temperatures that the IC should be operated within such that its functionality is guaranteed to meet
specifications set forth by the manufacturer. Two of the most important specifications in this sec-
tion are the supply voltage (commonly labeled as either VCC or VDD, depending on whether a bipo-
lar or MOS process) and the operating temperature. An IC may have multiple supply voltage
specifications, because an IC can actually operate on several different voltages simultaneously.
Each supply voltage may power a different portion of the chip. When the manufacturer specifies
supply voltage, it does so with a certain tolerance, usually either ±5 or ±10 percent. Many 5-V
logic ICs are guaranteed to operate only at a supply voltage from 4.75 to 5.25 V (±5 percent). Op-
erating temperature is very important, because it affects the timing of the device. As a semiconduc-

-Balch.book Page 51 Thursday, May 15, 2003 3:46 PM

52 Digital Fundamentals

FIGURE 2.19 74LS00 manufacturer’s specifications. (Reprinted with permission from Fairchild Semiconductor and National
Semiconductor.)

-Balch.book Page 52 Thursday, May 15, 2003 3:46 PM

Integrated Circuits and the 7400 Logic Families 53

tor heats up, it slows down. As it cools, its speed increases. Outside of the recommended operating
temperature, the device is not guaranteed to function, because the effects of temperature become
so severe that functionality is compromised. There are four common temperature ranges for ICs:
commercial (0 to 70°C), industrial (–40 to 85°C), automotive (–40 to 125°C), and military (–55 to
125°C). It is more difficult to manufacture an IC that operates over wider temperature ranges. As
such, more demanding temperature grades are often more expensive than the commercial grade.

Other parameters establish the safe operating limits for input signals as well as the applied volt-
age thresholds that represent logic 0 and 1 states. Minimum and maximum input levels are ex-
pressed as either absolute voltages or voltages relative to the supply voltage pins of the device.
Exceeding these voltages may damage the device. Logic threshold specifications are provided to
ensure that the logic input voltages are such that the device will function as intended and not con-
fuse a 1 for a 0, or vice versa. There is also a limit to how must current a digital output can drive.
Current output specifications should be known so that a chip is not overloaded, which could result
in either permanent damage to the chip or the chip’s failure to meet its published specifications.

• DC electrical characteristics. DC parameters specify the voltages and currents that the IC will
present to other circuitry to which it is connected. Whereas recommended operating conditions
specify the environment under which the chip will properly operate, DC electrical characteristics
specify the environment that the chip itself will create. Output voltage specifications define the
logic 0 and 1 thresholds that the chip is guaranteed to drive under all legal operating conditions.
These specifications confirm that the chip is compatible with other chips in the same family and
also allow an engineer to determine if the output levels are compatible with another chip that it
may be driving.

Input current specifications characterize the load that the chip presents to whatever circuit is
driving it. When either logic state is applied to the chip, a small current flows between the driver
and the chip in question. Quantifying these currents enables an engineer to ensure compatibility
between multiple ICs. When one IC drives several other ICs, the sum of the input currents should
not exceed the output current specification of the driver.

• AC electrical characteristics or switching characteristics). AC parameters often represent the
greatest complexity and level of detail in a digital IC’s specifications. They are the guaranteed
timing parameters of inputs and outputs. If the IC is purely combinatorial (e.g., 74LS00), timing
may just be matter of specifying propagation delays and rise and fall times. Logic ICs with syn-
chronous elements (e.g., flops) have associated parameters such as setup, hold, clock frequency,
and output valid times.

Keep in mind that each manufacturer has a somewhat different style of presenting these specifica-
tions. The necessary information should exist, but data sheet sections may be named differently; they
may include certain information in different groupings, and terminology may be slightly different.

Specifications may be provided in mixed combinations of minimum, typical/nominal, and
maximum. When a minimum or maximum limit is not specified, it is understood to be self-evi-
dent or subject to a physical limitation that is beyond the scope of the device. Using Fairchild’s
74LS00 as an example, no minimum output current is specified, because the physical minimum
is very near zero. The actual output current is determined by the load that is being driven, assum-
ing that the load draws no more than the specified maximum. Other specifications are shown un-
der certain operating conditions. A well written data sheet provides guaranteed specifications
under worst-case conditions. Here, the logic 1 output voltage (VOH) is specified as a minimum of
2.5 V under conditions of minimum supply voltage (VCC), maximum output current (IOH), and
maximum logic-low input voltage (VIL). These are worst-case conditions. When VCC decreases,
so will VOH. When IOH increases, it places a greater load on the output, dragging it down to its
lowest level.

-Balch.book Page 53 Thursday, May 15, 2003 3:46 PM

54 Digital Fundamentals

Timing specifications may also be incomplete. Manufacturers do not always guarantee minimum
or maximum parameters, depending on the specific type of device and the particular specification.
As with DC voltages, worst-case parameters should always be specified. When a minimum or maxi-
mum delay is not specified, it is generally because that parameter is of secondary importance, and
the manufacturer was unable to control its process to a sufficient level of detail to guarantee that
value. In many situations where incomplete specifications are given, there are acceptable reasons for
doing so, and the lack of information does not hurt the quality of the design.

Typical timing numbers are not useful in many circumstances, because they do not represent a
limit of the device’s operation. A thorough design must take into account the best and worst perfor-
mance of each IC in the circuit so that one can guarantee that the circuit will function under all con-
ditions. Therefore, worst-case timing parameters are usually the most important to consider first,
because they are the dominant limit of a digital system’s performance in most cases. In more ad-
vanced digital systems, minimum parameters can become equally as important because of the need
to meet hold time and thereby ensure that a signal does not disappear too quickly before the driven
IC can properly sense the signal’s logic level.

Output timing specifications are often specified with an assumed set of loading conditions, be-
cause the current drawn by the load has an impact on the output driver’s ability to establish a valid
logic level. A small load will enable the IC to switch its output faster, because less current is de-
manded of the output. A heavier load has the opposite effect, because it draws more current, which
places a greater strain on the output driver.

-Balch.book Page 54 Thursday, May 15, 2003 3:46 PM

55

CHAPTER 3

Basic Computer Architecture

Microprocessors are central components of almost all digital systems, because combinations of
hardware and software are used to solve design problems. A computer is formed by combining a mi-
croprocessor with a mix of certain basic elements and customized logic. Software runs on a micro-
processor and provides a flexible framework that orchestrates the behavior of hardware that has been
customized to fit the application. When many people think about computers, images of desktop PCs
and laptops come to their minds. Computers are much more diverse than the stereotypical image and
permeate everyday life in increasing numbers. Small computers control microwave ovens, tele-
phones, and CD players.

Computer architecture is fundamental to the design of digital systems. Understanding how a basic
computer is designed enables a digital system to take shape by using a microprocessor as a central
control element. The microprocessor becomes a programmable platform upon which the major com-
ponents of an algorithm can be implemented. Digital logic can then be designed to surround the mi-
croprocessor and assist the software in carrying out a specific set of tasks.

The first portion of this chapter explains the basic elements of a computer, including the micro-
processor, memory, and input/output devices. Basic microprocessor operation is presented from a
hardware perspective to show how instructions are executed and how interaction with other system
components is handled. Interrupts, registers, and stacks are introduced as well to provide an overall
picture of how computers function. Following this basic introduction is a complete example of how
an actual eight-bit computer might be designed, with detailed descriptions of bus operation and ad-
dress decoding.

Once basic computer architecture has been discussed, common techniques for improving and
augmenting microprocessor capabilities are covered, including direct memory access and bus expan-
sion. These techniques are not relegated to high-end computing but are found in many smaller digital
systems in which it is more economical to add a little extra hardware to achieve feature and perfor-
mance goals instead of having to use a microprocessor that may be too complex and more expensive
than desired.

The chapter closes with an introduction to assembly language and microprocessor addressing
modes. Writing software is not a primary topic of this book, but basic software design is an insepara-
ble part of digital systems design. Without software, a computer performs no useful function. As-
sembly language basics are presented in a general manner, because each microprocessor has its own
instruction set and assembly language, requiring specific reading focused on that particular device.
Basic concepts, however, are universal across different microprocessor implementations and serve to
further explain how microprocessors actually function.

-Balch.book Page 55 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

56 Digital Fundamentals

3.1 THE DIGITAL COMPUTER

A digital computer is a collection of logic elements that can execute arbitrary algorithms to perform
data calculation and manipulation functions. A computer is composed of a microprocessor, memory,
and some input/output (I/O) elements as shown in Fig. 3.1. The microprocessor, often called a mi-
croprocessor unit (MPU) or central processing unit (CPU), contains logic to step through an algo-
rithm, called a

program

, that has been stored in the computer’s program memory. The data used and
manipulated by that program is held in the computer’s data memory. Memory is a repository for data
that is usually organized as a linear array of individually accessible locations. The microprocessor
can access a particular location in memory by presenting a memory address (the index of the desired
location) to the memory element. I/O elements enable the microprocessor to communicate with the
outside world to acquire new data and present the results of its programmed computations. Such ele-
ments can include a keyboard or display controller.

Programs are composed of many very simple individual operations, called

instructions,

 that spec-
ify in exact detail how the microprocessor should carry out an algorithm. A simple program may
have dozens of instructions, whereas a complex program can have tens of millions of instructions.
Collectively, the programs that run on microprocessors are called

software

, in contrast to the

hard-
ware

on which they run. Each type of microprocessor has its own

instruction set

 that defines the full
set of unique, discrete operations that it is capable of executing. These instructions perform very nar-
row tasks that, on their own, may seem insignificant. However, when thousands or millions of these
tiny instructions are strung together, they may create a video game or a word processor.

A microprocessor possesses no inherent intelligence or capability to spontaneously begin per-
forming useful work. Each microprocessor is constructed with an instruction set that can be invoked
in arbitrary sequences. Therefore, a microprocessor has the potential to perform useful work but will
do nothing of the sort on its own. To make the microprocessor perform useful work, it requires ex-
plicit guidance in the form of software programming. A task of even moderate complexity must be
broken down into many tiny steps to be implemented on a microprocessor. These steps include basic
arithmetic, Boolean operations, loading data from memory or an input element such as a keyboard,
and storing data back to memory or an output element such as a printer.

Memory structure is one of a computer’s key characteristics, because the microprocessor is al-
most constantly accessing it to retrieve a new instruction, load new data to operate on, or store a cal-
culated result. While program and data memory are logically distinct classifications, they may share
the same physical memory resource.

Random access memory

 (RAM) is the term used to describe a
generic memory resource whose locations can be accessed, or

addressed

, in an arbitrary order and
either read or written. A

read

is the process of retrieving data from a memory address and loading it
into the microprocessor. A

write

is the process of storing data to a memory address from the micro-
processor. Both programs and data can occupy RAM. Consider your desktop computer. When you

Keyboard
Controller

Microprocessor

Program
Memory

Data
Memory

Display
Controller

Printer
Controller

FIGURE 3.1 Generic computer block diagram.

-Balch.book Page 56 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 57

execute a program that is located on the disk drive, that program is first loaded into the computer’s
RAM and then executed from a region set aside for program memory. As on a desktop computer,
RAM is most often

volatile—

meaning that it loses its contents when the power is turned off.
Some software cannot be stored in volatile memory, because basic initialization instructions, or

boot code

, must be present when the computer is turned on. Remember that a microprocessor can do
nothing useful without software being readily available. When power is first applied to a computer,
the microprocessor must be able to quickly locate boot code so that it can get itself ready to accept
input from a user or load a program from an input device. This startup sequence is called

booting

,
hence the term

boot code

. When you turn your computer on, the first messages that it displays on the
monitor are a product of its boot code. Eventually, the computer is able to access its disk drive and
begins loading software into RAM as part of its normal operation. To ensure that boot code is ready
at power-up,

nonvolatile

memory called

read only memory

(ROM) exists. ROM can be used to store
both programs as well as any data that must be present at power-up and immediately accessible.
Software contained in ROM is also known as

firmware

. As its name implies, ROM can only be read
but not written. More complex computers contain a relatively small quantity of ROM to hold basic
boot code that then loads main operating software from another device into RAM. Small computers
may contain all of their software in ROM. Figure 3.2 shows how ROM and RAM complement each
other in a typical computer architecture.

A microprocessor connects to devices such as memory and I/O via

data

and

address buses

. Col-
lectively, these two buses can be referred to as the

microprocessor bus

. A bus is a collection of wires
that serve a common purpose. The data bus is a bit array of sufficient size to communicate one com-
plete data unit at a time. Most often, the data bus is one or more bytes in width. An eight-bit micro-
processor, operating on one byte at time, almost always has an eight-bit data bus. A 32-bit
microprocessor, capable of operating on up to 4 bytes at a time, can have a data bus that is 32, 16, or
8 bits wide. The exact data bus width is implementation specific and varies according to the intended
application of the microprocessor. A narrower bus width means that it will take more time to com-
municate a quantity of data as compared to a wider bus. Common notation for a data bus is

D[7:0]

for an 8-bit bus and

D[31:0]

 for a 32-bit bus, where 0 is the least-significant bit.
The address bus is a bit array of sufficient size to fully express the microprocessor’s

address
space

. Address space refers to the maximum amount of memory and I/O that a microprocessor can
directly address. If a microprocessor has a 16-bit address bus, it can address up to 2

16

 = 65,536
bytes. Therefore, it has a 64 kB address space. The entire address space does not have to be used; it
simply establishes a maximum limit on memory size. Common notation for a 16-bit address bus is

A[15:0]

, where 0 is the least-significant bit. Figure 3.3 shows a typical microprocessor bus configu-
ration in a computer. Note that the address bus is unidirectional (the microprocessor asserts re-
quested addresses to the various devices), and the data bus is bidirectional (the microprocessor
asserts data on a write and the devices assert data on reads).

I/O Devices

Microprocessor

RAMROM

Boot Code Program Region Data Region

FIGURE 3.2 Basic ROM/RAM memory complement.

-Balch.book Page 57 Thursday, May 15, 2003 3:46 PM

58 Digital Fundamentals

A microprocessor’s entire address space is never occupied by a single function; rather, it is
shared by ROM, RAM, and various I/Os. Each device is

mapped

into its own region of the address
space and is enabled only when the microprocessor asserts an address within a device’s mapped re-
gion. The process of recognizing that an address is within a desired region is called

decoding

. Ad-
dress decoding logic is used to divide the overall address space into smaller sections in which
memory and I/O devices can reside. This logic generates individual signals that enable the appropri-
ate device based on the state of the address bus so that the devices themselves do not need any
knowledge of the specific computer’s unique address decoding.

3.2 MICROPROCESSOR INTERNALS

The multitude of complex tasks performed by computers can be broken down into sequences of sim-
ple operations that manipulate individual numbers and then make decisions based on those calcula-
tions. Certain types of basic instructions are common across nearly every microprocessor in
existence and can be classified as follows for purposes of discussion:

•

Arithmetic: add or subtract two values

•

Logical: Boolean (e.g., AND, OR, XOR, NOT, etc.) manipulation of one or two values

•

Transfer: retrieve a value from memory or store a value to memory

•

Branch: jump ahead or back to a particular instruction if a specified condition is satisfied

Arithmetic and logical instructions enable the microprocessor to modify and manipulate specific
pieces of data. Transfer instructions enable these data to be saved for later use and recalled when
necessary from memory. Branch operations enable instructions to execute in different sequences, de-
pending on the results of arithmetic and logical operations. For example, a microprocessor can com-
pare two numbers and take one of two different actions if the numbers are equal or unequal.

Each unique instruction is represented as a binary value called an

opcode

. A microprocessor
fetches and executes opcodes one at a time from program memory. Figure 3.4 shows a hypothetical
microprocessor to serve as an example for discussing how a microprocessor actually advances
through and executes the opcodes that form programs.

A microprocessor is a synchronous logic element that advances through opcodes on each clock
cycle. Some opcodes may be simple enough to execute in a single clock cycle, and others may take
multiple cycles to complete. Clock speed is often used as an indicator of a microprocessor’s perfor-
mance. It is a valid indicator but certainly not the only one, because each microprocessor requires a
different number of cycles for each instruction, and each instruction represents a different quantity
of useful work.

I/O

Microprocessor

ROM RAM

A[15:0]

D[7:0]

FIGURE 3.3 Microprocessor buses.

-Balch.book Page 58 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 59

When an opcode is fetched from memory, it must be briefly examined to determine what needs to
be done, after which the appropriate actions are carried out. This process is called

instruction decod-
ing

. A central logic block coordinates the operation of the entire microprocessor by fetching instruc-
tions from memory, decoding them, and loading or storing any data as required. The

accumulator

is
a register that temporarily holds data while it is being processed. Execution of an instruction to load
the accumulator with a byte from memory would begin with a fetch of the opcode that represents
this action. The instruction decoder would then recognize the opcode and initiate a memory read via
the same microprocessor bus that was used to fetch the opcode. When the data returns from memory,
it would be loaded into the accumulator. While there may be multiple distinct logical steps in decod-
ing an instruction, the steps may occur simultaneously or sequentially, depending on the architecture
of the microprocessor and its decoding logic.

The accumulator is sized to hold the largest data value that the microprocessor can handle in a
single arithmetic or logical instruction. When engineers talk of an 8-bit or 32-bit microprocessor,
they are usually referring to the internal

data-path

 width—the size of the accumulator and the

arith-
metic logic unit

 (ALU). The ALU is sometimes the most complex single logic element in a micro-
processor. It is responsible for performing arithmetic and logical operations as directed by the
instruction decode logic. Not only does the ALU add or subtract data from the accumulator, it also
keeps track of status flags that tell subsequent branch instructions whether the result was positive,
negative, or zero, and whether an addition or subtraction operation created a carry or borrow bit.
These status bits are also updated for logical operations such as AND or OR so that software can
take different action if a logical comparison is true or false.

For ease of presentation, the microprocessor in Fig. 3.4 is shown having a single general-purpose
accumulator register. Most real microprocessors contain more than one internal register that can be
used for general manipulation operations. Some microprocessors have as few as one or two such
registers, and some have dozens or more than a hundred. It is the concept of an accumulator that is
discussed here, but there is no conceptual limitation on how many accumulators or registers a micro-
processor can have.

A microprocessor needs a mechanism to keep track of its place in the instruction sequence. Like a
bookmark that saves your place as you read through a book, the

program counter

 (PC) maintains the
address of the next instruction to be fetched from program memory. The PC is a counter that can be
reloaded with a new value from the instruction decoder. Under normal operation, the microprocessor

microprocessor

Instruction
Fetch and
Decode

Program
Counter

(PC)

Accumulator
(ACC)

Arithmetic
Logic Unit

(ALU)

Memory

Clock

FIGURE 3.4 Simple microprocessor.

-Balch.book Page 59 Thursday, May 15, 2003 3:46 PM

60 Digital Fundamentals

moves through instructions sequentially. After executing each instruction, the PC is incremented,
and a new instruction is fetched from the address indicated by the PC. The major exception to this
linear behavior is when branch instructions are encountered. Branch instructions exist specifically to
override the sequential execution of instructions. When the instruction decoder fetches a branch in-
struction, it must determine the condition for the branch. If the condition is met (e.g., the ALU zero
flag is asserted), the

branch target address

 is loaded into the PC. Now, when the instruction decoder
goes to fetch the next instruction, the PC will point to a new part of the instruction sequence instead
of simply the next program memory location.

3.3 SUBROUTINES AND THE STACK

Most programs are organized into multiple blocks of instructions called

subroutines

 rather than a
single large sequence of instructions. Subroutines are located apart from the main program segment
and are invoked by a subroutine call. This call is a type of branch instruction that temporarily jumps
the microprocessor’s PC to the subroutine, allowing it to be executed. When the subroutine has com-
peted, control is returned to the program segment that called it via a return from subroutine instruc-
tion. Subroutines provide several benefits to a program, including modularity and ease of reuse. A
modular subroutine is one that can be relocated in different parts of the same program while still per-
forming the same basic function. An example of a modular subroutine is one that sorts a list of num-
bers in ascending order. This sorting subroutine can be called by multiple sections of a program and
will perform the same operation on multiple lists. Reuse is related to modularity and takes the con-
cept a step farther by enabling the subroutine to be transplanted from one program to another with-
out modification. This concept greatly speeds the software development process.

Almost all microprocessors provide inherent support for subroutines in their architectures and in-
struction sets. Recall that the program counter keeps track of the next instruction to be executed and
that branch instructions provide a mechanism for loading a new value into the PC. Most branch in-
structions simply cause a new value to be loaded into the PC when their specific branch condition is
satisfied. Some branch instructions, however, not only reload the PC but also instruct the micropro-
cessor to save the current value of the PC off to the side for later recall. This stored PC value, or

sub-
routine return address

, is what enables the subroutine to eventually return control to the program
that called it. Subroutine call instructions are sometimes called

branch-to-subroutine

or

jump-to-
subroutine,

 and they may be unconditional.
When a branch-to-subroutine is executed, the PC is saved into a data structure called a

stack

. The
stack is a region of data memory that is set aside by the programmer specifically for the main pur-
pose of storing the microprocessor’s state information when it branches to a subroutine. Other uses
for the stack will be mentioned shortly. A stack is a

last-in, first-out

 memory structure. When data is
stored on the stack, it is

pushed

 on. When data is removed from the stack, it is

popped

 off. Popping
the stack recalls the most recently pushed data. The first datum to be pushed onto the stack will be
the last to be popped. A

stack pointer

(SP) holds a memory address that identifies the

top

 of the stack
at any given time. The SP decrements as entries are pushed on and increments at they are popped off,
thereby growing the stack downward in memory as data is pushed on as shown in Fig. 3.5.

By pushing the PC onto the stack during a branch-to-subroutine, the microprocessor now has a
means to return to the calling routine at any time by restoring the PC to its previous value by simply
popping the stack. This operation is performed by a return-from-subroutine instruction. Many mi-
croprocessors push not only the PC onto the stack when calling a subroutine, but the accumulator
and ALU status flags as well. While this increases the complexity of a subroutine call and return
somewhat, it is useful to preserve the state of the calling routine so that it may resume control
smoothly when the subroutine ends.

-Balch.book Page 60 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 61

The stack can store multiple entries, enabling multiple subroutines to be active at the same time.
If one subroutine calls another, the microprocessor must keep track of both subroutines’ return ad-
dresses in the order in which the subroutines have been called. This subroutine

nesting

process of
one calling another subroutine, which calls another subroutine, naturally conforms to the last-in,
first-out operation of a stack.

To implement a stack, a microprocessor contains a stack pointer register that is loaded by the pro-
grammer to establish the initial starting point, or top, of the stack. Figure 3.6 shows the hypothetical
microprocessor in more complete form with a stack pointer register.

Like the PC, the SP is a counter that is automatically modified by certain instructions. Not only do
subroutine branch and return instructions use the stack, there are also general-purpose push/pop in-
structions provided to enable the programmer to use the stack manually. The stack can make certain
calculations easier by pushing the partial results of individual calculations and then popping them as
they are combined into a final result.

The programmer must carefully manage the location and size of the stack. A microprocessor will
freely execute subroutine call, subroutine return, push, and pop instructions whenever they are en-
countered in the software. If an empty stack is popped, the microprocessor will oblige by reading
back whatever data value is present in memory at the time and then incrementing the SP. If a full
stack is pushed, the microprocessor will write the specified data to the location pointed to by the SP
and then decrement it. Depending on the exact circumstances, either of these operations can corrupt
other parts of the program or data that happens to be in the memory location that gets overwritten. It
is the programmer’s responsibility to leave enough free memory for the desired stack depth and then
to not nest too many subroutines simultaneously. The programmer must also ensure that there is
symmetry between push/pop and subroutine call/return operations. Issuing a return-from-subroutine

stack region
in memory

S
P

stack empty

N

N+1

N+2

N+3

N+4

N+5

address
locations

D0S
P

first entry
pushed

D0

S
P

second entry
pushed

D1
D0

S
P

third entry
pushed

D1
D2

third entry
popped

D0

S
P

D1
D0

S
P

D1
D3

fourth entry
pushed

D0

S
P

D1

fourth entry
popped

D0S
P

second entry
popped

top
of

stack

FIGURE 3.5 Generic stack operation.

Instruction
Fetch and
Decode

Program
Counter

(PC)

Accumulator
(ACC)

Arithmetic
Logic Unit

(ALU)

Stack
Pointer

(SP)

FIGURE 3.6 Microprocessor with stack pointer register.

-Balch.book Page 61 Thursday, May 15, 2003 3:46 PM

62 Digital Fundamentals

instruction while already in the main program would lead to undesirable results when the micropro-
cessor fetches reloads the PC with an incorrect return address.

3.4 RESET AND INTERRUPTS

Thus far, the steady-state operation of a microprocessor has been discussed in which instructions are
fetched, decoded, and executed in an order determined by the PC and branch instructions. There are
two special cases in which the microprocessor does not follow this regular pattern of operation. The
first case is at power-up, when the microprocessor must transition from an idle state to executing in-
structions. This transition sequence is called

reset

 and involves the microprocessor fetching its boot
code from memory to begin the programmed software sequence. Reset is triggered by asserting a
particular logic level onto a microprocessor pin and can occur either at power-up or at any arbitrary
time when it is desired to restart, or reboot, the microprocessor from a known initial state. Some mi-
croprocessors have special instructions that can actually trigger a soft reset.

The question arises of how the microprocessor determines which instruction to execute first when
it has just been reset. To solve this problem, each microprocessor has a

reset vector

 that points it to a
fixed, predetermined memory address where the programmer must locate the first instruction of the
boot sequence. The reset vector is specified by the microprocessor’s designer. Some microprocessors
locate the reset vector at the beginning of memory and some place it toward the end of the address
space. Sometimes the main body of the program will be located in another portion of memory, and
the first instruction at the reset vector will contain a branch instruction to jump to the desired loca-
tion.

The second case in which the microprocessor does not follow the normal instruction sequence is
during normal operation when an event occurs and the programmer wishes the microprocessor to
pause what it is currently doing and handle the event with a special software routine. Such an event
is called an

interrupt

. A common application for an interrupt is the implementation of a periodic,
timed operation such as monitoring the temperature of a room. Because the room temperature does
not change often, the microprocessor can handle other tasks during normal operation. A timer can be
set to expire every few seconds, causing an interrupt event. When the interrupt triggers, the micro-
processor can read the room temperature, take any appropriate action (e.g., turn on a ventilation fan),
and then resume its normal operation.

An interrupt can be triggered by asserting a special-purpose microprocessor interrupt signal. In-
terrupt events can also be triggered from within a microprocessor via special instructions. When an
interrupt occurs, the microprocessor saves its state by pushing the PC and other registers onto the
stack, and then the PC is loaded with an

interrupt vector

 that points to an

interrupt service routine

(ISR) in memory. In this way, the interrupt process is similar to a branch-to-subroutine. However,
the interrupt may be triggered by an external hardware event instead of by software. Like reset, each
interrupt pin on the microprocessor has an interrupt vector associated with it. The programmer
knows that an ISR is to be located at a specific memory location to service a particular interrupt.
When the ISR has completed, a

return-from-interrupt

 instruction is executed that restores the micro-
processor’s prior state by popping it from the stack. Control is then returned to the routine that was
interrupted and normal execution proceeds.

As the interrupt mechanism executes, the program that gets interrupted does not necessarily have
any knowledge of the event. Because the state of the microprocessor is saved and then restored dur-
ing the return-from-interrupt, the main routine has no concept that somewhere along the way its exe-
cution was paused for an arbitrary period. The programmer may choose to make such knowledge
available by sharing information between the ISR and other routines, but this is left to individual
software implementations.

-Balch.book Page 62 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 63

Multiple interrupt sources are common in microprocessors. Depending on the complexity of the
microprocessor, there may be one, two, ten, or dozens of separate interrupt sources, each with its
own vector. Conflicts in which multiple interrupt sources are activated at the same time are handled
by assigning priorities to each interrupt. Interrupt priorities may be predetermined by the designer of
the microprocessor or programmed by software. In a microprocessor with multiple interrupt priori-
ties, once a higher-priority interrupt has taken control and its ISR is executing, lower-priority inter-
rupts will remain pending until the current higher-priority ISR issues a return-from-interrupt.

Interrupts can usually be turned off, or

masked

, by writing to a control register within the micro-
processor. Masking an interrupt is useful, because an interrupt should not be triggered before the
program has had a chance to set up the ISR or otherwise get ready to handle the interrupt condition.
If the program is not yet ready and the microprocessor takes an interrupt by jumping to the interrupt
vector, the microprocessor will crash by executing invalid instructions.

Masking is also useful when performing certain time-critical operations. A task may be pro-
grammed into an ISR that must complete within 10 µs. Under normal circumstances, the task is eas-
ily accomplished in this period of time. However, if a competing interrupt is triggered during the
time-critical ISR, there may be no guarantee of meeting the 10-µs requirements. One solution to this
problem is to mask subsequent interrupts when the time-critical interrupt is triggered and then un-
mask interrupts when the ISR has completed. If an interrupt arrives while masked, the microproces-
sor will remember the interrupt request and trigger the interrupt when it is unmasked.

Certain microprocessors have one or more interrupts that are classified as nonmaskable. This
means that the interrupt cannot be disabled. Therefore, the hardware design of the computer must
ensure that such an interrupt is not activated unless the software is able to respond to it. Non-
maskable interrupts are generally used for low-level error recovery or debugging purposes where it
must be guaranteed that the interrupt will be taken regardless of what the microprocessor is doing at
the time. Nonmaskable ISRs are sometimes implemented in nonvolatile memory to ensure that they
are always ready for execution.

3.5 IMPLEMENTATION OF AN EIGHT-BIT COMPUTER

Having discussed some of the basic principles of microprocessor architecture and operation, we can
examine how a microprocessor fits into a system to form a computer. Microprocessors need external
memory in which to store their programs and the data upon which they operate. In this context, ex-
ternal memory is viewed from a logical perspective. That is, the memory is always external to the
core microprocessor element. Some processor chips on the market actually contain a certain quantity
of memory within them, but, logically speaking, this memory is still external to the actual micropro-
cessor core.

In the general sense, a computer requires a quantity of nonvolatile memory, or ROM, in which to
store the boot code that will be executed on reset. The ROM may contain all or some of the micro-
processor’s full set of software. A small embedded computer, such as the one in a microwave oven,
contains all its software in ROM. A desktop computer contains very little of its software in ROM. A
computer also requires a quantity of volatile memory, or RAM, that can be used to store data associ-
ated with the various tasks running on the computer. RAM is where the microprocessor’s stack is lo-
cated. Additionally, RAM can be used to hold software that is loaded from an external source.

For purposes of discussion, consider the basic eight-bit computer shown in Fig. 3.7 with a small
quantity of memory and a serial port with which to communicate with the outside world. Eight kilo-
bytes of ROM is sufficient to store boot code and software, including a serial communications pro-
gram. Eight kilobytes of RAM is sufficient to hold data associated with the ROM software, and it
also enables loading additional software not already included in the ROM. The control signals in this

-Balch.book Page 63 Thursday, May 15, 2003 3:46 PM

64 Digital Fundamentals

hypothetical computer are active-low, as are the control signals in most computer designs that, ac-
cording to convention, have been in widespread use for the past few decades. Active-low signal
names have some type of symbol as a prefix or suffix to the signal name that distinguishes them from
active-high signals. Common symbols used for this purpose include #, *, –, and _. From a logical
perspective, it is perfectly valid to use active-high signaling. However, because most memory and
peripheral devices conform to the active-low convention, it is often easier to go along with the estab-
lished convention.

While hypothetical, the microprocessor shown contains characteristics that are common in off-
the-shelf eight-bit microprocessors. It contains an 8-bit data bus and a 16-bit address bus with a total
address space of 64 kB. The combined MPU bus, consisting of address, data, and control signals, is
asynchronous and is enabled by the assertion of read and write enable signals. When the micropro-
cessor wants to read a location in memory, it asserts the appropriate address along with RD* and
then takes the resulting value driven onto the data bus. As shown in the diagram, memory chips usu-
ally have

output enable

(OE*) signals that can be connected to a read enable. Such devices continu-
ously decode the address bus and will emit data whenever OE* is active.

Not all 64 kB of address space is used in this computer. Address decoding logic breaks the single
64-kB space into four 16-kB regions. According to the state of A[15:14], one and only one of the
chip select signals is activated. The address decoding follows the truth table shown in Table 3.1 and
establishes four address ranges.

Once decoded into regions, A[13:0] provides unique address information to the memory and I/O
devices connected to the MPU bus. One memory region, the upper 16 kB, is currently left unused. It
may be used in the future if more memory or another I/O device is added. Each memory and I/O de-

MPU

Address
Decoding

Logic

RAM
8k x 8

ROM
8k x 8

Serial
Port
Cntrl

A[15:0]
A[15:14]

A[12:0]

A[3:0]

A[12:0]

CS0*
CS1*
CS2*

D[7:0]

D[7:0]

D[7:0]

D[7:0]

INTR*

1 MHz
Clock
Circuit

Reset
Circuit

Address Bus

Data Bus

Control
Signals

RST*CLK

RD*
WR*

D

A

OE*

CS*

D

A

OE*
WR*
CS*

D

A

RD*
WR*
CS*

INTR*

FIGURE 3.7 Eight-bit computer block diagram.

-Balch.book Page 64 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 65

vice has a chip select input and will respond to a read or write command only when that select signal
is active. Furthermore, each chip, including the microprocessor, contains internal tri-state buffers to
prevent contention on the bus. The tri-state buffers are not enabled unless the chip’s select signal is
active and a read is being performed (a write, in the case of the microprocessor). Without external
address decoding, none of these chips can share an address region with any other devices, because
they do not have enough address bits to fully decode the entire 16-bit address bus.

Not all address bits are used by the memory and serial port chips. The ROM and RAM are each
only 8k in size. Therefore, only 13 address bits, A[12:0], are required and, as a result, A[13] is left
unconnected. The serial port has far fewer memory locations and therefore uses only A[3:0], for a
maximum of 16 unique addresses.

When a device does not utilize all of the address bits that have been allocated for its particular ad-
dress region, the potential for

aliasing

exists. The ROM occupies only 8k (13 bits) of the 16k (14
bits) address region. Therefore, the ROM has no knowledge of any additional addresses above 8k:
the region from 0x2000 to 0x3FFFF. What happens if the MPU tries to read location 0x2000?
0x2000 differs from 0x0000 only in the state of A[13]. Because the ROM does not have any knowl-
edge of A[13], it interprets 0x2000 to be 0x0000. In other words, 0x2000

aliases

to 0x0000. Simi-
larly, the entire upper 8k of the address region aliases to the lower 8k. In the case of the serial port
controller, there is a greater degree of aliasing, because the serial port only uses A[3:0]. This means
that there can be only 16 unique address locations in the entire 16k region. These 16 locations will
therefore appear to be replicated 2

10

 = 1,024 times as indicated by the ten unused address bits,
A[13:4].

As long as the software is properly written to understand the computer’s memory map, it will
properly access the memory locations that are available and will avoid aliased portions of the mem-
ory map. Aliasing is not a problem in itself but can lead to problems if software does not access
memory and peripherals in the way in which the hardware engineer intended. If software is written
for the hypothetical computer with the incorrect assumption that 16 kB of RAM is present, data may
be unwittingly corrupted when addresses between 0x6000 and 0x7FFF are written, because they will
alias to 0x4000-0x5FFF and overwrite any existing data.

When the MPU wants to read data from a particular memory location, it asserts that address onto
A[15:0]. This causes the address decoder to update its chip select outputs, which enables the appro-
priate memory chip or the serial port. After allowing time for the chip select to propagate, the RD*
signal is asserted, and the WR* signal is left unasserted. This informs the selected device that a read
is requested. The device is then able to drive the data bus

, D[7:0],

with the requested data. After al-
lowing some time for the read data to be driven, the MPU captures the data and releases the RD* sig-
nal, ending the read request. The sequence of events, or timing, for the read transaction is shown in
Fig. 3.8.

This type of MPU bus is asynchronous, because its sequence of events is not driven by a clock but
rather by the assertion and removal of the various signals that are timed relative to one another by the

TABLE

3.1 Address Decoding Truth Table

A[15] A[14] Chip Select Address Range

0 0 CS0* 0x0000-0x3FFF

0 1 CS1* 0x4000-0x7FFF

1 0 CS2* 0x8000-0xBFFF

1 1 none 0xC000-0xFFFF

-Balch.book Page 65 Thursday, May 15, 2003 3:46 PM

66 Digital Fundamentals

MPU and the devices with which it is communicating. For this interface to work properly, the MPU
must allow enough time for the read to occur, regardless of the specific device with which it is com-
municating. In other words, it must operate according to the capabilities of the slowest device—the
least common denominator.

Write timing is very similar, as seen in Fig. 3.9. Again, the MPU asserts the desired address onto
A[15:0], and the appropriate chip select is decoded. At the same time, the write data is driven onto
D[7:0]. Once the address and data have had time to stabilize, and after allowing time for the chip se-
lect to propagate, the WR* enable signal is asserted to actually trigger the write. The WR* signal is
de-asserted while data, address, and chip select are still stable so that there is no possibility of writ-
ing to a different location and corrupting data. If the WR* signal is de-asserted at the same time as
the others, a race condition could develop wherein a particular device may sense the address (or data
or chip select) change just prior to WR* changing, resulting in a false write to another location or to
the current location with wrong data. Being an asynchronous interface, the duration of all signal as-
sertions must be sufficient for all devices to properly execute the write.

An MPU interrupt signal is asserted by the serial port controller to enable easier programming of
the serial port communication routine. Rather than having software continually poll the serial port to
see if data are waiting, the controller is configured to assert INTR* whenever a new byte arrives. The
MPU is then able to invoke an ISR, which can transfer the data byte from the serial port to the RAM.
The interrupt also helps when transmitting data, because the speed of the typical serial port (often
9,600 to 38,400 bps) is very slow as compared to the clock speed of even a slow MPU (1 to
10 MHz). When the software wants to send a set of bytes out the serial port, it must send one byte
and then wait a relatively long time until the serial port is ready for the next byte. Instead of polling
in a loop between bytes, the serial port controller asserts INTR* when it is time to send the next
byte. The ISR can then respond with the next byte and return control to the main program that is run-

A[15:0]

CSx*

D[7:0]

RD*

valid

valid

Address asserted,
read process begins

Address and RD* de-asserted,
MPU accepts valid data

Chip select propagates
after address valid

RD* asserted after allowing
for CSx* propagation delay

Device responds with
data after A, RD*, CSx*

Chip select propagates
after address changes

Device returns
data to tri-state
after RD*, CSx*

de-assertion

FIGURE 3.8 MPU read timing.

A[15:0]

CSx*

D[7:0]

WR*

valid

valid

Address and

write data asserted

Address and write data

de-asserted together

Chip select propagates

after address valid

Chip select propagates

after address changes
WR* asserted after address &

data valid and CSx* propagates

WR* de-asserted while

address, data still valid

FIGURE 3.9 MPU write timing.

-Balch.book Page 66 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 67

ning at the time. Each time INTR* is asserted and the ISR responds, the ISR must be sure to clear
the interrupt condition in the serial port. Depending on the exact serial port device, a read or write to
a specific register will clear the interrupt. If the interrupt is not cleared before the ISR issues a return-
from-interrupt, the MPU may be falsely interrupted again for the same condition.

This computer contains two other functional elements: the clock and reset circuits. The 1-MHz
clock must be supplied to the MPU continually for proper operation. In this example design, no
other components in the computer require this clock. For fairly simple computers, this is a realistic
scenario, because the buses and memory devices operate asynchronously. Many other computers,
however, have synchronous buses, and the microprocessor clock must be distributed to other compo-
nents in the system.

The reset circuit exists to start the MPU when the system is first turned on. Reset must be applied
for a certain minimum duration after the power supply has stabilized. This is to ensure that the digi-
tal circuits properly settle to known states before they are released from reset and allowed to begin
normal operation. As the computer is turned on, the reset circuit actively drives the RST* signal.
Once power has stabilized, RST* is de-asserted and remains in this state indefinitely.

3.6 ADDRESS BANKING

A microprocessor’s address space is normally limited by the width of its address bus, but supple-
mental logic can greatly expand address space, subject to certain limitations. Address banking is a
technique that increases the amount of memory a microprocessor can address. If an application re-
quires 1 MB of RAM for storing large data structures, and an 8-bit microprocessor is used with a
64-kB address space, address banking can enable the microprocessor to access the full 1 MB one
small section at a time.

Address banking, also known as

paging

, takes a large quantity of memory, divides it into multiple
smaller banks, and makes each bank available to the microprocessor one at a time. A

bank address
register

is maintained by the microprocessor and determines which bank of memory is selected at
any given time. The selected bank is accessed through a portion of the microprocessor’s fixed ad-
dress space, called a

window

, set aside for banked memory access. As shown in Fig. 3.10a, the upper
16 kB of address space provides direct access to one of many 16-kB pages in the larger banked
memory structure. Figure 3.10b shows the logical implementation of this banked memory scheme. A

16 kB Bank
Access
Window

48 kB Direct
Mapped
Address
Space

(a)

8-bit
Microprocessor

4 MB
Banked Memory

16 kB Page #255

16 kB Page #254

16 kB Page #1

16 kB Page #0

16 kB Page #2

8-bit Bank
Address Register

Address Decode
Logic

A[15:0]

BA[7:0]

A[13:0]

A[15:14]

bank
enable

(b)

FIGURE 3.10 Address banking.

-Balch.book Page 67 Thursday, May 15, 2003 3:46 PM

68 Digital Fundamentals

22-bit combined address is sent to the 4-MB banked memory structure: 256 pages

×

 16 kB per page
= 4 MB. These 22 bits are formed through the concatenation of the 8-bit bank address register and
14 of the microprocessor’s low-order address bits, A[13:0]. The eight bank-address bits are changed
infrequently whenever the microprocessor is ready for a new page in memory. The 14 microproces-
sor-address bits can change each time the window is accessed.

The details of a banking scheme can be modified according to the application’s requirements. The
bank access window can be increased or decreased, and more or fewer pages can be defined. If an
application operates on many small sets of data, a larger number of smaller pages may be suitable. If
the data or software set is widely dispersed, it may be better to increase the window size as much as
possible to minimize the bank address register update rate.

While address banking can greatly increase the memory available to a microprocessor, it does so
with the penalties of increased access time on page switches and more complexity in managing the
segmented address space. Each time the microprocessor wants to access a location in a different
page, it must update the bank address register. This penalty is acceptable in some applications. How-
ever, if the application requires both consistently fast access time and large memory size, a faster,
more expensive microprocessor may be required that suits these needs.

The complexity of managing the segmented address space dissuades some engineers from em-
ploying address banking. Software usually bears the brunt of recognizing when necessary data re-
sides in a different page and then updating the bank address register to access that page. It is easier
for software to deal with a large, continuous address space. With the easy availability and low cost of
32-bit microprocessors, address banking is not as common as it used to be. However, if an 8-bit mi-
croprocessor must be used for cost reduction or other limitations, address banking may be useful
when memory demands increase beyond 64 kB.

3.7 DIRECT MEMORY ACCESS

Transferring data from one region of memory to another is a common task performed within a com-
puter. Incoming data may be transferred from a serial communications controller into memory, and
outgoing data may be transferred from memory to the controller. Memory-to-memory transfers are
common, too, as data structures are moved between subprograms, each of which may have separate
regions of memory set aside for its private use. The speed with which memory is transferred nor-
mally depends on the time that the microprocessor takes to perform successive read and write opera-
tions. Each byte transferred requires several microprocessor operations: load accumulator, store
accumulator, update address for next byte, and check if there is more data. Instead of simply moving
a stream of bytes without interruption, the microprocessor is occupied mostly by the overhead of
calculating new addresses and checking to see if more data is waiting. Computers that perform a
high volume of memory transfers may exhibit performance bottlenecks as a result of the overhead of
having the microprocessor spend too much of its time reading and writing memory.

Memory transfer performance can be improved using a technique called

direct memory access

, or
DMA. DMA logic intercedes at the microprocessor’s request to directly move data between a source
and destination. A

DMA controller

 (DMAC) sits on the microprocessor bus and contains logic that is
specifically designed to rapidly move data without the overhead of simultaneously fetching and de-
coding instructions. When the microprocessor determines that a block of data is ready to move, it
programs the DMAC with the starting address of the source data, the number of bytes to move, and
the starting address of the destination data. When the DMAC is triggered, the microprocessor tem-
porarily relinquishes control of its bus so the DMAC can take over and quickly move the data. The
DMAC serves as a surrogate processor by directly generating addresses and reading and writing
data. From the microprocessor bus perspective, nothing has changed, and data transfers proceed nor-

-Balch.book Page 68 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 69

mally despite being controlled by the DMAC rather than the microprocessor. Figure 3.11 shows the
basic internal structure of a DMAC.

A DMA transfer can be initiated by either the microprocessor or an I/O device that contains logic
to assert a request to the DMAC. DMA transfers are generally broken into two categories: periph-
eral/memory and memory/memory. Peripheral/memory transfers move data to a peripheral or re-
trieve data from a peripheral. A peripheral/memory transfer can be triggered by a DMA-aware I/O-
device when it is ready to accept more outgoing data or incoming data has arrived. These are called

single-address transfers,

 because the DMAC typically controls only a single address—that of the
memory side of the transfer. The peripheral address is typically a fixed offset into its register set and
is asserted by supporting control logic that assists in the connectivity between the peripheral and the
DMAC.

DMA transfers do not have to be continuous, and they are often not in the case of a peripheral
transfer. If the microprocessor sets up a DMA transfer from a serial communications controller to
memory, it programs the DMAC to write a certain quantity of data into memory. However, the trans-
fer does not begin until the serial controller asserts a DMA request indicating that data is ready.
When this request occurs, the DMAC arbitrates for access to the microprocessor bus by asserting a
bus request. Some time later, the microprocessor or its support logic will grant the bus to the DMAC
and temporarily pause the microprocessor’s bus activity. The DMAC can then transfer a single unit
of data from the serial controller into memory. The unit of data transfer may be any number of bytes.
When finished, the DMAC relinquishes control of the bus back to the microprocessor.

Memory/memory transfers move data from one region in memory to another. These are called

dual-address transfers,

 because the DMAC controls two addresses into memory—source and desti-
nation. Memory/memory transfers are triggered by the microprocessor and can execute continu-
ously, because the data block to be moved is ready and waiting in memory.

Even when DMA transfers execute one byte at a time, they are still more efficient than the micro-
processor, because the DMAC is capable of transferring a byte or word (per the microprocessor’s
data bus width) in a single bus cycle rather than the microprocessor’s load/store mechanism with ad-
ditional overhead. There is some initial overhead in setting up the DMA transfer, so it is not efficient
to use DMA for very short transfers. If the microprocessor needs to move only a few bytes, it should
probably do so on its own. However, the DMAC initialization overhead is more than compensated
for if dozens or hundreds of bytes are being moved.

Source Address
Register

Transfer Length
Register

Destination
Address Register

Control Registers DMA
Transfer

Logic

Bus Control
Logic

address bus

data bus

DMA request/acknowledge

bus request/grant

FIGURE 3.11 DMA controller block diagram.

-Balch.book Page 69 Thursday, May 15, 2003 3:46 PM

70 Digital Fundamentals

A typical DMAC supports multiple channels,

each of which controls a different DMA transfer.
While only one transfer can execute at any given moment, multiple transfers can be interleaved to
prevent one peripheral from being starved for data while another is being serviced. Because a typical
peripheral transfer is not continuous, each DMA channel can be assigned to each active peripheral.
A DMAC can have one channel configured to load incoming data from a serial controller, another to
store data to a disk drive controller, and a third to move data from one region of memory to another.
Once initialized by the microprocessor, the exact order and interleaving of multiple channels is re-
solved by the individual DMA request signals, and any priority information is stored in the DMAC.

When a DMAC channel has completed transferring the requested quantity of data, the DMAC as-
serts an interrupt to the microprocessor to signal that the data has been moved. At this point, the mi-
croprocessor can restart a new DMA transfer if desired and invoke any necessary routines to process
data that has been moved.

External DMA support logic may be necessary, depending on the specific DMAC, microproces-
sor, and peripherals that are being used. Some microprocessors contain built-in DMAC arbitration
logic. Some peripherals contain built-in DMA request logic, because they are specifically designed
for these high-efficiency memory transfers. Custom arbitration logic typically functions by waiting
for the DMAC to request the bus and then pausing the microprocessor’s bus transfers until the
DMAC relinquishes the bus. This pause operation is performed according to the specifications of the
particular microprocessor. Custom peripheral control logic can include DMAC read/write interface
logic to assert the correct peripheral address when a transfer begins and perform any other required
mapping between the DMAC’s transfer enable signaling and the peripheral’s read/write interface.

3.8 EXTENDING THE MICROPROCESSOR BUS

A microprocessor bus is intended to directly connect to memory and I/O devices that are in close
proximity to the microprocessor. As such, its electrical and functional properties are suited for rela-
tively short interconnecting wires and relatively simple device interfaces that respond with data soon
after the microprocessor issues a request. Many computers, however, require some mechanism to ex-
tend the microprocessor bus so that additional hardware, such as plug-in expansion cards or memory
modules, can enhance the system with new capabilities. Supporting these modular extensions to the
computer’s architecture can be relatively simple or quite complex, depending on the required degree
of expandability and the physical distances across which data must be communicated.

Expansion buses are generally broken into two categories, memory and I/O, because these
groups’ respective characteristics are usually quite different. General-purpose memory is a high-
bandwidth resource to which the microprocessor requires immediate access so that it can maintain a
high level of throughput. Memory is also a predictable and regular structure, both logically and
physically. If more RAM is added to a computer, it is fairly certain that some known number of
chips will be required for a given quantity of memory. In contrast, I/O by nature is very diverse, and
its bandwidth requirements are usually lower than that of memory. I/O expansion usually involves
cards of differing complexity and architecture as a result of the wide range of interfaces that can be
supported (e.g., disk drive controller versus serial port controller). Therefore, an I/O expansion bus
must be flexible enough to interface with a varying set of modules, some of which may not have
been conceived of when the computer is first designed.

Memory expansion buses are sometimes direct extensions of the microprocessor bus. From the
preceding 8-bit computer example, the upper 16 kB of memory could be reserved for future expan-
sion. A provision for future expansion could be as simple as adding a connector or socket for an ex-
tra memory chip. In this case, no special augmentation of the microprocessor bus is required.
However, in a larger system with more address space, provisions must be made for more than one

-Balch.book Page 70 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 71

additional memory chip. In these situations, a simple buffered extension of the microprocessor bus
may suffice. A buffer, in this context, is an IC that passes data from one set of pins to another,
thereby electrically separating two sections of a bus. As shown in Fig. 3.12, a buffer can extend a mi-
croprocessor bus so that its logical functionality remains unchanged, but its electrical characteristics
are enhanced to provide connectivity across a greater distance (to a multichip memory expansion
module). A unidirectional address buffer extends the address bus from the microprocessor to expan-
sion memory devices. A bidirectional data buffer extends the bus away from the microprocessor on
writes and toward the microprocessor on reads. The direction of the data buffer is controlled accord-
ing to the state of read/write enable signals generated by the microprocessor.

More complex memory structures may contain dedicated memory control logic that sits between
the microprocessor and the actual memory devices. Expanding such a memory architecture is gener-
ally accomplished by augmenting the “back-side” memory device bus as shown in Fig. 3.13 rather
than by adding additional controllers onto an extended microprocessor bus. Such an expansion
scheme may or may not require buffers, depending on the electrical characteristics of the bus in
question.

I/O buses may also be direct extensions of the microprocessor bus. The original expansion bus in
the IBM PC, developed in the early 1980s, is essentially an extended Intel 8088 microprocessor bus
that came to be known as the Industry Standard Architecture (ISA) bus. Each I/O card on the ISA
bus is mapped in a unique address range in the microprocessor’s memory. Therefore, when software
wants to read or write a register on an I/O card, it simply performs an access to the desired location.
The ISA bus added a few features beyond the raw 8088 bus, including DMA and variable wait states
for slow I/O devices. A wait state results when a device cannot immediately respond to the micro-
processor’s request and asserts a signal to stretch the access so that it can respond properly.

Microprocessor

Local
Memory

A[15:0]

D[7:0]

Expansion
Memory

FIGURE 3.12 Buffered microprocessor bus for memory expansion.

Microprocessor

Local Address/
Local

Memory
Expansion
Memory

Memory
Controller

Memory Bus optional buffer

Data Bus

FIGURE 3.13 Extended memory controller bus.

-Balch.book Page 71 Thursday, May 15, 2003 3:46 PM

72 Digital Fundamentals

Direct extensions such as the ISA bus are fairly easy to implement and serve well in applications
where I/O response time does not unduly restrict microprocessor throughput. As computers have
gotten faster, the throughput of microprocessors has rapidly outstripped the response times of all but
the fastest I/O devices. In comparison to a modern microprocessor, a hard-disk controller is rather
slow, with response times measured in microseconds rather than nanoseconds. Additionally, as bus
signals become faster, the permissible length of interconnecting wires decreases, limiting their ex-
pandability. These and other characteristics motivate the decoupling of the microprocessor’s local
bus from the computer’s I/O bus.

An I/O bus can be decoupled from the microprocessor bus by inserting an intermediate bus con-
troller between them that serves as an interface, or translator, between the two buses. Once the buses
are separated, activity on one bus does not necessarily obstruct activity on the other. If the micropro-
cessor wants to write a block of data to a slow device, it can rapidly transfer that data to the bus con-
troller and then continue with other operations at full speed while the controller slowly transfers the
data to the I/O device. This mechanism is called a posted-write, because the bus controller allows the
microprocessor to complete, or post, its write before the write actually completes. Separate buses
also open up the possibility of multiple microprocessors or logic elements performing I/O operations
without conflicting with the central microprocessor. In a multimaster system, a specialized DMA
controller can transfer data between two peripherals such as disk controllers while the microproces-
sor goes about its normal business.

The Peripheral Component Interconnect (PCI) bus is the industry-standard follow-on to the ISA
bus, and it implements such advanced features as posted-writes, multiple-masters, and multiple bus
segments. Each PCI bus segment is separated from the others via a PCI bridge chip. Only traffic that
must travel between buses crosses a bridge, thereby reducing congestion on individual PCI bus seg-
ments. One segment can be involved in a data transfer between two devices without affecting a si-
multaneous transfer between two other devices on a different segment. These performance-
enhancing features do not come for free, however. Their cost is manifested by the need for dedicated
PCI control logic in bridge chips and in the I/O devices themselves. It is generally simpler to imple-
ment an I/O device that is directly mapped into the microprocessor’s memory space, but the overall
performance of the computer may suffer under demanding applications.

3.9 ASSEMBLY LANGUAGE AND ADDRESSING MODES

With the hardware ready, a computer requires software to make it more than an inactive collection of
components. Microprocessors fetch instructions from program memory, each consisting of an op-
code and, optionally, additional operands following the opcode. These opcodes are binary data that
are easy for the microprocessor to decode, but they are not very readable by a person. To enable a
programmer to more easily write software, an instruction representation called assembly language
was developed. Assembly language is a low-level language that directly represents each binary op-
code with a human-readable text mnemonic. For example, the mnemonic for an unconditional
branch-to-subroutine instruction could be BSR. In contrast, a high-level language such as C++ or
Java contains more complex logical expressions that may be automatically converted by a compiler
to dozens of microprocessor instructions. Assembly language programs are assembled, rather than
compiled, into opcodes by directly translating each mnemonic into its binary equivalent.

Assembly language also makes programming easier by enabling the usage of text labels in place
of hard-coded addresses. A subroutine can be named FOO, and when BSR FOO is encountered by
the assembler, a suitable branch target address will be automatically calculated in place of the label
FOO. Each type of assembler requires a slightly different format and syntax, but there are general as-
sembly language conventions that enable a programmer to quickly adapt to specific implementations

-Balch.book Page 72 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 73

once the basics are understood. An assembly language program listing usually has three columns of
text followed by an optional comment column as shown in Fig. 3.14. The first column is for labels
that are placeholders for addresses to be resolved by the assembler. Instruction mnemonics are lo-
cated in the second column. The third column is for instruction operands.

This listing uses the Motorola 6800 family’s assembly language format. Though developed in the
1970s, 68xx microprocessors are still used today in embedded applications such as automobiles and
industrial automation. The first line of this listing is not an instruction, but an assembler directive
that tells the assembler to locate the program at memory location $100. When assembled, the listing
is converted into a memory dump that lists a range of memory addresses and their corresponding
contents—opcodes and operands. Assembler directives are often indicated with a period prefix.

The program in Fig. 3.14 is very simple: it counts to 30 ($1E) and then sends the “Z” character
out the serial port. It continues in an infinite loop by returning to the start of the program when the
serial port routine has completed its task. The subroutine to handle the serial port is not shown and is
referenced with the SEND_CHAR label. The program begins by clearing accumulator A (the 6800
has two accumulators: ACCA and ACCB). It then enters an incrementing loop where the accumula-
tor is incremented and then compared against the terminal count value, $1E. The # prefix tells the as-
sembler to use the literal value $1E for the comparison. Other alternatives are possible and will soon
be discussed. If ACCA is unequal to $1E, the microprocessor goes back to increment ACCA. If
equal, the accumulator is loaded with the ASCII character to be transmitted, also a literal operand.
The assumption here is that the SEND_CHAR subroutine transmits whatever is in ACCA. When the
subroutine finishes, the program starts over with the branch-always instruction.

Each of the instructions in the preceding program contains at least one operand. CLRA and INCA
have only one operand: ACCA. CMPA and LDAA each have two operands: ACCA and associated
data. Complex microprocessors may reference three or more operands in a single instruction. Some
instructions can reference different types of operands according to the requirements of the program
being implemented. Both CMPA and LDAA reference literal operands in this example, but a pro-
grammer cannot always specify a predetermined literal data value directly in the instruction sequence.

Operands can be referenced in a variety of manners, called addressing modes, depending on the
type of instruction and the type of operand. Some types of instructions inherently use only one ad-
dressing mode, and some types have multiple modes. The manners of referencing operands can be
categorized into six basic addressing modes: implied, immediate, direct, relative, indirect, and in-
dexed. To fully understand how a microprocessor works, and to efficiently utilize an instruction set,
it is necessary to explore the various mechanisms used to reference data.

• Implied addressing specifies the operand of an instruction as an inherent property of that instruc-
tion. For example, CLRA implies the accumulator by definition. No additional addressing infor-
mation following the opcode is needed.

.ORIG $100

BEGIN CLRA

INC_LOOP INCA

CMPA #$1E ; compare ACCA = $1E

BNE INC_LOOP ; if not equal, go back

LDAA #'Z' ; else, load ASCII 'Z'

BSR SEND_CHAR ; send ACCA to serial port

BRA BEGIN ; start over again

FIGURE 3.14 Typical assembly language listing.

-Balch.book Page 73 Thursday, May 15, 2003 3:46 PM

74 Digital Fundamentals

• Immediate addressing places an operand’s value literally into the instruction sequence. LDAA
#’Z’ has its primary operand immediately available following the opcode. An immediate oper-
and is indicated with the # prefix in some assembly languages. Eight-bit microprocessors with
eight-bit instruction words cannot fit an immediate value into the instruction word itself and,
therefore, require that an extra byte following the opcode be used to specify the immediate value.
More powerful 32-bit microprocessors can often fit a 16-bit or 24-bit immediate value within the
instruction word. This saves an additional memory fetch to obtain the operand.

� Direct addressing places the address of an operand directly into the instruction sequence. Instead
of specifying LDAA #’Z’, the programmer could specify LDAA $1234. This version of the in-
struction would tell the microprocessor to read memory location $1234 and load the resulting
value into the accumulator. The operand is directly available by looking into the memory address
specified just following the instruction. Direct addressing is useful when there is a need to read a
fixed memory location. Usage of the direct addressing mode has a slightly different impact on var-
ious microprocessors. A typical 8-bit microprocessor has a 16-bit address space, meaning that two
bytes following the opcode are necessary to represent a direct address. The 8-bit microprocessor
will have to perform two additional 8-bit fetch operations to load the direct address. A typical 32-
bit microprocessor has a 32-bit address space, meaning that 4 bytes following the opcode are nec-
essary. If the 32-bit microprocessor has a 32-bit data bus, only one additional 32-bit fetch opera-
tion is required to load the direct address.

� Relative addressing places an operand’s relative address into the instruction sequence. A relative
address is expressed as a signed offset relative to the current value of the PC. Relative addressing
is often used by branch instructions, because the target of a branch is usually within a short dis-
tance of the PC, or current instruction. For example, BNE INC_LOOP results in a branch-if-not-
equal backward by two instructions. The assembler automatically resolves the addresses and cal-
culates a relative offset to be placed following the BNE opcode. This relative operation is per-
formed by adding the offset to the PC. The new PC value is then used to resume the instruction
fetch and execution process. Relative addressing can utilize both positive and negative deltas that
are applied to the PC. A microprocessor’s instruction format constrains the relative range that can
be specified in this addressing mode. For example, most 8-bit microprocessors provide only an 8-
bit signed field for relative branches, indicating a range of +127/–128 bytes. The relative delta
value is stored into its own byte just after the opcode. Many 32-bit microprocessors allow a 16-bit
delta field and are able to fit this value into the 32-bit instruction word, enabling the entire instruc-
tion to be fetched in a single memory read. Limiting the range of a relative operation is generally
not an excessive constraint because of software’s locality property. Locality in this context means
that the set of instructions involved in performing a specific task are generally relatively close to-
gether in memory. The locality property covers the great majority of branch instructions. For
those few branches that have their targets outside of the allowed relative range, it is necessary to
perform a short relative branch to a long jump instruction that specifies a direct address. This re-
duces the efficiency of the microprocessor by having to perform two branches when only one is
ideally desired, but the overall efficiency of saving extra memory accesses for the majority of
short branches is worth the trade-off.

• Indirect addressing specifies an operand’s direct address as a value contained in another register.
The other register becomes a pointer to the desired data. For example, a microprocessor with two
accumulators can load ACCA with the value that is at the address in ACCB. LDAA (ACCB)
would tell the microprocessor to put the value of accumulator B onto the address bus, perform a
read, and put the returned value into accumulator A. Indirect addressing allows writing software
routines that operate on data at different addresses. If a programmer wants to read or write an arbi-

-Balch.book Page 74 Thursday, May 15, 2003 3:46 PM

Basic Computer Architecture 75

trary entry in a data table, the software can load the address of that entry into a microprocessor
register and then perform an indirect access using that register as a pointer. Some microprocessors
place constraints on which registers can be used as references for indirect addressing. In the case
of a 6800 microprocessor, LDAA (ACCB) is not actually a supported operation but serves as a
syntactical example for purposes of discussion.

• Indexed addressing is a close relative (no pun intended) of indirect addressing, because it also re-
fers to an address contained in another register. However, indexed addressing also specifies an off-
set, or index, to be added to that register base value to generate the final operand address: base +
offset = final address. Some microprocessors allow general accumulator registers to be used as
base-address registers, but others, such as the 6800, provide special index registers for this pur-
pose. In many 8-bit microprocessors, a full 16-bit address cannot be obtained from an 8-bit accu-
mulator serving as the base address. Therefore, one or more separate index registers are present
for the purpose of indexed addressing. In contrast, many 32-bit microprocessors are able to spec-
ify a full 32-bit address with any general-purpose register and place no limitations on which regis-
ter serves as the index register. Indexed addressing builds upon the capabilities of indirect
addressing by enabling multiple address offsets to be referenced from the same base address.
LDAA (X+$20) would tell the microprocessor to add $20 to the index register, X, and use the
resulting address to fetch data to be loaded into ACCA. One simple example of using indexed ad-
dressing is a subroutine to add a set of four numbers located at an arbitrary location in memory.
Before calling the subroutine, the main program can set an index register to point to the table of
numbers. Within the subroutine, four individual addition instructions use the indexed addressing
mode to add the locations X+0, X+1, X+2, and X+3. When so written, the subroutine is flexible
enough to be used for any such set of numbers. Because of the similarity of indexed and indirect
addressing, some microprocessors merge them into a single mode and obtain indirect addressing
by performing indexed addressing with an index value of zero.

The six conceptual addressing modes discussed above represent the various logical mechanisms
that a microprocessor can employ to access data. It is important to realize that each individual micro-
processor applies these addressing modes differently. Some combine multiple modes into a single
mode (e.g., indexed and indirect), and some will create multiple submodes out of a single mode. The
exact variation depends on the specifics of an individual microprocessor’s architecture.

With the various addressing modes modifying the specific opcode and operands that are presented
to the microprocessor, the benefits of using assembly language over direct binary values can be ob-
served. The programmer does not have to worry about calculating branch target addresses or resolv-
ing different addressing modes. Each mnemonic can map to several unique opcodes, depending on
the addressing mode used. For example, the LDAA instruction in Fig. 3.14 could easily have used ex-
tended addressing by specifying a full 16-bit address at which the ASCII transmit-value is located.
Extended addressing is the 6800’s mechanism for specifying a 16-bit direct address. (The 6800’s di-
rect addressing involves only an eight-bit address.) In either case, the assembler would determine the
correct opcode to represent LDAA and insert the correct binary values into the memory dump. Addi-
tionally, because labels are resolved each time the program is assembled, small changes to the pro-
gram can be made that add or remove instructions and labels, and the assembler will automatically
adjust the resulting addresses accordingly.

Programming in assembly language is different from using a high-level language, because one
must think in smaller steps and have direct knowledge about the microprocessor’s operation and ar-
chitecture. Assembly language is processor-specific instead of generic, as with a high-level lan-
guage. Therefore, assembly language programming is usually restricted to special cases such as boot
code or routines in which absolute efficiency and performance are demanded. A human programmer
will usually be able to write more efficient assembly language than a high-level language compiler

-Balch.book Page 75 Thursday, May 15, 2003 3:46 PM

76 Digital Fundamentals

can generate. In large programs, the slight inefficiency of the compiler is well worth the trade-off for
ease of programming in a high-level language. However, time-critical routines such as I/O drivers or
ISRs may benefit from manual assembly language coding.

-Balch.book Page 76 Thursday, May 15, 2003 3:46 PM

77

CHAPTER 4

Memory

Memory is as fundamental to computer architecture as any other element. The ability of a system’s
memory to transact the right quantity of data in the right span of time has a substantial impact on
how that system fulfills its design goals. Digital engineers struggle with innovative ways to improve
memory density and bandwidth in a way that is tailored to a specific application’s performance and
cost constraints.

Knowledge of prevailing memory technologies’ strengths and weaknesses is a key requirement for
designing digital systems. When memory architecture is chosen that complements the rest of the sys-
tem, a successful design moves much closer to fruition. Conversely, inappropriate memory architecture
can doom a good idea to the engineering doldrums of impracticality brought on by artificial complexity.

This chapter provides an introduction to various solid-state memory technologies and explains
how they work from an internal structural perspective as well as an interface timing perspective. A
memory’s internal structure is important to an engineer, because it explains why that memory might
be more suited for one application over another. Interface timing is where the rubber meets the road,
because it defines how other elements in the system can access memory components’ contents. The
wrong interface on a memory chip can make it difficult for external logic such as a microprocessor
to access that memory and still have time left over to perform the necessary processing on that data.

Basic memory organization and terminology are introduced first. This is followed by a discussion
of the prevailing read-only memory technologies: EPROM, flash, and EEPROM. Asynchronous
SRAM and DRAM technologies, the foundations for practically all random-access memories, are
presented next. These asynchronous RAMs are no longer on the forefront of memory technology but
still find use in many systems. Understanding their operation not only enables their application, it
also contributes to an understanding of the most recent synchronous RAM technologies. (High-per-
formance synchronous memories are discussed later in the book.) The chapter concludes with a dis-
cussion of two types of specialty memories: multiport RAMs and FIFOs. Multiport RAMs and
FIFOs are found in many applications where memory serves less as a storage element and more as a
communications channel between distinct logic blocks.

4.1 MEMORY CLASSIFICATIONS

Microprocessors require memory resources in which to store programs and data. Memory can be
classified into two broad categories: volatile and nonvolatile. Volatile memory loses its contents
when power is turned off. Nonvolatile memory retains its contents indefinitely, even when there is no
power present. Nonvolatile memory can be used to hold the boot code for a computer so that the mi-
croprocessor can have a place to get started. Once the computer begins initializing itself from non-
volatile memory, volatile memory is used to store dynamic variables, including the stack and other
programs that may be loaded from a disk drive. Figure 4.1 shows that a general memory device con-
sists of a bit-storage array, address-decode logic, input/output logic, and control logic.

-Balch.book Page 77 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

78 Digital Fundamentals

Despite the logical organization of the device, the internal bit array is usually less rectangular and
more square in its aspect ratio. For example, a 131,072

×

 8 memory (128 kB) may be implemented
as 512

×

 256

×

 8. This aspect ratio minimizes the complexity of the address-decode logic and also
has certain manufacturing process benefits. It takes more logic to generate 131,072 enable signals in
one pass than to generate 512 and then 256 enables in two passes. The first decode is performed up-
front in the memory array, and the second decode is performed by a multiplexer to pass the desired
memory location.

Nonvolatile memory can be separated into two subcategories: devices whose contents are pro-
grammed at a factory without the expectation of the data changing over time, and devices whose
contents are loaded during system manufacture with anticipation of in-circuit updates during the life
of the product. The former devices are, for all practical purposes, write-once devices that cannot be
erased easily, if at all. The latter devices are designed primarily to be nonvolatile, but special cir-
cuitry is designed into the devices to enable erasure and rewriting of the memory contents while the
devices are functioning in a system. Most often, these circuits and their associated algorithms cause
the erase/write cycle to be more lengthy and complex than simply reading the existing data out of the
devices. This penalty on write performance reflects both the desire to secure the nonvolatile memory
from accidental modification as well as the inherent difficulty in modifying a memory that is de-
signed to retain its contents in the absence of power.

Volatile memory can also be separated into two subcategories: devices whose contents are non-
volatile for as long as power is applied (these devices are referred to as

static

) and devices whose
contents require periodic refreshing to avoid loss of data even while power is present (these devices
are referred to as

dynamic

). On first thought, the category of dynamic devices may seem absurd.
What possible benefit is there to a memory chip that cannot retain its memory without assistance?
The benefit is significantly higher density of memory per unit silicon area, and hence lower cost of
dynamic versus static memory. One downside to dynamic memory is somewhat increased system
complexity to manage its periodic update requirement. An engineer must weight the benefits and
complexities of each memory type when designing a system. Some systems benefit from one mem-
ory type over the other, and some use both types in different proportions according to the needs of
specific applications.

Memory chips are among the more complex integrated circuits that are standardized across multi-
ple manufacturers through cooperation with an industry association called the Joint Electron Device
Engineering Council (JEDEC). Standardization of memory chip pin assignments and functionality is
important, because most memory chips are commodities that derive a large portion of their value by

N x M
Bit Array Input/Output

Buffer

Address
Data

Read/Write
Control

Control

M column bits
decoded from

N rows

1 bit decoded
from

M column bits

read data read data

write data inserted into M
column of selected N row

high-order
bits for N
row select

low-order bits for M
column select

FIGURE 4.1 General memory device.

-Balch.book Page 78 Thursday, May 15, 2003 3:46 PM

Memory 79

being interoperable across different vendors. Newer memory technologies introduced in the 1990s
resulted in more proprietary memory architectures that did not retain the high degree of compatibil-
ity present in other mainstream memory components. However, memory devices still largely con-
form to JEDEC standards, making their use that much easier.

4.2 EPROM

Erasable-programmable read-only-memory,

 EPROM, is a basic type of nonvolatile memory that has
been around since the late 1960s. During the 1970s and into the 1990s, EPROM accounted for the
majority of nonvolatile memory chips manufactured. EPROM maintained its dominance for decades
and still has a healthy market share because of its simplicity and low cost: a typical device is pro-
grammed once on an assembly line, after which it functions as a ROM for the rest of its life. An
EPROM can be erased only by exposing its die to ultraviolet light for an extended period of time
(typically, 30 minutes). Therefore, once an EPROM is assembled into a computer system, its con-
tents are, for all practical purposes, fixed forever. Older ROM technologies included programmable-
ROMs, or PROMs, that were fabricated with tiny fuses on the silicon die. These fuses could be
burned only once, which prevented a manufacturer from testing each fuse before shipment. In con-
trast, EPROMs are fairly inexpensive to manufacture, and their erasure capability allows them to be
completely tested by the semiconductor manufacturer before shipment to the customer. Only a full-
custom mask-programmed chip, a true ROM, is cheaper to manufacture than an EPROM on a bit-
for-bit basis. However, mask ROMs are rare, because they require a fixed data image that cannot be
changed without modifying the chip design. Given that software changes are fairly common, mask
ROMs are relatively uncommon.

An EPROM’s silicon bit structure consists of a special MOSFET structure whose gate traps a
charge that is applied to it during programming. Programming is performed with a higher than nor-
mal voltage, usually 12 V (older generation EPROMs required 21 V), that places a charge on the
floating gate of a MOSFET as shown in Fig. 4.2.

When the programming voltage is applied to the control gate, a charge is induced on the floating
gate, which is electrically isolated from both the silicon substrate as well as the control gate. This
isolation enables the floating gate to function as a capacitor with almost zero current leakage across
the dielectric. In other words, once a charge is applied to the floating gate, the charge remains almost
indefinitely. A charged floating gate causes the silicon that separates the MOSFET’s source and
drain contacts to electrically conduct, creating a connection from logic ground to the bit output. This
means that a programmed EPROM bit reads back as a 0. An unprogrammed bit reads back as a 1, be-
cause the lack of charge on the floating gate does not allow an electrical connection between the
source and drain.

FIGURE 4.2 EPROM silicon bit structure.

-Balch.book Page 79 Thursday, May 15, 2003 3:46 PM

80 Digital Fundamentals

Once programmed, the charge on the floating gate cannot be removed electrically. UV photons
cause the dielectric to become slightly conductive, allowing the floating gate’s charge to gradually
drain away to its unprogrammed state. This UV erasure feature is the reason why many EPROMs are
manufactured in ceramic packages with transparent quartz windows directly above the silicon die.
These ceramic packages are generally either DIPs or PLCCs and are relatively expensive. In the late
1980s it became common for EPROMs to be manufactured in cheaper plastic packages without
transparent windows. These EPROM devices are rendered one-time programmable, or OTP, because
it is impossible to expose the die to UV light. OTP devices are attractive, because they are the least
expensive nonmask ROM technology and provide a manufacturer with the flexibility to change soft-
ware on the assembly line by using a new data image to program EPROMs.

The industry standard EPROM family is the 27xxx, where the “xxx” indicates the chip’s memory
capacity in kilobits. The 27256 and 27512 are very common and easily located devices. Older parts
include the 2708, 2716, 2732, 2764, and 27128. There are also newer, higher-density EPROMs such
as the 27010, 27020, and 27040 with 1 Mb, 2 Mb, and 4 Mb densities, respectively. 27xxx EPROM
devices are most commonly eight bits wide (a 27256 is a 32,768

×

 8 EPROM). Wider data words,
such as 16 or 32 bits, are available but less common.

Older members of the 27xxx family, such as early NMOS 2716 and 2732 devices, required 21-V
programming voltages, consumed more power, and featured access times of between 200 and
450 ns. Newer CMOS devices are designated 27Cxxx, require a 12-V programming voltage, con-
sume less power, and have access times as fast as 45 ns, depending on the manufacturer and device
density.

EPROMs are very easy to use because of their classic asynchronous interface. In most applications,
the EPROM is treated like a ROM, so writes to the device are not an issue. Two programming control
pins, V

PP

 and PGM*, serve as the high-voltage source and program enable, respectively. These two
pins can be set to inactive levels and forgotten. What remains are a chip enable, CE*, an output en-
able, OE*, an address bus, and a data output bus as shown in Fig. 4.3, using a 27C64 (8K

×

 8) as an
example.

When CE* is inactive, or high, the device is in a powered-down mode in which it consumes the
least current—measured in microamps due to the quiescent nature of CMOS logic. When CE* and
OE* are active simultaneously, D[7:0] follows A[12:0] subject to the device’s access time, or propa-
gation delay. This read timing is shown in Fig. 4.4.

When OE* is inactive, the data bus is held in a high-impedance state. A certain time after OE*
goes active, t

OE

, the data word corresponding to the given address is driven—assuming that A1 has
been stable for at least t

ACC

. If not, t

ACC

 will determine how soon D1 is available rather than t

OE

.
While OE* is active, the data bus transitions t

ACC

 ns after the address bus. As soon as OE* is re-
moved, the data bus returns to a high-impedance state after t

OEZ

.

65,536 bit
EPROM array

Output
Buffers

A[12:0] D[7:0]

CE*

OE*

FIGURE 4.3 27C64 block diagram.

-Balch.book Page 80 Thursday, May 15, 2003 3:46 PM

Memory 81

Many microprocessors are able to directly interface to an EPROM via this asynchronous bus be-
cause of its ubiquity. Most eight-bit microprocessors have buses that function solely in this asyn-
chronous mode. In contrast, some high-performance 32-bit microprocessors may initially boot in a
low-speed asynchronous mode and then configure themselves for higher performance operation af-
ter retrieving the necessary boot code and initialization data from the EPROM.

4.3 FLASH MEMORY

Flash memory captured the lion’s share of the nonvolatile memory market from EPROMs in the
1990s and holds a dominant position as the industry leader to this day. Flash is an enhanced EPROM
that can both program and erase electrically without time-consuming exposure to UV light, and it
has no need for the associated expensive ceramic and quartz packaging. Flash does cost a small
amount more to manufacture than EPROM, but its more flexible use in terms of electronic erasure
more than makes up for a small cost differential in the majority of applications. Flash is found in ev-
erything from cellular phones to automobiles to desktop computers to solid-state disk drives. It has
enabled a whole class of flexible computing platforms that are able to upgrade their software easily
and “on the fly” during normal operation. Similar to EPROMs, early flash devices required separate
programming voltages. Semiconductor vendors quickly developed single-supply flash devices that
made their use easier.

A flash bit structure is very similar to that of an EPROM. Two key differences are an extremely
thin dielectric between the floating gate and the silicon substrate and the ability to apply varying bias
voltages to the source and control gate. A flash bit is programmed in the same way that an EPROM
bit is programmed—by applying a high voltage to the control gate. Flash devices contain internal
voltage generators to supply the higher programming voltage so that multiple external voltages are
not required. The real difference appears when the bit is erased electrically. A rather complex quan-
tum-mechanical behavior called

Fowler-Nordheim tunneling

 is exploited by applying a negative
voltage to the control gate and a positive voltage to the MOSFET’s source as shown in Fig. 4.5.

The combination of the applied bias voltages and the thin dielectric causes the charge on the float-
ing gate to drain away through the MOSFET’s source. Flash devices cannot go through this pro-
gram/erase cycle indefinitely. Early devices were rated for 100,000 erase cycles. Modern flash chips
are often specified up to 1,000,000 erase cycles. One million cycles may sound like a lot, but remem-
ber that microprocessors run at tens or hundreds of millions of cycles per second. When a processor
is capable of writing millions of memory locations each second, an engineer must be sure that the
flash memory is used appropriately and not updated too often so as to maximize its operational life.
Products that utilize flash memory generally contain some a management algorithm to ensure that
the erasure limit is not reached during the product’s expected lifetime. This algorithm can be as sim-
ple as performing software updates only several times per year. Alternatively, algorithms can be

A[12:0]

D[7:0]

CE*

OE*

A1 A2 x

D1 D2

tOE tACC tOEZ

FIGURE 4.4 EPROM asynchronous read timing.

-Balch.book Page 81 Thursday, May 15, 2003 3:46 PM

82 Digital Fundamentals

smart enough to track how many times each portion of a flash device has been erased and dynami-
cally make decisions about where to place new data accordingly.

Flash chips are offered in two basic categories, NOR and NAND, named according to the circuits
that make up each memory bit. NOR flash is a random access architecture that often functions like
an EPROM when reading data. NOR memory arrays are directly accessed by a microprocessor and
are therefore well suited for storing boot code and other programs. NAND flash is a sequential ac-
cess architecture that segments the memory into many pages, typically 256 or 512 bytes. Each page
is accessed as a discrete unit. As such, NAND flash does not provide the random access interface of
a NOR flash. In return for added interface complexity and slower response time, NAND flash pro-
vides greater memory density than NOR flash. NAND’s greater density makes it ideal for bulk data
storage. If programs are stored in NAND flash, they must usually be loaded into RAM before they
can be executed, because the NAND page architecture is not well suited to a microprocessor’s read/
write patterns. NAND flash is widely used in consumer electronic memory cards such as those used
in digital cameras. NAND flash devices are also available in discrete form for dense, nonvolatile data
storage in a digital system.

NOR flash is discussed here because of its direct microprocessor interface capability. When oper-
ating in read-only mode, many NOR flash devices function similarly to EPROMs with a simple
asynchronous interface. More advanced flash devices implement high-performance synchronous
burst transfer modes that increase their bandwidth for special applications. Most NOR flash chips,
however, are used for general processor boot functions where high memory bandwidth is not a main
concern. Therefore, an inexpensive asynchronous interface

a la

 27xxx is adequate.
Writing to flash memory is not as simple as presenting new data to the chip and then applying a

write enable, as is done with a RAM. Like an EPROM, an already programmed bit must first be
erased before it can be reprogrammed. This erasure process takes longer than a simple read access.
As Fig. 4.5 shows, the programming and source contacts of each flash bit must be switched to spe-
cial voltage levels for erasure. Instead of building switches for each individual bit, the complexity of
the silicon implementation is reduced by grouping many bits together into blocks. Therefore, a flash
device is not erased one bit or byte at a time, but rather a block at a time. Flash chips are segmented
into multiple blocks, depending on the particular device and manufacturer. This block architecture is
beneficial in that the whole device does not have to be erased, allowing sensitive information to be
preserved. A good system design takes the flash block structure into account when deciding where to
locate certain pieces of data or sections of software, thereby requiring the erasure of only a limited
number of blocks when performing an update of system software or configuration. The block era-
sure process takes a relatively long time when measured in microprocessor clock cycles. Given that
the erase procedure clears an entire range of memory, special algorithms are built into the chips to
protect the blocks by requiring a special sequence of flash accesses before the actual erase process is
initiated.

FIGURE 4.5 Flash bit erasure.

-Balch.book Page 82 Thursday, May 15, 2003 3:46 PM

Memory 83

Flash chips are not as standard as EPROMs, because different manufacturers have created their
own programming algorithms, memory organizations, and pin assignments. Many conventional par-
allel data-bus devices have part numbers with “28F” or “29F” prefixes. For example, Advanced Mi-
cro Devices’ flash memory family is the 29Fxxx. Intel’s family is the 28Fxxx. Aside from
programming differences, the size and organization of blocks within a flash device is a key func-
tional difference that may make one vendor’s product better than another for a particular application.
Two main attributes of flash chips are uniformity of block size and hardware protection of blocks.

Uniform-block devices divide the memory array into equally sized blocks. Boot-block devices di-
vide the memory array into one or more small

boot blocks

 and then divide the remainder of memory
into equally sized blocks. Boot-block devices are popular, because the smaller boot blocks can be
used to hold the rarely touched software that is used to initialize the system’s microprocessor when it
first turns on. Boot code is often a small fraction of the system’s overall software. Due to its critical
nature, boot code is often kept simple to reduce the likelihood of errors. Therefore, boot code is sel-
dom updated. In contrast, other flash ROM contents, such as application code and any application
data, may be updated more frequently. Using a boot-block device, a microprocessor’s boot code can
be stored away into its own block without wasting space and without requiring that it be disturbed
during a more general software update. Applications that do not store boot code in flash may not
want the complexity of dealing with nonuniform boot blocks and may therefore be better suited to
uniform-block devices.

Hardware protection of blocks is important when some blocks hold very sensitive information
whose loss could cause permanent damage to the system. A common example of this is boot code
stored in a boot block; if the boot code is corrupted, the CPU will fail to initialize properly the next
time it is reset. A flash device can implement a low-level protection scheme whereby write/erase op-
erations to certain blocks can be disabled with special voltage levels and data patterns presented to
the device.

Examples of real flash devices serve well to explain how this important class of nonvolatile mem-
ory functions. Advanced Micro Devices (AMD) manufactures two similar flash devices: the
29LV010B and the 29LV001B. Both devices are 3.3-V, 1-MB, 128k

×

 8 parts that offer hardware
sector protection. The 29LV010B is a uniform-sector device, and the 29LV001B is a boot-sector de-
vice. AMD uses the term

sector

 instead of block. Both chips have the same basic functional bock di-
agram shown in Fig. 4.6.

128k x 8
Flash Array

Read, Write,
Erase

Control
Logic

A[18:0] D[7:0]

CE*

OE*

WE*

Data
Latch/Buffer

Program
and Erase

Voltage
Generators

VCC (+3.3 V)

VSS (GND)

RESET*
Present on 29LV001B only

FIGURE 4.6 AMD 29LV010B/29LV001B block diagram.

-Balch.book Page 83 Thursday, May 15, 2003 3:46 PM

84 Digital Fundamentals

Modern flash devices require only a single supply voltage and contain on-chip circuitry to create
the nonstandard programming and erasure voltages required by the memory array. Control logic de-
termines which block is placed into erase or program mode at any given time as requested by the mi-
croprocessor with a predefined flash control algorithm. AMD’s algorithm consists of six special
write transactions to the flash: two unlock cycles, a setup command, two more unlock cycles, and the
specific erase command. This sequence is detailed in Table 4.1. If interrupted, the sequence must be
restarted to ensure integrity of the command.

For a whole-chip erase, the address/data in cycle 6 is 0x555/0x10. For a single-sector erase, the
address/data in cycle 6 is the sector address/0x30. Multiple erase commands may be queued together
to reduce the total time spent by the internal control logic erasing its sectors. While executing com-
mands, the data bus is converted into a status communication mechanism. The microprocessor is
able to periodically poll the device by reading from any valid address. While the erase is in progress,
a value other than 0xFF will be returned. As soon as the erase has completed, the microprocessor
will read back 0xFF.

Writes to previously erased flash memory locations are accomplished with a similar technique.
For each location to be programmed, a four-cycle program command sequence is performed as
shown in Table 4.2. Again, the microprocessor polls for command completion by reading from the
device. This time, however, the address polled must be the write address. When the microprocessor
reads back the data that it has written, the command is known to have completed.

Other ancillary commands are supported, including device reset and identification operations.
The 29LV001B includes a hardware-reset signal in addition to the soft reset command. Identification

TABLE

4.1 29LV010B/29LV001B Erase Sequence

*

*

Source:

 Am29LV001B, Pub#21557, and Am29LV010B, Pub #22140,
Advanced Micro Devices, 2000.

Cycle Write Address Write Data

1 0x555 0xAA

2 0x2AA 0x55

3 0x555 0x80

4 0x555 0xAA

5 0x2AA 0x55

6 Erase address Erase command

TABLE

4.2 29LV010B/29LV001B Programming Sequence

Cycle Write Address Write Data

1 0x555 0xAA

2 0x2AA 0x55

3 0x555 0xA0

4 Write address Write data

-Balch.book Page 84 Thursday, May 15, 2003 3:46 PM

Memory 85

enables the microprocessor to verify exactly which flash device it is connected to and which sectors
have been hardware protected. Identification is useful for a removable flash module that can be built
with different parts for specific capacities. Protection status is useful so that software running on the
microprocessor can know if it is possible to program certain areas of the memory.

Hardware sector protection is accomplished during the time of system manufacture by applying a
higher than normal voltage to designated pins on the flash device using special equipment. The des-
ignated pins on the 29LV010B/29LV001B are address bit 9, A9, and the output enable, OE*. These
pins are driven to 12 V while the address of the sector to be protected is applied to other address
pins. During normal operation, there is no way for 12 V to be driven onto these signals, preventing
the protected sectors from being unprotected while in circuit. The exception to this is a feature on the
29LV001B that AMD calls

 temporary sector unprotect

. Previously protected sectors can be tempo-
rarily unprotected by driving 12 V onto the RESET* pin with specific circuitry for this purpose. Tak-
ing advantage of this feature makes it possible to modify the most sensitive areas of the flash by
locating a hardware unprotect enable signal in a logic circuit separate from the flash chip itself.

The major difference between the 29LV010B and 29LV001B is their sector organization. The
29LV010B contains 8 uniform sectors of 16 kB each. The 29LV001B contains 10 sectors of nonuni-
form size. Two variants of the 29LV010B are manufactured by AMD, top and bottom boot sector ar-
chitectures, and their sector organization is listed in Table 4.3.

The reason for these mirrored architectures is that some microprocessors contain reset vectors to-
ward the top of their address space and some toward the bottom. It is a better fit to locate the boot
sectors appropriately depending on a system’s CPU. As with any complex IC, there are many details
relating to the operation of these flash ICs. Refer to AMD’s data sheets for more information.

4.4 EEPROM

Electrically erasable programmable ROM

, or EEPROM, is flash’s predecessor. In fact, some people
still refer to flash as “flash EEPROM,” because the underlying structures are very similar. EEPROM,

TABLE

4.3

29LV010B Sector Organization

Sector Number Top Boot Sector Bottom Boot Sector

0 16 kB 8 kB

1 16 kB 4 kB

2 16 kB 4 kB

3 16 kB 16 kB

4 16 kB 16 kB

5 16 kB 16 kB

6 16 kB 16 kB

7 4 kB 16 kB

8 4 kB 16 kB

9 8 kB 16 kB

-Balch.book Page 85 Thursday, May 15, 2003 3:46 PM

86 Digital Fundamentals

sometimes written as E

2

PROM, is more expensive to manufacture per bit than EPROM or flash, be-
cause individual bytes may be erased randomly without affecting neighboring locations. Because of
the complexity and associated cost of making each byte individually erasable, EEPROM is not com-
monly manufactured in large densities. Instead, it has served as a niche technology for applications
that require small quantities of flexible reprogrammable ROM. Common uses for EEPROM are as
program memory in small microprocessors with embedded memory and as small nonvolatile mem-
ory arrays to hold system configuration information. Serial EEPROM devices can be found in eight-
pin DIP or SOIC packages and provide up to several kilobytes of memory. Their serial interface,
small size, and low power consumption make them very practical as a means to hold serial numbers,
manufacturing information, and configuration data.

Parallel EEPROM devices are still available from manufacturers as the 28xx family. They are pin
and function compatible (for reads) with the 27xxx EPROM family that they followed. Some appli-
cations requiring reprogrammable nonvolatile memory may be more suited to EEPROM than flash,
but flash is a compelling choice, because it is the more mainstream technology with the resultant
benefit of further cost reduction.

Serial EEPROMs, however, are quite popular due to their very small size and low power con-
sumption. They can be squeezed into almost any corner of a system to provide small quantities of
nonvolatile storage. Microchip Technology is a major manufacturer of serial EEPROMs and offers
the 24xx family. Densities range from 16 bytes to several kilobytes. Given that serial interfaces use
very few pins, these EEPROMs are manufactured in packages ranging from eight-pin DIPs to five-
pin SOT-23s that are smaller than a fingernail. Devices of this sort are designed to minimize system
impact rather than for speed. Their power consumption is measured in nanoamps and microamps in-
stead of milliamps, as is the case with standard flash, parallel EEPROM, and EPROM devices.

Microchip’s 24LC00 is a 16-byte serial EEPROM with a two-wire serial bus. It requires only four
pins: two for power and two for data communication. Like most modern flash devices, the 24LC00
is rated for one million write cycles. When not being accessed, the 24LC00 consumes about 250 nA!
When active, it consumes only 500 µA. For added flexibility, the 24LC00 can operate over a variety
of supply voltages from 2.5 to 6.0 V. Speed is not a concern here: writes take up to 4 ms to complete,
which is not a problem when writing only a few bytes on rare occasions.

4.5 ASYNCHRONOUS SRAM

Static RAM

, or SRAM, is the most basic and easy to use
type of volatile memory and is found in almost every com-
puter in one form or another. An SRAM device is concep-
tually easy to understand, consisting of an array of latches
along with control and decode logic to resolve the address
that is being read or written at any given time. Each latch is
a feedback circuit that traps and maintains a particular
logic state. A typical SRAM bit implementation is shown

in Fig. 4.7.
An SRAM latch is created by connecting two inverters in a loop. One side of the loop remains sta-

ble at the desired logic state, and the other remains stable at the opposite state. Inverters are used
rather than noninverting buffers, because an inverter is the simplest logic element to construct. The
two pass transistors on either side of the latch enable both writing and reading. When writing, the
transistors turn on and force each half of the loop to whatever state is driven on the vertical bit lines.
When reading, the transistors also turn on, but the bit lines are sensed rather than driven. Typical

Bit Bit

FIGURE 4.7 SRAM bit feedback latch.

-Balch.book Page 86 Thursday, May 15, 2003 3:46 PM

Memory 87

SRAM implementations require six transistors per bit of memory: two transistors for each inverter
and the two pass transistors. Some implementations use only a single transistor per inverter, requir-
ing only four transistors per bit.

Discrete asynchronous SRAM devices have been around for decades. In the 1980s, the 6264 and
62256 were manufactured by multiple vendors and used in applications that required simple RAM
architectures with relatively quick access times and low power consumption. The 62xxx family is
numbered according to its density in kilobits. Hence, the 6264 provides 65,536 bits of RAM ar-
ranged as 8k

×

 8. The 62256 provides 262,144 bits of RAM arranged as 32k

×

 8. Being manufac-
tured in CMOS technology and not using a clock, these devices consume very little power and draw
only microamps when not being accessed.

The 62xxx family pin assignment is virtually identical to that of the 27xxx EPROM family, en-
abling system designs where either EPROM or SRAM can be substituted into the same location with
only a couple of jumpers to set for unique signals such as the program-enable on an EPROM or
write-enable on an SRAM. Like an EPROM or basic flash device, asynchronous SRAMs have a sim-
ple interface consisting of address, data, chip select, output enable, and write enable. This interface
is shown in Fig. 4.8.

Writes are performed whenever the WE* signal is held low. Therefore, one must ensure that the
desired address and data are stable before asserting WE* and that WE* is removed while address
and data remain stable. Otherwise, the write may corrupt an undesired memory location. Unlike an
EPROM, but like flash, the data bus is bidirectional during normal operation. The first two transac-
tions shown are writes as evidenced by the separate assertions of WE* for the duration of address
and data stability. As soon as the writes are completed, the microprocessor should release the data
bus to the high-impedance state. When OE* is asserted, the SRAM begins driving the data bus and
the output reflects the data contents at the locations specified on the address bus.

Asynchronous SRAMs are available with access times of less than 100 ns for inexpensive parts
and down to 10 ns for more expensive devices. Access time measures both the maximum delay be-
tween a stable read address and its corresponding data and the minimum duration of a write cycle.
Their ease of use makes them suitable for small systems where megabytes of memory are not re-
quired and where reduced complexity and power consumption are key requirements. Volatile mem-
ory doesn’t get any simpler than asynchronous SRAM.

Prior to the widespread availability of flash, many computer designs in the 1980s utilized asyn-
chronous SRAM with a battery backup as a means of implementing nonvolatile memory for storing
configuration information. Because an idle SRAM draws only microamps of current, a small battery
can maintain an SRAM’s contents for several years while the main power is turned off. Using
SRAM in this manner has two distinct advantages over other technologies: writes are quick and
easy, because there are no complex EEPROM or flash programming algorithms, and there is no limit
to the number of write cycles performed over the life of the product. The downsides to this approach
are a lack of security for protecting valuable configuration information and the need for a battery to

A[12:0]

DQ[7:0]

CE*

OE*

A1 A2

D1 D2

WE*

A1 A2

D1 D2

FIGURE 4.8 62xxx SRAM interface.

-Balch.book Page 87 Thursday, May 15, 2003 3:46 PM

88 Digital Fundamentals

maintain the memory contents. Requiring a battery increases the complexity of the system and also
begs the question of what happens when the battery wears out. In the 1980s, it was common for a
PC’s BIOS configuration to be stored in battery-backed CMOS SRAM. This is how terms like “the
CMOS” and “CMOS setup” entered the lexicon of PC administration.

SRAM is implemented not only as discrete memory chips but is commonly found integrated
within other types of chips, including microprocessors. Smaller microprocessors or

microcontrollers

(microprocessors integrated with memory and peripherals on a single chip) often contain a quantity
of on-board SRAM. More complex microprocessors may contain on-chip data caches implemented
with SRAM.

4.6 ASYNCHRONOUS DRAM

SRAM may be the easiest volatile memory to use, but it is not the
least expensive in significant densities. Each bit of memory re-
quires between four and six transistors. When millions or billions
of bits are required, the complexity of all those transistors be-
comes substantial. Dynamic RAM, or DRAM, takes advantage of
a very simple yet fragile storage component: the capacitor. A ca-
pacitor holds an electrical charge for a limited amount of time as

the charge gradually drains away. As seen from EPROM and flash devices, capacitors can be made
to hold charge almost indefinitely, but the penalty for doing so is significant complexity in modifying
the storage element. Volatile memory must be both quick to access and not be subject to write-cycle
limitations—both of which are restrictions of nonvolatile memory technologies. When a capacitor is
designed to have its charge quickly and easily manipulated, the downside of rapid discharge
emerges. A very efficient volatile storage element can be created with a capacitor and a single tran-
sistor as shown in Fig. 4.9, but that capacitor loses its contents soon after being charged. This is
where the term

dynamic

 comes from in DRAM—the memory cell is indeed dynamic under steady-
state conditions. The solution to this problem of solid-state amnesia is to periodically refresh, or up-
date, each DRAM bit before it completely loses its charge.

As with SRAM, the pass transistor enables both reading and writing the state of the storage ele-
ment. However, a single capacitor takes the place of a multitransistor latch. This significant reduc-
tion in bit complexity enables much higher densities and lower per-bit costs when memory is
implemented in DRAM rather than SRAM. This is why main memory in most computers is imple-
mented using DRAM. The trade-off for cheaper DRAM is a degree of increased complexity in the
memory control logic. The number one requirement when using DRAM is periodic refresh to main-
tain the contents of the memory.

DRAM is implemented as an array of bits with rows and columns as shown in Fig. 4.10. Unlike
SRAM, EPROM, and flash, DRAM functionality from an external perspective is closely tied to its
row and column organization.

SRAM is accessed by presenting the complete address simultaneously. A DRAM address is pre-
sented in two parts: a row and a column address. The row and column addresses are multiplexed
onto the same set of address pins to reduce package size and cost. First the row address is loaded, or
strobed, into the row address latch via

row address strobe

, or RAS*, followed by the column address
with

column address strobe

, or CAS*. Read data propagates to the output after a specified access
time. Write data is presented at the same time as the column address, because it is the column strobe
that actually triggers the transaction, whether read or write. It is during the column address phase
that WE* and OE* take effect.

FIGURE 4.9 DRAM bit structure.

-Balch.book Page 88 Thursday, May 15, 2003 3:46 PM

Memory 89

Sense amplifiers on the chip are necessary to detect the minute charges that are held in the
DRAM’s capacitors. These amplifiers are also used to assist in refresh operations. It is the memory
controller’s responsibility to maintain a refresh timer and initiate refresh operations with sufficient
frequency to guarantee data integrity. Rather than refreshing each bit separately, an entire row is re-
freshed at the same time. An internal refresh counter increments after each refresh so that all rows,
and therefore all bits, will be cycled through in order. When a refresh begins, the refresh counter
enables a particular memory row. The contents of the row are detected by the sense amplifiers and
then driven back into the bit array to recharge all the capacitors in that row. Modern DRAMs typi-
cally require a complete refresh every 64 ms. A 64-Mb DRAM organized as 8,388,608 words

×

 8
bits (8 MB) with an internal array size of 4,096

×

 2,048 bytes would require 4,096 refresh cycles
every 64 ms. Refresh cycles need not be evenly spaced in time but are often spread uniformly for
simplicity.

The complexity of performing refresh is well worth the trouble because of the substantial cost and
density improvements over SRAM. One downside of DRAM that can only be partially compensated
for is its slower access time. A combination of its multiplexed row and column addressing scheme
plus its large memory arrays with complex sense and decode logic make DRAM significantly slower
than SRAM. Mainstream computing systems deal with this speed problem by implementing SRAM-
based cache mechanisms whereby small chunks of memory are prefetched into fast SRAM so that
the microprocessor does not have to wait as long for new data that it requests.

Asynchronous DRAM was the prevailing DRAM technology until the late 1990s, when synchro-
nous DRAM, or SDRAM, emerged as the dominant solution to main memory. At its heart, SDRAM
works very much like DRAM but with a synchronous bus interface that enables faster memory trans-
actions. It is useful to explore how older asynchronous DRAM works so as to understand SDRAM.
SDRAM will be covered in detail later in the book.

RAS* and CAS* are the two main DRAM control signals. They not only tell the DRAM chip
which address is currently being asserted, they also initiate refresh cycles and accelerate sequential
transactions to increase performance. A basic DRAM read works as shown in Fig. 4.11. CE* and
OE* are both assumed to be held active (low) throughout the transaction.

A transaction begins by asserting RAS* to load the row address. The strobes are falling-edge sen-
sitive, meaning that the address is loaded on the falling edge of the strobe, sometime after which the
address may change. Asynchronous DRAMs are known for their myriad detailed timing require-
ments. Every signal’s timing relative to itself and other signals is specified in great detail, and these
parameters must be obeyed for reliable operation. RAS* is kept low for the duration of the transac-
tion. Assertion of CAS* loads the column address into the DRAM as well as the read or write status

N x M
DRAM
Array

Sense
Amplifiers

Address

Data

Row Address
Latch

Control

Refresh
Counter

Column
Address Latch

Control Logic
RAS*, CAS*,
WE*, OE*, CE*

FIGURE 4.10 DRAM architecture.

-Balch.book Page 89 Thursday, May 15, 2003 3:46 PM

90 Digital Fundamentals

of the transaction. Some time later, the read data is made available on the data bus. After waiting for
a sufficient time for the DRAM to return the read data, the memory controller removes RAS* and
CAS* to terminate the transaction.

Basic writes are similar to single reads as shown in Fig. 4.12. Again, CE* is assumed to be held
active, and, being a write, OE* is assumed to be held inactive throughout the transaction.

Like a read, the write transaction begins by loading the row address. From this it is apparent that
there is no particular link between loading a row address and performing a read or a write. The iden-
tity of the transaction is linked to the falling edge of CAS*, when WE* is asserted at about the same
time that the column address and write data are asserted. DRAM chips require a certain setup and
hold time for these signals around the falling edge of CAS*. Once the timing requirements are met,
address can be deasserted prior to the rising edge of CAS*.

A read/write hybrid transaction, called a

read-modify-write

, is also supported to improve the effi-
ciency of the memory subsystem. In a read-modify-write, the microprocessor fetches a word from
memory, performs a quick modification to it, and then writes it back as part of the same original
transaction. This is an

atomic

operation, because it functions as an indivisible unit and cannot be in-
terrupted. Figure 4.13 shows the timing for the read-modify-write. Note that CAS* is held for a
longer period of time, during which the microprocessor may process the read-data before asserting
WE* along with the new data to be written.

Original DRAMs were fairly slow. This was partly because older silicon processes limited the de-
code time of millions of internal addresses. It was also a result of the fact that accessing a single lo-
cation required a time-consuming sequence of RAS* followed by CAS*. In comparison, an SRAM
is quick and easy: assert the address in one step and grab the data. DRAM went through an architec-
tural evolution that replaced the original devices with

fast-page mode

 (FPM) devices that allow more
efficient accesses to sequential memory locations. FPM DRAMs provide a substantial increase in
usable memory bandwidth for the most common DRAM application: CPU memory. These devices
take advantage of the tendency of a microprocessor’s memory transactions to be sequential in nature.

Address

Data

CAS*

Row Address Column Address

WE*

Read Data

RAS*

x

FIGURE 4.11 Basic DRAM read (CE* = 0, OE* = 0).

Address

Data

CAS*

Row Address Column Address

WE*

Write Data

RAS*

x

FIGURE 4.12 Basic DRAM write (CE* = 0, OE* = 1).

-Balch.book Page 90 Thursday, May 15, 2003 3:46 PM

Memory 91

Software does occasionally branch back and forth in its memory space. Yet, on the whole, software
moves through portions of memory in a linear fashion. FPM devices enable a DRAM controller to
load a row-address in the normal manner using RAS* and then perform multiple CAS* transactions
using the same row-address. Therefore, DRAMs end their transaction cycles with the rising edge of
RAS*, because they cannot be sure if more reads or writes are coming until RAS* rises, indicating
that the current row-address can be released.

FPM technology, in turn, gave way to

extended-data out

 (EDO) devices that extend the time read
data is held valid. Unlike its predecessors, an EDO DRAM does not disable the read data when
CAS* rises. Instead, it waits until either the transaction is complete (RAS* rises), OE* is deasserted,
or until CAS* begins a new page-mode access. While FPM and EDO DRAMs are distinct types of
devices, EDO combines the page-mode features of FPM and consequently became more attractive to
use. The following timing discussion uses EDO functionality as the example.

Page-mode transactions hold RAS* active and cycle CAS* multiple times to perform reads and
writes as shown in Figs. 4.14 and 4.15. Each successive CAS* falling edge loads a new column ad-
dress and causes either a read or write to be performed. In the read case, EDO’s benefit can be properly
observed. Rather than read data being removed when CAS* rises, it remains asserted until just after the
next falling edge of CAS* or the rising edge of RAS* that terminates the page-mode transaction.

Address

Data

CAS*

Row Address Column Address

WE*

RAS*

x

OE*

Write DataRead Data

FIGURE 4.13 Read-modify-write transaction.

Address

Data

CAS*

Row Address Col Addr 1

RAS*

Read Data 1

Col Addr 2 Col Addr 3

Read Data 2 Read Data 3

FIGURE 4.14 Page-mode reads.

Address

Data

CAS*

Row Address Col Addr 1

RAS*

Col Addr 2 Col Addr 3

Write Data 2Write Data 1 Write Data 3

FIGURE 4.15 Page-mode writes.

-Balch.book Page 91 Thursday, May 15, 2003 3:46 PM

92 Digital Fundamentals

There are some practical limits to the duration of a page-mode transaction. First, there is an abso-
lute maximum time during which RAS* can remain asserted. The durations of RAS* and CAS* are
closely specified to guarantee proper operation of the DRAM. Operating the DRAM with a mini-
mum CAS* cycle time and a maximum RAS* assertion time will yield a practical limitation on the
data burst that can be read or written without reloading a new row address. In reality, a common
asynchronous DRAM can support over 1,000 back-to-back accesses for a given row-address.
DRAM provides its best performance when operated in this manner. The longer the burst, the less
overhead is experienced for each byte transferred, because the row-address setup time is amortized
across each word in the burst. Cache subsystems on computers help manage the bursty nature of
DRAM by swallowing a set of consecutive memory locations into a small SRAM cache where the
microprocessor will then have easy access to them later without having to wait for a lengthy DRAM
transaction to execute.

The second practical limitation on page-mode transactions, and all DRAM transactions in gen-
eral, is refresh overhead. The DRAM controller must be smart enough to execute periodic refresh
operations at the required frequency. Even if the microprocessor is requesting more data, refresh
must take priority to maintain memory integrity. At any given instant in time, a scheduled refresh op-
eration may be delayed slightly to accommodate a CPU request, but not to the point where the con-
troller falls behind and fails to execute the required number of refresh operations. There are a variety
ways to initiate a refresh operation, but most involve a so-called

CAS-before-RAS

 signaling where
the normal sequence of the address strobes is reversed to signal a refresh. Asserting CAS* before
RAS* signals the DRAM’s internal control logic to perform a row-refresh at the specific row indi-
cated by its internal counter. Following this operation, the refresh counter is incremented in prepara-
tion for the next refresh event.

DRAM has numerous advantages over SRAM, but at the price of increased controller complexity
and decreased performance in certain applications. DRAMs use multiplexed address buses, which
saves pins and enables smaller, less expensive packaging and circuit board wiring. Most DRAMs are
manufactured with data bus widths smaller than what is actually used in a computer to save pins. For
example, when most computers used 8- or 16-bit data buses, most DRAMs were 1 bit wide. When
microprocessors grew to 32 and 64 bit data buses, mainstream DRAMs grew to 4- and then 8-bit
widths. This is in contrast to SRAMs, which have generally been offered with wide buses, starting
out at 4 bits and then increasing to 72 bits in more modern devices. This width disparity is why most
DRAM implementations in computers involve groups of four, eight, or more DRAMs on a single
module. In the 1980s, eight 64k

×

 1 DRAMs created a 64 kB memory array. Today, eight 32M

×

 8
DRAMs create a 256 MB memory array that is 64 bits wide to suit the high-bandwidth 32- or 64-bit
microprocessor in your desktop PC.

A key architectural attribute of DRAM is its inherent preference for sequential transactions and, ac-
cordingly, its weakness in handling random single transactions. Because of their dense silicon struc-
tures and multiplexed address architecture, DRAMs have evolved to provide low-cost bulk memory
best suited to burst transactions. The overhead of starting a burst transaction can be negligible when
spread across many individual memory words in a burst. However, applications that are not well
suited to long bursts may not do very well with DRAM because of the constant startup penalty in-
volved in fetching 1 word versus 1,000 words. Such applications may work better with SRAM. Plan-
ning memory architecture involves making these trade-offs between density/cost and performance.

4.7 MULTIPORT MEMORY

Most memory devices, whether volatile or nonvolatile, contain a single interface through which their
contents are accessed. In the context of a basic computer system with a single microprocessor, this

-Balch.book Page 92 Thursday, May 15, 2003 3:46 PM

Memory 93

single-port

 architecture is well suited. There are some architectures in which multiple microproces-
sors or logic blocks require access to the same shared pool of memory. A shared pool of memory can
be constructed in a couple of ways. First, conventional DRAM or SRAM can be combined with ex-
ternal logic that takes requests from separate entities (e.g., microprocessors) and arbitrates access to
one requestor at a time. When the shared memory pool is large, and when simultaneous access by
multiple requesters is not required, arbitration can be an efficient mechanism. However, the com-
plexity of arbitration logic may be excessive for small shared-memory pools, and arbitration does
not enable simultaneous access. A means of sharing memory without arbitration logic and with si-
multaneous access capability is to construct a true multiport memory element.

A multiport memory provides simultaneous access to multiple external entities. Each port may
be read/write capable, read-only, or write-only depending on the implementation and application.
Multiport memories are generally kept relatively small, because their complexity, and hence their
cost, increases significantly as additional ports are added, each with its own decode and control
logic. Most multiport memories are

dual-port

elements as shown in Fig. 4.16.
A true dual-port memory places no restrictions on either port’s transactions at any given time. It is

the responsibility of the engineer to ensure that one requester does not conflict with the other. Con-
flicts arise when one requester writes a memory location while the other is either reading or writing
that same location. If a simultaneous read/write occurs, what data does the reader see? Is it the data
before or after the write? Likewise, if two writes proceed at the same time, which one wins? While
these riddles could be worked out for specific applications with custom logic, it is safer not to worry
about such corner cases. Instead, the system design should avoid such conflicts unless there is a
strong reason to the contrary.

One common application of a dual-port memory is sharing information between two micropro-
cessors as shown in Fig. 4.17. A dual-port memory sits between the microprocessors and can be par-
titioned into a separate message bin, or memory area, for each side. Bin A contains messages written
by CPU A and read by CPU B. Bin B contains messages written by CPU B and read by CPU A.

Notification of a waiting message is accomplished via a CPU interrupt, thereby releasing the
CPUs from having to constantly poll the memory as they wait for messages to arrive. The entire pro-
cess might work as follows:

1. CPU A writes a message for CPU B into Bin A.

2. CPU A asserts an interrupt to CPU B indicating the a message is waiting in Bin A.

3. CPU B reads the message in Bin A.

4. CPU B acknowledges the interrupt from CPU A.

5. CPU A releases the interrupt to CPU B.

An implementation like this prevents dual-port memory conflicts because one CPU will not read a
message before it has been fully written by the other CPU and neither CPU writes to both bins.

Dual-Port
Memory

Array

Port A
Control
Logic

Port B
Control
Logic

FIGURE 4.16 Dual-port memory.

-Balch.book Page 93 Thursday, May 15, 2003 3:46 PM

94 Digital Fundamentals

4.8 THE FIFO

The memory devices discussed thus far are essentially linear arrays of bits surrounded by a minimal
quantity of interface logic to move bits between the port(s) and the array.

First-in-first-out

(FIFO)
memories are special-purpose devices that implement a basic queue structure that has broad applica-
tion in computer and communications architecture. Unlike other memory devices, a typical FIFO
has two unidirectional ports without address inputs: one for writing and another for reading. As the
name implies, the first data written is the first read, and the last data written is the last read. A FIFO
is not a random access memory but a sequential access memory. Therefore, unlike a conventional
memory, once a data element has been read once, it cannot be read again, because the next read will
return the next data element written to the FIFO. By their nature, FIFOs are subject to

overflow

and

underflow

conditions. Their finite size, often referred to as

depth

, means that they can fill up if reads
do not occur to empty data that has already been written. An overflow occurs when an attempt is
made to write new data to a full FIFO. Similarly, an empty FIFO has no data to provide on a read re-
quest, which results in an underflow.

A FIFO is created by surrounding a dual-port memory array—generally SRAM, but DRAM
could be made to work as well for certain applications—with a write pointer, a read pointer, and con-
trol logic as shown in Fig. 4.18.

Dual-Port Memory

CPU A

Message Bin A

Message Bin B

CPU B

Interrupt
Logic

Interrupt
Logic

"Message Ready"

FIGURE 4.17 Dual microprocessor message passing architecture.

Dual-Port Memory Array

Write
Pointer

Read
Pointer

Comparison
Logic

Write
Control

Interface

Full

Read
Control

Interface

Empty

Write Data

Write Enable

 Full

Read Data

Read Enable

Empty

write data read data

write address read address

FIGURE 4.18 Basic FIFO architecture.

-Balch.book Page 94 Thursday, May 15, 2003 3:46 PM

Memory 95

A FIFO is not addressed in a linear fashion; rather, it is made to form a continuous ring of mem-
ory that is addressed by the two internal pointers. The fullness of the FIFO is determined not by the
absolute values of the pointers but by their relative values. An empty FIFO begins with its read and
write pointers set to the same value. As entries are written, the write pointer increments. As entries
are read, the read pointer increments as well. If the read pointer ever catches up to the write pointer
such that the two match, the FIFO is empty again. If the read pointer fails to advance, the write
pointer will eventually wrap around the end of the memory array and become equal to the read
pointer. At this point, the FIFO is full and cannot accept any more data until reading resumes. Full
and empty flags are generated by the FIFO to provide status to the writing and reading logic. Some
FIFOs contain more detailed fullness status, such as signals that represent programmable fullness
thresholds.

The interfaces of a FIFO can be asynchronous (no clock) or synchronous (with a clock). If syn-
chronous, the two ports can be designed to operate with a common clock or different clocks. Al-
though older asynchronous FIFOs are still manufactured, synchronous FIFOs are now more
common. Synchronous FIFOs have the advantage of improved interface timing, because flops
placed at a device’s inputs and outputs reduce timing requirements to the familiar setup, hold, and
clock-to-out specifications. Without such a registered interface, timing specifications become a func-
tion of the device’s internal logic paths.

One common role that a FIFO fills is in clock domain crossing. In such an application, there is a
need to communicate a series of data values from a block of logic operating on one clock to another
block operating on a different clock. Exchanging data between clock domains requires special atten-
tion, because there is normally no way to perform a conventional timing analysis across two differ-
ent clocks to guarantee adequate setup and hold times at the destination flops. Either an
asynchronous FIFO or a dual-clock synchronous FIFO can be used to solve this problem, as shown
in Fig. 4.19.

The dual-port memory at the heart of the FIFO is an asynchronous element that can be accessed
by the logic operating in either clock domain. A dual-clock synchronous FIFO is designed to handle
arbitrary differences in the clocks between the two halves of the device. When one or more bytes are
written on clock A, the write-pointer information is carried safely across to the clock B domain
within the FIFO via inter-clock domain synchronization logic. This enables the read-control inter-
face to determine that there is data waiting to be read. Logic on clock B can read this data long after
it has been safely written into the memory array and allowed to settle to a stable state.

Another common application for a FIFO is rate matching where a particular data source is bursty
and the data consumer accepts data at a more regular rate. One example is a situation where a se-
quence of data is stored in DRAM and needs to be read out and sent over a communications inter-
face one byte at a time. The DRAM is shared with a CPU that competes with the communications
interface for memory bandwidth. It is known that DRAMs are most efficient when operated in a
page-mode burst. Therefore, rather than perform a complete read-transaction each time a single byte

Dual-Port
Memory

Array
Write

Control

Clock A

Write Data

Write Enable

 Full

Read Data

Read Enable

Empty

Read
Control

Clock B

Write
Logic

Clock A

Read
Logic

Clock Binter-clock domain
synchronization

signals

Clock BClock A

FIGURE 4.19 Clock domain crossing with synchronous FIFO.

-Balch.book Page 95 Thursday, May 15, 2003 3:46 PM

96 Digital Fundamentals

is needed for the communications interface, a burst of data can be read and stored in a FIFO. Each
time the interface is ready for a new byte, it reads it from the FIFO. In this case, only a single-clock
FIFO is required, because these devices operate on a common clock domain. To keep this process
running smoothly, control logic is needed to watch the state of the FIFO and perform a new burst
read from DRAM when the FIFO begins to run low on data. This scheme is illustrated in Fig. 4.20.

For data-rate matching to work properly, the average bandwidth over time of the input and output
ports of the FIFO must be equal, because FIFO capacity is finite. If data is continuously written
faster than it can be read, the FIFO will eventually overflow and lose data. Conversely, if data is con-
tinuously read faster than it can be written, the FIFO will underflow and cause invalid bytes to be in-
serted into the outgoing data stream. The depth of a FIFO indicates how large a read/write rate
disparity can be tolerated without data loss. This disparity is expressed as the product of rate mis-
match and time. A small mismatch can be tolerated for a longer time, and a greater rate disparity can
be tolerated for a shorter time.

In the rate-matching example, a large rate disparity of brief duration is balanced by a small rate
disparity of longer duration. When the DRAM is read, a burst of data is suddenly written into the
FIFO, creating a temporarily large rate disparity. Over time, the communications interface reads one
byte at a time while no writes are taking place, thereby compensating with a small disparity over
time.

DRAM reads to refill the FIFO must be carefully timed to simultaneously prevent overflow and
underflow conditions. A threshold of FIFO fullness needs to be established below which a DRAM
read is triggered. This threshold must guarantee that there is sufficient space available in the FIFO to
accept a full DRAM burst, avoiding an overflow. It must also guarantee that under the worst-case re-
sponse time of the DRAM, enough data exists in the FIFO to satisfy the communications interface,
avoiding an underflow. In most systems, the time between issuing a DRAM read request and actu-
ally getting the data is variable. This variability is due to contention with other requesters (e.g., the
CPU) and waiting for overhead operations (e.g., refresh) to complete.

Rate
Matching

FIFO

DRAM
Controller

DRAM
Request

Logic

Communications
Interface

FIFO fullness

Read
Request

CPU

Read/Write
Request

Read
Logic

FIGURE 4.20 Synchronous FIFO application: data rate matching.

-Balch.book Page 96 Thursday, May 15, 2003 3:46 PM

97

CHAPTER 5

Serial Communications

Serial communication interfaces are commonly used to exchange data with other computers. Serial
interfaces are ubiquitous, because they are economical to implement over long distances as a result
of their requirement of relatively few wires. Many types of serial interfaces have been developed,
with speeds ranging to billions of bits per second. Regardless of the bit rate, serial communication
interfaces share many common traits. This chapter introduces the fundamentals of serial communi-
cation in the context of popular data links such as RS-232 and RS-485 in which bandwidths and
components lend themselves to basic circuit fabrication techniques.

The chapter first deals with the basic parallel-to-serial-to-parallel conversion process that is at the
heart of all serial communication. Wide buses must be serialized at the transmitter and reconstructed
at the receiver. Techniques for accomplishing this vary with the specific type of data link, but basic
concepts of framing and error detection are universal.

Two widely deployed point-to-point serial communication standards, RS-232 and RS-422, are
presented, along with the standard ASCII character set, to see how theory meets practice. Standards
are important to communications in general because of the need to connect disparate equipment.
ASCII is one of the most fundamental data representation formats with global recognition. RS-232
has traditionally been found in many digital systems, because it is a reliable standard. Understanding
RS-232, its relative RS-422, and ASCII enables an engineer to design a communication interface
that can work with an almost infinite range of complementary equipment ranging from computers to
modems to off-the-shelf peripherals.

Systems may require more advanced communication schemes to enable data exchange between
many nodes. Networks enable such communication and can range in complexity according to an ap-
plication’s requirements. Networking adds a new set of fundamental concepts on top of basic serial
communication. Topics including network topologies and packet formats are presented to explain
how networks function at a basic hardware and software level. Once networking fundamentals have
been discussed, the RS-485 standard is introduced to show how a simple and fully functional net-
work can be constructed. A complete network design example using RS-485 is offered with explana-
tions of why various design points are included and how they contribute to the network’s overall
operation.

The chapter closes with a presentation of small-scale networking employed within a digital sys-
tem to economically connect peripherals to a microprocessor. Interchip networks are of such narrow
scope that they are usually not referred to as networks, but they can possess many fundamental prop-
erties of a larger network. Peripherals with low microprocessor bandwidth requirements can be con-
nected using a simple serial interface consisting of just a few wires, as compared to the full
complexity of a parallel bus.

-Balch.book Page 97 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

98 Digital Fundamentals

5.1 SERIAL VS. PARALLEL COMMUNICATION

Most logical operations and data processing occur in parallel on multiple bits simultaneously. Mi-
croprocessors, for example, have wide data buses to increase throughput. With wide buses comes a
requirement for more wires to connect the logical elements in a system. The interconnection penalty
increases as distances increase. Within a chip, the penalty is small, and wide buses are common. Im-
plementing wide buses on a circuit board is also common because of the relatively short distances
involved.

The economics and technical context of interconnect changes as soon as the distances grow from
centimeters to meters to kilometers. Communication is primarily concerned with transporting data
from one location to another rather than processing that information as it is carried on a wire. With
distance comes the expensive problem of stringing a continuous wire between two locations.
Whether the wire is threaded through a conduit between floors in an office, buried under the street
between buildings, or virtually constructed via radio transmission to a satellite, the cost and com-
plexity of connecting multiple wires is many orders of magnitude greater than on a circuit board. Se-
rial communication is well suited to long distances, because fewer wires are used as compared to a
parallel bus. A serial data link implies a single-wire medium, but there can be multiwire serial links
as well.

Figure 5.1 illustrates several logical components in a serial data link. At either end are the sources
and consumers of the data that operate using a parallel bus. A

transceiver

converts between a parallel
bus and a serial stream and handles any link-level timing necessary to properly send and receive
data. A

transducer

, or

modulator

in wireless links, converts between the medium’s electromagnetic
signaling characteristics and the transceiver’s logic-level signals. Finally, a conductive path joins the
two transducers. This path can be copper wire, glass fiber optic cable, or free space. These logical
components may be integrated in arbitrary physical configurations in different implementations, so
not all serial links will consist of three specific discrete pieces. Simple links may have fewer pieces,
and complex links may have more.

The total cost of a data link is the sum of the cost of the transceiver/transducer subsystems at each
end and the cost of the physical medium itself. A serial port on a desktop computer is inexpensive
because of its relatively simple electronic circuits and because the medium over which it communi-
cates, a short copper wire, is fairly cheap. In contrast, a satellite link is very expensive as a result of
the greater complexity of the ground-based transmission equipment, the high cost of the satellite it-
self, and the licensing costs of using the public airwaves.

If only one bit is transferred per clock cycle in a serial link, it follows that either the serial bit
clock has to be substantially faster than the parallel bus, or the link’s

bandwidth

will be significantly

Data Processor

Transceiver

Transducer

Data Processor

Transceiver

Transducer

parallel data

serial data

 communications medium

FIGURE 5.1 Components of a serial data link.

-Balch.book Page 98 Thursday, May 15, 2003 3:46 PM

Serial Communications 99

below that of the parallel bus.

Bandwidth

in a communication context refers to the capacity of the
communications channel, often expressed either in bits-per-second (bps) or bytes-per-second (Bps).
Serial links are available in a broad spectrum of bandwidths, from thousands of bits per second
(kbps) to billions of bits per second (Gbps) and are stretching toward trillions of bits per second
(Tbps)!

Most implementations in the kbps range involve applications where relatively small quantities of
data are exchanged, so the cost of deploying an advanced data link is not justified. These serial links
are able to run at low frequencies (several hundred kilohertz and below) and therefore do not require
complex circuitry. Of course, some low-bandwidth data links can be very expensive if the medium
over which they operate presents extreme technical difficulties, such as communicating across inter-
planetary distances. Implementations in the Gbps range serve applications such as high-end com-
puter networks where huge volumes of data are carried. Such links are run at gigahertz frequencies
and are relatively costly due to this high level of performance. Gigahertz serial transfer rates do not
translate into similar logic clock frequencies. When a transceiver converts a serial data stream into a
parallel bus, it contains the very high frequency complexity within itself. A 1-Gbps link requires
only a 31.25 MHz clock when using a 32-bit data path.

5.2 THE UART

The

universal asynchronous receiver/transmitter

 (UART) is a basic transceiver element that serial-
izes a parallel bus when transmitting and deserializes the incoming stream when receiving. In addi-
tion to bus-width conversion, the UART also handles overhead and synchronization functions
required to transport data. Data bits cannot simply be serialized onto a wire without some additional
information to delineate the start and end of each unit of data. This delineation is called

framing

. The
receiver must be able to recognize the start of a byte so that it can synchronize its shift registers and
receive logic to properly capture the data. Basic framing is accomplished with a

start bit

that is as-
signed a logic state opposite to that of the transmission medium’s idle state, often logic 1 for histori-
cal reasons. When no data is being sent, the transmission medium, typically a wire, may be driven to
logic 1. A logic 0 start bit signals the receiver that data is on the way. The receiving UART must be
configured to handle the same number of data bits sent by the transmitter. Either seven or eight data
bits are supported by most UARTs. After seven or eight data bits have been captured following the
start bit, the UART knows that the data unit has completed and it can resume waiting for a new start
bit. One or more

stop bits

 follow to provide a minimum delay between successive data units so that
the receiver can complete processing of the current datum before receiving the next one.

Many UARTs also support some form of error detection in the form of a

parity bit

. The parity bit
is the XOR of the data bits and is sent along with data so that it can be recalculated and verified at
the receiver. Error detection is considered more important on a long-distance data link, as compared
to on a circuit board, because errors are more prone over longer distances. A parity bit is added to
each data unit, most often each byte, that tells the receiver if an odd or even number of 1s are in the
data word. The receiver and transmitter must be configured to agree on whether even or odd parity is
being implemented. Even parity is calculated by XORing all data bits, and odd parity is calculated
by inverting even parity. The result is that, for even parity, the parity bit will be set if there are an odd
number of 1s in the byte. Conversely, the parity bit will be cleared if there are an odd number of 1s
present. Odd parity is just the opposite, as shown in Fig. 5.2.

Handshaking

is another common feature of UARTs. Handshaking, also called

flow control

, is the
general process whereby two ends of a data link confirm that each is ready to exchange data before
the actual exchange occurs. The process can use hardware or software signaling. Hardware hand-

-Balch.book Page 99 Thursday, May 15, 2003 3:46 PM

100 Digital Fundamentals

shaking involves a receiver driving a ready signal to the transmitter. The transmitter sends data only
when the receiver signals that it is ready. UARTs may support hardware handshaking. Any software
handshaking is the responsibility of the UART control program.

Software handshaking works by transmitting special binary codes that either pause or resume the
opposite end as it sends data.

XON

/

XOFF

handshaking is a common means of implementing soft-
ware flow control. When one end of the link is ready to accept data, it transmits a standard character
called XON (0x11) to the opposite device. When the receiver has filled a buffer and is unable to ac-
cept more data, an XOFF character (0x13) is transmitted. It is by good behavior that most flow con-
trol schemes work: the device that receives an XOFF must respect the signal and pause its
transmission until an XON is received. It is not uncommon to see an XON/XOFF setting in certain
serial terminal configurations.

A generic UART is shown in Fig. 5.3. The UART is divided into three basic sections: CPU inter-
face, transmitter, and receiver. The CPU interface contains various registers to configure parity, bit rate,
handshaking, and interrupts. UARTs usually provide three parity options: none, even, and odd. Bit rate
is selectable well by programming an internal counter to arbitrarily divide an external reference clock.
The range of usable bit clocks may be from several hundred bits per second to over 100 kbps.

Interrupts are used to inform the CPU when a new byte has been received and when a new byte is
ready to be transmitted. This saves the CPU from having to constantly poll the UART’s status regis-
ters for this information. However, UARTs provide status bits to aid in interrupt status reporting, so
a simple serial driver program could operate by polling rather than implementing an interrupt service
routine. Aside from general control and status registers, the CPU interface provides access to trans-
mit and receive buffers so that data can be queued for transmission and retrieved upon arrival. De-
pending on the UART, these buffers may be only one byte each, or they may be several bytes

0xA0 = 10100000 0

Even ParityData

1

Odd Parity

FIGURE 5.2 Odd and even parity.

CPU
Interface

Logic

Control
Registers

Status
Registers

Receive
Buffer

Transmit
Buffer

Data

Address, Control

Interrupt

Tx Shift
Logic

Parity
Generator

Rx Shift
Logic

Parity
Checker

Clock
Sync

Bit Clock
Divider

Reference Clock

Serial Out

Serial In

Handshaking Out

Handshaking In

FIGURE 5.3 Generic UART block diagram.

-Balch.book Page 100 Thursday, May 15, 2003 3:46 PM

Serial Communications 101

implemented as a small FIFO. Typically, these serial ports run slow enough to not require deep buff-
ers, because even a slow CPU can easily respond to a transmit/receive event before the data link
underruns the transmit buffer or overruns the receive buffer.

The transmit section implements a parallel-to-serial shift register, parity generator, and framing
logic. UARTs support framing with a start bit and one or two stop bits where the start bit is a logic 0
and stop bits are logic 1s. It is also common to transmit data LSB first. With various permutations of
framing options, parity protection, and seven or eight data bits, standard configuration notation is of
the form <parity:N/E/O>-<width:8/7>-<stop-bits:1/2>. For example, N-8-1 represents no parity, 8
data bits, and 1 stop bit. E-8-2 represents even parity, 8 data bits, and 2 stop bits. To help understand
the format of bytes transmitted by a UART, consider Fig. 5.4. Here, two data bytes are transmitted:
0xA0 and 0x67. Keep in mind that the LSB is transmitted first.

Receiving the serial data is a bit trickier than transmitting it, because there is no clock accompa-
nying the data with which the data can be sampled. This is where the asynchronous

terminology in
the UART acronym comes from. The receiver contains a clock synchronization circuit that detects
the start-bit and establishes a timing reference point from which all subsequent bits in the byte will
be sampled. This reference point is created using a higher-frequency receive clock. Rather than run-
ning the receiver at 1x the bit rate, it may be run at 16x the bit rate. Now the receive logic can de-
compose a bit into 16 time units and slide a 16-clock window according to where the start bit is
observed. It is advantageous to sample each subsequent bit halfway through its validity window for
maximum timing margin on either side of the sampling event. This allows maximum flexibility for
settling time around the edges of the electrical pulse that defines each bit.

Consider the waveform in Fig. 5.5. When the start bit is detected, the sampling window is reset,
and a sampling point halfway through is established. Subsequent bits can have degraded rising and
falling edges without causing the receiver to sample an incorrect logic level.

0

start
bit

0 0 00 0 01 1 1

stop
bit

0

start
bit0xA0

N-8-1

111 0 0 11 0

0x67

1

stop
bit

0

start
bit

0 0 00 0 01 1

0xA0

E-8-2

0

parity
bit

1

stop
bit

1

stop
bit

0

start
bit

111 0 0 11 0

0x67

1

parity
bit

1

stop
bit

1

stop
bit

FIGURE 5.4 Common byte framing formats.

x16 Rx Clock

x1 Rx Clock

Serial Input Bit #0 Bit #1Start Bit

xxx
Sampling
Window
Sampling Point xxx

FIGURE 5.5 UART receive clock synchronization.

-Balch.book Page 101 Thursday, May 15, 2003 3:46 PM

102 Digital Fundamentals

5.3 ASCII DATA REPRESENTATION

Successful communication requires standardized data representation so that people and computers
around the world can share the same information. Alphanumeric characters are represented by a
seven-bit standard representation known as the

American Standard Code for Information Inter-
change

, or ASCII. ASCII also includes punctuation marks and invisible control codes used to help in
the display and transfer of data. ASCII was first published in 1968 by the

American National Stan-
dards Institute

, or ANSI. The original ASCII standard lacked provisions for many commonly used
grammatical symbols in languages other than English. Since 1968, there have been many extensions
to ASCII that have varying support throughout the world according to the prevalent language in each
country. In the United States, an eight-bit ASCII variant is commonly supported that adds graphical
symbols and some of the more common foreign language punctuation symbols. The original seven-
bit ANSI standard ASCII mapping is shown in Table 5.1. The mappings below 0x20 are invisible
control codes such as tab (0x09), carriage return (0x0D), and line-feed (0x0A). Some of the control
codes are not in widespread use anymore.

5.4 RS-232

Aside from a common data representation format, communication signaling such as framing or error
detection also requires standardization so that equipment manufactured by different companies can
exchange information. When one begins discussing communications, an unstoppable journey into
the sometimes mysterious world of industry standards begins. Navigating these standards can be
tricky because of subtle differences in terminology between related standards and the everyday jar-
gon to which the engineering community has grown accustomed. Standards are living documents
that are periodically updated, revised, or replaced. This shifting base of documentation can add other
challenges to fully complying with a standard.

One of the most ubiquitous serial communications schemes in use is defined by the

RS-232

fam-
ily of standards. Most UARTs are designed specifically to support RS-232. Standards purists may
balk at the common reference to RS-232 in the modern context, for several reasons. First, the origi-
nal RS-232 document has long since been superseded by multiple revisions. Second, its name was
changed first to EIA-232, then to EIA/TIA-232. And third, RS-232 is but one of a set of related stan-
dards that address asynchronous serial communications. These standards have been developed under
the auspices of the Electronics Industry Alliance (formerly the Electronics Industry Association) and
Telecommunications Industry Association. Technically, EIA/TIA-232 (first introduced in 1962 as
RS-232) standardizes the 25-pin D-subminiature (DB25) connector and pin assignment along with
an obsolete electrical specification that had limited range. EIA/TIA-423 standardizes the modern
electrical characteristics that enable communication at speeds up to 100 kbps over short distances
(10 m). EIA/TIA-574 standardizes the popular nine-pin DE9 connector that is used on most new
“RS-232” equipped devices. These days, when most people talk about an RS-232 port, they are re-
ferring to the overall RS-232 family of related serial interfaces. In fairness to standards purists, this
loose terminology is partially responsible for confusion among those who implement and use RS-
232. From a practical perspective, however, it is most common to use the term RS-232 with addi-
tional qualifiers (e.g., 9-pin or 25-pin) to convey your point. In fact, if you start mentioning EIA/
TIA-574 and 423, you will probably be met by blank stares from most engineers. This somewhat
shady practice is continued here because of its widespread acceptance in industry.

RS-232 specifies that the least-significant bit of a byte is transmitted first and is framed by a sin-
gle start bit and one or two stop bits. Common RS-232 data rates are known to many computer users.

-Balch.book Page 102 Thursday, May 15, 2003 3:46 PM

Serial Communications 103

TABLE

5.1 Seven-bit ASCII Character Mapping

Decimal Hex Value Decimal Hex Value Decimal Hex Value Decimal Hex Value

0 0x00 NUL 32 0x20 SP 64 0x40 @ 96 0x60 `

1 0x01 SOH 33 0x21 ! 65 0x41 A 97 0x61 a

2 0x02 STX 34 0x22 " 66 0x42 B 98 0x62 b

3 0x03 ETX 35 0x23 # 67 0x43 C 99 0x63 c

4 0x04 EOT 36 0x24 $ 68 0x44 D 100 0x64 d

5 0x05 ENQ 37 0x25 % 69 0x45 E 101 0x65 e

6 0x06 ACK 38 0x26 & 70 0x46 F 102 0x66 f

7 0x07 BEL 39 0x27 ' 71 0x47 G 103 0x67 g

8 0x08 BS 40 0x28 (72 0x48 H 104 0x68 h

9 0x09 HT 41 0x29) 73 0x49 I 105 0x69 i

10 0x0A LF 42 0x2A * 74 0x4A J 106 0x6A j

11 0x0B VT 43 0x2B + 75 0x4B K 107 0x6B k

12 0x0C FF 44 0x2C , 76 0x4C L 108 0x6C l

13 0x0D CR 45 0x2D - 77 0x4D M 109 0x6D m

14 0x0E SO 46 0x2E . 78 0x4E N 110 0x6E n

15 0x0F SI 47 0x2F / 79 0x4F O 111 0x6F o

16 0x10 DLE 48 0x30 0 80 0x50 P 112 0x70 p

17 0x11 DC1/XON 49 0x31 1 81 0x51 Q 113 0x71 q

18 0x12 DC2 50 0x32 2 82 0x52 R 114 0x72 r

19 0x13 DC3/XOFF 51 0x33 3 83 0x53 S 115 0x73 s

20 0x14 DC4 52 0x34 4 84 0x54 T 116 0x74 t

21 0x15 NAK 53 0x35 5 85 0x55 U 117 0x75 u

22 0x16 SYN 54 0x36 6 86 0x56 V 118 0x76 v

23 0x17 ETB 55 0x37 7 87 0x57 W 119 0x77 w

24 0x18 CAN 56 0x38 8 88 0x58 X 120 0x78 x

25 0x19 EM 57 0x39 9 89 0x59 Y 121 0x79 y

26 0x1A SUB 58 0x3A : 90 0x5A Z 122 0x7A z

27 0x1B ESC 59 0x3B ; 91 0x5B [123 0x7B {

28 0x1C FS 60 0x3C < 92 0x5C \ 124 0x7C |

29 0x1D GS 61 0x3D = 93 0x5D] 125 0x7D }

30 0x1E RS 62 0x3E > 94 0x5E ^ 126 0x7E ~

31 0x1F US 63 0x3F ? 95 0x5F _ 127 0x7F DEL

-Balch.book Page 103 Thursday, May 15, 2003 3:46 PM

104 Digital Fundamentals

Standard bit rates are 2

N

 multiples of 300 bps. In the 1970s, 300 bps serial links were common. Dur-
ing the 1980s, links went from 1,200 to 2,400, to 9,600 bps. RS-232 data links now operate at speeds
from 19.2 to 153.6 kbps. Standard RS-232 bit rates are typically divided down from reference clocks
such as 1.843, 3.6864, 6.144, and 11.0592 MHz. This explains why many microprocessors operate
at oddball frequencies instead of even speeds such as 5, 10, or 12 MHz.

RS-232 defines signals from two different perspectives:

data communications equipment

(DCE)
and

data terminal equipment

(DTE). DCE/DTE terminology evolved in the early days of computing
when the common configuration was to have a dumb terminal attached to a modem of some sort to
enable communication with a mainframe computer in the next room or building. A person would sit
at the DTE and communicate via the DCE. Therefore, in the early 1960s, it made perfect sense to
create a communication standard that specifically addressed this common configuration. By defining
a set of DTE and DCE signals, not only could terminal and modem engineers design compatible sys-
tems, but cabling would be very simple: just wire each DTE signal straight through to each DCE sig-
nal. To further reduce confusion, the DTE was specified as a male DB-25 and the DCE as a female
DB-25. Aside from transmit and receive data, hardware handshaking signals distinguish DCE from
DTE. Some signals are specific to modems such as

carrier detect

and

ring indicator

and are still
used today in many modem applications.

The principle behind RS-232 hardware handshaking is fairly simple: the DTE and DCE indicate
their operational status and ability to accept data. The four main handshaking signals are

request to
send

(RTS),

clear to send

(CTS),

data terminal ready

(DTR), and

data set ready

(DSR). DTR/DSR
enable the DTE and DCE to signal that they are both operational. The DTE asserts DTR, which is
sensed by the DCE and vice versa with DSR. RTS/CTS enable actual data transfer. RTS is asserted
by the DTE to signal that the DCE can send it data. CTS is asserted by the DCE to signal the DTE
that it can send data. In the case of a modem, carrier detect is asserted to signal an active connection,
and ring indicator is asserted when the telephone line rings, signaling that the DTE can instruct the
modem to answer the phone.

In a

null-modem

configuration, two DTEs are connected, and each considers DTR and RTS out-
puts and DSR and CTS inputs. This is solved by swapping DTR/DSR and RTS/CTS so that one
DTE’s DTR drives the other’s DSR, and so on. The unidirectional carrier detect is also connected to
the DTR signal at the other end (DSR at the local end) to provide positive “carrier detect” when the
terminal ready signal is asserted.

Table 5.2 lists the full set of RS-232 signals with the convention that signals are named relative to
the DTE. Most of the original 25 defined RS-232 signals are rarely used, as evidenced by the popu-
larity of the smaller DE9 connector. Furthermore, a minimal RS-232 serial link can be implemented
with only three wires: transmit, receive, and ground. In more recent times, the DTE/DCE distinction
has created confusion in more than one engineering department, because the definitions of terminal
and modem

do not always hold in the more varied modern digital systems context. Often, all RS-232
ports are configured as DTE, and special crossover, or null-modem, cables are used to properly con-
nect two DTEs. While varying subsets of the DTE pin assignment can be found in many systems,
there is still a place for the original DTE/DCE configuration. It is rare, however, to find the DB25
pins that are not implemented in the DE9 actually put to use.

Not all RS-232 interfaces are configured for hardware handshaking. Some may ignore these sig-
nals entirely, and others require that these signals be tied off to the appropriate logic levels so that
neither end of the link gets confused and believes that the other is preventing it from sending data.
Using a software flow control mechanism can eliminate the need for the aforementioned hardware
handshaking signals and reduce the RS-232 link to its three basic wires: transmit, receive, and
ground. These many permutations of DTE/DCE and various degrees of handshaking are what cause
substantial grief to many engineers and technicians as they build and set up RS-232 equipment.
There is a healthy industry built around the common RS-232 configuration problems.

Breakout

-Balch.book Page 104 Thursday, May 15, 2003 3:46 PM

Serial Communications 105

boxes

 can be purchased that consist of jumper wires, switches, and LEDs to help troubleshoot RS-
232 connectivity problems by reconfiguring interfaces on the fly as the LEDs indicate which signals
are active at any given moment. As a result of the male/female gender differences of various DB25/
DE9 connectors, there are often cabling problems for which one needs to connect two males or two
females together. Once again, the industry has responded by providing a broad array of gender-
matching cables and adapters. On a conceptual level, these problems are simple; in practice, the per-

TABLE

5.2 RS-232 DTE Pin Assignments

DB25 DTE DE9 DTE Signal Direction: DTE/DCE Description

1 – Shield

⇔

Shield/chassis ground

2 3 TXD

⇒

Transmit data

3 2 RXD

⇐

Receive data

4 7 RTS

⇒

Request to send

5 8 CTS

⇐

Clear to send

6 6 DSR

⇐

Data set ready

7 5 Ground

⇔

Signal ground

8 1 DCD

⇐

Data carrier detect

9 – +V

⇔

Power

10 – –V

⇔

Power return

11 – Unused

12 – SCF

⇐

Secondary line detect

13 – SCB

⇐

Secondary CTS

14 – SBA

⇒

Secondary TXD

15 – DB

⇐

DCE element timing

16 – SBB

⇐

Secondary RXD

17 – DD

⇐

Receiver element timing

18 – Unused/local-loopback

19 – SCA

⇒

Secondary RTS

20 4 DTR

⇒

Data terminal ready

21 – CQ

⇐

Signal quality detect

22 9 RI

⇐

Ring indicator

23 – CH/CI

⇔

Data rate detect

24 – DA

⇒

Transmitter element timing

25 – Unused/test-mode

-Balch.book Page 105 Thursday, May 15, 2003 3:46 PM

106 Digital Fundamentals

mutations of incompatibilities are so numerous that debugging a 1960s-era RS-232 connection may
not be a quick task.

Male DB25 and DE9 connectors consist of a dual row of staggered pins surrounded by a metal
rim that serves as an electrical shield. The female connectors consist of matching staggered pin-
sockets mounted in a solid frame whose edge forms a shield that mates with the male shield. These
connectors are illustrated in Fig. 5.6.

The D-subminiature connector family uses a three-element nomenclature to specify the size of
the connector housing, or shell, and the number of pins within the shell. There are five standard shell
designations—A, B, C, D, E—that were originally specified with varying numbers of pins as shown
in Table 5.3. DE9 connectors are commonly misrepresented as DB9, a connector configuration that
is not defined. A modern D-subminiature connector that was not originally specified is the common
HDE15, a high-density 15-pin connector using the E-size shell. The HDE15 is commonly used to
connect monitors to desktop computers.

Logical transceiver-level characteristics such as bit rate, error detection, and framing are accom-
panied by electrical transducer-level characteristics, more commonly referred to as the

physical
layer

 of a communications link. RS-232 refers to the logic 1 state as a

mark

 and assigns it a negative
potential from –3 to –25 V. The logic-0 state is a

space

 and is assigned a positive potential from +3
to +25 V. Since RS-232 inverts the logic levels, an idle link is held at negative voltage, logic 1.

While RS-232 is specified with a transmitter voltage range of ±3 to ±25 V, most modern transmit-
ters operate well below the 25-V upper bound. Many systems have been based around the ubiquitous
and inexpensive 1488/1489 transmitter/receiver chipset that operate at ±12 V. These chips require an
external ±12-V source for power. RS-232 circuitry was fundamentally simplified when Maxim
Semiconductor created their MAX232 line of single-supply 5-V line interface ICs. These chips con-
tain internal circuitry that generates ±8 V. Today, a variety of flexible RS-232 interface ICs are avail-

TABLE

5.3 Standard D-Subminiature
Shell Sizes

Shell Size Pins

A 15

B 25

C 37

D 50

E 9

Front View

Pin 1

Pin 14

Pin 13

Pin 25

Pin 1 Pin 13

Pin 14 Pin 25

Male Female

Pin 1 Pin 5

Pin 6 Pin 9

Pin 1

Pin 6

Pin 5

Pin 9

FIGURE 5.6 DB25 and DE9 connectors.

-Balch.book Page 106 Thursday, May 15, 2003 3:46 PM

Serial Communications 107

able from other manufacturers including Linear Technology, National Semiconductor, and Texas
Instruments. RS-232 ports work quite well on even lower voltage ranges, because modern receivers
are sensitive to smaller absolute voltages, and most RS-232 links are several meters or less in length.
RS-232 was never intended to serve in truly long-distance applications.

5.5 RS-422

For crossing distances greater than several meters, RS-232 is supplemented by the

RS-422

standard.
RS-422 can provide communications across more than 1.2 km at moderate bit rates such as 9.6 kbps.
It is a

differential

, or

balanced

, transmission scheme whereby each logical signal is represented by
two wires rather than one. RS-232 signals are

single-ended

, or

unbalanced

, signals that drive a par-
ticular voltage onto a single wire. This voltage is sensed at the receiver by measuring the signal volt-
age relative to the ground potential of the interface. Over long distances or at very high speeds,
single-ended transmission lines are more subject to degradation resulting from ambient electrical
noise. A partial explanation of this characteristic is that the electrical noise affects the active signal
wire unequally with respect to ground. Differential signals, as in RS-422, drive opposing, or mir-
rored, voltages onto two wires simultaneously (RS-422 is specified from ±2 to ±6 V). The receiver
then compares the voltages of the two wires together rather than to ground. Ambient noise tends to
affect the two wires equally, because they are normally twisted together to follow the same path.
Therefore, if noise causes a 1-V spike on one-half of the differential pair, it causes the same spike on
the other half. When the two voltages are electrically subtracted at the receiver, the 1-V of

common-
mode

 noise cancels out, and the original differential voltage remains intact (subject, of course to nat-
ural attenuation over distance). The difference between RS-232 and RS-422 transmission is illus-
trated in Fig. 5.7.

Because of the longer distances involved in RS-422 interfaces, it is not common to employ the
standard set of hardware handshaking signals that are common with RS-232. Therefore, some form
of software handshaking must be implemented by the end devices to properly communicate. Some
applications may not require any flow control, and some may use the XON/XOFF method. RS-422
does not specify a standard connector. It is not uncommon to see an RS-422 transmission line’s bare
wire ends connected to screw terminals.

Another common difference between RS-422 and RS-232 is transmission line

termination

. Trans-
mission line theory can get rather complicated and is outside the scope of this immediate discussion.

Tx Rx
+V

TX
+V

RX

Tx Rx

+V
TX

RS-232

–V
TX

+V
RX

–V
RX

RS-422

V
SENSE

 = +V
RX

 - ground

V
SENSE

 = +V
RX

 - –V
RX

FIGURE 5.7 RS-232 vs. RS-422 signaling.

-Balch.book Page 107 Thursday, May 15, 2003 3:46 PM

108 Digital Fundamentals

The basic practical result of transmission line theory is that, as the speed-distance product of an elec-
trical signal increases, the signal tends to reflect off the ends of wires and bounce back and forth on
the wire. When slow signals travel relatively moderate distances, the speed-distance product is not
large enough to cause this phenomenon to any noticeable degree. Fast signals traveling over very
short distances may also be largely immune to such reflections. However, when RS-422 signals
travel over several kilometers, the speed-bandwidth product is great enough to cause previously
transmitted data signals to reflect and interfere with subsequent data. This problem can be largely
solved by properly

terminating

 the receiving end of the transmission line with the line’s

characteris-
tic impedance

, Z

O

. Typical coaxial and twisted-pair transmission lines have Z

O

 = 50, 75, or 110

Ω

.
Briefly put, Z

O

 is the impedance, or electrical resistance, that would be observed between both con-
ductors of a balanced transmission line of infinite length. Again, there is substantial theory lurking
here, but the practical result is that, by placing a resistor equal to Z

O

 at the far end of the line be-
tween both conductors, the transmission line will appear to be continuous and not exhibit reflections.
A typical schematic diagram of a terminated RS-422 serial link is shown in Fig. 5.8.

5.6 MODEMS AND BAUD RATE

Information is conveyed by varying the electromagnetic field of a particular medium over time. The
rate at which this field (e.g., voltage) changes can be represented by a certain bandwidth that charac-
terizes the information. Transducers such as those that facilitate RS-232/RS-422 serial links place
the information that is presented to them essentially unmodified onto the transmission medium. In
other words, the bandwidth of the information entering the transducer is equivalent to that leaving
the transducer. Such a system operates at

baseband:

the bandwidth inherent to the raw information.
Baseband operation is relatively simple and works well for a transmission medium that can carry
raw binary signals with minimal degradation (e.g., various types of wire, or fiber optic cable, strung
directly from transmitter to receiver). However, there are many desirable communications media that
are not well suited to directly carrying bits from one point to another. Two prime examples are free-
space and acoustic media such as a telephone.

To launch raw information into the air or over a telephone, the bits must be superimposed upon a

carrier

 that is suited to the particular medium. A carrier is a frequency that can be efficiently radi-
ated from a transmitter and detected by a remote receiver. The process of superimposing the bits on
the carrier is called

modulation

. The reverse process of detecting the bits already modulated onto the
carrier is

demodulation

. For the purposes of this discussion, one of the simplest forms of modula-
tion, binary

amplitude modulation

(AM), is presented as an example. More precisely, this type of
AM is called

amplitude shift keying

(ASK). With two states, it is called 2-ASK and is illustrated in
Fig. 5.9. Each time a 1 is to be transmitted, the carrier (shown as a sine wave of arbitrary frequency)
is turned on with an arbitrary amplitude. Each time a 0 is to be transmitted, the carrier is turned off
with an amplitude of zero. If transmitting over free space, the carrier frequency might be anywhere
from hundreds of kilohertz to gigahertz. If communicating over a fiber optic cable, the carrier is

Tx

ZO =110 Ω

Rx

RT=110 Ω

FIGURE 5.8 RS-422 transmission line termination.

-Balch.book Page 108 Thursday, May 15, 2003 3:46 PM

Serial Communications 109

light. If an acoustic medium such as a telephone is used to send the data, the carrier is audible in the
range of several kilohertz.

Frequency shift keying

(FSK), a type of

frequency modulation

(FM) is a scheme that can be used
to transmit multiple bits simultaneously without resorting to multiple levels of amplitude by using
AM. FSK represents multiple bits by varying the frequency rather than the amplitude of the carrier.
This constant amplitude approach is less susceptible to noise. Figure 5.10 shows 4-FSK modulation,
in which each of the four frequency steps represents a different two-digit binary value.

A general term for a modulated data unit is a

baud

. If 2-ASK is used, each baud corresponds to
one bit. Therefore, the baud rate matches the bit rate. However, the 4-FSK example shows that each
baud represents two bits, making the bit rate twice that of the baud rate. This illustrates that baud
rate and bit rate are related but not synonymous, despite common misuse in everyday conversation.
Engineers who design modulation circuitry care about the baud rate, because it specifies how many
unique data units can be transmitted each second. They also try to squeeze as many bits per baud as
possible to maximize the overall bit rate of the modulator. Engineers who use modulators as black-
box components do not necessarily care about the baud rate; rather, it is the system’s bit rate that
matters to the end application.

Enter the

modem

. A modem is simply a device that incorporates a modulator and demodulator for
a particular transmission medium. The most common everyday meaning of modem is one that en-
ables a computer to transfer bits over an analog telephone line. These modems operate using differ-
ent modulation schemes depending on their bit rate. Early 300- and 1,200-bps modems operate
using FSK and

phase shift keying

(PSK). Later modems, including today’s 33.6- and 56-kbps mod-
els, operate using variations of

quadrature amplitude modulation

(QAM).
While

modem

 often refers to telephone media, it is perfectly correct to use this term when refer-
ring to a generic modulator/demodulator circuit that operates on another medium. Digital wireless
communication is increasingly common in such applications as portable cellular phones and unteth-
ered computer networking. These devices incorporate radio frequency (RF) modems in addition to
digital transceivers that frame the data as it travels from one point to another.

5.7 NETWORK TOPOLOGIES

The communications schemes discussed thus far are point-to-point connections—they involve one
transmitter and one receiver at either end of a given medium. Many applications require multidrop
communications whereby multiple devices exchange data over the same medium. The general term

"1" "0" "1" "1"

FIGURE 5.9 2-ASK modulation.

"00" "01" "10" "11"

FIGURE 5.10 4-FSK modulation.

-Balch.book Page 109 Thursday, May 15, 2003 3:46 PM

110 Digital Fundamentals

for a multidrop data link is a network. Networks can be constructed in a variety of topologies: buses,
rings, stars, and meshes, as shown in Fig. 5.11.

A bus structure is the most basic network topology in which all nodes share the same physical me-
dium. When one node wishes to transmit data, it must wait for another node to finish and release the
bus before it can begin. The ring topology implements a daisy-chained set of connections where each
node connects to its two nearest neighbors, and information usually flows in one direction (although
bidirectional rings are a variation on this theme). A benefit of the ring is that a single long wire does
not have to travel between all nodes. One disadvantage is that each node is burdened with the require-
ment of passing on information that is not destined for it to keep the message from being lost.

Mesh networks provide ultimate connectivity by connecting each node to several of its neighbors.
A mesh can provide increased bandwidth as well as fault tolerance as a result of its multiple connec-
tions. Properly designed, a mesh can route traffic around a failed link, because multiple paths exist
between each node in the network. The downside to these benefits is increased wiring and communi-
cations protocol complexity.

Star networks connect each node to a common central hub. The benefits of a physical star topol-
ogy include ease of management, because adding or removing nodes does not affect the wiring of
other nodes. A downside is that more wiring is necessary to provide a unique physical connection
between each node and the central hub. A starred network may send data only to the node for which
it is destined. Unlike a ring, the node does not have to pass through information that is not meant for
it. And unlike a bus, the node does not have to ignore messages that are not meant for it. The require-
ment for a central hub increases the complexity of a star network. As more nodes are added to the
network, the hub must add ports at the same rate.

A network may be wired using a physical star topology, but it may actually be a bus or ring from
a logical, or electrical, perspective. Implementing differing physical and logical topologies is illus-
trated in Fig. 5.12. Some types of networks inherently favor bus or ring topologies, but the flexible
management of star wiring is an attractive alternative to a strictly wired bus or ring. Star wiring en-
ables nodes to be quickly added or disconnected from the central hub without disrupting other
nodes. Bus and ring topologies may require the complete or partial disruption of the network me-
dium to add or remove nodes. A star’s hub typically contains electronics to include or bypass indi-
vidual segments as they are added or removed from the network without disrupting other nodes.

5.8 NETWORK DATA FORMATS

Common data formats and protocols are necessary to regulate the flow of data across a network to
ensure proper addressing, delivery, and access to that common resource. Several general terms for

Node

Node Node

Node

hub

Star

Node

Node Node

Node

Mesh

Node

Node

Node

Node

Bus

Node Node

Node Node

Ring

FIGURE 5.11 Basic network topologies.

-Balch.book Page 110 Thursday, May 15, 2003 3:46 PM

Serial Communications 111

message elements on a network are frame, packet, and cell. Frames are sets of data that are framed at
the beginning and end by special delimiters. Packets are sets of data that are not fully framed but that
have some other means of determining their size, such as an embedded length field. Cells are fixed-
length frames or packets. Frames and packets usually imply variable length data sets, but this is not a
strict rule. As with many terms and classifications in digital systems, specific definitions are context
specific and are often blurred: one system’s cells may be another’s frames. Frames, packets, and
cells are composed of headers, payloads, and trailers, as shown in Fig. 5.13. The header is a collec-
tion of data fields that handle network overhead functions such as addressing and delineation. The
actual data to be transmitted is placed into the payload. If present, a trailer is commonly used to im-
plement some form of error checking and/or delineation. Not all packet formats specify the inclusion
of trailers. When present, a trailer is usually substantially smaller in length than the header.

Networking is an aspect of digital systems design that directly involves hardware–software inter-
action at a basic level. One cannot really design networking hardware without keeping in mind the
protocol, or software, support requirements. One key example is packet format. Hardware must have
knowledge of the packet format so that it can properly detect a packet that is sent to it. At the same
time, software must have this same knowledge so that it can properly parse received packets and
generate new ones to be transmitted.

As soon as more than two nodes are connected to form a network, issues such as addressing and
shared access arise. When there is only one transmitter and one receiver, it is obvious that data is in-
tended for the only possible recipient. Likewise, the lone transmitter can begin sending data at any
time it chooses, because there are no other transmitters competing for network access.

Network addressing is the mechanism by which a transmitting node indicates the destination for
its packet. Each node on the network must therefore have a unique address to prevent confusion over
where the packet should be delivered. In a bus topology, each node watches all the data traffic that is
placed onto the network and picks out those packets that are tagged with its unique address. In a ring
topology, each node passes packets on to the next node if the destination address is not matched with
that node’s address. If the address is matched, the node absorbs the packet and does not forward it on
to the next node in the ring. Logical star and mesh topologies function a bit differently. Nodes on

Logical Bus

Node

Node Node

Node

hub
hub

Logical Ring

Node

Node

Node

Node

FIGURE 5.12 Physical vs. logical network topologies.

Header TrailerPayload

FIGURE 5.13 Generic packet structure.

-Balch.book Page 111 Thursday, May 15, 2003 3:46 PM

112 Digital Fundamentals

these types of networks do not observe all traffic that traverses the network; rather, the network itself
contains some intelligence when it comes to delivering a packet. A node in a logically starred net-
work sends a packet to a central hub that examines the destination address and then forwards the
message to only the specified node. A mesh network routes traffic partly like a ring and partly like a
star; however, multiple paths between nodes exist to complicate the delivery process. Based on the
destination address, the originating node sends a packet to one of its neighbors, which in turn for-
wards the message to one of its neighbors. This process continues until the path has been completed
and the packet arrives at its intended destination. The presence of multiple valid paths between
nodes requires the mesh network to use knowledge about the location of nodes to select an optimal
path through the network.

Access sharing is necessary on networks to ensure that each node eventually has an opportunity to
send a message. Numerous methods of access sharing have been implemented over the years. Gen-
erally speaking, the length of messages is bounded to prevent a node from transmitting an infinitely
long set of data and preventing anyone else from gaining access to the shared medium. Sharing algo-
rithms differ according to the specific network topology involved. Networks that are a collection of
point-to-point links (e.g., ring, star, mesh) do not have to worry about multiple nodes fighting for ac-
cess to the same physical wire, but do have to ensure that one node does not steal all the bandwidth
from others. Bus networks require sharing algorithms that address both simultaneous physical con-
tention for the same shared wire in addition to logical contention for the network’s bandwidth. Arbi-
tration schemes can be centralized (whereby a single network master provides permission to each
node to transmit) or distributed (whereby each node cooperates on a peer-to-peer level to resolve si-
multaneous access attempts).

After deciding on a network topology, one of the first issues to resolve is the network packet for-
mat. If the network type is already established (e.g., Ethernet), the associated formats and protocols
are already defined by industry and government standards committees. If an application benefits from
a simple, custom network, the packet format can be tailored to suit the application’s specific needs.

Delineation and addressing are the two most basic issues to resolve. Delineation can be accom-
plished by sending fixed-size packets, embedding a length field in the packet header, or by reserving
unique data values to act as start/stop markers. Framing with unique start/stop codes places a restric-
tion on the type of data that a packet can contain: it cannot use these unique codes without causing
false start or end indications. Referring back to Table 5.1, notice that start-of-header (SOH) and end-
of-transmission (EOT) are represented by 0x01 and 0x04. These (or other pairs of codes) can be
used as delimiters if the packet is guaranteed to contain only alphanumeric ASCII values that do not
conflict with these codes.

Addressing is normally achieved by inserting both the destination and source addresses into the
header. However, some networking schemes may send only a single address. Sending both addresses
enables recognition of the destination as well as a determination of which node sent the packet. Since
most data exchanges are bidirectional to a certain degree, a destination node will probably need to send
some form of reply to the source node of a particular packet. Many networks include a provision known
as broadcast addressing whereby a packet is sent to all nodes on the network rather than just one. This
broadcast is often indicated using a reserved broadcast address. In contrast to a unicast address that is
matched by only one node, a broadcast address is matched by all nodes on the network. Some networks
also have multicast addresses that associate multiple nodes with a single destination address.

5.9 RS-485

Whereas RS-232 and RS-422 enable point-to-point serial links, the RS-485 standard enables multi-
ple-node networks. Like RS-422, RS-485 provides differential signaling to enable communications

-Balch.book Page 112 Thursday, May 15, 2003 3:46 PM

Serial Communications 113

across spans of twisted-pair wire exceeding 1.2 km. Unlike RS-422, the RS-485 standard allows up
to 32 transmit/receive nodes on a single twisted pair that is terminated at each end as shown in Fig.
5.14. Modern low-load receivers that draw very little current from the RS-485 bus can be used to in-
crease the number of nodes on an RS-485 network well beyond the original 32-node limit to 256
nodes or more. A single pair of wires is used for both transmit and receive, meaning that the system
is capable of half-duplex (one-way) operation rather than full-duplex operation (both directions at
the same time). Half-duplex operation restricts the network to one-way exchange of information at
any given time. When node A is sending a packet to node B, node B cannot simultaneously send a
packet to node A.

RS-485 directly supports the implementation of bus networks. Bus topologies are easy to work
with, because nodes can directly communicate with each other without having to pass through other
nodes or semi-intelligent hubs. However, a bus network requires provisions for sharing access to be
built into the network protocol. In a centralized arbitration scheme, a master node gives permission
for any other node to transmit data. This permission can be a request-reply scheme whereby slave
nodes do not respond unless a request for data is issued. Alternatively, slave nodes can be periodi-
cally queried by the master for transmit requests, and the master can grant permissions on an indi-
vidual-node basis. There are many centralized arbitration schemes that have been worked out over
the years.

A common distributed arbitration scheme on a bus network is collision detection with random
back-off. When a node wants to transmit data, it first waits until the bus becomes idle. Once idle, the
node begins transmitting data. However, when the node begins transmitting, there is a chance that
one or more nodes have been waiting for an opportunity to begin transmitting and that they will be-
gin transmitting at the same time. Collision detection circuits at each node determine that more than
one node is transmitting, and this causes all active transmitters to stop. Figure 5.15 shows the imple-

ZO =110 ΩRT=110 Ω RT=110 Ω

FIGURE 5.14 RS-485 bus topology.

Tx

Rx

+

–
Twisted

Pair

Transmit Enable

Receive Enable
(always on)

Transmit Data

Receive Data

UART Logic

Collision Detect '1'

FIGURE 5.15 RS-485 collision detection transceiver.

-Balch.book Page 113 Thursday, May 15, 2003 3:46 PM

114 Digital Fundamentals

mentation of an RS-485 transceiver with external collision detection logic. A transmit enable signal
exists to turn off the transmitter when the UART is not actively sending data. Unlike an RS-422
transmitter that does not have to share access with others, the RS-485 transmitter must turn itself off
when not sending data to enable others to transmit.

When transmitting, the receiver returns the logical state of the twisted-pair bus. If the bus is not at
the same state as the transmitted data, a collision is most likely being caused by another transmitter
trying to drive the opposite logic state. An XOR gate implements this collection detect, and the XOR
output must be sampled only after allowing adequate time for the bus to settle to a stable state fol-
lowing the assertion of each bit from the transmitter.

Once a collision has been detected by each node and the transmitters are disabled, each node
waits a different length of time before retransmitting. If all delays were equal, multiple nodes would
get caught in a deadlock situation wherein each node keeps trying to transmit after the same delay
interval. Random back-off delays are pseudo-random so as to not unfairly burden some nodes with
consistently longer delays than other nodes. At the end of the delay, one of the nodes begins trans-
mitting first and gains control of the bus by default. The other waiting nodes eventually exit from
their delays and observe that the bus is already busy, indicating that they must wait their turn until
the current packet has been completed. If, by coincidence, another node begins transmitting at the
same time that the first node begins, the back-off process begins again. It is statistically possible for
this process to occur several times in a row, although the probability of this being a frequent event is
small in a properly designed network. A bus network constructed with too many nodes trying to send
too much data at the same time can exhibit very poor performance, because it would be quite prone
to collisions. In such a case, the solution may be to either reduce the network traffic or increase the
network’s bandwidth.

5.10 A SIMPLE RS-485 NETWORK

An example of a simple but effective network implemented with RS-485 serves as a vehicle to dis-
cuss how packet formats, protocols, and hardware converge to yield a useful communications me-
dium. The motivation to create a custom RS-485 network often arises from a need to deploy remote
actuators and data-acquisition modules in a factory or campus setting. A central computer may be lo-
cated in a factory office, and it may need to periodically gather process information (e.g., tempera-
ture, pressure, fluid-flow rate) from a group of machines. Alternatively, a security control console
located in one building may need to send security camera positioning commands to locations
throughout the campus. Such applications may involve a collection of fairly simple and inexpensive
microprocessor-based modules that contain RS-485 transceivers. Depending on the exact physical
layout, it may or may not be practical to wire all remote nodes together in a single twisted-pair bus.
If not, a logical bus can be formed by creating a hybrid star/bus topology as shown in Fig. 5.16. A
central hub electrically connects the individual star segments so that they function electrically as a
large bus but do not require a single wire to be run throughout the entire campus.

As shown, the hub does not contain any intelligent components—it is a glorified junction box.
This setup is adequate if the total length of all star segments does not exceed 1.2 km, which is within
the electrical limitations of the RS-485 standard. While simple, this setup suffers from a lack of fault
tolerance. If one segment of the star wiring is damaged, the entire network may cease operation be-
cause, electrically, it is a single long pair of wires. Both the distance and fault-tolerance limitations
can be overcome by implementing an active hub that contains repeaters on each star segment and
smart switching logic to detect and isolate a broken segment. A repeater is an active two-port device
that amplifies or regenerates the data received on one port and transmits it on the other port. An RS-

-Balch.book Page 114 Thursday, May 15, 2003 3:46 PM

Serial Communications 115

485 repeater needs a degree of intelligence, because both ports must be bidirectional. Therefore, the
repeater must be able to listen for traffic on both sides, detect traffic on one side, and then transmit
that traffic on the other side. A hub that detects and isolates segment failures would be well designed
to report this fault information to a central control node to alert the human operator that repairs are
necessary. These possible improvements in the network hub do not affect the logical operation of the
network and, consequently, are not a focus of this discussion.

With a topology chosen and a general application in mind, the next step is to decide on the net-
work’s operational requirements from among the following:

1. Support for roughly 200 nodes provides flexibility for a variety of control applications.

2. Central arbitration handled by master control node for simplicity of network design. A facility
control network is often a master-slave application, because all data transfers are at the request
of the central controller. Central arbitration removes the need for collision-detect hardware and
random back-off algorithms.

3. Broadcast capability enables easy distribution of network status information from the master
control node.

4. Data rate of 9600 bps provides adequate bandwidth for small control messages without burden-
ing the network with high frequencies that can lead to excessive noise and signal degradation.

5. Basic error handling prevents processing incorrect data and network lock-up conditions when
occasional noise on the RS-485 twisted-pairs causes data bits to change state.

Many aspects of network functionality are directly influenced by a suitable network packet for-
mat. Other aspects are addressed by the protocol that formats data on the network, by the transceiver
and UART hardware, or by a combination of these three elements.

In considering the packet format, 8-bit destination and source addresses are chosen to support
more than 200 nodes on the network. A special destination address value of 0xFF represents a broad-
cast address, meaning that all nodes should accept the packet automatically. Such broadcast packets
are useful for system-wide initialization whereby, for example, the control computer can send the
current time to all nodes. This multicast address cannot be used as a normal node address, thereby
limiting the network to 255 unique nodes.

It is desirable to employ variable-length packets so that a message does not have to be longer than
necessary, thereby conserving network bandwidth. Variable-length packets require some mechanism

Node

Node

Node

hub

Node

Node

Node

Node

NodeNode

Node

FIGURE 5.16 Hybrid star/bus network topology.

-Balch.book Page 115 Thursday, May 15, 2003 3:46 PM

116 Digital Fundamentals

to determine the length: either reserved framing codes or an explicit length count. A length count is
chosen to keep the system simple. Framing codes would require that certain data values be off limits
to the contents of the message. The payload length is bounded at a convenient binary threshold: 255
bytes. For simple control and data-acquisition applications, this is probably more than enough.

Based on these basic requirements and a couple of quick decisions, a packet format quickly
emerges. A three-byte, fixed-length header shown in Table 5.4 is followed by a variable-length pay-
load. No trailer is necessary in this network.

The eight-bit destination address field, DA, comes first to enable the receiving hardware to
quickly determine whether the packet should be accepted by the node or ignored. A packet will be
accepted if DA matches the receiver’s node address, or if DA equals 0xFF, indicating a broadcast
packet. At the end of the header is an eight-bit length field that indicates how many payload bytes are
present after the fixed-length header. This limits the maximum packet size to 255 payload bytes plus
the 3-byte header. A value of zero means that there is no payload, only a header in the packet.

Error detection can be handled by even parity. Each byte of the header and payload is sent with an
accompanying parity bit. When an error is detected, the network’s behavior must be clearly defined
to prevent the system from either ceasing to function or acting on false data. Parity errors can mani-
fest themselves in a variety of tricky ways. For example, if the length field has a parity error, how
will the receiver know the true end of the frame? Without proper planning, a parity error on the
length field can permanently knock the receivers out of sync and make automatic recovery impossi-
ble. This extreme situation can occur when an invalid length causes the receiver to either skip over
the next frame header or prematurely interpret the end of the current frame as a new header. In both
cases, the receiver will falsely interpret a bogus length field, and the cycle of false header detection
can continue indefinitely.

If a parity error is detected on either the destination or source addresses, the receivers will not lose
synchronization, but the packet should be ignored, because it cannot be known who the true recipi-
ent or sender of the packet is.

Fault tolerance in the case of an invalid payload length can be handled in a relatively simple man-
ner. Requirements of no intrapacket gaps and a minimum interpacket gap assist in recovery from
length-field parity errors. The absence of intrapacket gaps means that, once a packet has begun trans-
mission, its bytes must be continuous without gaps. Related to this is the requirement of a minimum
interpacket gap which forces a minimum idle period between the last byte of one packet and the start
of the next packet. These requirements help each receiver determine when packets are starting and
ending. Even if a packet has been subjected to parity errors, the receiver can wait until the current
burst of traffic has ended, wait for the minimum interpacket gap, and then begin looking for the next
packet to begin.

The parity error detection and accompanying recovery scheme greatly increases the probability
that false data will not be acted upon as correct data and that the entire network will not stop func-
tioning when it encounters an arbitrary parity error. However, error detection is all about probability.

TABLE 5.4 Hypothetical Packed Header Format

Field Name Byte Bits Description

DA 0 [7:0] Destination address (0xFF = multicast)

SA 1 [7:0] Source address

LEN 2 [7:0] Payload length (0x0 = no payload present)

-Balch.book Page 116 Thursday, May 15, 2003 3:46 PM

Serial Communications 117

A single parity bit cannot guarantee the detection of multiple errors in the same byte, because such
errors can mask themselves. For example, two bit errors can flip a data bit and the parity bit itself,
making it impossible for the receiver to detect the error. More complex error detection schemes are
available and are more difficult to fool. Although no error detection solution is perfect, some
schemes reduce the probability of undetected errors to nearly zero.

If a packet is received with an error, it cannot be acted upon normally, because its contents are
suspect. For the purposes of devising a useful error-handling scheme, packet errors can be divided
into two categories: those that corrupt the destination/source address information and those that do
not. Parity errors that corrupt the packet’s addresses must result in the packet being completely ig-
nored, because the receiving node is unable to generate a reply message to the originator indicating
that the packet was corrupted. If the source address is corrupted, the receiver does not know to whom
to reply. If the destination address is corrupted, the receiver does not know whether it is the indented
recipient.

In the case of an address error in which the received packet is ignored, the originator must imple-
ment some mechanism to recover from the packet loss rather than waiting indefinitely for a reply
that will never arrive. A reply timeout can be implemented by an originator each time a packet is sent
that requires a corresponding reply. A timeout is an arbitrary delay during which an originating node
waits before giving up on a response from a remote node. Timeouts are common in networks be-
cause, if a packet is lost due to an error, the originator should not wait indefinitely for a response that
will never come. Establishing a timeout value is a compromise between not giving up too quickly
and missing a slower-than-normal reply and waiting too long and introducing unacceptable delays in
system functionality when a packet is lost. Depending on the time it takes to send a packet on a net-
work and the nodes’ typical response time, timeouts can range from microseconds to minutes. Typi-
cal timeouts are often expressed in milliseconds.

When an originator times-out and concludes that its requested data somehow got lost, it can re-
send the request. If, for example, a security control node sends a request for a camera to pan across a
room, and that request is not acknowledged within half a second, the request can be retransmitted.

In the case of a non-address error, the receiving node has enough information to send a reply back
to the originator, informing it that the packet was not correctly received. Such behavior is desirable
to enable the originator to retransmit the packet rather than waiting for a timeout before resending
that data.

The preceding details of a hypothetical RS-485 network must be gathered into network driver
software to enable proper communication across the network. While hardware controls the detection
of parity errors and the flow of bits, it is usually software that generates reply messages and counts
down timeouts. Figure 5.17 distills this information into a single flowchart from which software rou-
tines could be written.

As seen from this flowchart, transmit and receive processes run concurrently and are related. The
transmit process does not complete until a positive acknowledgement is received from the destina-
tion node. This network control logic implemented in software is simple by mainstream networking
standards, yet it is adequate for networks of limited size and complexity. Issues such as access shar-
ing are handled inherently by the request/reply nature of this network, greatly simplifying the traffic
patterns that must be handled by the software driver.

5.11 INTERCHIP SERIAL COMMUNICATIONS

Serial data links are not always restricted to long-distance communications. Within a single com-
puter system, or even a single circuit board, serial links can provide attractive benefits as compared

-Balch.book Page 117 Thursday, May 15, 2003 3:46 PM

118 Digital Fundamentals

to traditional parallel buses. Computer architectures often include a variety of microprocessor pe-
ripheral devices with differing bandwidth requirements. Main memory, both RAM and ROM, is a
central part of computer architecture and is a relatively high-bandwidth element. The fact that the
CPU must continually access main memory requires a simple, high-bandwidth interface—a parallel
bus directly or indirectly driven by the CPU. Other devices may not be accessed as often as main
memory and therefore have a substantially lower bandwidth requirement. Peripherals such as data
acquisition ICs (e.g., temperature sensors), serial number EEPROMs, or liquid crystal display
(LCD) controllers might be accessed only several times each second instead of millions of times per
second. These peripherals can be directly mapped into the CPU’s address space and occupy a spot
on its parallel bus, but as the number of these low-bandwidth peripherals increases, the complexity
of attaching so many devices increases.

Short-distance serial data links can reduce the cost and complexity of a computer system by re-
ducing interchip wiring, minimizing address decoding logic, and saving pins on IC packages. In
such a system, the CPU is connected to a serial controller via its parallel bus, and most other periph-
erals are connected to the controller via several wires in a bus topology as shown in Fig. 5.18.

Such peripherals must be specifically designed with serial interfaces, and many are. It is common
for low-bandwidth peripheral ICs to be designed in both parallel and serial variants. In fact, some
devices are manufactured with only serial interfaces, because their economics overwhelmingly fa-
vors the reduction in logic, wiring, and pins of a serial data link. A temperature sensor with a serial
interface can be manufactured with just one or two signal pins plus power. That same sensor might

Wait for incoming packet
Wait for activity to finish and

minimum inter-frame gap

Destination
address matches 0xFF or

node address?

Finish storing header

Address parity error?

Store LEN payload bytes

Parity error in payload?
Send negative acknowledge

packet

Send ACK reply packet
Pass new packet to

application

No

Yes

Yes

Wait for transmit request

Send packet, Clear timer

Acknowledge Received?
No

Receive Process Transmit Process

Timer = Timeout?

Increment timer

Yes

Positive reply?
No

Length parity error?
Yes

Wait for activity to finish and
minimum inter-frame gap

Destination
address matches node

address?

No

FIGURE 5.17 Hypothetical network driver flowchart.

-Balch.book Page 118 Thursday, May 15, 2003 3:46 PM

Serial Communications 119

require 16 or more signal pins with a byte-wide parallel interface. Not only is the package cost re-
duced, its greatly reduced size enables the IC to be located in very confined spaces. Products includ-
ing cell phones and handheld computers benefit tremendously from small IC packages that enable
small, consumer-friendly form factors.

Interchip serial interfaces must be kept fairly simple to retain their advantages of low cost and
ease of use. Industry standard interfaces exist so that semiconductor manufacturers can incorporate
mainstream interfaces into their ICs, and engineers can easily connect multiple manufacturers’ ICs
together without redesigning the serial interface for each application. Many of these standard inter-
faces are actually proprietary solutions, developed by individual semiconductor manufacturers, that
have gained wide acceptance. Two of the most commonly used industry standards for interchip se-
rial communications are Philips’ inter-IC bus (I2C) and Motorola’s serial peripheral interface (SPI).
Both Philips and Motorola have long been leaders in the field of small, single-chip computers called
microcontrollers that incorporate microprocessors, small amounts of memory, and basic peripherals
such as UARTs. It was therefore a natural progression for these companies to add inexpensive inter-
chip serial data links to their microcontrollers and associated peripheral products.

I2C and SPI support moderate data rates ranging from several hundred kilobits to a few megabits
per second. Because of their target applications, these networks usually involve a single CPU master
connected to multiple slave peripherals. I2C supports multiple masters and requires only two wires,
as compared to SPI’s four-plus wires.

I2C consists of a clock signal, SCL, and a data signal,
SDA. Both are open-collector signals, meaning that the
ICs do not actively drive the signals high, only low. An
open-collector driver is similar to a tri-state buffer, al-
though no active high state is driven. Instead, the output
is at either a low- or high-impedance state. The open-col-
lector configuration is schematically illustrated in Fig.
5.19. The term open-collector originates from the days
of bipolar logic when NPN output transistors inside the
chips had no element connected to their collectors to as-
sert a logic high. This terminology is still used for
CMOS logic, although open-drain is the technically cor-
rect term when working with MOSFETs. A pullup resis-
tor is required on each signal (e.g., SCL and SDA) to
pull it to a logic 1 when the ICs release the actively

driven logic 0. This open-collector arrangement enables multiple IC drivers to share the same wire
without concern over electrical contention.

Under an idle condition, SCL and SDA are pulled high by their pullup resistors. When a particu-
lar IC wants to communicate, it drives a clock onto SCL and a pattern of data onto SDA. SCL may
be as fast as 100 kHz for standard I2C and up to 400 kHz for fast I2C buses. I2C is a real network that
assigns a unique node address to each chip connected to the bus. As such, each transfer begins with a
start sequence followed by seven-bit destination address. A read/write flag and data follow the ad-

CPU
Serial

Interface
Controller

parallel
CPU bus Serial

Peripheral
Serial

Peripheral
Serial

Peripheral

serial peripheral bus

FIGURE 5.18 Generic interchip serial bus topology.

open-
collector

driver

open-
drain
driver

open-
collector

driver

+V

shared bus wire

FIGURE 5.19 I2C open-collector schematic
representation.

-Balch.book Page 119 Thursday, May 15, 2003 3:46 PM

120 Digital Fundamentals

dress. There is a carefully defined protocol that provides for acknowledgement of write transactions
and returning data for read transactions. In a multimaster configuration, collision detection can be
implemented along with an appropriate access arbitration algorithm.

I2C is implemented using only two wires, but this apparent simplicity belies its flexibility. The
protocol is rich in handling special situations such as multiple masters, slow slaves that cannot re-
spond to requests at the master’s SCL frequency, and error acknowledgements. Some manufacturers
that incorporate I2C into their products pay Philips a licensing fee and are therefore able to use the
trademark name in their documentation. Other manufacturers try to save some money by designing
what is clearly an I2C interface but referring to it by some generic or proprietary name such as “stan-
dard two-wire serial interface.” If you come across such a product, spend a few minutes reading its
documentation to make sure whether a true I2C interface is supported.

Motorola’s SPI consists of a clock signal, SCK, two unidirectional data signals, and multiple
slave select signals, SS* as shown in Fig. 5.20. One data signal runs from the master to each slave
and is called MOSI: master-out, slave-in. The other data signal is shared by the slaves to send data
back to the master and is called MISO: master-in, slave-out. SCK is always driven by the master and
can be up to several megahertz. Rather than assigning a unique address to each slave, the master
must assert a unique SS* to the particular device with which it wants to exchange data. On observing
SS* being asserted, a slave loads the bits on the MOSI signal into an internal shift register. If a read
is being performed, the slave can reply with data shifted out onto the MISO signal. Because MISO is
shared by multiple slaves, they must implement some type of contention-avoidance mechanism such
as tri-state or open-collector outputs.

Each of these interchip buses proves extremely useful in simplifying many system designs. It is
beyond the scope of this discussion to explain the detailed workings of either I2C or SPI. For more
information, consult the technical resources available from Philips and Motorola on their web sites
or in their printed data sheets.

SPI Slave

SCK MOSI MISO

SS*
SPI Master

SCK MOSI MISO

SS0*

SPI Slave

SCK MOSI MISO

SS*

SPI Slave

SCK MOSI MISO

SS*

SS2*

SS1*

FIGURE 5.20 SPI bus organization.

-Balch.book Page 120 Thursday, May 15, 2003 3:46 PM

121

CHAPTER 6

Instructive Microprocessors and
Microcomputer Elements

Microprocessors, the heart of digital computers, have been in a constant state of evolution since Intel
developed the first general-purpose microprocessors in the early 1970s. Intel’s four-bit 4004 made
history, because it was a complete microprocessor on a single chip at a time when processor modules
for minicomputers filled multiple circuit boards. Over the past three decades, the complexity and
throughput of microprocessors has increased dramatically as semiconductor technology has im-
proved by leaps and bounds. Hundreds of microprocessors have come and gone over the years.
There are many different architectures on the market today, each with its own claims of superior per-
formance, lower cost, and reduced power in its intended applications.

When looking back on three decades’ worth of development and the state of microprocessors to-
day, several microprocessor families are especially worth exploring as instructional examples of ba-
sic computer architecture. Some of these families are the ancestors of very popular and widespread
designs that are used to this day. Familiarity with these classic microprocessors can make it easier to
learn about contemporary products that are either improved versions of the originals or members of
other families that share common traits. Alternatively, some of these families are worthy of note be-
cause of their important role in permeating everyday life with microprocessors in places that most
people rarely think of as computerized: cars, microwave ovens, dishwashers, and VCRs.

This chapter provides information that is both historical and directly relevant to contemporary
digital systems design. Five classic microprocessor architectures are presented: Motorola 6800, Intel
8051, Microchip PIC, Intel 8086, and Motorola 68000. All of these architectures are in use today in
varying forms, and each represents a different perspective on how microprocessors can accomplish
similar tasks. A future design challenge may be addressed directly by one of these devices, or the so-
lution may employ architectural concepts that they have helped to bring about.

6.1 EVOLUTION

Following the 4004’s introduction in 1971, Intel enhanced the four-bit architecture by releasing the
4040 and 8008 in rapid succession. The 4040 added several instructions and internal registers, and
the 8008 extended the basic architecture to eight bits. These processors ran at speeds from 100 to
200 kHz and were packaged in 16 (4004/4040) and 18 (8008) pin DIPs. While significant for their
time, they had limited throughput and could address only 4 kB (4004/4040) or 16 kB (8008) of
memory. In 1974, Intel made substantial improvements in microprocessor design and released the
8080, setting the stage for modern microprocessors. Whereas Intel’s earlier microprocessors look
like relics of a bygone era, the 8080 is architecturally not far off from many microprocessors that ex-

-Balch.book Page 121 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

122 Digital Fundamentals

ist today. The 8080 was housed in a 40-pin DIP, featured a 16-bit address bus and an 8-bit data bus,
and ran at 2 MHz. It also implemented a conventional stack pointer that enabled deep stacks in exter-
nal memory (Intel’s earlier microprocessors had internal stacks with very limited depth). The 8080
became extremely popular as a result of its performance and rich, modern instruction set. This popu-
larity was evidenced two years later, in 1976, with Intel’s enhanced 8085 and competitor Zilog’s fa-
mous Z80. Designed by former Intel engineers, the Z80 was based heavily on the 8080 to the point
of having a partially compatible instruction set.

Both the 8085 and Z80 were extremely popular in a variety of computing platforms from hobby-
ists to mainstream commercial products to video arcade games. The 8085 architecture influenced the
famous 16-bit 8086 family whose strong influence continues to this day in desktop PCs. The Z80
eventually lost the mainstream microprocessor war and migrated to microcontrollers that are still
available for new designs from Zilog.

As microprocessors progress, technologies that used to be leading edge first become mainstream
and then appear quite pedestrian. Along the way, some microprocessor families branch into multiple
product lines to suit a variety of target applications. The high-end computing market gets most of the
publicity and accounts for the major technology improvements over time. Lower-end microproces-
sors are either made obsolete after some time or find their way into the

embedded

 market. Embedded
microprocessors and systems are those that may not appear to the end user as a computer, or they
may not be visible at all. Instead, embedded microprocessors typically serve a control function in a
machine or another piece of equipment. This is in contrast to the traditional computer with a key-
board and monitor that is clearly identified as a general-purpose computer.

Integrated microprocessor products are called

microcontrollers

, a term that has already been in-
troduced. A microcontroller is a microprocessor integrated with a varying mix of memory and pe-
ripherals on a single chip. Microcontrollers are almost always found in embedded systems. As with
many industry terms,

microcontrollers

 can mean very different things to different people. In general,
a microcontroller contains a relatively inexpensive microprocessor core with a complement of on-
board peripherals that enable a very compact, yet complete, computing system—either on a single
chip or relatively few chips. There is a vast array of single-chip microcontrollers on the market that
integrate quantities of both RAM and ROM on the same chip along with basic peripherals including
serial communications controllers, timers, and general I/O signal pins for controlling LEDs, relays,
and so on. Some of the smallest microcontrollers can cost less than a dollar and are available in
packages with as few as eight pins. Such devices can literally squeeze a complete computer into the
area of a fingernail. More complex microcontrollers can cost tens of dollars and provide external mi-
croprocessor buses for memory and I/O expansion. At the very high end, there are microcontrollers
available for well over $100 that include 32-bit microprocessors running at hundreds of megahertz,
with integrated Ethernet controllers and DMA. Manufacturers typically refer to these high-end
microcontrollers with unique, proprietary names to differentiate them from the aforementioned class
of inexpensive devices.

6.2 MOTOROLA 6800 EIGHT-BIT MICROPROCESSOR FAMILY

As the microprocessor market began to take off, Motorola jumped into the fray and introduced its
eight-bit 6800 in 1974, shortly after the 8080 first appeared. While no longer available as a discrete
microprocessor, the 6800 is significant, because it remains in Motorola’s successful 68HC05/
68HC08 and 68HC11 microcontroller families and also serves as a vehicle with which to learn the
basics of computer architecture. Like the 8080, the 6800 is housed in a 40-pin DIP and features a 16-
bit address bus and an 8-bit data bus. All of the basic register types of a modern microprocessor are

-Balch.book Page 122 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 123

implemented in the 6800, as shown in Fig. 6.1: a program counter (PC), stack pointer (SP), index
register (X), two general-purpose accumulators (ACCA and ACCB), and status flags set by the ALU
in the condition code register (CCR). ACCA is the primary accumulator, and some instructions oper-
ate only on this register and not ACCB. A half-carry flag is included to enable efficient binary coded
decimal (BCD) operations. After adding two BCD values with normal binary arithmetic, the half-
carry is used to convert illegal results back to BCD. The 6800 provides a special instruction, decimal
adjust ACCA (DAA), for this specific purpose. A somewhat out-of-place interrupt mask bit is also
implemented in the CCR, because this was an architecturally convenient place to locate it. Bits in the
CCR are modified through either ALU operations or directly by transferring the value in ACCA to
the CCR.

The 6800 supports three interrupts: one nonmaskable, one maskable, and one software interrupt.
More recent variants of the 6800 support additional interrupt sources. A software interrupt can be
used by any program running on the microprocessor to immediately jump to some type of mainte-
nance routine whose address does not have to be known by the calling program. When the software
interrupt instruction is executed, the 6800 reads the appropriate interrupt vector from memory and
jumps to the indicated address. The 6800’s reset and interrupt vectors are located at the top of mem-
ory, as listed in Table 6.1, which generally dictates that the boot ROM be located there as well. For
example, an 8-kB 27C64 EPROM (8,192 bytes = 0x2000 bytes) would occupy the address range
0xE000 through 0xFFFF. Each vector is 16 bits wide, enough to specify the full address of the asso-
ciated routine. The MSB of the address, A[15:8], is located in the low, or even, byte address, and the
LSB, A[7:0] is located in the high, or odd, byte address.

TABLE

6.1 6800 Reset and Interrupt Vectors

Vector Address Purpose

0xFFFE/0xFFFF Reset

0xFFFC/0xFFFD Nonmaskable interrupt

0xFFFA/0xFFFB Software interrupt

0xFFF8/0xFFF9 Maskable interrupt

Accumulator A

Accumulator B

Index Register

Program Counter

Stack Pointer

07

15
ALU Condition Code Register

[7] = Reserved
[6] = Reserved
[5] = Half-carry
[4] = Interrupt mask
[3] = Negative
[2] = Zero
[1] = Overflow
[0] = Carry

FIGURE 6.1 6800 registers.

-Balch.book Page 123 Thursday, May 15, 2003 3:46 PM

124 Digital Fundamentals

An external clock driver circuit that provides a two-phase clock (two clock signals 180° out of
phase with respect to each other) is required for the original 6800. Motorola simplified the design of
6800-based computer systems by introducing two variants, the 6802 and 6808. The 6802 includes an
on-board clock driver circuit of the type that is now standard on many microprocessors available to-
day. Such clock drivers require only an external

crystal

to create a stable, reliable oscillator with
which to clock the microprocessor. A crystal is a two-leaded component that contains a specially cut
quartz crystal. The quartz can be made to resonate at its natural frequency by electrical stimulus cre-
ated within the microprocessor’s on-board clock driver circuitry. A crystal is necessary for this pur-
pose, because its oscillation frequency is predictable and stable. The 6802 also includes 128 bytes of
on-board RAM to further simplify certain systems that have small volatile memory requirements.
For customers who wanted the simplified clocking scheme of the 6802 without paying for the on-
board RAM, Motorola’s 6808 kept the clocking and removed the RAM.

Using a 6802 with its internal RAM, a functional computer could be constructed with only two
chips: the 6802 and an EPROM. Unfortunately, such a computer would not be very useful, because it
would have no I/O with which to interact with the outside world. Motorola manufactured a variety of
peripheral chips intended for direct connection to the 6800 bus. Among these were the 6821 periph-
eral interface adapter (PIA) and the 6850 asynchronous communications interface adapter (ACIA), a
type of UART. The PIA provides 20 I/O signals arranged as two 8-bit parallel ports, each with two
control signals. Applications including basic pushbutton sensing and LED driving are easy with the
6821. The 6800 bus uses asynchronous control signals, meaning that memory and I/O devices do not
explicitly require access to the microprocessor clock to communicate on the bus. However, many of
the 6800 peripherals require their own copy of the clock to run internal logic.

As with all synchronous logic, the 6800’s bus is internally controlled by the microprocessor
clock, but the nature of the control signals enables asynchronous read and write transactions without
referencing that clock, as shown in Fig. 6.2. An address is placed onto the bus along with the proper
state of the R/W select signal (read = 1, write = 0) and a valid memory address (VMA) enable that
indicates an active bus cycle. In the case of a write, the write data is driven out some time later. For
reads, the data must be returned fast enough to meet the microprocessor’s timing specifications. The
6802/6808 were manufactured in 1-, 1.5-, and 2-MHz speed grades. At 2 MHz, a peripheral device
has to respond to a read request with valid data within 210 ns after the assertion of address, R/W, and
VMA. A peripheral has up to 290 ns from the assertion of these signals to complete a write transac-
tion.

*

 In a real system, VMA, combined with address decoding logic, would drive the individual
chip select signals to each peripheral.

In some situations, slow peripherals may be used that cannot execute a bus transaction in the time
allowed by the microprocessor. The 6800 architecture deals with this by stretching the clock during

*

8-Bit Microprocessor and Peripheral Data,

 Motorola, 1983, pp. 3–182.

A[15:0]

VMA

D[7:0]

R/W

valid

data out

Write: 290 ns at 2 MHz

valid

data in

Read: 210 ns at 2 MHz

FIGURE 6.2 6802/6808 basic bus timing.

-Balch.book Page 124 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 125

a slow bus cycle. A clock cycle can be stretched as long as 10 µs, enabling extremely slow peripher-
als by delaying the next clock edge that will advance the microprocessor’s internal state and termi-
nate a pending bus cycle. This stretching is performed by an external clock circuit for a 6800, or by
the internal clock of the 6802/6808. As with many modern microprocessors, the 6802/6808 provides
a pin that delays the end of the current bus cycle. This memory ready (MR) signal is normally high,
signaling that the addressed device is ready. When brought low, the clock is internally stretched until
MR goes high again. Early microprocessors such as the 6800 used clock stretching to delay bus cy-
cles. Most modern microprocessors maintain a constant clock frequency and, instead, insert discrete

wait states

, or extra clock cycles, into a bus transaction when a similar type of signal is asserted. This
latter method is usually preferable in a synchronous system because of the desire to maintain a sim-
ple clock circuit and to not disrupt other logic that may be running on the microprocessor clock.

Motorola’s success with the 6800 motivated it to introduce the upgraded 6809 in 1978. The 6809
is instruction set compatible with the 6800 but includes several new registers that enable more flexi-
ble access to memory. Two stack pointers are present: the existing hardware controlled register for
subroutine calls and interrupts, and another for user control. The user stack pointer can be used to ef-
ficiently pass parameters to subroutines as they are called without conflicting with the microproces-
sor’s push/pop operations involving the program counter and other registers. A second index register
and the ability to use any of the four 16-bit pointer registers as index registers were added to enable
the simultaneous handling of multiple data structure pointers without having to continually save and
recall index register values. The 6809’s two accumulators can be concatenated to form a 16-bit accu-
mulator that enables 16-bit arithmetic with an enhanced ALU. This ALU is also capable of eight-bit
unsigned multiplication, which made the 6809 one of the first integrated microprocessors with mul-
tiplication capability.

Other improvements in the 6809 included a direct page register (DPR) for a more flexible eight-
bit direct addressing mode. The 8-bit DPR, representing A[15:8], is combined with an 8-bit direct
address, representing A[7:0], to form a 16-bit direct address, thereby enabling an 8-bit direct address
to reference any location in the complete 64-kB address space. The 6809 also included a more ad-
vanced bus interface with direct support for an external DMA controller. Several desktop computers,
including the Tandy/Radio Shack TRS-80 Color Computer, and various platforms, including arcade
games, utilized the 6809.

While still available from odd-lot retail outlets, the original 6800 family members are no longer
practical to use in many computing applications. Their capabilities, once leading edge, are now
available in smaller, more integrated ICs at lower cost and with lower power consumption. However,
the 6800 architecture is alive and well in the 68HC05/68HC08 and 68HC11 microcontroller families
that are based on the 6800/6802/6808 and 6809 architectures, respectively. These microcontrollers
are available with a wide range of integrated features with on-board RAM, ROM (mask ROM, EE-
PROM, or EPROM), serial ports, timers, and analog-to-digital converters.

6.3 INTEL 8051 MICROCONTROLLER FAMILY

Following their success in the microprocessor market, Intel began manufacturing microcontrollers in
1976 with the introduction of the 8048 family. This early microcontroller contains 64 bytes of RAM,
1 kB of ROM, a simple 8-bit microprocessor core, and an 8-bit timer/counter as its sole on-board pe-
ripheral. (Subsequent variants, the 8049 and 8050, include double and four times the memory of the
8048, respectively.) The microprocessor consists of a 12-bit program counter, an 8-bit accumulator
and ALU, and a 3-bit stack pointer. The 8048 is a complete computer on a single chip and gained a
certain amount of fame in the 1980s when it was used as the standard keyboard controller on the

-Balch.book Page 125 Thursday, May 15, 2003 3:46 PM

126 Digital Fundamentals

IBM PC because of its simplicity and low cost. The 8048 was manufactured in a 40-pin DIP and
could be expanded with external memory and peripherals via an optional external address/data bus.
However, when operated as a nonexpanded single-chip computer, the pins that would otherwise
function as its bus were available for general I/O purposes—a practice that is fairly standard on
microcontrollers.

Motivated by the popularity of the 8048, Intel introduced the 8051 microcontroller in 1980, which
is substantially more powerful and flexible. The 8051’s basic architecture is shown in Fig. 6.3. It
contains 128 bytes of RAM, 4 kB of ROM, two 16-bit timer/counters, and a serial port. Registers
within the microprocessor are 8 bits wide except for the 16-bit data pointer (DPTR) and program
counter (PC). Memory is divided into mutually exclusive program and data sections that each can be
expanded up to 64 kB in size via an external bus. Expansion is accomplished by borrowing pins
from two of the four 8-bit I/O ports. Intel manufactured several variants of the 8051. The 8052 dou-
bled the amount of on-chip memory to 256 bytes of RAM and 8 kB of ROM and added a third timer.
The 8031/8032 are 8051/8052 chips without on-board ROM. The 8751/8752 are 8051/8052 devices
with EPROM instead of mask ROM. As time went by and the popularity of the 8051 family in-
creased, other companies licensed the core architecture and developed many variants with differing
mixes of memory and peripherals.

Ports 0 through 3 are each eight-bit bidirectional I/O structures that can be used as either general-
purpose signals or as dedicated interface signals according to the system configuration. In a single-
chip configuration where all memory is contained on board, the four ports may be assigned freely.
Some peripheral functions use these I/O pins, but if a specific function is not required, the pins may
be used in a generic manner. Port 3 is the default peripheral port where pins are used for the serial
port’s transmit and receive, external interrupt request inputs, counter increment inputs, and external
bus expansion control signals. Port 1 is a general-purpose port that is also assigned for additional pe-
ripheral support signals when an 8051 variant contains additional peripheral functions beyond what
can be supported on port 3 alone.

In a multichip configuration where memory and/or additional peripherals are added externally,
ports 0 and 2 are used for bus expansion. Port 0 implements a multiplexed address/data bus where
the 8051 first drives the lower eight address bits and then either drives write-data or samples read-
data in a conventional bidirectional data bus scheme. In this standard configuration, the lower ad-
dress bits, A[7:0], are latched externally by a discrete logic chip (generally a 74LS373 or similar),
and the 8051 drives an address latch enable (ALE) signal to control this latch as shown in Fig. 6.4.
This multiplexed address/data scheme saves precious pins on the microcontroller that can be used

Special
Function
Registers

Peripherals:
Timers,

Serial, etc.

AccumulatorB Register

Status Word

Data Pointer

Stack Pointer

ALU

RAMROM

Program Counter

Port 0 (Addr+Data)
Port 2 (Address)

Ports 1 & 3
General I/O

internal control/data bus

microprocessor section

Clock Driver

FIGURE 6.3 8051 overall architecture.

-Balch.book Page 126 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 127

for valuable I/O functions. Some applications may suffice with just an eight-bit external address bus.
For example, if the only expansion necessary were a special purpose I/O device, 256 bytes would
probably be more than enough to communicate with the device. However, some applications de-
mand a fully functional 16-bit external address bus. In these situations, port 2 is used to drive the up-
per address bits, A[15:8].

The 8051’s microprocessor is very capable for such an early microcontroller. It includes integer
multiply and divide instructions that utilize eight-bit operands in the accumulator and B register, and
it then places the result back into those registers. The stack, which grows upward in memory, is re-
stricted to on-board RAM only (256 bytes at most), so only an eight-bit stack pointer is imple-
mented. Aside from the general-purpose accumulator and B registers, the 8051 instruction set can
directly reference 8 byte-wide general-purpose registers, numbered R0 through R7, that are mapped
as 4 banks in the lower 32 bytes of on-board RAM. The active register bank can be changed at any
time by modifying two bank-select bits in the status word. The map of on-board data memory is
shown in Table 6.2. At reset, register bank 0 is selected, and the stack pointer is set to 0x07, meaning
that the stack will actually begin at location 0x08 when the first byte is eventually pushed. Above the
register banks is a 16-byte (128-bit) region of memory that is bit addressable. Microcontroller appli-
cations often involve reading status information, checking certain bits to detect particular events, and
then triggering other events. Using single bits rather than whole bytes to store status information
saves precious memory in a microcontroller. Therefore, the 8051’s bit manipulation instructions can
make efficient use of the chip’s resources from both instruction execution and memory usage per-
spectives. The remainder of the lower 128-byte memory region contains 80 bytes of general-purpose
memory.

The upper 128 bytes of data memory are split into two sections: special-function registers and
RAM. Special-function registers are present in all 8051 variants, but their definitions change ac-
cording to the specific mix of peripherals in each variant. Some special-function registers are stan-
dard across all 8051 variants. These registers are typically those that were implemented on the
original 8051/8052 devices and include the accumulator and B registers; the stack pointer; the data
pointer; and serial port, timer, and I/O port control registers. Each time a manufacturer adds an on-
board peripheral to the 8051, accompanying control registers are added into the special-function
memory region.

On variants that incorporate 256 bytes of on-board RAM, the upper 128 bytes are also mapped
into a parallel region alongside the special-function registers. Access between RAM and special-
function registers is controlled by the addressing mode used in a given instruction. Special-function
registers are accessed with direct addressing only. Therefore, such an instruction must follow the op-
code with an eight-bit address. The upper 128 bytes of RAM are accessed with indirect addressing
only. Therefore, such an instruction must reference one of the eight general-purpose registers (R0

8051

Latch
(e.g. 74LS373)

Port 0

Port 2

ALE

Address
Decode

A[7:0]

A[15:8]

Memory
Device

D[7:0]

A[N:0]

CS*

FIGURE 6.4 8051 system with external address latch.

-Balch.book Page 127 Thursday, May 15, 2003 3:46 PM

128 Digital Fundamentals

through R7 in the currently selected bank) whose value is used to index into that portion of RAM.
The lower 128 bytes of RAM are accessible via both direct and indirect addressing.

The 8051 is a good study in maximizing the capabilities of limited resources. Access to external
memory is supported through a variety of indirect and indexed schemes that provide an option to the
system designer of how extensive an external bus is implemented. Indirect access to external data
memory is supported in both 8- and 16-bit address configurations. In the 8-bit mode, R0 through R7
are used as memory pointers, and the resulting address is driven only on I/O port 0, freeing port 2 for
uses other than as an address bus. The DPTR functions as a pointer into data memory in 16-bit
mode, enabling a full 64-kB indirect addressing range. Indexed access to external program memory
is supported by both the DPTR and the PC. Being program memory (ROM), only reads are sup-
ported. Both DPTR and PC can serve as index base address registers, and the current value in the ac-
cumulator serves as an offset to calculate a final address of either DPTR+A or PC+A.

The 8051’s external bus interface is asynchronous and regulated by four basic control signals:
ALE, program storage enable (PSEN*), read enable (RD*), and write enable (WR*). Figure 6.5
shows the interaction of these four control signals and the two bus ports: ports 0 and 2. Recall that
ALE causes an external latch to retain A[7:0] that is driven from port 0 during the first half of the ac-
cess and prior to port 0 transitioning to a data bus role. The timing delays noted are for a standard
12-MHz operating frequency (the highest frequency supported by the basic 8051 devices, although
certain newer devices can operate at substantially faster frequencies).

*

TABLE

6.2 Memory Map of On-Board Data Memory

Memory Range Range Size Purpose Addressing Mode(s)

0x80–0xFF 128 bytes General-purpose RAM (except 8051) Indirect only

0x80–0xFF 128 bytes Special-function registers Direct only

0x30–0x7F 80 bytes General-purpose RAM Direct/indirect

0x20–0x2F 16 bytes Bit-addressable RAM/general Direct/indirect

0x18–0x1F 8 bytes Register bank 3/general Direct/indirect

0x10–0x17 8 bytes Register bank 2/general Direct/indirect

0x08–0x0F 8 bytes Register bank 1/general Direct/indirect

0x00–0x07 8 bytes Register bank 0/general Direct/indirect

*

Embedded Controller Handbook,

Vol. I, Intel, 1988, pp. 10-6 through 10-9.

Port 0

ALE

RD*

PSEN*

A[7:0]

Address to valid instruction in: 302 ns

WR*

Port 2 A[15:8]

Din[7:0] A[7:0]

A[15:8]

Din[7:0] A[7:0]

A[15:8]

Dout[7:0]

Address to valid data in: 585 ns Address to write complete: 603 ns

FIGURE 6.5 8051 bus interface timing.

-Balch.book Page 128 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 129

Although the specific timing delays of program memory and data memory reads are different,
they exhibit the same basic sequence of events. (More time is allowed for data reads than for instruc-
tion reads from program memory.) Therefore, if the engineer properly accounts for the timing varia-
tions by selecting memory and logic components that are fast enough to satisfy the PSEN* and RD*
timing specifications simultaneously, program and data memory can actually be merged into a uni-
fied memory space external to the chip. Such unification can be performed by generating a general
memory read enable, MRE*, that is the AND function of PSEN* and RD*. In doing so, whenever ei-
ther read enable is driven low by the 8051, MRE* will be low. This can benefit some applications by
turning the 8051 into a more general-purpose computing device that can load a program into its
“data memory” and then execute that same program from “program memory.” It also enables in-
dexed addressing to operate on data memory, which normally is restricted to indirect addressing as
discussed previously.

Timers such as those found in the 8051 are useful for either counting external events or triggering
low-frequency events themselves. Each timer can be configured in two respects: whether it is a timer
or counter, and how the count logic functions. The selection of timer versus counter is a decision be-
tween incrementing the count logic based on the microcontroller’s operating frequency or on an ex-
ternal event sensed via an input port pin. The 8051’s internal logic runs in a repetitive pattern of 12
clock cycles in which 1 machine cycle consists of 12 clock cycles. Therefore, the count logic incre-
ments once each machine cycle when in timer mode. When in counter mode, a low-to-high transi-
tion (rising edge) on a designated input pin causes the counter to increment. The counter can be
configured to generate an interrupt each time it rolls over from its maximum count value back to its
starting value. This interrupt can be used to either trigger a periodic maintenance routine at regular
intervals (timer mode) or to take action once an external event has occurred a set number of times
(counter mode). If not configured to generate an interrupt, the software can periodically poll the
timer to see how many events have occurred or how much time has elapsed.

The timers inherently possess two 8-bit count registers that can be configured in a variety of ways
as shown in Fig. 6.6. A timer can be configured as a conventional 16-bit counter, as two 8-bit

5-bit
Prescaler

8-bit
Counter

interrupt

Mode 0

signal pin

internal clock ÷12
(Timer Mode)

(Counter Mode)

8-bit
Counter

interrupt

Mode 2

8-bit Reload
Value

signal pin

internal clock ÷12
(Timer Mode)

(Counter Mode) 8-bit
Counter #1

interrupt

Mode 3

8-bit
Counter #2

interrupt

signal pin

internal clock ÷12
(Timer Mode)

(Counter Mode)

16-bit
Counter

interrupt

Mode 1

signal pin

internal clock ÷12
(Timer Mode)

(Counter Mode)

FIGURE 6.6 8051 timer configurations.

-Balch.book Page 129 Thursday, May 15, 2003 3:46 PM

130 Digital Fundamentals

counters, as a single 8-bit counter with a 5-bit prescaler, and as a single 8-bit counter with an 8-bit
reload value. The first two modes mentioned are straightforward: the timers count from 0 to either
65,535 (16-bit) or 255 (8-bit) before rolling over and perhaps generating an interrupt. The third
mode is similar, but the 8-bit counter increments only once every 32 machine cycles. The 5-bit (2

5

 =
32) prescaler functions as a divider ahead of the main counter. Apparently, the main reason for in-
cluding this mode was to retain function compatibility with the 8048’s prescaled timer. The fourth
mode is interesting, because the 8-bit counter is reloaded with an arbitrary 8-bit value rather than 0
after reaching its terminal count value (255). When operated in timer mode, this feature enables the
timer to synthesize a wide range of low-frequency periodic events. One very useful periodic event is
an RS-232 bit-rate generator. A commonly observed 8051 operating frequency is 11.0592 MHz.
When this frequency is divided by 12, a count increment rate of 921.6 kHz is obtained. Further di-
viding this frequency by divisors such as 96 or 384 yields the standard RS-232 bit rates 9.6 kbps and
2.4 kbps. A divisor of 384 cannot be implemented in an 8-bit counter. Instead, a selectable ÷16 or
÷32 counter is present in the serial port logic that generates the final serial bit rate.

The 8051’s on-board serial port implements basic synchronous or asynchronous transmit and re-
ceive shift-register functionality but does not incorporate hardware handshaking of the type used in
RS-232 communications. Serial transmission is initiated by writing the desired data to a transmit
register. Incoming data is placed into a receive register, and an interrupt can be triggered to invoke a
serial port ISR. The serial port can be configured in one of four modes, two of which are higher-fre-
quency fixed bit rates, and two of which are lower-frequency variable bit rates established by the
rollover characteristics of an on-board timer. Mode 0 implements a synchronous serial interface
where the “receive data” pin is actually bidirectional and a transmit clock is emitted on the “transmit
data” pin. This mode operates on 8-bit data and a fixed bit rate of 1/12 the operating frequency.

Mode 1 implements an asynchronous transmit/receive serial port where ten bits are exchanged for
every byte: a start bit, eight data bits, and a stop bit. The bit-rate is variable according to a timer roll-
over rate. Mode 3 is very similar to mode 1, with the added feature that a ninth data bit is added to
each byte. This extra data bit can be used for parity in an RS-232 configuration or for another appli-
cation-specific purpose. These two modes can be used to implement an RS-232 serial port without
hardware handshaking. Software-assisted hardware handshaking could be added using general I/O
pins on the 8051. Mode 2 is identical to mode 3 except for its fixed bit rate at either 1/32 or 1/64 the
operating frequency. Modes 1 and 3 can be made to operate at standard RS-232 bit rates from
19.2 kbps on downward with the aforementioned 11.0592 MHz operating frequency. A selectable
÷16 or ÷32 counter within the serial port logic combines with the timer rollover to achieve the de-
sired serial bit rate.

Intel’s 8051 architecture has been designed into countless applications in which a small, embed-
ded computer is necessary to regulate a particular process. The original 40-pin devices are still com-
monly used and found in distributors’ warehouses, but a host of newer devices are popular as well.
Some of these variants are larger and more capable than the original and include more I/O ports, on-
board peripherals, and memory. Some variants have taken the opposite direction and are available in
much smaller packages (e.g., 20 pins) with low power consumption for battery-powered applica-
tions. There are even special versions of the 8051 that are radiation hardened for space and military
applications. Companies that manufacture 8051 variants include Atmel, Maxim (formerly Dallas
Semiconductor), and Philips. Atmel manufactures a line of small, low-power 8051 products. Maxim
offers a selection of high-speed 8051 microcontrollers that run at up to 33 MHz with a 4-cycle archi-
tecture, as compared to 12 in the original 8051. Philips has a broad 8051 product line with a variety
of peripherals to suit many individual applications.

The mature ROM-less 8031/8032 members of the 8051 family can be ordered through many mail
order retail electronics outlets for only a few dollars apiece. The equally mature 8751/8752 EPROM
devices can also be found from many of these same sources, though at a higher price as a result of

-Balch.book Page 130 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 131

the expense of the ceramic DIP in which they are most often found. More specialized 8051 variants
may be available only through manufacturers’ authorized distributors.

6.4 MICROCHIP PIC

®

 MICROCONTROLLER FAMILY

By the late 1980s, microcontrollers and certain microprocessors were well established in embedded
control applications. Despite advances in technology, not many devices could simultaneously ad-
dress the needs for low power, moderate processing throughput, very small packages, and diverse in-
tegrated peripherals. Microchip Technology began offering a family of small peripheral interface
controller (PIC

®

)

*

 devices in the early 1990s that addressed all four of these needs. Microchip
developed the compact PIC architecture based on a

reduced instruction set core

(RISC)
microprocessor. The chips commonly run at up to 20 MHz and execute one instruction every
machine cycle (four clock cycles)—except branches that consume two cycles. The key concept
behind the PIC family is simplicity. The original 16C5x family, shown in Fig. 6.7, implements a 33-
instruction microprocessor core with a single working register (accumulator), W, and only a two-
entry subroutine stack. These devices contain as little as 25 bytes of RAM and 512 bytes of ROM,
and some are housed in an 18-pin package that can be smaller than a fingernail. The PIC devices are
not expandable via an external bus, further saving logic. This minimal architecture is what enables
relatively high performance processing with low power consumption in a tiny package. Low-power
operation is also coupled with a wide operating voltage range (2 to 6.25 V), further simplifying
certain systems by not always requiring voltage regulation circuits.

No interrupt feature is included, which is a common criticism of the architecture; this was fixed in
subsequent PIC microcontroller variants. PIC devices are, in general, fully static, meaning that they
can operate at an arbitrarily low frequency; 32 kHz is sometimes used in very power-sensitive appli-

* The Microchip name, PIC, and PICmicro are registered trademarks of Microchip Technology Inc. in the U.S.A. and other
countries.

Program Counter

2 Entry Stack

RAM

I/O Port Control
Registers

Watchdog Timer

W

ALU
Status

Register

ROM

Clock Driver

Timer

Power-On Reset

FIGURE 6.7 PIC microcontroller 16C5x architecture.

-Balch.book Page 131 Thursday, May 15, 2003 3:46 PM

132 Digital Fundamentals

cations in which only microamps of current are consumed. To further reduce cost and complexity,
the microcontrollers contain on-board clock drivers that work with a variety of external frequency-
reference components. Quartz crystals are supported, as they are very accurate references. In very
small systems wherein cost and size are absolutely paramount concerns, and absolute frequency ac-
curacy is not a concern, less-expensive and smaller frequency references can be used with a PIC
microcontroller. One step down from a crystal is a

ceramic resonator,

which functions on a similar
principle but with lower accuracy and cost. Finally, if the operating frequency can be allowed to vary
more substantially with temperature, voltage, and time, a resistor/capacitor (RC) oscillator, the
cheapest option, is supported. Tiny surface mount RC components take up very little circuit board
area and cost pennies.

The original 16C5x family incorporates only the most basic of peripherals: power-on-reset, an
eight-bit timer/counter, and a

watchdog timer

. A power-on reset circuit ensures that the microcon-
troller reliably begins operation when power is applied by automatically controlling an internal reset
signal. On most microprocessors, reset is purely an external function. A

watchdog

timer can be con-
figured to automatically reset the microcontroller if the system develops an unforeseen fault that
causes the software to “crash.” The watchdog functions by continuously counting, and software
must periodically reset the counter to prevent it from reaching its terminal count value. If this value
is reached, the internal reset signal is asserted. Under normal circumstances where software is func-
tioning properly, it resets the watchdog timer with plenty of time to spare. However, if the software
crashes, it will presumably not be able to reset the watchdog, and a system reset will soon follow.
The watchdog timeout period is configurable from milliseconds to seconds. When using a watchdog,
the timeout period is chosen to be long enough so that software can reliably reset the counter to pre-
vent accidental reset, yet short enough to catch a fault and reset the system before serious problems
result.

The PIC microcontroller’s RISC instruction set obeys the tenets of the general RISC style: ac-
complish the same task with more simple instructions instead of fewer complex ones. Fewer types of
simple instructions require less processing logic within the chip. As an example, there are just two
branch instructions:

CALL

and

GOTO

.

CALL

is an unconditional branch-to-subroutine that places
the current PC onto the stack. It is the programmer’s responsibility to not nest subroutines more than
two deep to avoid overflowing the stack.

GOTO

 simply loads a new value into the PC. To implement
conditional branches, these instructions are paired with one of four instructions that perform an ac-
tion and then skip the following instruction if a particular result is true.

INCFSZ

 and

DECFSZ

 incre-
ment or decrement a designated register, respectively, and then skip the following instruction if the
result is zero.

BTFSC

and

BTFSS

test a specified bit in a register and then skip the following in-
struction if the bit is 0 or 1, respectively. Using the first pair of instructions, a loop could be written
as shown in Fig. 6.8.

Assembly languages commonly offer the programmer a means of representing numeric values
with alphanumeric labels for convenience. Here, the loop variable

COUNT

 is set to address 0 with an

equate

directive that is recognized and processed by the assembler.

MOVWF

 transfers the value in the

COUNT EQU 0 ; define COUNT at address 0

MOVLW 0x09 ; 9 loop iterations
MOVW F COUNT ; iteration tracking register

LOOP_START <loop instructions> ; body of loop
DECFSZ COUNT,1 ; done with loop yet?

 GOTO LOOP_START ; non-zero, keep going...
 <more instructions> ; zero, loop is done...

FIGURE 6.8 16C5x assembly language loop.

-Balch.book Page 132 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 133

working register into a particular location in the register file. In this example, the

GOTO

 instruction is
executed each time through the loop until

COUNT

 is decremented to 0. (The operand “1” following

COUNT

 in

DECFSZ

 tells the microcontroller to place the decremented result back into

COUNT

 rather
than into the working register.) At this point,

GOTO

 is skipped, because the result is 0, causing the
microcontroller to continue executing additional instructions outside of the loop.

The second pair of skip instructions,

BTFSC

 and

BTFSS

, directly supports the common situation
in which the microcontroller reads a set of flag bits in a single byte and then takes action based on
one of those bits. Such bit-testing instructions are common in microcontrollers by virtue of their in-
tended applications. Some generic microprocessors do not contain bit-testing instructions, requiring
software to isolate the bit of interest with a logical

mask

operation. A mask operation works as fol-
lows with an AND function, assuming that we want to isolate bit 5 of a byte so as to test its state:

Here, the mask prevents any bit other than bit 5 from achieving a 1 state in the final result. This
masking operation could then be followed with a conditional branch testing whether the overall re-
sult was 0 or non-0. In the PIC architecture, and most other microcontrollers, this process is per-
formed directly with bit-test instructions.

Masking also works to set or clear individual bits but, here again, the PIC architecture contains
special instructions to optimize this common microcontroller function. Using the above example, bit
5 can be set, regardless of its current state, by ORing the data byte with the same mask.

The mask ensures that only bit 5 is set, regardless of its current state. All other bits propagate
through the OR process without being changed. Similarly, an individual bit can be cleared, regard-
less of its current state, with an inverse AND mask:.

Here, all bits other than bit 5 are ANDed with 1, propagating them through to the result. Bit 5 is
ANDed with 0, unconditionally forcing it to a 0. Rather than having to load a mask and then execute
a logical instruction, the PIC architecture contains two instructions to clear and set arbitrary bits in a
specified register:

BCF

and

BSF

, respectively.

1 0 1 1 0 1 1 1 Byte to test

0 0 1 0 0 0 0 0 Mask

AND 0 0 1 0 0 0 0 0 Bit 5 isolated

1 0 1 1 0 1 1 1 Starting byte

0 0 1 0 0 0 0 0 Mask

OR 0 0 1 0 0 0 0 0 Result

1 0 1 1 0 1 1 1 Starting byte

1 1 0 1 1 1 1 1 Mask

AND 1 0 0 1 0 1 1 1 Result

-Balch.book Page 133 Thursday, May 15, 2003 3:46 PM

134 Digital Fundamentals

Microchip extended the 16C5x’s architecture and features with the 16C6x and 16C7x families.
The 16C5x’s advantages of low power consumption, wide operating voltage range, and small size
are retained. Improvements include more memory (up to 368 bytes of RAM and 8 kB of ROM), a
more versatile microprocessor core with interrupt capability, an eight-level stack, and a wider selec-
tion of on-board peripherals including additional timers, serial ports, and

analog-to-digital

 (A/D)
converters. (An A/D converter is a circuit that converts an analog voltage range into a range of binary
values. An 8-bit A/D converter covering the range of 0 to 5 V would express voltages in that range as
a byte value with a resolution of 5 V ÷ (2

8

 – 1) increments = 19.6 mV per increment.) Between four
and eight A/D converters are available in ’C7x devices.

Some PIC microcontrollers contain two serial ports on the same chip: an asynchronous port suit-
able for RS-232 applications and a synchronous port capable of SPI or I

2

C operation in conjunction
with other similarly equipped ICs in a system. At the other end of the spectrum, very small PIC de-
vices are available in eight-pin packages—small enough to fit almost anywhere.

6.5 INTEL 8086 16-BIT MICROPROCESSOR FAMILY

Intel moved up to a 16-bit microprocessor, the 8086, in 1978—just two years after introducing the
8085 as an enhancement to the 8080. The “x86” family is famous for being chosen by IBM for their
original PC. As PCs developed during the past 20 years, the x86 family grew with the industry—first
to 32 bits (80386, Pentium) and more recently to 64 bits (Itanium). While the 8086 was a new archi-
tecture, it retained certain architectural characteristics of the 8080/8085 such that assembly language
programs written for its predecessors could be converted over to the 8086 with little or no modifica-
tion. This is one of the key reasons for its initial success.

The 8086 contains various 16-bit registers as shown in Fig. 6.9, some of which can be manipu-
lated one byte at a time. AX, BX, CX, and DX are general-purpose registers that have alternate func-
tions and that can be treated as single 16-bit registers or as individual 8-bit registers. The
accumulator, AX, and the flags register serve their familiar functions. BX can serve as a general
pointer. CX is a loop iteration count register that is used inherently by certain instructions. DX is
used as a companion register to AX when performing certain arithmetic operations such as integer
division or handling long integers (32 bits).

The remaining registers are pointers of various types that index into the 8086’s somewhat awk-
ward segmented memory structure. Despite being a 16-bit microprocessor with no register exceed-
ing 16 bits in size, Intel recognized the need for more than 64 kB of addressable memory in more
advanced computers. One megabyte of memory space was decided upon as a sufficiently large ad-
dress space in the late 1970s, but the question remained of how to access that memory with 16-bit
pointers. Intel’s solution was to have programmers arbitrarily break the 1 MB address space into
multiple 64-kB special-purpose segments—one for instructions (code segment), two for data (pri-
mary data and “extra” data), and one for the stack. Memory operations must reference one of these
defined segments, requiring only a 16-bit pointer to address any location within a given segment.
Segments can be located anywhere in memory, as shown in Fig. 6.10, and can be moved at will to
provide flexibility for different applications. Additionally, there is no restriction on overlapping of
segments.

Each segment register represents the upper 16 bits of a 20-bit pointer (2

20

 = 1 MB) where the
lower 4 bits are fixed at 0. Therefore, a segment register directly points to an arbitrary location in
1 MB of memory on a 16-byte boundary. A pointer register is then added to the 20-bit segment ad-
dress to yield a final 20-bit address, the effective address, with which to fetch or store data. Algebra-
ically, this relationship is expressed as: effective address = (segment pointer

×

 16) + offset pointer.

-Balch.book Page 134 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 135

AH ALAX Accumulator

BH BLBX Base

CH CLCX Count

DH DLDX Data

8 bits

16 bits

8 bits

SP Stack pointer

BP Base pointer

SI Source index

DI Destination index

IP Instruction pointer

Flags ALU status flags

CS Code segment

DS Data segment

SS Stack segment

ES Extra data segment

FIGURE 6.9 8086 register set.

CS

DS

SS

ES

inaccessible
memory outside

of currently
defined segments

Data segment

Stack segment

Code segment

Extra data segment

overlap

Memory bottom: 0x00000

Memory top: 0xFFFFF

FIGURE 6.10 8086 segments.

-Balch.book Page 135 Thursday, May 15, 2003 3:46 PM

136 Digital Fundamentals

Inside the microprocessor, this math is performed by shifting the segment pointer (0x135F) left by
four bits and then adding the offset pointer (0x0102) as shown below.

This segmented addressing scheme has some awkward characteristics. First, programs must orga-
nize their instructions and data into 64-kB chunks and properly keep track of which portions are be-
ing accessed. If data outside of the current segments is desired, the appropriate segment register
must be updated. Second, the same memory location can be represented by multiple combinations of
segment and offset values, which can cause confusion in sorting out which instruction is accessing
which location in memory. Nonetheless, programmers and the manufacturers of their development
tools have figured out ways to avoid these traps and others like them.

Instructions that reference memory implicitly or explicitly determine which offset pointer is
added to which segment register to yield the desired effective address. For example, a push or pop
instruction inherently uses the stack pointer in combination with the stack segment register. How-
ever, an instruction to move data from memory to the accumulator can use one of multiple pointer
registers relative to any of the segment registers.

The 8086’s reset and interrupt vectors are located at opposite ends of the memory space. On reset,
the instruction pointer is set to 0xFFFF0, and the microprocessor begins executing instructions from
this address. Therefore, rather than being a true vector, the 16-byte reset region contains normal exe-
cutable instructions. The interrupt vectors are located at the bottom of the memory space starting
from address 0, and there are 256 vectors, one for each of the 256 interrupt types. Each interrupt vec-
tor is composed of a 2-byte segment address and a 2-byte offset address, from which a 20-bit effec-
tive address is calculated. When the 8086’s INTR pin is driven high, an interrupt acknowledge
process begins via the INTA* output pin. The 8086 pulses INTA* low twice and, on the second
pulse, the interrupting peripheral drives an interrupt type, or vector number, onto the eight lower bits
of the data bus. The vector number is used to index into the interrupt vector table by multiplying it
by 4 (shifting left by two bits), because each vector consists of four bytes. For example, interrupt
type 0x03 would cause the microprocessor to fetch four bytes from addresses 0x0C through 0x0F.
Interrupts triggered by the INTR pin are all maskable via an internal control bit. Software can also
trigger interrupts of various types via the

INT

 instruction. A nonmaskable interrupt can be triggered
by external hardware via the NMI pin. NMI initiates the type-2 interrupt service routine at the ad-
dress indicated by the vector at 0x08-0x0B.

Locating the reset boot code at the top of memory and the interrupt vectors at the bottom often
leads to an 8086 computer architecture with ROM at the top and some RAM at the bottom. ROM
must be at the top, for obvious reasons. Placing the interrupt vector table in RAM enables a flexible
system in which software applications can install their own ISRs to perform various tasks. On the
original IBM PC platform, it was not uncommon for programs to insert their own ISR addresses into
certain interrupt vectors located in RAM. The system timer and keyboard interrupts were common
objects of this activity. Because the PC’s operating system already implemented ISRs for these inter-
rupts, the program could redirect the interrupt vector to its own ISR and then call the system’s de-
fault ISR when its own ISR completed execution. If properly done, this interrupt chaining process
could add new features to a PC without harming the existing housekeeping chores performed by the
standard ISRs. Chaining the keyboard interrupt could enable a program that is normally dormant to
pop up each time a particular key sequence is pressed.

1 3 5 F 0 Segment pointer

+ 0 1 0 2 Offset pointer

1 3 6 F 2 Effective address

-Balch.book Page 136 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 137

Despite its complexity and 16-bit processing capability, the 8086 was originally housed in a 40-
pin DIP—the same package used for most 8-bit processors of the time. Intel chose to use a multi-
plexed address/data scheme similar to that used on the 8051 microcontroller, thereby saving 16 pins.
The 8086’s 20-bit address bus is shared by the data bus on the lower 16 bits and by status flags on the
upper 4 bits. Combined with additional signals, these status flags control the microprocessor’s bus
interface. As with Intel’s other microprocessors, the 8086 contains separate address spaces for mem-
ory and I/O devices. A control pin on the chip indicates whether a transaction is memory or I/O.
While the memory space is 1 MB in size, the I/O space is only 64 kB. The 8086 bus interface oper-
ates in one of two modes, minimum and maximum, determined by a control pin tied either high or
low, respectively. In each of these two modes, many of the control and status pins take on different
functions. In minimum mode, the control signals directly drive a standard “Intel-style” bus similar to
that of the 8080 and 8051, with read and write strobes and address latch enable. Other signals in-
clude a READY signal for inserting wait states for slow peripherals and a bus grant/acknowledge
mechanism for supporting DMA or similar bus-sharing peripherals. Minimum mode is designed for
smaller systems in which little address decoding logic is necessary to interface the 8086 to memory
and peripherals devices. Maximum mode is designed for larger systems where an Intel companion
chip, the 8288 bus controller, integrates more complex bus control logic onto an off-the-shelf IC. In
maximum mode, certain status and control pins communicate more information about what type of
transaction is being performed at any given time, enabling the 8288 to take appropriate action.

The 8086’s 16-bit data bus is capable of transacting a single byte at a time for purposes of access-
ing byte-wide peripherals. One early advantage of the 8086 was its backward bus compatibility with
the 8080/8085. In the 1970s, Intel manufactured a variety of I/O peripherals such as timers and par-
allel I/O devices for their eight-bit microprocessors. The 8086’s ability to perform byte-wide trans-
actions enabled easy reuse of existing eight-bit peripheral products. Two signals, byte high enable
(BHE*) and address bit zero (A[0]), communicate the width and active byte of each bus transaction
as shown in Table 6.3.

Intel’s microprocessors follow the

little-endian

 byte ordering convention.

Little-endian

 refers to
the practice of locating the LSB of a multibyte quantity in a lower address and the MSB in a higher
address. In a little-endian 16-bit microprocessor, the value 0x1234 would be stored in memory by lo-
cating 0x12 into address 1 and 0x34 into address 0.

Big-endian

is the opposite: locating the LSB in
the higher address and the MSB in the lower address. Therefore, a big-endian 16-bit microprocessor
would store 0x12 into address 0 and 0x34 into address 1. To clarify the difference, Table 6.4 shows
little-endian versus big-endian for 16- and 32-bit quantities as viewed from a memory chip’s per-
spective. Here, ADDR represents the base address of a multibyte data element.

Proponents of little-endian argue that it makes better sense, because the low byte goes into the
low address. Proponents of big-endian argue that it makes better sense, because data is stored in

TABLE

6.3 8086 Bus Sizing

BHE* A[0] Transaction Type

0 0 16-bit transaction

0 1 8-bit transaction: high byte (odd address)

1 0 8-bit transaction: low byte (even address)

1 1 Undefined

-Balch.book Page 137 Thursday, May 15, 2003 3:46 PM

138 Digital Fundamentals

memory as you would read and interpret it. The choice of “endianness” is rather religious and comes
down to personal preference. Of course, if you are designing with a little-endian microprocessor, life
will be made simpler to maintain the endianness consistently throughout the system.

At the time of the 8086’s introduction, 16-bit desktop computer systems were almost unheard of
and could be substantially more expensive than 8-bit systems as a result of the increased memory size
required to support the larger bus. To alleviate this problem and speed market acceptance of its archi-
tecture, Intel introduced the 8088 microprocessor in 1979, which was essentially an 8086 with an
eight-bit data bus. A lower-cost computer system could be built with the 8088, because fewer EPROM
and RAM chips were necessary, system logic did not have to deal with two bytes at a time, and less
circuit board wiring was required. A tremendous benefit to Intel in designing the 8088 was the fact
that it was chosen by IBM as the low-cost 16-bit heart of the original PC/XT desktop computer,
thereby locking the x86 microprocessor family into the IBM PC architecture for decades to come.

A variety of companion chips were developed by Intel to supplement the 8086/8088. Among
these was the 8087 math coprocessor that enhanced the 8086’s computational capabilities with

float-
ing-point

arithmetic operations. Floating-point arithmetic refers to a computer’s handling of real
numbers as compared to integers. The task of adding or multiplying two real numbers of arbitrary
magnitude is far more complex than similar integer operations. Certain applications such as scien-
tific simulations and realistic games that construct a virtual reality world make significant use of
floating-point operations. The 8087 is a

coprocessor

rather than a peripheral, because it sits on the
microprocessor bus in parallel with the 8086 and watches for special floating-point instructions.
These instructions are then executed automatically by the 8087 rather than having to wait for the
8086 to request an operation. The 8086 was designed with the 8087’s existence in mind and ignores
instructions destined for the 8087. Therefore, software must specifically know if a math coprocessor
is installed to run correctly. Many programs that ran on older systems with or without a coprocessor
would first test to see if the coprocessor was installed and then execute either an optimized set of
routines for the 8087 or a slower set of routines that emulated the floating-point operations via con-
ventional 8086 instructions.

As the x86 family developed, the optional math coprocessor was eventually integrated alongside
the integer processor on the same silicon chip. The 8087 gave way to the 80287 and 80387 when the
80286 and 80386 microprocessors were produced. When Intel introduced the 80486, the coproces-
sor, or

floating-point unit

(FPU), was integrated on chip. This integration resulted in a somewhat
more expensive product, so Intel released a lower-cost 80486SX microprocessor without the copro-
cessor. An 80487SX was made available to upgrade systems originally sold with the 80486SX chips,
but the overall situation proved somewhat chaotic with various permutations of microprocessors and
systems with and without coprocessors. Starting with the Pentium, all of Intel’s high-end micropro-
cessors contain integrated FPUs. This trend is not unique to Intel. High-performance microproces-
sors in general began integrating the FPU at roughly the same time because of the performance
benefits and the overall simplicity of placing the microprocessor and FPU onto the same chip.

TABLE 6.4 Little-Endian vs. Big-Endian

Value Endianness ADDR+0 ADDR+ 1 ADDR+2 ADDR+3

0x1234 Little 0x34 0x12 X x

0x1234 Big 0x12 0x34 X x

0x12345678 Little 0x78 0x56 0x34 0x12

0x12345678 Big 0x12 0x34 0x56 0x78

-Balch.book Page 138 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 139

6.6 MOTOROLA 68000 16/32-BIT MICROPROCESSOR FAMILY

Motorola followed its 6800 family by leaping directly to a hybrid 16/32-bit microprocessor architec-
ture. Introduced in 1979, the 68000 is a 16-bit microprocessor, due to its 16-bit ALU, but it contains
all 32-bit registers and a linear, nonsegmented 32-bit address space. (The original 68000 did not
bring out all 32 address bits as signal pins but, more importantly, there are no architectural limita-
tions of using all 32 bits.) That the register and memory architecture is inherently 32 bits made the
68000 family easily scalable to a full 32-bit internal architecture. Motorola upgraded the 68000 fam-
ily with true 32-bit devices, including the 68020, 68040, and 68060, until switching to the PowerPC
architecture in the latter portion of the 1990s for new high-performance computing applications. Ap-
ple Computer used the 68000 family in their popular line of Macintosh desktop computers. Today,
the 68000 family lives on primarily as a mid-level embedded-processor core product. Motorola man-
ufacturers a variety of high-end microcontrollers that use 32-bit 68000 microprocessor cores. How-
ever, in recent years Motorola has begun migrating these products, as well as their general-purpose
microprocessors, to the PowerPC architecture, reducing the number of new designs that use the
68000 family.

The 68000 inherently supports modern software operating systems (OSs) by recognizing two
modes of operation: supervisor mode and user mode. A modern OS does not grant unlimited access
to application software in using the computer’s resources. Rather, the OS establishes a restricted op-
erating environment into which a program is loaded. Depending on the specific OS, applications
may not be able to access certain areas of memory or I/O devices that have been declared off limits
by the OS. This can prevent a fault in one program from crashing the entire computer system. The
OS kernel, the core low-level software that keeps the computer running properly, has special privi-
leges that allow it unrestricted access to the computer for the purposes of establishing all of the rules
and boundaries under which programs run. Hardware support for multiple privilege levels is crucial
for such a scheme to prevent unauthorized programs from freely accessing restricted resources. As
microprocessors developed over the last few decades, more hardware support for OS privileges was
added. That the 68000 included such concepts in 1979 is a testimony to its scalable architecture.

Sixteen 32-bit general-purpose registers, one of which is a user stack pointer (USP), and an 8-bit
condition code register are accessible from user mode as shown in Fig. 6.11. Additionally, a supervi-
sor stack pointer (SSP) and eight additional status bits are accessible from supervisor mode. Com-
puter systems do not have to implement the two modes of operation if the application does not
require it. In such cases, the 68000 can be run permanently in supervisor mode to enable full access
to all resources by all programs. The SSP is used for stack operations while in supervisor mode, and
the USP is used for stack operations in user mode. User mode programs cannot change the USP, pre-
venting them from relocating their stacks. Most modern operating systems are multitasking, mean-
ing that they run multiple programs simultaneously. In reality, a microprocessor can only run one
program at a time. A multitasking OS uses a timer to periodically interrupt the microprocessor, per-
haps 20 to 100 times per second, and place it into supervisor mode. Each time supervisor mode is in-
voked, the kernel performs various maintenance tasks and swaps the currently running program with
the next program in the list of running programs. This swap, or context switch, can entail substantial
modifications to the microprocessor’s state when it returns from the kernel timer interrupt. In the
case of an original 68000 microprocessor, the kernel could change the return value of the PC, USP,
the 16 general-purpose registers, and the status register. When normal execution resumes, the micro-
processor is now executing a different program in exactly the same state at which it was previously
interrupted, because all of its registers are in the same state in which they were left. In such a
scenario, each program has its own private stack, pointed to by a kernel-designated stack pointer.

The eight data registers, D0–D7, can be used for arbitrary ALU operations. The eight address reg-
isters, A0–A7, can all be used as base addresses for indirect addressing and for certain 16- and 32-bit

-Balch.book Page 139 Thursday, May 15, 2003 3:46 PM

140 Digital Fundamentals

ALU operations. All 16 registers can be used as index registers. While operating in user mode, it is
illegal to access the SSP or the supervisor portion of the status register, SR. Such instructions will
cause an exception, whereby a particular interrupt is asserted, which causes the 68000 to enter su-
pervisor mode to handle the fault. (Exception and interrupt are often used synonymously in com-
puter contexts.) Very often, the OS kernel will terminate an application that causes an exception to
be generated. The registers shown above are present in all 68000 family members and, as such, are
software is compatible with subsequent 68xxx microprocessors. Newer microprocessors contain ad-
ditional registers that provide more advanced privilege levels and memory management. While the
68000 architecture fundamentally supports a 4-GB (32-bit) address space, early devices were lim-
ited in terms of how much physical memory could actually be addressed as a result of pin limitations
in the packaging. The original 68000 was housed in a 64-pin DIP, leaving only 24 address bits us-
able, for a total usable memory space of 16 MB. When Motorola introduced the 68020, the first fully
32-bit 68000 microprocessor, all 32 address bits were made available. The 68000 devices are big-en-
dian, so the MSB is stored in the lowest address of a multibyte word.

The 68000 supports a 16-MB address space, but only 23 address bits, A[23:1], are actually
brought out of the chip as signal pins. A[0] is omitted and is unnecessary, because it would specify
whether an even (A[0] = 0) or odd (A[0] = 1) byte is being accessed; and, because the bus is 16 bits
wide, both even and odd bytes can be accessed simultaneously. However, provisions are made for
byte-wide accesses in situations where the 68000 is connected to legacy eight-bit peripherals or
memories. Two data strobes, upper (UDS*) and lower (LDS*), indicate which bytes are being ac-
cessed during any given bus cycle. These strobes are generated by the 68000 according to the state
of the internal A0 bit and information on the size of the requested transaction. Bus transactions are
triggered by the assertion of address strobe (AS*), the appropriate data strobes, and R/W* as shown
in Fig. 6.12. Prior to AS*, the 68000 asserts the desired address and a three-bit function code bus,
FC[2:0]. The function code bus indicates which mode the processor is in and whether the transaction
is a program or data access. This information can be used by external logic to qualify transactions to
certain sensitive memory spaces that may be off limits to user programs. When read data is ready,
the external bus interface logic asserts data transfer acknowledge (DTACK*) to inform the micro-
processor that the transaction is complete. As shown, the 68000 bus can be operated in a fully asyn-
chronous manner. When operated asynchronously, DTACK* is removed after the strobes are

32 bits

8 bits

USP/A7 User stack pointer

CCR ALU/user status flags

SSP Supervisor stack pointer

A6

A5

A4

A3

A2

A1

A0

32 bits

D7

D6

D5

D4

D3

D2

D1

D0

PC

SR

8 bits

Supervisor status flags
Supervisor access only

FIGURE 6.11 68000 register set.

-Balch.book Page 140 Thursday, May 15, 2003 3:46 PM

Instructive Microprocessors and Microcomputer Elements 141

removed, ensuring that the 68000 detected the assertion of DTACK*. If DTACK* is removed prior
to the strobes, there is a chance of marginal timing where the 68000 may not properly detect the ac-
knowledge, and it may wait forever for an acknowledge that has now passed. Writes are very similar
to reads, with the obvious difference that R/W* is brought low, and data is driven by the 68000. An-
other difference is that the data strobe assertion lags that of AS*.

Advanced microprocessors such as the 68000 are designed to recognize fault conditions wherein
the requested bus transaction cannot be completed. A bus fault can be caused by a variety of problems,
including unauthorized access (e.g., user mode tries to write to a protected supervisor data space) or
an access to a section of memory that is not filled by a memory or peripheral device. Software should
never access areas of memory that are off limits, because the results are unpredictable. Therefore,
rather than simply issuing a false DTACK* and continuing with normal operation, the 68000 contains
a bus error signal (BERR*) that behaves like DTACK* but triggers an exception rather than continu-
ing normal execution. It is the responsibility of external logic to manage the DTACK* and BERR*
signals according to the specific configuration and requirements of the particular system.

Operating the 68000 bus in an asynchronous manner is easy, but it reduces its bandwidth, because
delays must be built into the acknowledge process to guarantee that both the 68000 and the interface
logic maintain synchronization. Figure 6.12 shows read data being asserted prior to DTACK* and an
arbitrary delay between the release of AS* and that of DTACK*. The data delay is necessary to guar-
antee that the 68000 will see valid data when it detects a valid acknowledge. The second delay is
necessary to ensure that the 68000 completes the transaction, as noted previously. These delays can
be eliminated if the bus is operated synchronously by distributing the microprocessor clock to the in-
terface logic and guaranteeing that various setup and hold timing requirements are met as specified
by Motorola. In such a configuration, it is known from Motorola’s data sheet that the 68000 looks
for DTACK* each clock cycle, starting at a fixed time after asserting the strobes, and then samples
the read-data one cycle after detecting DTACK* being active. Because synchronous timing rules are
obeyed, it is guaranteed that the 68000 properly detects DTACK* and, therefore, DTACK* can be
removed without having to wait for the removal of the strobes. 68000 synchronous bus timing is
shown in Fig. 6.13, where each transaction lasts a minimum of four clock cycles. A four-cycle trans-
action is a zero wait state access. Wait states can be added by simply delaying the assertion of
DTACK* to the next cycle. However, to maintain proper timing, DTACK* (and BERR* and read-
data) must always obey proper setup and hold requirements. As shown in the timing diagram, each
signal transition, or edge, is time-bounded relative to a clock edge.

Read timing allows a single clock cycle between data strobe assertion and the return of DTACK*
for a zero wait-state transaction. However, zero wait-state writes require DTACK* assertion at

A[23:1]

FC[2:0]

D[15:8]

AS*

valid

data in

valid

UDS*

LDS*

R/W*

D[7:0] data in

DTACK*
16-bit read

valid

data in

valid

8-bit read (even byte, A0=0)

valid

data out

valid

8-bit write (odd byte, A0=1)

FIGURE 6.12 68000 asynchronous bus timing.

-Balch.book Page 141 Thursday, May 15, 2003 3:46 PM

142 Digital Fundamentals

roughly the same time as the data strobes. Therefore, the bus interface logic must make its decision
on asserting DTACK* based on the requested address when AS* is asserted. If the requested device
is operational, DTACK* can be immediately asserted for a fast transaction. Unlike reads, where the
microprocessor must wait for a device to return data, writes can be acknowledged before they are ac-
tually transferred to the device. In such a scheme, writes are posted within the bus interface logic.
One or two cycles later, when the device accepts the posted write data, the bus interface logic finally
completes the transaction without having delayed the microprocessor. If completion of the posted-
write transaction takes longer than a few cycles, it could force a subsequent access to the same de-
vice to incur wait states. Either a read or a write would be blocked until the original write was able to
complete, thus freeing the device to handle the next transaction.

In addition to the basic bus interface, the 68000 supports bus arbitration to enable DMA or other
logic to use the microprocessor bus for arbitrary applications. A bus request (BR*) signal is asserted
by a device that wants to temporarily gain control of the bus. On the next clock cycle, when the mi-
croprocessor is not inhibited by other operations, it asserts a bus grant (BG*) signal and places its
address, data, and control signals into tri-state so that they may be driven by the other device. The re-
questing device then asserts bus grant acknowledge (BGACK*) to signal that it is controlling the
bus, and it is then free to assert its own strobes, address, and data signals.

A variety of interrupts and exceptions are supported by the 68000. Some are triggered as a result
of instruction execution and some by external signals (e.g., BERR* or an interrupt request). Exam-
ples of instruction exceptions are illegal user mode register accesses or a divide-by-zero error. Most
microprocessors that provide division capability contain some type of divide-by-zero error handling,
because the result of such an operation is mathematically undefined and is usually the result of a
fault in the program. The 68000 contains an exception vector table that is 1,024 bytes long and re-
sides at the beginning of memory at address 0. In a multitasking system, the bus interface logic may
restrict access to the vector table to supervisor mode only. In such a case, a bus error could be trig-
gered if a user mode program, indicated by FC[2:0], tried to write the table. Each of the 256 vector
entries is four bytes long and provides the starting address of the associated ISR. The one deviation
from this rule is the reset vector, which actually consists of two entries at word addresses 0 and 4.
Upon reset, the 68000 fetches an initial PC value from address 4 and an initial SSP value from ad-
dress 0. Vectors 0 through 63 are assigned or reserved by Motorola for various hardware exceptions.
Vectors 64 through 255 are assigned as user interrupt vectors. Like other microprocessors in its cate-
gory, the 68000 supports bus vectoring of user interrupts where an external interrupt controller as-
serts an interrupt number onto the data bus during an interrupt acknowledge cycle performed by the
68000 in response to an interrupt request. This interrupt number is multiplied by four and used to in-
dex into the exception table to fetch the address of the appropriate ISR.

A[23:1], FC[2:0]

D[15:0]

AS*

valid

din

UDS*,LDS*

R/W*

DTACK*

Clock
tCO

tCO

tSU

tSU

tCO

tCO

valid

tCO

dout
tCO

tSU

FIGURE 6.13 68000 synchronous bus timing.

-Balch.book Page 142 Thursday, May 15, 2003 3:46 PM

P R TA 2

ADVANCED DIGITAL
SYSTEMS

-Balch.book Page 143 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

145

CHAPTER 7

Advanced Microprocessor
Concepts

Computer architecture is central to the design of digital systems, because most digital systems are, at
their core, computers surrounded by varying mixes of interfaces to the outside world. It is difficult to
know at the outset of a project how advanced architectural concepts may figure into a design, be-
cause

advanced

 does not necessarily mean expensive or complex. Many technologies that were orig-
inally developed for high-end supercomputers and mainframes eventually found their way into
consumer electronics and other less-expensive digital systems. This is why a digital engineer bene-
fits from a broad understanding of advanced microprocessor and computing concepts—a wider pal-
ette of potential solutions enables a more creative and effective design process.

This chapter introduces a wide range of technologies that are alluded to in many technical specifi-
cations but are often not understood sufficiently to take full advantage of their potential. What is a
200-MHz superscalar RISC processor with a four-way set associative cache? Some people hear the
term RISC and conjure up thoughts of high-performance computing. Such imagery is not incorrect,
but RISC technology can also be purchased for less than one dollar. Caching is another big computer
term that is more common than many people think.

An important theme to keep in mind is that microprocessors and the systems that they plug into
are inextricably interrelated, and more so than simply by virtue of their common physical surround-
ings. The architecture of one directly influences the capabilities of the other. For this reason, the two
need to be considered simultaneously during the design process. Among many other factors, this
makes computer design an iterative process. One may begin with an assumption of the type of mi-
croprocessor required and then use this information to influence the broader system architecture.
When system-level constraints and capabilities begin to come into focus, they feed back to the mi-
croprocessor requirements, possibly altering them somewhat. This cycle can continue for several it-
erations until a design is realized in which the microprocessor and its supporting peripherals are well
matched for the application.

7.1 RISC AND CISC

One of the key features used to categorize a microprocessor is whether it supports

reduced instruc-
tion set computing

(RISC—pronounced “risk”) or

complex instruction set computing

 (CISC—pro-
nounced “sisk”). The distinction is how complex individual instructions are and how many
permutations exist for the same basic instruction. In practical terms, this distinction directly relates
to the complexity of a microprocessor’s instruction decoding logic; a more complex instruction set
requires more complex decoding logic. Some engineers believe that a microprocessor should exe-

-Balch.book Page 145 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

146 Advanced Digital Systems

cute simple instructions at a high rate—perhaps one instruction per cycle. Others believe that a mi-
croprocessor should execute more complex instructions at a lower rate.

Operand types add complexity to an instruction set when a single general operation such as addi-
tion can be invoked with many different addressing modes. Motorola’s CISC 68000 contains a basic
addition instruction, among other addition operations, that can be decoded in many different ways
according to the specified addressing mode. Table 7.1 shows the format of the basic

ADD

/

ADDA

/

ADDX

 instruction word.

ADD

 is used for operations primarily on data registers.

ADDA

 is used for op-
erations primarily on address registers.

ADDX

 is used for special addition operations that incorporate
the ALU extended carry bit, X, into the sum. The instruction word references Register1 directly and
an effective address (EA) that can represent another register or various types of indirect and indexed
addressing modes.

As listed in Table 7.2, the opmode field defines whether the operands are 8-, 16-, or 32-bit quanti-
ties and identifies the source and destination operands. In doing so, it also implies certain subclasses
of instructions:

ADD

,

ADDA

, or

ADDX

.

The main complexity is introduced by the EA

fields as defined in Table 7.3. For those modes that
map to multiple functions, additional identifying fields and operands are identified by one or more
extension words that follow the instruction word. One of the more complex modes involves using an
address register as a base address, adding a displacement to that base to calculate a fetch address,
fetching the data at that address, adding another register to the retrieved value, adding another dis-
placement, and then using the resulting address to fetch a final operand value.

ADD/ADDA/ADDX

 is

TABLE

7.1 68000 ADD/ADDA/ADDX Instruction Word

Bit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Opcode = 1101 Register1 Opmode
Effective Address

Mode Register2

TABLE

7.2 68000 ADD/ADDA/ADDX Instruction Opmode Field

Opmode Value Operand Width Definition of Register1 Operation Instruction Mapping

000 8 Dn EA + Dn

⇒

 Dn ADD

001 16 Dn EA + Dn

⇒

 Dn ADD

010 32 Dn EA + Dn

⇒

 Dn ADD

100 8 Dn Dn + EA

⇒

 EA ADD/ADDX

101 16 Dn Dn + EA

⇒

 EA ADD/ADDX

110 32 Dn Dn + EA

⇒

 EA ADD/ADDX

011 16 An EA + An

⇒

 An ADDA

111 32 An EA + An

⇒

 An ADDA

-Balch.book Page 146 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 147

a powerful instruction that requires significant decode logic behind it. Additionally, when opmode
indicates an

ADD

 or

ADDX

 instruction, the two mode values that normally indicate simple register
references now map to one of two special

ADDX

 operations.

As can be readily observed, decoding an addition instruction on the 68000 is not as simple as add-
ing two registers. For the most complex addressing modes, multiple registers must be added together
to create an address from which another address is fetched that is added with an offset to yield a final
address at which the true operand is located. This sounds complicated, and it is. There is really no
succinct way to explain the operation of such instructions. The impact of these complex addressing
modes on decoding logic is substantial, especially when it is realized that the 68000 contains dozens
of instructions, each with its own permutations.

TABLE

7.3 68000 Effective Address Field Definition

Mode Field Definition of Register2 Operand Value Function

000 Data register N Dn Data register value

001 Address register N An Address register value

010 Address register N (An) Indirect address register

011 Address register N (An)+ Indirect with post-increment

100 Address register N –(An) Indirect with pre-decrement

101 Address register N (An + d

16

,) Indirect with 16-bit displacement

110 Address register N (An + Xn + d

8

) Indirect with index register and 8-bit displacement (exten-
sion word follows)

(An + Xn + d

16,32

) Indirect with index register and 32- or 16-bit displacement
(extension words follow)

((An + d

16,32

) + Xn + d

16,32

) Indirect with displacement to fetch pointer added to index
register and displacement (extension words follow)

((An + Xn + d

16,32

) + d

16,32

) Indirect with displacement and index register to fetch
pointer added to displacement (extension words follow)

111 000 d

16

16-bit direct address (extension word follows)

111 001 d

32

32-bit direct address (extension words follow)

111 100 #data Immediate follows in extension words

111 010 (PC + d

16

) Indirect with 16-bit displacement

111 011 <multiple> Same as mode=110, but with PC instead of address regis-
ters

Shaded modes are invalid when EA is specified as the destination by

opmode

 and change their meaning as follows:

000 Data register N Dn ADDX: Dregister2 + Dregister1 + X

⇒

 Dregister1

001 Address register N –(An) ADDX: –(Aregister2) + –(Aregister1) + X

⇒

 (Aregister1)

-Balch.book Page 147 Thursday, May 15, 2003 3:46 PM

148 Advanced Digital Systems

In contrast to the 68000’s CISC architecture, the MIPS family of microprocessors is one of the
commercial pioneers of RISC. MIPS began as a 32-bit architecture with 32-bit instruction words and
32 general-purpose registers. In the 1990s the architecture was extended to 64 bits. MIPS instruction
words are classified into three basic types: immediate (I-type), jump (J-type), and register (R-type).
The original MIPS architecture supports four 32-bit addition instructions without any addressing
mode permutations: add signed (ADD), add unsigned (ADDU), add signed immediate (ADDI), and
add unsigned immediate (ADDIU). These instructions are represented by two types of instruction
words, I-type and R-type, as shown in Table 7.4.

The immediate operations specify two registers and a 16-bit immediate operand: R

T

 = R

S

 + Im-
mediate. The other instructions operate on registers only and allow the programmer to specify three
registers: R

D

 = R

S

 + R

T

. If you want to add data that is in memory, that data must first be loaded into
a register. Whereas a single 68000 instruction can fetch a word from memory, increment the associ-
ated pointer register, add the word to another register, and then store the result back into memory, a
MIPS microprocessor would require separate instructions for each of these steps. This is in keeping
with RISC concepts: use more simpler instructions to get the job done.

Instruction decode logic for a typical RISC microprocessor can be much simpler than for a CISC
counterpart, because there are fewer instructions to decode and fewer operand complexities to recog-
nize and coordinate. Generally speaking, a RISC microprocessor accesses data memory only with
dedicated load/store instructions. Data manipulation instructions operate solely on internal registers
and immediate operands. Under these circumstances, microprocessor engineers are able to heavily
optimize their design in favor of the reduced instruction set that is supported. It turns out that not all
instructions in a CISC microprocessor are used with the same frequency. Rather, there is a core set
of instructions that are called most of the time, and the rest are used infrequently. Those that are used
less often impose a burden on the entire system, because they increase the permutations that the de-
code logic must handle in any given clock cycle. By removing the operations that are not frequently
used, the microprocessor’s control logic is simplified and can therefore be made to run faster. The re-
sult is improved throughput for the most commonly executed operations, which translates directly
into greater performance overall.

The fundamental assumption that RISC microprocessors rely on to maintain their throughput is
high memory bandwidth. For a RISC microprocessor to match or outperform a CISC microproces-

TABLE

7.4 MIPS Addition Instruction Words

I-type bits 31:26 25:21 20:16 15:0

Field Opcode Source Register Target Register Immediate data

ADDI 001000 Rn Rn Data

ADDIU 001001 Rn Rn Data

R-type bits 31:26 25:21 20:16 15:11 10:6 5:0

Field Opcode Source Register Target Register Destination Register Shift Amount Function

ADD 000000 Rn Rn Rn 00000 100000

ADDU 000000 Rn Rn Rn 00000 100001

-Balch.book Page 148 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 149

sor, it must be able to rapidly fetch instructions, because several RISC instructions are necessary to
match the capabilities of certain CISC instructions. An older computer architecture with an asyn-
chronous memory interface may not be able to provide sufficient instruction bandwidth to make a
RISC microprocessor efficient. CISC architectures dominated off-the-shelf microprocessor offerings
until low-latency memory subsystems became practical at a reasonable cost. Modern computer ar-
chitectures implement very fast memory interfaces that are able to provide a steady stream of in-
structions to RISC microprocessors.

One fundamental technique for improving the instruction fetch bandwidth is to design a micro-
processor with two memory interfaces—one for instructions and one for data. This is referred to as a

Harvard

architecture, as compared to a conventional

von Neumann

architecture in which instruction
and data memory are unified. Using a Harvard architecture, instruction fetches are not disrupted by
load/store operations. Unfortunately, a Harvard architecture presents numerous system-level prob-
lems of how to split program and data memory and how to load programs into memory that cannot
be accessed by load/store operations. Most microprocessors that implement a Harvard architecture
do so with smaller on-chip memory arrays that can store segments of program and data that are
fetched from and written back to a unified memory structure external to the microprocessor chip.
While this may sound so complex as to only be in the realm of serious number-crunchers, the small
but powerful 8-bit PIC

TM

 RISC microcontrollers from Microchip Technology implement a Harvard
architecture with mutually exclusive program and data memory structures located on chip. This il-
lustrates the point that advanced microprocessor concepts can be applied to any level of performance
if a problem needs to be solved.

The RISC concept appears to have won the day in the realm of high-performance computing.
With memory bandwidth not being much of a hindrance, streamlined RISC designs can be made fast
and efficient. In embedded computing applications, the victor is less clear. CISC technology is still
firmly entrenched in a market where slow memory subsystems are still common and core micropro-
cessor throughput is not always a major design issue. What is clear is that engineers and marketers
will continue to debate and turn out new products and literature to convince others why their ap-
proach is the best available.

7.2 CACHE STRUCTURES

Microprocessor and memory performance have improved asymmetrically over time, leading to a
well recognized performance gap. In 1980, a typical microprocessor ran at under 10 MHz, and a typ-
ical DRAM exhibited an access time of about 250 ns. Two decades later, high-end microprocessors
were running at several hundred megahertz, and a typical DRAM exhibited an access time of 40 ns.
Microprocessors’ appetites for memory bandwidth has increased by about two orders of magnitude
over 20 years while main memory technology, most often DRAM, has improved by less than an or-
der of magnitude during that same period. To make matters worse, many microprocessors shifted
from CISC to RISC architectures during this same period, thereby further increasing their demand
for instruction memory bandwidth. The old model of directly connecting main memory to a micro-
processor has broken down and become a performance-limiting bottleneck.

The culprits for slow main memory include the propagation delays through deep address decod-
ing logic and the high random access latency of DRAM—the need to assert a row address, wait
some time, assert a column address, and wait some more time before data is returned. These prob-
lems can be partially addressed by moving to SRAM. SRAM does not exhibit the latency penalty of
DRAM, but there are still the address decoding delays to worry about. It would be nice to build main
memory with SRAM, but this is prohibitively expensive, as a result of the substantially lower den-

-Balch.book Page 149 Thursday, May 15, 2003 3:46 PM

150 Advanced Digital Systems

sity of SRAM as compared to DRAM. An SRAM-based main memory requires more devices, more
circuit board area, and more connecting wires—all requirements that add cost and reduce the reli-
ability of a system. Some supercomputers have been built with main memory composed entirely of
SRAM, but keep in mind that these products have minimal cost constraints, if any.

If software running on microprocessors tended to access every main memory location with equal
probability, not much could be done to improve memory bandwidth without substantial increases in
size and cost. Under such circumstances, a choice would have to be made between a large quantity
of slow memory or a small quantity of fast memory. Fortunately, software tends to access fairly con-
strained sets of instructions and data in a given period of time, thereby increasing the probability of
accessing sequential memory locations and decreasing the probability of truly random accesses.
This property is generally referred to as

locality

. Instructions tend to be executed sequentially in the
order in which they are stored in memory. When branches occur, the majority are with small dis-
placements for purposes of forming loops and local “if…then…else” logical decisions. Data also
tend to be grouped into sequential elements. For example, if a string of characters forming a person’s
name in a database is being processed, the characters in the string will be located in sequential mem-
ory locations. Furthermore, the entire database entry for the person will likely be stored as a unit in
nearby memory locations.

Caches

largely overcome main memory latency problems. A cache, pronounced “cash,” is a small
quantity of fast memory that is used to temporarily store portions of main memory that the micro-
processor accesses often or is predicted to access in the near future. Being that cache memory is rel-
atively small, SRAM becomes practical to use in light of its substantial benefits of fast access time
and simplicity—a memory controller is not needed to perform refresh or address multiplexing oper-
ations. As shown in Fig. 7.1, a cache sits between a microprocessor and main memory and is com-
posed of two basic elements: cache memory and a cache controller.

The cache controller watches all memory transactions initiated by the microprocessor and selects
whether read data is fetched from the cache or directly from main memory and whether writes go
into the cache or into main memory. Transactions to main memory will be slower than those to the
cache, so the cache controller seeks to minimize the number of transactions that are handled directly
by main memory.

Locality enables a cache controller to increase the probability of a

cache hit

—that data requested
by the microprocessor has already been loaded into the cache. A 100 percent hit rate is impossible,
because the controller cannot predict the future with certainty, resulting in a

cache miss

 every so of-
ten.

Temporal

and

spatial

locality properties of instructions and data help the controller improve its
hit rate. Temporal locality says that, if a memory location is accessed once, it is likely to be accessed
again in the near future. This can be readily observed by considering a software loop: instructions in
the body of the loop are very likely to be fetched again in the near future during the next loop itera-

Address Bus

MPU
Main

Memory
(DRAM)

Cache
Memory
(SRAM)

Cache
Controller

Data Bus

Control Control

FIGURE 7.1 Computer with cache.

-Balch.book Page 150 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 151

tion. Spatial locality says that, if a memory location is accessed, it is likely that nearby locations will
be accessed in the near future. When a microprocessor fetches an instruction, there is a high proba-
bility that it will soon fetch the instructions immediately following that instruction. Practically
speaking, temporal locality tells the cache controller to attempt to retain recently accessed memory
locations in the expectation that they will be accessed again. Spatial locality tells the cache control-
ler to preload additional sequential memory locations when a single location is fetched by the micro-
processor, in the expectation that these locations will be soon accessed.

Given the locality properties, especially spatial locality, that need to be incorporated into the
cache controller, a basic cache organization emerges in which blocks of data rather than individual
bytes are managed by the controller and held in cache memory. These blocks are commonly called

lines,

and they vary in size, depending on the specific implementation. Typical cache line sizes are
16, 32, or 64 bytes. When the microprocessor reads a memory location that is not already located
in the cache (a miss), the cache controller fetches an entire line from main memory and stores it as
a unit. To maintain the simplicity of power-of-two logic, cache lines are typically mapped into
main memory on boundaries defined by the line size. A 16-byte cache line will always hold mem-
ory locations at offsets represented by the four least-significant address bits. Main memory is
therefore effectively divided into many small 16-byte lines with offsets from 0x0 to 0xF. If a micro-
processor with a 32-bit address bus fetches location 0x1000800C and there is a cache miss, the
controller will load locations 0x10008000 through 0x1000800F into a designated cache line. If the
cache is full, and a miss occurs, the controller must

flush

a line that has a lower probability of use
so as to make room for the new data. If the flushed line has been modified by writes that were not
already reflected in main memory, the controller must store the line to prevent losing and corrupt-
ing the memory contents.

As more cache lines are implemented, more sections of main memory can be simultaneously held
in the cache, increasing the hit rate. However, a cache’s overall size must be bounded by a system’s
target size and cost constraints. The size of a cache line is a compromise between granularity, load/
store time, and locality benefits. For a fixed overall size, larger lines reduce the granularity of unique
blocks of main memory that can be simultaneously held in the cache. Larger cache lines increase the
time required to load a new line and update main memory when flushing an old line. Larger cache
lines also increase the probability that a subsequent access will result in a hit.

Cache behavior on reads is fairly consistent across different implementations. Writes, however,
can be handled in one of three basic manners:

no-write

,

write-through

, and

write-back

. A no-write
cache does not support the modification of its contents. When a write is performed to a block of
memory held in a cache line, that line is flushed, and the write is performed directly into main mem-
ory. This scheme imposes two penalties on the system: writes are always slowed by the longer la-
tency of main memory, and locality benefits are lost because the flush forces any subsequent
accesses to that line to result in a miss and reload of the entire line that was already present in the
cache.

Write-through caches support the modification of their contents but do not support incoherency
between cache memory and main memory. Therefore, a write to a block of memory held in a cache
line results in a parallel write to both the cache and main memory. This is an improvement over a no-
write cache in that the cache line is not forcibly flushed, but the write is still slowed by a direct ac-
cess to main memory.

A write-back cache minimizes both penalties by enabling writes to valid cache lines but not im-
mediately causing a write to main memory. The microprocessor does not have to incur the latency
penalty of main memory, because the write completes as fast as the cache can accept the new data.
This scheme introduces complexity in the form of incoherency between cache and main memory:
each memory structure has a different version of the same memory location. To solve the incoher-
ency problem, a write-back cache must maintain a status bit for each line that indicates whether the

-Balch.book Page 151 Thursday, May 15, 2003 3:46 PM

152 Advanced Digital Systems

line is

clean

 or

dirty

. When the line is eventually flushed, dirty lines must be written back to main
memory in their entirety. Clean lines can be flushed without further action. While a write-back cache
cannot absolutely eliminate the longer write latency of main memory, it can reduce the overall sys-
tem impact of writes, because the microprocessor can perform any number of writes to the same
cache line, and only a fixed write-back penalty results upon a flush.

The central problem in designing a cache is how to effectively hold many scattered blocks from a
large main memory in a small cache memory. In a standard desktop PC, main memory may consist
of 256 MB of DRAM, whereas the microprocessor’s cache is 256 kB—a difference of three orders
of magnitude! The concept of cache lines provides a starting point with a defined granularity to min-
imize the problem somewhat. Deciding on a 16-byte line size, for example, indicates that a 32-bit
address space needs to be handled only as 2

28

 units rather than 2

32

 units. Of course, 2

28

 is still a very
large number! Each cache line must have an associated tag and/or index that identifies the higher-or-
der address bits that its contents represent (28 bits in this example). Different cache architectures
handle these tags and indices to balance cache performance with implementation expense. The three
standard cache architectures are

fully associative

,

direct mapped

, and

n-way set associative

.
A fully associative cache, shown in Fig. 7.2, breaks the address bus into two sections: the lower

bits index into a selected cache line to select a byte within the line, and the upper bits form a tag that
is associated with each cache line. Each cache line contains a valid bit to indicate whether it contains
real data. Upon reset, the valid bits for each line are cleared to 0. When a cache line is loaded with
data, its tag is set to the high-order address bits that are driven by the microprocessor. On subsequent
transactions, those address bits are compared in parallel against every tag in the cache. A hit occurs
when one tag matches the requested address, resulting in that line’s data advancing to a final multi-
plexer where the addressed bytes are selected by the low-order address bits. A fully associative
cache is the most flexible type, because any cache line can hold any portion of main memory. The
disadvantage of this scheme is its complexity of implementation. Each line requires address match-

A[31:4] A[3:0]

requested address

B
yt

e
se

le
ct

Requested
Data

28-bit line tag 16-byte line datavalid

=

Z

match

28-bit line tag 16-byte line datavalid

=

Z

match

Hit
28-bit line tag 16-byte line datavalid

=

Z

match

28-bit line tag 16-byte line datavalid

=

Z

match

FIGURE 7.2 Fully associative cache.

-Balch.book Page 152 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 153

ing logic, and each match signal must be logically combined in a single location to generate a final
hit/miss status flag.

A direct mapped cache, shown in Fig. 7.3, breaks the address bus into three sections; the lower
bits retain their index function within a selected line, the middle bits select a single line from an ar-
ray of uniquely addressable lines, and the upper bits form a tag to match the selected cache line. As
before, each cache line contains a valid bit. The difference here is that each block of memory can
only be mapped into one cache line—the one indexed by that block’s middle address bits, A[15:4] in
this example (indicating a 64-kB total cache size). During a cache miss, the controller determines
which line is selected by the middle address bits, loads the line, sets the valid bit, and loads the line
tag with the upper address bits. On subsequent accesses, the middle address bits select a single line
whose tag is compared against the upper address bits. If they match, there is a cache hit. A direct
mapped cache is much easier to implement as compared to a fully associative cache, because paral-
lel tag matching is not required. Instead, the cache can be constructed with conventional memory
and logic components using off-the-shelf RAM for both the tag and line data. The control logic can
index into the RAM, check the selected tag for a match, and then take appropriate action. The disad-
vantage to a direct mapped cache is that, because of the fixed mapping of memory blocks to cache
lines, certain data access patterns can cause rapid

thrashing

. Thrashing results when the micropro-
cessor rapidly accesses alternate memory blocks. If the alternate blocks happen to map to the same
cache line, the cache will almost always miss, because each access will result in a flush of the alter-
nate memory block.

Given the simplicity of a direct mapped cache, it would be nice to strike a compromise between
an expensive fully associative cache and a thrashing-sensitive direct mapped cache. The

n-way

 set
associative cache is such a compromise. As shown in Fig. 7.4, a two-way set associative cache is
basically two direct mapped cache elements connected in parallel to reduce the probability of
thrashing. More than two sets can be implemented to further reduce thrashing potential. Four-way
and two-way set associative caches are very common in modern computers. Beyond four ele-
ments, the payback of thrashing avoidance to implementation complexity declines. The term

set

refers to the number of entries in each direct mapped element, 4,096 in this example. Here, the

requested address

B
yt

e
se

le
ct

Requested
Data

A[31:16] A[3:0]A[15:4]

16-bit line tag 16-byte line datavalid

16-bit line tag 16-byte line datavalid

16-bit line tag 16-byte line datavalid

16-bit line tag 16-byte line datavalid

=

Cache Tag and Data RAM: 4,096 entries

RAM
Index

Hit

FIGURE 7.3 64-kB direct mapped cache.

-Balch.book Page 153 Thursday, May 15, 2003 3:46 PM

154 Advanced Digital Systems

cache has expanded to 128 kB in size using two 64 kB elements. If cost constraints dictate keeping
a 64 kB cache, it would be preferable to reduce the set size to 2,048 rather than halve the line size,
which is already at a practical minimum of 16 bytes. Reducing the set size to 2

11

 would increase
the line tag to 17 bits to maintain a 32-bit address space representation. In a cache of this type, the
controller can choose which of two (or four, or

n

) cache line locations to flush when a miss is en-
countered.

Deciding which line to flush when a cache miss occurs can be done in a variety of ways, and dif-
ferent cache architectures dictate varying approaches to this problem. A fully associative cache can
place any main memory block into any line, while a direct mapped cache has only one choice for
any given memory block. Three basic flush, or replacement, algorithms are as follows:

•

First-in-first-out (FIFO).

Track cache line ages and replace the oldest line.

•

Least-recently-used (LRU).

Track cache line usage and replace the line that has not been ac-
cessed longest.

•

Random.

Replace a random line.

A fully associative cache has the most flexibility in selecting cache lines and therefore the most
complexity in tracking line usage. To perform either a FIFO or LRU replacement algorithm on a
fully associative cache, each line would need a tracking field that could be updated and checked in
parallel with all other lines. N-way set associative caches are the most interesting problems from a
practical perspective, because they are used most frequently. Replacement algorithms for these
caches are simplified, because the number of replacement choices is restricted to N. A two-way set
associative cache can implement either FIFO or LRU algorithms with a single bit per line entry.
For a FIFO algorithm, the entry being loaded anew has its FIFO bit cleared, and the other entry has
its FIFO bit set, indicating that the other entry was loaded first. For an LRU algorithm, the entry be-
ing accessed at any given time has its LRU bit cleared, and the other has its LRU bit set, indicating
that the other entry was used least recently. These algorithms and associated hardware are only

Hit

=

16-bit tag 16-byte dataV

16-bit tag 16-byte dataV
Z

B
yt

e
se

le
ct

Requested
Data

requested address

A[31:16] A[3:0]A[15:4]

=

16-bit tag 16-byte dataV

16-bit tag 16-byte dataV
Z

FIGURE 7.4 128-kB two-way set associative cache.

-Balch.book Page 154 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 155

slightly more complex for a four-way set associative cache that would require two status bits per
line entry.

7.3 CACHES IN PRACTICE

Basic cache structures can be applied and augmented in different ways to improve their efficacy. One
common manner in which caches are implemented is in pairs: an

I-cache

to hold instructions and a

D-cache

to hold data. It is not uncommon to see high-performance RISC microprocessors with inte-
grated I/D caches on chip. Depending on the intended application, these integrated caches can be
relatively small, each perhaps 8 kB to 32 kB in size. More often than not, these are two-way or four-
way set associative caches. There are two key benefits to integrating two separate caches. First, in-
struction and data access patterns can combine negatively to cause thrashing on a single normal
cache. If a software routine operates on a set of data whose addresses happen to overlap with the I-
cache’s index bits, alternate instruction and data fetch operations could cause repeated thrashing on
the same cache lines. Second, separate caches can effectively provide a Harvard memory architec-
ture from the microprocessor’s local perspective. While it is often not practical to provide dual in-
struction and data memory interfaces at the chip level, as a result of excessive pin count, such
considerations are much less restrictive within a silicon die. Separate I/D caches can feed from a
shared chip-level memory interface but provide independent interfaces to the microprocessor core it-
self. This dual-bus arrangement increases the microprocessor’s load/store bandwidth by enabling it
to simultaneously fetch instructions and operands without conflict.

Dual I/D caches cannot guarantee complete independence of instruction and data memory, be-
cause, ultimately, they are operating through a shared interface to a common pool of main memory.
The performance boost that they provide will be dictated largely by the access patterns of the appli-
cations running on the microprocessor. Such application-dependent performance is fundamental to
all types of caches, because caches rely on locality to provide their benefits. Programs that scatter in-
structions and data throughout a memory space and alternately access these disparate locations will
show less performance improvement with the cache. However, most programs exhibit fairly benefi-
cial locality characteristics. A system with dual I/D caches can show substantial throughput im-
provement when a software routine can fit its core processing instructions into the instruction cache
with minimal thrashing and its data sets exhibit good locality properties. Under these circumstances,
the data cache can have more time to pull in data via the common memory interface, enabling the
microprocessor to simultaneously access instruction and data memory with a low miss rate.

Computer systems with caches require some assistance from the operating system and applica-
tions to maximize cache performance benefits and to prevent unexpected side effects of cached
memory. It is helpful to cache certain areas of memory, but it is performance degrading or even
harmful to cache other areas. Memory-mapped I/O devices are generally excluded from being
cached, because I/O is a class of device that usually responds with some behavior when a control
register is modified. Likewise, I/O devices frequently update their status registers to reflect condi-
tions that they are monitoring. If a cache prevents the microprocessor from directly interacting with
an I/O device, unexpected results may appear. For example, if the microprocessor wants to send
data out a serial port, it might write a data value to a transmit register, expecting that the data will be
sent immediately. However, a write-back cache would not actually perform the write until the asso-
ciated cache line is flushed—a time delay that is unbounded. Similarly, the serial port controller
could reflect handshaking status information in its status registers that the microprocessor wants to
periodically read. An unknowing cache would fetch the status register memory location once and
then continue to return the originally fetched value to the microprocessor until its cache line was
flushed, thereby preventing the microprocessor from reading the true status of the serial port. I/O

-Balch.book Page 155 Thursday, May 15, 2003 3:46 PM

156 Advanced Digital Systems

registers are unlike main memory, because memory just holds data and cannot modify it or take ac-
tions based on it.

Whereas caching an I/O region can cause system disruption, caching certain legitimate main mem-
ory regions can cause performance degradation due to thrashing. It may not be worth caching small
routines that are infrequently executed, because the performance benefit of caching a quick mainte-
nance routine may be small, and its effect on flushing more valuable cache entries may significantly
slow down the application that resumes execution when the maintenance routine completes. A perfor-
mance-critical application is often composed of a processing kernel along with miscellaneous initial-
ization and maintenance routines. Most of the microprocessor time is spent executing kernel
instructions, but sometimes the kernel must branch to maintenance routines for purposes such as load-
ing or storing data. Unlike I/O regions that are inherently known to be cache averse, memory regions
that should not be cached can only be known by the programmer and explicitly kept out of the cache.

Methods of excluding certain memory locations from the cache differ across system implementa-
tions. A cache controller will often contain a set of registers that enable the lockout of specific
memory regions. On those integrated microprocessors that contain some address decoding logic as
well as a cache controller, individual memory areas are configured into the decoding logic with pro-
grammable registers, and each is marked as cacheable or noncacheable. When the microprocessor
performs a memory transaction, the address decoder sends a flag to the cache controller that tells it
whether to participate in the transaction.

On the flip side of locking certain memory regions out of the cache, some applications can benefit
from explicitly locking certain memory regions into the cache. Locking cache entries prevents the
cache controller from flushing those entries when a miss occurs. A programmer may be able to lock
a portion of the processing kernel into the cache to prevent arbitrary maintenance routines from dis-
turbing the most frequently accessed sets of instructions and data.

Cache controllers perform burst transactions to main memory because of their multiword line ar-
chitecture. Whether the cache is reading a new memory block on a cache miss or writing a dirty block
back to main memory, its throughput is greatly increased by performing burst transfers rather than
reading or writing a single word at a time. Normal memory transfers are executed by presenting an ad-
dress and reading or writing a single unit of data. Each type of memory technology has its own associ-
ated latency between the address and data phases of a transaction. SRAM is characterized by very low
access latency, whereas DRAM has a higher latency. Because main memory in most systems is com-
posed of DRAM, single-unit memory transfers are inefficient, because each byte or word is penalized
by the address phase overhead. Burst transfers, however, return multiple sequential data units while
requiring only an initial address presentation, because the address specifies a starting address for a set
of memory locations. Therefore, the overhead of the address phase is amortized across many data
units, greatly increasing the efficiency of the memory system. Modern DRAM devices support burst
transfers that nicely complement the cache controllers that often coexist in the same computer system.

As a result of cache subsystems being integrated onto the same chip along with high-performance
microprocessors, the external memory interface is less a microprocessor bus and more a burst-mode
cache bus. The microprocessor needs to be able to bypass the cache controller while accessing non-
cacheable memory locations or during boot-up when peripherals such as the cache controller have
not yet been initialized. However, the external bus is often optimized for burst transfers, and absolute
efficiency or simplicity when dealing with noncacheable locations may be a secondary concern to
the manufacturer. If overall complexity can be reduced by giving up some performance in nonburst
transfers, it may be worth the trade-off, because high performance microprocessors spend relatively
little of their time accessing external memory directly. If they do, then something is wrong with the
system design, because the microprocessor’s throughput is sure to suffer.

Many microprocessors are designed to support multiple levels of caching to further improve per-
formance. In this context, the cache that is closest to the microprocessor core is termed a

level-one

-Balch.book Page 156 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 157

(L1) cache. The L1 cache is fairly small, anywhere from 2 kB to 64 kB, with its benefit being speed.
Because it is small and close to the microprocessor, it can be made to run as fast as the microproces-
sor can fetch instructions and data. Instruction and data caches are implemented at L1. Line sizes for
L1 caches vary but are often 16 or 32 bytes. The line size needs to be kept to a practical minimum to
maximize the number of unique memory blocks that can be stored in a small RAM structure.

Level two (L2) caches may reside on the same silicon chip as the microprocessor and L1 cache or
externally to the chip, depending on the implementation. L2 caches are generally unified instruction
and data caches to minimize the complexity of the interface between the L1 cache and the rest of the
system. These caches run somewhat slower than L1 but, consequently, they can be made larger:
128 kB, 256 kB, or more. Line sizes of 64 bytes and greater are common in L2 caches to increase ef-
ficiency of main memory burst transfers. Because the L2 cache has more RAM, it can expand both
the number of lines and the line size in the hope that, when the L1 cache requests a block of memory,
the next sequential block will soon be requested as well. Beyond L2, some microprocessors support
L3 and even L4 caches. Each successive level increases its latency of response to the cache above it
but adds more cache RAM (sometimes megabytes) and sometimes larger line sizes to increase burst-
mode transfer efficiency to main memory.

As core microprocessor clock frequencies commonly top several hundred megahertz, and the
most advanced microprocessors exceed 1 GHz, the bandwidth disparity between the microprocessor
and main memory increases. Cache misses impose severe penalties on throughput, because the ef-
fective clock speed of the microprocessor is essentially reduced to that of the memory subsystem
when data is fetched directly from memory. The goal of a multilevel cache structure is to substan-
tially reduce the probability of a cache miss that leads directly to main memory. If the L1 cache
misses, hopefully, the L2 cache will be ready to supply the requested data at only a moderate
throughput penalty.

Caching as a concept is not restricted to the context of microprocessors and hardware implemen-
tation. Caches are found in hard disk drives and in Internet caching products. Some high-end hard
drives implement several megabytes of RAM to prefetch data beyond that which has already been
requested. While the hard drive’s cache, possibly implemented using DRAM, is not nearly as fast as
a typical microprocessor, it is orders of magnitude faster than the drive mechanism itself. Internet
caching products routinely copy commonly accessed web sites and other data onto their hard drives
so that subsequent accesses do not have to go all the way out to the remote file server. Instead, the re-
quested data is sitting locally on a cache system. Caching is the general concept of substituting a
small local storage resource that is faster than the larger more remote resource. Caches can be ap-
plied in a wide variety of situations.

Caching gets somewhat more complex when the data that is being cached can be modified by an-
other entity outside of the cache memory. This is possible in the Internet caching application men-
tioned above or in a multiprocessor computer. Cache coherency is the subject of many research
papers and is a problem that needs to be addressed by each implementation. Simply put, how does
the Internet cache know when a web site that is currently stored has been updated? A news web site,
for example, may update its contents every few hours. In a multiprocessor context, multiple micro-
processors may have access to the same pool of shared memory. Here, the multiple cache controllers
must somehow communicate to know when memory has been modified so that the individual caches
can update themselves and maintain coherency.

Determining the optimal size of a cache so that its performance improvement merits its cost has
been the subject of much study. Cache performance is highly application dependent and, in general,
meaningful performance improvements decline after a certain size threshold, which varies by appli-
cation. A typical PC runs programs that are not very computationally intensive and that operate on
limited sets of data over short time intervals. In short, they exhibit fairly good locality properties.
Typical desktop PCs contain 256 kB of L2 cache and a smaller quantity of L1 cache. Computers that

-Balch.book Page 157 Thursday, May 15, 2003 3:46 PM

158 Advanced Digital Systems

often operate on larger sets of data or that must run many applications simultaneously may merit
larger caches to offset less optimal locality properties. Computers meant to function as computation
engines and network file servers can include several megabytes of L2 cache. Smaller embedded sys-
tems may suffice with only several kilobytes of L1 cache.

7.4 VIRTUAL MEMORY AND THE MMU

Multitasking operating systems execute multiple programs at the same time by assigning each pro-
gram a certain percentage of the microprocessor’s time and then periodically changing which in-
struction sequence is being executed. This is accomplished by a periodic timer interrupt that causes
the OS kernel to save the state of the microprocessor’s registers and then reload the registers with
preserved state from a different program. Each program runs for a while and is paused, after which
execution resumes without the program having any knowledge of having been paused. In this re-
spect, the individual programs in a multitasking environment appear to have complete control over
the computer, despite sharing the resources with others. Such a perspective makes programming for
a multitasking OS easier, because the programmer does not have to worry about the infinite permuta-
tions of other applications that may be running at any given time. A program can be written as if it is
the only application running, and the OS kernel sorts out the run-time responsibilities of making sure
that each application gets fair time to run on the microprocessor.

Aside from fair access to microprocessor time, conflicts can arise between applications that acci-
dentally modify portions of each other’s memory—either program or data. How does an application
know where to locate its data so that it will not disturb that of other applications and so that it will
not be overwritten? There is also the concern about system-wide fault tolerance. Even if not mali-
cious, programs may have bugs that cause them to crash and write data to random memory locations.
In such an instance, one errant application could bring down others or even crash the OS if it over-
writes program and data regions that belong to the OS kernel. The first problem can be addressed
with the honor system by requiring each application to dynamically request memory allocations at
run time from the kernel. The kernel can then make sure that each application is granted an exclusive
region of memory. However, the second problem of errant writes requires a hardware solution that
can physically prevent an application from accessing portions of memory that do not belong to it.

Virtual memory is a hardware enforced and software configured mechanism that provides each
application with its own private memory space that it can use arbitrarily. This virtual memory space
can be as large as the microprocessor’s addressing capability—a full 4 GB in the case of a 32-bit mi-
croprocessor. Because each application has its own exclusive virtual memory space, it can use any
portion of that space that is not otherwise restricted by the kernel. Virtual memory frees the program-
mer from having to worry about where other applications may locate their instructions or data, be-
cause applications cannot access the virtual memory spaces of others. In fact, operating systems that
support virtual memory may simplify the physical structure of programs by specifying a fixed start-
ing address for instructions, the local stack, and data. UNIX is an example of an OS that does this.
Each application has its instructions, stack, and data at the same virtual addresses, because they have
separate virtual memory spaces that are mutually exclusive and, therefore, not subject to conflict.

Clearly, multiple programs cannot place different data at the same address or each simultaneously
occupy the microprocessor’s entire address space. The OS kernel configures a hardware memory
management unit (MMU) to map each program’s virtual addresses into unique physical addresses
that correspond to actual main memory. Each unique virtual memory space is broken into many
small pages that are often in the range of 2 to 16 kB in size (4 kB is a common page size). The OS
and MMU refer to each virtual memory space with a process ID (PID) field. Virtual memory is han-

-Balch.book Page 158 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 159

dled on a process basis rather than an application basis, because it is possible for an application to
consist of multiple semi-independent processes. The high-order address bits referenced by each in-
struction form the virtual page number (VPN). The PID and VPN are combined to uniquely map to
a physical address set aside by the kernel as shown in Fig. 7.5. Low-order address bits represent off-
sets that directly index into mapped pages in physical memory. The mapping of virtual memory
pages into physical memory is assigned arbitrarily by the OS kernel. The kernel runs in real memory
rather than in virtual memory so that it can have direct access to the computer’s physical resources to
allocate memory as individual processes are executed and then terminated.

Despite each process having a 4-GB address space, virtual memory can work on computers with
just megabytes of memory, because the huge virtual address spaces are sparsely populated. Most
processes use only a few hundred kilobytes to a few megabytes of memory and, therefore, multiple
processes that collectively have the potential to reference tens of gigabytes can be mapped into a
much smaller quantity of real memory. If too many processes are running simultaneously, or if these
processes start to consume too much memory, a computer can exhaust its physical memory re-
sources, thereby requiring some intervention from the kernel to either suspend a process or handle
the problem in some other way.

When a process is initiated, or spawned, it is assigned a PID and given its own virtual memory
space. Some initial pages are allocated to hold its instructions and whatever data memory the pro-
cess needs available when it begins. During execution, processes may request more memory from
the kernel by calling predefined kernel memory management routines. The kernel will respond by
allocating a page in physical memory and then returning a pointer to that page’s virtual mapping.
Likewise, a process can free a memory region when it no longer needs it. Under this circumstance,
the kernel will remove the mapping for the particular pages, enabling them to be reallocated to an-
other process, or the same process, at a later time. Therefore, the state of memory in a typical multi-
tasking OS is quite dynamic, and the routines to manage memory must be implemented in software
because of their complexity and variability according to the platform and the nature of processes
running at any given time.

Not all mapped virtual memory pages have to be held in physical RAM at the same time. Instead,
the total virtual memory allocation on a computer can spill over into a secondary storage medium
such as a hard drive. The hard drive will be much slower than DRAM, but not every memory page in
every process is used at the same time. When a process is first loaded, its entire instruction image is
typically loaded into virtual memory. However, it will take some time for all of those instructions to
reach their turn in the execution sequence. During this wait time, the majority of a process’s program

PID1

4-GB Virtual
Address Space

PID2

unused
pages

unused
pages

4-GB Physical
Address Space

4-GB Virtual
Address Space

unused
memory

kernel

FIGURE 7.5 32-bit virtual memory mapping.

-Balch.book Page 159 Thursday, May 15, 2003 3:46 PM

160 Advanced Digital Systems

memory can be stored on the hard drive without incurring a performance penalty. When those in-
structions are ready to be executed, the OS kernel will have to transfer the data into physical mem-
ory. This slows the system down but makes it more flexible without requiring huge quantities of
DRAM. Part of the kernel’s memory management function is to decide which virtual pages should
be held in DRAM and which should be swapped out to the disk. Pages that have not been used for a
while can be swapped out to make room for new pages that are currently needed. If a process subse-
quently accesses a page that has been moved to the disk, that page can be swapped back into DRAM
to replace another page that is not needed at the time. A computer with 256 MB of DRAM could, for
example, have a 512-MB swap file on its hard drive, enabling processes to share a combined
768 MB of used virtual memory.

This scheme of expanding virtual memory onto a disk effectively turns the computer’s DRAM
into a large cache for an even larger disk-based memory. As with all caches, certain behavioral char-
acteristics exist. A virtual memory page that is not present in DRAM is effectively a cache miss
with a large penalty, because hard disks are much slower than DRAM. Such misses are called page
faults. The MMU detects that the requested virtual memory address from a particular PID is not
present in DRAM and causes an exception that must be handled by the OS kernel. Instead of per-
forming a cache line fill and flush, it is the kernel’s responsibility to swap pages to and from the
disk. For a virtual memory system to function with reasonable performance, the working set of
memory across all the processes running should be able to fit into the computer’s physical memory.
The working set includes any instructions and data that are accessed within a local time interval.
This is directly analogous to a microprocessor cache’s exploitation of locality. Processes with good
locality characteristics will do well in a cache and in a virtual memory system. Processes with poor
locality may result in thrashing as many sequential page faults are caused by random accesses
throughout a large virtual memory space.

The virtual to physical address mapping process is guided by the kernel using a page table,
which can take various forms but must somehow map each PID/VPN combination to either a phys-
ical memory page or one located on the disk drive’s swap area. Virtual page mapping is illustrated
in Fig. 7.6, assuming 4-kB pages, a 32-bit address space, and an 8-bit PID. In addition to basic map-
ping information, the page table also contains status information, including a dirty bit that indicates
when a page held in memory has been modified. If modified, the page must be saved to the disk be-
fore being flushed to make room for a new virtual page. Otherwise, the page can be flushed without
further action.

Given a 4-kB page size and a 32-bit address space, each process has access to 220 = 1,048,576
pages. With 256 PIDs, a brute-force page table would contain more than 268 million entries! There
are a variety of schemes to reduce page table size, but there is no escaping the fact that a page table

A[31:12] A[11:0]

VPN Offset

PID[7:0]

Page Table

A[31:12]

Physical Page Address

A[11:0]

Offset

FIGURE 7.6 Virtual page mapping.

-Balch.book Page 160 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 161

will be large. Page table management schemes are largely an issue of OS architecture and are out-
side the scope of this discussion. The fact that the page table is large and is parsed by software
means that the mapping process will be extremely slow without hardware assistance. Every access to
virtual memory, in other words almost every access performed on the computer, requires mapping,
which makes hardware acceleration critical to the viability of virtual memory.

Within the MMU is a translation lookaside buffer (TLB), a small, fully associative cache that al-
lows the MMU to rapidly locate recently accessed virtual page mappings. Typical sizes for a TLB
are just 16 to 64 entries because of the complexity of implementing a fast fully associative cache.
When a process is first spawned, it has not yet performed virtual memory accesses, so its first access
will result in a TLB miss. When a TLB miss occurs, an exception is generated that invokes the ker-
nel’s memory management routine to parse the page table in search of the correct physical address
mapping. The kernel routine loads a TLB entry with the mapping information and exits. On subse-
quent memory accesses, the TLB will hit some and miss some. It is hoped that the ratio of hits to
misses will decline rapidly as the process executes. Once again, locality of reference is key to a well
performing application, but the TLB and MMU are not as sensitive to locality as a normal cache, be-
cause they map multiple-kilobyte pages rather than 16 or 32 byte lines. Yet, as more processes ac-
tively vie for resources in a multitasking system, they may begin to fight each other for scarce TLB
entries. The resources and architecture of a computer must be properly matched to its intended appli-
cation. A typical desktop or embedded computer may get along fine with a small TLB, because it
may not have many demanding processes running concurrently. A more powerful computer de-
signed to simultaneously run many memory-intensive processes may require a larger TLB to take
full advantage of its microprocessor and memory resources. The ever-present trade-off between per-
formance and cost does not go away!

The TLB is usually located between the microprocessor and its cache subsystem as shown in Fig.
7.7, such that physical addresses are cached rather than virtual addresses. Such an arrangement adds
latency to microprocessor transactions, because the virtual-to-physical mapping must take place be-
fore the L1 cache can respond. A TLB can be made very fast because of its small size, thereby limit-
ing its time penalty on transactions. Additionally, microprocessors may implement a pipelined
interface where addresses are presented each clock cycle, but their associated data are returned one
or more clock cycles later, providing time for the TLB lookup.

7.5 SUPERPIPELINED AND SUPERSCALAR ARCHITECTURES

At any given time, semiconductor process technology presents an intrinsic limitation on how fast a
logic gate can switch on and off and at what frequency a flip-flop can run. Other than relying on
semiconductor process advances to improve microprocessor and system throughput, certain basic
techniques have been devised to extract more processing power from silicon with limited switching

Address

Physical
PagePID/VPN

MPU
L2 Cache/

DRAM

MMU

TLB
TLB Miss L1 Cache

Page Offset

FIGURE 7.7 Location of TLB.

-Balch.book Page 161 Thursday, May 15, 2003 3:46 PM

162 Advanced Digital Systems

delays. Throughput can be enhanced in a serial manner by trying to execute a desired function faster.
If each function is executed at a faster clock frequency, more functions can be executed in a given
time period. An alternative parallel approach can be taken whereby multiple functions are executed
simultaneously, thereby improving performance over time. These two approaches can be comple-
mentary in practice. Different logic implementations make use of serial and parallel enhancement
techniques in the proportions and manners that are best suited to the application at hand.

A logic function is represented by a set of Boolean equations that are then implemented as dis-
crete gates. During one clock cycle, the inputs to the equations are presented to a collection of gates
via a set of input flops, and the results are clocked into output flops on the next rising edge. The
propagation delays of the gates and their interconnecting wires largely determine the shortest clock
period at which the logic function can reliably operate.

Pipelining, called superpipelining when taken to an extreme, is a classic serial throughput en-
hancement technique. Pipelining is the process of breaking a Boolean equation into several smaller
equations and then calculating the partial results during sequential clock cycles. Smaller equations
require fewer gates, which have a shorter total propagation delay relative to the complete equation.
The shorter propagation delay enables the logic to run faster. Instead of calculating the complete re-
sult in a single 40 ns cycle, for example, the result may be calculated in four successive cycles of
10 ns each. At first glance, it may not seem that anything has been gained, because the calculation
still takes 40 ns to complete. The power of pipelining is that different stages in the pipeline are oper-
ating on different calculations each cycle. Using an example of an adder that is pipelined across four
cycles, partial sums are calculated at each stage and then passed to the next stage. Once a partial sum
is passed to the next stage, the current stage is free to calculate the partial sum of a completely new
addition operation. Therefore, a four-stage pipelined adder takes four cycles to produce a result, but
it can work on four separate calculations simultaneously, yielding an average throughput of one cal-
culation every cycle—a four-times throughput improvement.

Pipelining does not come for free, because additional logic must be created to handle the com-
plexity of tracking partial results and merging them into successively more complete results. Pipelin-
ing a 32-bit unsigned integer adder can be done as shown in Fig. 7.8 by adding eight bits at a time
and then passing the eight-bit sum and carry bit up to the next stage. From a Boolean equation per-
spective, each stage only incurs the complexity of an 8-bit adder instead of a 32-bit adder, enabling it
to run faster. An array of pipeline registers is necessary to hold the partial sums that have been calcu-
lated by previous stages and the as-yet-to-be-calculated portions of the operands. The addition re-
sults ripple through the pipeline on each rising clock edge and are accumulated into a final 32-bit
result as operand bytes are consumed by the adders. There is no feedback in this pipelined adder,
meaning that, once a set of operands passes through a stage, that stage no longer has any involve-
ment in the operation and can be reused to begin or continue a new operation.

Pipelining increases the overall throughput of a logic block but does not usually decrease the cal-
culation latency. High-performance microprocessors often take advantage of pipelining to varying
degrees. Some microprocessors implement superpipelining whereby a simple RISC instruction may
have a latency of a dozen or more clock cycles. This high degree of pipelining allows the micropro-
cessor to execute an average of one instruction each clock cycle, which becomes very powerful at
operating frequencies measured in hundreds of megahertz and beyond.

Superpipelining a microprocessor introduces complexities that arise from the interactions be-
tween consecutive instructions. One instruction may contain an operand that is calculated by the pre-
vious instruction. If not handled correctly, this common circumstance can result in the wrong value
being used in a subsequent instruction or a loss of performance where the pipeline is frequently
stalled to allow one instruction to complete before continuing with others. Branches can also cause
havoc with a superpipelined architecture, because the decision to take a conditional branch may nul-
lify the few instructions that have already been loaded into the pipeline and partially executed. De-

-Balch.book Page 162 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 163

pending on how the microprocessor is designed, various state information that has already been
modified by these partially executed instructions may have to be rolled back as if the instructions
were never fetched. Branches can therefore cause the pipeline to be flushed, reducing the throughput
of the microprocessor, because there will be a gap in time during which new instructions advance
through the pipeline stages and finally emerge at the output.

Traditional microprocessor architecture specifies that instructions are executed serially in the or-
der explicitly defined by the programmer. Microprocessor designers have long observed that, within
a given sequence of instructions, small sets of instructions can be executed in parallel without chang-
ing the result that would be obtained had they been executed in the traditional serial manner. Super-
scalar microprocessor architecture has emerged as a means to execute multiple instructions
simultaneously within a single microprocessor that is operating on a normal sequence of instruc-
tions. A superscalar architecture contains multiple independent execution units, some of which may
be identical, that are organized and replicated according to statistical studies of which instructions
are executed more often and how easily they can be made parallel without excessive restrictions and
dependencies. Arithmetic execution units are prime targets for replication, because calculations with
floating-point numbers and large integers require substantial logic and time to fully complete. A su-
perscalar microprocessor may contain two integer ALUs and separate FPUs for floating-point addi-
tion and multiplication operations. Floating-point operations are the most complex instructions that
many microprocessors execute, and they tend to have long latencies. Most floating-point applica-
tions contain a mix of addition and multiplication operations, making them well suited to an archi-
tecture with individual FPUs that each specialize in one type of operation.

32-Bit
Operand

"A"

D[31:24]

32-Bit
Operand

"A"

D[23:16]

D[15:8]

D[7:0]

D[7:0]

D[31:24]

D[23:16]

D[15:8]

Q[31:24]

Q[23:16]

Q[15:8]

Q[7:0]

CARRY

8-Bit
Register

8-Bit
Adder

COUT

SUM

CIN

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

8-Bit
Register

Stage 1 Stage 2 Stage 3 Stage 4

8-Bit
Adder

COUT

SUM

CIN

8-Bit
Adder

COUT

SUM

8-Bit
Adder

COUT

SUM

CIN

FIGURE 7.8 Four-stage pipelined adder.

-Balch.book Page 163 Thursday, May 15, 2003 3:46 PM

164 Advanced Digital Systems

Managing parallel execution units in a superscalar microprocessor is a complex task, because the
microprocessor wants to execute instructions as fast as they can be fetched—yet it must do so in a
manner consistent with the instructions’ serial interdependencies. These dependencies can become
more complicated to resolve when superscalar and superpipelining techniques are combined to cre-
ate a microprocessor with multiple execution units, each of which is implemented with a deep pipe-
line. In such chips, the instruction decode logic handles the complex task of examining the pipelines
of the execution units to determine when the next instruction is free of dependencies, allowing it to
begin execution.

Related to superpipelining and superscalar methods are the techniques of branch prediction, specu-
lative execution, and instruction reordering. Deep pipelines are subject to performance-degrading
flushes each time a branch instruction comes along. To reduce the frequency of pipeline flushes due to
branch instructions, some microprocessors incorporate branch prediction logic that attempts to make a
preliminary guess as to whether the branch will be taken. These guesses are made based on the history
of previous branches. The exact algorithms that perform branch prediction vary by implementation
and are not always disclosed by the manufacturer, to protect their trade secrets. When the branch pre-
diction logic makes its guess, the instruction fetch and decode logic can speculatively execute the in-
struction stream that corresponds to the predicted branch result. If the prediction logic is correct, a
costly pipeline flush is avoided. If the prediction is wrong, performance will temporarily degrade until
the pipeline can be restarted. Hopefully, a given branch prediction algorithm improves performance
rather than degrading it by having a worse record than would exist with no prediction at all!

The problem with branch prediction is that it is sometimes wrong, and the microprocessor must
back out of any state changes that have resulted from an incorrectly predicted branch. Speculative
execution can be taken a step farther in an attempt to eliminate the penalty of a wrong branch predic-
tion by executing both possible branch results. To do this, a superscalar architecture is needed that
has enough execution units to speculatively execute extra instructions whose results may not be
used. It is a foregone conclusion that one of the branch results will not be valid. There is substantial
complexity involved in such an approach because of the duplicate hardware that must be managed
and the need to rapidly swap to the correct instruction stream that is already in progress when the re-
sult of a branch is finally known.

A superscalar microprocessor will not always be able to keep each of its execution units busy, be-
cause of dependencies across sequential instructions. In such a case, the next instruction to be
pushed into the execution pipeline must be held until an in-progress instruction completes. Instruc-
tion reordering logic reduces the penalty of such instruction stalls by attempting to execute instruc-
tions outside the order in which they appear in the program. The microprocessor can prefetch a set of
instructions ahead of those currently executing, enabling it to look ahead in the sequence and deter-
mine whether a later instruction can be safely executed without changing the behavior of the instruc-
tion stream. For such reordering to occur, an instruction must not have any dependencies on those
that are being temporarily skipped over. Such dependencies include not only operands but branch
possibilities as well. Reordering can occur in a situation in which the ALUs are busy calculating re-
sults that are to be used by the next instruction in the sequence, and their latencies are preventing the
next instruction from being issued. A load operation that is immediately behind the stalled instruc-
tion can be executed out of order if it does not operate on any registers that are being used by the in-
structions ahead of it. Such reordering boosts throughput by taking advantage of otherwise idle
execution cycles.

All of the aforementioned throughput improvement techniques come at a cost of increased design
complexity and cost. However, it has been widely noted that the cost of a transistor on an IC is asymp-
totically approaching zero as tens of millions of transistors are squeezed onto chips that cost only sev-
eral hundred dollars. Once designed, the cost of implementing deep pipelines, multiple execution
units, and the complex logic that coordinates the actions of both continues to decrease over time.

-Balch.book Page 164 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 165

7.6 FLOATING-POINT ARITHMETIC

Conventional arithmetic logic units operate on signed and unsigned integer quantities. Integers suf-
fice for many applications, including loop count variables and memory addresses. However, our
world is inherently analog and is best represented by real numbers as compared to discrete integers.
Floating-point arithmetic enables the representation and manipulation of real numbers of arbitrary
magnitude and precision. Historically, floating-point math was pertinent only to members of the sci-
entific community who regularly perform calculations on large data sets to model many types of nat-
ural phenomena. Almost every area of scientific research has benefited from computational analysis,
including aerodynamics, geology, medicine, and meteorology. More recently, floating-point math
has become more applicable to the mainstream community in such applications as video games that
render realistic three-dimensional scenes in real-time as game characters move around in virtual en-
vironments.

General mathematics represents numbers of arbitrary magnitude and precision using scientific no-
tation, consisting of a signed mantissa multiplied by an integer power of ten. The mantissa is greater
than or equal to one and less than ten. In other words, the decimal point of the mantissa is shifted left
or right until a single digit remains in the 1s column. The number 456.8 would be represented as
4.568 × 102 in scientific notation. All significant digits other than the first one are located to the right
of the decimal point. The number –0.000089 has only two significant digits and is represented as
–8.9 × 10–5. Scientific notation enables succinct and accurate representation of very large and very
small numbers.

Floating-point arithmetic on a computer uses a format very similar to scientific notation, but bi-
nary is used in place of decimal representation. The Institute of Electrical and Electronics Engineers
(IEEE) has standardized floating-point representation in several formats to express numbers of in-
creasing magnitude and precision. These formats are used by most hardware and software imple-
mentations of floating-point arithmetic for the sake of compatibility and consistency. Figure 7.9
shows the general structure of an IEEE floating point number.

The most significant bit is defined as a sign bit where zero is positive and one is negative. The
sign bit is followed by an n-bit exponent with values from 1 to 2n – 2 (the minimum and maximum
values for the exponent field are not supported for normal numbers). The exponent represents pow-
ers of two and can represent negative exponents by means of an exponent bias. The bias is a fixed,
standardized value that is subtracted from the actual exponent field to yield the true exponent value.
It is generally 2(n–1) – 1. Following the exponent is the binary significand, which is a mantissa or
modified mantissa. Similar to scientific notation, the mantissa is a number greater than or equal to 1
and less than the radix (2, in this case). Therefore, the whole number portion of the binary mantissa
must be 1. Some IEEE floating-point formats hide this known bit and use a modified mantissa to
provide an additional bit of precision in the fractional portion of the mantissa. Table 7.5 lists the ba-
sic parameters of the four commonly used floating-point formats. The IEEE-754 standard defines
several formats including single and double precision. The extended and quadruple precision for-
mats are not explicitly mentioned in the standard, but they are legal derivations from formats that
provide for increased precision and exponent ranges.

It is best to use a single-precision example to see how floating-point representation actually
works. The decimal number 25.25 is first converted to its binary equivalent: 11001.01. The mantissa
and exponent are found by shifting the binary point four places to the left to yield 1.100101 × 24. Us-

Sign Exponent Modified Mantissa

FIGURE 7.9 General IEEE floating-point structure.

-Balch.book Page 165 Thursday, May 15, 2003 3:46 PM

166 Advanced Digital Systems

ing the single-precision format, the exponent field is calculated by adding the true exponent value to
the bias, 127, to get a final value of 131. Expressing these fields in a 32-bit word yields the floating
point value 0x41CA0000 as shown in Fig. 7.10.

Note that the sign bit is 0 and that the mantissa’s MSB has been omitted. This example is conve-
nient, because the binary representation of 25.25 is finite. However, certain numbers that have finite
representations in decimal cannot be represented as cleanly in binary, and vice versa. The number
0.23 clearly has a finite decimal representation but, when converted to binary, it must be truncated at
whatever precision limitation is imposed by the floating-point format in use. The number 0.23 can be
converted to a binary fraction by factoring out successive negative powers of 2 and expressing the re-
sult with 24 significant figures (leading 0s do not count), because the single precision format sup-
ports a 24-bit mantissa,

0.0011_1010_1110_0001_0100_0111_11

This fraction is then converted to a mantissa and power-of-two representation,

1.1101_0111_0000_1010_0011_111 × 2–3

A single-precision floating-point exponent value is obtained by adding the bias, 127+(–3) = 124, for
a final representation of

0011_1110_0110_1011_1000_0101_0001_1111 (0x3E6B851F)

These conversions are shown only to explain the IEEE formats and almost never need to be done
by hand. Floating-point processing is performed either by dedicated hardware or software algo-
rithms. Most modern high-performance microprocessors contain on-chip floating-point units
(FPUs), and their performance is measured in floating-point operations per second (FLOPS). High-
end microprocessors can deliver several gigaFLOPS (GFLOPS) of throughput on benchmark tests.
Computers without hardware FPUs must emulate floating-point processing in software, which can
be a relatively slow process. However, if a computer needs to perform only a few hundred floating-
point operations per second, it may be worth saving the cost and space of a dedicated hardware FPU.

TABLE 7.5 IEEE/Industry Floating-Point Formats

Format
Total
Bits

Exponent
Bits

Exponent
Bias

Smallest
Exponent

Largest
Exponent

Significant
Bits

Mantissa
MSB

Single precision 32 8 127 –126 +127 23 Hidden

Double precision 64 11 1,023 –1022 +1023 52 Hidden

Extended precision 80 15 16,383 –16382 +16383 64 Explicit

Quadruple precision 128 15 16,383 –16382 +16383 112 Hidden

0100 0001 1100 1010 0000 0000 0000 0000

Exponent Modified Mantissa

Sign

FIGURE 7.10 Single-precision floating-point expression of 25.25.

-Balch.book Page 166 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 167

As can be readily observed from Table 7.5, very large and very small numbers can be represented
because of the wide ranges of exponents provided in the various formats. However, the representa-
tion of 0 seems rather elusive with the requirement that the mantissa always have a leading 1. Values
including 0 and infinity are represented by using the two-exponent values that are not supported for
normal numbers: 0 and 2n – 1. In the case of the single-precision format, these values are 0x00 and
0xFF.

An exponent field of 0x00 is used to represent numbers of very small magnitude, where the inter-
preted exponent value is fixed at the minimum for that format: –126 for single precision. With a 0
exponent field, the mantissa’s definition changes to a number greater than or equal to 0 and less than
1. Smaller numbers can now be represented, though with decreasing significant figures, because
magnitude is now partially represented by the significand field. For example, 101 × 2–130 is ex-
pressed as 0.0101 × 2–126. Such special-case numbers are denormalized, because their mantissas
defy the normalized form of being greater than or equal to 1 and less than 2. Zero can now be ex-
pressed by setting the significand to 0 with the result that 0 × 2–126 = 0. The presence of the sign bit
produces two representations of zero, positive and negative, that are mathematically identical.

Setting the exponent field to 0xFF (in single precision) is used to represent either infinity or an
undefined value. Positive and negative infinity are represented by setting the significand field to 0
and using the appropriate sign bit. When the exponent field is 0xFF and the significand field is non-
zero, the representation is “not a number,” or NaN. Examples of computations that may return NaN
are 0 ÷ 0 and ∞ ÷ ∞.

7.7 DIGITAL SIGNAL PROCESSORS

Microprocessor architectures can be optimized for increased efficiency in certain applications
through the inclusion of special instructions and execution units. One major class of application-spe-
cific microprocessors is the digital signal processor, or DSP. DSP entails a microprocessor mathe-
matically manipulating a sampled analog signal in a way that emulates transformation of that signal
by discrete analog components such as filters or amplifiers. To operate on an analog signal digitally,
the analog signal must be sampled by an analog-to-digital converter, manipulated, and then recon-
structed with a digital-to-analog converter. A rough equivalency of digital signal processing versus
conventional analog transformation is shown in Fig. 7.11 in the context of a simple filter.

Analog Filter

Analog
Input Signal

Analog
Output Signal

Analog to
Digital

Converter
DSP

Digital to
Analog

Converter

Digital
Samples

Digital
Samples

Analog
Input Signal

Analog
Output Signal

FIGURE 7.11 Digital signal processing.

-Balch.book Page 167 Thursday, May 15, 2003 3:46 PM

168 Advanced Digital Systems

In this example of a lowpass filter (the amplitude of frequencies above a certain threshold are at-
tenuated), the complexity of digital sampling and a microprocessor appears unjustified. The power
of DSP comes when much more complex analog transformations are performed that would require
excessively complex analog circuit topologies. Some examples of applications in which DSPs are
used include modems, cellular telephones, and radar. While sensitive analog circuits may degrade or
fall out of calibration over time, digital instructions and sequences maintain their integrity indefi-
nitely. Major manufacturers of DSPs include Analog Devices, Motorola, and Texas Instruments.
Many books have been written on DSP algorithms and techniques, which are extremely diverse and
challenging topics.

DSP algorithms are characterized by repetitive multiplication and addition operations carried out
on the sampled data set. Multiply and addition operations are also known as multiply and accumu-
late, or MAC, operations in DSP parlance. These calculations involve the sampled data as well as
coefficients that, along with the specific operations, define the transformation being performed. For
DSP to be practical, it must be performed in real time, because the signals cannot be paused while
waiting for the microprocessor to finish its previous operation. For DSP to be economical, this
throughput must be achieved at an acceptable cost. A general-purpose microprocessor can be used to
perform DSP functions, but in most cases, the solution will not be economical. This is because the
microprocessor is designed to execute general programs for which there is less emphasis on specific
types of calculations. A DSP is designed specifically to rapidly execute multiply and accumulate op-
erations, and it contains additional hardware to efficiently fetch sequential operands from tables in
memory. Not all of the features discussed below are implemented by all DSPs, but they are pre-
sented to provide an understanding of the overall set of characteristics that differentiates a DSP from
a generic microprocessor.

At their core, DSPs contain one or more ALUs that are capable of multiplication and addition in a
single cycle. This rapid calculation capability ensures that throughput can be maintained as long as
operands are fed to the ALUs. DSPs are manufactured with a variety of ALU capabilities ranging
from 16-bit integer to IEEE floating-point support. As with a generic microprocessor, the number of
ALUs influences how many simultaneous operations can be carried out at a given time. To keep the
ALUs supplied with operands, DSPs contain hardware structures called address generators that au-
tomatically calculate the addresses of the next operands to be used in a calculation. Sampled data is
stored in a memory array, and algorithmic coefficients are stored in a separate array. Depending on
the algorithm, the array entries may not be accessed sequentially. On a generic microprocessor, the
software would have to add an arbitrary offset value to an index register each time a new operand
was desired. Additionally, as a result of fixed array sizes, the pointer eventually wraps around from
the end to the beginning, thereby requiring additional instructions to check for the wrap condition.
This index register overhead slows the computation process. Address generators offload this over-
head to hardware by associating additional registers with the index registers. These registers define
the increment to be applied to an index register following a load or store operation and also define
the start and end addresses of the memory array. Therefore, software is able to execute load/store
and calculation operations without spending time on routine pointer arithmetic.

The specialized ALU and address generation hardware within the DSP core place a high demand
on memory to maintain a steady flow of instructions and data. DSPs commonly implement a Har-
vard memory architecture in which separate buses connect to program and data memory. Most DSPs
contain separate program and data memory structures integrated onto the same chip as the DSP core
for minimal access latency to small repetitive DSP algorithm kernels. Program memory may be im-
plemented as ROM or RAM, depending on whether an external interface is available from which to
load programs. These on-chip memories may be as small as several kilobytes each for less expensive
DSPs or hundreds of kilobytes for more powerful products. To mitigate the complexity of a Harvard
architecture on the overall system design, most DSPs contain a unified external memory bus for con-

-Balch.book Page 168 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 169

nection to external ROM and RAM. A DSP application can boot from external ROM, then load its
kernel into on-chip program memory and perform the majority of its execution without fetching ad-
ditional instructions from external memory.

7.8 PERFORMANCE METRICS

Evaluating the throughput potential of a microprocessor or a complete computer is not as simple as
finding out how fast the microprocessor’s clock runs. System performance varies widely according
to the applications being used and the computing hardware on which they run. Applications vary
widely in their memory and I/O usage, both being properties whose performance is directly tied to
the hardware architecture. We can consider three general sections of a computer and how each influ-
ences the speed at which an application is executed: the microprocessor, the memory system, and the
I/O resources.

The usable address space of a microprocessor is an important consideration, because applications
vary in their memory needs. Some embedded applications can fit into several kilobytes of memory,
making an 8-bit computer with 64 kB or less of address space quite adequate. More complex embed-
ded applications start to look like applications that run on desktop computers. If large data arrays are
called for, or if a multitasking system is envisioned whereby multiple tasks each contain megabytes
of program memory and high-level data structures, a 32-bit microprocessor with hundreds of mega-
bytes of usable address space may be necessary. At the very high end, microprocessors have transi-
tioned to 64-bit architectures with gigabytes of directly addressable memory. A microprocessor’s
address space can always be expanded externally by banking methods, but banking comes at a pen-
alty of increased time to switch banks and the complexity of making an application aware of the
banking scheme.

Any basic type of application can run on almost any microprocessor. The question is how fast and
efficiently a particular microprocessor is able to handle the application. The instruction set is an im-
portant attribute that should be considered when designing a computer system. If a floating-point in-
tensive application is envisioned, it should probably be run on a microprocessor that contains an
FPU, and the number of floating-point execution units and their execution latencies is an important
attribute to investigate. An integer-only microprocessor could most likely run the floating-point ap-
plication by performing software emulation of floating-point operations, but its performance would
probably be rather dismal. For smaller-scale computers and applications, these types of questions are
still valid. If an application needs to perform frequent bit manipulations for testing and setting vari-
ous flags, a microprocessor that directly supports bit manipulation may be better suited than a ge-
neric architecture with only logical AND/OR type instructions.

Once a suitable instruction set has been identified, a microprocessor’s ability to actually fetch and
execute the instructions can become an important part of system performance. On smaller systems,
there are few variables in instruction fetch and execution: each instruction is fetched and executed
sequentially. Superscalar microprocessors, however, must include effective instruction analysis logic
to properly utilize all the extra logic that has been put onto the chip and that you are paying for. If the
multiple execution units cannot be kept busy enough of the time, your application will not enjoy the
benchmark performance claims of the manufacturer. Vendors of high-performance microprocessors
devote much time to instruction profiling and analysis of instruction sequences. Their results im-
prove performance on most applications, but there are always a few niche applications that have un-
common properties that can cause certain microprocessors to fall off in performance. It pays to keep
in mind that common industry benchmarks of microprocessor performance do not always tell the
whole story. These tests have been around for a long time, and microprocessor designers have

-Balch.book Page 169 Thursday, May 15, 2003 3:46 PM

170 Advanced Digital Systems

learned how to optimize their hardware to perform well on the standard benchmarks. An application
that behaves substantially differently from a benchmark test may not show the same level of perfor-
mance as advertised by the manufacturer.

The microprocessor’s memory interface is a critical contributor to its performance. Whether a
small 8-bit microprocessor or a 64-bit behemoth, the speed with which instructions can be fetched
and data can be loaded and stored affects the execution time of an application. The necessary band-
width of a memory interface is relative and is proportional to the sum of the instruction and data
bandwidths of an application. From the instruction perspective, it is clear that the microprocessor
needs to keep itself busy with a steady stream of instructions. Data bandwidth, however, is very
much a function of the application. Some applications may perform frequent load/store operations,
whereas others may operate more on data retained within the microprocessor’s register set. To the
extent that load/store operations detract from the microprocessor’s ability to fetch and execute new
instructions, they will reduce overall throughput.

Clock frequency becomes a defining attribute of a microprocessor once its instruction set, exe-
cution capabilities, and memory interface are understood from a performance perspective. Without
these supporting attributes, clock speed alone does not define the capabilities of a microprocessor.
A 500-MHz single-issue, or nonsuperscalar, microprocessor could be easily outperformed by a
200-MHz four-issue superscalar design. Additionally, there may be multiple relevant clocks to con-
sider in a complex microprocessor. Microprocessors whose internal processing cores are decoupled
from the external memory bus by an integrated cache are often specified with at least two clocks:
the core clock and the bus interface clock. It is necessary to understand the effect of both clocks on
the processing core’s throughput. A fast core can be potentially starved for instructions and data by
a slow interface. Once a microprocessor’s resources have been quantified, clock frequency be-
comes a multiplier to determine how many useful operations per second can be expected. Metrics
such as instructions per second (IPS) or floating-point operations per second (FLOPS) are specified
by multiplying the average number of instructions executed per cycle by how many cycles occur
each second. Whereas high-end microprocessors were once measured in MIPS and MFLOPS,
GIPS and GFLOPS performance levels are now attainable.

As already mentioned, memory bandwidth and, consequently, memory architecture hold key
roles in determining overall system performance. Memory system architecture encompasses all
memory external to the microprocessor’s core, including any integrated caches that it may contain.
When dealing with an older-style microprocessor with a memory interface that does not stress cur-
rent memory technologies, memory architecture may not be subject to much variability and may not
be a bottleneck at all. It is not hard to find flash, EPROM, and SRAM devices today with access
times of 50 ns and under. A moderately sized memory array constructed from these components
could provide an embedded microprocessor with full-speed random access as long as the memory
transaction rate is 20 MHz or less. Many 8-, 16-, and even some 32-bit embedded microprocessors
can fit comfortably within this performance window. As such, computers based on these devices can
have simple memory architectures without suffering performance degradation.

Memory architecture starts to get more complicated when higher levels of performance are de-
sired. Once the microprocessor’s program and data fetch latency becomes faster than main mem-
ory’s random access latency, caching and bandwidth improvement techniques become critical to
sustaining system throughput. Random access latency is the main concern. A large memory array
can be made to deliver adequate bandwidth given a sufficient width. As a result of the limited operat-
ing frequency of SDRAM devices, high-end workstation computers have been known to connect
multiple memory chips in parallel to create 256-bit and even 512-bit wide interfaces. Using 512 Mb
DDR SDRAMs, each organized as 32M × 16 and running at 167 MHz, 16 devices in parallel would
yield a 1-GB memory array with a burst bandwidth of 167 MHz × 2 words/hertz × 256 bits/word =
85.5 Gbps! This is a lot of bandwidth, but relative to a microprocessor core that operates at 1 GHz or

-Balch.book Page 170 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 171

more with a 32- or 64-bit data path, such a seemingly powerful memory array may just barely be
able to keep up.

While bandwidth can be increased by widening the interface, random access latency does not go
away. Therefore, there is more to a memory array than its raw size. The bandwidth of the array,
which is the product of its interface frequency and width, and its latency are important metrics in un-
derstanding the impact of cache misses, especially when dealing with applications that exhibit poor
locality.

Caching reduces the negative effect of high random access latencies on a microprocessor’s
throughput. However, caches and wide arrays cannot completely balance the inequality between the
bandwidth and latency that the microprocessor demands and that which is provided by SDRAM tech-
nology. Cache size, type, and latency and main memory bandwidth are therefore important metrics
that contribute to overall system performance. An application’s memory characteristics determine
how costly a memory architecture is necessary to maintain adequate performance. Applications that
operate on smaller sets of data with higher degrees of locality will be less reliant on a large cache and
fast memory array, because they will have fewer cache misses. Those applications with opposite
memory characteristics will increase the memory architecture’s effect on the computer’s overall per-
formance. In fact, by the nature of the application being run, caching effects can become more signif-
icant than the microprocessor’s core clock frequency. In some situations, a 500-MHz microprocessor
with a 2-MB cache can outperform a 1-GHz microprocessor with a 256-kB cache. It is important to
understand these considerations because money may be better spent on either a faster microprocessor
or a larger cache according to the needs of the intended applications.

I/O performance affects system throughput in two ways: the latency of executing transactions and
the degree to which such execution blocks the microprocessor from performing other work. In a
computer in which the microprocessor operates with a substantially higher bandwidth than individ-
ual I/O interfaces, it is desirable to decouple the microprocessor from the slower interface as much
as possible. Most I/O controllers provide a natural degree of decoupling. A typical UART, for exam-
ple, absorbs one or more bytes in rapid succession from a microprocessor and then transmits them at
a slower serial rate. Likewise, the UART assembles one or more whole incoming bytes that the mi-
croprocessor can read at an instantaneous bandwidth much higher than the serial rate. Network and
disk adapters often contain buffers of several kilobytes that can be rapidly filled or drained by the
microprocessor. The microprocessor can then continue with program execution while the adapter
logic handles the data at whatever lower bandwidth is inherent to the physical interface.

Inherent decoupling provided by an I/O controller is sufficient for many applications. When deal-
ing with very I/O-intensive applications, such as a large server, multiple I/O controllers may interact
with each other and memory simultaneously in a multimaster bus configuration. In such a context,
the microprocessor sets up block data transfers by programming multiple I/O and DMA controllers
and then resumes work processing other tasks. Each I/O and DMA controller is a potential bus mas-
ter that can arbitrate for access to the memory system and the I/O bus (if there is a separate I/O bus).
As the number of simultaneous bus masters increases, contention can develop, which may cause per-
formance degradation resulting from excessive waiting time by each potential bus master. This con-
tention can be reduced by modifying the I/O bus architecture. A first step is to decouple the I/O bus
from the memory bus into one or more segments, enabling data transfers within a given I/O segment
to proceed without conflicting with a memory transfer or one contained within other I/O segments.
PCI is an example of such a solution. At a more advanced level, the I/O system can be turned into a
switched network in which individual I/O controllers or small segments of I/O controllers are con-
nected to a dedicated port on an I/O switch that enables each port to communicate with any other
port simultaneously insofar as multiple ports do not conflict for access to the same port. This is a
fairly expensive solution that is implemented in high-end servers for which I/O performance is a key
contributor to overall system throughput.

-Balch.book Page 171 Thursday, May 15, 2003 3:46 PM

172 Advanced Digital Systems

The question of how fast a computer performs does not depend solely on how many megahertz
the microprocessor runs at or how much RAM it has. Performance is highly application specific and
is dominated by how many cycles per second the microprocessor is kept busy with useful instruc-
tions and data.

-Balch.book Page 172 Thursday, May 15, 2003 3:46 PM

173

CHAPTER 8

High-Performance Memory
Technologies

Memory is an interesting and potentially challenging portion of a digital system design. One of the
benefits of decades of commercial solid-state memory development is the great variety of memory
products available for use. Chances are that there is an off-the-shelf memory product that fits your
specific application. A downside to the modern, ever-changing memory market is rapid obsolescence
of certain products. DRAM is tied closely to the personal computer market. The best DRAM values
are those devices that coincide with the sweet spot in PC memory configurations. As the high-vol-
ume PC market moves on to higher-density memory ICs, that convenient DRAM that you used in
your designs several years ago may be discontinued so that the manufacturer can retool the factory
for parts that are in greater demand.

Rapid product development means that memory capabilities improve dramatically each year.
Whether it’s higher density or lower power that an application demands, steady advances in technol-
ogy put more tools at an engineer’s disposal. SRAM and flash EPROM devices have more stable
production lives than DRAM. In part, this is because they are less dependent on the PC market,
which requires ever increasing memory resources for ever more complex software applications.

Memory is a basic digital building block that is used for much more than storing programs and
data for a microprocessor. Temporary holding buffers are used to store data as it is transferred from
one interface to another. There are many situations in networking and communication systems where
a block of data arrives and must be briefly stored in a buffer until the logic can figure out exactly
what to do with it. Lookup tables are another common use for memory. A table may store precom-
puted terms of a complex calculation so that a result can be rapidly determined when necessary. This
chapter discusses the predominant synchronous memory technologies, SDRAM and SSRAM, and
closes with a presentation of CAM, a technology that is part RAM and part logic.

No book can serve as an up-to-date reference on memory technology for long, as a result of the
industry’s rapid pace. This chapter discusses technologies and concepts that are timeless, but specif-
ics of densities, speeds, and interface protocols change rapidly. Once you have read and understood
the basics of high-performance memory technologies, you are encouraged to browse through the lat-
est manufacturers’ data sheets to familiarize yourself with the current state of the art. Corporations
such as Cypress, Hynix, Infineon, Micron, NEC, Samsung, and Toshiba provide detailed data sheets
on their web sites that are extremely useful for self-education and selecting the right memory device
to suit your needs.

8.1 SYNCHRONOUS DRAM

As system clock frequencies increased well beyond 50 MHz, conventional DRAM devices with
asynchronous interfaces became more of a limiting factor in overall system performance. Asynchro-

-Balch.book Page 173 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

174 Advanced Digital Systems

nous DRAMs have associated pulse width and signal-to-signal delay specifications that are tied
closely to the characteristics of their internal memory arrays. When maximum bandwidth is desired
at high clock frequencies, these specifications become difficult to meet. It is easier to design a sys-
tem in which all interfaces and devices run synchronously so that interface timing becomes an issue
of meeting setup and hold times, and functional timing becomes an issue of sequencing signals on
discrete clock edges.

Synchronous DRAM

, or SDRAM, is a twist on basic asynchronous DRAM technology that has
been around for more than three decades. SDRAM can essentially be considered as an asynchronous
DRAM array surrounded by a synchronous interface on the same chip, as shown in Fig. 8.1. A key
architectural feature in SDRAMs is the presence of multiple independent DRAM arrays—usually
either two or four banks. Multiple banks can be activated independently and their transactions inter-
leaved with those of other banks on the IC’s synchronous interface. Rather than creating a bottle-
neck, this functionality allows higher efficiency, and therefore higher bandwidth, across the
interface. One factor that introduces latency in random accesses across all types of DRAM is the row
activation time: a row must first be activated before the column address can be presented and data
read or written. An SDRAM allows a row in one bank to be activated while another bank is actively
engaged in a read or write, effectively hiding the row activation time in the other bank. When the
current transaction completes, the previously activated row in the other bank can be called upon to
perform a new transaction without delay, increasing the device’s overall bandwidth.

The synchronous interface and internal state logic direct interleaved multibank operations and
burst data transfers on behalf of an external memory controller. Once a transaction has been started,
one data word flows into or out of the chip on every clock cycle. Therefore, an SDRAM running at
100 MHz has a theoretical peak bandwidth of 100 million words per second. In reality, of course,
this number is somewhat lower because of refresh and the overhead of beginning and terminating
transactions. The true available bandwidth for a given application is very much dependent on that
application’s data transfer patterns and the capabilities of its memory controller.

Rather than implementing a DRAM-style asynchronous interface, the SDRAM’s internal state
logic operates on discrete commands that are presented to it. There are still familiar sounding signals
such as RAS* and CAS*, but they function synchronously as part of other control signals to form
commands rather than simple strobes. Commands begin and terminate transactions, perform refresh
operations, and configure the SDRAM for interface characteristics such as default burst length.

SDRAM can provide very high bandwidth in applications that exploit the technology’s burst
transfer capabilities. A conventional computer with a long-line cache subsystem might be able to
fetch 256 words in as few as 260 cycles: 98.5 percent efficiency! Bursts amortize a fixed number of
overhead cycles across the entire transaction, greatly improving bandwidth. Bandwidth can also be
improved by detecting transactions to multiple banks and interleaving them. This mode of operation

Column
Address
Counters

Control
Signal and

Row
Address
Buffers

DRAM Array
(Four

Banks)

DRAM Array
(Four

Banks)

DRAM Array
(Four

Banks)

DRAM Array
(Four Banks)

Row strobes

Column strobes

Write enables

Row Addresses

Column
Addresses

Synchronous
State Logic

Synchronous
Data Interface

DQM[]

Data[]

CLK

CKE

CS*

RAS*

CAS*

WE*

Address[]

FIGURE 8.1 Basic SDRAM architecture.

-Balch.book Page 174 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 175

allows some new burst transfers to be requested prior to the current burst ending, thereby hiding the
initial startup latency of the subsequent transaction.

Most of the input signals to the state logic shown in Fig. 8.1 combine to form the discrete com-
mands listed in Table 8.1. A clock enable, CKE, must be high for normal operation. When CKE is
low, the SDRAM enters a low-power mode during which data transactions are not recognized. CKE
can be tied to logic 1 for applications that are either insensitive to power savings or require continual
access to the SDRAM. Interface signals are sampled on the rising clock edge. Many SDRAM de-
vices are manufactured in multibyte data bus widths. The data mask signals, DQM[], provide a con-
venient way to selectively mask individual bytes from being written or being driven during reads.
Each byte lane has an associated DQM signal, which must be low for the lane to be written or to en-
able the lane’s tri-state buffers on a read.

Some common functions include activating a row for future access, performing a read, and pre-
charging a row (deactivating a row, often in preparation for activating a new row). For complete de-
scriptions of SDRAM interface signals and operational characteristics, SDRAM manufacturers’ data
sheets should be referenced directly. Figure 8.2 provides an example of how these signals are used to
implement a transaction and serves as a useful vehicle for introducing the synchronous interface.
CS* and CKE are assumed to be tied low and high, respectively, and are not shown for clarity.

The first requirement to read from an SDRAM is to activate the desired row in the desired bank.
This is done by asserting an activate (ACTV) command, which is performed by asserting RAS* for
one cycle while presenting the desired bank and row addresses. The next command issued to con-
tinue the transaction is a read (RD). However, the controller must wait a number of cycles that trans-
lates into the DRAM array’s row-activate to column-strobe delay time. The timing characteristics of
the underlying DRAM array is expressed in nanoseconds rather than clock cycles. Therefore, the in-
teger number of delay cycles is different for each design, because it is a function of the clock period
and the internal timing specification. If, for example, an SDRAM’s RAS* to CAS* delay is 20 ns,
and the clock period is 20 ns or slower, an RD command could be issued on the cycle immediately

TABLE

8.1 Basic SDRAM Command Set

Command CS* RAS* CAS* WE* Address AP/A10

Bank activate L L H H Bank, row A10

Read L H L H Bank, column L

Read with auto-precharge L H L H Bank, column H

Write L H L L Bank, column L

Write with auto-precharge L H L L Bank, column H

No operation L H H H X X

Burst terminate L H H L X X

Bank precharge L L H L X L

Precharge all banks L L H L X H

Mode register set L L L L Configuration Configuration

Auto refresh L L L H X X

Device deselect H X X X X X

-Balch.book Page 175 Thursday, May 15, 2003 3:46 PM

176 Advanced Digital Systems

following the ACTV. Figure 8.2 shows an added cycle of delay, indicating a clock period less than
20 ns but greater than 10 ns (a 50–100 MHz frequency range). During idle cycles, a no-operation
(NOP) command is indicated by leaving RAS*, CAS*, and WE* inactive.

The RD command is performed by asserting CAS* and presenting the desired bank select and
column address along with the auto-precharge (AP) flag. A particular bank must be selected, be-
cause the multibank SDRAM architecture enables reads from any bank. AP is conveyed by address
bit 10 during applicable commands, including reads and writes. Depending on the type of command,
AP has a different meaning. In the case of a read or write, the assertion of AP tells the SDRAM to
automatically precharge the activated row after the requested transaction completes. Precharging a
row returns it to a quiescent state and also clears the way for another row in the same bank to be ac-
tivated in the future. A single DRAM bank cannot have more than one row active at any given time.
Automatically precharging a row after a transaction saves the memory controller from explicitly pre-
charging the row after the transaction. If, however, the controller wants to take full advantage of the
SDRAM’s back-to-back bursting capabilities by leaving the same row activated for a subsequent
transaction, it may be worthwhile to let the controller decide when to precharge a row. This way, the
controller can quickly reaccess the same row without having to issue a redundant ACTV command.
AP also comes into play when issuing separate precharge commands. In this context, AP determines
if the SDRAM should precharge all of its banks or only the bank selected by the address bus.

Once the controller issues the RD command (it would be called RDA if AP is asserted to enable
auto-precharge), it must wait a predetermined number of clock cycles before the data is returned by
the SDRAM. This delay is known as

CAS latency

, or CL. SDRAMs typically implement two latency
options: two and three cycles. The example in Fig. 8.2 shows a CAS latency of two cycles. It may
sound best to always choose the lower latency option, but as always, nothing comes for free. The
SDRAM trades off access time (effectively, t

CO

) for CAS latency. This becomes important at higher
clock frequencies where fast t

CO

 is crucial to system operation. In these circumstances, an engineer
is willing to accept one cycle of added delay to achieve the highest clock frequency. For example, a
Micron Technology MT48LC32M8A2-7E 256-Mb SDRAM can operate at 143 MHz with a CAS la-
tency of three cycles, but only 133 MHz with a CAS latency of two cycles.

*

 One cycle of additional
delay will be more than balanced out by a higher burst transfer rate. At lower clock rates, it is often
possible to accept the slightly increased access time in favor of a shorter CAS latency.

* 256MSDRAM_D.p65-RevD; Pub. 1/02, Micron Technologies, 2001, p. 11.

Address

DQM

CAS*

WE*

RAS*

(command)

CLK

Data

ACTV NOP RD NOP

B,R x B,AP,C x

D0 D1 D2 D3

tRAS to CAS CAS Latency=2

FIGURE 8.2 Four-word SDRAM burst read (CL = 2, BL = 4).

-Balch.book Page 176 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 177

Once the CAS latency has passed, data begins to flow on every clock cycle. Data will flow for as
long as the specified burst length. In Fig. 8.2, the standard burst length is four words. This parameter
is configurable and adds to the flexibility of an SDRAM. The controller is able to set certain param-
eters at start-up, including CAS latency and burst length. The burst length then becomes the default
unit of data transfer across an SDRAM interface. Longer transactions are built from multiple back-
to-back bursts, and shorter transactions are achieved by terminating a burst before it has completed.
SDRAMs enable the controller to configure the standard burst length as one, two, four, or eight
words, or the entire row. It is also possible to configure a long burst length for reads and only single-
word writes. Configuration is performed with the mode register set (MRS) command by asserting
the three primary control signals and driving the desired configuration word onto the address bus.

As previously mentioned, DQM signals function as an output disable on a read. The DQM bus (a
single signal for SDRAMs with data widths of eight bits or less) follows the CAS* timing and,
therefore, leads read data by the number of cycles defined in the CAS latency selection. The preced-
ing read can be modified as shown in Fig. 8.3 to disable the two middle words.

In contrast, write data does not have an associated latency with respect to CAS*. Write data be-
gins to flow on the same cycle that the WR/WRA command is asserted, as shown in Fig. 8.4. This

Address

DQM

CAS*

WE*

RAS*

(command)

CLK

Data

ACTV NOP RD NOP

B,R x B,AP,C x

D0 D1 D2 D3

FIGURE 8.3 Four-word SDRAM burst read with DQM disable (CL = 2, BL = 4).

CLK

Data

ACTV NOP WR NOP

B,R x B,AP,C x

D0 x x D3

FIGURE 8.4 Four-word SDRAM burst write with DQM masking (BL = 4).

-Balch.book Page 177 Thursday, May 15, 2003 3:46 PM

178 Advanced Digital Systems

example also shows the timing of DQM to prevent writing the two middle words. Since DQM fol-
lows the CAS* timing, it is also directly in line with write data. DQM is very useful for writes, espe-
cially on multibyte SDRAM devices, because it enables the uniform execution of a burst transfer
while selectively preventing the unwanted modification of certain memory locations. When working
with an SDRAM array composed of byte-wide devices, it would be possible to deassert chip select
to those byte lanes that you don’t want written. However, there is no such option for multibyte de-
vices other than DQM.

When the transaction completes, the row is left either activated or precharged, depending on the
state of AP during the CAS* assertion. If left activated, the controller may immediately issue a new
RD or WR command to the same row. Alternatively, the row may be explicitly precharged. If auto-
matically precharged, a new row in that bank may be activated in preparation for other transactions.
A new row can be activated immediately in most cases, but attention must be paid to the SDRAM’s
specifications for minimum times between active to precharge commands and active to active com-
mands.

After configuring an SDRAM for a particular default burst length, it will expect all transactions to
be that default length. Under certain circumstances, it may be desirable to perform a shorter transac-
tion. Reads and writes can be terminated early by either issuing a

precharge

command to the bank
that is currently being accessed or by issuing a

burst-terminate

command. There are varying restric-
tions and requirements on exactly how each type of transaction is terminated early. In general, a read
or write must be initiated without automatic precharge for it to be terminated early by the memory
controller.

The capability of performing back-to-back transactions has been already mentioned. In these situ-
ations, the startup latency of a new transaction can be accounted for during the data transfer phase of
the previous transaction. An example of such functionality is shown in Fig. 8.5. This timing diagram
uses a common SDRAM presentation style in which the individual control signals are replaced by
their command equivalent. The control signals are idle during the data portion of the first transac-
tion, allowing a new request to be asserted prior to the completion of that transaction. In this exam-
ple, the controller asserts a new read command for the row that was previously activated. By
asserting this command one cycle (CAS latency minus one) before the end of the current transaction,
the controller guarantees that there will be no idle time on the data bus between transactions. If a the
second transaction was a write, the assertion of WR would come the cycle after the read transaction
ended to enable simultaneous presentation of write data in phase with the command. However, when
following a write with a read, the read command cannot be issued until after the write data com-
pletes, causing an idle period on the data bus equivalent to the selected CAS latency.

This concept can be extended to the general case of multiple active banks. Just as the controller is
able to assert a new RD in Fig. 8.5, it could also assert an ACTV to activate a different bank. There-
fore, any of an SDRAM’s banks can be asserted independently during the idle command time of an
in-progress transaction. When these transactions end, the previously activated banks can be seam-
lessly read or written in the same manner as shown. This provides a substantial performance boost
and can eliminate most overhead other than refresh in an SDRAM interface.

Address

(command)

CLK

Data

ACTV NOP RDX NOP

B,R x B,AP,CX x

D0X D1X D2X D3X

RDY

B,AP,CY

NOP

x

D1Y D2Y D3YD0Y

FIGURE 8.5 Back-to-back read transactions (CL = 2, BL = 4).

-Balch.book Page 178 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 179

Periodic refresh is a universal requirement of DRAM technology, and SDRAMs are no exception.
An SDRAM device may contain 4,096 rows per bank (or 8,192, depending on its overall size) with
the requirement that all rows be refreshed every 64 ms. Therefore, the controller has the responsibil-
ity of ensuring that 4,096 (or 8,192) refresh operations are carried out every 64 ms. Refresh com-
mands can be evenly spaced every 15.625 µs (or 7.8125 µs), or the controller might wait until a
certain event has passed and then rapidly count out 4,096 (or 8,192) refresh commands. Different
SDRAM devices have slightly differing refresh requirements, but the means of executing refresh op-
erations is standardized. The first requirement is that all banks be precharged, because the auto-re-
fresh (REF) command operates on all banks at once. An internal refresh counter keeps track of the
next row across each bank to be refreshed when a REF command is executed by asserting RAS* and
CAS* together.

It can be easy to forget the asynchronous timing requirements of the DRAM core when designing
around an SDRAM’s synchronous interface. After a little time spent studying state transition tables
and command sets, the idea that an asynchronous element is lurking in the background can become
an elusive memory. Always be sure to verify that discrete clock cycle delays conform to the nanosec-
ond timing specifications that are included in the SDRAM data sheet. The tricky part of these timing
specifications is that they affect a system differently, depending on the operating frequency. At
25 MHz, a 20-ns time delay is less than one cycle. However, at 100 MHz, that delay stretches to two
cycles. Failure to recognize subtle timing differences can cause errors that may manifest themselves
as intermittent data corruption problems, which can be very time consuming to track down.

SDRAM remains a mainstream memory technology for PCs and therefore is manufactured in
substantial volumes by multiple manufacturers. The SDRAM market is a highly competitive one,
with faster and denser products appearing regularly. SDRAMs are commonly available in densities
ranging from 64 to 512 Mb in 4, 8, and 16-bit wide data buses. Older 16-Mb parts are becoming
harder to find. For special applications, 32-bit wide devices are available, though sometimes at a
slight premium as a result of lower overall volumes.

8.2 DOUBLE DATA RATE SDRAM

Conventional SDRAM devices transfer one word on the rising edge of each clock cycle. At any
given time, there is an upper limit on the clock speed that is practical to implement for a board-level
interface. When this level of performance proves insufficient,

double data rate

(DDR) SDRAM de-
vices can nearly double the available bandwidth by transferring one word on both the rising and fall-
ing edges of each clock cycle. In doing so, the interface’s clock speed remains constant, but the data
bus effectively doubles in frequency. Functionally, DDR and single data rate (SDR) devices are very
similar. They share many common control signals, a common command set, and a rising-edge-only
control/address interface. They differ not only in the speed of the data bus but also with new DDR
data control signals and internal clocking circuitry to enable reliable circuit design with very tight
timing margins. Figure 8.6 shows the DDR SDRAM structure.

A DDR SDRAM contains an internal data path that is twice the width of the external data bus.
This width difference allows the majority of the internal logic to run at a slower SDR frequency
while delivering the desired external bandwidth with half as many data pins as would be required
with a conventional SDRAM. Rather than supplying a 2

×

 clock to the SDRAM for its DDR inter-
face, a pair of complementary clocks, CLK and CLK*, are provided that are 180° out of phase with
each other. Input and output signals are referenced to the crossings of these two clocks, during which
a rising edge is always present in either clock. Commands and addresses are presented to a DDR
SDRAM as they would be for an SDR device: on the rising edge of CLK. It is not necessary to dou-

-Balch.book Page 179 Thursday, May 15, 2003 3:46 PM

180 Advanced Digital Systems

ble the speed of the control interface, because an SDRAM is almost always used in burst mode
where the rate of commands is significantly less than the rate of data transferred.

The data interface contains a mask that has been renamed to DM and a new data strobe signal,
DQS. DM functions as DQM does in an SDR device but operates at DDR to match the behavior of
data. DQS is a bidirectional clock that is used to help time the data bus on both reads and writes. On
writes, DQS, DM, and data are inputs and DQS serves as a clock that the SDRAM uses to sample
DM and data. Setup and hold times are specified relative to both the rising and falling edges of DQS,
so DQS transitions in the middle of the data valid window. DQS and data are outputs for reads and
are collectively timed relative to CLK/CLK*. DQS transitions at roughly the same time as data and
so it transitions at the beginning of the data valid window.

When reading, 2n bits are fetched from the DRAM array on the CLK domain and are fed into a
2:1 multiplexer that crosses the SDR/DDR clock domain. In combination with a DQS generator, the
multiplexer is cycled at twice the CLK frequency to yield a double rate interface. This scheme is il-
lustrated schematically in Fig. 8.7. Because DQS and data are specified relative to CLK/CLK* on
reads, the memory controller can choose to clock its input circuitry with any of the strobe or clock
signals according to the relevant timing specifications. Writes function in a reverse scheme by stack-
ing two n-bit words together to form a 2n-bit word in the DRAM’s CLK domain. Two registers are
each clocked alternately on the rising and falling edges of DQS, and their contents are then trans-
ferred to a shallow write FIFO. A FIFO is necessary to cross from the DQS to CLK domains reliably
as a result of skew between the two signals.

Tight timing specifications characterize DDR SDRAM because of its high-speed operation: a
333-MHz data rate with a 167-MHz clock is not an uncommon operating frequency. For reliable op-
eration, careful planning must be done at the memory controller and in printed circuit board design
to ensure that data is captured in as little as 1.5 ns (for a 333/167-MHz DDR SDRAM). These high-

Synchronous
State Logic

2n-Bit
Read
Latch

DQS

CLK*

CKE

CS*

RAS*

CAS*

WE*

Address[]

DRAM Array
(Four

Banks)

DRAM Array
(Four

Banks)

DRAM Array
(Four

Banks)

DRAM Array
(Four Banks)

CLK

2:1

DQS Generator

Data

DM

Shallow
Mask and

Data
FIFO

Mask, Data
Input Register

Mask, Data
Input Register

SDR Domain

DDR Domain

FIGURE 8.6 Basic DDR SDRAM architecture.

DQS

CLK

Data DHI DLO DHI

DHI

DLO

1

0

DataRead Data

1

0

DQS
"1"

"0"

CLK

FIGURE 8.7 SDR-to-DDR data conversion scheme.

-Balch.book Page 180 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 181

speed data buses are treated as

source-synchronous

rather than synchronous. A source-synchronous
bus is one where a local clock is generated along with data and routed on the circuit board with the
data signals. The clock and data signals are length-matched to a certain tolerance to greatly reduce
the skew between all members of the bus. In doing so, the timing relationships between clock and
data are preserved almost exactly as they are generated by the sending device. A source-synchronous
bus eliminates system-level skew problems that result from clocks and data signals emanating from
different sources and taking different paths to their destinations. Treating the DDR SDRAM data bus
source-synchronously as shown in Fig. 8.7 guarantees that the data valid window provided by the
driver will be available to the load. Likewise, because DQS is bidirectional, the SDRAM will obtain
the same timing benefit when accepting write-data from the memory controller.

Methods vary across DDR SDRAM implementations. While the SDRAM requires a fixed rela-
tionship between DQS and data for writes, the memory controller may use either DQS or a source-
synchronous version of CLK with which to time read data. DQS must be used for the fastest applica-
tions, because it has a closer timing relationship relative to data. The usage of DQS adds some com-
plexity, because it is essentially a bidirectional clock. There are also multiple DQS signals in most
applications, because one DQS is present for every eight bits of data.

Some applications may be able to use CLK/CLK* to register read data. The memory controller
typically drives CLK/CLK* to the SDRAM along with address and control signals in a source-syn-
chronous fashion. To achieve a source-synchronous read data bus, a skewed version of CLK/CLK*
is necessary that is in phase with the returned data so that the memory controller sees timing as
shown in Fig. 8.7. This skew is the propagation delay through the wires that carry the clocks from
the memory controller to the SDRAM. These skews are illustrated in Fig. 8.8a, and the associated
wiring implementation is shown in Fig. 8.8b. CLK´ and CLK´* are the clocks that have been skewed
by propagation delay through the wiring. A source-synchronous read-data bus is achieved by gener-
ating a second pair of clocks that are identical to the main pair and then by matching their lengths to
the sum of the wire lengths to and from the SDRAM. The first length component cancels out the
propagation delay to the SDRAM, and the second length component maintains timing alignment, or
phase, with the data bus.

With the exception of a faster data bus, a DDR SDRAM functions very much like a conventional
SDRAM. Commands are issued on the rising edge of CLK and are at a single data rate. Because of
the internal 2n-bit architecture, a minimum burst size of two words is supported. The other burst
length options are four or eight words. To read or write a single word, DM must be used to mask or
inhibit the applicable word. Two CAS latency options are supported for reads: 2 and 2.5 cycles. Two
CL = 2 reads are shown in Fig. 8.9. DQS transitions from input (tri-state) to output one cycle (1.5 cy-
cles for CL = 2.5) after the assertion of the read command. It is driven low for one full cycle (two
DDR periods) and then transitions on each half of CLK for the duration of the burst, after which it

Memory
Controller

DDR
SDRAM

CLK/CLK* (length=LC)

Data (length=LD)

CLK'/CLK'* (length=LC+LD)

(b)

CLK@MC

Data@RAM

CLK@RAM

Data@MC

CLK'@MC

(a)

FIGURE 8.8 Source-synchronous read data with CLK/CLK*.

-Balch.book Page 181 Thursday, May 15, 2003 3:46 PM

182 Advanced Digital Systems

returns to tri-state. Reads may be executed consecutively to achieve high bus utilization by hiding
row activation and CAS latency delays, as with an SDR SDRAM.

Unlike an SDR SDRAM, writes are subject to a brief latency between assertion of the write com-
mand and delivery of write data. The first write data is presented on the first rising edge of DQS fol-
lowing the write command. DQS is not driven to the SDRAM until just after the write command is
presented. This restriction prevents a collision between the SDRAM and the memory controller
when a write follows a read by giving time for the SDRAM to turn off its DQS driver. Following the
write, DQS can remain driven until a read command is asserted, at which time the SDRAM will
need to drive the strobe. Write timing is shown in Fig. 8.10. Writes may also be executed consecu-
tively to more effectively utilize the device interface.

When transitioning between reading and writing, minimum delays are introduced in a situation
unlike that of a conventional SDRAM. Because write data lags the write command by a clock cycle,
a cycle is lost when following a read with a write, because the write command cannot be issued until
the read burst is complete (as with an SDR SDRAM). Going the other way, an explicit single-cycle
delay is imposed on issuing a read command following a write burst, thereby incurring a data bus
idle time equal to the selected CAS latency plus the single cycle write/read delay.

DDR SDRAM has taken the place of conventional SDRAM in many PC applications. Like SDR
SDRAM, DDR devices are commonly available in densities ranging from 64 to 512 Mb in 4-, 8-,
and 16-bit wide data buses. Thirty-two-bit devices are also available, although they are not the sweet
spot for the industry as a whole.

8.3 SYNCHRONOUS SRAM

Like DRAM, high-performance SRAM transitioned to a synchronous interface to gain performance
improvements. Several basic types of

synchronous SRAM

 (SSRAM) devices appeared and became

CLK

Data

ACTV NOP RDX

B,R x B,AP,CX

D0X D1X D2X D3X

DQS

NOP

x

RDY

B,AP,CY

D0Y D1Y D2Y D3Y

x

NOP

FIGURE 8.9 Consecutive DDR SDRAM reads (CL = 2, BL = 4).

Address

(command)

CLK

Data

ACTV NOP WRX

B,R x B,AP,CX

D0X D1X D2X D3X

DQS

NOP

x

WRY

B,AP,CY

D0Y D1Y D2Y D3Y

x

NOP

FIGURE 8.10 Consecutive DDR SDRAM writes (BL = 4).

-Balch.book Page 182 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 183

standard offerings of numerous semiconductor vendors. SSRAMs are well suited for applications
that require rapid access to random memory locations, as compared to SDRAMs that are well suited
to long bursts from sequential memory locations. Many SSRAM devices can be sourced from multi-
ple vendors with identical pinouts and functionality. An SRAM is made synchronous by registering
its interface. Two basic types of SSRAMs are

flow-through

and

pipelined

. Flow-through devices reg-
ister only the input signals and are therefore able to return read data immediately after the requested
address is registered on a rising clock edge. Pipelined devices register both the input and output sig-
nals, incurring an added cycle of latency when returning read data. These differences are illustrated
in Fig. 8.11.

As with SDRAM, there is a trade-off between access latency and clock speed. Pipelined devices
can run at substantially faster clock frequencies than flow-through devices, because the SSRAM has
a full clock cycle to decode the presented address once it is registered. In applications where clock
speeds are under 100 MHz, flow-through SSRAMs may be preferable because of their lower latency.
However, a flow-through device exhibits relatively high clock-to-data-valid timing, because the out-
puts are not registered. This large t

CO

 directly impacts the overall memory system design by placing
tighter constraints on the interconnection delays and input register performance of the device that is
reading from the SSRAM. For example, a Micron Technology MT55L512L18F-10 8-Mb flow-
through SSRAM runs up to 100 MHz and exhibits a 7.5 ns access delay and a 3.0 ns data hold time
after the next clock edge.

*

 At a 10-ns clock period, there are 2.5 ns of setup budget to the next clock
edge for an input register that is sampling the returned data. This 2.5-ns budget must account for in-
terconnect delay, clock skew, and the setup time of the input flops. Alternatively, the 3 ns of hold
time can help increase this timing budget, but special considerations must then be made to shift the
data valid window of the input flops more in favor of hold time and less in favor of setup time. This
is not always practical. In contrast, Micron’s MT55L512L18P-10 8-Mb pipelined SSRAM is rated
for the same 100-MHz clock but exhibits a 5.0-ns clock-to-valid delay and a 1.5-ns hold time.

†

 For
the added cycle of latency, the setup budget increases to a much more comfortable 5 ns with the
same 10-ns clock period. Pipelining also allows the SSRAM to run at a much faster clock frequency:
166 MHz versus 100 MHz for the 8-Mb flow-through SSRAM. By using a pipelined SSRAM, you
can choose between more favorable timing margins or increased memory bandwidth over flow-
through technology.

An application in which SSRAM devices are used is a cache, which typically performs burst
transactions. Caches burst data a line at a time to improve main memory bandwidth. Standard SS-
RAM devices support four-word bursts by means of a loadable two-bit internal counter to assist

* MT55L512L18F_2.p65-Rev. 6/01, Micron Technologies, 2001, p. 25.
† MT55L512L18P_2.p65-Rev. 6/01, Micron Technologies, 2001, p. 25.

Address

CLK

Flow-Through Data

Valid x

Valid

Pipelined Data

CS*

Valid

FIGURE 8.11 Flow-through vs. pipelined SSRAM reads.

-Balch.book Page 183 Thursday, May 15, 2003 3:46 PM

184 Advanced Digital Systems

caches and other applications that operate using bursts. An SSRAM contains one or more control
signals that defines whether a memory cycle uses an externally supplied address or an internally
latched address and counter. When a burst transfer is desired, the memory controller asserts a control
signal to load the internal burst counter and then directs the SSRAM to use that incrementing count
value for the three subsequent cycles. Bursts are supported for both reads and writes. The two-bit
burst counter can be configured in one of two increment modes: linear and interleaved. Linear incre-
ment is a simple binary counter that wraps from a terminal value of 11 back to 00. Bursts can be ini-
tiated at any address, so, if the burst begins at A[1:0] = 10, the counter will count 10, 11, 00, and 01
to complete the burst. Interleaved mode forces the data access pattern into two pairs where each pair
contains an odd and even address with A[1] held constant as shown in Table 8.2. Interleaving can
benefit implementations that access words in specific pairs.

Flow-through and pipelined SSRAMs fall into two more categories: normal and

zero-bus turn-
around

 ®

(ZBT)

*

. Normal SSRAMs exhibit differing read and write latencies: write data can be as-
serted on the same cycle as the address and write enable signals, but reads have one to two cycles of
latency, depending on the type of device being used. Under conditions of extended reads or writes,
the SSRAM can perform a transfer each clock cycle, because the latency of sequential commands
(all reads or all writes) remains constant. When transitioning from writing to reading, however, the
asymmetry causes idle time on the SSRAM data bus because of the startup latency of a read com-
mand. The read command is issued in the cycle immediately following the write, and read data be-
comes available one or two cycles later. If an application performs few bus turnarounds because its
tends to separately execute strings of reads followed by writes, the loss of a few cycles here and
there is probably not a concern. However, some applications continually perform random read/write
transactions to memory and may lose necessary bandwidth each time a bus turnaround is performed.

ZBT devices solve the turnaround idle problem by enforcing symmetrical delays between address
and data, regardless of whether the transaction is a read or write. This fixed relationship means that
any command can follow any other command without forced idle time on the data bus. Flow-through
ZBT devices present data on the first clock edge following the corresponding address/command.
Pipelined ZBT SSRAMs present data on the second clock edge following the corresponding address/
command as shown in Fig. 8.12. As with normal SSRAMs, higher clock frequencies are possible
with pipelined versus flow-through ZBT devices, albeit at the expense of additional read latency.

ZBT SSRAMs provide an advantage for applications with frequent read/write transitions. One ex-
ample is a single-clock domain FIFO implemented using a discrete SSRAM and control logic. A ge-

TABLE

8.2 SSRAM Interleaved Burst Addressing

Initial Value of A[1:0]
Supplied Externally

Second Address
Generated Internally

Third Address
Generated Internally

Fourth Address
Generated Internally

00 01 10 11

01 00 11 10

10 11 00 01

11 10 01 00

* ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc., and the architecture is supported by Micron
Technology, Inc. and Motorola Inc.

-Balch.book Page 184 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 185

neric FIFO must be capable of sustained, interleaved reads and writes, which results in frequent bus
turnaround delays when using a normal SSRAM. ZBT SSRAM devices are manufactured by com-
panies including Integrated Device Technology, Micron Technology, and Motorola. Cypress Semi-
conductor manufactures functionally equivalent SSRAMs under the trademark NoBL. Other
manufacturers offer equivalent devices with differing naming schemes.

SSRAMs are very popular in high-performance computing and networking applications. Com-
puters with large secondary and tertiary caches use SSRAM to hold lines of data. Networking equip-
ment makes extensive use of SSRAMs for buffering and lookup table applications. SSRAM devices
are commonly available in densities ranging from 2 to 16 Mb in 16-, 18-, 32-, and 36-bit wide data
buses. The nine-bit bus multiples are used in place of eight-bit multiples for such purposes as the
storage of parity and flag bits.

8.4 DDR AND QDR SRAM

SSRAM transitioned to a DDR interface to increase bandwidth in the same general manner as
SDRAM. DDR SRAM devices are fully pipelined and feature fixed burst transfer lengths of two or
four words to enable a less complex single-rate address/control interface. With the data bus running
at twice the effective frequency of the address bus, a burst size of two guarantees that random access
transfers can be issued in any order without falling behind the data interface’s higher bandwidth.
Burst length is fixed by the particular device being used. A burst length of four words simplifies ap-
plications such as some caches that operate using four-word transactions, although no inherent
throughput advantage is gained. As with a DDR SDRAM, special clocking techniques must be em-
ployed to enable the design of reliable interfaces at effective data rates in the hundreds of megahertz.
A DDR SRAM accepts a primary pair of complementary clocks, K and K*, that are each 180° out of
phase with each other. Address and control signals are registered on the rising edge of K, and write-
data is registered on the rising edges of both clocks. An optional secondary pair of clocks, C and C*,
must be same frequency as K/K* but can be slightly out of phase to skew the timing of read-data ac-
cording to an application circuit’s requirements. A small degree of skewing can ease the design of
the read capture logic. If such skewing is not necessary, C/C* are tied high, and all output (read) tim-
ing is referenced relative to K/K*. The SRAM automatically recognizes the inactivity on C/C* and
chooses K/K* as the causal output clock. A pair of output echo clocks, CQ and CQ*, are driven by
the SRAM in phase with read data such that both the echo clocks and read data are timed relative to
C/C* or K/K*. These echo clocks are free running and do not stop when read activity stops. This
combined clocking scheme is illustrated in Fig. 8.13. The read capture logic may choose to use the
echo clocks as source-synchronous read clocks, or it may use an alternate scheme and not use the
echo clocks at all. An alternative scheme could be to skew C/C* such that returning read data is in

Address

CLK

RA1 x

Data

CS*

RD1

R/W*

RA2 WA3 RA4 WA5 WA6

RD2 WD3 RD4 WD5 WD6

FIGURE 8.12 Pipelined ZBT SSRAM read/write timing.

-Balch.book Page 185 Thursday, May 15, 2003 3:46 PM

186 Advanced Digital Systems

proper phase with the memory controller’s K/K*, thus saving it the complexity of dealing with a
separate read clock domain. Such decisions are implementation specific and depend on the circuits
and resources available.

Because of the high frequency of the DDR interface, bus turnaround time becomes an important
design point. Idle time must be inserted onto a bidirectional data bus to enable the SRAM and mem-
ory controller time to disable their tri-state drivers when transitioning from reading to writing or vice
versa. DDR SRAMs are manufactured in both

single

 and

common I/O

(SIO and CIO) configurations
to address turnaround timing. SIO DDR SRAMs feature two data buses—one dedicated for incom-
ing write data and the other dedicated for outgoing read data. CIO devices feature a common bidi-
rectional data bus. The latencies between address and data are identical between SIO and CIO
devices. Write data begins on the first rising edge following the write command, and read data is re-
turned beginning on the second falling edge following the read command. An LD* signal indicates
an active read or write command. Figure 8.14 shows the timing for an SIO device in which bus turn-
around is not an issue because of the dual unidirectional buses. Note that read data can overlap write
data in the same clock cycle.

Commands can be issued continuously on an SIO device, because there is no possibility for data
bus conflicts. A CIO device, however, requires at least one explicit idle cycle when transitioning
from reading to writing, as shown in Fig. 8.15, because of the difference in data latencies for these
two transactions. Without the idle cycle, write data would occur in the same cycle at the last two read
words. CIO data sheets also warn that, at high frequencies, a second idle cycle may be necessary to
prevent a bus conflict between the SRAM and the write data. The concern at high frequencies is that

K

C

K*

C*

CQ

CQ*

Read
Data

FIGURE 8.13 DDR SSRAM clocking.

K/C

Data Out

R/W*

Address

LD*

RAX x

Data In

RD0X RD1X

WAY RAZ

RD0Z RD1Z

WD0Y WD1Y xx

FIGURE 8.14 Separate I/O DDR SRAM read/write timing (burst length = 2).

-Balch.book Page 186 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 187

the SRAM may not be able to turn off its tri-state drivers in time for write data being driven immedi-
ately on the next cycle.

High data transfer rates are possible with CIO DDR SRAM in purely random transactions.
Grouping multiple reads and writes into separate groups increases the available bandwidth by mini-
mizing bus turnaround delays associated with read/write transitions. CIO devices have a distinct ad-
vantage in reduced signal count because of a single data bus. Balancing this out is the complexity of
handling bus turnaround and somewhat reduced bandwidth in truly random transfer patterns.

SIO DDR SRAM provides a definite performance advantage in certain applications at the cost of
additional signal and pin count. The concept of dual data interfaces was taken a step farther with the
development of

quad data rate

TM

 (QDR) SRAM technology, where the goal is to enable full utiliza-
tion of the read and write data interfaces.

*

 QDR devices are manufactured with fixed two- or four-
word bursts. The address/control interface is designed so that enough commands can be issued to
keep both data interfaces fully utilized. A four-word burst QDR SRAM is very similar to an SIO
DDR SRAM if one were to be made with a four-word burst size. The difference is that, rather than
having a R/W* select signal and an activation signal (LD*), the QDR devices implement separate
read and write enables. A new command is presented during each clock cycle such that it takes two
cycles to issue both a read and a write command. This frequency of commands matches perfectly
with the four-word burst nature of the dual data interfaces. Each read or write command transfers
four words at DDR, thereby occupying two whole clock cycles. Therefore, a read command can be
issued once every two cycles, and it takes two cycles to execute. The same holds true for a write
command. A two-word burst QDR SRAM differs from the four-word variety in that its address/
control interface is dual rate to allow commands to be issued twice as fast to keep up with the shorter
transfer duration of one cycle (two words at DDR complete in one whole cycle). Figure 8.16 shows
the timing for a four-word burst QDR SRAM. If an application can make efficient use of a four-word

* QDR is a trademark of Cypress, IDT, Micron Technology, NEC, and Samsung.

K/C

Data

R/W*

Address

LD*

RAX x

RD0X RD1X

WAY RAZ

RD0Z RD1ZWD0Y WD1Y

x

FIGURE 8.15 Common I/O DDR SRAM read/write timing (burst length = 2).

K/C

Data Out

WR*

Address RAW x

Data In

RD0W RD1W

WAX RAY

WD0X WD1Xx

RD*

WAZ

RD2W RD3W RD0Y RD1Y RD2Y RD3Y

WD2X WD3X WD0Z WD1Z WD2Z WD3Z x

FIGURE 8.16 QDR SRAM read/write timing (burst length = 4).

-Balch.book Page 187 Thursday, May 15, 2003 3:46 PM

188 Advanced Digital Systems

burst, the overall system design is likely to be easier, because tight DDR timing on the address/
control interface is not required as it would be with a two-word burst QDR device.

As can be readily observed, a QDR device can truly provide four times the bandwidth of a con-
ventional SDR SRAM, but only when the read and write bandwidths are symmetrical. If an applica-
tion requires very high bandwidth for a long set of writes and then the same equivalent bandwidth
for a long read, QDR technology will not provide any real advantage over a DDR SRAM. QDR is
useful in many communications applications where it serves as an in-line buffer or FIFO between
two data processing elements. Such applications exhibit symmetrical bandwidth, because they can-
not store data for long and must rapidly drain data buffer as fast as data is stored to prevent an over-
flow or underflow.

8.5 CONTENT ADDRESSABLE MEMORY

Most types of memory are constructed from an array of data storage locations, each of which is in-
dexed with a unique address. The set of addresses supported by the memory array is a continuous,
linear range from 0 to some upper limit, usually a power of 2. For a memory array size, W, the re-
quired address bus width, N, is determined by rounding up N = log

2

 W to the next whole number.
Therefore, W

≤

 2

N

. Memory arrays usually store sets of data that are accessed in a sequential man-
ner. The basic paradigm is that the microprocessor requests an arbitrary address that has no special
meaning other than the fact that it is a memory index, and the appropriate data is transferred. This
scheme can be modified to implement a lookup table by presenting an index that is not an arbitrary
number but that actually has some inherent meaning. If, for example, a network packet arrives with
an eight-bit identification tag (perhaps a source address), that tag can be used to index into a memory
array to retrieve or store status information about that unique type of packet. Such status information
could help implement a filter, where a flag bit indicates whether packets with certain tags should be
discarded or allowed through. It could also be used to implement a unique counter for each tag to
maintain statistics of how many packets with a particular tag have been observed. As shown in Fig.
8.17, when the packet arrives, its relevant eight-bit tag is used to access a single memory location
that contains a filter bit and a count value that gets incremented and stored back into the memory ar-
ray. This saves logic, because 256 unique counters are not required. Instead, a single +1 adder ac-
complishes the task with the assistance of the memory’s built-in address decoding logic.

Payload
Header

Tag

256 x 16
Memory Array

8-Bit Tag Index
into Lookup Table

+1
Adder

Data Out
[14:0]

Data In
[14:0]

Packet
Input

Packet
Output

Packet
Filter
Logic

Data Out [15]

FIGURE 8.17 Using a memory array as a lookup table.

-Balch.book Page 188 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 189

Such lookup tables are common in communication systems where decisions are made and statis-
tics gathered according to the unique tags and network addresses present in each packet’s header.
When the size of a tag is bounded at a manageable width, a conventional memory array can be used
to implement a lookup table. However, as tags grow to 16, 32, 64, 128, or more bits, the required
memory size becomes quite impractical. The example in Fig. 8.17 would require 8 GB of memory if
the tag width increased from 8 to 32 bits! If all 2

32

 tag permutations need to be accounted for inde-
pendently, there would be no avoiding a large memory array. However, the majority of such lookup
table applications handle a small fraction of the total set of permutations. The working set of tags
sparsely populates the complete defined set of tags. So the question becomes how to rapidly index
into a memory array with an N-bit tag where the array size is much less than 2

N

.
A

content addressable memory

(CAM) solves this problem with an array of fully associative tags
and optional corresponding data entries as shown in Fig. 8.18. Instead of decoding 2

N

 unique loca-
tions based on an N-bit tag, each CAM entry simultaneously matches its own tag to the one pre-
sented. The entry whose tag matches is the one that presents its associated data at the output and the
one that can have its data modified as well. Alternatively, a CAM may simply return the index of the
matched or winning entry in the array, if the specific device does not have any data associated with
each entry. There is substantial overhead in providing each entry with a unique tag and matching
logic, making CAMs substantially more expensive than conventional memories on a per-bit basis.
Their increased cost is justified in those applications that require rapid searching of large yet
sparsely populated index ranges.

Unlike a conventional memory, a CAM must be managed by the system’s hardware and/or soft-
ware to function properly. The system must load the CAM entries with relevant tags and data. Care
should be taken to keep tags unique, because there is no standard means of resolving the case in
which two entries’ tags match the tag input. Individual CAM implementations may specify how
such conflicts are resolved. Some CAMs handle read/write maintenance functions through the same
interface that tags are presented and matched. Other implementations provide a separate mainte-
nance port. Having a separate maintenance port increases the number of pins on the CAM, adding
complexity to the circuit board wiring, but it may decrease overall system complexity, because main-
tenance logic and data logic paths do not have to be shared.

CAM tags and matching logic can be constructed in either a

binary

or

ternary

manner. A binary
CAM implements a standard tag of arbitrary width and a valid bit. These CAMs are well suited to
situations in which exact tag matches are desired. A ternary CAM doubles the number of tag bits to

Tag
Input

Matched
Data

Search
Successful

Tag Address/DataValid/Match Logic z

Tag Address/DataValid/Match Logic z

Tag Address/DataValid/Match Logic z

Tag Address/DataValid/Match Logic z

FIGURE 8.18 Basic CAM architecture.

-Balch.book Page 189 Thursday, May 15, 2003 3:46 PM

190 Advanced Digital Systems

associate a pair of tag bits with each actual tag bit. This two-bit structure allows the creation of a
third “don’t care” state, X. A ternary CAM is more flexible than a binary CAM, because it can match
portions of a tag rather than all bits. In networking applications, this is very useful, because similar
operations are often performed on groups of addresses (tags) from common destinations. It is as if
the post office wanted to sort out all letters being sent to ZIP codes 11230 through 11239. A ternary
CAM would be able to match the pattern 1123X with a single entry. In contrast, a binary CAM
would require ten redundant entries to perform the same job.

A ternary CAM is often used to implement rather complex lookup tables with searches prioritized
according to the number of X bits in each tag. Using the ZIP code example, it is possible that a post
office would want to perform two overlapping searches. It may want to sort all ZIP codes from
11230 through 11239 into a particular bin, except for 11234, which should be sorted into its own
bin. A ternary CAM could be setup with two overlapping entries: 11234 and 1123X. To ensure that
the 11234 entry always matched ahead of the 1123X entry, it would be necessary to verify proper
setup of the specific CAM being used. A ternary CAM may have a rule that the lowest or highest
winning entry in the array wins. While this example is simple, the concept can be extended with
many levels of overlap and priority.

Managing a ternary CAM with overlapping entries is more complex than managing a binary
CAM, because the winning entry priority must be kept in sync with the application’s needs, even as
the CAM is updated during operation. A CAM is rarely initialized once and then left alone for the
remainder of system operation. Its contents are modified periodically as network traffic changes.
Let’s say that the ZIP code CAM was initialized as follows in consecutive entries: 1121X, 11234,
1123X, 112XX. Where would a new special-case entry 11235 be placed? It would have to precede
the 1123X entry for it to match before 1123X. Therefore, the system would have to temporarily
move CAM entries to insert 11235 into the correct entry. If there is enough free space in the CAM,
the system could initialize it and reserve free entries in between valid entries. But, sooner or later,
the CAM will likely become congested in a local area, requiring it to be reorganized. How the data is
arranged and how the CAM is reorganized will affect system performance, because it is likely that
the CAM will have to be temporarily paused in its search function until the reorganization is com-
plete. Solutions to this pause include a multibank CAM architecture whereby the system reorganizes
the lookup table in an inactive bank and then quickly swaps inactive and active banks.

A CAM often does not associate general data bits with each entry, because the main purpose of a
CAM is to match tags, not to store large quantities of data. It is therefore common to couple a CAM
with an external SRAM that actually holds the data of interest and that can be arbitrarily expanded
according to application requirements as shown in Fig. 8.19. In this example, the CAM contains

4,096 Entry
CAM

4k x 32
SRAM

Matching
Index

N-Bit
Search Tag

Maintenance
Logic

Data
Associated

with Tag

Search Successful Flag

Search
Control
Logic Search

Enable

FIGURE 8.19 CAM augmentation with external SRAM.

-Balch.book Page 190 Thursday, May 15, 2003 3:46 PM

High-Performance Memory Technologies 191

4,096 entries and returns a 12-bit index when a tag has been successfully matched. This index serves
as the address of an SRAM that has a 32-bit data path as required by the application.

When combined with conventional memory and some control logic, a CAM subsystem is some-
times referred to as a

search engine

. A search engine is differentiated from a stand-alone CAM by
being capable of semi-autonomous lookups on behalf of another entity such as data processing logic
in either hardware or software. A search engine’s control logic can be as simple as accepting a search
tag and then returning data along with a success flag. It can get more complex to include specific ta-
ble maintenance functions so that CAM overhead operations are completely offloaded from the data
processing logic. Search engines are especially useful when interfacing with special-purpose

net-
work processor

devices. These processors run software to parse packets and make decisions about
how each packet should be handled in the system. The tag lookup function is offloaded to a search
engine when there is not enough time for a software algorithm to search a large table.

-Balch.book Page 191 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

193

CHAPTER 9

Networking

Data communications is an essential component of every digital system. Some systems realize com-
munications by direct interaction with the environment and some with the exchange of removable
storage media such as tapes, disks, or memory modules. Many systems engage in data transfer that is
more real-time in nature. When these communications begin to involve multiple end-points, high-
speed transfers, and the need for reliable carriage of that data, the set of technologies that are broadly
known as networking become directly relevant.

There is probably no single definition of networking that can always identify when it is or is not
needed—the universe of applications is too diverse for such rigid definitions. The purpose of this
chapter is to introduce mainstream networking concepts so that you can make the decision of
whether a particular application demands networking or a simpler exchange of bits and bytes. Net-
working technologies blend hardware and software into algorithms that are implemented by either or
both resources, depending on the specific context. Because of limitations of space and scope, this
chapter concentrates on the hardware aspect of networking and how hardware is used to support the
formats, protocols, and algorithms that make networking the flexible technology that it is.

The discussion begins with protocol layers to understand the separate logical functions that com-
pose a network. Ethernet is frequently used as an example to further clarify networking concepts be-
cause of its ubiquity. Hardware support for networking most commonly resides at the lower layers of
the protocol stack. The bulk of the chapter is concerned with transmission, recovery, and verification
of data on the wire—essential tasks that serve as the foundation of data transfer. A brief presentation
of Ethernet closes the chapter to provide an illustration of how networking technology functions in
the real world.

9.1 PROTOCOL LAYERS ONE AND TWO

Networking systems can be highly complex and include many different hardware and software com-
ponents. To facilitate the analysis and design of such systems, major functional sections are sepa-
rated into

layers

whose definitions are reasonably standardized across the industry. Multiple layers
are arranged from the lowest level on the bottom to the highest level on the top in a conceptual

pro-
tocol stack

. To transfer data from an application running on one computer to that on another, the data
descends the stack’s layers on one computer and then ascends the stack on the destination computer.
The industry standard network stack definition is the

Open System Interconnection

(OSI) reference
model shown in Fig. 9.1.

As with most conceptual classifications, it is important to recognize that not all networking
schemes and implementations adhere strictly to the OSI seven-layer model. Some schemes may
merge one or more layers together, thereby reducing the number of formally defined layers. Others

-Balch.book Page 193 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

194 Advanced Digital Systems

may segment an OSI layer into multiple sublayers. The consistency of definitions decreases as one
moves up the stack, because of functional protocol variations.

Layer one, the

physical layer

, comprises the electromechanical characteristics of the medium
used to convey bits of information. The use of twisted pair cable, the amplitude of 1s and 0s, and as-
sociated connectors and transducers are examples of that which is specified in the physical layer.
Channel coding, how the bits are represented on the physical medium, is usually classified as part of
the physical layer.

The

data link layer

, layer two, encompasses the control logic and frame formatting that enables
data to be injected into the network’s physical layer and retrieved at the destination node. Layer-two
functions are usually handled by a

media access controller

(MAC), a hardware device that contains
all of the logic necessary to gain access to the network medium, properly format and transmit a
frame, and properly detect and process an incoming frame. Network frame formats specify data link
layer characteristics. Link level error detection mechanisms such as checksums and CRCs (more on
these later) are generated and verified by the MAC. Node addresses, called

MAC addresses

in Ether-
net networks, are layer-two constructs that uniquely identify individual nodes. Layer-two functions
are usually handled in hardware, because they are repetitive, high-frequency, and time-critical oper-
ations. The data link layer is closely tied to the topology of the network because of its handling of
access control functions and unique node addresses. Network

switches

operate at layer two by know-
ing which node address is connected to which port and then directing traffic to the relevant port. If
port 20 of a switch is connected to node 87, all frames that enter the switch destined for node 87 will
be sent out port 20. Because it is necessary to maintain unique layer-two addresses, they are gener-
ally not under the control of the user but rather are configured by the manufacturer. In the case of
Ethernet, each manufacturer of equipment licenses an arbitrary range of MAC addresses from the
IEEE and then assigns them one at a time as products roll off the assembly lines.

9.2 PROTOCOL LAYERS THREE AND FOUR

More flexible communications are possible when a protocol is not tied too closely to network topol-
ogy or even the type of network accomplishing the exchange of information. The

network layer

,
layer three, enables nodes to establish end-to-end connections without strict knowledge of the net-
work topology. Layer-three packets are encapsulated within the payload of a layer-two frame. The
packets typically contain their own header, payload, and sometimes a trailer as well. Perhaps the
most common example of a layer-three protocol is

Internet Protocol

 (IP). IP packets consist of a

Physical (Layer 1)

Data Link (Layer 2)

Network (Layer 3)

Transport (Layer 4)

Session (Layer 5)

Presentation (Layer 6)

Application (Layer 7)

FIGURE 9.1 OSI seven-layer model.

-Balch.book Page 194 Thursday, May 15, 2003 3:46 PM

Networking 195

header and payload. Included within the header are 32-bit layer-three destination and source

IP ad-
dresses

. A separate set of network addresses can be implemented at layer three that is orthogonal to
layer-two addresses. This gives network nodes two different addresses: one at layer three and one at
layer two. For a simple network, this may appear to be redundant and inefficient. Yet modern net-
working protocols must support complex topologies that span buildings and continents, often with a
mix of data links connecting many smaller subnetworks that may cover a single office or floor of a
building. The benefit of layer-three addressing and communication is that traffic can be carried on a
variety of underlying communications interfaces and not require the end points to know the exact
characteristics of each interface.

Network

routers

operate at layer three by separating the many subnetworks that make up a larger
network and only passing traffic that must travel between the subnetworks. Network addresses are
typically broken into

subnets

that correlate to physically distinct portions of the network. A router
has multiple ports, each of which is connected to a different subnetwork that is represented by a
range of network addresses. A frame entering a router port will not be sent to another particular port
on that router unless its network address matches a subnet configuration on that particular port.
Strictly speaking, this separation could be performed by layer-two addressing, but the practical real-
ity is that layer-two addresses are often not under the user’s control (e.g., Ethernet) and therefore
cannot be organized in a meaningful way. In contrast, layer-three addresses are soft properties of
each network installation and are not tied to a particular type of network medium.

Layer-three functions are performed by both hardware and software according to the specific im-
plementation and context. Layer-three packets are usually first generated by software but then ma-
nipulated by hardware as they flow through the network. A typical router processes layer-three
packets in hardware so that it does not fall behind the flow of traffic and cause a bottleneck.

The bottom three layers cumulatively move data from one place to another but sometimes do not
have the ability to actually guarantee that the data arrived intact. Layers one and two are collectively
responsible for moving properly formatted frames onto the network medium and then recovering
those in transit. The network layer adds some addressing flexibility on top of this basic function. A
true end-to-end guarantee of data delivery is missing from certain lower-level protocols (e.g., Ether-
net and IP) because of the complexity that this guarantee adds.

The

transport layer

, layer four, is responsible for ensuring end-to-end communication between
software services running on each node. Transport layer complexity varies according to the demands
of the application. Many applications are written with the simplifying assumption that once data is
passed to the transport layer for transmission, it is guaranteed to arrive at the destination.

Transmis-
sion control protocol

(TCP) is one of the most common layer-four protocols, because it is used to
guarantee the delivery of data across an unreliable IP network. When communicating via TCP, an
application can simply transfer the desired information and then move on to new tasks. TCP is
termed a

stateful

 protocol, because it retains information about packets after they are sent until their
successful arrival has been acknowledged. TCP operates using a sliding data transmission window
shown in Fig. 9.2 and overlays a 32-bit range of indices onto the data that is being sent. Pointers are
referenced into this 32-bit range to track data as it is transmitted and received.

The basic idea behind TCP is that the transmitter retains a copy of data that has already been sent
until it receives an acknowledgement that the data was properly received at the other end. If an ac-

outside window,
cannot send data

data already sent
and acknowledged

not yet sent, can
send any time

data sent, waiting for
acknowledge

0 232 – 1

Transmission Window

FIGURE 9.2 TCP transmission window.

-Balch.book Page 195 Thursday, May 15, 2003 3:46 PM

196 Advanced Digital Systems

knowledgement message is not received after a certain amount of time, the data is retransmitted.
TCP moves the complexity of guaranteeing end-to-end data delivery into software instead of into the
underlying network hardware, which is often Ethernet. When Ethernet was developed in the 1970s,
the cost of logic gates was much higher than it is now, and there was a strong incentive to simplify
hardware wherever possible.

The transmission window size is established by the receiver via messages that are sent to the
transmitter during connection negotiation and subsequent communications. For a receiver to adver-
tise a certain window size, it must have sufficient buffering to hold the entire contents of the window.
Once the transmitter is informed of the available transmission window, it may begin sending as
much data that can fit within the window. Each time the transmitter sends data, it marks that packet
with a 32-bit

sequence number

. This sequence number identifies the 32-bit index that corresponds to
the first data byte in the payload and enables the receiver to reconstruct the original data in its proper
sequence. When the receiver has successfully received a contiguous block of data starting from the
left side of the window, it sends an acknowledgement message with a 32-bit

acknowledgement num-
ber

marking the next highest expected sequence number of data. In other words, the acknowledge-
ment number corresponds to the index of the highest byte successfully received plus 1. Upon
receiving this message, the transmitter is able to slide the left side of the window up to the acknowl-
edgment number and discard the data in its buffer that now falls outside the window on the left side.
The receiver must continually extend the right side of the window to maintain data flow. If the re-
ceiver does not slide the right side of the window open, the left side will continue to advance until
the window closes, preventing new data from being transmitted.

Guaranteeing end-to-end delivery of data on an inherently unreliable network adds substantial
complexity to transport protocol drivers. These functions were traditionally handled by software.
However, certain high-performance applications benefit from accelerating TCP in hardware—a task
that is decidedly nontrivial.

There are also applications that do not require a transport protocol to guarantee delivery of data.
The reason for this may be that the TCP driver is too cumbersome to implement, a proprietary mech-
anism is preferable, or the underlying network is, in fact, reliable. In such cases, it is unnecessary
and often undesired to implement a complex protocol such as TCP. TCP’s companion protocol for
nonguaranteed transmission is called

user datagram protocol

 (UDP). UDP is used along with IP net-
works to send simple messages over unreliable networks or critical data over reliable networks. It is
a stateless protocol, because it simply wraps the data in a header and sends it to the network layer
without retaining any information about delivery. As such, there is no sliding transmission window
concept and no need for bidirectional communication at the transport layer.

Aside from guaranteeing delivery, many transport protocols implement a higher level of address-
ing, often referred to as

ports

or

sockets

. An individual node has a single network address associated
with it. However, each application on that node can have its own associated port or socket number.
These constructs allow the transport layer to direct data flows to the appropriate application on the
destination node. Rather than sending each packet that arrives to each application, an application es-
tablishes a port or socket number and, henceforth, all network traffic destined for that application is
marked with the correct port or socket number.

Layers five, six, and seven are more context specific and principally involve application and net-
work driver software as part of a computer’s operating system and network interface subsystem.
From a design perspective, the degree of hardware responsibility decreases as one ascends the stack.
Less-expensive systems will often try to use as little hardware as possible, resulting in the bare es-
sentials of the physical and data link layers being implemented in hardware. Such systems offload as
many functions as possible onto software to save cost, albeit at the expense of reducing the through-
put of the network interface. As higher levels of throughput are desired, more hardware creeps into
the bottom layers. On general-purpose computers, the network and transport layers are usually im-

-Balch.book Page 196 Thursday, May 15, 2003 3:46 PM

Networking 197

plemented in network driver software. However, on special-purpose platforms where high band-
width is critical, many layer-three and layer-four functions are accelerated by hardware. How these
trade-offs are made depends on the exact type of networking scheme being implemented.

9.3 PHYSICAL MEDIA

Most wired networking schemes use high-speed unidirectional serial data channels as their physical
communication medium. A pair of unidirectional channels is commonly used to provide bidirec-
tional communications between end points. Despite the fact that it is technically feasible to use a sin-
gle channel in a bidirectional mode, it is easier to design electronics and associated physical
apparatus that implement either a transmitter or receiver at each end of a cable, but not both. The
cost of mandating a pair of cables instead of a single cable is not very burdensome, because cables
are commonly manufactured as a bundle and are handled as a single unit in wiring conduits and con-
nection points. Two ubiquitous types of media are twisted-pair wiring and fiber optic cable. It is
common to find a single cable bundle containing two or more twisted pairs or a pair of fiber optic
strands. Twisted-pair and fiber can often be used interchangeably by a network transceiver as long as
the appropriate transducer properly converts between the transceiver’s electrical signaling and the
medium’s signaling. In the case of twisted pair, this conversion may consist of only amplification
and noise filtering. A fiber optic cable is somewhat more complex in that it requires an electro-opti-
cal conversion.

Twisted pair wiring is used in conjunction with differential signaling to provide improved noise
immunity versus a single-ended, or unbalanced, transmission medium. As network data rates have
increased, twisted pair wiring technology has kept pace with improved quality of manufacture to
support higher bandwidths. When the majority of Ethernet connections ran at 10 Mbps (10BASE-
T),

unshielded twisted pair

(UTP)

category-3

 (CAT3) was a common interconnect medium. UTP
wiring does not contain any surrounding grounded metal shield for added noise protection. As
100BASE-T emerged, wiring technology moved to CAT5, and this has remained the most common
UTP medium for some time. CAT5 has largely replaced CAT3, because the cost differential is slim,
and it exhibits better performance as a result of more twists per unit length and improved structural
integrity to maintain the desired electrical characteristics over time and handling. Enhanced UTP
products including CAT5e and CAT6 are emerging because of the popularity of gigabit Ethernet
over twisted pair (1000BASE-T). While most twisted pair is unshielded, shielded varieties (STP)
are used in specific applications. UTP is a favored wiring technology because of its relatively low
cost and ease of handling: connections can be made by crimping or punching the wires onto con-
nector terminals. The disadvantage of copper media is their susceptibility to noise and attenuation
of signals over moderate distances. These characteristics limit total UTP cable length to 100 m in
common Ethernet applications.

Bandwidth and distance are inversely related by the inherent characteristics of a given transmis-
sion medium. As distances increase, signal degradation increases, which reduces the available band-
width of the channel. Fiber optic cabling is used to overcome the bandwidth and distance limitations
of twisted pair wiring because of its immunity to electrical noise and very low optical attenuation
over distance. Fiber optic cable is generally constructed from high-purity glass, but plastic cables
have been used for special short-distance applications. Rather than being a simple extrusion of glass,
a fiber optic cable contains two optical elements surrounded by a protective sheath as shown in Fig.
9.3a. The inner glass core is differentiated from the outer glass cladding by the fact that one or both
have been doped with certain molecules to change their indices of refraction. The cladding has a
lower index of refraction than the core, which causes the great majority of light injected into the core

-Balch.book Page 197 Thursday, May 15, 2003 3:46 PM

198 Advanced Digital Systems

to bounce off the core/cladding boundary as shown in Fig. 9.3b, thereby trapping the light over very
long distances.

Light is injected into the core using either an LED or laser, depending on the required quality of
the signal. A laser can generate light that is coherent, meaning that its photons are at the same fre-
quency and phase. Injecting coherent light into a fiber optic cable reduces the distortion that accu-
mulates over distance as photons of different frequency travel through the medium at slightly
different velocities. Noncoherent photons that are emitted simultaneously as part of a signal pulse
will arrive at the destination spread slightly apart in time. This spreading makes reconstructing the
signal more difficult at very high frequencies, because signal edges are distorted.

Even when

coherent

 light is used, photons can take multiple paths in the core as they bounce off
the core/cladding boundary at different angles. These multiple propagation

modes

cause distortion
over distance. To deal with this phenomenon, two types of fiber optic cable are commonly used:

sin-
gle-mode

and

multimode

. Single-mode fiber contains a very thin core of approximately 8 to 10 µm in
diameter that constrains light to a single propagation mode, thereby reducing distortion. Multimode
fiber contains a larger core, typically 62.5 µm, that allows for multiple propagation modes and hence
increased distortion. Single-mode fiber is more expensive than multimode and is used in longer-dis-
tance and higher-bandwidth applications as necessary.

Fiber optic cabling is more expensive than copper wire, and the handling of optical connections is
more costly and complex as compared to copper. Splicing a fiber optic cable requires special equip-
ment to ensure a clean cut and low-loss junction between two separate cables. The best splice is ob-
tained by actually fusing two cables together to form a seamless connection. This is substantially
more involved than splicing a copper cable, which can be done with fairly simple tools. Fiber optic
connectors are sensitive to dirt and other contaminants that can attenuate the photons’ energy as they
pass through. Additionally, fine abrasive particles can scratch the glass faces of optical interfaces,
causing permanent damage. Once properly installed and sealed, however, fiber optic cable can actu-
ally be more rugged than copper cables because of its insensitivity to oxidation that degrades copper
wiring over time. Aside from bandwidth issues, these environmental benefits have resulted in infra-
structures such as cable TV being partially reinstalled with fiber to cut long-term maintenance costs.

9.4 CHANNEL CODING

High-speed serial data channels require the basic functionality of a UART, albeit at very high speed,
to convert back and forth between serial and parallel data paths. Unlike a UART that typically func-
tions at kilobits or a few megabits per second, specialized transceiver ICs called

serializer/deserial-

Structural
Sheath

Glass
Cladding

Glass
Core

cladding

cladding

(a) (b)

FIGURE 9.3 Fiber optic cable: (a) cross section and (b) propagation.

-Balch.book Page 198 Thursday, May 15, 2003 3:46 PM

Networking 199

izers

, or

serdes

for short, are manufactured that handle serial rates of multiple gigabits per second.
Serdes vendors include AMCC, Conexant, Intel, PMC-Sierra, Texas Instruments, and Vitesse. To
simplify system design, a serdes accepts a lower-frequency reference clock that is perhaps 1/10 or 1/
20 the bit frequency of the serial medium. Parallel data is usually transmitted to the serdes at this ref-
erence frequency. For example, the raw bit rate of gigabit Ethernet (IEEE 802.3z) is 1.25 Gbps, but a
typical serdes accepts a 125-MHz reference clock and 10 bits per cycle of transmit data. The refer-
ence clock is internally multiplied using a phase locked loop (PLL) to achieve the final bit rate. A
general serdes block diagram is shown in Fig. 9.4. An optional transmit clock is shown separately
from the reference clock, because some devices support these dual clocks. The benefits of a dual-
clock scheme are that a very stable reference clock can be driven by a high-accuracy source sepa-
rately from a somewhat noisier source-synchronous transmit clock generated by the data processing
logic. This eases the clock jitter requirements on data processing logic.

A clock recovery circuit in the receiver portion extracts a bit clock from the serial data stream that
is transmitted without a separate clock. This recovery is possible, because the serial data stream is
normally coded with an algorithm that guarantees a certain proportion of state transitions regardless
of the actual data being transferred. Such coding can be performed within the serdes or by external
data processing logic. Channel coding is necessary for more than clock recovery. Analog circuits in
the signal path, notably transducer and amplifier elements, require a relatively balanced data stream
to function optimally. In circuit analysis terms, they work best when the data stream has an average
DC value of 0. This is achieved with a data stream that contains an equal number of 1s and 0s over
short spans of time. If a 1 is represented as a positive voltage and a 0 is represented as a negative
voltage of equal magnitude, equal numbers of 1s and 0s balance out to an average voltage of 0 over
time.

Fortunately, it is possible to encode an arbitrary data stream such that the coded version contains
an average DC value of 0, and that data can be restored to its original form with an appropriate de-
coding circuit. One fairly simple method of encoding data is through a scrambling polynomial im-

PLL Clock
Multiplier

Serial to
Parallel

Parallel to
Serial

Transmit Data

Transmit Clock

Reference Clock

Input
Register

Output
Circuitry

Serial Output

Input
Circuitry

Serial Input

Clock
Recovery

Circuit

Input
Register

Framing
Detection

Logic

Receive Data

Receive Clock

Code Detect

Encoder

Decoder

optional coding
logic

FIGURE 9.4 Serdes block diagram.

-Balch.book Page 199 Thursday, May 15, 2003 3:46 PM

200 Advanced Digital Systems

plemented with a

linear feedback shift register—

a shift register with feedback generated by a set of
exclusive-OR gates. The placement of the XOR feedback terms is mathematically defined by a bi-
nary polynomial. Figure 9.5 shows scrambling logic used to encode and decode eight-bit data words
using the function F(X) = X

7

+ X

4

 + 1. The mathematical theory behind such polynomials is based
on

Galois fields

, discovered by Evariste Galois, a nineteenth century French mathematician. XOR
gates are placed at each bit position specified by the polynomial exponents, and their outputs feed
back to the shift register input to scramble and feed forward to the output to descramble.

This type of scrambling should not be confused with more sophisticated security and data protec-
tion algorithms. Data scrambled in this manner is done so for purposes of randomizing the bits on
the communications channel to achieve an average DC value of 0. Polynomial scrambling works
fairly well and is relatively easy to implement, but such schemes are subject to undesired cases in
which the application of select repetitive data patterns can cause an imbalance in the number of 1s
and 0s, thereby reducing the benefit of scrambling. The probability of settling into such cases is low,
making scrambling a suitable coding mechanism for certain data links.

While shown schematically as a serial process, these algorithms can be converted to parallel logic
by accumulating successive XOR operations over eight bits shifted through the polynomial register.
In cases when the coding logic lies outside of the serdes in custom logic, it is necessary to convert
this serial process into a parallel one, because data coming from the serdes will be in parallel form at
a corresponding clock frequency. Working out the logic for eight bits at a time allows processing one
byte per clock cycle. The serial to parallel algorithm conversion can be done over any number of bits
that is relevant to a particular application. This process is conceptually easy, but it is rather tedious to
actually work out the necessary logic.

A table can be formed to keep track of the polynomial code vector, C[6:0], and the output vector,
Q[7:0], as functions of the input vector, D[7:0]. Table 9.1 shows the state of C and Q, assuming that
the least-significant bit (LSB) is transmitted first, during each of eight successive cycles by listing
terms that are XORed together.

The final column, D[7], and the bottom row, Q, indicate the final state of the code and output vec-
tors, respectively. The code vector terms can be simplified, because some iterative XOR feedback
terms cancel each other out as a result of the identity that . Q[7:0] can be taken directly
from the table because there are no duplicate XOR terms. The simplified code vector, C[6:0], is
shown in Table 9.2.

Serial
Data In

Scrambled
Data Out

X7+X4+1 Scrambler

Scrambled
Data In Serial

Data Out

xor D

xor

xor

xor

X7+X4+1 Descrambler

D D DD DD

D D D DD DD

FIGURE 9.5 Eight-bit scrambling/descrambling logic.

A A⊕ 0=

-Balch.book Page 200 Thursday, May 15, 2003 3:46 PM

Networking 201

Following the same process, code and output vectors for the associated descrambling logic can be
derived as well, the results of which are shown in Table 9.3. In this case, the code vector, C[6:0], is
easy, because it is simply the incoming scrambled data shifted one bit at a time without any XOR
feedback terms. The output vector, Q[7:0], is also easier, because the XOR logic feeds forward with-
out any iterative feedback terms.

TABLE

9.1 Scrambler Logic State Table

Code/Output
Vector Bits

Input Vector Bits, One Each Clock Cycle

D0 D1 D2 D3 D4 D5 D6 D7

C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C5 D5 C2
D2 C6

C6 D6 C3
D3 C0 D0

C4

C0 D0 C4
D7 C4 D4
C1 D1 C5

C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C5 D5 C2
D2 C6

C6 D6 C3
D3 C0 D0

C4

C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C5 D5 C2
D2 C6

C3 C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C2 C3 C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C1 C2 C3 C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6

C0 C1 C2 C3 C4 C5 C6 C0 D0 C4 C1 D1 C5

Q C0 C1 C2 C3 C4 C5 C6 C0 D0 C4

TABLE

9.2 Simplified Scrambling Code
Vector Logic

Code Vector Bits XOR Logic

C6 C0 D0 C1 D1 D4 C5 D7

C5 C0 D0 C3 D3 C4 C6 D6

C4 C2 D2 C5 D5 C6

C3 C1 D1 C4 D4 C5

C2 C0 D0 C3 D3 C4

C1 C2 D2 C6

C0 C1 D1 C5

-Balch.book Page 201 Thursday, May 15, 2003 3:46 PM

202 Advanced Digital Systems

Data that has been encoded must be decoded before framing information can be extracted. There-
fore, the serdes’ receiving shift register must begin by performing a simple serial-to-parallel conver-
sion until framing information can be extracted after decoding. Prior to the detection of framing
information, the output of the parallel shift register will be arbitrary data at an arbitrary alignment,
because there is no knowledge of where individual bytes of words begin and end in the continuous
data stream. Once a framing sequence has been detected, the shift register can be “snapped” into
correct alignment, and its output will be properly formatted whole bytes or words.

When reconstructing decoded data, the desired byte alignment will likely span two consecutive
bytes as they come straight from the descrambling logic. The most significant bits of a descrambled
byte logically follow the LSB of the next descrambled byte because of the order in which bits are
shifted through the scrambler and descrambler. Therefore, when data arrives misaligned at the re-
ceiver/descrambler, bytes are reassembled by selecting the correct bits from the most significant bits
(MSB) of descrambled byte N and the LSB of descrambled byte N + 1 as shown in Fig. 9.6.

Framing information is not conveyed by the scrambled coding and must therefore be extracted at
a higher level. For this reason, certain serdes components that are used in scrambled coding systems

TABLE

9.3 Descrambling Logic Code and Output Vector Logic

Code Vector Bits Shift Logic Output Vector Bits XOR Logic

– – D7 D0 D7 D4

C6 D7 D6 C6 D6 D3

C5 D6 D5 C5 D5 D2

C4 D5 D4 C4 D4 D1

C3 D4 D3 C3 D3 D0

C2 D3 D2 C2 D2 C6

C1 D2 D1 C1 D1 C5

C0 D1 D0 C0 D0 C4

76543210

Descrambled byte N,
arrives first

Descrambled byte N + 1,
arrives next

76543210

76543210
Reassembled byte with

MSB from byte N + 1
and LSB from byte N

Time order in which bits are shifted through scrambler/descrambler (LSB first)

FIGURE 9.6 Reassembly of descrambled data.

-Balch.book Page 202 Thursday, May 15, 2003 3:46 PM

Networking 203

do not support any descrambling or framing detection logic, because that logic is application spe-
cific. These functions must be implemented by external data processing logic. There are specific
cases in which a common class of applications use standard scrambling and framing techniques. Ser-
des ICs designed for these applications do support the decoding and framing functions. An example
of such an application is the transport of serial digital video in a TV studio setting. Companies such
as Gennum Corporation manufacture serdes components with logic that can descramble 10-bit video
data words and recognize framing sequences so that the resulting data stream is cleanly word
aligned and directly usable without further manipulation.

9.5 8B10B CODING

An alternative, more robust coding method is

8B10B coding,

 which maps byte values to 10-bit
codes. Unlike polynomial coding that operates on a continuous stream of bits, 8B10B processes
each byte individually. Each coded value is guaranteed to contain either five 0s and five 1s, four 0s
and six 1s, or six 0s and four 1s. Therefore, a coded value contains a 0/1 imbalance of at most one
bit. Some raw byte values are mapped to a perfectly balanced coded value. Those that map to imbal-
anced codes are given two mappings: one with four 0s and six 1s and one with six 0s and four 1s. A
concept called c

urrent running disparity

(CRD) is used to keep track of whether the last code con-
tained a positive (1) or negative (0) imbalance. If a byte passes through the 8B10B encoder and is
mapped to a code with four 0s and six 1s, a CRD state bit is set. The next time a byte passes through
the encoder that has two possible mappings, the negatively imbalanced code will be chosen, and
CRD will be cleared. This mechanism ensures that there are an equal number of 1s and 0s over time.

8B10B guarantees a minimum frequency of 0/1/0 transitions within the coded data stream, en-
abling reliable recovery of the serial bit clock at the receiver and guaranteeing an average DC value
of 0 across the data stream. In mapping the 256 unique byte values to 10-bit codes, not all 1,024
code words are used. Some of these words are undesirable, because they contain greater than a sin-
gle bit of 0/1 imbalance. However, some code words are left over that contain valid sequences of 0s
and 1s. Rather than leave them unused, these code words are used to carry special values called

spe-
cial characters

 that can assist in the framing of data on a link. In particular, three special characters
contain a unique

comma pattern

, where the first seven bits of a word contain two bits of one polarity
followed by five bits of the opposite polarity. This comma pattern is guaranteed not to occur within
any other data words, making it ideal as a marker with which data can be aligned within a serdes. A
serdes that is 8B10B coding aware can search for comma patterns in the data stream and then realign
the data stream such that comma patterns show up in the seven most significant bits of an incoming
word. If the data link is properly encoded and is sufficiently free of disruptive noise, this alignment
process should have to occur only once and thereafter will be transparent, because the comma pat-
terns will already be in the proper bit positions. The benefits of 8B10B coding come with a 20 per-
cent overhead penalty, because every eight data bits require ten coded bits. The cost is justified in
many communications systems, because the electrical benefits of a balanced coding scheme enable
more usable bandwidth to be extracted from a medium with a corresponding low bit error rate.

Serdes devices that are 8B10B coding aware contain a framing detection logic block that imple-
ments the 8B10B comma alignment function. The actual encoding and decoding may or may not be
implemented in the serdes according to the parameters of the specific device. The comma detection
and alignment function does not require the more complex encoding/decoding functions, because
only a simple pattern match is required. A benefit of 8B10B coding is that low-level alignment oper-
ations can be performed by generic serdes logic without regard to the actual type of network traffic
passing through the device. For example, Gigabit Ethernet and Fibre Channel (a storage area net-

-Balch.book Page 203 Thursday, May 15, 2003 3:46 PM

204 Advanced Digital Systems

working technology) both utilize 8B10B coding and can therefore take advantage of the same serdes
devices on the market, despite the fact that their frame structures are completely different.

8B10B codes are broken into two sub-blocks to simplify the encoding/decoding process. Rather
than directly mapping 256 data values into 1,024 code words, the data byte is separated into its three
most-significant bits (designated Y) and its five least-significant bits (designated XX). The data byte
is combined with a flag bit to represent its status as either a normal data character or as a special
character. In notational form, a data character is represented as D and a special character as K. As
shown in Fig. 9.7, the eight data bits are assigned letters from H down to A and the sub-blocks are
swapped to yield a final notation of D/KXX.Y. For example, the ASCII character Z (0x5A) is split
into two sub-blocks, 010 (Y) and 11010 (XX), yielding a notation of D26.2.

Once the data or special character has been split into sub-blocks, each sub-block is encoded using
separate lookup tables whose inputs are the sub-blocks, CRD state information, and the special char-
acter flag. Separating the sub-blocks enables smaller lookup tables, which is advantageous from
complexity and timing perspectives. The five-bit (XX) sub-block is converted to a six-bit code, and
the three-bit sub-block (Y) is converted to a four-bit code, making ten bits in total. When encoding
the XX sub-block, the CRD bit reflects the running disparity remaining from the previously encoded
character. In the case of the Y sub-block, the CRD bit reflects the running disparity remaining from
the 5B6B encoding of the current character. Tables 9.4 and 9.5 list the 5B6B and 3B4B lookup func-
tions. Note that not all special characters are valid and that the CRD bit inverts the code when neces-
sary to maintain a balance of 0s and 1s. The encoded bits are referred to by lower-case letters and,
when sub-blocks are combined, form a string of bits: a, b, c, d, e, i, f, g, h, j. Encoded words are
transmitted starting with bit “a” and ending with bit “j”.

A special case exists in the 3B4B lookup table when encoding Dxx.7 characters to prevent long
strings of consecutive zeroes or ones. When the CRD is negative and D17.7, D18.7, or D20.7 are be-
ing encoded, the alternate 0111 encoding is used instead of 1110. Likewise, when the CRD is posi-
tive and D11.7, D13.7, or D14.7 are being encoded, the alternate 1000 encoding is used instead of
0001. These exception cases present some additional complexity to the 3B4B translation.

In addition to the 256 possible data characters, 12 special characters are supported. All possible
K28.y characters are supported along with K23.7, K27.7, K29.7 and K30.7. These special characters
are identified by either a unique 5B6B code or a unique 3B4B code. The K28 is the only special
character type with a unique 5B6B encoding. The other special characters are identified, because
Kxx.7 has a unique 3B4B encoding. Recall that not all ten-bit code word permutations can be used
because of 0/1 disparity rules inherent in the 8B10B coding algorithm.

There are numerous possible implementations of 8B10B encoder and decoder circuits, and they
can vary by how many bytes are simultaneously processed, the type of lookup table resources avail-
able, and the degree of pipelining or other optimization required to achieve the desired throughput. A
high-level block diagram of an 8B10B encoder is shown in Fig. 9.8. The larger 5B6B lookup table
computes the intermediate CRD´ state that results from mapping the running disparity of the previ-

7 6 5 4 3 2 1 0D/KData

H G FE D C B A

H G F E D C B A

D/KSub-blocks

Notation D/K XX Y.

FIGURE 9.7 8B10B coding notation.

-Balch.book Page 204 Thursday, May 15, 2003 3:46 PM

Networking 205

TABLE

9.4 5B6B Sub-block Encoding

Encoded Value
abcdei

Input Character
Binary Value

EDCBA
Positive Disparity Negative Disparity

D00.y 00000 100111 011000

D01.y 00001 011101 100010

D02.y 00010 101101 010010

D03.y 00011 110001

D04.y 00100 110101 001010

D05.y 00101 101001

D06.y 00110 011001

D07.y 00111 111000 000111

D08.y 01000 111001 000110

D09.y 01001 100101

D10.y 01010 010101

D11.y 01011 110100

D12.y 01100 001101

D13.y 01101 101100

D14.y 01110 011100

D15.y 01111 010111 101000

D16.y 10000 011011 100100

D17.y 10001 100011

D18.y 10010 010011

D19.y 10011 110010

D20.y 10100 001011

D21.y 10101 101010

D22.y 10110 011010

D/K23.y 10111 111010 000101

D24.y 11000 110011 001100

D25.y 11001 100110

D26.y 11010 010110

D/K27.y 11011 110110 001001

D28.y 11100 001110

K28.y 11100 001111 110000

D/K29.y 11101 101110 010001

D/K30.y 11110 011110 100001

D31.y 11111 101011 010100

-Balch.book Page 205 Thursday, May 15, 2003 3:46 PM

206 Advanced Digital Systems

ous character to the current 5B6B code. If the 5B6B code is neutral, CRD´ will reflect the disparity
of the generated 5B6B code. Otherwise, the lookup table will attempt to choose a code that balances
out the CRD. If the character maps to a neutral code, the CRD will be passed through. The 3B4B ta-
ble not only performs a simple mapping of the Y sub-block, but it also handles the alternate encod-
ing of the special cases mentioned previously. The final CRD from this table is stored for use in the
next character encoding.

TABLE

9.5 5B6B Sub-block Encoding

Encoded Value
fghj

Input Character
Binary Value

HGF
Positive Disparity Negative Disparity

D/Kxx.0 000 1011 0100

Dxx.1 001 1001

Kxx.1 001 0110 1001

Dxx.2 010 0101

Kxx.2 010 1010 0101

D/Kxx.3 011 1100 0011

D/Kxx.4 100 1101 0010

Dxx.5 101 1010

Kxx.5 101 0101 1010

Dxx.6 110 0110

Kxx.6 110 1001 0110

Dxx.7 111 1110 (0111) 0001 (1000)

Kxx.7 111 0111 1000

5B6B Lookup

3B4B Lookup
w/Dxx.7 Alternate

Encoding

D/K

XX

CRD

5B6B Code

Y

CRD'

3B4B Code

New CRD

a

b

c

d

e

i

f

g

h

j

FIGURE 9.8 8B10B encoding logic.

-Balch.book Page 206 Thursday, May 15, 2003 3:46 PM

Networking 207

The 8B10B decoding process requires similar lookup tables that perform the reverse operation.
Decoding should also deal with CRD errors and invalid characters that indicate a bit error on the
data link. However, not all bit errors on the data link will result in CRD errors or invalid characters.

9.6 ERROR DETECTION

Error detection and recovery are key requirements of data communications systems, because unde-
sired results can occur if corrupted data is handled as if it were correct. While you might not mind an
extra 0 being added to your bank account balance, you would certainly not want a 0 accidentally re-
moved due to a data error! Transducer circuitry seeks to achieve the lowest

bit error rate

(BER) pos-
sible, but it will never be 0. Bit error rates of 10

–10

 to 10

–12

 are commonly achievable in wired
(copper and fiber optic) data links. When these links carry data at 1 to 10 Gbps, errors will statisti-
cally occur every few seconds or minutes. These statistics make bit errors infrequent but recurring
events that must be handled appropriately.

It is easier to detect an error than it is to correct one. Certain coding schemes, including 8B10B,
provide some inherent bit error detection capability. If a bit error causes the detection of an invalid
8B10B code, or one with the wrong disparity, the receiver can detect the error. However, 8B10B
coding cannot be relied upon to detect all errors, because not all errors will result in an invalid code
word. Some single-bit or multibit errors will result in a different yet valid code word.

For channels with relatively low BER (e.g., high-quality wired data links), coding with a low-
overhead scheme such as 8B10B is sufficient, and the responsibility for error detection and recovery
can be passed up to the upper protocol levels. If errors are rare, the protocol-handling logic (both
hardware and software) will not have to spend much time recovering from errors. A typical action
when an error is detected at the protocol level is to request the retransmission of the affected frame.
Such retransmission is expensive in terms of relative time and effort but is usually insignificant over-
all because of the low error rate. This situation changes when a channel has a higher BER.

A high-quality wireless data link may exhibit a BER of 10

–6

, making errors much more frequent
than in a high-quality wired channel. If all errors were handled by retransmitting frames, overall sys-
tem throughput would suffer, because a much higher proportion of traffic would be devoted to error
recovery. In these situations, it is worth utilizing a coding scheme with higher overhead that is capa-
ble of not only detecting errors but correcting them on the fly as well. Such schemes are called

for-
ward error correction

(FEC). FEC codes calculate additional bits to be sent along with each data
unit that have a degree of redundancy built into them so that if one or more bits get changed, a logi-
cal transformation can detect the mismatch and determine the correct values. It stands to reason that
the overhead of FEC increases with the desire to correct increased numbers of bit errors within a sin-
gle coded data unit. More FEC bits are required to correct two simultaneous bit errors than a single
bit error. The decision on how complex a coding should be used is based on the channel’s BER and
on the penalty for passing error recovery functions to the protocol level. These characteristics are an-
alyzed mathematically by considering the

coding gain

of a particular FEC code. An FEC code can
be considered as its own channel that, rather than causing bit errors, resolves them. When the FEC
channel is placed together with the real channel, the FEC coding gain effectively reduces the BER of
the overall channel. FEC and its implementation are complex topics that are covered in specialized
texts.

Regardless of whether a communications channel implements FEC, the data that is passed to
higher protocol layers is subject to a net nonzero BER. The responsibility for handling these remain-
ing errors lies at the data link layer and above. Network frame formats usually contain one or more
error detection fields. These fields generally fall into one of two categories:

checksum

and

cyclic re-
dundancy check

(CRC).

-Balch.book Page 207 Thursday, May 15, 2003 3:46 PM

208 Advanced Digital Systems

9.7 CHECKSUM

A checksum is a summation of a set of data and can be an arbitrary width, usually 8, 16, or 32 bits.
Once a set of data has been summed, the checksum is sent along with the frame so that the sum can
be verified at the receiver. The receiver can calculate its own checksum value by summing the rele-
vant data and then compare its result against the frame’s checksum. Alternatively, many checksum
schemes enable the checksum value itself to be summed along with the data set, with a final result of
zero indicating verification and nonzero indicating an error.

Perhaps the most common checksum scheme uses one’s complement binary arithmetic to calcu-
late the sum of a data set. One’s complement addition involves calculating a normal two’s comple-
ment sum of two values and then adding the carry bit back into the result. This constrains the
running sum to the desired bit width, a necessary feature when summing hundreds or thousands of
bytes where an unconstrained sum can be quite large. It is guaranteed that, when the carry bit is
added back into the original result, a second carry will not be generated. For example, adding 0xFF
and 0xFF yields 0x1FE. When the carry bit is added back into the eight-bit sum, 0xFF is the final
one’s complement result.

An interesting consequence of one’s complement math is that the eight-bit values 0x00 and 0xFF
(or 0xFFFF for a 16-bit value) are numerically equivalent. Consider what would happen if 1 is added
to either value. In the first case, 0x00 + 0x01 = 0x01, is the obvious result. In the second case, 0xFF
+ 0x01 = 0x100 = 0x01, where the carry bit is added back into the eight-bit sum to yield the same fi-
nal result, 0x01. A brief example of calculating a 16-bit checksum is shown in Table 9.6 to aid in un-
derstanding the one’s complement checksum.

The logic to perform a one’s complement checksum calculation can take the form of a normal
two’s complement adder whereby the carry bit is fed back in the next clock cycle to adjust the sum.
As shown in Fig. 9.9, this forms a pipelined checksum calculator where the latency is two cycles. To
begin the calculation, the accumulator and carry bit are reset to 0. Each time a word is to be summed,
the multiplexer is switched from 0 to select the word. The adder has no qualifying logic and adds its
two inputs, whose sum is repeatedly loaded into the accumulator and carry bits on each rising clock
edge. After the last word has been summed, the control logic should wait an extra cycle, during
which the multiplexer is selected to 0 to allow the most recent carry bit to be incorporated into the
sum. It is guaranteed that a nonzero carry bit will not propagate into another nonzero carry bit after
summing the accumulator with 0. This configuration works well in many situations, because two’s
complement adders are supported by many available logic implementation technologies. In high-

TABLE

9.6 Sixteen-Bit One’s Complement Checksum

Data Value Sum Carry Running Checksum

Initialize checksum to zero 0x0000

0x1020 0x1020 0 0x1020

0xFFF0 0x1010 1 0x1011

0xAD00 0xBD11 0 0xBD11

0x6098 0x1DA9 1 0x1DAA

0x701E 0x8DC8 0 0x8DC8

-Balch.book Page 208 Thursday, May 15, 2003 3:46 PM

Networking 209

speed designs, logic paths with adders in them can prove difficult to meet timing. As shown in Fig.
9.9, an optional input register can be added between the multiplexer and the adder to completely iso-
late the adder from the control logic. This modification improves timing at the expense of an added
cycle of latency to the checksum calculation.

A convenient advantage to the one’s complement checksum is that, if the final result is inverted,
or complemented, it can be summed along with the original data set with a final result of 0. The
complement of 0x8DC8 is 0x7237, which, when added to the sum, 0x8DC8, yields 0xFFFF, the
equivalent of 0x0000. Therefore, rather than placing the checksum itself into a frame, the transmitter
can place the complemented value instead. The receiver’s verification logic is thereby simplified by
not requiring a full 16-bit comparator between the calculated checksum and the frame’s checksum. It
can sum all the relevant data values along with the complemented checksum and check for a result
of 0x0000 or 0xFFFF.

Checksums can catch many types of errors, because most errors will cause the receiver’s calcu-
lated checksum to differ from that contained in the frame. There are, however, consecutive se-
quences of errors, or bursts, that a checksum cannot detect. As the checksum is calculated, the first
bit error will corrupt the in-progress sum. Subsequent errors can mask the previous error and return
the sum to its proper value. The probability of this occurring is low, but it is not zero. Error detection
is a study in probability wherein one can never attain a zero probability of undetected errors, but the
probability can be brought arbitrarily close to zero as overhead is added in the form of coding and
error detection fields.

9.8 CYCLIC REDUNDANCY CHECK

The CRC is a more complex calculation and one that provides a higher probability of detecting er-
rors, especially multibit burst errors. A CRC is calculated using a linear feedback shift register, fol-
lowing the same basic concept behind scrambling data with a polynomial according to Galois field
theory. CRCs exhibit superior error detection characteristics including the ability to detect all single-
bit and double-bit errors, all odd numbers of errors, all burst errors less than or equal to the degree of
the polynomial used, and most burst errors greater than the degree of the polynomial used.

*

 The
quality of CRC error detection depends on choosing the right polynomial, called a

generator polyno-
mial

. The theory behind mathematically proving CRC validity and choosing generator polynomials
is a complex set of topics about which much has been written. Different standard applications that
employ CRCs have a specific polynomial associated with them.

A common CRC algorithm is the 8-bit polynomial specified by the

International Telecommunica-
tion Union

(ITU) in recommendation I.432, and it is used to protect ATM cell headers. This CRC,

*

Parallel Cyclic Redundancy Check (CRC) for HOTLink™,

Cypress Semiconductor, 1999.

16-Bit
Accumulator

Carry

16-Bit
Two's Complement

Adder COUT

SUM

CIN

1

0

Optional
Input

Register

Input Data[15:0]

"0"

Sum Input Enable

Checksum Out[15:0]

FIGURE 9.9 One’s complement checksum calculator.

-Balch.book Page 209 Thursday, May 15, 2003 3:46 PM

210 Advanced Digital Systems

commonly called the

Header Error Check

(HEC) field, is defined by the polynomial x

8

 + x

2

 + x + 1.
The HEC is implemented with an eight-bit

linear feedback shift register

(LFSR) as shown in
Fig. 9.10. Bytes are shifted into the LFSR one bit at a time, starting with the MSB. Input data and the
last CRC bit feed to the XOR gates that are located at the bit positions indicated by the defining
polynomial. After each byte has been shifted in, a CRC value can be read out in parallel with the
LSB and MSB at the positions shown. When a new CRC calculation begins, this CRC algorithm
specifies that the CRC register be initialized to 0x00. Not all CRC algorithms start with a 0 value;
some start with each bit set to 1.

The serial LFSR can be converted into a set of parallel equations to enable practical implementa-
tion of the HEC on byte-wide interfaces. The general method of deriving the parallel equations is the
same as done previously for the scrambling polynomial. Unfortunately, this is a very tedious process
that is prone to human error. As CRC algorithms increase in size and complexity, the task can get
lengthy. LFSRs may be converted manually or with the help of a computer program or spreadsheet.
Table 9.7 lists the XOR terms for the eight-bit HEC algorithm wherein a whole byte is clocked
through each cycle. Each CRC bit is referred to as Cn, where n = [7:0]. Once the equations are sim-
plified, matching pairs of CRC and data input bits are found grouped together. Therefore, the con-
vention Xn is adopted where Xn = Cn XOR Dn to simplify notation. Similar Boolean equations can
be derived for arbitrary cases where fractions of a byte (e.g., four bits) are clocked through each cy-
cle, or where multiple bytes are clocked through in the case of a wider data path.

TABLE

9.7 Simplified Parallel
HEC Logic

CRC Bits XOR Logic

C0 X0 X6 X7

C1 X0 X1 X6

C2 X0 X1 X2 X6

C3 X1 X2 X3 X7

C4 X2 X3 X4

C5 X3 X4 X5

C6 X4 X5 X6

C7 X5 X6 X7

x1

+

x2

++

x3 x4 x5 x6 x7 x8

Data Input (MSB First)

CRC LSB (C0) CRC MSB (C7)

FIGURE 9.10 HEC LFSR.

-Balch.book Page 210 Thursday, May 15, 2003 3:46 PM

Networking 211

When a new HEC calculation is to be started, the CRC state bits are reset to 0. Each byte is then
clocked through the parallel logic at the rate of one byte per cycle. Following the final data byte, the
HEC is XORed with 0x55 to yield a final result. An arbitrary number of bytes can be clocked
through, and the CRC value will change each cycle. The one exception to this is the case of leading
0s. Because the HEC specifies a reset state of 0, passing 0x00 data through the CRC logic will not
result in a nonzero value. However, once a nonzero value has been clocked through, the LFSR will
maintain a nonzero value in the presence of a stream of 0s. This property makes the HEC nonideal
for checking arbitrary strings of leading 0s, and it is a reason why other CRC schemes begin with a
nonzero reset value. Table 9.8 shows an example of passing four nonzero data bytes through the par-
allel HEC logic and then XORing with 0x55 to determine a final CRC value.

Another common CRC is the 16-bit polynomial appropriately called

CRC-16

. Its polynomial is
x

16

 + x

15

 + x

2

 + 1, and its LFSR implementation is shown in Fig. 9.11. As with the HEC, a CRC-16
can be converted to a parallel implementation. Because the CRC-16 is two bytes wide, its common
implementations vary according to whether the data path is 8 or 16 bits wide. Of course, wider data
paths can be implemented as well, at the expense of more complex logic. Table 9.9 lists the CRC-16
XOR terms for handling either one or two bytes per cycle.

Properly calculating a CRC-16 requires a degree of bit shuffling to conform to industry conven-
tions. While this shuffling does not intrinsically add value to the CRC algorithm, it is important for
all implementations to use the same conventions so that one circuit can properly exchange CRC
codes with another. Unlike the HEC that shifts in data bytes MSB to LSB, the CRC-16 shifts in data
bytes LSB to MSB. In the case of a 16-bit implementation, the high-byte, bits [15:8], of a 16-bit
word is shifted in before the low-byte, bits [7:0], to match the standard order in which bytes are
transmitted. What this means to the implementer is that incoming data bits must be flipped before
being clocked through the parallel XOR logic. This doesn’t actually add any logic to the task, and

TABLE

9.8 Examples of HEC Calculation

Data Input HEC Value

(Initialization) 0x00

0x11 0x77

0x22 0xAC

0x33 0xD4

0x44 0xF9

XOR 0x55 0xAC

x1 x2

++

x3 x4 x5 x6 x7 x8

Data Input (MSb First)

CRC LSb (C0) CRC MSb (C15)

x9 x10 x11 x12 x13 x14 x15 x16

+

FIGURE 9.11 CRC-16 LFSR.

-Balch.book Page 211 Thursday, May 15, 2003 3:46 PM

212 Advanced Digital Systems

there are a couple of ways that this can be done. One approach is to explicitly renumber the XOR
terms to perform the flipping intrinsically. Another approach, the one taken here, is to maintain a
consistent XOR nomenclature and simply flip the bits between the input and the XOR functions. It is
convenient to adopt a common bit ordering convention across different CRC implementations, and
the XOR terms shown for the CRC-16 are written with the same convention used in the HEC logic:
MSB first. The actual bit-flipping in hardware is translated to a renumbering of the XOR input terms
by the logic implementation software being used without any penalty of additional gates.

Once the bits have been clocked through the XOR functions in the correct order, industry conven-
tion is that the CRC register itself is flipped bit-wise and, depending on the implementation, byte-
wise as well. The bit-wise flipping is always performed, and the byte-wise flipping is a function of
whether big-endian or little-endian ordering is used. Since all of this talk of bit shuffling may seem
confusing, Table 9.10 shows a step-by-step example of calculating a CRC-16 16 bits at a time across
the 32-bit data set 0x4D41524B using the big-endian convention.

Yet another CRC is the ubiquitous 32-bit CRC-32, which is used in Ethernet, FDDI, Fibre Chan-
nel, and many other applications. The CRC-32 polynomial is x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 +x2 + x + 1, and its LFSR implementation is shown in Fig. 9.12. Similar to

TABLE 9.9 CRC-16 Parallel Logic

CRC Bits 16-Bit XOR Logic 8-Bit XOR Logic

C0 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X12 X13 X15

C8 C9 C10 C11 C12 C13 C14 C15 D0 D1 D2
D3 D4 D5 D6 D7

C1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X12 X13 X14

C9 C10 C11 C12 C13 C14 C15 D1 D2 D3
D4 D5 D6 D7

C2 X0 X1 X14 C8 C9 D0 D1

C3 X1 X2 X15 C9 C10 D1 D2

C4 X2 X3 C10 C11 D2 D3

C5 X3 X4 C11 C12 D3 D4

C6 X4 X5 C12 C13 D4 D5

C7 X5 X6 C13 C14 D5 D6

C8 X6 X7 C0 C14 C15 D6 D7

C9 X7 X8 C1 C15 D7

C10 X8 X9 C2

C11 X9 X10 C3

C12 X10 X11 C4

C13 X11 X12 C5

C14 X12 X13 C6

C15 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X12 X14 X15

X7 C8 C9 C10 C11 C12 C13 C14 C15 D0 D1
D2 D3 D4 D5 D6

-Balch.book Page 212 Thursday, May 15, 2003 3:46 PM

Networking 213

the CRC-16, parallel CRC-32 logic is commonly derived for data paths of one, two, or four bytes in
width. A difference between the CRC-32 and those CRC schemes already presented is that the
CRC32’s state bits are initialized to 1s rather than 0s, and the final result is inverted before being
used. Table 9.11 lists the CRC-32 XOR terms for handling one, two, or four bytes per cycle.

As noted, the CRC-32 state bits are initialized with 1s before calculation begins on a new data set.
Words are byte-swapped and bit-flipped according to the same scheme as done for the CRC-16.
When the last data word has been clocked through the parallel logic, the CRC-32 state bits are in-
verted to yield the final calculated value. Table 9.12 shows a step-by-step example of calculating a
CRC-32 32 bits at a time using the same 32-bit data set, 0x4D41524B, as before.

CRC algorithms can be performed in software, and often are when cost savings is more important
than throughput. Due to their complexity, however, the task is usually done in hardware when high-
speed processing is required. Most modern networking standards place one or more CRC fields into

TABLE 9.10 Step-by-Step CRC16 Calculation

Operation Data

Initialize CRC-16 state bits 0x0000

First word to be calculated 0x4D41

Reorder bytes to end high-byte first after bit-flipping 0x414D

Flip bits for LSB-first transmission of high-byte then low-byte 0xB282

Clock word through XOR logic 0xAF06

Second word to be calculated 0x524B

Reorder bytes to end high-byte first after bit-flipping 0x4B52

Flip bits for LSB-first transmission of high byte then low byte 0x4AD2

Clock word through XOR logic 0x5CF4

Flip bits of CRC 0x2F3A

Optionally swap bytes of CRC for final result 0x3A2F

x1

+

x2

++

x3 x4

+

x5

+

x6 x7

+

x8

+

x9 x10

+

x11

+

x12 x13

+

x14 x15

x16

+

x17 x18 x19 x20 x21 x22

+

x23 x24

+

x25 x26

+

x27 x28 x29 x30 x31 x32

CRC MSb (C31)

CRC LSb (C0)

Data Input (MSb First)

FIGURE 9.12 CRC-32 LFSR.

-Balch.book Page 213 Thursday, May 15, 2003 3:46 PM

214 Advanced Digital Systems

TABLE 9.11 CRC-32 Parallel Logic

CRC Bits 32-Bit XOR Logic 16-Bit XOR Logic 8-Bit XOR Logic

C0 X0 X6 X9 X10 X12 X16 X24 X25 X26
X28 X29 X30 X31

C16 C22 C25 C26 C28 D0 D6 D9 D10
D12

C24 C30 D0 D6

C1 X0 X1 X6 X7 X9 X11 X12 X13 X16 X17
X24 X27 X28

C16 C17 C22 C23 C25 C27 C28 C29 D0
D1 D6 D7 D9 D11 D12 D13

C24 C25 C30 C31 D0 D1 D6
D7

C2 X0 X1 X2 X6 X7 X8 X9 X13 X14 X16
X17 X18 X24 X26 X30 X31

C16 C17 C18 C22 C23 C24 C25 C29 C30
D0 D1 D2 D6 D7 D8 D9 D13 D14

C24 C25 C26 C30 C31 D0 D1
D2 D6 D7

C3 X1 X2 X3 X7 X8 X9 X10 X14 X15 X17
X18 X19 X25 X27 X31

C17 C18 C19 C23 C24 C25 C26 C30 C31
D1 D2 D3 D7 D8 D9 D10 D14 D15

C25 C26 C27 C31 D1 D2 D3
D7

C4 X0 X2 X3 X4 X6 X8 X11 X12 X15 X18
X19 X20 X24 X25 X29 X30 X31

C16 C18 C19 C20 C22 C24 C27 C28 C31
D0 D2 D3 D4 D6 D8 D11 D12 D15

C24 C26 C27 C28 C30 D0 D2
D3 D4 D6

C5 X0 X1 X3 X4 X5 X6 X7 X10 X13 X19
X20 X21 X24 X28 X29

C16 C17 C19 C20 C21 C22 C23 C26 C29
D0 D1 D3 D4 D5 D6 D7 D10 D13

C24 C25 C27 C28 C29 C30
C31 D0 D1 D3 D4 D5 D6 D7

C6 X1 X2 X4 X5 X6 X7 X8 X11 X14 X20
X21 X22 X25 X29 X30

C17 C18 C20 C21 C22 C23 C24 C27 C30
D1 D2 D4 D5 D6 D7 D8 D11 D14

C25 C26 C28 C29 C30 C31
D1 D2 D4 D5 D6 D7

C7 X0 X2 X3 X5 X7 X8 X10 X15 X16 X21
X22 X23 X24 X25 X28 X29

C16 C18 C19 C21 C23 C24 C26 C31 D0
D2 D3 D5 D7 D8 D10 D15

C24 C26 C27 C29 C31 D0 D2
D3 D5 D7

C8 X0 X1 X3 X4 X8 X10 X11 X12 X17 X22
X23 X28 X31

C16 C17 C19 C20 C24 C26 C27 C28 D0
D1 D3 D4 D8 D10 D11 D12

X0 C24 C25 C27 C28 D1 D3
D4

C9 X1 X2 X4 X5 X9 X11 X12 X13 X18 X23
X24 X29

C17 C18 C20 C21 C25 C27 C28 C29 D1
D2 D4 D5 D9 D11 D12 D13

X1 C25 C26 C28 C29 D2 D4
D5

C10 X0 X2 X3 X5 X9 X13 X14 X16 X19 X26
X28 X29 X31

C16 C18 C19 C21 C25 C29 C30 D0 D2
D3 D5 D9 D13 D14

X2 C24 C26 C27 C29 D0 D3
D5

C11 X0 X1 X3 X4 X9 X12 X14 X15 X16 X17
X20 X24 X25 X26 X27 X28 X31

C16 C17 C19 C20 C25 C28 C30 C31 D0
D1 D3 D4 D9 D12 D14 D15

X3 C24 C25 C27 C28 D0 D1
D4

C12 X0 X1 X2 X4 X5 X6 X9 X12 X13 X15
X17 X18 X21 X24 X27 X30 X31

C16 C17 C18 C20 C21 C22 C25 C28 C29
C31 D0 D1 D2 D4 D5 D6 D9 D12 D13

D15

X4 C24 C25 C26 C28 C29
C30 D0 D1 D2 D5 D6

C13 X1 X2 X3 X5 X6 X7 X10 X13 X14 X16
X18 X19 X22 X25 X28 X31

C17 C18 C19 C21 C22 C23 C26 C29 C30
D1 D2 D3 D5 D6 D7 D10 D13 D14

X5 C25 C26 C27 C29 C30
C31 D1 D2 D3 D6 D7

C14 X2 X3 X4 X6 X7 X8 X11 X14 X15 X17
X19 X20 X23 X26 X29

C18 C19 C20 C22 C23 C24 C27 C30 C31
D2 D3 D4 D6 D7 D8 D11 D14 D15

X6 C26 C27 C28 C30 C31 D2
D3 D4 D7

C15 X3 X4 X5 X7 X8 X9 X12 X15 X16 X18
X20 X21 X24 X27 X30

C19 C20 C21 C23 C24 C25 C28 C31 D3
D4 D5 D7 D8 D9 D12 D15

X7 C27 C28 C29 C31 D3 D4
D5

C16 X0 X4 X5 X8 X12 X13 X17 X19 X21
X22 X24 X26 X29 X30

X0 C16 C20 C21 C24 C28 C29 D4 D5
D8 D12 D13

C8 C24 C28 C29 D0 D4 D5

C17 X1 X5 X6 X9 X13 X14 X18 X20 X22
X23 X25 X27 X30 X31

X1 C17 C21 C22 C25 C29 C30 D5 D6
D9 D13 D14

C9 C25 C29 C30 D1 D5 D6

-Balch.book Page 214 Thursday, May 15, 2003 3:46 PM

Networking 215

frames (often in the trailer following the header and payload) to enable detection of infrequent bit er-
rors. A typical system implementation contains hardware CRC generation and verification in the
MAC logic to enable processing frames as fast as they can be transmitted and received.

9.9 ETHERNET

Ethernet is perhaps the most widely deployed family of networking standards in the world. It was
first invented in 1973 at Xerox. There are many flavors of Ethernet (the 1973 original ran at roughly

C18 X2 X6 X7 X10 X14 X15 X19 X21 X23
X24 X26 X28 X31

X2 C18 C22 C23 C26 C30 C31 D6 D7
D10 D14 D15

C10 C26 C30 C31 D2 D6 D7

C19 X3 X7 X8 X11 X15 X16 X20 X22 X24
X25 X27 X29

X3 C19 C23 C24 C27 C31 D7 D8 D11
D15

C11 C27 C31 D3 D7

C20 X4 X8 X9 X12 X16 X17 X21 X23 X25
X26 X28 X30

X4 C20 C24 C25 C28 D8 D9 D12 C12 C28 D4

C21 X5 X9 X10 X13 X17 X18 X22 X24 X26
X27 X29 X31

X5 C21 C25 C26 C29 D9 D10 D13 C13 C29 D5

C22 X0 X9 X11 X12 X14 X16 X18 X19 X23
X24 X26 X27 X29 X31

C6 C16 C25 C27 C28 C30 D0 D9 D11
D12 D14

C14 C24 D0

C23 X0 X1 X6 X9 X13 X15 X16 X17 X19
X20 X26 X27 X29 X31

C7 C16 C17 C22 C25 C29 C31 D0 D1
D6 D9 D13 D15

C15 C24 C25 C30 D0 D1 D6

C24 X1 X2 X7 X10 X14 X16 X17 X18 X20
X21 X27 X28 X30

C8 C17 C18 C23 C26 C30 D1 D2 D7
D10 D14

C16 C25 C26 C31 D1 D2 D7

C25 X2 X3 X8 X11 X15 X17 X18 X19 X21
X22 X28 X29 X31

C9 C18 C19 C24 C27 C31 D2 D3 D8
D11 D15

C17 C26 C27 D2 D3

C26 X0 X3 X4 X6 X10 X18 X19 X20 X22
X23 X24 X25 X26 X28 X31

X10 C16 C19 C20 C22 C26 D0 D3 D4
D6

C18 C24 C27 C28 C30 D0 D3
D4 D6

C27 X1 X4 X5 X7 X11 X19 X20 X21 X23
X24 X25 X26 X27 X29

X11 C17 C20 C21 C23 C27 D1 D4 D5
D7

C19 C25 C28 C29 C31 D1 D4
D5 D7

C28 X2 X5 X6 X8 X12 X20 X21 X22 X24
X25 X26 X27 X28 X30

X12 C18 C21 C22 C24 C28 D2 D5 D6
D8

C20 C26 C29 C30 D2 D5 D6

C29 X3 X6 X7 X9 X13 X21 X22 X23 X25
X26 X27 X28 X29 X31

X13 C19 C22 C23 C25 C29 D3 D6 D7
D9

C21 C27 C30 C31 D3 D6 D7

C30 X4 X7 X8 X10 X14 X22 X23 X24 X26
X27 X28 X29 X30

X14 C20 C23 C24 C26 C30 D4 D7 D8
D10

C22 C28 C31 D4 D7

C31 X5 X8 X9 X11 X15 X23 X24 X25 X27
X28 X29 X30 X31

X15 C21 C24 C25 C27 C31 D5 D8 D9
D11

C23 C29 D5

TABLE 9.11 CRC-32 Parallel Logic (Continued)

CRC Bits 32-Bit XOR Logic 16-Bit XOR Logic 8-Bit XOR Logic

-Balch.book Page 215 Thursday, May 15, 2003 3:46 PM

216 Advanced Digital Systems

3 Mbps), including 10-, 100-, and 1,000-Mbps varieties. Ten-gigabit Ethernet is just now beginning
to emerge. Ethernet originally ran over single shared segments of coaxial cabling, but most modern
installations use twisted pair wiring in a physical star configuration. The familiar standards for
Ethernet over twisted pair are 10BASE-T, 100BASE-T, and 1000BASE-T.

There is a whole family of Ethernet and related standards defined by the IEEE under the 802
LAN/MAN (local area network/metropolitan area network) Standards Committee. More specifi-
cally, the 802.3 CSMA/CD (carrier sense, multiple access, collision detect) Working Group defines
Ethernet in its many forms. The 802.3 Ethernet frame format is shown in Table 9.13. A seven-byte
preamble and a start of frame delimiter (collectively, a preamble) precede the main portion of the
frame, which includes the header, payload, and trailer. The purpose of the preamble is to assist re-
ceivers in recognizing that a new frame is being sent so that it is ready to capture the main portion of
the frame when it propagates through the wire. Not including the preamble, a traditional Ethernet
frame ranges from 64 to 1,518 bytes. Two 48-bit Ethernet, or MAC, addresses are located at the start
of the header: a destination address followed by a source address. The MSB of the address, bit 47,
defines whether the address is unicast (0) or multicast (1). A unicast address defines a single source
or destination node. A multicast address defines a group of destination nodes. The remaining address
bits are broken into a 23-bit vendor block code (bits 46 through 24) and a 24-bit vendor-specific
unique identifier (23 through 0). Manufacturers of Ethernet equipment license a unique vendor block
code from the IEEE and then are responsible for assigning unique MAC addresses for all of their
products. Each vendor block code covers 16 million (224) unique addresses.

Following the addresses is a length/type field that has two possible uses, for historical reasons.
Prior to IEEE standardization, Xerox got together with Intel and Digital Equipment Corporation to
agree on a standard Ethernet frame called DIX. DIX defines a type field that uniquely identifies the
type of payload (e.g., IP) to enable easier parsing of the frame. When the IEEE first standardized
Ethernet, it decided to implement a length field in place of a type field to more easily handle situa-
tions wherein payloads were less than the minimum 46 bytes allowed by the standard. This bifurca-
tion of Ethernet caused interoperability problems. Years later, in 1997, the IEEE changed the field to
be a combined length/type field. Values up to 1500 are considered lengths, and 1501 and above are
considered types. Most Ethernet implementations use the original DIX-type field scheme. The IEEE
has standardized a variety of type values to identify IP and certain other protocol extensions. Pay-
loads with fewer than 46 bytes must be padded with extra data to meet the minimum frame size. The

TABLE 9.12 Step-by-Step CRC-32 Calculation

Operation Data

Initialize CRC-32 state bits 0xFFFFFFFF

Word to be calculated 0x4D41524B

Reorder bytes to end high-byte first after bit-flipping 0x4B52414D

Flip bits for LSB-first transmission of high-byte then low-byte 0xB2824AD2

Clock word through XOR logic 0x5C0778F5

Flip bits of CRC 0xAF1EE03A

Optionally swap bytes of CRC for final result 0x3AE01EAF

Invert CRC state bits when input stream is completed 0xC51FE150

-Balch.book Page 216 Thursday, May 15, 2003 3:46 PM

Networking 217

resolution of how many real data bytes are actually in an Ethernet frame is typically handled by
higher-level protocols, such as IP, that contain their own length fields.

Modern Ethernet frames can be longer than 1,518 bytes for a couple of reasons. First, the IEEE
has defined various data fields that can be thought of as extensions to the traditional Ethernet header.
These include VLAN (virtual LAN) and MPLS (multiprotocol label switching) tags. Each of these
extensions provides additional addressing and routing information for more advanced networking
devices and adds length to the frame. Second, the industry began supporting jumbo frames in the late
1990s to extend an Ethernet frame to 9 kB. The advantage of a jumbo frame is that the same amount
of data can be transferred with fewer individual frames, reducing overhead. Jumbo frame support is
not universal, however. Older Ethernet equipment most likely will not handle such frames.

The frame check sequence is a 32-bit CRC that is computed across the entire main portion of the
frame from the destination address through the last payload byte.

Because of its original topology as a shared bus, Ethernet employs a fairly simple yet effective ar-
bitration mechanism to share access to the physical medium. This scheme is collision detection with
random back-off, which was discussed earlier. Ethernet is referred to as CSMA/CD because of its
access sharing mechanism. Frame size plays a role in the operation of CSMA/CD. A minimum
frame size is necessary to ensure that, for a given physical network size, all nodes are capable of
properly detecting a collision in time to take the correct action. Electrical signals propagate through
copper wire at a finite velocity. Therefore, if two nodes at opposite ends of a bus begin transmitting
at the same time, it will take a finite time for each to recognize a collision. Once a frame is success-
fully in progress, all other nodes must wait for that frame to end before they can transmit. A maxi-
mum frame size limits the time that a single node can occupy the shared network. Additionally, a
maximum frame size limits the buffer size within Ethernet MAC logic. In the 1970s and early 1980s,
the cost of memory was so high as to justify relatively small maximum frame sizes. Today, this is not
a significant concern in most products, hence the emergence of jumbo frames.

Even when Ethernet networks are deployed in physical star configurations, they are often con-
nected to hubs that electrically merge the star segments into a single, logically shared medium. A tra-
ditional Ethernet network is half-duplex, because only one frame can be in transit at any instant in
time. Hubs are the least expensive way to connect several computers via Ethernet, because they do
little more than merge star segments into a bus. Bus topologies present a fixed pool of bandwidth
that must be shared by all nodes on that bus. As the number of nodes on a network increases, the
traffic load is likely to increase as well. Therefore, there is a practical limit on the size of a bussed
Ethernet network. Bridges were developed to mitigate Ethernet congestion problems by connecting

TABLE 9.13 IEEE 802.3 Ethernet Frame Format

Field Bytes Fixed Value

Preamble 7 0x55

Start of frame delimiter 1 0xD5

Destination address 6 No

Source address 6 No

Length/type 2 No

Payload data 46–1500 No

Frame check sequence (CRC) 4 No

-Balch.book Page 217 Thursday, May 15, 2003 3:46 PM

218 Advanced Digital Systems

multiple independent bus segments. A bridge operates at layer two using MAC addresses and builds
a database of which addresses are on which side of the bridge. Only traffic that must cross the bridge
to another segment is actually passed to the relevant segment. Otherwise, traffic can remain local on
a single Ethernet segment without causing congestion on other segments. Bridging is illustrated in
Fig. 9.13. Nodes 1 and 7 can simultaneously send data within their local segments. Later, node 4 can
send data across the bridge to node 8, during which both network segments are burdened with the
single transfer. The simplicity of this approach is that node 4 does not have any knowledge that node
8 is on a different segment. Crossing between Ethernet segments is handled transparently by the
bridge.

Layer-two switches take bridging a step farther by providing many independent Ethernet ports
that can exchange frames simultaneously without necessarily interfering with the traffic of other
ports. As long as multiple ports are not trying to send data to the same destination port, those ports
can all send data to different ports as if there existed many separate dedicated connections within the
switch. This is known as packet switching: instantaneous connections between ports are made and
then broken on a packet-by-packet basis. If two or more ports try to send data to the same port at the
same time, one port will be allowed to transmit, while the others will not. Ethernet was developed to
be a simple and inexpensive technology. Therefore, rather than providing special logic to handle
such congestion issues, it was assumed that the network would generally have sufficient bandwidth
to serve the application. During brief periods of high demand where not all data could be reliably de-
livered, it was assumed that higher-level protocols (e.g., TCP/IP) would handle such special cases in
software, thereby saving money in reducing hardware complexity at the expense of throughput. Tra-
ditional Ethernet switches simply drop frames when congestion arises. In the case of switch conges-
tion wherein multiple ports are sending data to a single port, all but one of those source ports may
have their frames discarded. In reality, most switches contain a small amount of buffering that can
temporarily hold a small number of frames that would otherwise be discarded as a result of conges-
tion. However, these buffers do not prevent frame drops when congestion rises above a certain
threshold. This behavior underscores the utility of layer-four protocols such as TCP.

Each switch port can conceivably be connected to a separate bused Ethernet segment and provide
bridging functions on a broader scale than older bridges with only two ports. Switching has trans-
formed network architecture as the cost of hardware has dropped over the years. It is common to
find central computing resources such as file servers and printers with dedicated switch ports as

Bridge
Node 1 Node 2 Node 3 Node 4

Node 5 Node 6 Node 7 Node 8

1

5

2

3

4

FIGURE 9.13 Ethernet bridging.

-Balch.book Page 218 Thursday, May 15, 2003 3:46 PM

Networking 219

shown in Fig. 9.14. Other switch ports may connect to less-expensive hubs (some switches have
built-in hubs to create a compact, integrated system). This reduces congestion by placing the most
actively used nodes onto dedicated media, thereby eliminating collisions and increasing overall sys-
tem bandwidth. Assuming 100BASE-T Ethernet segments, each file server and printer has a dedi-
cated 100-Mbps data link into the switch. All arbitration and congestion control can be handled
within the switch. If two file servers were placed onto the same shared media Ethernet segment,
they would have to share the 100-Mbps bandwidth of a single segment and would likely experience
collisions as many nodes tried to exchange data with them.

Switches and dedicated media transform Ethernet into a full-duplex-capable data link by provid-
ing separate transmit and receive signal paths between the switch and a node. Full-duplex operation
is a subset of half-duplex operation, because the frame formatting is identical, but the CSMA/CD al-
gorithm is not necessary for dedicated media applications. Some MACs may be designed for dedi-
cated media only and can be made simpler without the necessity of media sharing logic. However,
high-volume MACs may be designed into a variety of applications, requiring them to support both
half- and full-duplex operation.

Ethernet ports on switches typically are capable of operating at multiple data rates to enable
greater compatibility with other devices. To ease interoperability between MACs that can run at dif-
ferent speeds, 10/100/1000BASE-T has a mechanism called autonegotiation that enables two MACs
to automatically determine their highest common data rate. The MACs ultimately must run at the
same speed to properly exchange frames, but the initialization process of configuring the link to op-
erate at the greatest common speed has been standardized and automated at the MAC layer. Autone-
gotiation works by each MAC exchanging a 16-bit message at a speed that is compatible with the
slowest port type (10BASE-T). Each MAC advertises its capabilities, including speed and half/full-
duplex support. The MACs may then select the greatest mutually supported link attributes.
Autonegotiation is supported only for point-to-point links and is therefore most commonly observed
between a switch and whatever entity is connected to it (e.g., another switch, a node, etc.).

File Server
Printer

File Server

PC

Switch

PC PC PC PC PC PC PC PC

Hubs

FIGURE 9.14 Switched Ethernet network.

-Balch.book Page 219 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

221

CHAPTER 10

Logic Design and Finite
State Machines

A large component of digital systems design is the implementation of application-specific algo-
rithms. In some cases, software implements the bulk of algorithms, because microprocessors are
flexible and easily programmable for a wide range of functions. Such systems may use only hard-
ware to acquire and store data on behalf of the software. Other systems may be unable to perform
their intended tasks with software alone. The reasons for this vary by application and often include
throughput requirements that are not practically achievable with a microprocessor.

When algorithms are implemented in hardware, state machines are often employed to accomplish
the task. A state machine can be made arbitrarily complex and can function similarly to software
running on a microprocessor. Just as software moves through a sequence of tiny steps to solve a
larger problem, a state machine can be designed to advance when certain conditions are satisfied. As
the state machine progresses, it can activate other functions, just as software requests transactions
from a microprocessor’s peripherals.

This chapter focuses on higher-level logic design techniques used to implement functions ranging
from basic microprocessor address decoding to clock domain crossing to state machines. Few design
methodologies are mandatory, but certain techniques make the design task easier by freeing an engi-
neer from having to worry about mundane low-level details while concentrating on the higher-level
functions. Most software today is not written in assembly language, because the high-level language
methodology is so productive. A software engineer does not have to worry about the accumulator
and addressing modes of a microprocessor and can concentrate on the specific application being
written. Likewise, more automated logic design techniques such as

hardware description languages

(HDL) handle the tasks of logic minimization and gate interconnection so that a hardware engineer
can spend more time implementing the necessary algorithms for a specific application.

A great thing for the design community is that HDLs, once used by a relatively small set of com-
panies with hefty financial resources, are becoming less expensive and more accessible with each
passing year. The investment required to begin with these tools at the entry level ranges from nearly
free up to a few thousand dollars, depending on the features desired and the subsidization that may
be available. Because of the wide popularity of HDLs, several companies that manufacture program-
mable logic devices provide free or low-cost development tools to their customers. Stand-alone en-
try-level HDL tools are also available from companies including Model Technology and Simucad.

10.1 HARDWARE DESCRIPTION LANGUAGES

Many basic peripheral logic functions are available in off-the-shelf ICs. A variety of UART ICs are
available, DMA controllers are available, and simple address decoding can be accomplished with

-Balch.book Page 221 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

222 Advanced Digital Systems

7400 devices such as the 74LS138. As digital systems grow more complex, the chances increase that
suitable off-the-shelf logic will be either unavailable or impractical to use. The answer is to design
and implement custom logic rather than relying solely on a third party to deliver a solution that does
exactly what is needed.

Logic design techniques differ according to the scale of logic being implemented. If only a few
gates are needed to implement a custom address decoder or timer, the most practical solution may be
to write down truth tables, extract Boolean equations with Karnaugh maps, select appropriate 7400
devices, and draw a schematic diagram. This used to be the predominant means of designing logic
for many applications, especially where the cost and time of building a custom IC was prohibitive.
The original Apple and IBM desktop computers were designed this way, as witnessed by their rows
of 7400 ICs.

When functions grow more complex, it becomes awkward and often simply impossible to imple-
ment the necessary logic using discrete 7400 devices. Reasons vary from simple density con-
straints—how much physical area would be consumed by dozens of 7400 ICs—to propagation delay
constraints—how fast a signal can pass through multiple discrete logic gates. The answer to many of
these problems is custom and semicustom logic ICs. The exact implementation technology differs
according to the cost, speed, and time constraints of the application, but the underlying concept is to
pack many arbitrary logic functions and flip-flops into one or more large ICs. An

application specific
integrated circuit

 (ASIC) is a chip that is designed with logic specific to a particular task and manu-
factured in a fixed configuration. A

programmable logic device

(PLD) is a chip that is manufactured
with a programmable configuration, enabling it to serve in many arbitrary applications.

Once the decision is made to implement logic within custom or semicustom logic ICs, a design
methodology is necessary to move ahead and solve the problem at hand. It is possible to use the
same design techniques in these cases as used for discrete 7400 logic implementations. The trouble
with graphical logic representations is that they are bulky and prone to human error. Hardware de-
scription languages were developed to ease the implementation of large digital designs by represent-
ing logic as Boolean equations as well as through the use of higher-level semantic constructs found
in mainstream computer programming languages.

Aside from several proprietary HDLs, the major industry standard languages for logic design are

Verilog

and

VHDL

(Very high speed integrated circuits HDL). Verilog began as a proprietary product
that was eventually transformed into an open standard. VHDL was developed as an open standard
from the beginning. The two languages have roughly equal market presence and claim religious dev-
otees on both sides. This book does not seek to justify one HDL over the other, nor does it seek to
provide a definitive presentation of either. For the sake of practicality, Verilog is chosen to explain
HDL concepts and to serve in examples of how HDLs are used in logic design and implementation.

HDLs provide logical representations that are abstracted to varying degrees. According to the en-
gineer’s choice or contextual requirements, logic can be represented at the

gate/instance

level, the

register transfer level

(RTL), or the

behavioral

level. Gate/instance-level representations involve the
manual instantiation of each physical design element. An element can be an AND gate, a flop, a mul-
tiplexer, or an entire microprocessor. These decisions are left to the engineer. In a purely gate/in-
stance-level HDL design, the HDL source code is nothing more than a glorified list of instances and
connections between the input/output ports of each instance. The Verilog instance representation of

 is shown in Fig. 10.1. It is somewhat cumbersome but provides full control over
the final implementation.

The brief listing in Fig. 10.1 incorporates many basic pieces of a generic Verilog module. First,
the module is named and declared with its list of ports. Following the port list, the ports are defined
as being inputs or outputs. In this case, the ports are all single net vectors, so no indices are supplied.
Next is the main body that defines the function of the module. Verilog recognizes two major variable
types:

wires

and

regs

. Wires simply connect two or more entities together. Regs can be assigned val-

Y A&B A&C+=

-Balch.book Page 222 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 223

ues at discrete events, as will be soon discussed. When ports are defined, they are assumed to be
wires unless declared otherwise. An output port can be declared as a type other than wire.

Being that this example is a gate/instance-level design, all logic is represented by instantiating
other modules that have been defined elsewhere. A module is instantiated by invoking its name and
following it with an instance name. Here, the common convention of preceding the name with “u_”
is used, and multiple instances of the same module type are differentiated by following the name
with a number. Individual ports for each module instance are explicitly connected by referencing the
port name prefixed with a period and then placing the connecting variable in parentheses. Ports can
be implicitly connected by listing only connecting variables in the order in which a module’s ports
are defined. This is generally considered poor practice, because it is prone to mistakes and is difficult
to read.

HDL’s textual representation of logic is converted into actual gates through a process called

logic
synthesis

. A synthesis program parses the HDL code and generates a

netlist

that contains a detailed
list of low-level logic gates and their interconnecting nets, or wires. Synthesis is usually done with a
specific implementation target in mind, because each implementation technology differs in the logic
primitives that it provides as basic building blocks. The primitive library for an ASIC will differ
from that of a PLD, for example. Once synthesis is performed, the netlist can be transformed into a
working chip and, hence, a working product.

module my_logic (
 A, B, C, Y
);

input A, B, C;
output Y;

wire and1_out, and2_out, notA;

and_gate u_and1 (
 .in1 (A),
 .in2 (B),
 .out (and1_out)
);

not_gate u_not (
 .in (A),
 .out (notA)
);

and_gate u_and2 (
 .in1 (notA),
 .in2 (C),
 .out (and2_out)
);

or_gate u_or (
 .in1 (and1_out),
 .in2 (and2_out),
 .out (Y)
);

endmodule

FIGURE 10.1 Verilog gate/instance level design.

-Balch.book Page 223 Thursday, May 15, 2003 3:46 PM

224 Advanced Digital Systems

A key benefit of HDL design methodology is the ability to thoroughly simulate logic before com-
mitting a netlist to a real chip. Because HDL is a programming methodology, it can be arbitrarily
manipulated in a software simulation environment. The simulator allows a

test bench

to be written in
either the HDL or another language (e.g., C/C++) that is responsible for creating stimulus to be ap-
plied to the logic modules. Widely used simulators include Cadence’s NC-Sim, Model Technology’s
ModelSim, and Synopsys’ VCS and Scirocco. A distinction is made between synthesizable and non-
synthesizable code when writing RTL and test benches. Synthesizable code is that which represents
the logic to be implemented in some type of chip. Nonsynthesizable code is used to implement the
test bench and usually contains constructs specifically designed for simulation that cannot be con-
verted into real logic through synthesis.

An example of a test bench for the preceding Verilog module might consist of three number
generators that apply pseudo-random test stimulus to the three input ports. Automatic verification
of the logic would be possible by having the test bench independently compute the function

 and then check the result against the module’s output. Such simulation, or veri-
fication, techniques can be used to root out the great majority of bugs in a complex design. This is a
tremendous feature, because fixing bugs after an ASIC has been fabricated is costly and time con-
suming. Even in cases in which a PLD is used, it is usually faster to isolate and fix a bug in simula-
tion than in the laboratory. In simulation, there is immediate access to all internal nodes of the
design. In the lab, such access may prove quite difficult to achieve.

Verilog and VHDL both support simulation constructs that facilitate writing effective test
benches. It is important to realize that these constructs are usually nonsynthesizable (e.g., a random
number generator) and that they should be used only for writing test code rather than actual logic.

Gate/instance-level coding is quite useful and is used to varying degrees in almost every design,
but the real power of HDL lies at the RTL and behavioral levels. Except in rare circumstances where
absolute control over gates is required, instance-level coding is used mainly to connect different
modules together. Most logic is written in RTL and behavioral constructs which are often treated to-
gether, hence the reason that synthesizable HDL code is often called RTL. Expressing logic in RTL
frees the engineer from having to break everything down into individual gates and transfers this re-
sponsibility onto the synthesis software. The result is a dramatic increase in productivity and main-
tainability, because logical representations become concise. The example in Fig. 10.1 can be
rewritten in Verilog RTL in multiple styles as shown in Fig. 10.2.

Each of these three styles has its advantages, each is substantially more concise and readable than
the gate/instance-level version, and the styles can be freely mixed within the same module according
to the engineer’s preference. Style number 1 is a

continuous assignment

and makes use of the default
wire data type for the output port. A wire is applicable here, because it is implicitly connecting two
entities: the logic function and the output port. Continuous assignments are useful in certain cases,
because they are concise, but they cannot get too complex without becoming unwieldy.

Style number 2 uses the always block, a keyword that tells the synthesis and simulation tools to
perform the specified operations whenever a variable in its

sensitivity list

changes. The sensitivity
list defines the variables that are relevant to the always block. If not all relevant variables are in-
cluded in this list, incorrect results may occur. Always blocks are one of Verilog’s fundamental con-
structs. A design may contain numerous always blocks, each of which contains logic functions that
are activated when a variable in the sensitivity list changes state. A combinatorial always block
should normally include all of its input variables in the sensitivity list. Failure to do so can lead to
unexpected simulation results, because the always block will not be activated if a variable changes
state and is not in the sensitivity list.

Style number 3 also uses the always block, but it uses a logical if…else construct in place of
Boolean expression. Such logical representations are often preferable so that an engineer can con-
centrate on the functionality of the logic rather than deriving and simplifying Boolean algebra.

Y A&B A&C+=

-Balch.book Page 224 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 225

The two examples shown thus far illustrate basic Verilog HDL syntax with combinatorial logic.
Clearly, synchronous logic is critical to digital systems, and it is fully supported by HDLs. D-type
flip-flops are most commonly used in digital logic design, and they are directly inferred by using the
correct RTL syntax. As always, gate-level instances of flops can be invoked, but this is discouraged
for the reasons already discussed. Figure 10.3 shows the Verilog RTL representation of two flops,
one with a synchronous reset and the other with an asynchronous reset.

The first syntactical difference to notice is the Verilog keyword

posedge

. Posedge and its comple-
ment,

negedge

, modify a sensitivity list variable to activate the always block only when it transitions.
Synthesis tools are smart enough to recognize these keywords and infer a clocked flop. Clocked al-
ways blocks should not include normal regs or wires in the sensitivity list, because it is only desired
to activate the block on the active clock edge or when an optional asynchronous reset transitions.

At reset, a default 0 value is assigned to Q. Constants in Verilog can be explicitly sized and refer-
enced to a particular radix. Preceding a constant with `b denotes it as binary (`h is hex, and `d is dec-
imal). Preceding the radix identifier with a number indicates the number of bits occupied by that
constant.

Another syntactical difference to note is the use of a different type of assignment operator: <= in-
stead of =. This is known as a non-blocking (<=) assignment as compared to a blocking (=) assign-
ment. It is considered good practice to use non-blocking assignments when inferring flops, because

module my_logic (
 A, B, C, Y
);

input A, B, C;
output Y;

// Style #1: continuous assignment

assign Y = (A && B) || (!A && C);

// Style #2: behavioral assignment

reg Y;

always @(A or B or C)
begin
 Y = (A && B) || (!A && C);
end

// Style #3: if...then construct

reg Y;

always @(A or B or C)
begin
 if (A)
 Y = B;
 else
 Y = C;
end

endmodule

FIGURE 10.2 Verilog RTL-level design.

-Balch.book Page 225 Thursday, May 15, 2003 3:46 PM

226 Advanced Digital Systems

the non-blocking assignment does not take effect until after the current simulation time unit. This is
analogous to the behavior of a real flop wherein the output does not transition until a finite time has
elapsed from its triggering event. Under certain circumstances, either type of assignment will yield
the same result in both simulation and synthesis. In other situations, the results will differ, as illus-
trated in Fig. 10.4.

In the first case, regs Q1 and Q2 are tracked at two different instants in time. First, their current
states are maintained as they were just prior to the clock edge for the purpose of using their values in
subsequent assignments. Second, their new states are assigned as dictated by the RTL. When Q2 is
assigned, it takes the previous value of Q1, not the new value of Q1, which is D. Two flops are in-
ferred.

In the second case, variables Q1 and Q2 are tracked at a single instant in time. Q1 is assigned the
value of variable D, and then Q2 is assigned the new value of variable Q1. Q1 has become a tempo-
rary placeholder and has no real effect on its own. Therefore, only a single flop, Q2, is inferred.

Utilizing HDL to design logic requires software tools more complex than just pencil and paper.
However, the benefits quickly accumulate for designs of even moderate complexity. The digital

// synchronous reset

always @(posedge CLK)
begin
 if (RESET) // RESET evaluated only at CLK rising edge
 Q <= 1´b0;
 else
 Q <= D;
end

// asynchronous reset

always @(posedge CLK or posedge RESET)
begin
 if (RESET) // RESET evaluated whenever it goes active
 Q <= 1´b0;
 else
 Q <= D;
end

FIGURE 10.3 Verilog RTL flip-flop inference.

// Non-blocking assignments: two flops inferred

always @(posedge CLK)
begin
 Q1 <= D;
 Q2 <= Q1;
end

// Blocking assignments: one flop inferred

always @(posedge CLK)
begin
 Q1 = D;
 Q2 = Q1;
end

FIGURE 10.4 Verilog blocking vs. non-blocking assignment.

-Balch.book Page 226 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 227

functions and techniques discussed in the remainder of this chapter show how practical HDL design
can be.

10.2 CPU SUPPORT LOGIC

Most digital systems require some quantity of miscellaneous glue logic to help tie a CPU to its
memory and I/O peripherals. Some of the most common support functions are address decoding,
basic I/O signals, interrupt control, and timers. Another common function is interface conversion
whereby the CPU needs to talk with a peripheral that has an interface that is incompatible with that
of the CPU. Interface conversion can range from simple control signal polarity adjustments to com-
plex buffering schemes that cross clock domains with FIFOs.

Address decoding is usually a combinatorial implementation, because many CPU interfaces are
nonpipelined. When performing address decoding and other bus control functions for a pipelined
CPU bus, a more complex synchronous circuit is called for that can track the various pipeline stages
and take the necessary actions during each stage. Basic combinatorial address decoding consists of
mapping ranges of addresses to chip selects. Chip select signals are usually active-low by convention
and are numbered upward from 0. For the sake of discussion, consider the 24-bit memory map in Ta-
ble 10.1 to design an address decoder.

Four external chip selects are called out. Instead of using the asterisk to denote active-low signals,
the underscore is used, because an asterisk is not a valid character for use in a Verilog identifier. The
first two chip selects are used for ROM (e.g., flash or EPROM) and their memory ranges are swappa-
ble according to the RomSel signal. It is sometimes useful to provide an alternate boot ROM that can
be installed at a later date for various purposes such as a software upgrade. When boot ROM is im-
plemented in flash, the CPU is able to load new data into its ROM. If there is no other way to send a
new software image to the system, the image can be loaded onto a ROM module that is temporarily

TABLE

10.1 Example Memory Map

Address Range Qualifier Chip Select Function

0x000000–0x0FFFFF RomSel=0
CS0_ 1-MB default boot ROM

0x100000–0x1FFFFF RomSel=1

0x100000–0x1FFFFF RomSel=0
CS1_ 1-MB ROM module

0x000000–0x0FFFFF RomSel=1

0x200000–0x21FFFF N/A CS2_ 128-kB SRAM

0x220000–0x2FFFFF N/A None Unused

0x300000–0x30000F N/A CS3_ UART

0x300010–0x3FFFFF N/A None Unused

0x400000–0x4FFFFF N/A Internal Control/status registers

0x500000–0xFFFFFF N/A None Unused

-Balch.book Page 227 Thursday, May 15, 2003 3:46 PM

228 Advanced Digital Systems

installed into the CS1_ slot. A jumper can then be installed that causes RomSel to be asserted. When
the system is turned on, RomSel=1 causes the ROM module to become the boot ROM, and new soft-
ware can be loaded into CS0_ ROM.

The remainder of the address space is sparsely populated. Occupied memory regions are spread
out to reduce the complexity of the decoding logic by virtue of requiring fewer address bits. If the
UART were located immediately after the SRAM, the logic would have to consider the state of
A[23:16] rather than just A[23:20]. The fifth and final used memory region is reserved for internal
control and status registers. This decoding logic can be written in Verilog as shown in Fig. 10.5.

The address decoding logic is written here in behavioral form with a

case

construct. Case state-
ments enable actions to be associated with individual states of a causal variable. Note that the chip
select outputs are declared as regs even though they are not flops, because they are assigned in an al-
ways block instead of in a continuous assignment. Prior to the case statement, all of the always

module GlueLogic (
 Addr,
 RomSel,
 CS0_,
 CS1_,
 CS2_,
 CS3_
);

input [23:20] Addr;
input RomSel;
output CS0_, CS1_, CS2_, CS3_;

reg CS0_, CS1_, CS2_, CS3_;
reg IntSel;

always @(Addr or RomSel)
begin

 CS0_ = 1´b1; // establish default values to simplify case
 CS1_ = 1´b1; // statement and prevent formation of latches
 CS2_ = 1´b1;
 CS3_ = 1´b1;
 IntSel = 1´b0;

 case (Addr[23:20])
 4´b0000 : begin
 CS0_ = RomSel;
 CS1_ = !RomSel;
 end
 4´b0001 : begin
 CS0_ = !RomSel;
 CS1_ = RomSel;
 End
 4´b0010 : CS2_ = 1´b0;
 4´b0011 : CS3_ = 1´b0;
 4´b0100 : IntSel = 1´b1;
 endcase
end

endmodule

FIGURE 10.5 Address decoding logic.

-Balch.book Page 228 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 229

block’s outputs are assigned to default inactive states. This is necessary to prevent the synthesis soft-
ware from inferring an unwanted latch instead of simple combinatorial logic. If a combinatorial al-
ways block does not assign a reg value for all combinations of inputs, the synthesis tool determines
that the reg should hold its previous state, thereby creating a latch. Latches are prevented by either
exhaustively listing all combinations of inputs or by assigning a default value to all variables some-
where in the always block.

Unintended latches are the bane of HDL design. There are valid instances when a latch is desired,
but latches are often inferred mistakenly, because the RTL code does not properly handle default
cases wherein the variable is not assigned. Combinatorial logic must always assign values to vari-
ables regardless of the logic path. Otherwise,

statefullness

 is implied. Verilog’s blocking assign-
ments enable multiple values to be assigned to a single variable in an always block, and the last
assigned variable is the one that takes effect. Therefore, latches are avoided by assigning default val-
ues up front.

An active-high signal, IntSel, is decoded but not yet used for the purposes of selecting internal
control and status registers that will be discussed shortly.

When expanding a CPU bus, an engineer must be careful that too many devices are not placed
onto the bus, because output pins are rated only for certain drive strengths. As the lengths of the in-
terconnecting wires increase and the number of loads increase, it may become necessary to extend
the CPU bus using bidirectional buffers as discussed earlier. Figure 10.6 shows how our hypothetical
system might use such buffers to isolate the plug-in ROM module so that the electrical impact of
connectors and a separate module are minimized. For clarity, control signals are not shown. A unidi-
rectional buffer isolates the address bus, and a bidirectional buffer isolates the data bus. No control is
necessary for the address buffer, because it can be configured to always pass the address bus to the
ROM module socket. However, the data buffers require control, because they must direct data out to
the module for writes and in from the module for reads. Therefore, the tri-state control of the data
buffer must be operated according to the address decode and read/write status.

The existing address decoding logic can be augmented to provide the necessary functionality.
One additional input is required: the CPU’s active-low read enable signal. An additional output is re-
quired to operate the data buffer’s direction select signal. When high, the buffers will pass data from
the CPU side to the ROM and, when low, the buffers will drive the CPU data bus with data presented
by the ROM. A second always block can be added as shown in Fig. 10.7. New port and variable dec-
larations are assumed.

Another common function of support logic is providing general I/O signals that the CPU can use
to interact with its environment. Such interaction can include detecting an opening door and turning

Address Bus

CPU

Address

Decode

Logic

Local

Memory and

Peripherals

ROM

Module

74LS244

or similar

74LS245

or similar

Data Bus

FIGURE 10.6 Bus extension buffers.

-Balch.book Page 229 Thursday, May 15, 2003 3:46 PM

230 Advanced Digital Systems

on an alarm. The opening door can be detected using a switch connected to an input signal. When
the CPU reads the status of this signal, it can determine whether the switch is open or closed. An
alarm can be turned on when the CPU sets an output signal that enables an alarm circuit. Control and
status registers must be implemented to enable the CPU to read and write I/O signals. In our continu-
ing example, we assume an eight-bit data bus coming from the CPU and the need for eight input sig-
nals and eight output signals. Implementing registers varies according to whether the CPU bus is
synchronous or asynchronous. Some older microprocessors use asynchronous buses requiring
latches to be formed within the support logic. Figure 10.8 shows the implementation of two registers
using the previously decoded IntSel signal in both synchronous and asynchronous styles. Again, the
proper declarations for ports and variables are assumed.

An added level of address decoding is required here to ensure that the two registers are not ac-
cessed simultaneously. The register logic consists of two basic sections: the write logic and read
logic. The write logic (required only for the control register that drives output signals) transfers the
contents of the CPU data bus to the internal register when the register is addressed and the write en-
able is active. The ControlRegSel signal is implemented in a case statement but can be implemented
in a variety of ways. More select signals will be added in coming examples. The asynchronous write
logic infers a latch, because not all permutations of input qualifiers are represented by assignments.
If Reset_ is high and the control register is not being selected for a write, there is no specified action.
Therefore, memory is implied and, in the absence of a causal clock, a latch is inferred. The synchro-
nous write logic is almost identical, but it references a clock that causes a flop inference. Reset is im-
plemented to provide a known initial state. This is a good idea so that external logic that is driven by
the control register can be safely designed with the assumption that operations begin at a known
state. The known state is usually inactive so that peripherals do not start operating before the CPU
finishes booting and can disable them.

The read logic consists of two sections: the output multiplexer and the output buffer control. The
output multiplexer simply selects one of the available registers for reading. It is not necessary to
qualify the multiplexer with any other logic, because a read will not actually take place unless the
output buffer control logic sends the data to the CPU. Rather than preventing a latch in ReadData

by
assigning it a default value before the case construct, the Verilog keyword

default

is used as the final
case enumeration to specify default operation. Either solution will work—it is a matter of preference
and style over which to use in a given situation. Both read-only and writable registers are included in
the read multiplexer logic. Strictly speaking, it is not mandatory to have writable register contents
readable by the CPU, but this is a very good practice. Years ago, when logic was very expensive, it
was not uncommon to find write-only registers. However, there is a substantial drawback to this ap-
proach: you can never be sure what the contents of the register are if you fail to keep track of the ex-
act data that has already been written!

Implementing bidirectional signals in Verilog can be done with a continuous assignment that se-
lects between driving an active variable or a high-impedance value, Z. The asynchronous read logic
is very simple: whenever the internal registers are selected and read enable is active, the tri-state
buffer is enabled, and the output of the multiplexer is driven onto the CPU data bus. At all other

always @(CS1_ or Rd_)
begin
 if (!CS1_ && !Rd_)
 DataBufDir = 1’b0; // drive CPU bus when ROM selected for read
 else
 DataBufDir = 1’b1; // otherwise, always drive data to ROM
end

FIGURE 10.7 Data buffer control logic.

-Balch.book Page 230 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 231

always @(Addr[3:0] or StatusInput[7:0] or ControlReg[7:0] or IntSel)
begin
 case (Addr[3:0]) // read multiplexer
 4´h0 : ReadData[7:0] = StatusInput[7:0]; // external input pins
 4´h1 : ReadData[7:0] = ControlReg[7:0];
 default : ReadData[7:0] = 8´h0; // alternate means to prevent latch
 endcase

 ControlRegSel = 1´b0; // default inactive value

 case (Addr[3:0]) // select signal only needed for writeable registers
 4´h1 : ControlRegSel = IntSel;
 endcase
end

// Option #1A: asynchronous read logic

assign CpuData[7:0] = (IntSel && !Rd_) ? ReadData[7:0] : 8´bz;

// Option #1B: synchronous read logic

always @(posedge CpuClk)
begin
 if (!Reset_) // synchronous reset
 CpuDataOE <= 1´b0;
 // no need to reset ReadDataReg and possibly save some logic
 else begin
 CpuDataOE <= IntSel && !Rd_; // all outputs are registered
 ReadDataReg[7:0] <= ReadData[7:0];
 end
end

assign CpuData[7:0] = CpuDataOE ? ReadDataReg[7:0] : 8´bz;

// Option #2A: asynchronous write logic

always @(ControlRegSel or CpuData[7:0] or Wr_ or Reset_)
begin
 if (!Reset_)
 ControlReg[7:0] = 8´h0; // reset state is cleared
 else if (ControlRegSel && !Wr_)
 ControlReg[7:0] = CpuData[7:0];
 // missing else forces memory element: intentional latch!
end

// Option #2B: synchronous write logic

always @(posedge CpuClk)
begin
 if (!Reset_) // synchronous reset
 ControlReg[7:0] <= 8´h0;
 else if (ControlRegSel && !Wr_)
 ControlReg[7:0] <= CpuData[7:0];
end

FIGURE 10.8 Control/status register logic.

-Balch.book Page 231 Thursday, May 15, 2003 3:46 PM

232 Advanced Digital Systems

times, the data bus is held in a high-impedance state. This works as expected, because the value Z
can be overridden by another assignment. In simulation, the other assignment may come from a test
bench that emulates the CPU’s operation. In synthesis, the software properly recognizes this ar-
rangement as inferring a tri-state bus. The continuous assignment takes advantage of Verilog’s con-
ditional operator, ? : , which serves an if…else function. When the logical expression before the
question mark is true, the value before the colon is used. Otherwise, the value after the colon is used.
A bidirectional port is declared using the Verilog

inout

 keyword in place of

input

or

output

. The syn-
chronous version of the read logic is very similar to the asynchronous version, except that the out-
puts are first registered before being used in the tri-state assignment.

Interrupt control registers are implemented by support logic when the number of total interrupt
sources in the system exceeds the CPU’s interrupt handling capacity. Gathering multiple interrupts
and presenting them to the CPU as a single interrupt signal can be as simple as logically ORing mul-
tiple interrupt signals together. A somewhat more complex scheme, but one with value, is where in-
terrupts can be selectively masked by the CPU, and system-wide interrupt status is accumulated in a
single register. This gives the CPU more control over how it gets interrupted and, when interrupted,
provides a single register that can be read to determine the source of the interrupt. Such a scheme
can be implemented with two registers and associated logic: a read/write interrupt mask register and
a read-only interrupt status register. Each pair of bits in the mask and status registers corresponds to
a single interrupt source. When an interrupt is active, the corresponding bit in the status register is
active. However, only those interrupt sources whose mask bits have been cleared will result in a
CPU interrupt. At reset, the mask register defaults to 0xFF to disable all interrupts. Figure 10.9
shows a Verilog implementation of interrupt control as an extension of the previous example. Syn-
chronous registers are assumed here, but asynchronous logic is easily adapted.

Aside from the registers themselves, the main function of the interrupt control logic is imple-
mented by the bit-wise ORing and reduction AND of the interrupt mask bits and the external inter-
rupt signals. Verilog’s | operator is a bit-wise OR function in contrast to the || logical OR function.
When two equal-size vectors are bit-wise ORed, the result is a single vector of the same size wherein
each bit is the OR of the corresponding pair of bits of the operands. This first step disables any active
interrupts that are masked; per DeMorgan’s law, an OR acts as an active-low AND function. The sec-
ond step is a reduction AND as indicated by the unary & operator. Similar to OR, & is the bit-wise
version of &&. Invoking & with a single operand makes it a reduction operator that ANDs together
all bits of a vector and generates a single output bit. AND is used because the interrupt polarities are
active-low. Therefore, if any one interrupt is asserted (low), the reduction AND function will gener-
ate a low output. Per DeMorgan’s law once again, an AND acts as an active-low OR function.

Timers are often useful structures that can periodically interrupt the CPU to invoke a time-critical
interrupt service routine, enable the CPU to determine elapsed time, or trigger some other event in
hardware. It is common to find timers implemented in certain CPU products such as microcontrol-
lers. Sometimes, however, it becomes necessary to implement a custom timer in support logic. One
such example is presented here with a fixed prescaler and an eight-bit counter with an eight-bit con-
figurable terminal count value. The prescaler is used to slow down the timer so that it can interrupt
the CPU over longer periods of time. For the sake of discussion, let’s assume that the CPU is running
at a frequency of 10 MHz and that the timer granularity should be 1 ms. Therefore, the prescaler
should count from 0 to 9,999 to generate a 1-ms tick when running with a 100-ns period. A Verilog
implementation of such a timer is shown in Fig. 10.10 without the associated read/write logic al-
ready presented in detail. A 14-bit prescaler is necessary to represent numbers from 0 to 9,999. It is
assumed that the terminal count register, TermCount, is implemented elsewhere as a general read/
write register.

When the timer rolls over, it asserts TimerRollOver for one CpuClk cycle to trigger whatever
logic is desired by the application. If the trigger event is a CPU interrupt, the logic should create a

-Balch.book Page 232 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 233

“sticky” version of TimerRollOver that does not automatically get cleared by hardware. Rather, it is
sticky because, once set by hardware, the bit will retain its state until explicitly cleared by software.
This provides an arbitrarily long time for software to respond to the interrupt assertion, read the in-
terrupt status register to detect the timer roll-over event, and then clear the sticky bit. Without the
sticky bit, software would have no chance of catching a pulse that is only a single cycle in width.

10.3 CLOCK DOMAIN CROSSING

Some logic design tasks involve exchanging information between logic running on unrelated clocks.
When multiple independent clock domains exist in a system, there is no guaranteed skew or phase
relationship between the various clocks. Synchronous timing analysis dictates that a flop’s setup and
hold times must be met to ensure reliable capture of the data presented to it. Yet it is impossible to
guarantee proper setup and hold times when the source flop’s clock has no relationship to the desti-
nation flop’s clock.

always @(Addr[3:0] or StatusInput[7:0] or ControlReg[7:0] or IntSel
 or ISR[7:0] or IMR[7:0])
begin
 case (Addr[3:0]) // read multiplexer
 4´h0 : ReadData[7:0] = StatusInput[7:0]; // external input pins
 4´h1 : ReadData[7:0] = ControlReg[7:0];
 4´h2 : ReadData[7:0] = ISR[7:0]; // interrupt status
 4´h3 : ReadData[7:0] = IMR[7:0]; // interrupt mask
 default : ReadData[7:0] = 8´h0; // alternate means to prevent latch
 endcase

 ControlRegSel = 1´b0; // default inactive value
 IMRSel = 1´b0;

 case (Addr[3:0]) // select signal only needed for writeable registers
 4´h1 : ControlRegSel = IntSel;
 4´h3 : IMRSel = IntSel;
 endcase

end

// Interrupt gathering

always @(IMR[7:0] or ExtInt_[7:0])
begin
 ISR[7:0] = ExtInt_[7:0]; // reflect status of external signals
 CpuInt_ = &(IMR[7:0] | ExtInt_[7:0]); // reduction AND

end

// Write logic

always @(posedge CpuClk)
begin
 if (!Reset_)
 IMR[7:0] <= 8´hff; // mask all interrupts on reset
 else if (IMRSel && !Wr_)
 IMR[7:0] <= CpuData[7:0];

end

FIGURE 10.9 Interrupt control logic.

-Balch.book Page 233 Thursday, May 15, 2003 3:46 PM

234 Advanced Digital Systems

There are several scenarios that arise from clocking a flop input with unknown timing as shown in
Fig. 10.11. First, there is a chance that the applied signal will be captured successfully if it happens
to meet the flop’s setup time specification. Second, there is a chance that the input data will be
missed on the first clock cycle, because it occurs too late for the flop to detect it. If the data remains
asserted through the next cycle, it will be properly captured at that time.

Finally, there is a questionable area between capturing and missing the signal. A flop is inherently
an analog circuit, because it is built from transistors. Flops behave digitally when their timing speci-
fications are adhered to. When timing violations occur, the flop circuit may behave in a nondigital
manner and generate a marginal output that is somewhere between 1 and 0 before eventually settling
to a valid logic state. It is not certain into which logic state the flop will settle, nor is it certain exactly
how much time the flop will take to settle. This phenomenon is known as

metastability

. A flop is said
to be metastable when a timing violation occurs and it takes some time for the output to stabilize.
Metastability does not damage the flop, but it can cause significant trouble for a synchronous circuit
that is designed with the assumption of predictable timing.

Clock domains can be reliably crossed when proper design techniques are used to accommodate
likely timing violations. Some applications require that only control signals move between clock do-
mains, and others must transport entire data paths. The simpler case of individual control signals is
presented first and then used as a foundation for data paths.

Because it is impossible to avoid metastability when crossing clock domains, the phenomenon
must be managed. A control signal ostensibly triggers activity in the logic that it drives, and this des-
tination logic waits for the control signal to transition. Metastability does not prevent the signal from
reaching its destination; it introduces uncertainty over exactly when the signal will stabilize in the
destination clock domain. This uncertainty is dealt with by

synchronizing

the control signal using
extra flops prior to treating the signal as a legal synchronous input. A two-stage synchronizing cir-
cuit is shown in Fig. 10.12. The synchronizing circuit takes advantage of the high probability that a
metastable flop’s output will achieve a stable digital state within a single clock cycle. If the first
flop’s output is stable, the second flop’s output will transition perfectly and present a signal with

always @(posedge CpuClk)
begin
 if (!Reset_) begin
 Prescaler[13:0] <= 14´h0;
 Timer[7:0] <= 8´h0;
 TimerRollOver <= 1´b0;
 end
 else
 if (Prescaler[13:0] == 14´d9999) begin
 Prescaler[13:0] <= 14´h0; // roll-back to zero
 if (Timer[7:0] == TermCount[7:0]) begin
 Timer[7:0] <= 8´h0; // start over
 TimerRollOver <= 1´b1; // trigger other logic
 end
 else
 Timer[7:0] <= Timer[7:0] + 1;
 end
 else begin
 Prescaler[13:0] <= Prescaler[13:0] + 1;
 TimerRollOver <= 1´b0;
 end
end

FIGURE 10.10 Timer logic.

-Balch.book Page 234 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 235

valid timing to the internal logic. If the first flop’s output is not yet stable, chances are that it will be
very close to a valid logic level, which generally should cause the second flop’s output to transition
cleanly. To deal with metastablility is to deal with probability. As the number of synchronizing flops
is increased, the probability of a metastable state reaching the internal logic rapidly approaches zero.
A general rule of thumb is that two flops reduce the probability of metastability in internal logic to
practically zero.

An unavoidable downside of synchronizing flops is that they add latency to a transaction, because
the internal logic will not detect an asynchronous signal’s transition for two to three clock cycles af-
ter it actually transitions (when using a two-flop synchronizer). The best-case scenario of two cycles
occurs when the input signal happens to transition early enough to meet the first flop’s setup and
hold timing. If these constraints are not met because the input signal transitions too late, the flop’s

Setup and hold window

Clock

Flop Input

Flop Output

Case #1: Flop's setup time is met

Clock

Flop Input

Flop Output

Case #2: Signal transitions after timing window

Clock

Flop Input

Flop Output

Case #3: Signal transitions within timing window
(metastability)

FIGURE 10.11 Flop operation with variable input timing.

D Q D Q
Clean timing

to internal
logic

Asynchronous
input signal

Internal operating clock

FIGURE 10.12 Synchronizing flip-flop scheme.

-Balch.book Page 235 Thursday, May 15, 2003 3:46 PM

236 Advanced Digital Systems

output may not transition until the next clock cycle. Whether the input signal meets or misses the
first flop’s timing window, an extra cycle of latency is added by the second synchronizing flop.

For the synchronizing circuit to function properly, the asynchronous input must remain active for
a sufficient time to be detected by the destination clock domain. If the destination clock has a 20-ns
period, pulses shorter than 20 ns will have a low probability of being detected. It is best to guarantee
that the pulse is active for several destination clock periods. When the two clock frequencies in a
clock domain crossing are known, it is possible to determine a safe minimum pulse width. There are
also situations in which one or both clock frequencies are unknown or variable. A circuit may need
to run at a range of frequencies. Microprocessors are a good example of this, because they are de-
signed to operate over a range of frequencies determined by an engineer for a specific project.

In situations in which the clock frequencies are
variable, asynchronous interfaces must be self-regu-
lating to guarantee minimum pulse widths such that
each clock domain can properly detect signals as-
serted by the other domain.

Four-corner handshak-
ing

is a popular way to implement a self-regulated
control interface. Four-corner handshaking estab-

lishes a rule that signals are not deasserted until a corresponding signal from the other entity is ob-
served to transition, indicating that the locally generated signal has been properly detected by the
remote entity. In the case of a request/acknowledge microprocessor interface, chip select is not deas-
serted until acknowledge is asserted, and acknowledge is not deasserted until chip select is deas-
serted as shown in Fig. 10.13.

Once causal control signals are properly synchronized across a clock domain boundary, arbitrary
data paths can be synchronized as well. A register or data bus cannot simply be passed through a
two-stage synchronizer, because there is no way of knowing if all the members of that bus passed
through the flops uniformly. Even if the delays of each signal are closely matched, individual flops
have minute physical differences that can cause their metastable characteristics to differ. Unlike a
single control signal with just two states, an N-bit bus has 2

N

 states. If the control signal changes one
cycle earlier or later, there is no misinterpretation of its activity. The latter case can lead to some bits
transitioning before others, resulting in random values appearing at the synchronizer output for one
or two clock cycles.

A basic method for synchronizing a data path is to associate it with a control signal that is passed
through a synchronizer. As shown in Fig. 10.14, the data source drives a data valid signal at the same
time as the data and holds the two entities stable for a minimum duration (achieved by either calcu-
lation or four-corner handshaking). The destination uses a two-flop synchronizer to move the control
signal to its clock domain. The synchronization process has an inherent latency during which it is
guaranteed that the data path reaches the destination logic. When the destination detects the properly
synchronized control signal, it samples the data path, which by now has been stable at the destina-
tion’s inputs for well over a full clock cycle and thereby meets the input flops’ setup time. Metasta-
bility of the data path is avoided by an inherent synchronization time delay during which the data
remains static. This scheme relies on the assumption of relatively uniform propagation delay be-
tween the data valid signal and the data path, an assumption that is achievable in most circum-
stances.

Synchronizing a data path with discrete control signals is a straightforward approach requiring lit-
tle overhead. Its disadvantage is that multiple clock cycles are necessary to move a single unit of
data. When higher transfer efficiency is necessary, a FIFO is the means of synchronizing data paths
across clock domain boundaries. The FIFO must operate on two separate clocks, unlike a conven-
tional synchronous FIFO with just a single clock. A FIFO enables data to be continuously written on
one clock and read on another, subject to limitations imposed by data rate mismatches at the write

CS*

ACK*

FIGURE 10.13 Four-corner microprocessor bus
handshake.

-Balch.book Page 236 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 237

and read ports. If a FIFO is used to carry 8-bit data from a 100-MHz clock to a 50-MHz clock, it is
clear that the overall data rate cannot exceed the slower read rate, 50 MBps, without overflowing the
FIFO and losing data. If the situation is reversed, there is still a 50-MB overall maximum data rate,
and the 100-MHz read logic must inherently handle gaps in its data path, which has a 100-MB band-
width. As long as the read and write data rates are matched over time, the dual-clock FIFO will never
overflow or underflow and provides an efficient synchronization mechanism.

10.4 FINITE STATE MACHINES

Finite state machines

(FSMs) are powerful design elements used to implement algorithms in hard-
ware. A loose analogy is that an FSM is to logic design what programming is to software design. An
FSM consists of a

state vector

, a set of registers, with associated logic that advances the state each
clock cycle depending on external input and the current state. In this respect, an FSM is analogous to
a set of software instructions that are sequenced via a microprocessor’s program counter. Each state
can be designed to take a different arbitrary action and branch to any other state in the same concep-
tual way that software branches to different program sections as its algorithm dictates. If a problem
can be decomposed into a set of deterministic logical steps, that algorithm can be implemented with
an FSM.

A counter is a simple example of an FSM, though its actions are very limited. Each state simply
advances to the next state on each clock cycle. There is no conditional branching in a typical counter.
FSMs are often represented graphically before being committed to RTL. Figure 10.15 shows a bub-
ble diagram representation of a two-bit counter. Each state is represented by its own bubble, and arcs
show the conditions that cause one state to lead to other states. An unlabeled arc is taken to mean un-

Source Clock

Data Valid

Data Path

Destination Clock

Data Valid Sync

Data Capture

valid data

valid dataprevious data

D Q

Data Source

Data Valid

Data Path

D Q

D Q

EN

Data Valid
Sync

Source Clock Domain Destination Clock Domain

Data Capture

Rising-Edge
Detect Logic

FIGURE 10.14 Data path synchronization.

-Balch.book Page 237 Thursday, May 15, 2003 3:46 PM

238 Advanced Digital Systems

conditional or the default if no other conditional arcs are valid. Because this is a simple counter, each
state has one unconditional arc that leads to the next state.

To illustrate basic FSM concepts, consider a stream of bytes being driven onto a data interface
and a task to detect a certain pattern of data within that stream when a trigger signal is asserted. That
pattern is the consecutive set of data 0x01, 0x02, 0x03, and 0x04. When this consecutive pattern has
been detected, an output detection flag should be set to indicate a match. The logic should never miss
detecting this pattern, no matter what data precedes or follows it. After some consideration, the bub-
ble diagram in Fig. 10.16 can be developed. It is common to name states with useful names such as
“Idle” rather than binary numbers for readability. FSMs often sit in an idle or quiescent state while
they wait for a triggering event that starts their execution.

The FSM waits in the Idle state until trigger is asserted. If the data value at this point is already
0x01, the FSM skips directly to the Wait02 state. Otherwise, it branches to Wait01, where it remains
indefinitely until the value 0x01 is observed and it branches to Wait02. There are three possible arcs
coming from Wait02. If the value 0x02 is observed, the FSM can advance to the third matching state,
Wait03. If 0x01 is observed again, the FSM remains in Wait02, because 0x02 is the next value in the
sequence following 0x01. If neither of these values is observed, the FSM branches back to Wait01 to
start over again. Wait03 is similar, although there is no arc to remain in the same state. If the first se-
quence value, 0x01, is observed, the next state is Wait02. If Wait03 does succeed in immediately ob-
serving 0x03, the FSM can advance to the final matching state, Wait04. If Wait04 immediately
observes 0x04, a match is declared by asserting the Match output flag, and the FSM completes its
function by returning to Idle. Otherwise, like in Wait03, the FSM branches back to Wait01 or Wait02.

"00"

"01"

"10"

"11"

FIGURE 10.15 Two-bit counter bubble diagram.

Idle Wait01

Wait02Wait03

trigger && data != 0x01

trigger && data == 0x01

!trigger data != 0x01

data == 0x01

data != 0x02
&&

data != 0x01

data == 0x02

data == 0x04 /
Match=1

data == 0x01

data != 0x03 &&
data != 0x01

data == 0x01Wait04
data == 0x03

data == 0x01

data != 0x04 &&
data != 0x01

FIGURE 10.16 Pattern-matching FSM bubble diagram.

-Balch.book Page 238 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 239

FSMs are formally classified into one of two types:

Moore

and

Mealy

. A Moore FSM is one
wherein the output signals are functions of only the current state vector. A Mealy FSM is one in
which the output signals are functions of both the current state as well as the inputs to the FSM. The
pattern-matching FSM is a Mealy FSM, because Match is asserted when in state Wait04 and the in-
put data is equal to 0x04. It could be converted into a Moore FSM by adding an additional state, per-
haps called Matched, that would be inserted in the arc between Wait04 and Idle. The benefit of doing
this would be to reduce logic complexity, because the output signals are functions of only the state
vector rather than the inputs as well. However, this comes at the cost of adding an extra state. As
FSMs get fairly complex, it may be too cumbersome to rigidly conform to a Moore design.

An FSM is typically coded in HDL using two blocks: a sequential (clocked) state vector block
and a combinatorial state and output assignment block. The pattern-matching FSM can be written in
Verilog as shown in Fig. 10.17. Rather than calling out numerical state values directly in the RTL,
constants are defined to make the code more readable. Verilog supports the

`define

 construct that as-
sociates a literal text string with a text identifier. The output, Match, is explicitly registered before
leaving the module so that downstream logic timing will not be slowed down by incurring the pen-
alty of the FSM logic. Registering the signal means that the output is that of a flop directly, rather
than through an arbitrary number of logic gates that create additional timing delays.

In reading the FSM code, it can be seen that the state vector is three bits wide, because there are
five states in total. However, 2

3

 equals 8, indicating that three of the possible state vector values are
invalid. Although none of these invalid values should ever arise, system reliability is increased by in-
serting the

default

clause into the case statement. This assignment ensures that any invalid state will
result in the FSM returning to Idle. Without a default clause, any invalid state would not cause any
action to be taken, and the FSM would remain in the same state indefinitely. It is good practice to in-
sert default clauses into case statements when writing FSMs to guard against a hung condition. It is
admittedly unlikely that the state vector will assume an invalid value, but if a momentary glitch were
to happen, the design would benefit from a small amount of logic to restore the FSM to a valid state.

10.5 FSM BUS CONTROL

FSMs are well suited to managing arbitrarily complex bus interfaces. Microprocessors, memory de-
vices, and I/O controllers can have interfaces with multiple states to handle arbitration between mul-
tiple requestors, wait states, and multiword transfers (e.g., a burst SDRAM). Each of these bus states
can be represented by an FSM state, thereby breaking a seemingly complex problem into quite man-
ageable pieces.

A simple example of CPU bus control is an asynchronous CPU interface with request/acknowl-
edge signaling in which the FSM runs on a different clock from that of the CPU itself. Asynchronous
CPU buses tend to implement four-corner handshaking to prevent the CPU and peripheral logic
from getting out of step with one another. Two asynchronous control signals, chip select (CS_) and
acknowledge (ACK_), can be managed with an FSM by breaking the distinct phases of a CPU ac-
cess into separate states as shown in Fig. 10.18. The FSM waits in Idle until a synchronized CS_ is
observed, at which point it executes the transaction, asserts ACK_, and then transitions to the Ack
state. Once in Ack, the FSM waits until CS_ is deasserted before deasserting ACK_.

The logic is shown implemented in Verilog in Fig. 10.19. This FSM logic is simplistic in that it
assumes that all transactions can be executed and acknowledged immediately. In reality, certain ap-
plications will make such rapid execution impossible. A memory controller will need to insert la-
tency while data is fetched, for example. Such situations can be handled by adding states to the FSM
that handle such cases. Rather than

Idle

immediately returning an acknowledge, it could initiate a

-Balch.book Page 239 Thursday, May 15, 2003 3:46 PM

240 Advanced Digital Systems

module PatternMatch (
 Clk,
 Reset_,
 Trigger,
 Data,
 Match
);

input Clk, Reset_, Trigger;
input [7:0] Data;
output Match;

reg Match, NextMatch;
reg [2:0] State, NextState;

`define IDLE 3´h0
`define WAIT01 3´h1
`define WAIT02 3´h2
`define WAIT03 3´h3
`define WAIT04 3´h4

// sequential state vector block

always @(posedge Clk)
begin
 if (!Reset_)
 State[2:0] <= `IDLE;
 else
 State[2:0] <= NextState[2:0];
end

// register output of FSM
// could be combined with above state vector block if desired

always @(posedge Clk)
begin
 if (!Reset_)
 Match <= 1´b0;
 else
 Match <= NextMatch;
end

// FSM combinatorial logic

always @(State[2:0] or Trigger or Data[7:0])
begin
 NextState[2:0] = State[2:0]; // default values prevent latches
 NextMatch = 1´b0;

 case (State[2:0])

 `IDLE :
 if (Trigger && (Data[7:0] == 8´h01))
 NextState[2:0] = `WAIT02;
 else if (Trigger) // data != 0x01
 NextState[2:0] = `WAIT01;

FIGURE 10.17 Pattern-matching FSM logic.

-Balch.book Page 240 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 241

secondary transaction on behalf of the microprocessor and then transition to a state that waits until
the secondary transaction completes before acknowledging the microprocessor.

It may appear that writing a formal FSM when the state vector is a single flop is too cumbersome.
Equivalent functionality can be obtained with a simple if…else structure instead of a case statement
and separate vector assignment block. The advantages to coding the FSM in a formal manner are
consistency and ease of maintenance. If the logic grows in complexity to include more states, it will
be relatively easy to augment an existing FSM structure rather than rewriting one from an if…else

 `WAIT01 :
 if (Data[7:0] == 8´h01)
 NextState[2:0] = `WAIT02;
 // else not required due to default assignment above

 `WAIT02 :
 if (Data[7:0] == 8´h01)
 NextState[2:0] = `WAIT02;
 else if (Data[7:0] == 8´h02)
 NextState[2:0] = `WAIT03;
 else // data != 0x01 or 0x02
 NextState[2:0] = `WAIT01;

 `WAIT03 :
 if (Data[7:0] == 8´h01)
 NextState[2:0] = `WAIT02;
 else if (Data[7:0] == 8´h03)
 NextState[2:0] = `WAIT04;
 else // data != 0x01 or 0x03
 NextState[2:0] = `WAIT01;

 `WAIT04 :
 if (Data[7:0] == 8´h01)
 NextState[2:0] = `WAIT02;
 else if (Data[7:0] == 8´h04) begin
 NextState[2:0] = `IDLE;
 NextMatch = 1´b1;
 end
 else // data != 0x01 or 0x04
 NextState[2:0] = `WAIT01;

 default : NextState[2:0] = `IDLE; // handle unknown state vectors

 endcase
end

endmodule

FIGURE 10.17 (continued) Pattern-matching FSM logic.

Idle Ack

!CS_ /
ClrAck=1, Do read/write

CS_ !CS_

CS_ /
SetAck=1

FIGURE 10.18 Asynchronous bus slave FSM bubble diagram.

-Balch.book Page 241 Thursday, May 15, 2003 3:46 PM

242 Advanced Digital Systems

reg State, NextState;
reg CS_Input_, CS_Sync_, CpuAck_;

`define IDLE 1´h0
`define ACK 1´h1

always @(posedge Clk)
begin
 if (!Reset_)
 State <= `IDLE;
 else
 State <= NextState;
end

// FSM support logic: synchronization and registered output

always @(posedge Clk)
begin
 if (!Reset_) begin
 CS_Input_ <= 1´b1; // active low signals reset to high
 CS_Sync_ <= 1´b1;
 CpuAck_ <= 1´b1;
 end
 else begin
 CS_Input_ <= CS_; // first synchronizer stage
 CS_Sync_ <= CS_Input_; // second synchronizer stage

 if (SetAck)
 CpuAck_ <= 1´b1;

 else if (ClrAck)
 CpuAck_ <= 1´b0;
 end

end

// FSM logic assumes supporting logic:
//
// CpuDataOE enables tristate output for reads
// WriteEnable enables writes to registers decoded from address inputs

always @(State or CS_Sync_ or Rd_ or Wr_)
begin
 NextState = State; // default values prevent latches

 ClrAck = 1´b0;
 CpuDataOE = 1´b0;
 SetAck = 1´b0;
 WriteEnable = 1´b0;

 case (State)

 `IDLE :
 if (!CS_Sync_) begin
 NextState = `ACK;
 ClrAck = 1´b1;
 CpuDataOE = !Rd_;
 WriteEnable = !Wr_;
 end

 `ACK :
 if (CS_Sync_) begin // wait for CS_ deassertion
 NextState = `IDLE;
 SetAck = 1´b1;
 end

 endcase
end

FIGURE 10.19 Asynchronous bus slave logic.

-Balch.book Page 242 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 243

construct. Real bus control FSMs typically requires additional states to handle more complex trans-
action. In the end, the decision is a matter of individual preference and style.

10.6 FSM OPTIMIZATION

FSM complexity can rapidly get out of hand when designing logic to execute a complex algorithm.
Two related ways in which complexity manifests itself are excessively large FSMs and timing prob-
lems. FSMs with dozens of states can, on their own, lead to timing problems resulting from the
many levels of logic necessary to map the full set of inputs and the current state vector to the full set
of outputs and the next state vector. Yet, even FSMs with relatively few states can exhibit timing
problems if the branch conditions get overly complex.

When complex branch conditions are combined with a very large FSM, the result can be a timing
nightmare if suitable design decisions are not made from the beginning. A conceivably poor result
could be logic that needs to run at 66 MHz being barely capable of 20-MHz operation. In most in-
stances, an acceptable level of performance can be obtained by properly optimizing the FSM and its
supporting logic from the start. If this is not true, chances are that a fundamental change is necessary
in either the implementation technology (e.g., faster logic circuits) or the overall architectural ap-
proach to solving the problem (e.g., more parallelism in dividing a task into smaller pieces). FSM
timing optimization techniques include partitioning, state vector encoding methods, and pipelining.

Proper partitioning of FSMs, and logic in general, is a major factor in successful systems develop-
ment. Even the best optimization schemes can fail if the underlying FSM is improperly structured. It
is usually better to design a system with multiple smaller FSMs instead of a few large ones. Smaller
logic structures will tend to have fewer inputs, thereby reducing the complexity of the logic and im-
proving its performance. When the interfaces between multiple FSMs are registered, long timing
paths are broken to isolate each FSM from a timing perspective. Without registered interfaces, it is
possible for multiple FSMs to form a large loop of dense logic as one feeds back to another. This
would defeat a primary benefit of designing smaller FSMs.

Partitioning functionality across smaller FSMs not only makes it easier to improve their timing, it
also makes it easier to design and debug the logic. Each smaller section of logic can be assigned to a
different engineer for concurrent development, or the sections can be developed serially in a progres-
sive manner by designing and testing each element sequentially. By the time the entire design has
been completed, the daunting task of simulating everything at once can be substantially minimized,
because each section has already been tested individually. Bugs are likely to arise when all the
pieces are put together, but the overall magnitude of the debugging process should be reduced.

State-vector encoding methods are most often considered as a choice between two options:

binary
encoding

and

one-hot encoding

. A binary encoded FSM is equivalent to the examples presented ear-
lier in this chapter: a state vector is chosen with N flops such that 2

N

 is greater than or equal to the
total number of states in the FSM. Each state is assigned a unique value in the range of 0 to 2

N

 – 1. A
one-hot FSM allocates one state flop for each unique state and adheres to a rule that only one flop is
set (hot) on any single cycle. The benefits of a one-hot FSM include reduced complexity of output
logic and reduced power consumption. Output logic complexity is often reduced by one-hot encod-
ing, because the entire state vector does not have to be decoded. Instead, only those state flops that
directly map to an output signal are included in the Boolean expression. Power consumption is re-
duced, because only two flops change state at a time (the old state flop transitions from high to low,
and the new state flop transitions from low to high) instead of many or all state bits. The decision to
implement one-hot encoding varies according to the size of the FSM and the constraints of the im-
plementation technology. Beyond a certain size, one-hot encoding becomes too unwieldy and may
actually result in more logic than a binary encoded version. Different technologies (e.g., custom ver-

-Balch.book Page 243 Thursday, May 15, 2003 3:46 PM

244 Advanced Digital Systems

sus programmable logic) provide more or less flexibility in how flops and logic gates are placed to-
gether. In many cases, custom logic (e.g., an ASIC) is more efficient with a binary encoded FSM,
whereas programmable logic performs better with moderately sized one-hot FSMs.

An FSM can be explicitly written as one-hot, but most leading HDL synthesis tools (e.g., Ca-
dence BuildGates, Exemplar Leonardo Spectrum, Synplicity Synplify, or Synopsys Design Com-
piler and FPGA Express) have options to automatically evaluate a binary encoded FSM in either its
native encoding or a one-hot scheme and then pick the best result. These tools save the engineer the
manual time of trying various encoding styles. Better yet, if an FSM works well in one-hot encoding
at one phase during the design, and then better as binary encoded due to later design changes, the
synthesis tool will automatically change the encoding style without manual intervention.

If a situation arises in which it is advantageous to manually write an FSM using one-hot encod-
ing, the technique is straightforward. Once the number of required state flops has been counted, RTL
can be written as shown in Fig. 10.20 using the previous example of an asynchronous bus slave
FSM.

There are two significant syntactical elements that enable the one-hot FSM encoding. The first is
using the case (1) construct wherein the individual test cases become the individual state vector bits
as indexed by the defined state identifiers. Next is the actual NextState assignment, made by left
shifting the constant 1 by the state identifiers. Left shifting by the state vector index of the desired
next state causes that next state’s bit, and only that bit, to be set while the other bits are cleared.

// Define bit positions of each state in the set of state bits

`define IDLE 0 // state = 01
`define ACK 1 // state = 10

always @(State[1:0] or CS_Sync_ or Rd_ or Wr_)
begin
 NextState[1:0] = State[1:0];

 ClrAck = 1´b0;
 CpuDataOE = 1´b0;
 SetAck = 1´b0;
 WriteEnable = 1´b0;

 case (1)

 State[`IDLE] :
 if (!CS_Sync_) begin
 NextState[1:0] = 1 << `ACK;
 ClrAck = 1´b1;
 CpuDataOE = !Rd_;
 WriteEnable = !Wr_;
 end

 State[`ACK] :
 if (CS_Sync_) begin
 NextState[1:0] = 1 << `IDLE;
 SetAck = 1´b1;
 end

 endcase
end

FIGURE 10.20 One-hot encoded FSM.

-Balch.book Page 244 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 245

10.7 PIPELINING

Pipelining is a significant method of improving FSM timing in a way similar to normal logic. A
complex FSM contains a large set of inputs that feeds the next state logic. As the number of branch
variables across the entire FSM increases, long timing paths quickly develop. It is advantageous to
precompute many branch conditions and reduce a condition to a binary variable: true or false. In do-
ing so, the branch variables are moved away from the FSM logic and behind a pipeline flop. The
logic delay penalty of evaluating the branch condition is hidden by the pipeline flop. This simplifies
the FSM logic because it has to evaluate only the true/false condition result, which is a function of
one variable, instead of the whole branch condition, which can be a function of many variables.

An example of using pipelining to improve FSM timing is whereby an FSM is counting events
and waits in a particular state until the event has occurred N times, at which point the FSM branches
to a new state. In this situation, a counter lies off to the side of the FSM, and the FSM asserts a signal
to increment the counter each time a particular event occurs. Without pipelining, the FSM would
compare the counter bits against the constant, N, as a branch condition. If the counter is eight bits
wide, there is a function of eight variables plus any other qualifiers. If the counter is 16 bits wide, at
least 16 variables are present. Many such Boolean equations in the same FSM can lead to timing
problems.

Pipelining can be implemented by performing the comparison outside of the FSM with the true/
false result being stored in a flop that is directly evaluated by the FSM, thereby reducing the evalua-
tion to a function of only one variable. The trick to making this work properly is that the latency of
the pipelined comparison needs to be built into both the comparison logic and the FSM itself.

In a counter situation without pipelining, the FSM increments the counter when an event occurs
and simultaneously evaluates the current count value to determine if N events have occurred. There-
fore, the FSM would have to make its comparison against N – 1 instead of against N if it wanted to
react at the proper time. When the counter is at N – 1 and the event occurs, the FSM knows that this
event is the Nth event in the sequence.

Inserting a pipeline flop into the counter comparison logic adds a cycle of latency to the compari-
son. The FSM cannot simply look ahead an additional cycle to N – 2, because it cannot tell the fu-
ture: it does not ordinarily know if an event will occur in the next cycle. This problem can be
addressed in the pipelined comparison logic. The comparison logic must be triggered at N – 2 so that
the FSM can observe the asserted signal on the following cycle when the counter is at N – 1, which
enables the FSM to operate as before to recognize the Nth event. Because an ultimate comparison to
N – 1 is desired, the pipelined logic can evaluate the expression, “If count equals N – 2 and incre-
ment is true, then count will equal N – 1 in the next cycle.” In the next cycle, the FSM will have the
knowledge that count equals N – 1 from a single flop, and it can qualify this in the same way it did
without the pipelining with the end same result. Verilog code fragments to implement this scheme
are shown in Fig. 10.21, where the FSM completes its task when 100 events have been observed.

Pipelining should be carefully considered when an FSM is evaluating long bit vectors if it is be-
lieved that proper timing will be difficult to achieve. Counter comparisons to constants are not the
only candidates for pipelining. Valid pipelining candidates include counter comparisons to other reg-
isters and arithmetic embedded within branch conditions. Arithmetic expressions such as one shown
in Fig. 10.22 can add long timing paths to an already complex FSM.

Adding two vectors and then comparing their sum to a third vector is a substantial quantity of
logic. Such situations are not uncommon in an FSM that must negotiate complex algorithms. It
would be highly advantageous to perform the arithmetic and comparison in a pipelined manner so
that the FSM would have to evaluate only a single flop. The complexity involved in pipelining such
an expression is highly dependent on the application’s characteristics. Pipelining can get tricky when
it becomes necessary to look ahead one cycle and deal with possible exceptions to the look-ahead

-Balch.book Page 245 Thursday, May 15, 2003 3:46 PM

246 Advanced Digital Systems

process. Despite this complexity, there are situations in which this is the only way of obtaining the
desired performance.

Pipelining is perhaps most tricky when the logic involved contains a feedback path through the
FSM. This feedback path can be of the type discussed previously whereby the FSM is detecting an
event, incrementing a counter, and then relying on that count value to take further action. There are
other situations in which no feedback path exists. An FSM may be called on to process an incoming
data stream over which it has no direct control. As in the earlier pattern matching example, the FSM
may need to look for certain data values and take action if they are located. In Fig. 10.17, the FSM
directly evaluated the eight-bit data stream in searching for the values 0x01, 0x02, 0x03, and 0x04.
This logic can be optimized by inserting pattern-matching flops between the data input port and the
FSM as shown in Fig. 10.23. In doing so, the FSM no longer needs to evaluate the entire eight-bit
vector but instead can test a single flop for each pattern.

`define COMPARE_VALUE 7´d98 // N - 2 due to pipeline delay

// counter logic with pipelined comparison logic

always @(posedge Clk)
begin
 if (ClrCount) begin
 CountDone <= 1´b0;
 Count[6:0] <= 8´h1;
 end
 else if (IncCount) begin
 CountDone <= Count[6:0] == `COMPARE_VALUE;
 Count[6:0] <= Count[6:0] + 1;
 end

end

// Partial FSM logic

...
 `WAIT_COUNT :
 if (Event && CountDone) // N-1 CountDone flag qualified with
 NextState[3:0] = `FINISH; // Event, indicating Nth event
 else if (Event)
 IncCount = 1´b1;
 ...
 end

...

FIGURE 10.21 Pipelined count comparison logic.

 `COMPLEX_STATE :
 if ((BytesFound[15:0] + BytesOffset[7:0]) >
 BytesThreshold[15:0])
 NextState[3:0] = `MORE_MATH;
 ...
 else
 ...
 end
...

FIGURE 10.22 Arithmetic expression in FSM branch condition.

-Balch.book Page 246 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 247

When pipeline flops are inserted into a data path, care must be taken to apply a consistent delay to
the entire data path. This example does not use the data path for any purpose other than pattern
matching; therefore, there is no need to perform further operations on the data once it is checked for
the relevant patterns. If, however, the logic performed pattern matching and then manipulated the
data based on that matching (e.g., recognize the start of a data packet and then store the packet into a
memory), it would be critical to keep the pipelined pattern-matching flops coincident with the data
that they represent. Failure to do so would result in detecting the pattern late with respect to the data
stream, thereby missing the packet’s initial data. The data path can be delayed along with the pipe-
lined logic by passing it through a register also. If the previous example did process the data, logic
reading

DataPipe[7:0] <= Data[7:0]

 could be placed into the same always block as the
pattern matching logic. Subsequent references to Data[7:0] would be replaced by references to
DataPipe[7:0]. This way, when Data[7:0] equals 0x01, Data01 will be set on the next cycle, and
DataPipe[7:0] will be loaded with the value 0x01 on the next cycle as well.

// pipelined pattern matching flops

always @(posedge Clk)
begin
 if (!Reset_) begin
 Data01 <= 1´b0;
 Data02 <= 1´b0;
 Data03 <= 1´b0;
 Data04 <= 1´b0;
 end
 else begin
 Data01 <= Data[7:0] == 8´h01;
 Data02 <= Data[7:0] == 8´h02;
 Data03 <= Data[7:0] == 8´h03;
 Data04 <= Data[7:0] == 8´h04;
 end

end

always @(State[2:0] or Trigger or Data01 or Data02 or Data03 or Data04)
begin
 NextState[2:0] = State[2:0];
 NextMatch = 1´b0;

 case (State[2:0])

 `IDLE :
 if (Trigger && Data01) // Instead of Data[7:0] == 8´h01
 NextState[2:0] = `WAIT02;

...

FIGURE 10.23 Pattern-matching logic with pipelining.

-Balch.book Page 247 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

249

CHAPTER 11

Programmable Logic Devices

Programmable logic is the means by which a large segment of engineers implement their custom
logic, whether that logic is a simple I/O port or a complex state machine. Most programmable logic
is implemented with some type of HDL that frees the engineer from having to derive and minimize
Boolean expressions each time a new logical relationship is designed. The advantages of program-
mable logic include rapid customization with relatively limited expense invested in tools and sup-
port.

The widespread availability of flexible programmable logic products has brought custom logic
design capabilities to many individuals and smaller companies that would not otherwise have the fi-
nancial and staffing resources to build a fully custom IC. These devices are available in a wide range
of sizes, operating voltages, and speeds, which all but guarantees that a particular application can be
closely matched with a relevant device. Selecting that device requires some research, because each
manufacturer has a slightly different specialty and range of products.

Programmable logic technology advances rapidly, and manufacturers are continually offering de-
vices with increased capabilities and speeds. After completing this chapter and learning about the
basic types of devices that are available, it is recommended that you to browse through the latest
manufacturers’ data sheets to get updated information. Companies such as Altera, Atmel, Cypress,
Lattice, QuickLogic, and Xilinx provide detailed data sheets on their web sites and also tend to offer
bundled development software for reasonable prices.

11.1 CUSTOM AND PROGRAMMABLE LOGIC

Beyond using discrete 7400 ICs, custom logic is implemented in larger ICs that are either manufac-
tured with custom masks at a factory or programmed with custom data images at varying points after
fabrication. Custom ICs, or

application specific integrated circuits

(ASICs), are the most flexible op-
tion because, as with anything custom, there are fewer constraints on how application specific logic
is implemented. Because custom ICs are tailored for a specific application, the potential exists for
high clock speeds and relatively low unit prices. The disadvantages to custom ICs are long and ex-
pensive development cycles and the inability to make quick logic changes. Custom IC development
cycles are long, because a design must generally be frozen in a final state before much of the silicon
layout and circuit design work can be completed. Engineering charges for designing a custom mask
set (not including the logic design work) can range from $50,000 to well over $1 million, depending
on the complexity. Once manufactured, the logic can’t simply be altered, because the logic configu-
ration is an inherent property of the custom design. If a bug is found, the time and money to alter the
mask set can approach that of the initial design itself.

-Balch.book Page 249 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

250 Advanced Digital Systems

Programmable logic devices

(PLDs) are an alternative to custom ASICs. A PLD consists of gen-
eral-purpose logic resources that can be connected in many permutations according to an engineer’s
logic design. This programmable connectivity comes at the price of additional, hidden logic that
makes logic connections within the chip. The main benefit of PLD technology is that a design can be
rapidly loaded into a PLD, bypassing the time consuming and expensive custom IC development
process. It follows that if a bug is found, a fix can be implemented very quickly and, in many cases,
reprogrammed into the existing PLD chip. Some PLDs are one-time programmable, and some can
be reprogrammed in circuit.

The disadvantage of PLDs is the penalty paid for the hidden logic that implements the program-
mable connectivity between logic gates. This penalty manifests itself in three ways: higher unit cost,
slower speeds, and increased power consumption. Programmable gates cost more than custom gates,
because, when a programmable gate is purchased, that gate plus additional connectivity overhead is
actually being paid for. Propagation delay is an inherent attribute of all silicon structures, and the
more structures that are present in a path, the slower the path will be. It follows that a programmable
gate will be slower than a custom gate, because that programmable gate comes along with additional
connectivity structures with their own timing penalties. The same argument holds true for power
consumption.

Despite the downside of programmable logic, the technology as a whole has progressed dramati-
cally and is extremely popular as a result of competitive pricing, high performance levels, and, espe-
cially, quick time to market. Time to market is an attribute that is difficult to quantify but one that is
almost universally appreciated as critical to success. PLDs enable a shorter development cycle, be-
cause designs can be prototyped rapidly, the bugs worked out, and product shipped to a customer be-
fore some ASIC technologies would even be in fabrication. Better yet, if a bug is found in the field,
it may be fixable with significantly less cost and disruption. In the early days of programmable logic,
PLDs could not be reprogrammed, meaning that a bug could still force the recall of product already
shipped. Many modern reprogrammable PLDs allow hardware bugs to be fixed in the field with a
software upgrade consisting of a new image that can be downloaded to the PLD without having to
remove the product from the customer site.

Cost and performance are probably the most debated trade-offs involved in using programmable
logic. The full range of applications in which PLDs or ASICs are considered can be broadly split
into three categories as shown in Fig. 11.1. At the high end of technology, there are applications in
which an ASIC is the only possible solution because of leading edge timing and logic density re-
quirements. In the mid range, clock frequencies and logic complexity are such that a PLD is capable
of solving the problem, but at a higher unit cost than an ASIC. Here, the decision must be made be-
tween flexibility and time to market versus lowest unit cost. At the low end, clock frequencies and
logic density requirements are far enough below the current state of silicon technology that a PLD
may meet or even beat the cost of an ASIC.

It may sound strange that a PLD with its overhead can ever be less expensive than a custom chip.
The reasons for this are a combination of silicon die size and volume pricing. Two of the major fac-
tors in the cost of fabricating a working silicon die are its size and manufacturing yield. As a die gets
smaller, more of them can be fabricated at the same time on the same wafer using the same re-
sources. IC manufacturing processes are subject to a certain yield, which is the percentage of work-
ing dice obtained from an overall lot of dice. Some dice develop microscopic flaws during
manufacture that make them unusable. Yield is a function of many variables, including the reliability
of uniformly manufacturing a certain degree of complexity given the prevailing state of technology
at a point in time. From these two points, it follows that a silicon chip will be less expensive to man-
ufacture if it is both small and uses a technology process that is mature and has a high yield.

At the low end of speed and density, a small PLD and a small ASIC may share the same mature
technology process and the same yield characteristics, removing yield as a significant variable in

-Balch.book Page 250 Thursday, May 15, 2003 3:46 PM

Programmable Logic Devices 251

their cost differential. Likewise, raw packaging costs are likely to be comparable because of the mat-
uration of stable packaging materials and technologies. The cost differential comes down to which
solution requires the smaller die and how the overhead costs of manufacturing and distribution are
amortized across the volume of chips shipped.

Die size is function of two design characteristics: how much logic is required and how many I/O
pins are required. While the size of logic gates has decreased by orders of magnitude over time, the
size of I/O pads, the physical structures that packaging wires connect to, has not changed by the
same degree. There are nonscalable issues constraining pad size, including physical wire bonding
and current drive requirements. I/O pads are often placed on the perimeter of a die. If the required
number of I/O pads cannot be placed along the existing die’s perimeter, the die must be enlarged
even if not required by the logic. ICs can be considered as being balanced, logic limited, or pad lim-
ited. A balanced design is optimal, because silicon area is being used efficiently by the logic and pad
structures. A logic-limited IC’s silicon area is dominated by the internal logic requirements. At the
low end being presently discussed, being logic limited is not a concern because of the current state
of technology. Pad-limited designs are more of a concern at the low end, because the chip is forced
to a certain minimum size to support a minimum number of pins.

Many low-end logic applications end up being pad limited as the state of silicon process technol-
ogy advances and more logic gates can be squeezed into ever smaller areas. The logic shrinks, but
the I/O pads do not. Once an IC is pad limited, ASIC and CPLD implementations may use the same
die size, removing it as a cost variable. This brings us back to the volume pricing and distribution as-
pects of the semiconductor business. If two silicon manufacturers are fabricating what is essentially
the same chip (same size, yield, and package), who will be able to offer the lowest final cost? The
comparison is between a PLD vendor that turns out millions of the exact same chip each year versus
an ASIC vendor that can manufacture only as many of your custom chips that you are willing to buy.
Is an ASIC’s volume 10,000 units per year? 100,000? One million? With all other factors being
equal, the high-volume PLD vendor has the advantage, because the part being sold is not custom but
a mass-produced generic product.

Lo
gi

c
an

d
R

A
M

G
at

e
D

en
si

ty
(x

10
00

)

Clock Frequency (MHz)

10 1001 1000+

10

100

1000

10,000+ ASIC Only

ASIC or PLD:
Cost vs. Time to Market

PLD may be cheaper

FIGURE 11.1 PLDs vs. ASICs circa 2003.

-Balch.book Page 251 Thursday, May 15, 2003 3:46 PM

252 Advanced Digital Systems

11.2 GALS AND PALS

Among the most basic types of PLDs are Generic Array Logic

TM

 (GAL) devices.

*

 GALs are en-
hanced variants of the older Programmable Array Logic

TM

 (PAL) architecture that is now essentially
obsolete. The term PAL is still widely used, but people are usually referring to GAL devices or other
PLD variants when they use the term. PALs became obsolete, because GALs provide a superset of
their functionality and can therefore perform all of the functions that PALs did. GALs are relatively
small, inexpensive, easily available, and manufactured by a variety of vendors (e.g., Cypress, Lat-
tice, and Texas Instruments).

It can be shown through Boolean algebra that any logical expression can be represented as an ar-
bitrarily complex sum of products. Therefore, by providing a programmable array of AND/OR
gates, logic can be customized to fit a particular application. GAL devices provide an extensive pro-
grammable array of wide AND gates, as shown in Fig. 11.2, into which all the device’s input terms
are fed. Both true and inverted versions of each input are made available to each AND gate. The out-
puts of groups of AND gates (products) feed into separate OR gates (sums) to generate user-defined
Boolean expressions.

Each intersection of a horizontal AND gate line and a vertical input term is a programmable con-
nection. In the early days of PLDs, these connections were made by fuses that would literally have to
be blown with a high voltage to configure the device. Fuse-based devices were not reprogrammable;

* GAL, Generic Array Logic, PAL, and Programmable Array Logic are trademarks of Lattice Semiconductor Corporation.

Input Terms

AND/OR
Output Terms

FIGURE 11.2 GAL/PAL AND/OR structure.

-Balch.book Page 252 Thursday, May 15, 2003 3:46 PM

Programmable Logic Devices 253

once a microscopic fuse is blown, it cannot be restored. Today’s devices typically rely on EEPROM
technology and CMOS switches to enable nonvolatile reprogrammability. However, fuse-based ter-
minology remains in use for historical reasons. The default configuration of a connection emulates
an intact fuse, thereby connecting the input term to the AND gate input. When the connection is
blown, or programmed, the AND input is disconnected from the input term and pulled high to effec-
tively remove that input from the Boolean expression. Customization of a GAL’s programmable
AND gate is conceptually illustrated in Fig. 11.3.

With full programmability of the AND array, the OR connections can be hard wired. Each GAL
device feeds a differing number of AND terms into the OR gates. If one or more of these AND terms
are not needed by a particular Boolean expression, those unneeded AND gates can be effectively dis-
abled by forcing their outputs to 0. This is done by leaving an unneeded AND gate’s inputs unpro-
grammed. Remember that inputs to the AND array are provided in both true and complement
versions. When all AND connections are left intact, multiple expressions of the form re-
sult, thereby forcing that gate’s output to 0 and rendering it nonparticipatory in the OR function.

The majority of a GAL’s logic customization is performed by programming the AND array. How-
ever, selecting flip-flops, OR/NOR polarities, and input/output configurations is performed by pro-
gramming a configurable I/O and feedback structure called a

macrocell

. The basic concept behind a
macrocell is to ultimately determine how the AND/OR Boolean expression is handled and how the
macrocell’s associated I/O pin operates. A schematic view of a GAL macrocell is shown in Fig. 11.4,
although some GALs may contain macrocells with slightly different capabilities. Multiplexers deter-
mine the polarity of the final OR/NOR term, regardless of whether the term is registered and
whether the feedback signal is taken directly at the flop’s output or at the pin. Configuring the mac-
rocell’s output enable determines how the pin behaves.

A B C D E F

A B C D E FA B C D E F

Programmed Connection

Output = A & C & D & E & F

FIGURE 11.3 Programming AND input terms.

A&A 0=

AND Array
Terms

Configuration
Information

Output
Enable

Feedback to
AND Array

D Q

Clock

Configuration
Information

I/O
Pin

FIGURE 11.4 GAL macrocell.

-Balch.book Page 253 Thursday, May 15, 2003 3:46 PM

254 Advanced Digital Systems

There are two common GAL devices, the 16V8 and the 22V10, although other variants exist as
well. They contain eight and ten macrocells each, respectively. The 16V8 provides up to 10 dedi-
cated inputs that feed the AND array, whereas the 22V10 provides 12 dedicated inputs. One of the
22V10’s dedicated inputs also serves as a global clock for any flops that are enabled in the macro-
cells. Output enable logic in a 22V10 is evaluated independently for each macrocell via a dedicated
AND term. The 16V8 is somewhat less flexible, because it cannot arbitrarily feed back all macrocell
outputs depending on the device configuration. Additionally, when configured for registered mode
where macrocell flops are usable, two dedicated input pins are lost to clock and output enable func-
tions.

GALs are fairly low-density PLDs by modern standards, but their advantages of low cost and
high speed are derived from their small size. Implementing logic in a GAL follows several basic
steps. First, the logic is represented in either graphical schematic diagram or textual (HDL) form.
This representation is converted into a netlist using a translation or synthesis tool. Finally, the
netlist is fitted into the target device by mapping individual gate functions into the programmable
AND array. Given the fixed AND/OR structure of a GAL, fitting software is designed to perform
logic optimizations and translations to convert arbitrary Boolean expressions into sum-of-product
expressions. The result of the fitting process is a programming image, also called a

fuse map

, that
defines exactly which connections, or fuses, are to be programmed and which are to be left at their
default state. The programming image also contains other information such as macrocell configura-
tion and other device-specific attributes.

Modern PLD development software allows the back-end GAL synthesis and fitting process to
proceed without manual intervention in most cases. The straightforward logic flow through the pro-
grammable AND array reduces the permutations of how a given Boolean expression can be imple-
mented and results in very predictable logic fitting. An input signal propagates through the pin and
pad structure directly into the AND array, passes through just two gates, and can then either feed a
macrocell flop or drive directly out through an I/O pin. Logic elements within a GAL are close to
each other as a result of the GAL’s small size, which contributes to low internal propagation delays.
These characteristics enable the GAL architecture to deliver very fast timing specifications, because
signals follow deterministic paths with low propagation delays.

GALs are a logic implementation technology with very predictable capabilities. If the desired
logic cannot fit within the GAL, there may not be much that can be done without optimizing the al-
gorithm or partitioning the design across multiple devices. If the logic fits but does not meet timing,
the logic must be optimized, or a faster device must be found. Because of the GAL’s basic fitting
process and architecture, there isn’t the same opportunity of tweaking the device as can be done with
more complex PLDs. This should not be construed as a lack of flexibility on the part of the GAL.
Rather, the GAL does what it says it does, and it is up to the engineer to properly apply the technol-
ogy to solve the problem at hand. It is the simplicity of the GAL architecture that is its greatest
strength.

Lattice Semiconductor’s GAL22LV10D-4 device features a worst-case input-to-output combina-
torial propagation delay of just 4 ns.

*

 This timing makes the part suitable for address decoding on
fast microprocessor interfaces. The same 22V10 part features a 3-ns t

CO

 and up to 250-MHz opera-
tion. The t

CO

 specification is a pin-to-pin metric that includes the propagation delays of the clock
through the input pin and the output signal through the output pin. Internally, the actual flop itself
exhibits a faster t

CO

 that becomes relevant for internal logic feedback paths. Maximum clock fre-
quency specifications are an interesting aspect of all PLDs and some consideration. These specifica-
tions are best-case numbers usually obtained with minimal logic configurations. They may define

* GAL22LV10D, 22LV10_04, Lattice Semiconductor, 2000, p. 7.

-Balch.book Page 254 Thursday, May 15, 2003 3:46 PM

Programmable Logic Devices 255

the highest toggle rate of the device’s flops, but synchronous timing analysis dictates that there is
more to f

MAX

 than the flop’s t

SU

 and t

CO

. Propagation delay of logic and connectivity between flops
is of prime concern. The GAL architecture’s deterministic and fast logic feedback paths reduces the
added penalty of internal propagation delays. Lattice’s GAL22LV10D features an internal clock-to-
feedback delay of 2.5 ns, which is the combination of the actual flop’s t

CO

 plus the propagation delay
of the signal back through the AND/OR array. This feedback delay, when combined with the flop’s
3-ns t

SU

, yields a practical f

MAX

 of 182 MHz when dealing with most normal synchronous logic that
contains feedback paths (e.g., a state machine).

11.3 CPLDS

Complex PLDs

, or CPLDs, are the mainstream macrocell-based PLDs in the industry today, provid-
ing logic densities and capabilities well beyond those of a GAL device. GALs are flexible for their
size because of the large programmable AND matrix that defines logical connections between inputs
and outputs. However, this anything-to-anything matrix makes the architecture costly to scale to
higher logic densities. For each macrocell that is added, both matrix dimensions grow as well.
Therefore, the AND matrix increases in a square function of the I/O terms and macrocells in the de-
vice. CPLD vendors seek to provide a more linear scaling of connectivity resources to macrocells by
implementing a segmented architecture with multiple fixed-size GAL-style logic blocks that are in-
terconnected via a central switch matrix as shown in Fig. 11.5. Like a GAL, CPLDs are typically
manufactured with EEPROM configuration storage, making their function nonvolatile. After pro-
gramming, a CPLD will retain its configuration and be ready for operation when power is applied to
the system.

Each individual logic block is similar to a GAL and contains its own programmable AND/OR ar-
ray and macrocells. This approach is scalable, because the programmable AND/OR arrays remain
fixed in size and small enough to fabricate economically. As more macrocells are integrated onto the
same chip, more logic blocks are placed onto the chip instead of increasing the size of individual
logic blocks and bloating the AND/OR arrays. CPLDs of this type are manufactured by companies
including Altera, Cypress, Lattice, and Xilinx.

Logic Block
Input Term

Switch
Matrix

I/O Cells

GAL-Type
Logic Block

Input Terms

Feedback
Pin Outputs

Pin Inputs

GAL-Type
Logic Block

Input Terms

Feedback
Pin Outputs

GAL-Type
Logic Block

Input Terms

Feedback
Pin Outputs

FIGURE 11.5 Typical CPLD architecture.

-Balch.book Page 255 Thursday, May 15, 2003 3:46 PM

256 Advanced Digital Systems

Generic user I/O pins are bidirectional and can be configured as inputs, outputs, or both. This is in
contrast to the dedicated power and test pins that are necessary for operation. There are as many po-
tential user I/O pins as there are macrocells, although some CPLDs may be housed in packages that
do not have enough physical pins to connect to all the chip’s I/O sites. Such chips are intended for
applications that are logic limited rather than pad limited.

Because the size of each logic block’s AND array is fixed, the block has a fixed number of possi-
ble inputs. Vendor-supplied fitting software must determine which logical functions are placed into
which blocks and how the switch matrix connects feedback paths and input pins to the appropriate
block. The switch matrix does not grow linearly as more logic blocks are added. However, the im-
pact of the switch matrix’s growth is less than what would result with an ever expanding AND ma-
trix. Each CPLD family provides a different number of switched input terms to each logic block.

The logic blocks share many characteristics with a GAL, as shown in Fig. 11.6, although addi-
tional flexibility is added in the form of product term sharing. Limiting the number of product terms
in each logic block reduces device complexity and cost. Some vendors provide just five product
terms per macrocell. To balance this limitation, which could impact a CPLD’s usefulness, product
term sharing resources enable one macrocell to borrow terms from neighboring macrocells. This
borrowing usually comes at a small propagation delay penalty but provides necessary flexibility in
handling complex Boolean expressions with many product terms. A logic block’s macrocell contains
a flip-flop and various configuration options such as polarity and clock control. As a result of their
higher logic density, CPLDs contain multiple global clocks that individual macrocells can choose
from, as well as the ability to generate clocks from the logic array itself.

Xilinx is a vendor of CPLD products and manufactures a family known as the XC9500. Logic
blocks, or function blocks in Xilinx’s terminology, each contain 18 macrocells, the outputs of which
feed back into the switch matrix and drive I/O pins as well. XC9500 CPLDs contain multiples of 18
macrocells in densities from 36 to 288 macrocells. Each function block gets 54 input terms from the
switch matrix. These input terms can be any combination of I/O pin inputs and feedback terms from
other function blocks’ macrocells.

Like a GAL, CPLD timing is very predictable because of the deterministic nature of the logic
blocks’ AND arrays and the input term switch matrix. Xilinx’s XC9536XV-3 features a maximum
pin-to-pin propagation delay of 3.5 ns and a t

CO

 of 2.5 ns.

*

 Internal logic can run as fast as 277 MHz
with feedback delays included, although complex Boolean expressions likely reduce this f

MAX

 be-
cause of product term sharing and feedback delays through multiple macrocells.

CPLD fitting software is typically provided by the silicon vendor, because the underlying silicon
architectures are proprietary and not disclosed in sufficient detail for a third party to design the nec-
essary algorithms. These tools accept a netlist from a schematic tool or HDL synthesizer and auto-
matically divide the logic across macrocells and logic blocks. The fitting process is more complex

* XC9536XV, DS053 (v2.2), Xilinx, August 2001, p. 4.

AND Array

Product
Term

Sharing and
Distribution

Product
Terms

Macrocell

Macrocell

Macrocell

Macrocell

FIGURE 11.6 CPLD logic block.

-Balch.book Page 256 Thursday, May 15, 2003 3:46 PM

Programmable Logic Devices 257

than for a GAL; not every term within the CPLD can be fed to each macrocell because of the seg-
mented AND array structure. Product term sharing places restrictions on neighboring macrocells
when Boolean expressions exceed the number of product terms directly connected to each macro-
cell. The fitting software first reduces the netlist to a set of Boolean expressions in the form that can
be mapped into the CPLD and then juggles the assignment of macrocells to provide each with its re-
quired product terms. Desired operating frequency influences the placement of logic because of the
delay penalties of sharing product terms across macrocells. These trade-offs occur at such a low
level that human intervention is often impractical.

CPLDs have come to offer flexibility advantages beyond just logic implementation. As digital
systems get more complex, logic IC supply voltages begin to proliferate. At one time, most systems
ran on a single 5-V supply. This was followed by 3.3-V systems, and it is now common to find sys-
tems that operate at multiple voltages such as 3.3 V, 2.5 V, 1.8 V, and 1.5 V. CPLDs invariably find
themselves designed into mixed-voltage environments for the purposes of interface conversion and
bus management. To meet these needs, many CPLDs support more than one I/O voltage standard on
the same chip at the same time. I/O pins are typically divided into banks, and each bank can be inde-
pendently selected for a different I/O voltage.

Most CPLDs are relatively small in logic capacity because of the desire for very high-speed oper-
ation with deterministic timing and fitting characteristics at a reasonable cost. However, some
CPLDs have been developed far beyond the size of typical CPLDs. Cypress Semiconductor’s
Delta39K200 contains 3,072 macrocells with several hundred kilobits of user-configurable RAM.

*

The architecture is built around clusters of 128 macrocell logic groups, each of which is similar in
nature to a conventional CPLD. In a similar way that CPLDs add an additional hierarchical connec-
tivity layer on top of multiple GAL-type logic blocks, Cypress has added a layer on top of multiple
CPLD-type blocks. Such large CPLDs may have substantial benefits for certain applications. Be-
yond several hundred macrocells, however, engineers have tended to use larger and more scalable
FPGA technologies.

11.4 FPGAS

CPLDs are well suited to applications involving control logic, basic state machines, and small
groups of read/write registers. These control path applications typically require a small number of
flops. Once a task requires many hundreds or thousands of flops, CPLDs rapidly become impractical
to use. Complex applications that manipulate and parse streams of data often require large quantities
of flops to serve as pipeline registers, temporary data storage registers, wide counters, and large state
machine vectors. Integrated memory blocks are critical to applications that require multiple FIFOs
and data storage buffers.

Field programmable gate arrays

(FPGAs) directly address these data path
applications.

FPGAs are available in many permutations with varying feature sets. However, their common de-
fining attribute is a fine-grained architecture consisting of an array of small logic cells, each consist-
ing of a flop, a small lookup table (LUT), and some supporting logic to accelerate common functions
such as multiplexing and arithmetic carry terms for adders and counters. Boolean expressions are
evaluated by the LUTs, which are usually implemented as small SRAM arrays. Any function of four
variables, for example, can be implemented in a 16

×

 1 SRAM when the four variables serve as the
index into the memory. There are no AND/OR arrays as in a CPLD or GAL. All Boolean functions

* Delta39K ISR CPLD Family, Document #38-03039 Rev. *.C, Cypress Semiconductor, December 2001, p. 1.

-Balch.book Page 257 Thursday, May 15, 2003 3:46 PM

258 Advanced Digital Systems

are implemented within the logic cells. The cells are arranged on a grid of routing resources that can
make connections between arbitrary cells to build logic paths as shown in Fig. 11.7. Depending on
the FPGA type, special-purpose structures are placed into the array. Most often, these are config-
urable RAM blocks and clock distribution elements. Around the periphery of the chip are the I/O
cells, which commonly contain one or more flops to enable high-performance synchronous inter-
faces. Locating flops within I/O cells improves timing characteristics by minimizing the distance,
and hence the delay between each flop and its associated pin. Unlike CPLDs, most FPGAs are based
on SRAM technology, making their configurations volatile. A typical FPGA must be reprogrammed
each time power is applied to a system. Major vendors of FPGAs include Actel, Altera, Atmel, Lat-
tice, QuickLogic, and Xilinx.

Very high logic densities are achieved by scaling the size of the two-dimensional logic cell array.
The primary limiting factor in FPGA performance becomes routing because of the nondeterministic
nature of a multipath grid interconnect system. Paths between logic cells can take multiple routes,
some of which may provide identical propagation delays. However, routing resources are finite, and
conflicts quickly arise between competing paths for the same routing channels. As with CPLDs,
FPGA vendors provide proprietary software tools to convert a netlist into a final programming im-
age. Depending on the complexity of the design (e.g., speed and density), routing an FPGA can take
a few minutes or many hours. Unlike a CPLD with deterministic interconnection resources, FPGA
timing can vary dramatically, depending on the quality of the logic placement. Large, fast designs re-
quire iterative routing and placement algorithms.

Routing
Resources

LC LC

LC LC LC

LC LC LC LC

LC LC LC LC

LC

LC

LC

LC

R
A
M

LC LC LC LC LC

R
A
M

IO IO IO IO IO

IO

IO

IO

IO

IO IO IO IO IO IO

IO

IO

IO

IO

IO

IO

LC LC

LC

IO

Logic Paths

FIGURE 11.7 FPGA logic cell array.

-Balch.book Page 258 Thursday, May 15, 2003 3:46 PM

Programmable Logic Devices 259

Human intervention can be critical to the successful routing and timing of a complex FPGA de-
sign.

Floorplanning

is the process by which an engineer manually partitions logic into groups and
then explicitly places these groups into sections of the logic cell array. Manually locating large por-
tions of the logic restricts the routing software to optimizing placement of logic within those bound-
aries and reduces the number of permutations that it must try to achieve a successful result.

Each vendor’s logic cell architecture differs somewhat, but mainly in how support functions such
as multiplexing and arithmetic carry terms are implemented. For the most part, engineers do not
have to consider the minute details of each logic cell structure, because the conversion of logic into
the logic cell is performed by a combination of the HDL synthesis tool and the vendor’s proprietary
mapping software. In extreme situations, wherein a very specific logic implementation is necessary
to squeeze the absolute maximum performance from a specific FPGA, optimizing logic and archi-
tecture for a given logic cell structure may have benefits. Engaging in this level of technology-spe-
cific optimization, however, can be very tricky and lead to a house-of-cards scenario in which
everything is perfectly balanced for a while, and then one new feature is added that upsets the whole
plan. If a design appears to be so aggressive as to require fine-tuned optimization, and faster devices
cannot be obtained, it may be preferable to modify the architecture to enable more mainstream, ab-
stracted design methodologies.

Notwithstanding the preceding comments, there are high-level feature differences among FPGAs
that should be evaluated before choosing a specific device. Of course, it is necessary to pick an
FPGA that has sufficient logic and I/O pins to satisfy the needs of the intended application. But not
all FPGAs are created equal, despite having similar quantities of logic. While the benefits of one
logic structure over another can be debated, the presence or absence of critical design resources can
make implementation of a specific design possible or impossible. These resources are clock distribu-
tion elements, embedded memory, embedded third-party cores, and multifunction I/O cells.

Clock distribution across a synchronous system must be done with minimal skew to achieve ac-
ceptable timing. Each logic cell within a FPGA holds a flop that requires a clock. Therefore, an
FPGA must provide at least one global clock signal distributed to each logic cell with low skew
across the entire device. One clock is insufficient for most large digital systems because of the prolif-
eration of different interfaces, microprocessors, and peripherals. Typical FPGAs provide anywhere
from 4 to 16 global clocks with associated low-skew distribution resources. Most FPGAs do allow
clocks to be routed using the general routing resources that normally carry logic signals. However,
these paths are usually unable to achieve the low skew characteristics of the dedicated clock distribu-
tion network and, consequently, do not enable high clock speeds.

Some FPGAs support a large number of clocks, but with the restriction that not all clocks can be
used simultaneously in the same portion of the chip. This type of restriction reduces the complexity
of clock distribution on the part of the FPGA vendor because, while the entire chip supports a large
number of clocks in total, individual sections of the chip support a smaller number. For example, an
FPGA might support 16 global clocks with the restriction that any one quadrant can support only 8
clocks. This means that there are 16 clocks available, and each quadrant can select half of them for
arbitrary use. Instead of providing 16 clocks to each logic cell, only 8 need be connected, thus sim-
plifying the FPGA circuitry.

Most FPGAs provide

phase locked loops

(PLLs) or

delay locked loops

(DLLs) that enable the in-
tentional skewing, division, and multiplication of incoming clock signals. PLLs are partially analog
circuits, whereas DLLs are fully digital circuits. They have significant overlap in the functions that
they can provide in an FPGA, although engineers may debate the merits of one versus the other. The
fundamental advantage of a PLL or DLL within an FPGA is its ability to improve I/O timing (e.g.,
t

CO

) by effectively removing the propagation delay between the clock input pin and the signal output
pin, also known as

deskewing

. As shown in Fig. 11.8, the PLL or DLL aligns the incoming clock to
a feedback clock with the same delay as observed at the I/O flops. In doing so, it shifts the incoming

-Balch.book Page 259 Thursday, May 15, 2003 3:46 PM

260 Advanced Digital Systems

clock so that the causal edge observed by the I/O flops occurs at nearly the same time as when it en-
ters the FPGA’s clock input pin. PLLs and DLLs are discussed in more detail in a later chapter.

Additional circuitry enables some PLLs and DLLs to emit a clock that is related to the input fre-
quency by a programmable ratio. The ability to multiply and divide clocks is a benefit to some sys-
tem designs. An external board-level interface may run at a slower frequency to make circuit
implementation easier, but it may be desired to run the internal FPGA logic as a faster multiple of
that clock for processing performance reasons. Depending on the exact implementation, multiplica-
tion or division can assist with this scheme.

RAM blocks embedded within the logic cell array are a critical feature for many applications.
FIFOs and small buffers figure prominently in a variety of data processing architectures. Without on-
chip RAM, valuable I/O resources and speed penalties would be given up to use off-chip memory
devices. To suit a wide range of applications, RAMs need to be highly configurable and flexible. A
typical FPGA’s RAM block is based on a certain bit density and can be used in arbitrary width/depth
configurations as shown in Fig. 11.9 using the example of a 4-kb RAM block. Single- and dual-port
modes are also very important. Many applications, including FIFOs, benefit from a dual-ported

Oscillator (PLL)

or

Delay Logic (DLL)

Input Clock Output Clock

Feedback and Control

Circuit

Feedback Clock

Clock
Distribution
Resources

I/O

Flop

FIGURE 11.8 PLL/DLL clock deskew function within FPGA.

4,096 x 1

2,048 x 2

1,024 x 4

512 x 8

FIGURE 11.9 Configurable FPGA 4 kb RAM block.

-Balch.book Page 260 Thursday, May 15, 2003 3:46 PM

Programmable Logic Devices 261

RAM block to enable simultaneous reading and writing of the memory by different logic blocks.
One state machine may be writing data into a RAM, and another may be reading other data out at the
same time. RAM blocks can have synchronous or asynchronous interfaces and may support one or
two clocks in synchronous modes. Supporting two clocks in synchronous modes facilitates dual-
clock FIFO designs for moving data between different clock domains.

Some FPGAs also allow logic cell LUTs to be used as general RAM in certain configurations. A
16

×

 1 four-input LUT can serve as a 16

×

 1 RAM if supported by the FPGA architecture. It is more
efficient to use RAM blocks for large memory structures, because the hardware is optimized to pro-
vide a substantial quantity of memory in a small area of silicon. However, LUT-based RAM is bene-
ficial when a design requires many shallow memory structures (e.g., a small FIFO) and all the large
RAM blocks are already used. Along with control logic, 32 four-input LUTs can be used to con-
struct a 16

×

 32 FIFO. If a design is memory intensive, it could be wasteful to commit one or more
large RAM blocks for such a small FIFO.

Embedding third-party logic cores is a feature that can be useful for some designs, and not useful
at all for others. A disadvantage of FPGAs is their higher cost per gate than custom ASIC technol-
ogy. The main reason that engineers are willing to pay this cost premium is for the ability to imple-
ment custom logic in a low-risk development process. Some applications involve a mix of custom
and predesigned logic that can be purchased from a third party. Examples of this include buying a
microprocessor design or a standard bus controller (e.g., PCI) and integrating it with custom logic on
the same chip. Ordinarily, the cost per gate of the third-party logic would be the same as that of your
custom logic. On top of that cost is the licensing fee charged by the third party. Some FPGA vendors
have decided that there is sufficient demand for a few standard logic cores to offer specific FPGAs
that embed these cores into the silicon in a fixed configuration. The benefit of doing so is to drop the
per-gate cost of the core to nearly that of a custom ASIC, because the core is hard wired and requires
none of the FPGA’s configuration overhead.

FPGAs with embedded logic cores may cost more to offset the licensing costs of the cores, but
the idea is that the overall cost to the customer will be reduced through the efficiency of the hard-
wired core implementation. Microprocessors, PCI bus controllers, and high-speed serdes compo-
nents are common examples of FPGA embedded cores. Some specific applications may be well
suited to this concept.

I/O cell architecture can have a significant impact on the types of board-level interfaces that the
FPGA can support. The issues revolve around two variables: synchronous functionality and voltage/
current levels. FPGAs support generic I/O cells that can be configured for input-only, output-only,
or bidirectional operation with associated tri-state buffer output enable capability. To achieve the
best I/O timing, flops for all three functions—input, output, and output-enable—should be included
within the I/O cell as shown in Fig. 11.10. The timing improvement obtained by locating these three
flops in the I/O cells is substantial. The alternative would be to use logic cell flops and route paths
from the logic cell array directly to the I/O pin circuitry, increasing the I/O delay times. Each of the
three I/O functions is provided in both registered and unregistered options using multiplexers to
provide complete flexibility in logic implementation.

More advanced bus interfaces run at double data rate speeds, requiring more advanced I/O cell
structures to achieve the necessary timing specifications. Newer FPGAs are available with I/O cells
that specifically support DDR interfaces by incorporating two sets of flops, one for each clock edge
as shown in Fig. 11.11. When configured for DDR mode, each of the three I/O functions is driven by
a pair of flops, and a multiplexer selects the appropriate flop output depending on the phase of the
clock. A DDR interface runs externally to the FPGA on both edges of the clock with a certain width.
Internally, the interface runs at double the external width on only one edge of the same clock fre-
quency. Therefore, the I/O cell serves as a 2:1 multiplexer for outputs and a 1:2 demultiplexer for in-
puts when operating in DDR mode.

-Balch.book Page 261 Thursday, May 15, 2003 3:46 PM

262 Advanced Digital Systems

Output
Enable

I/O
Pin

D Q

Output
Data

Configuration
Information

Input
Data DQ

D Q

FIGURE 11.10 FPGA I/O cell structure.

D
D
R

D Q

Configuration
Information

Output
Enable

#2

DDR Mux Control
(e.g. Clock Phase)

Input
Data
#1

Output
Enable

#1

I/O
Pin

Output
Data

#1, #2

Input
Data
#2

DQ

DQ

D Q

FIGURE 11.11 FPGA DDR I/O cell structure.

-Balch.book Page 262 Thursday, May 15, 2003 3:46 PM

Programmable Logic Devices 263

Aside from synchronous functionality, compliance with various I/O voltage and current drive
standards is a key feature for modern, flexible FPGAs. Like CPLDs that support multiple I/O banks,
each of which that can drive a different voltage level, FPGAs are usually partitioned into I/O banks
as well, for the same purpose. In contrast with CPLDs, many FPGAs support a wider variety of I/O
standards for greater design flexibility.

-Balch.book Page 263 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

P R TA 3

ANALOG BASICS FOR
DIGITAL SYSTEMS

-Balch.book Page 265 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

267

CHAPTER 12

Electrical Fundamentals

It is easy to forget that digital systems are really large collections of analog electrical circuits being
operated in a digital manner. It is easy to forget this until the digital components need to be con-
nected to adequate power supplies, until digital circuits experience noise problems, and until digital
systems need to exchange stimulus and control with our analog world. An understanding of basic
circuit theory and a working knowledge of fundamental analog principles provide a digital engineer
with confidence and the ability to design a system that will work reliably at the end of the day.

This chapter begins to peel back the veil of analog circuit theory by starting with the basics of
Ohm’s law, units of measure, and basic circuit analysis techniques. After presenting DC circuits
composed of resistors and capacitors, the discussion moves on to frequency-domain analysis and AC
circuits. These topics are presented with a minimum of mathematical complexity, because the goal is
to support a digital system rather than focusing on analog signal processing. Filters are introduced in
the second half of the chapter. Relatively simple filters are common in digital systems, partly be-
cause of the need to reduce noise so that more sensitive components such as oscillators and interface
ICs can operate properly.

Constructing digital systems in a reliable manner requires a foundation in analog circuit behavior,
and the remainder of this book assumes a basic knowledge of circuit theory that is covered in this
chapter. Some or all of the topics presented here may be a review for some readers. A quick skim of
the chapter’s material will confirm whether it can be skipped.

12.1 BASIC CIRCUITS

Electric potential, called

voltage

, and current are the two basic parameters used in the analysis of
electric circuits. Voltage is measured in

volts,

and current is measured in

amperes

, or

amps

. Using
the analogy of a hose filled with water, voltage is akin to the water’s pressure, and current is akin to
the quantity of water flowing through the hose at a given pressure. Unlike water in a hose, electricity
only flows when a complete loop, or

circuit

, is present. Electric charge (expressed in units of cou-
lombs) is emitted from one terminal of a power source, flows through a circuit, and then returns in
the same quantity to another terminal of that power source. Per the law of conservation of charge,
the charge cannot simply disappear in the circuit; it must return to its source to complete the loop.

Georg Ohm, a nineteenth century German physicist, discovered the mathematical relationship be-
tween voltage and current that is now known as Ohm’s law:

V

 =

IR

. It states that a voltage

(V)

 drop
results by passing a current

(I)

 through a resistance

(R)

. Appropriately, the unit of resistance is the

ohm

 and it is represented with the Greek letter omega,

Ω

. Consider the simple circuit in Fig. 12.1,
consisting of a 10-V battery and a 50-

Ω

 resistor. Assuming that the connecting wires have zero resis-
tance, there is one and only one solution to Ohm’s law: the current through the circuit is

I

 =

V

 ÷

R

 =

-Balch.book Page 267 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

268 Analog Basics for Digital Systems

10 ÷ 50 = 0.2 A, or 200 mA. If any of the wires are broken, the current flow instantly drops to zero,
because charge cannot return to the battery. Remember that all circuits are a collection of loops. Mak-
ing and breaking loops using switches (transistors) is fundamentally how digital systems operate.

Voltage is a relative measurement, and its effects can be quantified only between pairs of conduc-
tors. This is why a bird can sit on a high-voltage power line without being electrocuted and why a
person can walk around on a carpet while insulated from nearby conductors and develop a high volt-
age static electric charge of several thousand volts. Not until the conductor (e.g., bird or person)
comes into contact with another conductor (e.g., another wire or a metal door handle) does the effect
of voltage become apparent. To facilitate circuit analysis, a common reference point called a

ground

node is assigned a relative voltage of zero. The ground symbol is shown attached to the battery’s
negative terminal in Fig. 12.1. All other nodes in the circuit can now be measured relative to ground,
resulting in meaningful absolute voltage levels. This is why electrical communication signals be-
tween systems require either a common ground or a differential signaling scheme. A receiver cannot
properly detect the voltage on a signal wire unless it has a valid reference to compare it against.

An important parameter derived from Ohm’s law is power, expressed in

watts

 (W). Power (P) is
the product of current and voltage. In this simple circuit, 10 V is dropped through the circuit (all by
the resistor) at a current of 0.2 A, yielding 2 W of power supplied by the battery and dissipated by
the resistor. Power is an instantaneous measurement and is not energy, but the rate of flow of energy.
Energy (E) is measured in

Joules

 and is the product of how much power is delivered over a span of
time:

E

 =

Pt

. The resistor in this circuit converts 2 J of energy each second into heat. Per the first law
of thermodynamics, energy cannot be created or destroyed. Therefore, electrical energy that is dissi-
pated by a component is converted into thermal energy. The charge still returns to the battery, but it
does so at a relative potential of 0 V. A circuit is typically characterized by its power dissipation
(watts) rather than by its energy dissipation (joules) because of the time invariant nature of power.

Power can be restated depending on the unknown variable in the equation.

P

 =

VI

 can be manipu-
lated using Ohm’s law in several common forms:

P

 =

I

2

R

 and

P

 =

V

2

 ÷

R

. In the first instance, the

V

=

IR

 definition is substituted to yield a power calculation that only considers the current passing
through a resistance. Alternatively, current can be effectively removed (

I

 =

V

 ÷

R

), and power can be
restated as the square of the voltage developed across a resistance.

12.2 LOOP AND NODE ANALYSIS

The example in Fig. 12.1 is a basic application of

loop analysis

. Loop analysis is based on the rules
that the sum of the voltage drops in any continuous circuit is 0 and that the instantaneous current
around the loop is constant. Of course, current can change over time, and those changes apply to each
component in the circuit. Based on these rules, the following general loop equation can be written for
any circuit, where

R

N

 are discrete resistors and

VS

N

 are discrete voltage sources (e.g., a battery):

50 Ω

10 V
0.2 A

FIGURE 12.1 Simple resistive circuit.

-Balch.book Page 268 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 269

This equation shows that a uniform loop current develops a voltage drop across one or more resis-
tances in the circuit and that this total voltage must be offset by voltage sources. A loop equation can
be written for Fig. 12.1, but special attention should be paid to the polarity of the voltage source ver-
sus the voltage drop through the resistor. The convention used to specify polarity does not change
the final answer as long as the convention is applied consistently. Mistakes in loop analysis can arise
from inconsistent representation of voltage polarities. In this case, the current is shown to circulate
clockwise, so positive currents are clockwise currents. This means that the 50-

Ω

 resistor will exhibit
a voltage drop as the current moves through it from left to right. At the same time, the voltage source
exhibits a voltage rise as the clockwise loop current passes through it. The voltage of the resistor and
the voltage of the source are of opposite polarity as expressed in the following loop equation:

Keep in mind that polarity notation is a convention and not a physical rule. As long as polarities
are treated consistently, the correct answer will result. Figure 12.2 shows an example of a loop cir-
cuit wherein consistent polarity notation is critical to a correct answer. Two voltage sources are
present in this circuit, but they are inserted with different polarities.

Circulating around the loop clockwise starting from the ground node, there is a 10-V rise, a volt-
age drop through the resistor, and a 5-V drop through the voltage source. The loop equation for this
circuit is written as follows, yielding

I

LOOP

 = 0.1 A:

Loop analysis in the context of a single loop circuit may not sound very different from the basics
of Ohm’s law. It can be truly helpful when multiple loops are present in a circuit. The double-loop
circuit in Fig. 12.3 is a somewhat contrived example but one that serves as a quick illustration of
the concept. There are three unknowns in this circuit: the two loop currents and the voltage at the
intermediate node,

V

X

. Once the loop currents are known,

V

X

 can be calculated in three different
ways. The voltage drop across either R1 or R3 can be calculated. Alternatively, the current through
R2 can be determined as the sum of

I

LOOP

1

 and

 I

LOOP

2

. Because these currents are both shown us-
ing the clockwise convention, they pass each other through R2 with opposite polarities and end up
subtracting.

V N∑ ILOOP RN V SN∑+∑ 0= =

ILOOP
10 V
50 Ω
------------ 0.2 A= =

ILOOP RN V SN∑+∑ ILOOP 50 Ω 10 V–× 0= =

50 Ω

10 V
ILOOP

5 V

FIGURE 12.2 Circuit with two voltage sources.

ILOOP RN V SN∑+∑ ILOOP 50 Ω 10 V 5 V+–× 0= =

-Balch.book Page 269 Thursday, May 15, 2003 3:46 PM

270 Analog Basics for Digital Systems

The first step is to set up the two loop equations. It is critical to adopt a consistent convention for
currents and voltages. Here, positive currents flow clockwise, voltage sources are negative when
they rise with the direction of the clockwise loop current, and resistors drop voltage with the same
polarity as the loop current. The resulting loop equations are as follows:

Notice that the 10-V source appears as a negative in the first loop equation, because it represents a
voltage rise, but the 5-V source appears as a positive in the second equation, because it represents a
voltage drop. Our two equations with two unknowns can be solved.

I

LOOP

1

 can be solved as a func-
tion of

I

LOOP

2

 using the second equation as follows:

I

LOOP

2

 is solved next by substituting the

I

LOOP

1

 expression into the first equation,

Finally,

I

LOOP

1

 is solved,

Notice that

I

LOOP

2

 is a negative quantity. This is because the actual direction of current flow is out of
the 5-V source rather than into it—the current is flowing counterclockwise, which is a negative

R1 100 Ω

10 V
ILOOP1

5 V
R2

50 Ω

R3 100 Ω

ILOOP2

VX

FIGURE 12.3 Double-loop circuit.

ILOOP1R1 ILOOP1 ILOOP2–()R2 10 V–+ 0=

ILOOP2R3 ILOOP2 ILOOP1–()R2 5 V+ + 0=

ILOOP1
1

10
------ 3ILOOP2+=

100ILOOP1 50ILOOP1 50ILOOP2 10 V––+ 0=

150ILOOP1 50ILOOP2– 10 V=

150
10

--------- 450ILOOP2 50ILOOP2–+ 10 V=

15 400ILOOP2+ 10 V=

ILOOP2
5–

400
--------- 0.0125 A–= =

ILOOP1 0.0625 A=

-Balch.book Page 270 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 271

clockwise current. Our results can be verified to make sure that everything adds up correctly. The
voltage drops across R1 and R3 are 6.25 V and 1.25 V, respectively. Therefore, VX = 10 V – 6.25 V =
5 V – 1.25 V = 3.75 V. This means that the current through R3 must be 3.75 V ÷ 50 Ω = 0.075 A,
which is exactly equal to the difference of the two loop currents (IR2 = ILOOP1 – ILOOP2).

Node analysis is the complement to loop analysis. Rather than dealing with a fixed current around
a loop in which the voltages sum to zero, node analysis examines an individual node with a fixed
voltage where the currents sum to zero. Together, these loop and node analysis methods form the ba-
sis of circuit analysis. You may find that some circuits are more easily solved with one or the other.
As before, the consistent usage of a polarity convention is critical to finding the correct answer. The
circuit in Fig. 12.3 can be evaluated with just one node equation to determine VX. In the following
equation, the convention is taken that positive currents flow out of the node.

This node equation does not worry about whether VX is actually higher or lower than the voltage at
the other end of each resistor. If current is actually flowing into the node because the reverse voltage
relationship is true, that current will have a negative polarity. Working through the algebra shows
that VX = 3.75 V, the same answer that was obtained using loop analysis, although with only a single
equation and one unknown. If the current through any resistor must be calculated, it can be done
once VX is known.

12.3 RESISTANCE COMBINATION

Circuits can be simplified for analysis purposes when multiple resistances are present in various se-
ries and parallel topologies. Multiple resistors can be combined in arbitrary configurations and rep-
resented as a single resistance. Two resistors placed in series add, while resistors placed in parallel
result in a smaller overall resistance. Resistors in parallel create a combined resistance that is less
than the smallest valued resistor in the parallel group. This resulting value is determined using the
inverse relationship,

Multiple resistors placed in parallel can be indicated using a parallel bar notation. indi-
cates that two resistors, referred to as R1 and R2, are in parallel. When two resistors are placed in a
parallel arrangement, the above expression can be rewritten for this special circumstance:

Figure 12.4 shows resistors in both series and parallel topologies. Series resistors R1 and R2 add
to form a 150-Ω resistance. Parallel resistors R3 and R4 combine to form a smaller 33.3-Ω resis-
tance. Placing two resistors back to back increases the total resistance observed by a current. Placing
two resistors in parallel provides a second path for current to flow through, thereby reducing the
overall resistance. After performing these two combinations, the circuit can be simplified a third
time by adding the resulting series resistances, 150 Ω + 33.3 Ω = 183.3 Ω. When the circuit has been

0 IN∑
V X 10 V–

R1

V X 0 V–

R2

V X 5 V–

R3
----------------------+ += =

RTOTAL
1

1
RN
-------∑

----------------=

R1 R2||

RTOTAL
R1 R2×
R1 R2+
--------------------=

-Balch.book Page 271 Thursday, May 15, 2003 3:46 PM

272 Analog Basics for Digital Systems

fully simplified, its overall current flow and power dissipation can be calculated: I = 54.5 mA and P
= 545 mW.

Power dissipation for the resistors in Fig. 12.4 can be determined in multiple ways: VI, I2R, or V2

÷ R. Power for each resistor can be calculated individually, but care must be taken to use the true
voltage drop or current through each component. R1 and R2 have the same current passing through
them because both have no parallel components to divert current, but they have differing voltage
drops because their resistances are not equal. In contrast, R3 and R4 have identical voltage drops be-
cause they connect the same two nodes, but differing currents because their resistances are not equal.

The two resistor pairs, R1/R2 and R3/R4, form a basic voltage divider at the intermediate node
connecting R2 and R3/R4. This voltage can be calculated knowing the current through R1 and R2
(54.5 mA) by either calculating the combined voltage drop of R1 and R2 and then subtracting this
from the battery voltage or by just calculating the voltage drop across R3 and R4. The parallel com-
bination of R3 and R4 equates to 33.3 Ω, indicating a voltage drop of 1.82 V at I = 54.5 mA. This is
the voltage of the intermediate node because the lower node of R3 and R4 is ground, or 0 V. The al-
ternate approach yields the same answer.

VNODE = VBATT – I (R1 + R2) = 10 V – 54.5 mA (150 Ω) = 10 V – 8.18 V = 1.82 V

12.4 CAPACITORS

Resistors respond to changes in current in a linear fashion according to Ohm’s law by exhibiting
changes in voltage drop. Similarly, changing the voltage across a resistor causes the current through
that resistor to change linearly. Resistors behave this way because they do not store energy; they dis-
sipate some energy as heat and pass the remainder through the circuit. Capacitors store energy, and,
consequently, their voltage/current relationship is nonlinear.

A capacitor stores charge on parallel conductive plates, each of which is at a different arbitrary
potential relative to the other. In this respect, a capacitor functions like a very small battery and holds
a voltage according to how much charge is stored on its plates. Capacitance (C) is measured in far-
ads. One farad of capacitance is relatively large. Most capacitors that are used in digital systems are
measured in microfarads (µF) or picofarads (pF). As a capacitor builds up charge, its voltage in-
creases in a linear fashion as defined by the equation, Q = CV, where Q is the charge expressed in
coulombs.

One of the basic demonstrations of a capacitor’s operation is in the common series resistor-capac-
itor (RC) circuit shown in Fig. 12.5, where a resistor controls the charging rate of the capacitor. The
capacitor’s voltage does not change in a linear fashion. From the relationship Q = CV, it is known
that the voltage is a function of how much charge has been stored on the capacitor’s plates. How
much charge flows into the capacitor is a function of the current that flows around the circuit over a
span of time (one amp is the flow of one coulomb per second). As the voltage across the capacitor in-

R1
100 Ω

10 V

R2
50 Ω

RT = 150 Ω

R3
100 Ω

R4
50 Ω RT = 33.3 Ω

FIGURE 12.4 Combining multiple resistors.

-Balch.book Page 272 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 273

creases, the voltage drop across the resistor decreases, causing the current through the circuit to de-
crease as well. Therefore, the capacitor begins charging at a high rate when its voltage is 0 and the
circuit’s current is limited only by the resistor. The charging rate decreases as the charge on the ca-
pacitor builds up.

Normalized to 1 V, the voltage across a capacitor in an RC circuit is defined as

where e is the base of the natural logarithm, an irrational mathematical constant roughly equivalent
to 2.718. Starting from the initial condition when the capacitor is fully discharged, t = 0 and VC = 0.
The RC time constant, expressed in seconds, is simply the product of R and C and is a measure of
how fast the capacitor charges. Every RC seconds, the voltage across the capacitor’s terminals
changes by 63.2 percent of the remaining voltage differential between the initial capacitor voltage
and the applied voltage to the circuit, in this case the 10-V battery. By rule of thumb, a capacitor is
often considered fully charged after 5 RC seconds, at which point it achieves more than 99 percent
of its full charge. In this example, RC = 1,100 µs = 1.1 ms. Therefore, the capacitor would be at
nearly 10 V after 5.5 ms of connecting the battery to the circuit.

RC circuits are used in timer applications where low cost is paramount. The accuracy of an RC
timer is relatively poor, because capacitors exhibit significant capacitance variation, thereby altering
the time constant. A simple oscillator can be constructed using an inverter (e.g., 74LS04) and an RC
as shown in Fig. 12.6. When the inverter’s input is below its switching threshold, the output is high,
causing the capacitor to charge through the resistor. At some point, the capacitor voltage rises above
the switching threshold and causes the inverter’s output to go low. This, in turn, causes the capacitor
to begin discharging through the resistor. When the capacitor’s voltage declines past the switching
threshold, the process begins again.

50 Ω

10 V 22 µF

FIGURE 12.5 Simple RC circuit.

V C 1 e

t
RC
--------–

–=

R

C

FIGURE 12.6 RC oscillator.

-Balch.book Page 273 Thursday, May 15, 2003 3:46 PM

274 Analog Basics for Digital Systems

In reality, the inverter does not switch sharply as the input voltage slowly passes out of the valid
logic-0 and logic-1 voltage thresholds. This creates a separate switching threshold when going from
low to high versus high to low. The voltage difference between these thresholds depends on temper-
ature, the operating voltage, and the individual chip’s characteristics. Therefore, a simple inverter-
based oscillator does not provide a very stable oscillation period over time without additional cir-
cuitry. The waveform in Fig. 12.7 shows how this RC oscillator behaves.

This waveform shows the nonlinear charging characteristics of an RC circuit. The frequency at
which this oscillator runs depends on the differential between the two switching thresholds, the input
current of the inverter, and the RC values. The ideal RC charge/discharge curve is modified by the
inverter’s input current. When the capacitor is at logic-1, the positive input (sink) current of the in-
verter works with the resistor to more rapidly discharge the capacitor. Similarly, when the capacitor
is at logic-0, the negative input (source) current of the inverter works with the resistor to more rap-
idly charge the capacitor. These source and sink currents are unequal in a bipolar logic IC; therefore,
the charge/discharge effects of the inverter will be unequal as well.

12.5 CAPACITORS AS AC ELEMENTS

Capacitors have a far broader range of applications than just RC oscillators. The circuits presented
up to this point are direct current (DC) circuits. In our context, DC refers to steady-state signals with
no frequency content being applied to a circuit. While the RC oscillator example certainly varies its
voltages, it is a piecewise DC circuit that flips its applied charging voltage at regular intervals. The
world is not static, however, and signals are characterized by direct and alternating current (AC)
components. AC circuits deal with the time-varying properties of signals, their frequency content.

Just as resistors exhibit resistance, capacitors exhibit reactance. Both measures are expressed in
ohms, but resistance is constant across frequency, whereas reactance (X) varies with frequency. The
two terms are combined into a single impedance expression, Z = R + jX. Impedance is the overall re-
sistance of an element that includes both DC and AC components. The imaginary (AC) component,
a function of frequency, is marked by the constant j, the imaginary number .

AC circuit analysis expresses frequencies in radians per second rather than in hertz and uses the
lower-case Greek letter omega, ω, to denote radian frequency. There are 2π radians in a 360° circle,

Inverter Output High, Capacitor Charges

Inverter Output Low, Capacitor Discharges

Time

Inverter
Input

Voltage

Low-to-High
Threshold

High-to-Low
Threshold

FIGURE 12.7 RC oscillator waveform.

1–

-Balch.book Page 274 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 275

or cycle. Therefore, there are 2π radians per hertz, or ω = 2πf. The 2πf equivalent is primarily used
in this book to illustrate how various circuits interact with digital systems running at arbitrary fre-
quencies.

The impedance of an ideal capacitor is inversely related to the frequency applied to it and is ex-
pressed as

At low frequencies, the capacitor exhibits very high impedance and appears essentially as an open
circuit. Considering a basic RC circuit, once the capacitor fully charges, the circuit transitions to a
steady-state DC circuit without any AC component. Therefore, no more current flows through the
circuit, because the capacitor has achieved the same voltage as the battery, and there is no voltage
drop across the charging resistor. In AC analysis terms, the frequency of the circuit is zero, and the
impedance of the capacitor is infinite. Conversely, a capacitor’s impedance asymptotically ap-
proaches zero at very high frequencies and becomes a short circuit.

A capacitor can be used to reduce noise in a system, because its impedance is a function of fre-
quency. Decoupling, or bypass, capacitors are arranged in shunt (parallel) configurations across
power supplies that may contain noise, as shown in Fig. 12.8. Power distribution wires can have
noise injected back into them by the high-speed on/off switching of a digital circuit. Each time a
logic gate or flop transitions, a small surge of current is created to establish the new voltage level.
When hundreds or thousands of signals within and external to an IC switch on and off, noise can be-
come a substantial problem.

Decoupling capacitors can be chosen to present a low impedance at the noise frequencies of inter-
est in a digital system. Lower-frequency systems often use 0.1-µF capacitors that exhibit impedance
of under 1 Ω at over 1 MHz. Higher-frequency systems may use 0.01-µF or 0.001-µF capacitors for
the same purpose. The capacitor functions as a selective resistor that only kicks in at certain frequen-
cies of interest and leaves the DC signal, in this case power, undisturbed. Figure 12.9 illustrates the
effect of a decoupling capacitor in shunting the majority of the high-frequency AC component
(noise) to ground. Most of the noise is removed, but some remains, as will be explained later.

Multiple capacitors arranged together follow the same series and parallel impedance calculation
rule as resistors. However, because of the capacitor’s inversely proportional impedance characteris-

ZC
1

2πfC
-------------=

0.01 µF
High-frequency

noise

Reduced
noise
to ICs

FIGURE 12.8 Noise filtering with shunt capacitance.

DC component
of power

Volts

Time

without capacitor with capacitor

FIGURE 12.9 AC noise removed from DC power.

-Balch.book Page 275 Thursday, May 15, 2003 3:46 PM

276 Analog Basics for Digital Systems

tic, total capacitance is increased when multiple capacitors are placed in parallel and decreased when
placed in series. Consider the following calculation for two equal values capacitors in parallel:

The resulting impedance is what would be obtained with a capacitor twice as large as each individ-
ual capacitor. Similarly, capacitance is reduced as follows when two capacitors are in series:

The series impedance is what would be obtained with a capacitor half the size of each individual ca-
pacitor.

12.6 INDUCTORS

An inductor, also called a choke or coil, is the other basic circuit element whose impedance changes as
a function of frequency. An inductor is a coil of wire that stores energy as a magnetic field. The
strength of a magnetic field in a coil is proportional to the current flowing through the coil. If the cur-
rent flowing through an inductor changes suddenly, the existing magnetic field tends to resist that
change. Therefore, inductors present low impedances at low frequencies and high impedances at
higher frequencies, the opposite the behavior of a capacitor. Inductance (L) is measured in henries.
Most inductors encountered in digital systems are measured in microhenries (µH) or nanohenries (nH).

The impedance of an ideal inductor is expressed as ZL = 2πfL, clearly showing the proportional
relationship of frequency and impedance. In digital systems, inductance is used mainly for filtering
purposes and for analyzing the (usually unwanted) inductance of other components. All conductors
exhibit some inductance, because a magnetic field naturally develops in proportion to current flow. A
straight wire may have much less inductance than a coil, but its inductance is not zero. Such at-
tributes become very important at high frequencies because of the relationship between frequency
and impedance.

Just as a capacitor can be used as a parallel element to shunt high-frequency noise, an inductor
can be used as a series element to block that noise. Because of their varying impedance, DC signals
such as power are passed without attenuation, whereas high frequencies are met with a large imped-
ance. Effective noise filters are made with both series (inductance) and shunt (capacitance) elements
as shown in Fig. 12.10. The inductance and capacitance values are chosen to be effective at the de-
sired noise frequency, resulting in a large series resistance followed by a very small shunt resistance.
This creates a basic voltage divider arrangement, effective only at high frequencies as intended.

Because of their proportional impedance versus frequency characteristic, inductance combines in
the same way as resistance: decreasing with parallel inductors and increasing with series inductors.

12.7 NONIDEAL RLC MODELS

Having presented the three basic passive circuit elements in idealized form, the ways in which resis-
tance, capacitance, and inductance combine in real-world components can be discussed. All conduc-

ZTOTAL
1

1
ZN
-------∑

---------------- 1
2πfC 2πfC+
-------------------------------- 1

2πf 2C()
----------------------= = =

ZTOTAL ZN∑ 1
2πfC
------------- 1

2πfC
-------------+ 2

2πfC
------------- 1

2πf 0.5C()
--------------------------= = = =

-Balch.book Page 276 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 277

tors exhibit some series resistance and inductance, and all nearby pairs of conductors exhibit some
mutual capacitance. A resistor consists of a resistive element encapsulated in some packaging mate-
rial with a relatively small conductor at each end to connect the resistive element to an external cir-
cuit. Depending on the type of resistor, the conductors may be wires (leaded resistor) or small pieces
of metal foil (surface mount). The resistive element itself will vary in size according to its power rat-
ing, material, and desired resistance. The finite lengths of the connecting leads and the resistive ele-
ment each contribute a small quantity of inductance. There is also a small capacitance between the
resistor’s leads. These unwanted extras are called parasitic properties, because they usually detract
from the performance of a system rather than improving it. A resistor’s function is to provide a cer-
tain resistance value in a circuit, but its physical construction results in finite parasitic inductance
and capacitance. Figure 12.11 shows a model of a nonideal resistor that enables analysis of its para-
sitic properties.

Each type of resistor exhibits different magnitudes of parasitic properties. Applications at lower
frequencies often ignore these properties, because the parasitic inductance and capacitance is negli-
gible as a result of the frequency/impedance relationships of inductors and capacitors. As the fre-
quencies involved increase, series inductance is generally the first problem that is encountered.
Inductance is minimized in resistors that have small leads or, better yet, no leads at all, as is the case
with surface mount resistors. Inter-lead capacitance does not become a problem until frequencies get
significantly higher.

Similarly, a capacitor exhibits parasitic resistance and inductance. The conductors that form the
capacitor have finite resistance and inductance associated with them. A nonideal model of a capaci-
tor is shown in Fig. 12.12. Inductance figures into a capacitor in much the same way that it does a re-
sistor. Smaller leads and components result in reduced parasitic inductance.

At high frequencies, however, the capacitor’s parasitic inductance has noticeable effects. The ear-
lier example of using a capacitor to filter high-frequency noise showed that the capacitor removed
most of the noise, but not all of it. As the frequency rises, the capacitor’s impedance steadily de-
creases as expected. At a certain point, however, the frequency becomes high enough to cause no-

reduced
noise
to ICs

∞
0

+ +

--

VINNOISE VOUTNOISE

FIGURE 12.10 Noise filtering with LC network.

FIGURE 12.11 Nonideal resistor model. FIGURE 12.12 Nonideal capacitor model.

-Balch.book Page 277 Thursday, May 15, 2003 3:46 PM

278 Analog Basics for Digital Systems

ticeable impedance resulting from parasitic inductance. As the frequency continues to rise, the
impedance of the capacitor begins to be more affected by the inductance. Because inductors resist
high-frequency signals by increasing their impedance, the filtering capacitor loses its effect above a
certain frequency limit. Figure 12.13 shows the general curve of impedance versus frequency for a
capacitor. The curve shows that, above a certain frequency, a capacitor no longer behaves as ex-
pected from an ideal perspective. This threshold frequency is different for each type of capacitor and
is determined by its physical construction. This is why power filter (e.g., decoupling or bypass) ca-
pacitors are ideally chosen based on the expected frequencies of noise that they are expected to at-
tenuate.

As with parasitic inductance, a capacitor’s parasitic resistance is a function of its physical con-
struction. The industry-standard term that specifies this attribute is equivalent series resistance
(ESR). Certain applications for capacitors tend to be more sensitive to ESR than others. ESR is gen-
erally not a major concern in high-frequency decoupling applications. However, when power-supply
ripple needs to be attenuated, such as in a switching power supply, low-ESR capacitors may be criti-
cal to a successful circuit.

Inductors are subject to parasitic properties as well, in the form of series resistance in the wire
coil and capacitance between individual coil windings and between the terminals. The nonideal in-
ductor looks very much like the nonideal resistor in Fig. 12.11. Inductors that are used to filter power
in a series topology must have a low enough series resistance to handle the current that is passed
through them. Inductors are available in a wide variety of sizes, partly because of the need to handle
the spectrum of low- and high-power applications.

A major concern in operating inductors at high frequencies is the detrimental effects of their par-
asitic capacitance. Just as a capacitor’s parasitic inductor reduces its effectiveness above a certain
frequency, a similar effect is observed in a real inductor as shown in Fig. 12.14. Placing an inductor
and capacitor in parallel creates a circuit that resonates at a certain frequency,

A resonant LC circuit can be useful in many applications, including radio tuners. When an engi-
neer specifically wants a circuit to resonate at a particular frequency, such as when trying to pick up
radio waves with an antenna, a so-called LC tank is desired. However, an LC tank is generally not

0.01

0.1

1

10

Im
pe

da
nc

e
(Ω

)

Frequency (Hz)

10X 10X+1 10X+2 10X+3

FIGURE 12.13 Nonideal capacitor impedance vs. frequency curve.

f RES
1

2π LC
-------------------=

-Balch.book Page 278 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 279

desired in digital system applications that use inductors. Inductor manufacturers specify an inductor
with a certain self-resonant frequency (SRF) to characterize the detrimental effects of the parasitic
capacitance. Above the SRF, the inductor’s impedance declines with increasing frequency. There-
fore, if an inductor is operated near its SRF, its parasitic properties should be investigated to ensure
that unexpected behavior does not result.

Many filtering applications in digital systems benefit from surface mount ferrite beads or chips.
Ferrite is a magnetic ceramic material that behaves like an inductor: its impedance rises with fre-
quency. A ferrite bead’s parasitic capacitance is lower than that of a standard inductor, because
there are no wire coils to capacitively couple with one another. Ferrites are suitable for attenuating
high-frequency noise on power supplies and other signals, because they typically have high SRFs.
A variety of ferrite materials exist with peak impedances at different frequencies to suit specific
applications.

12.8 FREQUENCY DOMAIN ANALYSIS

Electrical signals on a wire can be viewed with an oscilloscope as a plot of voltage (or current) ver-
sus time. This is a time-domain view of the signals and it provides much useful information for a
digital system designer. Using an oscilloscope, an engineer can verify the proper timing of a clock
signal and its associated data and control signals. However, time-domain analysis is not very good at
determining the frequency content of complex electrical signals. AC components are selected based
on their impedances at certain frequencies. Therefore, a method is needed of evaluating a signal’s
frequency content, thereby knowing the frequencies of interest that the components must handle and
enabling selection of suitable values.

Frequency-domain analysis enables an understanding of exactly how an overall AC circuit and its
individual components respond to various frequencies that are presented to them. A frequency-do-
main view of a complex signal allows an engineer to tailor a circuit precisely to the application by
relating frequencies and amplitudes rather than time and amplitudes in a conventional time-domain
view. Pure sine waves are a convenient representation for signals, because they are easy to manipu-
late mathematically. While most real-world signals are not sine waves, Joseph Fourier, an eighteenth
century French mathematician, demonstrated that an arbitrary signal (e.g., a microprocessor’s square
wave clock signal) can be expressed as the sum of many sine waves. Frequency-domain analysis is

1

10

100

1000

Im
pe

da
nc

e
(Ω

)

Frequency (Hz)

10X 10X+1 10X+2 10X+3

FIGURE 12.14 Nonideal inductor impedance vs. frequency curve.

-Balch.book Page 279 Thursday, May 15, 2003 3:46 PM

280 Analog Basics for Digital Systems

often referred to as Fourier analysis. Likewise, a Fourier transform is the process of decomposing a
signal into a sum of sine waves.

Fourier analysis is represented graphically in Fig. 12.15, where a 1-MHz digital clock signal is
shown broken into four separate sine waves. The sine wave with the same frequency as the clock is
referred to as the fundamental frequency. Subsequent sine waves are multiples of the fundamental
frequency and are called harmonics. If a sine wave is three times the fundamental frequency, it is the
third harmonic. It is clear that, as higher-order harmonics are added to the fundamental frequency,
the resulting signal looks more and more like a clock signal with square edges. This example stops
after the seventh harmonic, but a more perfect clock signal could be constructed by continuing with
higher-frequency harmonics. From a practical perspective, it can be seen that only a few harmonics
are necessary to obtain a representation that closely approximates the real digital signal. Therefore,
it is often convenient to consider the few sine wave terms that compose the majority of the signal’s
energy. This simplification allows many less-significant terms to be removed from the relevant cal-
culations. Depending on how accurately the digital signal really needs to be represented, it may be
possible to make a gross simplification and consider just the fundamental frequency and one or two
subsequent harmonics.

Each harmonic in a Fourier analysis has varying amplitude, frequency, and phase relationships
such that their sum yields the desired complex signal. The energy in harmonics generally decreases
as their frequency increases. The clock signal shown in this example has energy only at the odd har-
monics, because it is a symmetrical signal. Furthermore, the harmonics are in phase with each other.
More complex real-world asymmetrical signals can also be handled with Fourier analysis but with
more variation across the harmonics, including even harmonics and phase differences.

Fundamental and Third Harmonic Fundamental + Third Harmonic

+ Fifth Harmonic

+ Seventh Harmonic

Fifth Harmonic

Seventh Harmonic

FIGURE 12.15 Digital clock composed of sine waves.

-Balch.book Page 280 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 281

Oscilloscopes are used to view signals in the time domain, whereas spectrum analyzers are used
to view signals in the frequency domain. Figure 12.16 shows an example of a frequency-domain
view of an electrical signal as observed on a spectrum analyzer (courtesy of Agilent Technologies).
Rather than viewing voltage versus time, amplitude versus frequency is shown. Time is not shown,
because the signals are assumed to be repetitive. Clearly, AC circuits operate on both repetitive and
nonrepetitive signals. The analysis assumes repetitive signals, because an AC circuit’s response is
continuous. It does not have the ability to recognize sequences of signals in a digital sense and mod-
ify its behavior accordingly. Pure sine waves are represented by a vertical line on a frequency do-
main plot to indicate their amplitude at a single specific frequency. Since most real-world signals are
not perfect sine waves, it is common to observe a frequency distribution around a single central fre-
quency of interest.

While not strictly necessary, frequency-domain plots are usually drawn with decibel (dB) scales
that are inherently logarithmic. The decibel is a relative unit of measurement that enables the com-
parison of power levels (P) entering and exiting a circuit. On its own, a decibel value does not indi-
cate any absolute power level or measurement. A decibel is defined as a ratio of power entering and
leaving a circuit:

When the input and output power are identical, a level of 0 dB is achieved. Negative decibel levels
indicate attenuation of power through the circuit, and positive decibel levels indicate amplification.

FIGURE 12.16 Spectrum analyzer frequency/amplitude plot. (Reprinted with permission from Agilent Technologies.)

dB 10log10

POUT

PIN
---------------=

-Balch.book Page 281 Thursday, May 15, 2003 3:46 PM

282 Analog Basics for Digital Systems

Decibel measurements can also be calculated using voltage instead of power assuming that voltages
are applied across a constant resistance. Substituting Ohm’s law for the power terms yields the fol-
lowing definition:

There are some common decibel levels with inherent reference points used to indicate the
strength of an audio or radio signal that transform the decibel into an absolute measurement. The
unit dBm is commonly seen in audio applications, where 0 dBm is one milliwatt. Therefore, 8 dBm
is 6.3 mW. Radio applications sometimes use the absolute unit dBµV, where 0 dBµV is 1 µV.

Decibel units enable the analysis of signals with very low and very high amplitudes. A typical ra-
dio receiver may be sensitive enough to detect signals with –90 to –110 dBm of strength. Trying to
work with such small numbers without a logarithmic scale is rather awkward.

A common decibel value that is used in frequency domain analysis is –3 dB, which corresponds
to a roughly 50 percent reduction in power through a circuit element (10 log10 0.5 ≈ –3). Because
decibels are a logarithmic function, the addition of decibel measurements corresponds to a multipli-
cation of the underlying absolute values. Therefore, –6 dB corresponds to quartering the power
through a circuit (0.5 × 0.5 = –3 dB + –3 dB = –6 dB), and –9 dB corresponds to approximately 12.5
percent of the power passing through.

Frequency domain analysis takes into account the real and imaginary components of impedance
to form the complex number expression for impedance, Z = R + jX, as already discussed. When com-
bined with Ohm’s law, currents and voltages with both real and imaginary components result from
the impedance being a complex number. It is often desirable to calculate the magnitude of such com-
plex currents and voltages to determine the peak values in a circuit. They are peak values, rather than
static, because AC signals are time varying. If the real and imaginary components of an impedance,
current, or voltage are plotted on a Cartesian grid as done in Fig. 12.17, the magnitude of their re-
sulting vector can be obtained according to the Pythagorean theorem’s statement of the relationship
between legs of a right triangle: the square of the length of the hypotenuse (c) equals the sum of the
squares of the two other legs (a and b). Therefore,

dB 10log10

V OUT
2

R

V IN
2

R

V OUT

2

V IN
2

--------------- 20log10

V OUT

V IN
---------------= = =

LR
Resistance

(R)

Reactance (X) 2πfL

R

Resultin
g Vector

FIGURE 12.17 Finding the magnitude of an impedance.

c a
2

b
2

+=

-Balch.book Page 282 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 283

In this example, a resistor and inductor are placed in series with a resulting impedance, Z = R +
j2πfL. The magnitude is expressed as follows:

12.9 LOWPASS AND HIGHPASS FILTERS

Filtering is the general process of attenuating the energy of a certain range of frequencies while
passing a desired range with little or no attenuation. The noise filtering examples discussed previ-
ously are designated lowpass filters, because they are designed to pass lower frequencies while at-
tenuating higher frequencies above a certain threshold. They are also passive filters, because the
circuits are constructed entirely of passive components (resistors, inductors, and capacitors) without
any active components (e.g., transistors) to provide amplification. Passive filters are very practical
because of their simplicity and small size. They are suitable for applications wherein the signal that
is desired to pass through the filter has sufficient amplitude to be used after the filter. In situations in
which very weak signals are involved (e.g., tuning a radio signal), amplification may be necessary
before, after, or within the filter. Such filters are termed active filters. Whether a filter is active or
passive, the underlying analysis of how desired frequencies are passed and undesired frequencies are
attenuated remains the same.

A filter’s frequency response can be determined by
combining basic circuit principles with the frequency-
dependent impedance characteristics of capacitors and
inductors. The most basic lowpass filter is a series resis-
tor and shunt capacitor as shown in Fig. 12.18. This is
referred to as a first-order lowpass filter, because the cir-
cuit contains a single AC element, a capacitor. Since a
capacitor’s impedance drops as the frequency increases,
higher frequencies are short-circuited to ground.

The filter’s output voltage can be calculated by combining the impedances of each element into a
single voltage-divider expression,

Rather than continuing to explicitly reference the input and output voltages, it is common to refer
to the filter’s transfer function, or gain (A), which is the relationship between input and output volt-
age. The gain is obtained by simply dividing both sides of the equation by the input voltage.

A lowpass filter is considered to be effective starting at a certain cutoff frequency (fC), the fre-
quency at which its power gain in halved. This is also called the half-power point. Recall that a deci-
bel level is calculated as 10 log10 APOWER. Therefore, the filter’s gain declines by 10 log10 0.5 = –3

Z R
2

2πfL()2
+=

+

–

VIN

+

–

VOUT

FIGURE 12.18 First-order RC lowpass filter.

V OUT V IN

ZC

ZC ZR+
-------------------- V IN

1
2πfC

1
1

2πfC
------------- R+

----------------------- V IN

1
1 2πfRC+
--------------------------= = =

AFILTER

V OUT

V IN
--------------- 1

1 2πfRC+
--------------------------= =

-Balch.book Page 283 Thursday, May 15, 2003 3:46 PM

284 Analog Basics for Digital Systems

dB at fC. Because a passive filter has an ideal gain of zero at DC (no amplification), its gain at fC is
–3 dB.

However, the gain expression for this filter is in terms of voltage, not power. The relationship be-
tween voltage gain and decibel level is a multiplier of 20 rather than 10. Therefore, rather than look-
ing for a gain of one-half at fC, we must find a gain equal to the square root of one half because

–3 dB =

The filter’s gain expression is complex and must be converted into a real magnitude. Conve-
niently, the magnitude representation looks fairly close to what we are looking for.

By setting the denominator equal to the square root of 2, it can be observed that a gain of –3 dB is
achieved when 2πf = 1 ÷ RC. Furthermore, it can be shown that the lowpass filter’s gain declines at
the rate of 20 dB per radian frequency decade because, for large f, the constant 1 in the denominator
has an insignificant affect on the magnitude of the overall expression,

Rather than trying to keep all of these numbers in one’s head while attempting to solve a problem,
it is common to plot the transfer function of a filter on a diagram called a Bode plot, named after the
twentieth century American engineer H. W. Bode. A Bode magnitude plot for this lowpass filter is
shown in Fig. 12.19. Filters and AC circuits in general also modify the phase of signals that pass
through them. More complete AC analyses plot a circuit’s phase transfer function using a similar
Bode phase diagram. Phase diagrams are not shown, because these topics are outside the scope of
this discussion.

20log10
1

2

AFILTER
1

1 2πfRC()2
+

--------------------------------------=

20log10
1

2πfRC

-60

-40

-20

0

dB

Frequency (Hertz)

10X 10X+1 10X+2 10X+3

10fC

-20 dB/decade

fC=
1

2πRC

FIGURE 12.19 Bode magnitude plot for RC lowpass filter.

-Balch.book Page 284 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 285

This Bode plot is idealized, because it shows a constant gain up to fC and then an abrupt roll-off in
filter gain. A real magnitude calculation would show a smooth curve that conforms roughly, but not
exactly, to the idealized plot. For first-order evaluations of a filter’s frequency response, this ideal-
ized form is usually adequate.

A filter’s passband is the range of frequencies that are passed by a filter with little or no attenua-
tion. Conversely, the stopband is the range of frequencies that are attenuated. The trick in fitting a fil-
ter to a particular application is in designing one that has a sufficiently sharp roll-off so that
unwanted frequencies are attenuated to the required levels, and the desired frequencies are passed
with little attenuation. If the passband and desired stopband are sufficiently far apart, a simple first-
order filter will suffice, as shown in Fig. 12.20. Here, the undesired noise is almost three decades be-
yond the signal of interest. The RC filter’s 20-dB/decade roll-off provides an attenuation of up to
60 dB, or 99.9 percent, at these frequencies.

As the passbands and stopbands get closer together, more complex filters with sharper roll-offs
are necessary to sufficiently attenuate the undesired frequencies while not disturbing those of inter-
est. Incorporating additional AC elements into the filter design can increase the slope of the gain
curve beyond fC. A second-order lowpass filter can be constructed by substituting an inductor in
place of the series resistor in a standard RC circuit as shown in Fig. 12.21.

The LC filter’s gain can be calculated as follows:

-80

-40

0

dB

Frequency (Hertz)

10X 10X+1 10X+2 10X+3 10X+4

-20 dB/decade

Pass
Band

Stop
Band

Desired
Stop Band

fC=
1

2πRC

FIGURE 12.20 Widely separated pass and stopbands.

+

–

V
IN

+

–

V
OUT

FIGURE 12.21 Second-order LC lowpass filter.

A
ZC

ZC ZL+

1
2πfC

1
2πfC
------------- 2πfL+
-------------------------------- 1

1 2πf()2
LC+

----------------------------------= = =

-Balch.book Page 285 Thursday, May 15, 2003 3:46 PM

286 Analog Basics for Digital Systems

The cutoff frequency is determined as was done previously for the first-order filter, for which the
magnitude of the transfer function’s denominator is the square root of 2. To meet this criterion, 2πf =

. The additional AC element in the filter introduces a frequency-squared term that doubles
the slope of the gain curve beyond fC. Therefore, this second-order lowpass filter declines at 40 dB
per decade instead of just 20 dB per decade.

Higher-order filters can be created by adding LC segments to the basic second-order circuit to
achieve steeper gain curves as shown in Fig. 12.22. These basic topologies are commonly referred to
as T and pi due to their graphical resemblance to the two characters.

Lowpass filters are probably the most common class of filters used in purely digital systems for
purposes of noise reduction. However, when analog circuits are mixed in, typically for interface ap-
plications including audio and radio frequencies, other types of filters become useful. The inverse of
a lowpass filter is a highpass filter, which attenuates lower frequencies and passes higher frequen-
cies. A first-order RC highpass filter is very similar to the lowpass version except that the topology is
reversed as shown in Fig. 12.23. Here, the capacitor blocks lower frequency signals but allows
higher frequencies to pass as its impedance drops with increasing frequency.

As done previously, the transfer function can be calculated by combining the impedances of each
element into a single expression:

It can be observed from the transfer function that, as the frequency approaches DC, the filter’s
gain approaches 0. At higher frequencies, the filter’s gain approaches 1, or 0 dB. First- and second-
order highpass filters have gain slopes of 20 and 40 dB per decade, respectively, as mirror images of
the lowpass filter frequency response. A second-order highpass filter can be created by substituting
an appropriate inductor in place of the shunt resistor. The inductor appears as a short circuit to the
negative voltage rail at low frequencies and gradually increases its impedance as the frequency rises.
At high frequencies, the inductor’s impedance is sufficiently high that it is shunting almost no cur-
rent to the negative voltage rail.

Just as for lowpass filters, higher-order highpass filters can be created by adding LC segments in
T and pi topologies, albeit with the locations of the inductors and capacitors swapped to achieve the
highpass transfer function.

12.10 BANDPASS AND BAND-REJECT FILTERS

Some signal manipulation applications require the passing or rejection of a selective range of fre-
quencies that do not begin at DC (a lowpass filter) nor end at an upper limit that is conceptually in-

1 LC⁄

+

–

VIN

+

–

VOUT

+

–

VIN

+

–

VOUT

+

–

VIN

+

–

VOUT

FIGURE 12.22 Third-order LC lowpass filters. FIGURE 12.23 First-order RC highpass filter.

A
ZR

ZR ZC+
-------------------- R

R
1

2πfC
-------------+

----------------------- 2πfRC
2πfRC 1+
--------------------------= = =

-Balch.book Page 286 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 287

finity (a highpass filter). When a radio or television is tuned to a certain channel, a bandpass filter
selects a certain narrow range of frequencies to pass while attenuating frequencies above and below
that range. Bandpass filters may have limited utility in a typical digital system, but certain interface
circuitry may require bandpass filtering to attenuate low-frequency and DC content while also re-
ducing high frequency noise.

Bandpass filter design can get fairly complex, depending on the required AC specifications. De-
sign issues include the width of the passband and the slope of the gain curve on either side of the
passband. Two basic bandpass topologies are shown in Fig. 12.24. These are second-order circuits
that pair an inductor and capacitor together in either a series or shunt configuration. The series topol-
ogy operates by blocking the high-frequency stopband with the inductor and the low-frequency stop-
band with the capacitor. In the middle is a range of frequencies that are passed by both elements. The
shunt topology operates by diverting the high-frequency stopband to ground with the capacitor and
the low-frequency stopband with the inductor. This topology takes special advantage of the parallel
LC resonant circuit mentioned previously.

Each of these topologies can be designed with passbands of arbitrary width. The bandwidth of the
filter has a direct impact on the shape of its transfer function. However, for a second-order bandpass
filter, each AC element contributes a –20 dB per decade roll-off on either side of the center fre-
quency. Therefore, a narrow ideal second-order bandpass filter has the transfer function shown in
Fig. 12.25, and its center frequency is

+

–

VIN

+

–

VOUT

+

–

VIN

+

–

VOUT

FIGURE 12.24 Second-order bandpass filter topologies.

–40

–20

0

dB

Frequency (Hz)
10X 10X+1 10X+2 10X+3

fC

–20 dB/decade

10X+4

–2
0

dB
/d

ec
ad

e

FIGURE 12.25 Idealized bandpass filter frequency response.

f C
1

2π LC
-------------------=

-Balch.book Page 287 Thursday, May 15, 2003 3:46 PM

288 Analog Basics for Digital Systems

By now, the symmetry of filtering leaves no surprise that a bandpass topology can be rearranged
to form a band-reject filter, often called a notch filter. Whereas the bandpass filter passes a narrow
range of frequencies, a band-reject filter attenuates a narrow range of frequencies. The two basic sec-
ond-order band-reject filter topologies are shown in Fig. 12.26. In the reverse of a bandpass filter, the
series topology takes advantage of the LC circuit’s high impedance at its resonant frequency to block
the incoming signal. Similarly, the shunt topology’s low combined impedance at a narrow range of
frequencies diverts that energy to ground.

Digital systems often require only that a filter attenuate unwanted frequencies, typically noise, to
the point at which the digital circuitry is not adversely impacted by that noise. Clock generators and
clock circuits are usually the digital components that are most sensitive to noise. Alternatively, digi-
tal systems that incorporate sensitive analog interface components may require filters to separate and
“clean up” the power, data, and control signals that pass between the digital and analog circuitry.
Such applications often require only a first-order of approximation to determine cutoff or center fre-
quencies for filters.

Designing filters for analog applications where specific characteristics of transfer functions
have a major impact on circuit performance requires far more detailing and circuit analysis theory
than has been presented here. If your filter is more analog than digital in its application, you are
strongly advised to spend time in obtaining a thorough understanding of AC circuit analysis and
filter design.

12.11 TRANSFORMERS

When two inductors are placed together in close proximity, they exhibit mutual inductance where
one coil’s magnetic field couples onto the other coil and vice-versa. This behavior may be undesired
in many situations and can be largely avoided by physically separating individual inductors. How-
ever, the phenomenon of mutual inductance has great benefit when two or more coils are assembled
together to form a transformer. Mutual inductance is enhanced not only by close physical proximity,
but also by winding the transformer’s coils around common cores made from ferrous metals that
conduct magnetic fields. Transformers have many uses, but their basic function is to transfer AC en-
ergy from one coil to another without having a DC connection between the two ends. A transformer
does not pass DC because there is no direct connection between the two coils.

Neglecting losses resulting from finite resistance and less-than-ideal efficiency in magnetic field
coupling, the voltage excited in one coil winding is related to that created in another winding by the
proportion of the number of winding turns (N) in each coil. A transformer with two windings is said
to have a primary and a secondary winding. The voltage relationship of each winding in an ideal
transformer is as follows:

+

–

+

–

VOUT

+

–

VIN

+

–

VOUT

FIGURE 12.26 Second-order band-reject filter topologies.

-Balch.book Page 288 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 289

A transformer is a passive component; it has no capability of amplifying a signal. Consequently, an
ideal transformer passes 100 percent of the power applied to it and satisfies the equation VSIS = VPIP.
If the primary coil has more windings than the secondary coil, an AC signal of lesser magnitude will
be induced on the secondary coil when an AC signal is applied to the primary coil. The current flow-
ing through the secondary coil will be higher than that in the primary so that conservation of energy is
preserved. In reality, of course, a transformer has less than 100 percent efficiency as a result of para-
sitic properties, including finite resistance of the coils and less-than-perfect magnetic coupling.

One of the most common uses of a transformer is in power distribution in which AC power is ei-
ther stepped up or stepped down, depending on the application. Figure 12.27 shows a basic trans-
former with a 120 VAC signal injected into the primary coil and a load resistor on the secondary coil.
The ratio of the primary to secondary windings is 10:1; perhaps the primary coil has 1,000 windings
whereas the secondary has 100. The result is a step-down of high-voltage power from a wall outlet to
a more manageable 12 VAC. This illustrates why AC power distribution is so convenient: voltages
can be arbitrarily transformed without any complicated electronic circuits. It is advantageous to dis-
tribute power at a higher voltage to reduce the current draw for a given power level. Lower current
means lower I2R power losses in the distribution wiring. The 12 VAC transformer output may power
the voltage regulator of a digital circuit. If the digital circuit draws 10 A at 12 VAC, it will draw only
1 A at 120 VAC.

Transformers are critical to power distribution both at the system level and at the generation and
utility levels. Power is stepped up at generating plants with transformers to as high as 765,000 V for
efficient long-distance distribution. As the power gets closer to your home or office, it is stepped
down to intermediate levels and finally enters the premises at 120 and 240 VAC.

Aside from power supply applications, transformers are also used for filtering and impedance
matching of interface signals. The use of a transformer as a filter requires knowledge of the physical
orientations of the primary and secondary windings with respect to one another. Each winding in a
transformer has two terminals. When a signal is applied to the primary coil, a decision is made as to
which terminal is connected to the positive portion of the circuit and which is connected to the nega-
tive portion (ground in some applications). That signal will induce a signal of equivalent polarity on
the secondary coil when the appropriate choice of positive and negative terminals is made at the
other end of the transformer. Alternatively, a signal of opposite polarity will be induced if the sec-
ondary coil’s positive and negative connections are swapped. The graphical convention of distin-
guishing the matching terminals of the primary and secondary coils is by placing matching reference
dots next to one terminal of each coil as shown in Fig. 12.28. The coils may be drawn with their dots
on the same side or on opposite ends of the transformer.

The relative polarity of the primary and secondary windings is important for filtering applications
to ensure that magnetic fields in each coil either add to or cancel each other as appropriate. Trans-

V PRIMARY

V SECONDARY

NPRIMARY

NSECONDARY
------------------------------------=

10:1

RLOAD
120 VAC

Input

12 VAC Output

FIGURE 12.27 Basic transformer operation.

-Balch.book Page 289 Thursday, May 15, 2003 3:46 PM

290 Analog Basics for Digital Systems

formers are sometimes used to attenuate common mode noise. A common-mode signal is one
wherein current flows in the same direction on both halves of a circuit. This is in contrast to a differ-
ential-mode signal wherein current flows in opposite directions. As shown in Fig. 12.29, common-
mode current can flow when a return path exists, usually ground.

To attenuate common-mode noise, the transformer is inserted into the circuit as shown in Fig.
12.30 such that each circuit half passes through the coils oriented in the same direction. Each coil’s
magnetic field has the same magnitude and phase as the other, because each coil has the same com-
mon-mode current passing through it. The magnetic fields do not cancel each other out, causing a
voltage drop across each coil that attenuates the noise. In other words, the coils present high imped-
ance to the common-mode portion of the signal passing through them. The differential signal, typi-
cally a desired signal carrying meaningful data, passes through the common-mode filter, because its
currents are flowing in opposite directions. The magnetic fields in the coils cancel each other out, be-
cause they are of equal magnitude but opposite phase. Without a magnetic field built up, the coils do
not develop a voltage drop and thereby present low impedance to the desired signal.

Impedance matching between a driver and a load is another common use of a transformer. It can
be shown mathematically that maximum power is delivered to a load when the source’s internal im-

+

–

+

–

+

– +

–

FIGURE 12.28 Transformer coil polarity graphical representation.

IDIFF

ICOMMON

VDIFF

+

–

+

+

–

VCOMMON

–

ICOMMON

FIGURE 12.29 Common-mode current flow.

VDIF

F

+

-

+

+

-

VCOMMON

-

VDIF

F

+

-

FIGURE 12.30 Common-mode filter transformer.

-Balch.book Page 290 Thursday, May 15, 2003 3:46 PM

Electrical Fundamentals 291

pedance equals that of the load. Under these conditions, only half of the total power is delivered to
the load, the remaining half being dissipated by the source impedance. For unequal load and source
impedances, more or less voltage and current will be delivered to the load, but always in proportions
that result in less than 50 percent of the total power. It may be desirable to deliver maximum power to
a load in situations where the impedance of a driver (e.g., audio amplifier) does not match that of its
load (e.g., speaker). A transformer can be used to isolate the source and load from each other and
present each with the necessary impedance for maximum power transfer.

If a load resistor is connected to a transformer’s secondary coil as shown in Fig. 12.31, Ohm’s law
can be used to relate VP and IP by RLOAD. To simplify the analysis, the secondary coil is said to have
one winding and the primary N windings, for a simple N:1 ratio. Therefore,

More primary windings increase the voltage ratio between the primary and secondary but de-
crease the current because a transformer cannot amplify a signal and, hence, VPIP = –VSIS. The cur-
rent in the secondary winding flows in the direction opposite of that in the primary, because the
primary is feeding current into the transformer and the load is pulling current out.

It is known that the relationship between the voltages on either side of the transformer is given by
VP = NVS and that, maintaining proper current polarity, VS = –ISRLOAD. Therefore, VP = –NISRLOAD.
The secondary current term can be substituted out of the equation by using the relationship of cur-
rents to coil windings, IS = –NIP, to yield VP = N2IPRLOAD. Finally, Ohm’s law is used to remove the
primary voltage and current terms: RSOURCE = N2RLOAD. Put in more general terms, RP = N2RS.

A high ratio of primary to secondary windings will present the signal source with an apparently
higher impedance than is actually connected to the secondary. Similarly, the load will be presented
with an apparently lower impedance than is actually present in the source. Considering the circuit in
Fig. 12.32, an 8-Ω speaker can be matched to an amplifier with a 100-Ω output impedance using a
transformer with a 3.5:1 winding ratio.

RLOAD

RSOURCE

N:1

IP

Source

IS

VS

+

–

VP

+

–

FIGURE 12.31 Impedance transformation.

V P

V S
------- N

1
----= and

IP

IS
----- 1

N
----–=

8 Ω
100 Ω

3.5:1

Source

FIGURE 12.32 Amplifier/speaker impedance matching.

-Balch.book Page 291 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

293

CHAPTER 13

Diodes and Transistors

Most of the semiconductors that a digital system employs are fabricated as part of integrated cir-
cuits. Yet there are numerous instances in which discrete semiconductors, most notably diodes and
transistors, are required to complete a system. Diodes are found in power supplies, where they serve
as rectifiers and voltage references. It is difficult these days

not

to find a light emitting diode, or
LED, in one’s immediate vicinity, on some appliance or piece of electronic equipment. Discrete
transistors are present in switching power supplies and in circuits wherein a digital IC must drive a
heavy load. There are many other uses for diodes and transistors in analog circuit design, most nota-
bly in signal amplification. These more analog topics are not discussed here.

Diodes and transistors are explained in this chapter from the perspective of how they are applied
in the majority of digital systems. As such, the level of theory and mathematics used to explain their
operation is limited. The first portion of the chapter introduces diodes and provides examples of how
they are used in common power and digital applications. Bipolar junction and field-effect transistors
are discussed in the remainder of the chapter. The intent of this chapter is to show how diodes and
transistors can be put to immediate and practical use in a digital systems context. As such, useful ex-
ample circuits are presented whenever possible.

13.1 DIODES

An ideal diode is a nonlinear circuit element that conducts
current only when the device is

forward biased

, i.e., when
the voltage applied across its terminals is positive. It
thereby behaves as a one-way electrical valve that prevents
current from flowing under conditions of

reverse bias

. A
diode has two terminals: the

anode

and

cathode

. For the
diode to be forward biased, the anode must be at a more
positive voltage than the cathode. Diodes are the most ba-
sic semiconductor structures and are formed by the junc-
tions of two semiconductor materials of slightly differing
properties. In the case of a silicon diode, the anode is
formed from positively doped silicon, and the cathode is
formed from negatively doped silicon. Along this

pn junc-
tion

is where the physical phenomenon occurs that creates a diode. Figure 13.1 shows the general
silicon structure of a diode and its associated symbolic representation.

Real diodes differ from the ideal concept in several ways. Most significantly, a real diode must be
forward biased beyond a certain threshold before the device will conduct. This threshold is called the

N

P

Cathode
(–)

Anode
(+) Anode (+)

Cathode (–)

FIGURE 13.1 Diode structure and graphi-
cal representation.

-Balch.book Page 293 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

294 Analog Basics for Digital Systems

forward voltage

,

V

F

. A diode conducts very little current below

V

F

, measured in micro- or nano-
amps. The relationship between a diode’s current and voltage is exponential and therefore increases
rapidly around

V

F

. Above

V

F

, the diode presents very low impedance and appears almost like a short
circuit, or a piece of wire. A typical silicon diode’s I-V characteristic is shown in Fig. 13.2 with

V

F

 of
approximately 0.7 V. For many applications, especially those in digital systems, a diode’s I-V char-
acteristic can be simplified to a step function from zero to infinite current at the forward voltage.
Real diodes also have a reverse breakdown voltage, called the

Zener

voltage,

V

Z

, at which point they
will conduct under reverse-biased conditions. Normal diodes are usually not subjected to reverse-
bias voltages sufficient to achieve significant conduction. Special-purpose Zener diodes are designed
specifically to operate under reverse-bias conditions and are commonly used in voltage reference
and regulation applications.

Saying that a diode conducts “infinite” current beyond

V

F

 really means that its impedance be-
comes so low that it no longer becomes the limiting factor in a circuit. If a typical diode is connected
directly to a battery such that it is forward biased, the diode will form nearly a short circuit, which
will cause a large current flow. Fairly soon afterward, the diode will likely fail due to thermal over-
load. Diodes are specified with maximum

forward currents

,

I

F

. Exceeding

I

F

 causes the diode to dis-
sipate more power than it is designed for, usually with destructive consequences.

When a diode is used in an application wherein it may be forward biased and driven with exces-
sive current, a current-limiting resistor is inserted into the circuit to keep the diode within its speci-
fied operating limits. Diodes are useful for providing a fixed voltage reference regardless of a
circuit’s operating voltage. The circuit shown in Fig. 13.3 takes advantage of a diode’s relatively
static forward voltage with respect to current. A loosely regulated 12-V supply may have a tolerance
of ±20 percent—a range of 9.6 to 14.4 V. If a resistor divider is used to generate a reference voltage,
its accuracy could be no better than that of the 12-V supply. Some applications require a more accu-
rate voltage reference with which to sense an incoming signal. A 1N4148 exhibits

V

F

 = 0.7 V at

VF

I

VZ

Compressed Negative Voltage Scale:
|VZ|>>VF

FIGURE 13.2 Silicon diode I-V characteristic.

-Balch.book Page 294 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 295

5 mA under typical conditions.

*

 The 2.2-k

Ω

 resistor limits the current through the diode to approxi-
mately 5 mA when

V

IN

 = 12 V. If the input changes by 20 percent and causes a corresponding
change in the current, the diode voltage changes by a small fraction. Using a basic small signal diode
in this manner is an effective scheme for many applications. If tighter tolerance is desired, more sta-
ble voltage reference diodes are available. Thermal overload is not a problem for this diode, because
its power dissipation is relatively constant at 0.7 V

×

 5 mA = 3.5 mW.
Diodes are available with a broad spectrum of characteristics. Aside from silicon diodes, there are

Schottky

 diodes that exhibit lower forward voltages of under 0.5 V. Lower forward voltages provide
benefits for high-power applications in which heat and power dissipation are prime concerns. Re-
duced

V

F

 means reduced power. Diodes are manufactured in a variety of packages according to the
amount of power that they are designed to handle. Small-signal diodes are not intended to handle
much power and are available in small, surface mount packages. At the other extreme, diodes can be
as large as hockey pucks for very high-power applications. Small-signal diodes are manufactured
with varying response times to changes in voltage. A diode can be used to

clip

a signal to prevent it
from exceeding a certain absolute voltage, as shown in Fig. 13.4. As the signal’s edge rate increases,
a slower diode may not respond fast enough to be effective. If a single diode’s forward voltage is in-
sufficient, multiple diodes can be placed in series to increase the clipping threshold. Some of the
more common small-signal diodes used in digital circuits include the leaded 1N914 and 1N4148 de-
vices, and their surface mount equivalents, the SOT-23 MMBD914 and MMBD4148.

* 1N4148, Fairchild Semiconductor Corporation, 2002, p. 2.

2.2 k Ω

VIN
12 V ± 20%

VOUT ≈ 0.7 V

1N4148

FIGURE 13.3 Diode-based voltage reference.

Input Clipped Output

1.4 V 1.4 V

FIGURE 13.4 Clipping a signal with a diode.

-Balch.book Page 295 Thursday, May 15, 2003 3:46 PM

296 Analog Basics for Digital Systems

13.2 POWER CIRCUITS WITH DIODES

A major use for diodes is in the

rectification

of AC signals, specifically in power supplies in which
the conversion from AC to DC is required. Small-signal diodes can be used as rectifiers in non-
power or low-power applications. Larger diodes with higher power ratings are employed when con-
structing power supply circuits meant to provide more power. An AC power signal is a sine wave of
arbitrary amplitude that is centered about 0 V. Its voltage peaks are of equal magnitude above and
below 0 V. A digital circuit requires a steady DC power supply. The first step in creating a steady DC
power supply is to rectify the AC input such that the negative AC sine wave excursions are blocked.
Figure 13.5 shows a single diode performing this function. The rectified output is reduced in voltage
by the diode’s forward voltage. This circuit is called a

half-wave

rectifier, because it passes only half
of the incoming power signal. Once rectified, capacitors and inductors can smooth out (lowpass fil-
ter) the rectified AC signal to create a steady DC output.

The single-diode half-wave rectifier does the job, but does not take advantage of the negative
portion of the AC input. Four diodes can be assembled into a

full-wave bridge rectifier

that passes
the positive portion of the sine wave and inverts the negative portion relative to the DC ground. This
circuit is shown in Fig. 13.6. The bridge rectifier works by providing a current conduction path
through the resistor to ground regardless of the polarity of the incoming AC signal. When the AC in-
put is positive with respect to the polarity markings shown in the diagram, diodes D1 and D3 are
forward biased, conducting current from D1 through the resistor, then through D3 to the negative
AC input wire. When the AC input is negative during the next half of the sinusoid, D2 and D4 are
forward biased and allow current to flow in the same direction through the resistor. The result is that
a positive voltage is always developed across the load with respect to ground. Note that, because of
the two diodes in series with the load, the rectified output voltage is reduced by twice the diodes’
forward voltage.

Power rectifier circuits are generally found in systems wherein a high-voltage input (e.g.,
120 VAC) must be converted into a low-voltage output such as +5 VDC to power a digital logic cir-
cuit. Transformers are used in conjunction with bridge rectifiers to step down the high-voltage AC
input to a more appropriate intermediate level that is much closer to the final voltage level required
by the system. A power filter circuit can then be used to smooth the heavily rippled rectified signal
into a more stable DC input. Finally, a voltage regulator performs the final adjustments to convert the

Rectified Output

RLOAD
AC Input

0 V

+VMAX

–VMAX

0 V

+VMAX

VF loss

FIGURE 13.5 Half-wave rectifier circuit.

-Balch.book Page 296 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 297

intermediate voltage into a more accurate digital supply voltage. This common AC-to-DC power
supply configuration is illustrated in Fig. 13.7.

Another power application of diodes is in combining multiple power supplies to feed a single
component or group of components while ensuring that the failure or disappearance of one supply
does not cause that component to lose power and cease operation. This concept relies on the fact that
a standard diode will not conduct under normal reverse-bias conditions. As shown in Fig. 13.8, each
power supply is isolated by a diode whose cathodes form a common voltage supply node for a cir-
cuit. Under normal operating conditions, each diode is forward biased, because the respective power
supplies are functioning. When one supply fails, its associated diode becomes reverse biased,
thereby preventing the failing supply from pulling power from the functioning supply and causing
the system to fail. These diodes are often called

OR-ing diodes,

because they perform a logical OR
function on the power supplies.

Diode OR-ing circuits are also seen in battery-backup applications in which it is desired to keep a
low-power static RAM chip powered by a battery when the main power supply is turned off. A typi-
cal scenario is a higher-voltage operating supply (e.g., +5 V) and a lower-voltage data-retention bat-

Rectified Output

RLOAD

AC Input

0 V

+VMAX

–VMAX

0 V

+VMAX

+

–

D1

D2

D4

D3

2 VF loss

FIGURE 13.6 Bridge rectifier circuit.

N:1

Digital
Supply
Voltage

RLOAD

120 VAC
Input Voltage

Regulator

FIGURE 13.7 AC-to-DC power supply.

-Balch.book Page 297 Thursday, May 15, 2003 3:46 PM

298 Analog Basics for Digital Systems

tery (e.g., +3 V) are each connected to an SRAM via independent OR-ing diodes. Under normal
operation, the operating supply forces the battery’s diode into reverse bias, preventing the battery
from supplying power to the SRAM, thereby extending the battery’s life. When power is turned off,
the battery’s diode becomes forward biased and maintains power to the SRAM so that its data are
not lost. Schemes like this are commonly employed in certain PCs and other platforms that benefit
from storing configuration information in nonvolatile SRAM.

13.3 DIODES IN DIGITAL APPLICATIONS

Not only can diode logic functions be implemented for power supply sharing or backup, they are
equally applicable to implementing certain simple logic tasks on a circuit board. Diodes can imple-
ment both simple OR and AND functions and are useful when either a standard logic gate is unavail-
able or when the amplitude of the incoming signals violates the minimum or maximum input
voltages of other components. Figure 13.9 shows diodes implementing two-input OR and AND
functions. Pull-down and pull-up resistors are necessary for the OR and AND functions, respec-
tively, because the diodes conduct only when forward biased. When both diodes are reverse biased,
the circuit must be pulled to a valid logic state. The value of the resistors depends on the input cur-
rent of the circuit being driven but ranges from 1 to 10 k

Ω

 are common.
The pull-down resistor in the OR circuit maintains a default logic level of 0 when both inputs

are also at logic 0. Both inputs must remain below

V

F

 = 0.7 V for the circuit to generate a valid
logic 0-V level. When the input signals transition to logic 1, they must stabilize at a higher voltage

Circuit

DC
Supply

#2

DC
Supply

#1

FIGURE 13.8 Power supply OR-ing diodes.

Input A

Input B

Output
A OR B Input A

Input B
Output

A AND B

+V

FIGURE 13.9 Diode OR and AND functions.

-Balch.book Page 298 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 299

that is sufficient to meet the minimum logic-1 input voltage of the driven circuit. The value of the
pull-down resistor should be high enough to limit the power consumption of the circuit but low
enough to create a voltage that is comfortably below the driven circuit’s logic-0 threshold. A CMOS
input has a much lower input current specification than a TTL input. A typical TTL input has a low-
level input current of under 0.5 mA, and it should be kept well below 0.8 V for adequate margin. A
1-k

Ω

 pull-down resistor would create less than a 0.5-V drop under these conditions. This may be ad-
equate for some designs, or a more conservative approach could be taken by using a smaller resis-
tance, perhaps 470

Ω

. When either input rises to its logic-1 voltage, this will be reflected in the
circuit’s output minus a diode drop. This places a restriction on the input voltages: they cannot ex-
ceed the maximum input voltage of the driven circuit by more than a diode drop. However, the input
voltages can violate the minimum input voltage specification, because the diodes will be reverse bi-
ased under these conditions and thereby prevent the circuit’s output voltage from dropping below
0 V, or ground.

Similarly, the AND circuit emits a logic-1 voltage when both diodes are reverse biased, because
of the pull-up resistor. The diodes are reverse biased whenever the input voltages are near or above
the logic supply voltage, +V. This enables the circuit to perform the AND function for input signals
that would otherwise violate the maximum input voltage of the driven circuit. When either input
transitions to a logic 0, that input’s diode becomes forward biased and drags the output voltage
down to the input level plus a diode drop, driving a logic-0 out. For the AND circuit to function re-
liably, a guarantee must be made of meeting the maximum logic-0 input voltage for the driven cir-
cuit. Using a normal silicon diode with

V

F

 = 0.7 V may make this impossible if the input voltage is
not guaranteed to go below 0 V. Therefore, a low-

V

F

 Schottky diode such as a BAT54 may be re-
quired that exhibits

V

F

 < 0.4 V at low currents. Just as the OR-circuit provides input voltage protec-
tion at logic 0 but not logic 1, the AND-circuit provides input voltage protection at logic 1 but not
logic 0. The input voltage must not fall below the driven circuit’s minimum input voltage by more
than a diode drop.

Finally, perhaps the most visible types of diodes are

light emitting diodes

(LEDs). LEDs are constructed from
various semiconductors and metals that emit visible or in-
visible light when forward biased. An LED is graphically
distinguished from a normal diode by drawing representa-
tions of light or photons next to the diode symbol as
shown in Fig. 13.10. LEDs exhibit forward voltages that
are substantially higher than normal diodes, typically in
the range of 2 to 3 V. Whether an LED is wired to the
power supply to provide a “power on” indicator, or it is
connected to the output pin of an IC, it should be

current
limited

using a series resistor. Each LED has its own specifications for

V

F

 and

I

F

. The current-limit-
ing resistor should be chosen to provide the required current given the supply voltage and

V

F

.
In Fig. 13.10, the diode is assumed to have

V

F

 = 2 V, and the supply voltage is 5 V. The resistor
therefore drops 3 V and allows 13.6 mA of current to flow through the circuit. Allowing more
current to flow through the LED will make it glow brighter but will also cause it to dissipate more
heat. Most small LEDs emit sufficient light at currents ranging from 10 to 30 mA. In situations
where power savings are critical, less current may be possible, depending on the desired light in-
tensity.

LEDs are available in a wide range of colors. At first, only shades of green, red, and yellow were
commonly found. Blue LEDs became widely available in the late 1990s, allowing full-color red-
green-blue (RGB) displays. Common household remote control units rely on infrared LEDs. Ultra-
violet LEDs are available as well for special applications.

5 V

RLIMIT = 220 Ω

FIGURE 13.10 LED circuit.

-Balch.book Page 299 Thursday, May 15, 2003 3:46 PM

300 Analog Basics for Digital Systems

13.4 BIPOLAR JUNCTION TRANSISTORS

Transistors are silicon switches that enable a weak signal to control a much larger current flow,
which is the process of amplification: magnifying the amplitude of a signal.

Bipolar junction transis-
tors

(BJTs) are a basic type of transistor and are formed by two back-to-back pn junctions. Figure
13.11 shows the general BJT structures and their associated symbolic representations. The BJT con-
sists of three layers, or regions, of silicon in either of two configurations: NPN and PNP. The middle
region is called the

base

, and the two outer regions are separately referred to as the

collector

and

emitter

. As will soon be shown, the base-emitter junction is what enables control of a potentially
large current flow between the collector and emitter with a very small base-emitter current. A BJT’s
construction is more than simply placing two diodes back to back. The base region is extremely thin
to enable conduction between the collector and emitter, and the collector and emitter are sized differ-
ently according to the fabrication process.

Currents in an NPN transistor flow from the base to the emitter and from the collector to the emit-
ter. The relationship between these currents is defined by a proportionality constant called beta (

β

,
also known as h

FE

):

I

C

 =

β

I

B

. Beta is specific to each type of transistor and is characterized by the
manufacturer in data sheets. Typical values for beta are from 100 to less than 1000. The beta current
relationship provides a quick view of how a small base current can control a much larger collector
current. A higher beta indicates greater potential for signal amplification. Because the base-emitter
junction is essentially a diode, it must be sufficiently forward biased for the transistor to conduct cur-
rent (

V

BE

 = 0.7 V under typical conditions). A PNP transistor functions similarly, although the polar-
ities of currents and voltages are reversed.

When a transistor circuit is designed, care must be taken not to overdrive the base-emitter junc-
tion. Like any other diode, it presents very low impedance beyond its forward voltage. Without some
type of current limiting, the transistor will overheat and become damaged. Transistors are biased us-
ing resistors placed at two or three of its terminals to establish suitable operating voltages. Figure
13.12 shows a common NPN configuration at DC with a current limiting resistor,

R

B

, at the base and
a voltage-dropping resistor,

R

C

, at the collector. The emitter is grounded, establishing the base volt-
age,

V

B

, at 0.7 V.

R

B

 sets the current flowing into the base and thereby controls the collector voltage,

V

C

. As

R

B

 increases,

V

C

 increases, because less current is pulled through the collector, reducing the
voltage drop across

R

C

. In this example, the base current,

I

B

, is (5 V –

V

B

) +

R

B

 = 0.43 mA. Assum-
ing a beta of 100, the collector current,

I

C

, is 43 mA, and

V

C

 = 5 V –

I

C

R

C

 = 2.85 V.
The transistor is limited in how much current it can drive by both its physical characteristics and

the manner in which it is biased. Physically speaking, a transistor will have a specified maximum
power dissipation beyond which it will overheat and eventually become damaged. In this circuit, the
transistor’s power dissipation is

V

C

E

I

C

+

V

B

E

I

B

, although the dominant term is between the collector
and emitter, where the great majority of the current flow exists. Using this small simplification, the
transistor is dissipating approximately 2.85 V

×

 43 mA = 123 mW.

N

P

Emitter

Base

Collector

Emitter

Base

Emitter

Collector

N

BaseCollector

P

N

Emitter

P

BaseCollector

FIGURE 13.11 NPN and PNP BJT structures and graphical representations.

-Balch.book Page 300 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 301

Assuming that a transistor is not operated beyond its physical limitations, the bias configuration
places an upper limit on how much current flows into the collector. A BJT has three modes of opera-
tion: cutoff, active, and saturation. In cutoff, the transistor is not conducting, because the base-emit-
ter junction is either reverse biased or insufficiently forward biased. The collector is at its maximum
voltage, and the base-collector junction is reverse biased, because no current is flowing to create a
voltage drop through RC or its equivalent. When the base-emitter junction is forward biased, the
transistor conducts current and VC begins to drop. The transistor is in active mode. As long as the
base-collector junction remains reverse biased, increasing base current will cause a corresponding
increase in collector current, and the transistor remains in active mode. If IB is increased to the point
at which the base-collector junction is forward biased (increased IC causes VC to approach VE), the
transistor enters saturation and no longer can draw more current through the collector. Saturation
does not damage the transistor, but it results in a nonlinear relationship between IB and IC , nullifying
the effect of beta. If RC is increased or decreased, saturation occurs at lower or higher IC, respec-
tively. Amplifier circuits must avoid saturation to function properly because of the resulting nonlin-
earity. When used in a purely digital context, however, transistors can be driven from cutoff to
saturation as long as the power dissipation specifications are obeyed.

13.5 DIGITAL AMPLIFICATION WITH THE BJT

With a basic knowledge of BJT operation, an NPN transistor can be already be applied in a useful
digital application: driving a high-current LED array with a relatively weak output pin from a logic
IC. Typical digital output pins have relatively low current drive capabilities, because they are de-
signed primarily to interface with other logic gates that have low input current requirements. CMOS
logic ICs tend to exhibit symmetrical drive currents in both logic 1 and logic 0. A CMOS output may
be rated for anywhere from several milliamps to tens of milliamps. Bipolar logic ICs tend to exhibit
relatively low drive current at logic 1, often less than one milliamp, and higher currents of several
milliamps at logic 0. The use of bipolar logic is widespread, and it is often advantageous to take ad-
vantage of the greater drive capability of the logic-0 state. Figure 13.13 shows a logic output con-
nected directly to an LED with each of the two possible polarities. The active-low configuration
turns the LED on when the output is logic 0, and the active-high turns the LED on when the output is
logic 1.

If neither the logic-1 nor logic-0 current capabilities are sufficient for the load, a simple transistor
circuit can solve the problem. A typical 74LS logic family output pin is specified to source 0.4 mA at
2.7 V when driving a logic 1. Assuming a minimum beta of 100, an NPN transistor can be used to

RB

10 k Ω

+5 V
RC

+5 V

50 Ω

VE = 0 V

FIGURE 13.12 NPN DC topology.

-Balch.book Page 301 Thursday, May 15, 2003 3:46 PM

302 Analog Basics for Digital Systems

drive two 20-mA LEDs when a 74LS logic pin goes high. This circuit is shown in Fig. 13.14. Given
the 74LS output specification, the base resistor is chosen to pull maximum current from the logic IC:
0.4 mA. VB = 0.7 V, because it is known that VB = VE + 0.7 V and VE = 0 V. The logic output is at
least 2.7 V, resulting in a voltage drop across RB of 2 V. Selecting RB = 4.7 kΩ will pull slightly more
than 0.4 mA, but this will not damage the logic IC; it may just cause the output voltage to sag a little
below 2.7 V.

With the transistor’s base circuit determined, attention turns to the collector. When the transistor
is conducting, voltage is dropped by RC, the LEDs, and the transistor. A range of values for RC may
be chosen that will allow the transistor to conduct the full 40 mA desired. Smaller values of RC will
result in higher collector-emitter voltage, VCE. Larger values of RC will reduce VCE until the transis-
tor enters saturation, after which increasing RC will decrease IC. Higher VCE will result in higher
transistor power dissipation for a constant current of 40 mA. It is usually preferable to minimize the
power dissipated by active components such as transistors, because prolonged heating reduces their
life span. Heat in general reduces a circuit’s reliability. Typical manufacturers’ specifications for an
NPN transistor’s saturation VCE, VCE (SAT), are 0.3 V at moderate currents. VCE (SAT) can be lowered to
less than 0.2 V by injecting more current into the base. Assuming an LED VF = 2 V, RC will have to
drop 5 V – 2 V – 0.3 V = 2.7 V at 40 mA, yielding an approximate value of RC = 68 Ω. The 2N2222
and 2N3904 are two widely available NPN transistors suitable for general applications such as this
LED driver. These transistors have been around for a long time and are produced by multiple manu-
facturers. They are leaded devices whose surface mount equivalents are the MMBT2222 and
MMBT3904, respectively.

If the load requirement is substantially increased, this NPN transistor circuit with β = 100 will be
insufficient, because more base current will be required, violating the bipolar logic-1 output specifi-
cation. Aside from trying to find a single transistor with a higher beta, there are alternative solutions
that use two transistors instead of one. The idea is to keep the existing NPN transistor that is directly
driven by the logic output and have it drive the base of a second transistor instead of directly driving

+V

RLIMIT

Active-Low

RLIMIT

Active-High

FIGURE 13.13 Direct connection of logic output to LED.

+5 V

RC

Logic
Output

RB

4.7 k Ω

68 Ω

2N2222

FIGURE 13.14 NPN LED driver.

-Balch.book Page 302 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 303

the load. The collector current of the first transistor, β1IB1, becomes the base current of the second
transistor and is multiplied to yield a final load current of β2IB2, which equals β1β2IB1.

A two-stage NPN/PNP transistor circuit is shown in Fig. 13.15. A PNP transistor’s pn junctions
have the opposite polarity as compared to an NPN. The base-emitter junction is forward biased by
applying a higher voltage to the emitter than to the base. Thus, the PNP circuit topology is flipped in
comparison to the NPN. This example assumes that a current of 500 mA is required to drive an array
of LEDs. Standard convention is to label transistors with the letter Q and then append a number to
uniquely identify each device. At IC2 = 500 mA, Q2 should be saturated to minimize VCE2; therefore,
the voltage drop across RC2 is 5 V – VCE2 (SAT) – VF = 2.7 V, the same as in the previous example.
With the current higher than before, RC2 is selected to be 5.6 Ω, which is fairly close to the calcu-
lated value of 5.4 Ω. A common general-purpose PNP transistor that would be suited to an applica-
tion such as this is the 2N3906 or its surface mount equivalent, the MMBT3906.

Assuming that β2 = 100, IB2 = IC1 = 5 mA, and so IB1 = 0.05 mA. Practically speaking, IB1 does
not have to be set to such accuracy, because the circuit is ultimately current limited by RC2. RB1 can
be conservatively selected to guarantee that at a minimum of 0.05 mA is injected into the NPN tran-
sistor’s base. If IB1 turns out to be greater than 0.05 mA, slightly more power will be dissipated by
both transistors, but heating will not be a problem at these submilliamp current levels. Selecting RB2
= 22 kΩ (logic-high output = 2.7 V) lightly loads the bipolar logic output with approximately
0.1 mA. This results in Q1’s collector current being greater than 10 mA, assuming β1 = 100. When
the circuit is conducting, VCE1 is held at 4.3 V by the fixed VEB of Q2 equal to 0.7 V. Therefore, Q1
dissipates slightly more than 43 mW.

The power dissipated by the PNP transistor is 500 mA × 0.3 V = 150 mW. This may not sound
like much power, but a small transistor will experience a substantial temperature rise at this sus-
tained power level. For the most part, this level of heating will not cause a problem in most circuits,
but care should be taken to analyze the thermal characteristics of semiconductor packages when de-
signing circuits. These issues are discussed later in this book.

Considering this mixed NPN/PNP circuit, the question may come to mind as to why the logic out-
put cannot directly drive the base of the PNP transistor, simplifying the circuit by removing the NPN
transistor. A bipolar logic output certainly has the drive strength at logic 0 to sink sufficient current.
The problem is that a bipolar output is not specified with a high enough logic-1 voltage level. For the
Q2 to be turned off, VB2 must be driven higher than 4.3 V, a requirement that is outside the guaran-
teed specifications of a typical bipolar logic device. If a CMOS output were used, the situation
would be different, because most CMOS drivers are guaranteed to emit a logic-1 voltage that is
much closer to the system’s positive supply voltage.

An alternative dual-transistor circuit is two NPN transistors arranged in what is commonly termed
a Darlington pair. As shown in Fig. 13.16, a Darlington pair connects the emitter of the first stage

+5 V

RC2

5.6 Ω

500 mA
LED Array

Logic
Output

RB1

22 k Ω
Q1

Q2

FIGURE 13.15 NPN/PNP LED driver.

-Balch.book Page 303 Thursday, May 15, 2003 3:46 PM

304 Analog Basics for Digital Systems

transistor to the base of the second. As before, the betas multiply, but now VBE is doubled to 1.4 V,
because the two base-emitter junctions are in series. The higher VBE reduces the base current from
the previous example to roughly 0.06 mA, because the same value of RB, 22 kΩ, is used. However,
with an overall beta of approximately 10,000, the LED array is adequately driven.

13.6 LOGIC FUNCTIONS WITH THE BJT

The preceding circuits are binary amplifiers. In response to a small binary current input, a larger bi-
nary output current is generated. Looking at these circuits another way reveals that they are very ba-
sic logic gates: inverters. Consider the now familiar circuit in Fig. 13.17a. Rather than driving a
high-current load, the output voltage is taken at the collector. When a TTL logic 0 is driven in, RC
pulls the output up to logic 1, 5 V. When a TTL logic 1 is driven in, the transistor saturates and drives
the output down to logic 0, VCE (SAT). Logic gates in bipolar ICs are more complex than this, but the
basic idea is that a simple inverter can be constructed with discrete transistors if the need arises. This
discrete inverter can be transformed into a NOR gate by adding a second transistor in parallel with

RC500 mA
LED Array

Logic
Output

RB

22 k Ω

+5 V

5.6 Ω

FIGURE 13.16 NPN Darlington pair LED driver.

RB

4.7 k Ω

RC

+5 V

1 k Ω

Input
A

Output
NOT A

(a) NOT

RB1

4.7 k Ω

RC

+5 V

1 k Ω

Input
A

Output
A NOR B

(b) NOR

RB2

4.7 k Ω
Input

B

FIGURE 13.17 NPN NOT and NOR gates.

-Balch.book Page 304 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 305

the one already present. In doing so, the output is logic 1 whenever both inputs are logic 0. As soon
as one input is driven to logic 1, the accompanying transistor pulls the common VC output node to-
ward ground and logic 0. An advantage of creating logic gates from discrete transistors is that in-
compatible voltage domains can be safely bridged. In this example, the logic output is 5 V
compatible, while the input can be almost any range of voltages as long as the transistor’s specifica-
tions are not violated. This voltage conversion function would not be possible over such a wide
range with normal bipolar or CMOS logic ICs.

It has been previously mentioned that TTL, or bipolar, logic outputs are asymmetrical in their 0
and 1 logic level drive strengths. A TTL output, shown in Fig. 13.18, consists of a totem pole output
stage and a driver, or buffer, stage that passes the 0/1 logic function result to the output stage. It is
called a totem pole output stage, because the vertical stack of two transistors and a diode somewhat
resembles the layering of carvings on a totem pole. Classic TTL logic is composed entirely of NPN
transistors, because PNP transistors are more difficult to fabricate on an integrated circuit.

When Q1 is turned on, its emitter voltage, VE1, is fixed at 0.7 V by Q2. Q1 is driven into saturation
by the logic circuit (not shown), which brings its collector voltage, VC1, down to VCE (SAT) + VE1,
which is approximately equal to 0.9 V. The saturation voltage of Q1 is approximately 0.2 V, because
a sufficient current is injected into the base of Q1. This causes Q2 to saturate as well, driving an out-
put level of VCE (SAT), 0.2 V or less. A logic 0 is driven strongly, because there is a direct, low-imped-
ance path to ground through the saturated Q2. Turning our attention up to Q3, the transistor’s base-
emitter junction would normally be forward biased when VC1 = VB3 = 0.9 V and VE3 = 0.2 V. The
presence of the diode prevents this from happening by increasing the forward-bias threshold by 0.7
V. Therefore, Q3 is in cutoff when Q2 is in saturation.

The resistors surrounding Q1 pull its collector and emitter to the respective voltage rails when Q1
is turned off by the logic circuit. This causes Q2 to turn off and Q3 to turn on by raising VB3 to 5 V.
When VB3 = 5 V, VE3 = 4.3 V, and the output voltage is dropped an additional 0.7 V by the diode to
3.6 V when the load current is small. For small currents, Q3 remains in the active mode, and the out-
put voltage is a function of the drop across the 1.6-kΩ resistor, VBE3, and VDIODE. As the load current
increases, Q3 saturates, and the output voltage becomes a function of the drop across the 130 Ω re-
sistor, VCE (SAT), and VD. The impedance from the 5-V supply to the output is greater than for the
logic-0 case, which is the reason that TTL logic drives a weaker logic 1.

+5 V

1 k Ω

1.6 k Ω

Logic
Output

130 Ω

+5 V

From Logic
Function

Q1

Q2

Q3

FIGURE 13.18 TTL driver.

-Balch.book Page 305 Thursday, May 15, 2003 3:46 PM

306 Analog Basics for Digital Systems

From studying NPN transistors and the bipolar logic circuits that they form, it becomes apparent
why the common terms VCC and VEE have come to represent the positive and negative supply volt-
ages in a digital circuit. Bipolar logic has the collectors of its NPN transistors connected to the posi-
tive supply voltage and its emitters connected to the negative supply voltage—usually ground, but
not always.

13.7 FIELD-EFFECT TRANSISTORS

Metal oxide semiconductor (MOS) technology represents the vast majority of transistors used to im-
plement digital logic on integrated circuits ranging from logic devices to microprocessors to mem-
ory. Most field-effect transistors (FETs) are fabricated using MOS technology and are called
MOSFETs. (The JFET is an exception to this and is briefly mentioned at the end of this chapter. This
discussion uses the term FET in reference to a MOSFET.) Figure 13.19 shows the general structure
of an enhancement-type FET. Just as BJTs are available in NPN and PNP according to the doping of
their regions, there are n-FETs and p-FETs, referred to as NMOS and PMOS technologies, respec-
tively. A FET consists of two main conduction regions, one called the source and the other the drain.
In an n-FET, the source and drain are both N-type silicon. A channel of oppositely doped silicon sep-
arates the source and drain. Without any external influence, there is no conduction across the chan-
nel, because one pn junction is always reverse biased. A third terminal, the gate, is the control
element that enables conduction across the channel. The gate is insulated from the rest of the FET by
a thin layer of silicon dioxide (SiO2). As the gate voltage is increased relative to the source voltage in
an n-FET, the electric field developed at the gate causes a portion of the channel to change its electri-
cal properties. The channel begins to behave as if it were doped the same way as the source and
drain, enabling current to flow between the source and drain.

Whereas a BJT’s conduction between emitter and collector is a function of its base current, a
FET’s conduction is a function of the gate-source voltage, VGS, and the drain-source voltage, VDS.
An n-FET begins to conduct when VGS exceeds the threshold voltage, VT. In a typical circuit config-
uration, the drain is at a higher voltage than the source and current flows from drain to source. Cur-
rent flowing into the drain, ID, equals current flowing out of the source, IS, because current cannot
flow into or out of the insulated gate (IG = 0). For a fixed VGS > VT, the relationship between ID and
VDS is a curve that starts out nearly linear and then begins to taper off as VDS increases, as shown in
Fig. 13.20. The region in which ID increases with VDS is called the triode region. For small VDS, the
VGS-induced channel presents very little resistance, and ID increases almost in a linear manner with
respect to VDS. As VDS and ID increase, the resistance of the induced channel begins to increase,
causing the curve’s slope to decrease. At a certain point, the FET saturates and can conduct no more
current even as VDS continues to increase. The saturation voltage, VDS (SAT), equals VGS – VT. Increas-
ing VGS increases the saturation point, enabling more current to flow through the transistor.

insulator (SiO2)

P

N N

Source Drain
Gate

Channel Region
Gate

Drain

Source

insulator (SiO2)

N

P P

Source Drain
Gate

Channel Region
Gate

Drain

Source

NMOS PMOS

FIGURE 13.19 NMOS and PMOS enhancement-type FET structures and graphical representations.

-Balch.book Page 306 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 307

The ID/VDS curve can be mathematically calculated, but the formulas require knowledge of spe-
cific physical parameters of a transistor’s fabrication process. When integrated circuits are de-
signed, such information is critical to device operation, and manufacturing process parameters are
at an engineer’s disposal. Data sheets for discrete FETs, however, do not typically provide the de-
tailed process parameters required for these calculations. Instead, manufacturers provide device
characterization curves in their data sheets that show ID/VDS curves for varying VGS. An example of
this is the graph contained in Fairchild Semiconductor’s 2N7002 NMOS transistor data sheet and
shown in Fig. 13.21. PMOS transistors function in the same manner as NMOS, although the polar-
ities are reversed. The source is typically at a higher voltage than the drain, and VGS is expressed as
a negative value.

ID

0

0 VDS

VGS – VT

SaturationTriode

FIGURE 13.20 Enhancement-type n-FET ID vs. VDS for fixed VGS > VT.

FIGURE 13.21 2N7002 ID/VDS graph. (Reprinted with permission from Fairchild Semicon-
ductor and National Semiconductor.)

-Balch.book Page 307 Thursday, May 15, 2003 3:46 PM

308 Analog Basics for Digital Systems

In the context of integrated circuits, NMOS and PMOS transistors are combined in close proxim-
ity to form complementary-MOS, or CMOS, circuits. CMOS circuits are dense, consume relatively
little power, and are easily fabricated on a silicon chip. As with any real-world device, FETs contain
parasitic properties, including capacitance between the gate and the source and drain, CGS and CGD.
This capacitance, although small, imposes a load on the circuit that drives the gate during switching.
However, when a FET is held static, such as in a DC or low-frequency circuit, the load on the driving
circuit is essentially zero.

The 2N7002, a widely available FET, can be con-
nected to drive a load as shown in Fig. 13.22 using the
previous LED example. A gate resistor is not needed,
because there is no DC path to limit the current
through. An appropriate current limiting resistor in the
load’s path may or may not be required. If the
2N7002’s IDS (MAX) at the driven VGS is within the
load’s specifications, the FET will serve as the current
limiting element. A logic output, especially one operat-
ing at a low voltage (e.g., 3.3 V or less) may not pro-
vide sufficient VGS to drive a heavy load. This must be
verified ahead of time using manufacturers’ data sheets.

Aside from the terminal capacitances already mentioned, FETs contain other parasitic character-
istics that must be taken into account when designing certain types of circuits. One such characteris-
tic develops when the FET’s body, the silicon that forms the channel and that surrounds the source
and drain regions, is kept at a voltage that differs from that of the source. A typical discrete FET does
not suffer this problem, because the body and source are electrically connected within the package.
ICs, however, consist of thousands or millions of FETs wherein the bodies of each FET are not all at
the same voltages as their associated sources. This voltage, VBS, degrades the ability of the channel
to conduct current and causes a FET’s VT to increase, requiring a higher VGS to conduct. More com-
plete graphical representations of NMOS and PMOS FETs are shown in Fig. 13.23. Unlike the rep-
resentations shown thus far, these explicitly show the FET’s body. A discrete FET usually has its
body and source connected as shown. For the sake of simplicity, many circuit diagrams showing dis-
crete FETs use the basic representation, because it is known that VBS = 0.

+5 V

RLIMIT

Logic
Output

FIGURE 13.22 NMOS transistor LED driver.

Gate

Drain

Source

BodyNMOS FET

VBS = 0

PMOS FET

Gate

Source

Drain

Body

FIGURE 13.23 Graphical representation of FET body.

-Balch.book Page 308 Thursday, May 15, 2003 3:46 PM

Diodes and Transistors 309

13.8 POWER FETS AND JFETS

Discrete FETs are used in a variety of applications. In digital systems, FETs are often found in
power supply and regulation circuitry because of the availability of low-resistance devices. A key pa-
rameter of a FET used in power applications is its channel resistance between the source and drain,
RDS. Per the basic power relationship, P = I2R, a FET with low RDS will waste less power and will
therefore operate at a cooler temperature. Power FET circuits can either handle more current without
overheating or can be made to run cooler to extend their operational life span. It is not difficult to
find power FETs with RDS well below 10 mΩ. In contrast, a BJT exhibits a VCE (SAT) that dissipates
significant power at high currents (P = IV). The saturation voltage also increases with IC, causing
more power to be dissipated in high-power applications.

When FETs are constructed as part of an IC, they are built in a lateral configuration atop the sili-
con substrate with a structure similar to what was shown earlier. Discrete FETs, however, are often
constructed in a vertical manner known as double-diffused MOS, or DMOS, where the source and
drain are on opposite sides of the silicon chip. The DMOS structure is shown in Fig. 13.24. DMOS
surrounds the source with a thin region of oppositely doped silicon that serves as the body through
which the conducting channel is induced by a voltage applied to the gate. Around the body is the
substrate, which is doped similarly to the drain. Discrete FETs are constructed in this manner, be-
cause the thin channel between the source and the substrate provides low RDS and, consequently,
high current capacity with reduced power dissipation.

DMOS FETs are constructed in a manner that electrically connects the source and body regions,
as shown by the metal source contacts in Fig. 13.24, so that a parasitic NPN transistor does not arise
and cause problems. A consequence of this technique is that a parasitic diode is formed between the
body and drain. Because the body is connected to the source, this is actually a source-drain diode
with the anode at the source and the cathode at the drain for an n-FET. The diode is reverse biased
under most conditions, because an n-FET’s source is usually at a lower voltage than the drain.
Therefore, VDS would have to approach –0.6 V for conduction to occur. Figure 13.24 also shows the
graphical representation of an n-type DMOS transistor with a source-drain diode. If an n-FET is de-
signed such that the source is always connected to ground and the drain can never drop below 0 V,
the diode has no effect. In less obvious configurations, the biasing of this inherent diode should be
taken into account to ensure that current does not flow through an unintended path.

A potentially dangerous characteristic of FETs is a consequence of the insulated gate’s high input
impedance. If a FET circuit does not create a path to the gate through which stray electrical charge
can drain away, a high voltage can build up and cause permanent damage to the device. The gate is a
small capacitor, and it is known that VCAP = Q ÷ C. Therefore, a small charge accumulating on a very

PP

N

Source

Drain

Gate

N

N Substrate

C
ha

nn
el

C
ha

nn
el

FIGURE 13.24 DMOS n-FET simplified structure and graphical
representation.

-Balch.book Page 309 Thursday, May 15, 2003 3:46 PM

310 Analog Basics for Digital Systems

small capacitor results in a high voltage. If the voltage exceeds the breakdown voltage of the gate’s
insulating silicon dioxide, it will break through and cause permanent damage to the FET. This is why
MOS devices are particularly sensitive to static electricity. MOS components should be stored in
conductive material that prevents the accumulation of charge on FET gate terminals.

Thus far, we have covered only enhancement-type MOSFETs. Depletion-type MOSFETs are
built with a similar structure, but the channel region is doped with n-type silicon (in the case of an n-
FET) so that the transistor conducts when VGS = 0. Instead of defaulting to an open circuit, it con-
ducts instead through the physically implanted channel. If positive VGS is applied to a depletion-type
n-FET, the channel is enhanced, and it can conduct more current as VDS increases. However, if VGS is
made negative, the channel is depleted, and less current is conducted for a given VDS. Schematic
symbols for depletion-type MOSFETs are shown in Fig. 13.25. These devices are used in integrated
circuits and are less common in discrete form.

Another type of FET, the junction FET (JFET) is not a MOS device and bears some similarity in
structure to a BJT. As shown in Fig. 13.26, a JFET does not contain an insulated gate and does con-
tain a physically implanted channel. Like a depletion-type MOSFET, a JFET conducts when VGS =
0, and decreasing VGS depletes the channel. As a result of the lack of gate insulation, the gate-drain
and gate-source junctions will conduct when forward biased, thereby negating the transistor’s opera-
tion. In the context of integrated circuits, JFETs are used mainly in bipolar analog processes, be-
cause they provide a higher input resistance as compared to BJTs.

Gate

Drain

Source

Body

VBS = 0Gate

Source

Drain

Body

n-FET

p-FET

FIGURE 13.25 Depletion-type MOSFET graphical representations.

N

Source

Drain

n-JFET

P PGate
Gate

Drain

Source

Source

Drain
p-JFET

PGate Gate

Dr

So

N N

FIGURE 13.26 JFET structure and graphical representation.

-Balch.book Page 310 Thursday, May 15, 2003 3:46 PM

311

CHAPTER 14

Operational Amplifiers

Transistors are the basic building blocks of solid-state amplifiers. Designing an amplifier using dis-
crete transistors can be a substantial undertaking that requires theory outside the scope of this book.
Operational amplifiers, or

op-amps,

 exist to make the design of basic amplification circuits relatively
easy. A digital engineer can use an op-amp to construct a general-purpose amplifier or active filter to
preprocess an analog signal that may serve as input to the system. Comparators, which are based on
op-amps, are useful in triggering events based on a signal reaching a certain threshold.

A key benefit of the op-amp is that it implements complex discrete transistor circuitry within a
single integrated circuit and presents the engineer with a straightforward three-terminal amplifier
that has well defined specifications and that can be externally configured to exhibit a wide range of
characteristics.

Op-amps are presented here from three basic perspectives. First, the device is introduced using an
idealized model so that its basic operation can be explained clearly without involving too many si-
multaneous details. The ideal op-amp is a very useful construct, because many real op-amp circuits
can be treated as being ideal, as will be demonstrated later. Fundamental op-amp circuit analysis is
stepped through in detail as part of the ideal presentation. The second section brings in nonideal de-
vice behavior and discusses how the idealized assumptions already introduced are affected in real
circuits. The remainder of the chapter walks through a broad array of common op-amp circuit topol-
ogies with step-by-step analyses of their operation. The last of these presentations deals with the op-
amp’s cousin, the comparator, and explains the important topic of hysteresis.

14.1 THE IDEAL OP-AMP

The design of amplifiers is normally most relevant in analog circuits such as those found in audio
and RF communications. An amplifier is an analog circuit that outputs a signal with greater ampli-
tude than what is presented to it at the input. Amplification is sometimes necessary in digital sys-
tems. Amplifiers are often found at interfaces where the weak signal from a transducer (e.g.,
microphone or antenna) must be strengthened for sampling by an analog-to-digital converter. Even if
a signal has sufficient amplitude, it may be desirable to scale it for better sampling resolution. For
example, if an analog-to-digital converter accepts an input of 0 to 5 V and the incoming signal
swings only between 0 and 3 V, 40 percent of the converter’s resolution will be wasted. An amplifier
can be used to scale the signal up to the full 5-V input range of the converter.

Solid-state amplifiers are constructed using transistors integrated onto a silicon chip or discrete
transistors wired together on a circuit board. Amplifiers range greatly in complexity; complete AC
analysis theory and its application to discrete amplifier design are outside the scope of this book.
However, the design of many general-purpose amplifiers is made easier by the availability of pre-
built components called

operational amplifiers

 (op-amps). Op-amps are so common that they are

-Balch.book Page 311 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

312 Analog Basics for Digital Systems

considered to be basic building blocks in analog circuit design. An op-amp may contain dozens of
transistors, but its external interface consists of two differential inputs and an amplified output as
shown in Fig. 14.1. The positive, or

noninverting

, and the negative, or

inverting

, inputs form a differ-
ential voltage,

v

D

 = v

+

 – v

–

, that is amplified by a certain gain,

A

, at the output so that

v

O

 =

Av

D

 =

A

(

v

+

 –

v

–

). When discussing the AC signals on which amplifiers operate, lower-case letters are used
to indicate voltages and currents by convention to distinguish them from DC voltages and currents
that have already been shown to use capital letters.

Many of the implementation details of how an AC signal is amplified within the op-amp are hid-
den from the circuit designer, requiring only an understanding of how the op-amp behaves from an
external perspective. It is best to first explore an ideal op-amp’s operation and then take into account
the real-world deviations from the ideal model as necessary when designing a real circuit. An ideal
op-amp has the following characteristics:

•

Infinite input impedance.

No current flows into or out of the inputs

•

Infinite open-loop gain.

This may sound confusing, but most op-amp circuits employ feedback
that reduces the infinite gain to the desired level. A =

∞

 simplifies op-amp circuit analysis, as will
soon be shown.

•

Infinite bandwidth.

The op-amp’s gain is constant across frequency from zero to infinity.

•

Zero output impedance.

The op-amp’s output will always be equal to

Av

D

 regardless of the load
being driven.

These fundamental assumptions provide the engineer with a very flexible amplifier component that
can be customized by surrounding circuitry to suit a wide range of applications. Perhaps the first
question that comes to mind is how an amplifier with infinite gain can be made useful. The trick is in
creating a

closed-loop

circuit that provides feedback from output to input to control the gain of the
overall circuit. Without a feedback path, an

open-loop

op-amp circuit would, in fact, exhibit very
high gain to the point of grossly distorting most types of signals. Consider the basic

noninverting

closed-loop op-amp circuit in Fig. 14.2. While the signal is injected into the positive input, the op-
amp’s output feeds back to the negative input through the resistor network formed by R1 and R2.

Based on the assumption of infinite input impedance, a basic resistor divider expression for

v

–

 can
be written based solely on the output voltage,

v

O

, and the two resistors.

Knowing that

v

O

 =

Av

D

 =

A

(

v

+

 –

v

–

), this expression can be used to reveal a relationship between
the input voltage,

v

I

, and

v

O

.

+

–

Noninverting Input

Inverting Input

Output = AvDvD

v+

v–

FIGURE 14.1 Op-amp graphical representation.

v– vO
R1

R1 R2+
--------------------=

vO A v+ v––() AvI A vO
R1

R1 R2+
--------------------–= =

-Balch.book Page 312 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 313

This relationship can be simplified based on the assumption of infinite gain. Dividing both sides
of the equation by

A

 =

∞

 causes the lone

v

O

 term on the left-hand side to disappear because

v

O

 ÷

∞

 =
0.

Finally, the input and output terms of the equation can be separated onto separate sides of the
equality to yield a final simplified relationship between

v

I

 and

v

O

 as follows:

This shows that, despite the ideal op-amp’s infinite gain, the circuit’s overall gain is easily quantifi-
able and controllable based on the two resistor values. A noninverting op-amp circuit can be used to
scale up an incoming signal for a purpose such as that already mentioned: using all of the available
resolution of an analog-to-digital converter. In this example, a transducer of some kind (e.g., temper-
ature sensor or audio input device) creates a signal that ranges from 0 to 3 V, and the analog-to-digi-
tal converter that is sensing it has a fixed sampling range from 0 to 5 V. To take full advantage of the
sampling range, it is desirable to apply a gain of 1.667 to the input signal so that it swings from 0 to
5 V. This is accomplished using the noninverting circuit shown in Fig. 14.3. R1 and R2 are chosen
arbitrarily as long as they satisfy the ratio R2:R1 = 2:3. Values of 2.2 and 3.3 k

Ω

 provide feedback in
the desired ratio with relatively low maximum current draw on the order of 1 mA.

+

–

R1 R2

v+

v–

vI

vO

FIGURE 14.2 Noninverting op-amp circuit.

0 vI

vOR1

R1 R2+
--------------------–=

vI vO
R1

R1 R2+
--------------------=

vO vI
R1 R2+

R1

 vI 1 R2
R1
-------+= =

+

–

R1 R2

3.3 k Ω 2.2 k Ω

Transducer
(vO = 0 – 3 V) 5-V Analog-

to-Digital
Converter

FIGURE 14.3 Scaling up an analog-to-digital converter input signal.

-Balch.book Page 313 Thursday, May 15, 2003 3:46 PM

314 Analog Basics for Digital Systems

If a circuit such as this is implemented in reality, it would be helpful to understand the effect of fi-
nite op-amp gain on the circuit’s overall gain to ensure that the circuit operates as intended. To do so,
we can turn back to the previous derivation of op-amp gain. Instead of dividing the equation by
A =

∞

 early in the derivation, the input and output terms are immediately separated and re-expressed
as follows:

This relationship is more complex than the ideal case, but it can be seen that, as A approaches infin-
ity, the expression simplifies to that which has already been presented. A wide variety of op-amps
are manufactured with differing gains and electrical characteristics. One of the most common op-
amps is the LM741, a device that has been around for decades. The LM741 has a minimum voltage
gain of 20 V/mV, or A = 20,000 V/V.

*

 For small circuit gains where R2 ÷ R1 is much less than A, the
LM741 will provide an overall circuit gain that is extremely close to the ideal. Using the previous
example, the gain expression becomes

It can be observed that, for a real-world op-amp gain of much less than infinity, the ideal gain ex-
pression for an op-amp provides a very accurate calculation. As the gain desired from the circuit is
increased, the denominator of the nonideal gain expression will increase as well, causing greater di-
vergence between ideal and nonideal calculations for a given op-amp gain specification. Of course,
the LM741 is not the only op-amp available. Newer and more advanced designs are readily available
with gains an order of magnitude higher than that of the LM741.

The minimum gain achievable by the noninverting op-amp circuit is 1, or

unity gain

, when R2 =
0

Ω

. There are instances in which a unity-gain buffer stage is desired. An example is the need to iso-
late a weak driver from a heavy load. While an ideal op-amp has infinite input impedance, a real op-
amp has very high input impedance. Consequently, even a nonideal op-amp will present a light load
to a driver. And while a real op-amp has nonzero output impedance, it will be much lower than the
weak driver being isolated. As shown in Fig. 14.4, a unity-gain buffer is constructed by directly feed-
ing the output back to the negative input. It can be observed from the previous circuit that when R2 =
0

Ω

, R1 becomes superfluous.
A limitation of the noninverting op-amp circuit is that the minimum gain achievable is 1. When a

gain of less than 1 is desired, a slightly different circuit topology is used: the inverting configuration.
As shown in Fig. 14.5, the noninverting input is grounded, and the signal is injected into the negative
input through R1. As before, R2 forms the feedback loop that stabilizes the circuit’s overall gain.

* LM741 Single Operational Amplifier, Fairchild Semiconductor Corporation, 2001, p. 3.

vO A
voR1

R1 R2+
--------------------+ AvI vO 1 A

R1
R1 R2+
--------------------+= =

vO vI
A

1 A
R1

R1 R2+
--------------------+

---------------------------------- vI

A
R1 R2+

R1

R1 R2+
R1

-------------------- A+
------------------------------- vI

A 1 R2
R1
-------+

1 R2
R1
------- A+ +

---------------------------= = =

vO vI

20000 1 2.2
3.3
-------+

1 2.2
3.3
------- 20000+ +

-------------------------------------- vI
33333

20001.67
---------------------- vI1.6665= = =

-Balch.book Page 314 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 315

The inverting configuration’s relationship between vI and vO can be derived using the resistor di-
vider method shown previously for the noninverting circuit. Op-amp circuits can also be analyzed
with an alternative method that provides a slightly different view of their operation. In some cases,
mathematical analysis is made somewhat easier using one of the two methods. The alternative
method uses the assumption of infinite gain to declare that the differential input voltage, vD, equals
zero. If A = ∞ and vO = AvD, it follows that vD = 0 for a finite vO. This assumption leads to an implied
virtual short circuit between the op-amp’s two input terminals. If vD = 0, v+ = v–. The virtual short
circuit tells us that if a voltage is applied at the positive terminal, it will appear at the negative termi-
nal as well, and vice versa. Therefore, rather than expressing v– as a resistor divider between vO and
vI, each portion of the circuit can be analyzed separately. In such a simple circuit, this concept may
not seem to have much advantage. However, the analysis of more complex op-amp circuits can ben-
efit from this approach.

To demonstrate circuit analysis using the virtual short circuit approach, we begin by knowing that
v– = 0 V, because the positive terminal is grounded. Therefore, the voltage drop across R1 is known
by inspection, and its current, i1, is simply vI ÷ R1. We know from basic circuit theory that current
cannot just disappear. Assuming that the op-amp has infinite input impedance, all of i1 must flow to-
ward vO. Hence, i2 = –i1. The output voltage can now be determined using Ohm’s law to show that
the overall gain is controlled by the resistors when an ideal op-amp is used.

The inverting circuit can be designed with arbitrary gains of less than 1. However, both a positive
and negative voltage supply are required to enable the op-amp to drive both positive and negative
voltages. If a signal with a voltage range from 0 to 3 V is applied to an inverting circuit with a gain of
0.8, the op-amp will generate an output signal from –2.4 to 0 V. In some situations, this may be un-
desirable because of the requirement imposed by processing negative voltages. Fortunately, op-amps
are very flexible, and the inverting configuration can be biased to center the output signal about a
nonzero DC level. Consider the circuit in Fig. 14.6. Rather than grounding the positive input, a bias
voltage is applied.

Using the virtual short circuit approach, an expression relating vO, vI, and VBIAS can be derived in
the same basic manner as done just before for the basic inverting configuration.

For a given gain controlled by R1 and R2, a bias voltage can be selected such that vO sits at a non-
zero DC voltage when vI = 0 V. Assuming a desired gain of 0.8 and an output level of –2.4 V to com-

+

–

vI

vO

+

–
R1

R2

vI

vO

FIGURE 14.4 Unity-gain buffer. FIGURE 14.5 Op-amp inverting closed-loop circuit.

vO v– i2R2+ 0 i1R2– vI–
R2
R1
-------= = =

vO v– i2R2+ V BIAS i1R2– V BIAS

vI V BIAS–()R2

R1
---------------------------------------– vI

R2
R1
-------– V BIAS 1 R2

R1
-------++= = = =

-Balch.book Page 315 Thursday, May 15, 2003 3:46 PM

316 Analog Basics for Digital Systems

pensate for, VBIAS = 2.4 V ÷ 1.8 = 1.33 V. The specific bias voltage required may not be readily avail-
able. In these circumstances, a voltage divider may be employed at the positive input to produce an
arbitrary bias voltage from a common supply such as +5 or +3.3 V. This scheme enables an op-amp
to be used in the inverting configuration with a single supply voltage as long as the bias voltage is
sufficient to produce a minimum output voltage of zero.

14.2 CHARACTERISTICS OF REAL OP-AMPS

Real op-amps are subject to the same laws of physics that cause nonideal behavior in all types of de-
vices. The degree to which these deviations negatively affect a system varies according to the spe-
cific circuit. Op-amp manufacturers provide detailed data sheets to accompany their products,
because many parameters must be characterized to enable proper circuit design. Fairchild Semicon-
ductor’s venerable LM741 serves as a useful example with which to explore real op-amp specifica-
tions. A portion of the LM741 data sheet is shown in Fig. 14.7.

Nonideal input characteristics are specified in the top portion of the LM741’s data sheet. Input
offset voltage, VIO, is a DC error introduced by the op-amp’s internal circuitry that manifests itself as
an applied differential voltage between the two inputs. Assuming an ideal op-amp, VIO appears as a
voltage source applied by the external circuitry. If 0 V is applied to the op-amp, the input voltage is
actually equivalent to VIO. If a real op-amp is powered on in an open-loop configuration, its very
large, though not infinite, open-loop gain can cause the output voltage to saturate because of the non-
zero input voltage due to VIO. The LM741’s open-loop gain, shown as GV in the data sheet, is be-
tween 20 and 200 V/mV. With VIO = 2 mV, the output voltage is forced to its limit. Of course, op-
amps are not generally used in an open-loop configuration. Figure 14.8 shows a common op-amp
configuration in which the circuit’s two inputs are grounded. The inputs are grounded to simplify
analysis of VIO effects in the absence of an input signal. When an input signal is present, the VIO ef-
fects are added to the input/output transfer function. VIO is represented as a separate voltage source
applied to an ideal op-amp. Because VIO appears as a differential voltage, the op-amp’s output is ap-
proximated by the idealized closed-loop noninverting gain relationship: VO = VIO (1 + R2 ÷ R1).
This is essentially the same situation as the biased inverting op-amp circuit shown in Fig. 14.6, al-
though the bias voltage is undesired. Therefore, the input offset voltage is amplified along with sig-
nals that are applied to the circuit.

It can be difficult to compensate for input offset voltage, because each individual op-amp has a
different polarity and magnitude of VIO, making it impossible to design a circuit with a fixed com-
pensation factor suitable for all devices. Additionally, VIO changes with temperature. Depending on

DC Bias
Voltage

+

–
R1

R2

VBIAS

VBIAS

vI

vO

FIGURE 14.6 Biased inverting op-amp circuit.

-Balch.book Page 316 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 317

FIGURE 14.7 LM741 data sheet. (Reprinted with permission from Fairchild Semiconductor and National Semiconductor.)

-Balch.book Page 317 Thursday, May 15, 2003 3:46 PM

318 Analog Basics for Digital Systems

the accuracy of the op-amp, the manufacturer will specify VIO at room temperature (25°C) and at
other temperature thresholds and provide coefficients or charts that relate the change in VIO to tem-
perature. Some op-amps, including the LM741, include compensation inputs that can be used to
null-out the input offset error with external resistors. There is a limit to the practicality of this ap-
proach, however, resulting from temperature effects and the variation between components.

VIO may not cause much trouble in an op-amp circuit with small gain, because a few millivolts of
offset may be relatively insignificant as compared to several volts of actual signal. However, high-
gain op-amp circuits that handle inputs with amplitudes in the millivolt range may be substantially
degraded by VIO effects. It may be desirable to AC-couple the op-amp’s input when the frequencies
of interest are high enough to make AC coupling feasible. The inverting circuit in Fig. 14.9 uses a ca-
pacitor to block a DC path to the op-amp’s negative input. Because VIO is a DC offset, the gain of the
circuit is analyzed at DC to determine the amplification of VIO. The impedance of the capacitor is
ideally infinite at DC, resulting in unity gain for VIO. For this circuit to function properly, the input
frequency must be sufficiently high to not be attenuated by the highpass filter created by the series
resistor and capacitor. The circuit exhibits a cutoff frequency where fC = 1 ÷ 2πCR1. Therefore, fre-
quencies much larger than fC will be amplified by the idealized gain factor, –(R2 ÷ R1), when the ca-
pacitor essentially becomes a short circuit between the input and R1. The result is high gain at the
frequencies of interest, yielding volts of output magnitude with only millivolts of VIO error resulting
from unity gain at DC.

Another parameter that relates to input offset voltage is the power supply rejection ratio (PSRR).
The PSRR relates changes in the supply voltage to changes in VIO. As the power rails fluctuate dur-
ing normal operation, they influence the internal characteristics of the op-amp. PSRR is expressed in
decibels as

The LM741’s minimum PSRR is specified at 77 dB. To ease arithmetic for the sake of discussion,
we can round up to 80 dB and calculate PSRR = 10,000. This means that for every 1-V change in the
supply voltage, VIO changes by 100 µV. We know that VIO is amplified by the gain of a DC-coupled
circuit from the example in Fig. 14.8, indicating that a high-gain circuit is more susceptible to PSRR
effects. PSRR declines with increasing frequency, making an op-amp more susceptible to power
supply fluctuations.

Nonzero input currents are another source of inaccuracy in op-amp circuit, because real op-amps
do not have infinite input resistance. Small nonzero currents flow into and out of the op-amp’s in-

VIO

+

–
R1

R2

VIO

VIO vO

FIGURE 14.8 Analysis of input offset voltage.

PSRR 20
∆V CC

∆V IO
---------------log=

-Balch.book Page 318 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 319

puts. This current is the input bias current, IBIAS. Ideal analyses of the preceding circuits assume that
all currents flowing through R1 flow through R2 as well. This is clearly not true when the input im-
pedance is finite. The result is that undesired voltage drops are created as input bias currents are
drawn through resistors in an op-amp circuit. Consider the basic circuit in Fig. 14.10 with the inputs
grounded to isolate IBIAS effects independently from any input signal. The positive terminal remains
at 0 V despite nonzero IBIAS, because there is no resistance between it and ground (wire resistance is
negligible). Therefore, the negative terminal is also at 0 V according to the virtual short assumption.
While there is no current flowing through R1, because there is no voltage drop across it, IBIAS flows
from the output through R2. This results in a nonzero output voltage of VO = IBIASR2 despite the fact
that the circuit’s inputs are grounded.

As seen in the LM741 data sheet, IBIAS is measured in nanoamps for bipolar devices. CMOS op-
amps specify IBIAS in picoamps because of higher impedance MOSFET inputs. Practically speak-
ing, many op-amp circuits with resistors measuring several kilohms or less do not have to worry
about IBIAS effects, because the product of nanoamps and resistance on the order of 103 Ω is on the
order of microvolts. Of course, as circuit gains increase and allowable margins of error decrease,
IBIAS effects start to cause trouble. The problem is compounded by the fact that IBIAS is not identical
for each op-amp input as a result of slight physical variations in the circuitry associated with each
input. A specification called input offset current, IIO, is the difference between the two input bias
currents. As seen in the LM741 data sheet, IIO is smaller than IBIAS, making IBIAS the more trouble-
some characteristic.

Finite input bias current effects can be minimized by matching the induced offset voltages devel-
oped at each input. In Fig. 14.10, IBIAS flowing into the positive terminal does not cause a voltage
drop, which forces a corresponding IBIAS to flow through R2 and create a nonzero output voltage.
This circuit is augmented as shown in Fig. 14.11 by adding a resistor, R3, to the positive terminal.

+

–
R1

R2

C
vI

vO

FIGURE 14.9 Mitigating VIO with AC coupling.

+

–
R1

R2

IBIAS

IBIAS

vO

FIGURE 14.10 Analysis of input offset current.

-Balch.book Page 319 Thursday, May 15, 2003 3:46 PM

320 Analog Basics for Digital Systems

IBIAS+ now causes a voltage drop across R3, which is reflected at the negative terminal by reason
of the virtual short. V– = V+ = 0 – IBIAS+R3. Therefore, the current through R1 is IR1 = IBIAS+R3 ÷ R1.
The currents flowing through R1 and R2 into the negative terminal must equal IBIAS–, because cur-
rent does not simply disappear. Per node analysis, the sum of the currents entering a node must equal
the sum of the currents leaving that node. This relationship can be restated to solve for the current
through R2.

Knowing IR2 enables the final expression of the output voltage,

By temporarily assuming that IIO = 0, IBIAS+ = IBIAS–. This reduces the output voltage expression to

This expression shows that the effects of IBIAS can be compensated for by choosing R3 such that VO
= 0. Solving for R3 when VO = 0 yields the parallel combination of R1 and R2,

A similar compensation can be designed for the case of an AC-coupled circuit, but it differs by
taking into account the fact that no current flows through the coupling capacitor at DC. The circuit in
Fig. 14.9 can be augmented by adding a resistor to the positive input terminal as shown in Fig.
14.12.

Unlike in the previous DC circuit, all of IBIAS– flows through the feedback resistor, and the output
voltage is

+

–
R1

R2

IBIAS+

IBIAS–R3

IR2

vO

IR1

FIGURE 14.11 Mitigating IBIAS with matched input resistor.

IR2 IBIAS– IR1– IBIAS– IBIAS+
R3
R1
-------–= =

V O V – IR2R2+ IBIAS+–()R3 IBIAS– IBIAS+
R3
R1
-------– R2+= =

V O IBIAS R3– R2 R2R3
R1

--------------–+ IBIAS R2 R3 1 R2
R1
-------+

 –= =

R3 R2

1 R2
R1
-------+

---------------- R1R2
R1 R2+
--------------------= =

V O V – IBIAS–R2+ V + IBIAS–R2+ IBIAS+– R3 IBIAS–R2+= = =

-Balch.book Page 320 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 321

If the input bias currents are assumed to be equal, selecting R3 = R2 nulls out the effects of IBIAS
in the AC coupled circuit.

Unfortunately, IIO remains a problem in both the DC and AC circuits, although it is a problem of
less magnitude than that of uncompensated IBIAS. In Fig. 14.10, it was observed that uncompensated
IBIAS results in VO = IBIASR2. Once IBIAS has been compensated for by the inclusion of a resistor in
the positive input terminal, IIO effectively becomes the uncompensated IBIAS term, resulting in VO =
IIOR2. Again, IIO as specified in nanoamps and picoamps may not present much problem for many
circuits in which the feedback resistor, R2, is relatively small.

Continuing down the LM741 data sheet, additional physical realities are observed. Input voltage
levels are limited by the chip’s supply voltages. As the input levels approach the supply voltages, the
op-amp’s ability to deliver ideal performance diminishes. Supply voltages also relate to the output
voltage swing of the op-amp. Many op-amps are unable to drive rail-to-rail. In other words, if an op-
amp’s supply voltages are ±15 V, the range of output voltages may be only ±14 V under lightly
loaded conditions (10 kΩ in the LM741’s case). As the output current demand increases, the op-
amp’s guaranteed drive level is diminished. Modern op-amps are available with a wide range of out-
put drive strengths and characteristics. Rail-to-rail op-amps guarantee the ability to drive to within
millivolts of either voltage supply at their rated drive current.

An op-amp is a differential amplifier with an ideal transfer function of vO =AvD. According to this
simple relationship, only the voltage difference between the positive and negative terminals has any
bearing on the output voltage. The same vD results when v+ = 0.02 V and v– = 0.01 V as when v+ =
10.02 V and v– = 10.01 V. Ideally, the common-mode voltage, that voltage applied to both terminals,
has no effect upon the output voltage. The first and second pairs of input levels have common-mode
voltages, vCM, of 0.01 and 10.01 V, respectively. Both pairs of inputs may be within the specified in-
put range of a particular op-amp, but each pair will cause somewhat different behavior. The reason
for this is that a real op-amp does not contain a perfect differential amplifier. The internal amplifier
has some sensitivity to the common-mode signal that is applied to it.

If the inputs of an op-amp are tied together and a common-mode voltage is applied, there will be
some nonzero output response even if the circuit has already been compensated for input offset er-
rors. An op-amp has a finite common-mode gain associated with it such that vO =ACMvCM indepen-
dent of the differential gain, A. Manufacturers define a common-mode rejection ratio (CMRR) that
specifies the ratio of differential to common mode gain,

CMRR is expressed in decibels to more easily represent large ratios. A high CMRR indicates that
A >> ACM, which means that undesired effects due to common-mode input voltages are reduced.

+

–
R1

R2C

IBIAS+

R3

IBIAS–

vO

FIGURE 14.12 Mitigating IBIAS in an AC coupled circuit.

CMRR 20 A
ACM
------------log=

-Balch.book Page 321 Thursday, May 15, 2003 3:46 PM

322 Analog Basics for Digital Systems

Fairchild’s LM741 has a minimum CMRR of 70 dB when |vCM| < 12 V. The total output voltage of
an op-amp is the sum of the differential and common-mode gains: vO =AvD + ACMvCM. If CMRR is A
÷ ACM, then ACM = A ÷ CMRR and

This relationship shows how higher CMRR yields behavior that is closer to the ideal differential am-
plifier. CMRR is specified by manufacturers at DC and is sufficiently large that most applications
operating at low frequencies are not adversely affected by common-mode input voltages within the
stated specifications. As with many specifications, CMRR gets worse as the frequency increases.
Graphs are typically included in data sheets that relate CMRR to frequency.

Figure 14.13 shows how finite CMRR affects inverting and noninverting circuit topologies differ-
ently. An unbiased inverting circuit has the op-amp’s positive input grounded, which results in a DC
potential of 0 V at the negative input as well because of the virtual short assumption. This creates a
common-mode input voltage of approximately 0 V, thus minimizing the effects of CMRR. If the in-
verting circuit is biased, a common-mode voltage approximately equal to the bias voltage results,
with CMRR impact. Similarly, a noninverting circuit injects a signal into the positive input, resulting
in a common-mode voltage approximately equal to the input signal.

Finite CMRR influence on a noninverting circuit can be quantified as a function of vD without
vCM, because vD ≈ vCM. To isolate the CMRR effects, the real noninverting op-amp circuit can be

vO AvD
A

CMRR
-----------------vCM+ A vD

vCM

CMRR
-----------------+= =

Unbiased Inverting Circuit

+

–
R1

R2

VCM = 0V

VBIAS

+

–
R1

R2

VCM = VBIAS

Biased Inverting Circuit

+

–

R1 R2

VCM = vI

Noninverting Circuit

vO

vI

vO

vI

vO

vI

FIGURE 14.13 Common-mode input vs. circuit topology.

-Balch.book Page 322 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 323

modeled as the combination of an ideal op-amp with an offset voltage caused by finite CMRR,
vCMRR , as shown in Fig. 14.14. An ideal op-amp multiplies the input voltage, vCMRR, by its differen-
tial gain, A, to yield an output voltage. Likewise, the nonideal op-amp being modeled multiplies the
common-mode input voltage, vCM ≈ vD ≈ vI, by its common mode gain to yield an output voltage.
Therefore, AvCMRR = ACMvI. This equivalency can be restated as vCMRR = ACMvI ÷ A, which is actu-
ally a function of CMRR: vCMRR = vI ÷ CMRR.

With CMRR now modeled as an input that is a function of CMRR and the actual input voltage,
the ideal op-amp model can be treated as a block to which the actual input signal is presented as
shown in Fig. 14.15.

The total output voltage is the sum of the input voltage and vCMRR passed through the ideal op-
amp as separate terms,

As with input offset voltage, CMRR effects are more pronounced at higher circuit gains.

+

–
R1

R2

VCMRR=
VI

CMRR

vO

FIGURE 14.14 Modeling CMRR effects in a noninvert-
ing circuit.

+

–
R1

R2

VCMRR

VI

VCMRR+VI

vO

FIGURE 14.15 CMRR model with signal input.

vO vI vCMRR+[] 1 R2
R1
-------+ vI

vI

CMRR
-----------------+ 1 R2

R1
-------+ vI 1 1

CMRR
-----------------+ 1 R2

R1
-------+= = =

-Balch.book Page 323 Thursday, May 15, 2003 3:46 PM

324 Analog Basics for Digital Systems

14.3 BANDWIDTH LIMITATIONS

An op-amp’s ability to amplify a signal is a direct function of the frequencies involved. The maxi-
mum frequency at which an op-amp provides useful performance can be characterized in multiple
ways. Manufacturers provide a variety of related specifications to assist in this task. First, there is the
gain-bandwidth product (GBW), also referred to as bandwidth (BW). As the name implies, GBW
specifies a gain at a certain frequency. As the frequency of operation is decreased, the gain increases,
and vice versa. Most op-amp data sheets provide either a bandwidth number, sometimes specified as
the unity-gain bandwidth, or a chart that relates gain to frequency. The large-signal voltage gain of
the LM741 remains relatively constant for frequencies only under 10 Hz (not kHz!). It is called
“large-signal,” because the response is essentially at DC; “small-signal” would denote practical op-
erating frequencies that are typically orders of magnitude higher. Near 10 Hz, the gain rolls off at the
rate of –20 dB per decade and reaches unity gain, 0 dB, near 1 MHz. Above 1 MHz, the LM741’s
gain rapidly drops off. Keep in mind, however, that this is the LM741’s open-loop response. When a
closed-loop circuit is formed, the gain is substantially lowered, thereby increasing the circuit’s us-
able bandwidth over which the gain remains constant.

Figure 14.16 shows an approximate gain versus frequency curve for an older bipolar op-amp such
as the LM741. The gain of the open-loop op-amp is approximately 100 dB below 10 Hz. Observe
that, if the closed-loop gain is set at 10 (20 dB), the constant gain portion of the curve drops by ap-
proximately 80 dB, which correlates to four decades of frequency. Therefore, the closed-loop band-
width increases to 10 Hz multiplied by four decades, or 100 kHz. Put another way, 100 dB equals
100,000. The gain-bandwidth product is approximately 100,000 × 10 Hz = 1 MHz. If a closed-loop
gain of 10 is used, the bandwidth is 1 MHz ÷ 10 = 100 kHz.

Two other interrelated frequency metrics are slew rate and full-power bandwidth. These specifica-
tions enable an engineer to determine whether a signal will be distorted by the op-amp based on the
signal’s frequency and amplitude. Slew rate defines the rate at which the op-amp can change its out-
put voltage. The LM741’s specified slew rate is 0.5 V/µs. If the desired output signal has a compo-
nent that changes voltage faster than the slew rate, the op-amp will not be able to fully reproduce the
signal and is said to be slew-rate limited. An example of slew-rate limiting is shown in Fig. 14.17,
where the desired sine wave output, a pure signal with a single frequency, is converted to a triangle
waveform that transitions at the op-amp’s maximum slew rate.

–20

0

Gain
(dB)

Frequency (Hz)

1 10 100 1k

20

40

60

80

100

120

10k 100k 1M 10M

Open-Loop Gain

Closed-Loop Gain

FIGURE 14.16 Typical gain vs. frequency curve.

-Balch.book Page 324 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 325

Higher output frequencies are possible when output amplitudes are reduced, because the slew rate
is a function of both time (frequency) and amplitude. For a sine wave of amplitude VMAX, its slew
rate is determined by computing the maximum value of its first-derivative, which is equal to
2πfVMAX. Therefore, the op-amp’s slew rate, SR, can be combined with this expression to calculate
the highest output frequency that will not be slew-rate limited.

Manufacturers may specify an op-amp’s full-power bandwidth, which is calculated with this
equation by using the device’s slew rate and maximum rated output voltage swing. In the case of the
LM741, which is rated at ±14 V of typical output swing, its full-power bandwidth is approximately
5.7 kHz, indicating that it can reproduce a 5.7 kHz sine wave at its full output range. Op-amps with
lower operating voltages and higher slew-rates resulting from modern semiconductor process im-
provements can achieve full-power bandwidths in the tens of megahertz.

Each type of op-amp has different frequency, noise, and power characteristics. Op-amps are well
behaved at DC and low frequencies. General-purpose op-amps are well suited to applications in the
kilohertz range such as processing audio signals or transducer signals with limited bandwidths.
Newer op-amps have much improved high-frequency characteristics, enabling them to be used for
video and other more demanding applications. The gain-bandwidth product and slew-rate (or full-
power bandwidth) specifications can be used to determine if a particular op-amp will handle signals
of the desired frequency and amplitude. If this important first hurdle is passed, an op-amp’s data
sheet should be more carefully inspected to quantify the degradations in such characteristics as input
impedance and CMRR resulting from frequency.

14.4 INPUT RESISTANCE

Op-amps are often used to amplify, or buffer, weak electrical signals that are generated by transduc-
ers such as a microphone or photodiode. These transducers often have very high output impedances
that translate into an inability to drive even light loads. Current drive capability may range from a
few milliamps down to nanoamps. When trying to buffer a signal that is measured in nanoamps, the

Time

Voltage

Desired output is faster
than op-amp slew rate.

Op-amp output slews
at maximum rate,

resulting in triangle
waveform.

FIGURE 14.17 Slew-rate-limited output.

f MAX
SR

2πV MAX
----------------------=

-Balch.book Page 325 Thursday, May 15, 2003 3:46 PM

326 Analog Basics for Digital Systems

amplifier’s input impedance is critical; it must be high enough to enable the weak input signal to de-
velop a sufficient voltage. Otherwise, the amplifier’s input will overload the transducer, severely at-
tenuating whatever signal may be present.

Noninverting op-amp circuits present the highest input impedance to a signal, because the feed-
back resistor network is connected to the negative input, leaving the input signal connected only to
the positive terminal. The LM741’s typical input resistance is 2 MΩ with an IBIAS of 500 nA. These
are acceptable input parameters for many applications. However, it might otherwise make more
sense to use an inverting configuration for a high-gain amplifier in which nonideal characteristics
such as IBIAS can be compensated for as discussed previously. Figure 14.18 shows an example that
uses two op-amp stages to achieve high input impedance with a unity-gain noninverting circuit fol-
lowed by a high-gain inverting circuit that is compensated for IBIAS.

Newer CMOS op-amps have much higher input impedance specifications than older bipolar de-
vices, enabling them to buffer extremely weak transducers. As one example, the Texas Instruments/
Burr-Brown OPA336 is specified with a maximum IBIAS of 60 pA and an input resistance of 1013 Ω.*

A photodiode is a weak transducer that is used in many optical communications applications ranging
from IR or UV remote control devices to laser communications systems and fiber optic transceivers.
Such applications are usually digital and therefore require a saturated on/off output rather than linear
amplification. Because of their weak output (nanoamps to microamps), these transducers are best
used as current sources to develop a usable voltage across a high resistance rather than attempting to
directly measure a voltage across their terminals. Figure 14.19 shows several circuits that use high
RIN and low IBIAS op-amps to amplify transducer currents in the nanoamp range. Essentially all of
the transducer current, iTRANS, is passed through the resistors because of the op-amps’ low IBIAS. For
every microamp passed through a 1-MΩ resistor, 1 V is developed across that resistor.

Circuit (a) utilizes the noninverting configuration to amplify an input voltage of several hundred
millivolts (corresponding to iTRANS of several hundred nanoamps) by approximately 1,000. Circuit (b)
is simpler, because iTRANS is used to directly establish the output voltage of the op-amp. Circuit (c) is
an improvement that increases the gain by raising the voltage at each op-amp input in addition to
causing a voltage drop across the feedback resistor. If 200 nA is conducted by the transducer, v+, and
hence v–, rise to 0.2 V. At the same time, 0.2 V is developed across the feedback resistor, resulting in a
total output voltage of 0.4 V. Even thought these last two circuits use the negative op-amp input, they
are not inverting circuits, because analysis shows current being drawn from the output node by the
transducer through the feedback resistor, causing a positive voltage drop with respect to ground.

* OPA336, Texas Instruments Incorporated, 2000, p.2.

+

–
100 Ω

100 k Ω

+

–

100 Ω
vI vO = –1000 vI

FIGURE 14.18 Two-stage low-input-impedance/high-gain amplifier.

-Balch.book Page 326 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 327

A signal applied to a noninverting circuit directly drives the op-amp’s positive input and, in doing
so, establishes a voltage at both the positive and negative inputs due to the virtual short. Likewise, an
inverting circuit’s op-amp input voltages are established by the bias applied to the positive terminal.
Referring back to the standard inverting circuit in Fig. 14.5, a voltage drop is developed across the
input resistor, R1, that sets the input current: iIN = (vIN – v–) ÷ R1= vIN ÷ R1. Therefore, the input re-
sistance seen by the signal is equal to this series input resistor. This basic circuit places a practical
ceiling on the input resistance, because the circuit’s gain is inversely proportional to that input resis-
tor. If this ceiling is reached, and still higher input resistance is necessary, the basic inverting circuit
can be augmented as shown in Fig. 14.20 with a “tee” topology in the feedback path.

+

-

100 k

1 M

100

+
V

vI = 1 V/µA

iTRANS

+

-

1 M

iTRANS

+

-

1 M

iTRANS

1 M
(a)

(b)

(c)

vO = 1001 V/µA

vO = 2 V/µA

vO = 1 V/µA

FIGURE 14.19 Amplification of very weak transducer signals.

+

–
R1

R2 R4

R3

VTEE

iIN

iIN

iR3

iR4

vI

vO

FIGURE 14.20 Inverting circuit with higher input resistance using tee
feedback topology.

-Balch.book Page 327 Thursday, May 15, 2003 3:46 PM

328 Analog Basics for Digital Systems

The idea behind the tee topology is to achieve a higher voltage drop across the resistor network by
drawing current from an additional source other than the signal input. In this case, that source is
ground via R3. As with the standard inverting circuit, input current, iIN, flows through R1 and R2 and
creates vTEE in the same way that vO would be created in the standard circuit.

This works, because iIN has nowhere to go but through R2, assuming an approximately ideal op-
amp. Because vTEE has already been established, there is a voltage drop across R3 with an accompa-
nying current. The input current and iR3 combine to form the total current that flows through R4 to
develop the final output voltage,

A combination of high circuit gain and high input resistance is now achievable using resistors not
exceeding a practical limit of 1 MΩ. The circuit in Fig. 14.21 produces a gain of approximately
–1,000 with an input resistance of 1 MΩ.

14.5 SUMMATION AMPLIFIER CIRCUITS

It is becoming clear that op-amps are very flexible analog building blocks. Aside from basic amplifi-
cation, op-amp circuits can be designed to perform mathematical operations. Decades ago, analog
computers were built around op-amps constructed from vacuum tubes rather than integrated circuits.
These computers were capable of advanced functions including multiplication, division, exponents,
and logarithms. Analog computers operate on voltage levels rather than bits and bytes.

Although the typical digital system may not benefit much from complex analog computation cir-
cuits, basic op-amp summation circuit analysis may prove useful in designing for various combina-
tions of input signals and bias voltages. Figure 14.22 shows a basic summation circuit built on the

vTEE v– iIN R2– 0
vIN

R1
--------R2– vIN

R2
R1
-------–= = =

vO vTEE iIN iR3+()R4– vTEE iIN

0 vTEE–

R3
---------------------+ R4– vIN

R2
R1

vIN

R1
-------- vIN

R2
R1R3
--------------+ R4––= = =

vIN
R2
R1
------- R4

R1
------- R2R4

R1R3
--------------+ +–

vIN

R1
-------- R2 R4 1 R2

R3
-------+

 +–= =

+

–
1 MΩ

1 k Ω

1 MΩ 1 MΩ

vI

vO

FIGURE 14.21 High gain/high input resistance inverting circuit.

-Balch.book Page 328 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 329

inverting topology. Each input is unaffected by the others, because the negative terminal is always at
0 V by reason of the virtual short. Therefore, each input resistor contributes an input current compo-
nent determined by Ohm’s law. These currents add and collectively pass through the feedback resis-
tor to create an output voltage.

A weighted summation can be designed by individually selecting input resistors according to the
application requirements. If the input resistors are all equal, the gain ratios for each input signal are
equal, and the summation is balanced.

Similarly, a noninverting circuit can be used to combine multiple input voltages without the –1
factor as shown in Fig. 14.23. Although usually referred to as a noninverting summer, this is more of
an averaging circuit than a summer. The input voltages are averaged by the input resistor network,
and this average level is then multiplied by the gain of the noninverting circuit.

Analyzing the input resistor network can be difficult without a common circuit-analysis trick that
relies on the principle of superposition. Superposition works with a linear transfer function that re-
lates an output to multiple inputs multiplied by some gain factor. For example, two signals, V1 and
V2, add together and are multiplied to yield an output voltage: VO = A(V1 + V2). By the principle of
superposition, the input terms can be broken up, computed separately, and then recombined at the
output to yield a final expression: VO1 = AV1 and VO2 = AV2, thus VO = VO1 + VO2 = A(V1 + V2). Su-
perposition works only when the transfer function is linear.

+

–
RIN1

RF

RIN3

RIN2
vO

v1

v3

v2

FIGURE 14.22 Summation circuit.

vO

RF

RIN
--------- v1 v2 v3+ +[]–=

+

–

RIN1

R2

RIN3

RIN2

R1

vO

v1

v3

v2

FIGURE 14.23 Noninverting summation circuit.

-Balch.book Page 329 Thursday, May 15, 2003 3:46 PM

330 Analog Basics for Digital Systems

In circuit analysis terms, a single input voltage can be isolated from the others by tying each other
input to ground and then evaluating the circuit as if that single input voltage were the only input
present. This analysis method can be applied to each input in succession, and then the partial results
can be summed to yield a final output expression. Superposition is applied to analyze the noninvert-
ing summer as follows. First, v2 and v3 are grounded, yielding a basic voltage divider expression for
the op-amp input voltage that translates to a partial output voltage.

To ease calculation for the sake of discussion, assume that R1 = R2 = RIN1 = RIN2 = RIN3 = 10 kΩ.
Under these conditions,

This same treatment is performed separately for v2 and v3, and then each partial output voltage is
summed.

It can be observed that the noninverting summer is really just amplifying the average input voltage
by setting vIN = v1 = v2 = v3. This results in an output voltage of 2vIN, which is exactly how the non-
inverting circuit behaves in the absence of input resistors with a single input signal.

Inverting and noninverting summer circuits can be combined by feeding input signals into both
op-amp terminals with multiple resistors. This results in addition of the signals at the positive input
and subtraction of the signals at the negative input. Analysis of these more complex circuits can be
started using superposition to determine the voltage at the positive input. This reveals an expression
for the voltage at the negative input, which enables computation of the currents flowing through the
negative-side input resistors. With the current through the feedback resistor known along with the
voltage at the negative terminal, a final expression for the op-amp output may be determined.

Analog addition and subtraction functions can be combined to form a difference amplifier. As its
name implies, a difference amplifier emits a voltage that is proportional to the magnitude of the volt-
age difference between its two inputs. A simple difference amplifier can be constructed using a sin-
gle op-amp as shown in Fig. 14.24.

This circuit can be analyzed in a couple of ways. The direct approach is to derive the voltage at
the op-amp’s two input terminals, find the current through the feedback resistor, and obtain a final
expression for vO. Alternatively, superposition can be used to isolate each input and then add the two
partial results for a final answer. To provide a second example of analysis by superposition, this tech-
nique is used. Grounding vIN– turns the circuit into a noninverting amplifier.

Next, vIN+ is grounded, yielding an inverting amplifier.

vO1 Av1

RIN 2 RIN 3
||

RIN 1 RIN 2 RIN 3
||+

--- 1 R2
R1
-------+ v1

RIN 2RIN 3

RIN 1RIN 2 RIN 1RIN 3 RIN 2RIN 3+ +
---= =

vO1 2v1
1
3
--- v1

2
3
---= =

vO
2
3
--- v1 v2 v3+ +[]=

vO+ v+ 1 R2
R1
-------+ vIN +

R2
R1 R2+
-------------------- 1 R2

R1
-------+ vIN +

R2
R1 R2+
-------------------- R1 R2+

R1
-------------------- vIN +

R2
R1
-------= = = =

vO– vIN –
R2
R1
-------–=

-Balch.book Page 330 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 331

By superposition, the linear partial terms, vO+ and vO–, are summed to yield a final output expression
that clearly shows that this circuit is a difference amplifier.

A drawback of the single op-amp difference amplifier is that it has a relatively low input resis-
tance. Using the virtual short concept, the two op-amp terminals are at the same voltage, thereby cre-
ating a virtual loop circuit consisting of the differential voltage input and the two input resistors, R1.
Because this virtual circuit consists only of the input voltage source and the two resistors, the input
resistance is observed to be equal to 2R1 by inspection. As with the basic inverting op-amp circuit,
there is a practical ceiling imposed on input resistance caused by the circuit’s gain and the range of
resistances that are practical to use in a real circuit.

Many applications in which a difference amplifier is necessary involve weak signal sources such
as an unbuffered transducer. To solve this problem, a more complex difference amplifier can be con-
structed with multiple op-amps to present a much higher input resistance. Usually called instrumen-
tation amplifiers, these circuits commonly consist of three op-amps, two of which are configured in
the noninverting topology for very high input resistance. The third op-amp is configured in the just-
mentioned difference amplification topology. As with the example in Fig. 14.18, the noninverting
op-amps buffer each half of the differential input signal, and the second op-amp stage performs the
final difference function. If such a circuit is required in a digital system, it may be most practical to
use an integrated instrumentation amplifier as manufactured by such companies as Linear Technol-
ogy (e.g., LT1167) and Texas Instruments (e.g., INA332) rather than constructing one from discrete
op-amps.

14.6 ACTIVE FILTERS

Active filters perform the same basic frequency passing and blocking function as passive filters, but
they can simultaneously amplify the signal to form a filter that has unity or higher gain. This is in
contrast to passive filters that achieve less than unity gain because of finite losses inherent in the
components from which they are constructed. Op-amps can be used to implement active filters as
long as their gain-bandwidth product is not exceeded. Figure 14.25 shows familiar first-order low-

+

–
R1

R2

R2

R1

virtual loop vO

vIN+

vIN–

FIGURE 14.24 Single op-amp difference amplifier.

vO vO+ vO–+ vIN +
R2
R1
------- vIN –

R2
R1
-------–

R2
R1
------- vIN + vIN ––()= = =

-Balch.book Page 331 Thursday, May 15, 2003 3:46 PM

332 Analog Basics for Digital Systems

pass and highpass active filters implemented with op-amps. These simple filters buffer a passive fil-
ter with a noninverting op-amp stage. In this example, the configurations are for unity gain, although
higher gains are possible. Because of the high input resistance of an op-amp, there is little signal loss
through the series elements while operating in the passband. Unlike a passive filter whose character-
istics are influenced by the load being driven, the op-amp isolates the load from the filter elements.

Filter design is a topic in electrical engineering that can get quite complex when very specific and
demanding frequency response characteristics are necessary. Active filters add to this complexity as
a result of nonideal op-amp characteristics. Although a complete discussion of filter design is outside
the scope of this text, certain filtering tasks can be accomplished by drawing on a basic familiarity
with common circuits. A common second-order topology used to implement active filters is the
Sallen-Key filter. Sallen-Key lowpass and highpass filters are implemented with two resistors and
two capacitors each for unity gain in the passband, as shown in Fig. 14.26. If higher gains are de-
sired, two resistors can be added per the standard noninverting amplifier circuit topology. As with a
passive second-order filter, the frequency response curve falls off at 40 dB per decade beyond the
cut-off frequency.

The Sallen-Key lowpass filter operates by shunting the op-amp’s input path to low-impedance
sources at high frequencies. C1 shunts the signal to ground as in a passive filter, and C2 shunts the
signal to the op-amp’s output. The highpass filter operates in the reverse manner. At low frequencies,
C1 blocks the incoming signal and allows R2 to feed the output back to the input. Simultaneously,
C2 blocks the signal, which pulls the input to ground. The general expression for the cut-off fre-
quency, fC, is

+

–

R

RC

+

–

C

vO

vI

vO

vI

FIGURE 14.25 First-order active filters.

+

–

R2

R1C1

+

–

C2R1

C2

C1

R2

vO

vI

vO

vI

Lowpass Highpass

FIGURE 14.26 Sallen-Key second-order active filters.

f C
1

2π R1R2C1C2
---=

-Balch.book Page 332 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 333

In many cases, it is convenient to set R1 = R2 and C1 = C2, in which case fC is given by

Aside from providing amplification, a benefit of using op-amps to build filter stages is that multi-
ple stages can be cascaded to implement more advanced filters. The presence of the op-amp in each
stage isolates one stage’s filter components from the other, thereby preserving the desired response
of each filter circuit. Higher-order lowpass and highpass filters with sharper roll-off responses can be
constructed in this manner. Alternatively, bandpass or band-reject filters can be designed by cascad-
ing lowpass and highpass stages as needed.

14.7 COMPARATORS AND HYSTERESIS

Each op-amp circuit discussed so far is closed loop because of the need to moderate the op-amp’s
large open-loop gain and, simultaneously, to increase the circuit’s bandwidth to a practical frequency
range. Analog electronics begins to turn digital when the concern is no longer about maintaining a
linear relationship between a circuit’s input and output signals. Comparators are a key crossover
function between the analog and digital worlds. The job of a comparator is to assert its output when
the input rises above a certain threshold and deassert its output when the input falls below a thresh-
old. A comparator implements a binary step function as shown in Fig. 14.27. This transfer function
is decidedly nonlinear and is produced using a differential amplifier with very large gain.

If an op-amp is operated in an open-loop topology, it can be adapted to serve as a comparator.
Figure 14.28 shows an op-amp or comparator with its negative input connected to a fixed threshold
voltage, VREF, and its positive input being driven by the circuit’s input signal. As long as the input
signal remains below VREF, the differential voltage is negative, and the output is driven to the lower
voltage rail (ground, in this case). As the input signal rises above VREF, a minute differential voltage
is amplified by the tremendous open-loop gain, resulting in a nearly perfect step function.

Op-amps can be used as comparators, but dedicated comparator ICs have long been available.
Comparators and op-amps share various internal similarities. Their common heritage is obvious

f C
1

2πRC
---------------=

0
0 VREF

vO

vI

vO(MAX)

FIGURE 14.27 Generic comparator transfer function.

-Balch.book Page 333 Thursday, May 15, 2003 3:46 PM

334 Analog Basics for Digital Systems

when reading through a comparator’s data sheet. Specifications such as VIO, IBIAS, IIO, and gain are
observed. However, op-amps and comparators are optimized for different characteristics. Op-amps
are designed specifically for linear operation in closed-loop configurations. When operated open-
loop, some op-amps may exhibit unstable output behavior. A comparator IC is specifically designed
for open-loop operation with approximately rail-to-rail output behavior and fast switching times.
Op-amp manufacturers discourage using op-amps as comparators for these reasons. Having said
this, though, many engineers do adapt op-amps for use as comparators with success. If a quad op-
amp such as the LM324 is already in a design that uses only three of its sections, it is tempting and
economical to use the fourth section as a comparator if the need arises. In many cases, especially
when working with mature bipolar devices, spare op-amps may be safely used as comparators.

The open-loop comparator in Fig. 14.28 is simple, but it has the drawback of being extremely
sensitive to minute changes in the input voltage in the vicinity of VREF. When vI is either less than or
greater than VREF by some margin, the op-amp’s output is clearly defined. However, when vI is ap-
proximately equal to VREF, the result is less clear. Because of the large open-loop gain, very small
changes in vI cause large changes in vO. If vI does not rise or fall monotonically around VREF (con-
sistently increasing or decreasing voltage without any temporary changes in the voltage curve’s
slope), the minute back-and-forth progression of the voltage curve will be greatly amplified and re-
sult in oscillation at the output. This is illustrated conceptually in Fig. 14.29. Note how very small
voltage changes around VREF cause vO to swing from one extreme to the other.

+

–

VREF

vO

vI

FIGURE 14.28 Open-loop voltage comparator.

0
0 time

0
time

VREF

vO

vI

FIGURE 14.29 Unstable voltage comparison without monotonic input.

-Balch.book Page 334 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 335

It can be difficult to achieve a perfectly monotonic signal because of ambient noise in a system. If
the signal can be guaranteed to rise and fall quickly, the window of opportunity for noise to trigger
an undesired response at VREF is limited. This is how the majority of signals in a digital system oper-
ate. The rise and fall times are relatively fast, and the signals remain stable at logic-high and logic-
low voltages. Problems do arise, however, when excessive noise or other signal integrity issues man-
ifest themselves by causing nonmonotonic signal transitions. In a purely digital context, such prob-
lems can be solved with proper engineering solutions to reduce and shield noise and signal integrity
problems. Most real-world analog signals do not behave in a clean binary fashion, which is why they
often require analog circuits including op-amps and comparators to properly interface with digital
systems.

Threshold comparison can be improved by adding hysteresis to an otherwise open-loop voltage
comparator. Hysteresis is the application of two thresholds to stabilize a comparator so that it does not
change its state with minute changes in the input voltage. Stabilization is desirable in situations
wherein the applied voltage hovers near the threshold voltage for more than a brief span of time as
seen in Fig. 14.29. Rather than a single threshold, separate low-to-high, VTLH, and high-to-low, VTHL,
thresholds are designed. VTLH is higher than VTHL, as demonstrated in Fig. 14.30, where a much
cleaner output is obtained as compared to the previous case. Note that the hysteresis created by the
two thresholds prevents the comparator’s output from returning to logic 0 when the input declines
slightly after triggering a logic-1 output. Similarly, the input’s nonmonotonic falling-edge does not
cause the output to bounce, because the hysteresis is chosen to be greater than the local perturbation.

A hysteresis loop is a common means of representing the two distinct thresholds governing the in-
put/output transfer function. Figure 14.31 shows that, when the input is starting from the low side,
the high threshold is used to trigger an output state transition. As soon as the input crosses the high
threshold, the output goes high, and the low threshold is now applied to the input comparison. No-
tice the advantage here. Once the input rises above the high threshold, a lower threshold is instantly
substituted. This means that, if the input signal wanders and declines slightly, it is still above the
lower threshold, and the output is unaffected. For the output to return low, the input must now fall
below the low threshold. And as soon as this occurs, the high threshold is again activated so that the
input must rise significantly before an output stage change will occur.

0
0 time

0
time

VTHL

VTLH

vO

vI

FIGURE 14.30 Effect of hysteresis on nonmonotonic input signal.

-Balch.book Page 335 Thursday, May 15, 2003 3:46 PM

336 Analog Basics for Digital Systems

The degree of hysteresis designed into a comparator circuit is determined by the difference be-
tween the high and low thresholds. A small difference is less tolerant of noise. However, a larger dif-
ference has a more muted response, which must be considered in its effects on a system’s behavior.
Dual comparison thresholds that create hysteresis are implemented by applying positive feedback
rather than negative feedback to an op-amp or comparator. Such a circuit is shown in Fig. 14.32. The
circuit looks very similar to a conventional closed-loop amplifier, but the feedback is applied to the
positive terminal rather than the negative terminal.

The positive feedback through R2 results in a voltage at the positive terminal that is determined
by the basic voltage divider expression,

Therefore, the output pulls v+ down when it is low and pulls v+ up when it is high. This means
that, if vI is increasing and trying to switch the comparator state from low to high, it must be raised
to a higher voltage threshold to counteract the pull-down effect when the comparator’s output is al-

VO

0
0 VIHigh-to-Low

Threshold

VO(MAX)

Low-to-High
Threshold

FIGURE 14.31 Hysteresis loop.

+

–

R1

R2

VREF

vO

vI

FIGURE 14.32 Hysteresis created by positive feedback.

v+ vO vI vO–() R2
R1 R2+
--------------------+ vO 1 R2

R1 R2+
--------------------–

 vI
R2

R1 R2+
--------------------+ vO

R1
R1 R2+
-------------------- vI

R2
R1 R2+
--------------------+= = =

-Balch.book Page 336 Thursday, May 15, 2003 3:46 PM

Operational Amplifiers 337

ready low. Similarly, vI must be reduced to a lower voltage threshold to counteract the pull-up effect
when the output is already high.

Another benefit of hysteresis is that it “snaps” the comparator input voltage above or below VREF
once the output state transition is triggered. This forces what might otherwise be a gradually rising
input signal into a sharp edge that improves the switching time of the comparator’s output. Any time
spent in a region of linear amplification as a result of vI ≈ VREF is minimized in favor of a rapid tran-
sition to saturation in either the high or low output state.

The voltage at the positive terminal must be brought to VREF to cause a comparator state change.
Therefore, the general relationships for the low-to-high and high-to-low thresholds, VTLH and VTHL,
can be written by substituting VREF for v+ and the appropriate threshold for vI.

 and

These relationships assume an ideal comparator that has zero input bias current. Real-world effects
of IBIAS can be reduced by using resistors that are not too large. If hundreds of microamps or a milli-
amp are designed to flow through the R1/R2 resistor network, the nanoamps of input bias current
will likely introduce negligible error into the system.

To illustrate the application of hysteresis in a real circuit, consider a common bipolar comparator,
the LM311, connected such that it drives an approximate output range of 0 V (VOL) to 5 V (VOH). It
is desired to convert an incoming analog signal ranging from 0 to 3 V into a digital output. The half-
way threshold of 1.5 V is chosen to differentiate between logical 1 and 0. However, it is known that
the input signal can have noise of up to 500 mV peak-to-peak (p-p) superimposed on it. This means
that a signal that is just over 1.5 V at one moment in time can abruptly drop to near 1 V a short while
later. We do not want the LM311’s output to swing every time a 500-mV noise spike happens to co-
incide with the rising and falling of the 3-V input signal. Therefore, at least 500 mV of hysteresis
should be designed into the circuit.

It is decided to design in 600 mV of hysteresis for some added margin. Rather than establishing a
single 1.5-V threshold for low-to-high and high-to-low triggering, two thresholds of 1.5 + 0.3 V and
1.5 – 0.3 V are desired, which combine to provide 600 mV of hysteresis. This configuration requires
the input to rise above 1.8 V to be recognized as a logic 1 and requires the input to fall below 1.2 V
to be recognized as a logic 0. Even if 500 mV of noise hits the input just after it reaches 1.8 V, the re-
sulting 1.3 V level will be too high to trigger a return to logic 0.

The first design task is to calculate the ratio between the input and feedback resistors, R1 and R2.
Recall that hysteresis is the difference between VTLH and VTHL. The previously derived expressions
for VTHL and VTHL can be simplified for this circuit, because VOH and VOL are already known.

 and

Subtracting the two thresholds yields a relationship that can be used to solve for R1 and R2.

It follows that R1 = 0.12R2. Because it is the ratio between R1 and R2 that is important rather than
their actual values, these numbers can be multiplied by 10,000 to yield R1 = 1.2 kΩ and R2 = 10 kΩ,
which are standard 5 percent tolerance resistance values. If more accurate 1 percent resistors are de-
sired, R1 would be chosen as 1.21 kΩ, which is the closest 1 percent standard value.

V TLH V REF
R1 R2+

R2
-------------------- V OL

R1
R2
-------–= V THL V REF

R1 R2+
R2

-------------------- V OH
R1
R2
-------–=

V TLH V REF
R1 R2+

R2
--------------------= V THL V REF

R1 R2+
R2

-------------------- 5
R1
R2
-------–=

V TLH V THL– V REF
R1 R2+

R2
-------------------- V REF

R1 R2+
R2

-------------------- 5
R1
R2
-------+– 5

R1
R2
------- 0.6 V= = =

-Balch.book Page 337 Thursday, May 15, 2003 3:46 PM

338 Analog Basics for Digital Systems

With the resistors determined, the next step is to calculate the required reference voltage to
achieve the desired thresholds. Using the slightly simpler expression for VTLH provides the following
result:

, VREF = 1.61 V

Because 1.61 V is not a particularly standard voltage, it can be obtained using a voltage divider
resistor network. The math can be checked by verifying that the selected values for VREF, R1, and R2
also produce the desired VTHL.

Certain digital interface applications benefit from off-the-shelf 7400 logic gates with built-in hys-
teresis. A common industry term for a circuit employing hysteresis is the Schmitt trigger. Devices
employing Schmitt triggers include the 74xx14 hex inverter and the 74xx132 quad NAND. The
graphical symbol used to denote Schmitt trigger logic inputs is the hysteresis loop placed within a
standard logic gate representation, two examples of which are shown in Fig. 14.33. The 74LS14 and
74LS132 Schmitt trigger devices are members of the common 74LS bipolar logic family. Each of
these devices is specified with 1.4 = VTLH = 1.9 and 0.5 = VTHL = 1.0.* These specifications guaran-
tee a minimum hysteresis of 0.4 V, making them suitable for handling many noisy signals.

* 74LS14, Fairchild Semiconductor Corporation, 2000, p. 2.

V TLH 1.8 V REF
R1 R2+

R2
-------------------- V REF 1.12()= = =

V THL V REF
R1 R2+

R2
-------------------- 5

R1
R2
-------– 1.61 1.12() 5 0.12()– 1.2 V= = =

FIGURE 14.33 Graphical representation of Schmitt trigger in-
verter and NAND gate.

-Balch.book Page 338 Thursday, May 15, 2003 3:46 PM

339

CHAPTER 15

Analog Interfaces for Digital
Systems

The intersection of analog and digital worlds has given rise to a tremendously broad range of appli-
cations for digital systems. Digital cellular telephones, enhanced radar systems, and computerized
engine controls are just a few modern benefits enabled by data conversion circuits. Analog-to-digital
and digital-to-analog converters enable computers to interact with the real world by representing
continuous analog signals as sequences of discrete numbers.

The first portion of this chapter discusses topics including quantization, sampling rate, and the
Nyquist frequency. These concepts form the foundation of data conversion and enable an engineer to
evaluate the conversion requirements for individual applications. Specific analog-to-digital and digi-
tal-to-analog conversion techniques are presented in the next portion of the chapter. Selecting the
correct data conversion IC is a combination of identifying the application requirements and then
finding a device that matches these specifications.

Following the initial evaluation process, designing an effective data conversion circuit at the sys-
tem level varies in complexity with how accurate the conversion must be. Some applications with
moderate accuracy requirements can be implemented without much difficulty by following the man-
ufacturer’s recommended connection diagrams in their data sheets and application notes. More com-
plex conversion circuits, such as those in digital radio transceivers or high-accuracy instruments, can
present significant analog design tasks wherein noise reduction and stability over time and tempera-
ture are key challenges. While briefly discussed at the end of this chapter, these high-end applica-
tions require further reading into sampling theory and more advanced analog design skills.

15.1 CONVERSION BETWEEN ANALOG AND DIGITAL DOMAINS

Many digital systems interact with their environment by measuring incoming analog signals, such as
sound from a microphone, and emitting other analog signals that have been processed in some man-
ner, such as playing a CD on your computer’s speakers. These functions are not natural to digital
systems, because a binary signal can have only two discrete states, 1 and 0, whereas analog signals
are continuous and exist at a wide range of voltages. Specific circuits and methods are necessary to
convert between the two domains of discrete digital signals and continuous analog signals.

Analog-to-digital converters

(ADCs) and

digital-to-analog converters

 (DACs) bridge the gap be-
tween our decidedly analog world and the digital world of microprocessors and logic. Essentially, an
ADC takes an instantaneous snapshot, or

sample

, of an analog input and converts the observed volt-
age into a string of binary digits—a number. A DAC performs the reverse operation of converting a
discrete number into an analog output voltage. Let’s first examine a conceptual ADC.

-Balch.book Page 339 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

340 Analog Basics for Digital Systems

When an analog signal is applied to an ADC, the ADC evaluates the instantaneous sample of that
signal against predefined high and low voltage extremes that define an allowable input range for that
ADC. As shown in Fig. 15.1, the ADC overlays a range of numbers between these extremes,
thereby dividing the overall voltage range into many small incremental ranges, or

quanta

. A switch
is often used to convey the idea of an instantaneous sample being applied to the ADC; the switch is
normally open and is closed for a brief instant so that the ADC can measure a voltage. Because of
the binary nature of digital systems, practically every ADC divides the allowable input voltage
range by some power of two. Each small voltage quantum is mapped to a unique number. The quan-
tum index that most closely matches the observed sample is emitted from the ADC, enabling digital
logic to comprehend the instantaneous amplitude of the applied signal as a discrete number. The
conceptual example depicts an ADC with voltage extremes of +5 and 0 V and a resolution of 8 bits,
indicating that the 5-V range is divided into 256 quanta. Each quantum represents a range of 5 V ÷
255 = 19.61 mV. A digital sample with the value 0x00 would indicate 0 V, and a sample with value
0xFF would indicate 5 V. If a 0.75 V sample is converted from analog to digital, the sampled value
will be either 0x26 (38

10

) or 0x27 (39

10

), depending on the rounding mechanism used, because 0.75
V is greater than 38

×

 19.61 mV (0.745 V) but less than 39

×

 19.61 mV (0.765 V). When an input
voltage is presented that is outside the allowable range, the typical ADC returns a saturated sample
value of either 0 or 2

N

 – 1, depending on whether the input was too low or too high.
Like an ADC, a DAC divides a range of output voltages into many small quanta and operates on

the concept of discrete samples in time. At the core of a conceptual DAC is a numerically controlled
voltage source that emits a linear range of voltages corresponding to a linear range of discrete nu-
merical samples applied to it. This is illustrated in Fig. 15.2, assuming a voltage source with a mini-
mum output of 0 V and a maximum of V

OMAX

. The range from 0 to V

OMAX

 is divided by the DAC’s
resolution, yielding the voltage range of each quantum as in an ADC. Whereas the sampling process
in an ADC is modeled using a switch to capture an instantaneous voltage, the similar process in a
DAC is modeled with a synchronous register that presents a new sample to the voltage source each
sampling interval as regulated by the sample clock. Using the previous example of an 8-bit ADC
where 0.75 V would be converted to 0x27, a similar 8-bit DAC could be setup with V

OMAX

 = 5 V.
Under these circumstances, the sample value of 0x27 is converted to 0.765 V, because the quantum
size remains 19.61 mV.

It is apparent from the preceding discussion that the sampling process is imperfect. The 0.75-V in-
put level is rounded to a multiple of the quantum voltage magnitude, and the resulting digital sample

0x00 0xFFDigital Range of Samples

Analog Range of Samples

0 V 5 V

0.75 VDC

VIN = 0.75 V

Matching Index = 0x27

FIGURE 15.1 Conceptual analog-to-digital converter.

-Balch.book Page 340 Thursday, May 15, 2003 3:46 PM

Analog Interfaces for Digital Systems 341

is converted back to analog with the rounding made permanent. The exact magnitude of the original
analog signal is lost. The process of fitting a continuous analog signal into the closest matching volt-
age quantum is known as

quantization

. Quantization distorts the signal by skewing the actual voltage
to a discrete level. In the preceding example, there would be no discernible difference between 0.75
and 0.76 V, because all allowable voltages are measured to a resolution of 19.61 mV. Quantization er-
rors can be reduced by increasing the resolution of the digital samples. If 12-bit samples were con-
verted instead of only 8 bits, the resolution would improve to 5 V ÷ (2

12

 – 1) = 1.22 mV.
As reality must surely dictate, increased sampling resolution comes at a price. The question be-

comes how much resolution is required by a particular application. Sensing the temperature in a
house for the purpose of controlling a furnace or air conditioner probably does not require more than
eight bits of resolution. The useful range of household temperatures to measure may range from 10
to 40°C (50 to 104°F). Even widening this range to between 0 and 50°C (32 and 122 °F) would still
provide a resolution of 0.2°C with an 8-bit ADC, plenty for the specified application. However, re-
cording a musical performance with high fidelity may require 12, 16, or more bits of resolution.

Increased sampling resolution does not directly translate to an increase in sampling accuracy.
Resolution and accuracy are related but not synonymous. Resolution indicates the granularity of
samples, whereas accuracy specifies how reliably the conversion is performed. Accuracy in an ADC
indicates how it selects the proper sample to represent the input voltage. For a DAC, accuracy indi-
cates how stable a voltage is generated for each discrete sample. Accuracy is a fairly complex topic,
because it involves many aspects of the ADC or DAC circuit, including ambient noise and filtering
of that noise. If ±10 mV of noise is present in a 12-bit ADC circuit with 1.22 mV of resolution, the
accuracy of the converted samples will be far worse than 1.22 mV, because the noise will randomly
skew the voltage up and down as it is sampled. It follows that a well designed 8-bit ADC can provide
more useful results than a poorly designed 12-bit ADC.

15.2 SAMPLING RATE AND ALIASING

The rate at which samples are converted is as important as the resolution with which they are con-
verted. How fast should an analog signal be sampled: once per second, one thousand times per sec-
ond, one million times? The necessary sampling rate is a function of the analog signal’s frequency
content. Higher frequencies change more rapidly and therefore must be sampled at a faster rate to be
measured accurately. Per Fourier analysis, a signal’s frequency content is evaluated by representing
that signal as a sum of sine waves, each with a unique frequency and phase. The highest frequency
sine wave sets the constraint that the sampling rate analysis must take into account.

Consider the 1-kHz sine wave shown in Fig. 15.3 that is being sampled by an ADC at 10 kHz.
Each black dot represents a discrete voltage level that is converted into a digital sample. The equally

Sample
Input

Register
Sample Clock

Data[N–1:0]

VOUT = Data
VOMAX

2N–1

FIGURE 15.2 Conceptual digital-to-analog converter.

-Balch.book Page 341 Thursday, May 15, 2003 3:46 PM

342 Analog Basics for Digital Systems

spaced sampling intervals are shown at an arbitrary phase offset from the sine wave to illustrate the
arbitrary alignment of samples to the incoming signal.

Discrete digital samples are reconstructed to generate an analog output that is a facsimile of the
original analog input minus a finite degree of distortion. Figure 15.4 shows the 1-kHz sine wave
samples as they are emitted from a DAC. On its own, the sampling process creates a stair-step output
that bears similarity to the original signal but is substantially distorted. The output is not a pure sine
wave and contains added high-frequency components at the sampling frequency—10 kHz in this
case. This undesirable stair-step output must be passed through a lowpass filter to more closely re-
construct the original signal. A lowpass filter converts the sharp, high-frequency edges of the DAC

Voltage

Time

0 µs 1000 µs 2000 µs500 µs 1500 µs

100 µs
sampling
interval

FIGURE 15.3 1-kHz sine wave sampled at 10 kHz.

Voltage

Time

0 µs 1000 µs 2000 µs500 µs 1500 µs

FIGURE 15.4 Reconstructed 1-kHz sine wave without filtering.

-Balch.book Page 342 Thursday, May 15, 2003 3:46 PM

Analog Interfaces for Digital Systems 343

output into smoother transitions that approximate the original signal. The output will never be iden-
tical to the original signal, but a combination of sufficient sampling rate and proper filter design can
come very close.

As the ratio of sampling rate to signal frequency decreases, the conversion accuracy becomes
more coarse. Figure 15.5 shows the same 1-kHz sine wave being sampled at only three times the sig-
nal frequency, or 3 kHz. Consider how the stair-step output of a DAC looks with this sampling
scheme. Here, a filter with sharper roll-off is required, because the undesirable frequency compo-
nents of the DAC output are spaced only 2 kHz apart from the frequency of interest instead of nearly
a decade as in the previous example. A suitable filter would be able to output a nearly pure 1-kHz
sine wave, but the signal’s amplitude would not match that of the input, because the maximum DAC
output voltage would be less than the peak value of the input signal, as indicated by the position of
the samples as shown.

Preservation of a signal’s amplitude is not critical, because a signal can always be amplified. It is
critical, however, to preserve the frequency components of a signal because, once lost, they can
never be recovered. Basic sampling theory was pioneered by Harry Nyquist, a twentieth century
mathematician who worked for Bell Labs. Nyquist’s theorem states that a signal must be sampled at
greater than twice its highest frequency to enable the preservation of its informational, or frequency,
content. Nyquists’s theorem assumes a uniform sampling interval, which is the manner in which
most data conversion mechanisms operate. The

Nyquist frequency

is a common term that refers to
one-half of the sampling frequency. A data conversion system is said to operate below the Nyquist
frequency when the applied signal’s highest frequency is less than half the sampling frequency.

Nyquist’s theorem can be understood from a qualitative perspective by considering operation at
exactly the Nyquist frequency. Figure 15.6 shows a 1-kHz sine wave being sampled at 2 kHz. There
are a range of possible phase differences between the sampling interval and the signal itself. The
worst-case alignment is shown wherein the samples coincide with the sine wave’s zero crossing. Be-
cause each sample is identical, the observed result is simply a DC voltage.

If the sampling frequency is increased by a small amount so that the signal is less than the
Nyquist frequency, it is impossible for consecutive samples to align themselves at the signal’s zero
crossings. The amplitude measurement may suffer substantially, but the basic information content of
the signal—that it is a 1-kHz sine wave—will not be lost. As the prior examples show, operating
with substantially higher sampling rates, or operating at substantially below the Nyquist frequency,
increases the accuracy of the data conversion process.

Voltage

Time

0 µs 1000 µs 2000 µs500 µs 1500 µs

FIGURE 15.5 1-kHz sine wave sampled at 3 kHz.

-Balch.book Page 343 Thursday, May 15, 2003 3:46 PM

344 Analog Basics for Digital Systems

When a data conversion circuit is operated above the Nyquist frequency,

aliasing

develops, which
distorts the information content of a signal. Aliasing occurs when a high-frequency signal is made to
appear as a low-frequency signal as a result of inadequate sampling. Assume that a 1-kHz input is ex-
pected and a 3-kHz sampling rate is designed to satisfy the Nyquist theorem with some margin. For
some reason, a 2-kHz signal enters the system. Figure 15.7 shows how this signal might be sampled.
The 333 µs sampling interval is too slow to capture each 250 µs high and low phase of the 2-kHz sig-
nal. As a result, the samples convey information that is drastically different from the input. Instead of
2 kHz, the high-low-high interval of the samples indicates a 1-kHz signal! This 1-kHz aliased signal
is the difference between the sampling rate and the actual signal frequency.

Aliasing applies to the analog-to-digital conversion process. When converting from digital to ana-
log, the DAC is inherently self-limited by the sampling rate such that the highest frequency it can
generate is half the sampling rate, or the Nyquist frequency. This behavior would result if consecu-

Voltage

Time

0 µs 1000 µs 2000 µs500 µs 1500 µs

500 µs (2 kHz)
sampling interval

FIGURE 15.6 1-kHz sine wave sampled at the Nyquist frequency.

Voltage

Time

0 µs 1000 µs 2000 µs500 µs 1500 µs

1 kHz aliased signal

FIGURE 15.7 2-kHz sine wave sampled at 3 kHz with aliasing to 1 kHz.

-Balch.book Page 344 Thursday, May 15, 2003 3:46 PM

Analog Interfaces for Digital Systems 345

tive samples alternated voltage levels about some DC level. A suitable lowpass filter on the DAC’s
output would remove the high-frequency edges and leave behind a sine wave of half the sampling
frequency as shown in Fig. 15.8.

Lowpass filtering is a critical part of the data conversion process, because it removes unwanted
sampling artifacts at DAC outputs and prevents aliasing at ADC inputs. The necessary slope of the
filter’s roll-off depends on how close unwanted high frequencies are to the Nyquist frequency.

15.3 ADC CIRCUITS

ADCs are available in a wide range of sampling rates and resolutions. The basic internal architecture
of an ADC is straightforward, as shown in Fig. 15.9. A

sample and hold

(S/H) circuit captures a
snapshot of the analog input signal so that the conversion circuit can work with a fixed sample over
the conversion interval, which can be as long as the sampling interval. An ideal S/H circuit captures
the input signal in zero time so that a true instantaneous sample is taken. In reality, the small capaci-
tor that is used to hold the sample during conversion takes a finite time to charge through a finite
switch resistance to the same voltage as the input. Once the conversion circuit maps the captured
voltage to a digital sample, the digital interface conveys this information to the digital processor.
ADC interfaces are available in both serial and parallel configurations.

A variety of basic analog-to-digital conversion circuits are used, based on the desired sampling
rate and resolution. Three of the most common are

flash

,

successive-approximation

, and

sigma-
delta

. A flash ADC, shown in Fig. 15.10, consists of a bank of parallel comparators, each fed by a
unique incremental reference voltage. Each comparator’s output represents one of the 2

N

 – 1 possi-
ble outputs of the ADC. By process of elimination, the lowest quantum is not represented by a com-
parator, because it is implied if none of the comparators are at logic 1. Therefore, a 12-bit flash ADC

Voltage

Sampling Intervals

LPF

FIGURE 15.8 Maximum frequency output of the DAC.

+

-

Sample and Hold

Input Signal
Conversion

Circuit

Sampling
Control and

Digital
Interface

Analog Digital

Digital Samples

FIGURE 15.9 Basic ADC architecture.

-Balch.book Page 345 Thursday, May 15, 2003 3:46 PM

346 Analog Basics for Digital Systems

requires 4,095 parallel comparators. When a voltage is applied to the flash circuit, one or more com-
parators may emit a logic 1. A priority encoder generates the final N-bit output based on the highest
comparator that is emitting a logic 1. This circuit is called a flash ADC, because it is very fast; an an-
alog input is converted to a digital sample in one step.

Flash ADCs are fast, but their complexity doubles with each added bit of resolution. Such ADCs
are available with maximum sampling rates over 100 MHz and resolutions between 8 and 16 bits
from manufacturers including Analog Devices, Intersil, National Semiconductor, and Texas Instru-
ments.

When very high sampling rates are not necessary, alternative ADC circuits are able to accomplish
the task with lower cost and increased resolution. High-quality audio applications commonly use 24-
bit ADCs with sampling rates of either 48 or 96 kHz. Below 16 bits of resolution and 20 kHz, many
inexpensive and low-power ADCs are available. successive-approximation and sigma-delta ADCs
are manufactured by the same companies that make flash ADCs. In addition, Crystal Semiconductor
offers a line of ADCs optimized for digital audio applications.

A successive-approximation ADC uses an internal DAC/comparator feedback loop to home in on
the digital code that corresponds to the applied analog input. Figure 15.11 shows this feedback loop
along with control logic that varies the code until the DAC output matches the input. Relatively

Priority
Encoder

Digital Samples

Output from
Sample/Hold

+

–

R

+

–

R

VREF

R

+

–

R

+

–

R

+

–

R

+

–

R

FIGURE 15.10 Flash ADC circuit.

Conversion
Logic

Digital Samples

Output from
Sample/Hold

+

–

DAC

FIGURE 15.11 Successive-approximation ADC circuit.

-Balch.book Page 346 Thursday, May 15, 2003 3:46 PM

Analog Interfaces for Digital Systems 347

dumb control logic could simply increment the code starting from 0 until the comparator’s output
changed from high to low. This would mean that an N-bit ADC would require up to 2

N

 cycles to per-
form a conversion. Instead, a successive-approximation ADC performs a binary search to accom-
plish the same task in only N cycles. A digital code of 0 is used as a starting point. Each bit in the
code, starting from the most significant bit, is set, and the comparator’s output is tested each time. If
the output is low, the DAC voltage exceeds the input and, therefore, the bit that was set should be
cleared. Otherwise, the bit is left set.

To illustrate how a successive-approximation ADC functions, consider an 8-bit ADC with a range
from 0 to 5 V and an input level of 3 V. Each conversion quantum is 19.61 mV. Table 15.1 lists the
eight sequential steps in performing the data conversion. In reality, the hypothetical ADC circuit
may output 0x98 or 0x99 with a 3-V input, depending on the ambient electrical and thermal condi-
tions. When an input is on the border between two quanta, slight changes in supply voltage, noise,
and temperature can skew the result up or down by one digital code. The final result is chosen as
0x98, because the next code, 0x99, corresponds to a voltage that is slightly higher than the input
voltage. This gets back to the concept of conversion accuracy. Manufacturers specify ADCs with
worst-case accuracies. Additionally, the parameters of the circuit into which they are designed can
further degrade the conversion accuracy.

A sigma-delta ADC over-samples the input at very coarse resolution: one bit per sample! To cre-
ate a high-resolution sample, a typical sigma-delta ADC oversamples by 128 or 256 times the nomi-
nal sampling frequency and then passes the serial samples through a digital filter to create a usable
set of N-bit samples at the nominal sampling frequency. The basic theory behind a sigma-delta ADC
has been around for a long time, but its practical implementation is more recent because of its reli-
ance on digital filter logic, which is now inexpensive to manufacture on an IC. Figure 15.12 shows a
sigma-delta ADC incorporating a voltage summation stage, an integrator, a comparator, a 1-bit DAC,
and a digital filter. The summation stage subtracts the DAC output from the input voltage. The inte-
grator is a circuit that accumulates the resulting sum over time.

For a given input, the sigma-delta circuit will emit a serial set of samples with an average DC
value over time that equals the input voltage. The integrator keeps track of the difference between
the input and the DAC feedback voltage. When the comparator sees that this running difference ex-
ceeds 0, it causes a negative feedback through the DAC and summation stage. When the difference is

TABLE

15.1 Eight-Bit Successive-Approximation Conversion Steps

Cycle Test Code DAC Voltage Comparator Output Resultant Code

1

1

0000000 2.51 1

1

0000000

2 1

1

000000 3.77 0 1

0

000000

3 10

1

00000 3.14 0 10

0

00000

4 100

1

0000 2.82 1 100

1

0000

5 1001

1

000 2.98 1 1001

1

000

6 10011

1

00 3.10 0 10011

0

00

7 100110

1

0 3.02 0 100110

0

0

8 1001100

1

3.00 0 1001100

0

-Balch.book Page 347 Thursday, May 15, 2003 3:46 PM

348 Analog Basics for Digital Systems

less than 0, the comparator’s output is 0, and there is no negative feedback, causing the running dif-
ference to increase once again.

The disadvantage of a sigma-delta ADC is that it requires a high oversampling frequency to func-
tion. However, this is not a problem at low frequencies, such as audio, where these converters are
commonly employed. A sigma-delta ADC is able to deliver very high resolutions (e.g., 24 bits) with
high accuracy, because most of its complexity is in the digital filter, and only a coarse single-bit con-
version is performed. This means that the circuit is less susceptible to noise. Digital logic is much
more tolerant of ambient noise as compared to delicate analog comparators and amplifiers.

A key advantage of sigma-delta ADCs for the system designer is that expensive lowpass filters
with sharp roll-offs are not required. Since the actual sampling frequency is so much higher than the
signal’s frequency content, an inexpensive single-pole RC lowpass filter is generally sufficient. Con-
sider a CD audio sampling application in which the maximum input frequency is 20 kHz and the
nominal sampling rate is 44.1 kHz. A sigma-delta ADC might sample this signal at 128

×

 44.1 kHz
= 5.6448 MHz. Therefore, the Nyquist frequency is raised to approximately 2.8 MHz from 22 kHz!
A first-order filter with f

C

 = 20 kHz would attenuate potentially aliasing frequencies by more than
40 dB. In contrast, a normal ADC would require a much more costly filter to provide the same atten-
uation where the passband and stopband are separated by only 2 kHz.

15.4 DAC CIRCUITS

Unlike an ADC, a DAC does not require a sample and hold circuit, because the instantaneous sample
events are driven from the discrete digital domain where each clock cycle activates a new sample. A
DAC consists of a digital interface and the conversion circuit. Two of the most common types of
conversion circuits are the

R-2R ladder

and sigma-delta designs.
The R-2R ladder DAC uses the concept of current summation as found in an inverting op-amp

summing circuit. Two resistance values, R and 2R, are connected in a multistage network as shown
in Fig. 15.13 (using a four-bit example for the sake of brevity). This circuit is best analyzed using su-
perposition: set one input bit to logic 1 (V

REF

) and the others to logic 0 (ground). When this is done,
the resistor ladder can be quickly simplified by combining parallel and series resistances, because all
nodes other than the logic 1 input are at 0 V. Knowing that the voltage at the op-amp’s negative ter-
minal is also 0, the current through the resistor ladder can be determined and, therefore, the output
voltage can be calculated.

After calculating the partial output voltage due to each individual input, the following overall ex-
pression for V

O

 is obtained:

Digital Filter
Digital Samples

Output from
Sample/Hold

+

–

1-Bit
DAC

Σ+

–

Integrator

FIGURE 15.12 Sigma-delta ADC circuit.

V O V REF
D3
2

------- D2
4

------- D1
8

------- D0
16
-------+ + +–=

-Balch.book Page 348 Thursday, May 15, 2003 3:46 PM

Analog Interfaces for Digital Systems 349

This expression allows linear control of

V

O

 ranging from 0 to within one least-significant bit posi-
tion (1/16 in this case) of –

V

REF

. Similar results can be obtained with the basic op-amp summer cir-
cuit, but each input bit’s resistor must be twice the value of the previous bit’s resistor. This rapidly
becomes impractical with 8, 12, 16, or more bits of resolution.

Real DACs modify this basic circuit to generate positive output voltage ranges. In actuality, the
basic R-2R ladder concept is often used, but the exact circuit topology and current summation mech-
anism change to better suit circuit design constraints. Many R-2R ladder DACs are designed to emit
the summed currents rather than a voltage and therefore require an external op-amp circuit to create
the final desired signal. This requirement is not really burdensome, because a buffer of some type is
usually needed to provided sufficient drive strength to the intended load. A DAC is designed to re-
construct analog signals with accuracy, but not to drive substantial loads. Therefore, even a voltage-
output DAC may require a unity gain op-amp stage for the system to function properly. A current-
output DAC can be connected in a manner similar to that shown in Fig. 15.14. Assuming that the
output range is 0 to 10 mA, this circuit is capable of V

O

 from 0 to 4.99 V. The DAC is designed to
sink rather than source current so that the inverting op-amp configuration produces a positive output
voltage.

A sigma-delta DAC operating principle is similar to that of the sigma-delta ADC. An internal dig-
ital filter converts multibit samples (e.g., 16 bits) at the desired rate into single-bit samples at a high-
frequency multiple of that rate. Over time, the average DC value of these high-frequency samples
corresponds to the desired DAC output voltage. This high-frequency signal is filtered to yield a con-
verted analog signal with minimal distortion. As with an ADC, a sigma-delta DAC has the advantage
of requiring an inexpensive lowpass filter, because the sampling rate is so much higher than the fre-

+

– VO

R

2R

2R

2R

VD3

VD2

VD1

VD0

R

Sample
Input

Register

Sample Clock

VREF

D3

D2

D1

D0 R

2R

R

2R

FIGURE 15.13 Four-bit R-2R ladder DAC.

+

–

499 Ω

VO = 499IO

IO

0.1%
Current

Output DAC
(0 – 10 mA)

FIGURE 15.14 Buffered current-output DAC.

-Balch.book Page 349 Thursday, May 15, 2003 3:46 PM

350 Analog Basics for Digital Systems

quencies generated. These devices are commonly used in digital audio equipment because of their
low overall system cost and high resolution (16 to 24 bits) for frequencies below 100 kHz.

15.5 FILTERS IN DATA CONVERSION SYSTEMS

General noise-reduction filters are typically found on the power supplies feeding data conversion cir-
cuits, because less distortion of the analog signals results when there is less overall noise in the sys-
tem. Purely digital systems are not immune to noise, but their tolerance threshold is much higher
than for analog systems because of their highly quantized binary signals. It takes noise of greater
magnitude to turn a 0 into a 1 than it does to distort a continuous analog signal.

In addition to general noise reduction, anti-aliasing filters are a key design aspect of data conver-
sion systems. Filtering requirements dictated by the sampling rate and by the presence of undesired
frequency content can be quite stringent. As the gap between the Nyquist frequency and the unde-
sired frequencies decreases, more complex filters are necessary. The design of such complex filters
requires a substantial set of analog design skills, the majority of which are outside the scope of this
book. However, this chapter closes by identifying some of the issues that arise in anti-alias filtering
so that you may be aware of them.

The first step in specifying an anti-aliasing filter is to identify how much attenuation is necessary
in the stopband. An ADC or DAC can resolve an analog signal only to a finite resolution given by the
number of bits that are supported. It is therefore unnecessary to attenuate high-frequency content be-
yond the point at which the circuit’s inherent capabilities reach their limit. Attenuating unwanted
signals to less than one-half of a voltage quantum renders them statistically insignificant. If a system
represents an analog signal with N bits of resolution, this minimum attenuation,

A

MIN

, is given as

One-half of a quantum is represented by the added power-of-two beyond that specified by the con-
version resolution. The term represents an allowance for the average quantization noise magni-
tude. As expected, a higher-resolution conversion requires greater attenuation, because the
quantization noise is reduced. An 8-bit ADC, relatively low resolution by modern standards, requires
a stopband gain of –59 dB to prevent distortion due to aliasing. A 12-bit ADC, quite moderate in res-
olution, requires attenuation of 83 dB.

Once the stopband gain is known, the filter’s roll-off target can be determined by identifying the
separation of the passband and stopband. Filter design is not a trivial process when minimal distor-
tion is a design criterion. A real filter does not have perfectly uniform passband gain and therefore
adds some distortion by attenuating some frequencies more than others even in the passband. When
the passband and stopband are close together, a higher-order filter is called for to provide the neces-
sary attenuation. Yet, filters with sharp roll-off can have the undesired side effect of exhibiting reso-
nance around the cutoff frequency.

Additionally, filters do not simply change the amplitude of signals that pass through them but
change their phase as well by introducing a finite time delay or phase shift. The problem is that fil-
ters do not have a uniform phase delay at all frequencies in the passband. Most real signals are not
pure sine waves and therefore are composed of many frequencies. The result is distortion of the
overall signal as the different frequency components are shifted relative to each other by slightly dif-
ferent delays.

The magnitude of these nonideal filter characteristics depends on each situation. A basic first-or-
der RC filter is very well behaved, which is a key reason why sigma-delta conversion circuits are so

AMIN 20 2
N 1+

3()log–=

3

-Balch.book Page 350 Thursday, May 15, 2003 3:46 PM

Analog Interfaces for Digital Systems 351

popular. The limitation, of course, is that sigma-delta circuits can be used only at lower sampling
rates.

If a sigma-delta circuit cannot be used for one reason or another, it may be practical to operate a
conventional ADC or DAC at a significantly higher sampling rate than would be dictated by the fre-
quency of interest. This allows a less complex filter to be used by increasing the separation between
the signal and Nyquist frequencies. Digital signal processing techniques can then be used to filter the
digital samples down to a more ideal sampling rate. The difference here is that the complexity of an-
alog filter design is traded off against a faster data conversion system and some computational num-
ber crunching. As logic gates have become inexpensive and microprocessors increase in capability,
DSP-based filter algorithms are often far superior to their analog implementations, because the non-
ideal characteristics of phase-delay, amplitude variance, and resonance are overcome by arithmetic
manipulations. A major reason behind the proliferation of high-speed ADC and DAC ICs is the
emergence of DSP technology in applications in which fully analog circuits formerly existed. DSP
algorithms can implement complex and highly stable filters that are extremely costly to implement
with analog components.

-Balch.book Page 351 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

P R TA 4

DIGITAL SYSTEM DESIGN
IN PRACTICE

-Balch.book Page 353 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

355

CHAPTER 16

Clock Distribution

Clocks are inherently critical pieces of a digital system. Reliable operation requires the distribution
of electrically clean, well timed clocks to all synchronous components in the system. Clocking prob-
lems are one of the last bugs that an engineer wants to have in a system, because everything else is
built on the assumption of nearly ideal clocks. This chapter concentrates on the means of distributing
low-skew and low-jitter clocks in a system. Most systems require the design of a

clock tree—

a cir-
cuit that uses an oscillator of some type to create a clock and then distributes that clock to multiple
loads, akin to branches in a tree. Simple clock trees may have a single level of hierarchy in which the
oscillator directly drives a few loads. More complex trees have several levels of buffers and other
components when tens of loads are present.

Basic information on crystal oscillators is presented first to assist in the selection of a suitable
time base from which to begin a clock tree. Once a master clock has been produced, low-skew buff-
ers are the common means of replicating that clock to several loads. These buffers are explained with
examples incorporating length matching for low-skew and termination resistors for signal integrity.
Buffers are followed up with a discussion of phase-locked loops, commonly used to implement
“zero-delay” buffers in clock trees. These devices become important when a system contains multi-
ple boards and when there are special clocking sources other than a stand-alone oscillator. Low-skew
and zero-delay buffers form the basis for most clock tree designs.

The second portion of the chapter discusses more advanced clocking concepts beginning with fre-
quency synthesis. Originally conceived for analog and RF applications, frequency synthesis is an
important part of many high-performance digital systems. It allows multiple clocks to be derived
from a single time base and is how a leading-edge microprocessor operates many times faster inter-
nally than it does externally. Frequency synthesis can also be important when processing data be-
tween multiple interfaces that run at different frequencies.

Next, delay-locked loop technology is presented, because it can accomplish the same basic func-
tion as a phase-locked loop in many cases but is a purely digital circuit with resultant implementa-
tion advantages. The chapter concludes with a brief discussion of source-synchronous interfaces as a
necessary alternative to conventional synchronous design when dealing with very high frequencies.

16.1 CRYSTAL OSCILLATORS AND CERAMIC RESONATORS

An electronic clock consists of an amplifier with a passive time-base element coupled into its feed-
back loop. It has previously been shown that a simple oscillator can be formed with just an RC time
base and an inverter that serves as an amplifier. Simpler yet is connecting the output of the inverter
directly to its input via a piece of wire sized to provide a certain time delay. While simple, neither of
these approaches yields a sufficiently accurate clock source in most applications. Accurate time-

-Balch.book Page 355 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

356 Digital System Design in Practice

bases are created by exploiting the resonant properties of

piezoelectric

crystals cut to specific sizes.
Piezoelectricity is the property found in certain crystals whereby slight changes in the crystalline
structure result in a small electric field, and vice versa; exposing the crystal to an electric field causes
slight deformation of its structure. Quartz is the most common piezoelectric crystal in use for oscil-
lators, but other such crystals, both natural and synthetic, have this property. A solid object’s natural
resonant frequency is a function of its physical dimensions and its composition. A crystal such as
quartz or certain ceramics has a predictable resonant frequency that can be finely adjusted by vary-
ing the size of the crystal slab. Furthermore, the resonant frequency is largely insensitive to varia-
tions in temperature and voltage.

A piezoelectric crystal of known resonant frequency can be incorporated with an inverting ampli-
fier to yield an accurate clock. The amplifier drives one end of the crystal, and the other end feeds
back to the amplifier’s input. With proper circuit design, the crystal begins to resonate as it is driven
and quickly settles into a continuous oscillation that both stimulates and is maintained by the ampli-
fier. A generic crystal oscillator circuit found in many digital ICs is shown in Fig. 16.1. Note the
crystal’s graphical representation. The IC contains an internal crystal driver, which is a specialized
inverter. Externally, a crystal and load capacitors are required. The load capacitors form an LC reso-
nant circuit in concert with the crystal that is made to appear inductive. Manufacturers specify crys-
tals with a particular load capacitance requirement for proper oscillation. The two capacitors are
typically selected to be the same value, C. When this is done, the overall load capacitance, C

L

, is
0.5 C plus any stray capacitance, C

S

, in the circuit. Stray capacitance is often in the may range of
several picofarads. A crystal specified with C

L

 = 18 pF might use 22-pF capacitors assuming C

S

≈

7 pF.
The circuit shown is a digital oscillator, because it emits a square wave binary signal. Analog ap-

plications such as RF use a linear amplifier to drive a sine wave instead.
It is rare to find a circumstance these days in which an engineer must design a digital oscillator

from scratch. Many embedded microprocessors and microcontrollers contain on-board driver cir-
cuits that require the connection of an external crystal, and usually the dual capacitors as well. When
an IC does not contain an integrated oscillator, discrete crystal oscillators are the most common solu-
tion. A variety of companies, including CTS, ECS, and Ecliptek, manufacture off-the-shelf oscilla-
tors that include the crystal and driver circuit in a single package. These components typically have
four terminals: power, ground, clock, and an optional clock enable.

Quartz crystals are ubiquitous, because they are inexpensive and provide a relatively high degree
of frequency stability over time and temperature. Frequency tolerance between 50 and 100 parts per
million (ppm), or better than 0.01 percent, is easily obtained. In contrast, most ceramic crystals, usu-
ally called

ceramic resonators,

 are less expensive and have tolerances an order of magnitude worse

External Connections

IC Internal Circuitry

Buffered Clock to
Internal Logic

FIGURE 16.1 Digital crystal oscillator.

-Balch.book Page 356 Thursday, May 15, 2003 3:46 PM

Clock Distribution 357

than common quartz crystals. Ceramic resonators are used in very low-cost applications wherein ac-
curacy is forsaken for small cost savings. Most digital systems use quartz crystals that cost approxi-
mately $1.00, because they are reliable, they provide an accurate time base, and the crystal’s cost is
a small fraction of the overall system cost.

Some applications require tighter tolerances than normal crystal oscillators provide. More precise
manufacturing techniques and control over materials can yield tolerances of approximately 1 ppm.
Below this level, temperature control becomes a significant factor in frequency stability. So-called

oven-controlled oscillators

are specially designed to maintain the crystal at a stable temperature to
greatly reduce temperature as a variable in the crystal’s resonant frequency. Using this technique, os-
cillators are available with tolerances on the order of one part per billion! Conner-Winfield and Vec-
tron International, among others, manufacture these high-accuracy oscillator products.

Most digital systems do not require clock accuracy better than 50 or 100 ppm. However, jitter is
another clock stability characteristic of concern. Each oscillator circuit is subject to a certain amount
of jitter based on the tolerance of its components. Aside from an oscillator’s inherent jitter specifica-
tion, ambient noise can couple into the oscillator and cause additional jitter. Therefore, it is desirable
to attenuate ambient noise on the power supply that might otherwise couple into the oscillator cir-
cuit. It is common to find various types of LC filters on the power leads of crystal oscillators. A basic
pi-type topology is shown in Fig. 16.2, consisting of a ferrite bead with capacitors on each side to at-
tenuate high frequencies with small capacitors and provide lower frequency response with a larger
capacitor. This circuit attenuates differential noise and provides the oscillator with a cleaner power
supply relative to its ground reference.

16.2 LOW-SKEW CLOCK BUFFERS

Once a stable clock source has been established, the signal must be distributed to all components
that operate on that clock. Clock distribution is critical to a digital system, because synchronous tim-
ing analysis assumes the presence of a reliable and consistent clock. Conventional synchronous
buses running between ICs require a common clock so that they can work together with a known
timing relationship. A single bit on a synchronous bus essentially consists of an output flop on one
IC that drives an external wire, possibly passes through some combinatorial logic, and then is sam-
pled at the input of a flop on another IC. Each IC on the bus should ideally see the same clock signal.
In reality, there are slight skew variations between these individual clocks. Some clocks arrive a little
sooner than others. Skew should be kept to a minimum because, like jitter, it reduces the synchro-
nous timing budget.

Common clock signals are distributed in a low-skew manner by closely matching the delays from
the clock source to all loads. Distribution delays are incurred as the clock passes through passive
wires and active buffers. Consider the hypothetical clock distribution tree shown in Fig. 16.3. An os-
cillator drives a clock buffer, which drives five loads. All of the clock signals are point-to-point with

Ferrite BeadVIN

0.1 µF 0.1 µF 10 µF

VFILTERED
Oscillator

FIGURE 16.2 Oscillator LC pi power filter.

-Balch.book Page 357 Thursday, May 15, 2003 3:46 PM

358 Digital System Design in Practice

a single driver and a single load. It is assumed that each load is approximately the same as all other
loads, which is usually the case when dealing with ICs. If one load is dramatically different from the
others, it may cause its respective driver in the clock buffer to behave differently, and this could
hinder the goal of creating a tree with balanced delays.

The absolute propagation delay from the oscillator to each load is immaterial in this case, because
all that matters is that each load sees a clock with the same timing as the others. Therefore, the vari-
ables of interest are those that can potentially cause differential delays, or skew. The first such vari-
able is the propagation delay variation from the buffer input to each output. Each output driver in an
IC has slightly different physical properties that cause its propagation delay to vary within a narrow
range. Low-skew clock buffers are specifically designed to minimize this variation. The acceptable
amount of skew varies by application but generally declines with increasing frequency and with the
use of faster devices, even at lower frequencies. Older low-skew buffers with pin-to-pin skews of
better than 1 ns are still available for systems running at moderate frequencies. Newer buffers with
skews of 200 to 50 ps are available for systems with very low skew budgets. Manufacturers of these
buffers include Cypress Semiconductor, Integrated Circuit Systems, Integrated Device Technolo-
gies, and Texas Instruments. The second skew variable in this example is the variation in wire
lengths connecting the buffer to each load. Wire delays are matched by matching wire lengths.
Matching clock trace lengths when designing a PCB is one of the basics of proper clock distribution.

Signal integrity is tightly coupled with clock distribution concepts, because electrically clean
clocks are a prerequisite for a digital system’s reliable operation. Flops can be falsely triggered by
nonmonotonic edges resulting from clocks that are improperly distributed in a way that causes their
edges to become significantly distorted. Signal integrity is the topic of a later chapter, but a few ba-
sics are introduced here because of their relevance. The goal when distributing a clock is to prevent
reflections on the transmission line that are formed by the wires that carry that clock signal. Reflec-
tions can result when a signal transitions rapidly relative to its propagation delay across the transmis-
sion line. It rises or falls so rapidly that one end of the wire is at a different voltage from the other
end. Reflections distort a signal, because the instantaneous voltage on a wire is the sum of the driven
signal and any reflected voltages that are present. A reflection occurs when a signal travels across an
impedance discontinuity. Some energy passes through the discontinuity, and some is reflected back
to its source. Terminating a transmission line with its characteristic impedance prevents reflections
from occurring, because no impedance discontinuity exists.

One easy way of terminating a point-to-point wire that is always driven from one end is with

source termination

, also called

series termination

. This technique is illustrated in Fig. 16.4 as an en-
hancement to the single-buffer clock tree example. A resistor is placed at the driver and is sized such
that its resistance plus that of the driver, Z

D

, is approximately equal to the transmission line’s charac-
teristic impedance, Z

O

. For this example, it is assumed that a transmission line with Z

O

 = 50

Ω

 is im-
plemented on a PCB and that the clock buffer’s driver has Z

D

≈

 10

Ω

. Therefore, the series resistors

50 MHz
Oscillator

Load #1

Load #2

Load #3

Load #4

Load #5

Matched Length

Clock Buffer

FIGURE 16.3 Single-buffer clock tree.

-Balch.book Page 358 Thursday, May 15, 2003 3:46 PM

Clock Distribution 359

are selected to be 39

Ω

, the closest standard 5 percent value to Z

O

 – Z

D

. In reality, it is difficult to
precisely determine an output driver’s impedance, because it is subject to variation with temperature
and supply voltage. Trial and error may be necessary to select the best series termination value for a
given clock buffer. Values between 39 and 47

Ω

 for 50

Ω

 for transmission lines are common.
Series termination does not prevent a reflection at the load, because the load is not terminated.

The clock signal travels down a 50-

Ω

 transmission line and then hits the high-impedance end load.
The reflected energy travels back toward the source across the 50-

Ω

 transmission line and then
sees the 50-

Ω

 load of the combined terminating resistor and the driver impedance. Therefore, the
reflection is properly terminated and does not reflect back to the load and disrupt the clock signal.
For series termination to work properly, the resistor should be placed as close as possible to the
driver so that the resistances appear as a single lumped element rather than as two separate loads at
high frequency.

Note that the wire between the oscillator and the buffer is not terminated. This is because the os-
cillator is usually placed very close to the buffer such that the unterminated transmission line is too
short to cause reflections of significant amplitude. There are varying opinions on how long a trans-
mission line can be before reflections become a problem. It is related to the signal’s rise time. Many
engineers use the rule that if a transmission line’s delay is greater than one-fourth of the signal’s rise
time, it should be terminated. Electrical signals travel through a wire at approximately 6 in (0.15 m)
per nanosecond. If a clock oscillator has a rise time of 1 ns, the wire between the oscillator and
buffer should be no more than 1.5 in (3.8 cm) long.

Clock buffers have a number of outputs, and situations arise when one extra clock signal is
needed. Rather than having to use a second clock buffer IC just for one more output, one pin can of-
ten drive two loads as shown in Fig. 16.5. A risk of this approach is that the more heavily loaded out-

RTERM = 39 Ω

50 MHz
Oscillator

Load #1

Load #2

Load #3

Load #4

Load #5
ZO = 50 Ω

ZD = 10 Ω

Matched Length

FIGURE 16.4 Series-terminated clock distribution.

RTERM

50 MHz
Oscillator

Load #1

Load #2

Load #3

Load #4

Load #5

Matched Length

Load #6

FIGURE 16.5 Single output driving two loads.

-Balch.book Page 359 Thursday, May 15, 2003 3:46 PM

360 Digital System Design in Practice

put will cause unacceptable skew to develop with respect to the other pins that are driving only a
single load. Whether this occurs depends on each situation’s skew tolerance, clock buffer drive
strength, and input impedance of the clock load.

As the number of clock loads in a system increases, there comes a point at which clock distribu-
tion cannot be performed using a single clock buffer IC. Using multiple clock buffers introduces a
new source of skew: part-to-part propagation delay variation. It is easier to manage skew on a single
chip, because each output circuit has very similar physical properties to its neighbors, and the tem-
perature variation across a small chip is very low. Neither of these assumptions automatically holds
true when dealing with separate ICs. Some low-skew clock buffers are specially designed and fabri-
cated for low part-to-part skew specifications. Newer devices are available with part-to-part skews of
0.5 ns, and more mature devices with 1 ns part-to-part skews are available as well. Figure 16.6
shows how two clock buffers might be connected to drive twice the number of loads as shown previ-
ously. Note that the oscillator directly drives both buffers in parallel without any termination, be-
cause it is assumed that the wire length is short enough to minimize reflections. If more than a
couple of buffers are necessary to distribute clocks to the system, an intermediate buffer should
probably be placed between the oscillator and final buffers so that the oscillator does not have to
drive too many loads.

16.3 ZERO-DELAY BUFFERS: THE PLL

Low-skew buffers do an excellent job of distributing clocks with minimal relative delays when there
is no constraint on the absolute propagation delay from the clock tree input to its outputs. However,
there are circumstances where the absolute delay is as important as the relative delay. Many micro-
processors with synchronous bus interfaces generate their own bus clock internally and emit this
clock on an output pin. All bus signals must be timed relative to that output clock to meet the micro-
processor’s timing rules of t

CO

, t

SU

, and t

H

. If the microprocessor communicates with just one pe-

50 MHz
Oscillator

Load #6

Load #7

Load #8

Load #9

Load #10

RTERM

Load #1

Load #2

Load #3

Load #4

Load #5

Matched Length

Load #3

Buffer #1

Buffer #2

FIGURE 16.6 Dual-buffer clock tree.

-Balch.book Page 360 Thursday, May 15, 2003 3:46 PM

Clock Distribution 361

ripheral IC that is located close to it, the peripheral’s clock input can be driven directly by the
microprocessor’s clock output, and all should be okay. Chances are great, however, that the micro-
processor must communicate with several peripheral and memory ICs that are located a significant
distance away, as shown in Fig. 16.7. Placing a low-skew buffer between the microprocessor’s clock
output and the other ICs will not solve the problem, because the clocks at the loads will have a large
skew relative to the microprocessor clock.

Another common clock distribution problem with an absolute delay constraint is driving common
clocks to an expansion board. Consider the system shown in Fig. 16.8 in which a base board con-
tains multiple ICs connected via a common synchronous bus. An expansion board can be plugged in
to allow ICs on that card to communicate over the common bus on the base board. How can all the
ICs on the base and expansion boards receive low-skew clocks? If the expansion board design is
fixed ahead of time, a low-skew buffer tree on the base board can send the required number of clock
signals to the expansion card and achieve length matching on both boards. This works as long as the
expansion board’s design never changes. A problem appears if a later design is intended to add more
ICs with more clocks, or if the wiring of the expansion board can no longer maintain a length match
with the wires on the base board. In all cases, as the number of individual clock loads increases on

Reference
Clock

Microprocessor

Internal Clock
Circuit

Bus Interface
Logic Synchronous

Memories
Synchronous
Peripherals

Clock
Distribution

FIGURE 16.7 Microprocessor bus-clock master.

Master
Clock

Logic
IC

Base Board
Clock Distribution

Logic
IC

Logic
IC

Expansion Board
Clock Distribution

Logic
IC

Logic
IC

Base Board Expansion Board

FIGURE 16.8 Clock distribution to an expansion board.

-Balch.book Page 361 Thursday, May 15, 2003 3:46 PM

362 Digital System Design in Practice

the expansion board, more pins or wires must be used to make the required connections. The in-
creased connectivity increases cost yet does not improve the design’s flexibility and tolerance of fu-
ture changes.

A clock’s purpose in a system is to provide a regular timing reference. Clock signals do not commu-
nicate information, because they are repetitive, and no single clock cycle has unique properties to set it
apart from others. Therefore, a clock can be arbitrarily delayed without losing or gaining information.
As with sine waves, periodic signals complete one full cycle over 360°. If a clock is delayed by an in-
teger multiple of 360°, its delay cannot be detected, because each cycle is identical to all others, and its
transition edges still occur at the same relative points in time. This important principle enables solu-
tions to the clock distribution problems just posed and others like them. While it is physically impossi-
ble to construct a clock distribution circuit with zero delay, the end result of zero delay can be
replicated by purposely adding more delay until an integer multiple of a 360° delay has been achieved.

Without a special trick, it would be extremely difficult to adjust a circuit for a perfect 360xN-de-
gree delay. Propagation delays through semiconductors and wires have too much variation for this to
be practical. The secret to achieving near perfect delays is with a closed-loop control system known
as a

phase-locked loop

, or PLL. A PLL continually monitors a feedback clock signal and compares it
against a reference clock to determine phase, or delay, errors. As soon as a phase shift is detected,
the PLL can respond and compensate for that delay. This continuous compensation makes a PLL ex-
ceptionally able to deal with varying delays due to time, temperature, and voltage. PLLs are analog
circuits and were originally invented for use in radio modulators and receivers. FM radios, televi-
sions, and cellular telephones would not be possible without PLLs.

Figure 16.9 shows the structure of a generic PLL. A PLL is built around a

voltage controlled os-
cillator

, or VCO. The oscillating frequency of a VCO is proportional to its analog control voltage in-
put. A phase detector drives the VCO’s control input through a lowpass filter. When the reference
and feedback clock edges occur at the same time, the input and output clocks are aligned by 360xN
degrees, and the phase detector emits a neutral error signal, enabling the VCO to maintain its fre-
quency. If the VCO begins to wander, as all oscillators do to a certain extent, the feedback clock
edges begin to shift relative to the reference. As soon as this happens, the phase detector generates an
error signal, which causes the VCO to slightly increase or decrease its frequency to move the feed-
back clock edge back into phase with the reference. One of the beauties of a PLL is that it can use an
inexpensive VCO, because the feedback loop keeps the VCO at the correct frequency. A phase detec-
tor responds very quickly to phase errors, and the potential exists for an unstable control system re-
sulting from rapid overcompensation. The lowpass filter stabilizes the control and feedback loop to
average the phase detector output so that the VCO sees a more gradual control slew as compared to
rapid swings.

PLLs are analog circuits and their design is a non-trivial task. Fortunately, numerous companies
manufacture special-purpose digital PLLs that are designed for clock distribution applications. All

VCO Clock Buffer
Lowpass
Loop FilterPhase Detector

Reference (Input)
Clock

Feedback Clock

FIGURE 16.9 Generic phase-locked loop.

-Balch.book Page 362 Thursday, May 15, 2003 3:46 PM

Clock Distribution 363

of the loop stability problems have been taken care of on a single IC, allowing engineers to use an in-
tegrated PLL as a tool and focus on the task of zero-delay clock distribution.

A zero-delay clock distribution circuit contains a PLL whose feedback path is chosen such that
there is a nearly perfect phase alignment between the PLL reference clock and the clock loads. Fig-
ure 16.10 shows a general zero-delay clock distribution scenario. The feedback path has a low-skew
relationship with the other clock loads. It is driven by the same low-skew buffer and is purposely
routed on a wire that is length matched with the other clock loads. The result is that the feedback
clock arrives back at the PLL at the same time that the other clocks reach their loads. Of course, a
low-skew buffer has finite skew, and this skew limits the PLL’s ability to align the output clocks to
the reference clock. PLL feedback clocks are typically carried on wires that have been artificially
lengthened by serpentine routing, because the PLL and buffer are usually close together while the
clock loads are further away. It is actually the norm for a digital PLL to be integrated onto the same
IC as a low-skew buffer, because the two functions are inextricably linked in digital clock distribu-
tion applications. Companies that manufacture low-skew buffers commonly offer integrated PLLs as
well, often under the term

zero-delay buffer

.
Turning back to the microprocessor clock distribution example in Fig. 16.7, it is now apparent

that a PLL with an integrated low-skew buffer would solve the problem. The microprocessor clock
would drive the PLL reference, and matched-length wires emanating from the buffer would go to
each clock load as well as the PLL feedback input. The resultant skew between the microprocessor’s
bus clock and the clock seen at each load is the sum of the propagation delay through the wire that
connects the PLL to the microprocessor, the propagation delay through any small wire length mis-
matches, and the skew inherent in the PLL and buffer circuits. At an approximate signal conduction
velocity of 6 in (0.15 m) per nanosecond, the skew due to wiring propagation delay is minimal if the
PLL is located near the microprocessor and the output wires are matched reasonably well. As with
any IC, the skew specifications for a zero-delay buffer should be compared against the system’s re-
quirements to select a suitable device.

The expansion card clock distribution problem in Fig. 16.8 can also be addressed using a zero-de-
lay buffer as shown in Fig. 16.11. A normal low-skew buffer can be used on the base board, because
the master clock is an oscillator with no skew requirement between that oscillator and the distributed
clocks. All outputs from this buffer are length matched—including the wire going to the expansion
board. As soon as the clock passes across the expansion connector, it drives a zero-delay buffer that
has matched length outputs going to the expansion ICs as well as a feedback path back to the PLL.
This ensures that the expansion ICs observe the same clock that was delivered across the connector.
Attempts can be made to reduce skew introduced by the connector and routing to the zero-delay
buffer by shortening the wire on the base board that drives the expansion connector. The wire should
be shortened by the approximate distance represented by the connector and the short wire length on

Load #1

Load #2

Load #3

Load #4

Matched Length

Reference Clock

Digital
PLL

Feedback Clock

FIGURE 16.10 Zero-delay clock distribution.

-Balch.book Page 363 Thursday, May 15, 2003 3:46 PM

364 Digital System Design in Practice

the expansion board between the connector and the zero-delay buffer. It is easier to constrain a short
wire length leading to the zero-delay buffer, because these ICs are typically small and can be located
near the connector, regardless of the board’s overall layout.

The downside of PLLs is that they are sensitive to jitter and may actually add jitter to an other-
wise clean clock. A typical PLL is only as good as the reference clock that is supplied to it, because
the phase detector seeks to continually adjust the VCO to match the incoming reference. As such, a
typical PLL will not reduce jitter. A loop filter with a long time constant may be used to reduce jitter,
although other problems can result from doing so. Noisy power increases a PLL’s jitter, because the
analog VCO circuit translates noise into varying oscillation periods. Therefore, PLLs should have
their analog power supply filtered with at least a series impedance and shunt capacitance as shown
earlier for a crystal oscillator using an LC pi filter.

16.4 FREQUENCY SYNTHESIS

Digital systems can use PLLs for more than just zero-delay clock buffering. Arbitrary frequencies
can be synthesized by a PLL based on a reference clock, and this arbitrary frequency can be changed
in real time. Systems with analog front ends and digital processing cores use frequency synthesis for
tuning radios and implementing complex modulation schemes. A common example of this is a digi-
tal cellular telephone. Purely digital systems make extensive use of frequency synthesis as well. Ad-
vanced microprocessors and other logic ICs often run their cores at a multiple of the external bus
frequency. PLLs are used as clock multipliers in these ICs.

Frequency synthesis is possible with a PLL, because the phase detector and VCO do not have to
operate at the same frequency. The phase detector cares only that its two inputs are phase aligned;
they must be of the same frequency and phase for a neutral error signal to be generated. Subject to
minimum and maximum operating frequency limitations, the VCO can actually be made to run at
any frequency. Let’s first consider the example of synthesizing an integer divisor of the reference
clock. The PLL circuit in Fig. 16.12 places a divide-by-N counter between the true reference clock
and the phase detector’s reference input. The result is that the PLL is unaware of the original refer-
ence clock and instead sees the divided version, whose frequency it is able to match by adjusting the
VCO until the phase error is zero.

Master
Clock

Logic
IC

Low-Skew Buffer

Logic
IC

Logic
IC

Zero-Delay Buffer

Logic
IC

Logic
IC

Base Board Expansion Board

LA LA LA LB LB

LB

LA-LC LC

FIGURE 16.11 Zero-delay buffer on expansion card.

-Balch.book Page 364 Thursday, May 15, 2003 3:46 PM

Clock Distribution 365

Clock division by an integer divisor is not very interesting, because it can be done without the
complexity of a PLL. Now let’s look at integer multiplication, which does require a PLL. The circuit
in Fig. 16.13 places a divide-by-M counter in the feedback path between the VCO output and the
phase detector. Things start to get interesting here. Instead of observing the true VCO signal, the
phase detector unknowingly gets a divided version of that clock. The phase detector has no knowl-
edge of what signals it is seeing—just whether they are phase aligned. Therefore, the phase detector
emits an error signal until the divided feedback clock matches the frequency and phase of the refer-
ence. The VCO must run at a multiple of M times the reference for the feedback clock to equal the
reference, resulting in clock multiplication.

Integer multipliers and dividers are useful, but truly arbitrary ratios between input and output can
be achieved when the reference and feedback dividers are joined into a single circuit. The circuit in
Fig. 16.14 allows the output to run at a ratio of M

÷

N times the reference frequency by combining
the principles of the aforementioned divider and multiplier schemes. Different frequencies can be
synthesized in real time by periodically changing the M and N counters. A PLL has a finite lock time,
the time that the loop takes to adjust to a new operating frequency. Any frequency synthesis scheme
that requires real-time adjustment must take the lock time into account. If the counters are changed
too rapidly, the PLL may spend all of its time hunting for the new frequency and never settling.

PLLs in general are capable of frequency synthesis when complemented with external counters,
but most digital PLLs are not designed specifically for large multiplication ratios. Several factors in-

Reference Clock Divide by N
Counter

FIGURE 16.12 PLL clock divider.

Reference Clock

Divide-by-M
Counter

FIGURE 16.13 PLL clock multiplier.

Reference Clock

Divide by M
Counter

Divide by N
Counter

FIGURE 16.14 PLL clock synthesizer.

-Balch.book Page 365 Thursday, May 15, 2003 3:46 PM

366 Digital System Design in Practice

fluence the suitability of a PLL for arbitrary clock synthesis, including VCO stability and loop-filter
characteristics. VCO stability is improved by filtering its power supply. Typical core clock synthesis
applications in a microprocessor or logic IC may require multiplication by 2 or 4, which is relatively
straightforward. As the multiplication ratio increases, the control path between the phase detector
and the VCO is degraded, because fewer feedback adjustment opportunities exist for every VCO
clock period. If a PLL is multiplying a reference by 100, the phase detector will only be able to
judge phase errors on 1 percent of the VCO edges. There is the potential for VCO wander during the
long intervals between phase detector corrections.

Most digital PLLs contain a lowpass loop filter integrated on chip that is matched to the typical
operating scenario of a 1:1 input/output ratio or some small multiplication factor. Larger multipli-
cation ratios may require a more complex off-chip filter that is specifically designed for the appli-
cation’s requirements. This is where PLL design in a digital system can start to get complicated.
Fortunately, semiconductor manufacturers have documentation and applications engineering staff
available to assist with such tasks. One set of devices that are well suited for digital frequency
synthesis is Texas Instruments’ TLC29xx family. The TLC29xx devices have separately con-
nected phase detector and VCO sections such that an external loop-filter can be customized to the
application.

It is not very common for a digital system to require complex multiplication ratios in a PLL, but
the requirement does exist in applications that have multiple interfaces that run at different fre-
quencies and must be phase locked to prevent data loss. One example is a digital video processor.
The primary clock frequency of many digital video standards is 27 MHz; however, some newer
high-definition video standards operate at 74.25 MHz. These frequencies are related by a factor of
2.75. If a digital video processor must perform some conversion between these two interfaces and
do so in a manner that precisely matches their data rates, a PLL is necessary to lock one of the in-
terfaces to the other. Otherwise, each interface would run on its own oscillator, and small amounts
of frequency drift would soon cause one to get a little faster or slower than the other. No matter
how accurate an oscillator is, it has a finite deviation from its nominal frequency. When two oscil-
lators are paired with the expectation that they run at constant rates, a problem will eventually de-
velop. As soon as a rate mismatch develops, the input and output data rates no longer match, and
data is corrupted.

For the sake of discussion, assume that the 27-MHz interface is the master, and the 74.25-MHz
interface is the slave. Because a counter cannot directly divide by 2.75, a ratio of integers must be
calculated. The smallest pair of integers that yields M

÷

N = 2.75 is M = 11 and N = 4. This means
that the PLL is essentially performing an 11

×

 clock multiplication function, because the 27 MHz ref-
erence is divided by 4 to yield a 6.75-MHz PLL input.

The task of designing a PLL to implement large multiplication factors is decidedly non-trivial be-
cause of the problems of stability and jitter. Selecting an appropriate lowpass filter that keeps the
loop from unstable oscillations and that adequately addresses VCO jitter can involve significant con-
trol systems theory and analog filter design skills.

16.5 DELAY-LOCKED LOOPS

PLLs have traditionally been considered the standard mechanism for implementing zero-delay buff-
ering and clock multiplication. Their flexibility comes at a certain price for manufacturers of digital
ICs, because PLLs are analog circuits that must be isolated from noisy digital switching power sup-
plies for low-jitter operation. Although the problems of on-chip isolation have been addressed for a
long time, the problem persists. Many large digital ICs are now manufactured with a purely digital

-Balch.book Page 366 Thursday, May 15, 2003 3:46 PM

Clock Distribution 367

delay-locked loop

, or DLL, that produces similar results to a PLL. Instead of controlling a VCO to
vary the phase of the output clock, a DLL contains a many-tap digital delay line through which the
reference clock propagates. According to the detected phase difference between the reference and
feedback clocks, a specific propagation delay can be picked in real time to align the edges. A DLL
may reduce problems in certain designs as a result of the reduced noise sensitivity of purely digital
circuits and the lack of a VCO. Figure 16.15 shows a basic digital DLL where the delay is pro-
grammed by selecting one of many delay line taps with a multiplexer. DLLs can also be designed as
analog circuits by employing a voltage controlled delay line. However, the purely digital implemen-
tation is preferable due to its improved noise immunity.

A DLL must have sufficient delay granularity at each tap to be effective in minimizing skew be-
tween its input and output. If the incremental delay is 100 ps, the DLL can offer skew no better than

±

50 ps. The phase detector within a DLL is able to dynamically adjust the delay line to compensate
for changing propagation delays through active and passive elements over time, temperature, and
voltage. In this regard, it is very similar to a PLL’s dynamic compensation.

It is worth noting that different companies and engineers take differing positions on whether a
PLL or DLL is superior for clock management. There are those who trust the time-proven PLL
methodology and those who believe that a purely digital circuit is the cure-all for noise-related prob-
lems. In most situations, there is no choice, because a company that manufactures FPGAs or micro-
processors has already made the decision and fabricated one solution. Custom IC design processes
sometimes allow the customer to choose one over the other. In reality, DLLs and PLLs have both
been demonstrated to work well in millions of individual units shipped, and one shouldn’t be overly
concerned unless working with very high-speed designs where picoseconds of jitter and skew can
become significant problems.

16.6 SOURCE-SYNCHRONOUS CLOCKING

Clock distribution becomes a more challenging task as the number of low-skew loads increases and
the operating frequency increases. Despite the low-skew technologies discussed so far in this chap-
ter, there are practical limitations on how little skew can be achieved across a high-fan-out clock
tree. When a system requires more low-skew clocks than a single buffer can drive, multiple buffers
are required, and part-to-part skew becomes the limiting factor rather than output-to-output skew on
a single buffer. Truly high-fan-out clock trees may require multiple levels of buffering, and each
level adds to the overall skew. Zero-delay clock buffers can be used in place of low-skew buffers, but
PLLs introduce jitter and have finite output-to-output skew as well.

Reference Clock Phase Detector
and

Delay Control Logic

Feedback Clock

FIGURE 16.15 Generic delay-locked loop.

-Balch.book Page 367 Thursday, May 15, 2003 3:46 PM

368 Digital System Design in Practice

A typical high-fan-out clock tree has approximately 0.5 to 1.0 ns of skew resulting from multiple
buffers and PLLs, each contributing several hundred picoseconds of skew and jitter. The question
becomes how much skew a system can tolerate. Skew tolerance is a function of the clock frequency,
the trace length separating devices, and IC timing specifications. If a clock tree’s skew is relatively
independent of frequency, it follows that skew becomes a greater percentage of the clock period, and
therefore a greater concern, as the frequency increases.

There is no magic frequency at which clock tree skew and jitter become a dominant factor. Input
hold time requirements are often the dominant restriction on clock skew. Evaluating hold time com-
pliance requires knowledge of the source flop’s output hold time, t

OH

, which specifies how long the
output remains unchanged after the active clock edge, usually the rising edge. Manufacturers do not
always specify t

OH

, requiring conservative estimates for proper analysis. A conservative estimate is
generally 0 ns, or saying that the output can change immediately after the active clock edge.

Consider a hypothetical system using ICs with output specifications of output hold time (t

OH

) =
2 ns and t

CO

 = 5 ns, and input specifications of t

SU

 = 2 ns, and t

H

 = 1 ns. The system bus wires have
propagation delays ranging from 1 to 2 ns. Skew and jitter are handled as a combined entity in this
example.

Below a certain frequency, the skew budget is limited by the hold time requirement,

t

SKEW

 < t

OH

 + t

PROP(MIN)

 – t

H

t

SKEW

 < 2 ns

The hold time expression is derived knowing that the destination flop’s input is delayed from the
source flop’s output by at least the minimum propagation delay of the interconnecting wires. Wiring
delay plus the source flop’s t

OH

 provides information on how long the destination flop’s input re-
mains static after the active clock edge. This static time minus t

H

 provides the margin with which t

H

is met. Clock skew must be less than this margin for valid timing.
Clock skew as restricted by setup time is calculated by determining the worst-case delay from the

active clock edge until the destination flop’s input changes. This worst-case delay is the sum of the
source flop’s t

CO

 and the maximum propagation delay of the wiring. Next, t

SU

 must be added in to
satisfy the destination flop. This entire delay restriction is subtracted from the actual clock period to
yield the timing margin. Clock skew must be less than this margin. At an arbitrarily chosen frequency
of 80 MHz (T = 12.5 ns), the skew budget as a function of setup time is greater than that of hold time,

t

SKEW

 < T– (t

CO

 + t

PROP(MAX)

 + t

SU

)

t

SKEW

 < 3.5 ns

Readily available clock distribution ICs can be used in this system at 80 MHz and below without
concern. At 100 MHz (T = 10 ns), the skew budget decreases to 1 ns, which is achievable, although
with little added margin. This method of timing clearly runs out of gas at higher frequencies.

Traditional synchronous clocking does not work at high frequencies, because wire delays and
clock tree skew do not scale with advancing semiconductor technology.

Source-synchronous

bus
clocking architectures enable operation well in excess of 100 MHz by removing absolute wire de-
lays and clock tree skew as variables in timing analysis. A source-synchronous interface distributes
clock and data together as shown in Fig. 16.16 rather than separately as in a conventional synchro-
nous clock tree design. The data source, or transmitter, emits a clock that is in phase with the data as
if it were just another signal on the synchronous interface. In doing so, the clock and data have
closely matched delays through the IC’s output circuits and package. The signals are routed on the
circuit board with length matching so that each wire that is part of the interface has approximately

-Balch.book Page 368 Thursday, May 15, 2003 3:46 PM

Clock Distribution 369

uniform propagation delay. By the time the signals reach the receiving IC, clock and data are phase
aligned within a certain skew error that is a function only of the transmitter’s output-to-output skew
and the delay mismatch of the PCB wiring. This skew is far less than the skew and wiring delay pen-
alties of a conventional synchronous interface and may be on the order of 100 ps. Nearly the entire
clock period, less allowances for finite skew and switching time, can be used to meet the input flops’
setup and hold specifications, which is why high-performance memory (e.g., DDR SDRAM) and
logic interfaces can run at hundreds of megahertz.

The clock and data timing relationship can be arbitrary as long as the skew is tightly controlled,
because the receiver’s input circuitry can implement appropriate delays based on the transition of
data relative to clock to meet the flop’s true setup and hold requirements. Two common source-syn-
chronous timing relationships are shown in Fig. 16.17, where the clock is offset into the middle of
the data valid window. In the case of single-data rate bus (SDR), this is akin to clocking off the fall-
ing edge. A double-data rate bus (DDR) would require that the clock be shifted by 90° relative to
data such that the rising and falling edges appear in the middle of the valid windows so that data can
be registered on both edges.

A disadvantage of source-synchronous bus architecture is the management of a receive clock do-
main that is out of phase with the core logic domain. A conventional synchronous design seeks to
maintain a uniform clock phase across an entire design, whereas source-synchronous design explic-
itly gives up on this and proliferates disparate clock domains that have arbitrary phase relationships
with one another. This trade-off in clock domain complexity is acceptable, because individual gates
are cheap on multimillion-transistor logic ICs. A logic IC typically requires a FIFO and associated
control logic to cross between the receive clock and internal clock domains.

Source-synchronous interfaces are often point-to-point, although this is not strictly necessary, be-
cause of the high speeds at which they usually run. It is electrically difficult to fabricate a multidrop

Transmitter Receiver

Clock

Data

Control

Clock

Data, Control

FIGURE 16.16 Source-synchronous bus.

tSU

Clock

Data, Control

SDR

tH

tSU

Clock

Data, Control

DDR

tH

FIGURE 16.17 Typical clock/data timing.

-Balch.book Page 369 Thursday, May 15, 2003 3:46 PM

370 Digital System Design in Practice

bus that operates at hundreds of megahertz. Figure 16.18 shows a hypothetical system architecture
that employs source-synchronous interfaces. There are three ICs, and each IC is connected to the
other two via separate interfaces. Each interface consists of two unidirectional buses. Unlike the re-
ceive clock, the transmit and core clock domains are merged, because this example does not require
the core to operate at a different frequency from that of the bus. It would be easy to insert a FIFO,
too, if a benefit would result from decoupling the bus and core frequencies. Clock distribution for
this system is relatively easy, because each IC requires the same core clock frequency, but the inter-
faces are self-timed, which removes clock tree skew as a concern.

Tx
#1

Core Logic

FIFO

Rx
#1

FIFO

Rx
#2

Tx
#2

IC #1 IC #2 IC #3

Tx
#1

Core Logic

FIFO

Rx
#1

FIFO

Rx
#2

Tx
#2

Tx
#1

Core Logic

FIFO

Rx
#1

FIFO

Rx
#2

Tx
#2

FIGURE 16.18 Source-synchronous system architecture.

-Balch.book Page 370 Thursday, May 15, 2003 3:46 PM

371

CHAPTER 17

Voltage Regulation and Power
Distribution

Power is an obviously critical component of a system, but some engineers have bad reputations for
inadequately planning a system’s voltage regulation and power distribution scheme. When power is
an afterthought, luck sometimes works and sometimes does not. There is really no magic involved in
designing an appropriate power subsystem, and this chapter seeks to explain the main issues that
should be taken into consideration. The purpose of this chapter is to provide a broad understanding
of power regulation concepts and how they can be applied to implement the power regulation and
distribution circuitry in a digital system.

After many years of development and industry experience, we are fortunate to have at our dis-
posal a broad array of off-the-shelf power regulation products. In concert with discrete semiconduc-
tors, a system’s unique power requirements can be addressed with the appropriate tools. Many
power requirements can be handled with off-the-shelf regulators. When situations arise that require a
semicustom approach, the gaps can be filled in with a basic understanding of voltage regulation
techniques.

Safety should be an overriding concern in all engineering disciplines, but safety is all the more
critical when dealing with power circuits. Power circuits may carry potentially lethal voltages and
currents and must be treated with a healthy respect. Resist the urge to quickly prototype a power cir-
cuit without taking the necessary time to study its thermal and electrical properties. Even if a power
circuit appears to operate properly for a few minutes, an improper design can eventually overheat,
with disastrous results.

This chapter is organized in two basic sections: voltage regulation and power distribution. First,
basic voltage regulation principles are discussed to provide an orientation to the subject. Thermal
analysis is then presented before any circuits are discussed, because thermal issues are fundamental
to all power circuits. A safe and reliable circuit must be designed to handle its intended power load
over its full range of operating conditions without overheating. The two subsequent sections deal
with methods of regulating voltage and current, encompassing diode-shunt and transistor series-reg-
ulators. Off-the-shelf solutions are explored next to provide an understanding of the common inte-
grated linear and switching regulators at an engineer’s disposal.

Once basic regulation techniques have been presented, important issues in power distribution are
discussed. Even the best regulator is useless without adequate means of conveying power to the load.
Power distribution encompasses three basic themes: safety, reliability, and electrical integrity. Safety
and reliability issues of handling AC power, fuses, and adequate wiring are discussed. Power regula-
tion schemes employing precertified off-the-shelf AC-to-DC supplies are encouraged because of the
improved safety of using known-good AC power modules. Finally, the use of low-inductance power
planes and bypass capacitors is presented in the context of distributing power while preserving its
electrical integrity. A brief power subsystem design example is used to illustrate these concepts.

-Balch.book Page 371 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

372 Digital System Design in Practice

17.1 VOLTAGE REGULATION BASICS

Power usually enters a system in a form dictated by its generation and distribution characteristics
rather than in a form required by the components within that system. Plugging a computer into a
120 VAC wall outlet provides it with power in a form that was deemed efficient for generation and
distribution in the early twentieth century. Unlike light bulbs, digital logic chips do not run very well
if connected directly to 120 VAC, although they may emit a bright light for a brief period if con-
nected in this manner! Rectifiers and the conversion between AC to DC has already been discussed,
but this is only part of the solution to providing usable power to system components. Once the AC
has been rectified to DC and filtered, the voltage probably does not meet the specifications of the cir-
cuit. A rectified power input may not only have the wrong DC level, it probably has a good deal of
ripple artifacts from the original AC input, as shown in Fig. 17.1.

An ideal voltage regulator provides a constant DC output without ripple regardless of the input
voltage’s DC level and ripple. This applies not only to rectified AC power but also to power provided
by batteries, solar cells, DC generators, and so on. Any time a system’s power input does not provide
the supply voltage required by its components, a voltage regulator is necessary to perform this con-
version. Most digital systems require at least one voltage regulator, because it is rare to find a power
source that provides the exact voltage required by digital and analog circuits. There are, however,
some special-purpose ICs designed with wide supply voltage specifications so that they can be di-
rectly connected to batteries without an intermediate voltage regulator. On the flip side, there are
systems that require multiple voltage regulators, because they contain circuitry with multiple supply
voltage specifications. At one time, it was common to have a single +5-V digital supply. Now, it is
not uncommon to have 3.3-, 2.5-, 1.8-, and 1.5-V supplies in myriad configurations.

Most voltage regulators are the

step-down

variety—they provide a constant output voltage that is
lower than the input. There are many types of step-down regulators, as will be shown in the course of
this chapter. Some applications require

step-up

regulators that provide a constant output that is
higher than the input. These applications are often low-power battery-operated devices in which a
1.5- to 3-V battery is moderately stepped up to power a small circuit.

A voltage regulator must have access to some form of voltage reference to which it can compare
its output to determine if the level is correct. Without a known reference, the regulator has no means
of measuring its output. This is analogous to measuring an object with a ruler, which is a known
length reference. Without the reference, the object’s length remains unknown. The structure of a
general voltage regulator is shown in Fig. 17.2.

The reference is powered directly by the arbitrary input voltage but maintains a constant output
voltage subject to certain minimum operating conditions. A reference cannot maintain an output
voltage higher than the input. Therefore, references usually provide low voltages that are compared
against a scaled-down feedback voltage from the output. This enables the regulator to function over
a wider range of input levels. The two resistors implement a basic voltage divider that drives a feed-
back comparator. These resistors are chosen to provide a feedback voltage equal to the reference at
the desired output voltage. When the feedback voltage falls below the reference, the comparator sig-

Rectified AC Power Filtered DC with Ripple

FIGURE 17.1 Ripple on a rectified AC power input.

-Balch.book Page 372 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 373

nals the voltage control circuit to increase V

OUT

. Similarly, once the feedback voltage rises above
the reference, the voltage control circuit must reduce its output. This feedback loop is subject to sta-
bility problems unless special allowances are made in the design. An unstable voltage regulator can
oscillate, which is very undesirable. Voltage regulator stability problems have long been dealt with
in reliable and effective manners.

From the brief description of a regulator’s operation, it is apparent that the accuracy of the refer-
ence directly affects the accuracy of the generated output voltage. Diodes of various types serve as
voltage references, because semiconductor junctions exhibit nonlinear voltage drops that are not
very sensitive to current changes—Ohm’s law does not apply. However, current and temperature do
affect this voltage drop, which causes variation. A standard small-signal silicon diode exhibits a drop
of between 0.6 and 0.7 V at low currents. A crude regulator could be constructed using such a refer-
ence, but the degree of accuracy would be unacceptable for many applications. More specialized di-
odes with integrated compensation elements designed explicitly to serve as stable voltage references
can achieve tolerances of 0.1 percent over temperature and part-to-part variations.

Voltage regulators are characterized using a wide range of parameters. Some of the metrics that
might first come to mind are how much current can be supplied and what restrictions exist on the
input and output voltages. Other specifications that are just as important involve the accuracy to
which the output voltage is maintained and how the output is affected by a variety of ambient
conditions.

The relationship of input and output voltages is usually the first order of business. A regulator has
minimum and maximum input and output voltage limits as well as a

dropout voltage

, which is the
minimum difference between input and output that can exist while guaranteeing a regulated output.
When designing a particular regulator into a system, it is important to ensure that the regulator’s
specifications will not be violated and that any dropout voltage restriction will be met. Some types of
switching regulators do not have a dropout voltage, but most regulators do require a certain mini-
mum overhead between input and output. Output current and power specifications must also be ob-
served. Each regulator has maximum current and power ratings beyond which it will overheat and
damage itself and, possibly, surrounding circuitry. Some regulators have minimum current ratings,
below which the device is incapable of guaranteeing a regulated output.

Adherence to these rules may sound obvious at first, but many an engineer has picked an inade-
quate voltage regulator as an afterthought, only to waste time and money later in solving problems of
poorly regulated voltages and overheating regulator components.

Once the basic input/output conditions have been satisfied, regulation accuracy becomes the
prime concern. Among others, there are three basic specifications:

line regulation

,

load regulation

,
and

ripple rejection

.

R2

VOUTVIN

R1

Voltage
Control

Voltage
Reference

+

–

FIGURE 17.2 General voltage regulator.

-Balch.book Page 373 Thursday, May 15, 2003 3:46 PM

374 Digital System Design in Practice

Line regulation is the relationship between a change in the input (line) voltage and the output
voltage and is expressed in either percentage or absolute magnitude terms. It is not uncommon to
find regulators with line regulation on the order of 0.01 percent. Such a regulator would exhibit an
output swing of only 0.01 percent over the full range of the specified input voltage.

Load regulation is the relationship between a change in the load current and the output voltage
and is also expressed as either a percentage or a magnitude. Regulators are available with load regu-
lation on the order of 0.1 percent. This means that, over the full range of specified output current, the
output voltage will not change by more than 0.1 percent.

Line and load regulation are not the only parameters affecting the DC output level of the regula-
tor. These parameters characterize the voltage control element and feedback amplifier in the regula-
tor. The operation of these components is only as good as the quality of the voltage reference and the
applied feedback voltage. High-quality DC power supplies can deliver 1 percent DC accuracy,
meaning that the reference and feedback resistor network have a combined tolerance better than 1
percent. A 3.3-V, 1 percent supply guarantees an output range from 3.267 to 3.333 V. Most digital
systems use 5 percent supplies, because such accuracy is typically easy to achieve, and most com-
mercial logic ICs are specified with V

CC

/V

DD

 tolerances of no more than 5 percent. This is where the
common 4.75- to 5.25-V operating range comes from when dealing with 5-V logic. Some logic ICs
are specified with V

CC

/V

DD

 tolerances of 10 percent, although fewer ICs are found with such loose
ratings these days because of the ease with which 5 percent supplies are implemented. It is easier for
a semiconductor manufacturer or an analog circuit designer to build a system with a tighter supply
voltage requirement, because the components do not have to operate over a wider range of condi-
tions. Specifying all ICs with 1 percent requirements would make the vendors’ jobs easier, but it
would also result in more expense and complexity at the system level. Five percent is a good com-
promise at the current state of technology.

Finally, ripple rejection is the ability of a regulator to block incoming ripple from feeding through
to the output. It is the ratio of the input ripple magnitude to the output ripple magnitude and is usu-
ally expressed in decibels, because it is a large number for any effective regulator. Ripple rejection
specifications of 50 to 80 dB are common. These specifications are often measured at 120 Hz, be-
cause this is the ripple frequency resulting from a rectified 60 Hz AC input in North America and
other parts of the world. Ripple rejection gets worse with increasing frequency, making a 120 Hz
specification worst case when compared to the 100-Hz ripple that would be observed from a rectified
50-Hz AC input in Europe or Asia.

17.2 THERMAL ANALYSIS

Before heading straight into a discussion of voltage regulation techniques, it is appropriate to briefly
introduce thermal analysis in the context of electronic components. Some energy will be dissipated
as heat during the process of converting an input voltage to an output voltage, regardless of the type
of regulator. All or most of the power in a typical system passes through voltage regulators, making
them a concentrated point of heating. Without performing a basic thermal analysis, a power regula-
tion component may be inadequately sized and cooled and could fail in a potentially dangerous man-
ner. Melting circuits, fires, and even small explosions can result from poorly designed regulators. A
given component, for example, can be designed to safely dissipate 10 W without heating exces-
sively, but a similar component could fail while dissipating only 1 W if proper thermal design prac-
tices are not followed.

Power regulation and thermal analysis are topics so intertwined that one cannot separate them and
be assured of a reliable and safe system. The best, most efficient regulator is worthless if it is oper-
ated in a manner that causes it to overheat and fail.

-Balch.book Page 374 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 375

Four characteristics apply to basic thermal analysis: power dissipation, maximum device operat-
ing temperature, thermal resistance to ambient air, and the ambient air temperature. First, the amount
of power dissipated by a device must be determined through circuit analysis. Second, each compo-
nent is rated at a maximum safe operating temperature. This is the temperature of the device itself,
not of the surrounding environment. Resistors have ratings up to 100°C, 200°C, and higher. Capaci-
tors typically have specified operating temperatures below 100°C. Semiconductors have ratings ac-
cording to their intended function. Diodes can be rated as high as 200°C, while many logic ICs have
ratings under 100°C. When dealing with semiconductors, the internal operating temperature is re-
ferred to as

junction temperature

, the temperature of the silicon itself.
Thermal resistance to ambient air is an important parameter. It defines the ease with which heat is

conducted away from the component and out to the ambient environment. A higher thermal resis-
tance results in more heat buildup. Thermal resistance is designated by either “R” or the Greek letter
theta,

θ

, and is related to power and heat using an analog of Ohm’s law:

∆

T =

θ

P.

θ

 is expressed in
units of °C/W. In other words, a rise in temperature results from a quantity of power multiplied by
the thermal resistance through which the power is flowing. If a component is provided with a highly
conductive thermal path to the ambient environment, its

θ

 is low and, consequently, its temperature
rise is low for a given power level.

In the semiconductor context, two thermal specifications are common:

θ

JC

 and

θ

JA

, the thermal
resistance of junction-to-case and junction-to-ambient, respectively. Semiconductors are often spec-
ified with at least one of these parameters, and sometimes both. If neither parameter is specified, the
manufacturer will specify a maximum power dissipation at a particular ambient temperature along
with derating information for each degree rise over the specified temperature.

θ

JA

 is specified when
the component is intended to be used free of any heat sink. Therefore, the component has a certain
natural thermal resistance from the silicon to the surrounding air.

θ

JC

 is specified when the compo-
nent may be used with a heat sink, because a heat sink effectively becomes part of the package, or
case, and enables an overall

θ

JA

 calculation.
Finally, the ambient air temperature establishes a starting temperature for the thermal analysis. If

the maximum ambient air temperature is 40°C, a component will definitely not run any cooler than
40°C. The higher the ambient temperature, the less headroom there is for heating before a compo-
nent reaches its maximum operating temperature.

Thermal analysis for passive components and semiconductors is theoretically the same, but the
former is usually less of a concern in practice. In a digital system, the passive components that tend
to dissipate substantial power are resistors and chokes. Resistors and chokes are available in a wide
range of packages and materials, depending on the intended application. They can be found with rat-
ings of milliwatts or hundreds of watts. Resistors and chokes also have fairly wide operating temper-
atures. In most cases, therefore, the thermal analysis of a resistor consists of first determining the
power that it will dissipate and then picking a device that is rated for some multiple of that calculated
value. A common rule of thumb is two to three times the calculated power dissipation. One can be
more conservative if desired.

Semiconductors are a different story, because their operating temperature ranges are lower, and
they are small parts that can handle large quantities of power. As such, the power density of a semi-
conductor can be very high. Lots of power and high thermal resistance resulting from small physical
dimensions can cause lots of trouble very quickly.

The thermal analysis of a semiconductor begins by establishing the maximum operating condi-
tions: power dissipation, P

D

, and ambient temperature, T

A

. This allows an initial calculation of the
junction temperature:

T

J

 =

T

A

 +

θ

JA

P

D

. If this initial result is less than the component’s rated operat-
ing temperature, the analysis shows no problem. It is important to be realistic about the maximum

T

A

and

P

D

. A device that barely functions on a cool day may fail dramatically on a hot day when

T

A

 and,
consequently,

T

J

 are higher.

-Balch.book Page 375 Thursday, May 15, 2003 3:46 PM

376 Digital System Design in Practice

As an example, consider a device housed in a TO-220 package,
shown in Fig. 17.3, with

θ

JA

 = 65°C/W. The TO-220 is a common
three-leaded package for power semiconductors including diodes,
transistors, and integrated voltage regulators. If

T

J(MAX)

 = 150°C
and

T

A(MAX)

 = 40°C, there is a 110°C temperature rise budget that
corresponds to

P

D

 =

∆

T

 ÷

θ

JA

 = 1.6 W (always round down for
safety when dealing with thermal and power limits). If 1.6 W is in-
sufficient for the application, there are several choices. The best op-
tion is to reduce power consumption so that heat is less of a
problem in the first place. However, this is often not possible, given
the design constraints. Failing that, either a larger package with
lower

θ

JA

 can be chosen, or the TO-220 can be attached to a heat
sink to decrease the overall

θ

JA

. The TO-220 has a mounting hole to
facilitate heat sink attachment.

Heat sinks are very common, because packages have practical limitations on how low their

θ

JA

can be. Thermal resistance is a function of materials and surface area. A small package has limited
surface area. A good heat sink is constructed of a material that has low thermal resistance (most
commonly, aluminum or copper) and that has a large surface area to radiate heat into the air. When a
heat sink is attached, the device’s

θ

JA

 becomes irrelevant, and

θ

JC

 becomes important, because it is
the thermal resistance through the package to another material that matters. A TO-220’s typical

θ

JC

is just 2.5°C/W—more than an order of magnitude better than

θ

JA

—because thermal conduction be-
tween attached metal surfaces is far better than between metal and air.

With a heat sink attached to the package, the heat sink’s

θ

 becomes relevant. Heat sinks are avail-
able in a wide range of sizes according to how much power needs to be dissipated. Off-the-shelf heat
sinks for TO-220 packages can be found with thermal resistances under 3°C/W in still air. The junc-
tion between the heat sink and the IC package adds its own thermal resistance, which is often mini-
mized via the application of thermally conductive grease. Assuming

θ

HEATSINK

 = 3°C/W, the total

θ

JA

 is now just 2.5 + 3 = 5.5°C/W. From a strictly thermal perspective, the device can now safely dis-
sipate 110°C ÷

θ

TOTAL

 = 20 W! This solves the heating problem, but does not automatically mean
that the semiconductor can handle this much power even when adequately cooled. Be sure to check
the device’s inherent current and voltage ratings to see if they become the limiting factor when heat
is accommodated.

Semiconductors intended for lower-power applications do not always have associated thermal resis-
tance specifications. Instead, they are rated for a certain power dissipation at a given ambient tempera-
ture, often 25°C—room temperature. If the ambient temperature exceeds the rating, a power derating
curve or coefficient is provided that can be used to determine the safe power dissipation at a specific
temperature. For example, a device may be rated for 400 mW at

T

A

 = 25°C with a derating coefficient
of 3.2 mW/°C. This means that, if the actual maximum

T

A

 is 40°C, the device’s power rating is reduced
by

∆

T

A

×

 3.2 mW/°C = 15°C

×

 3.2 mW/°C = 48 mW, for an overall rating of just 352 mA.
It pays to be conservative when designing power regulation circuits, both in terms of current/volt-

age headroom as well as thermal headroom. The life span of most components is reduced as temper-
atures rise, so a cooler product is a more reliable product.

17.3 ZENER DIODES AND SHUNT REGULATORS

Perhaps the simplest type of voltage regulator is one formed by using a diode in a shunt circuit. A
shunt regulator, shown in Fig. 17.4, consists of a device that conducts excess current to ground to
maintain a fixed voltage between its two terminals. A series resistor, R

DROP

, serves as the voltage-

FIGURE 17.3 TO-220 package.

-Balch.book Page 376 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 377

dropping element. (The shunt device is typically a diode but can also be a more complex circuit
that exhibits better characteristics.) When the load current increases, the shunt device draws less
current to maintain the same V

OUT

. The shunt device cannot feed current into the circuit, placing
an upper limit on I

LOAD

 beyond which V

OUT

 will drop out of regulation. This concept was already
touched on when diodes were discussed in an earlier chapter in the context of forming a voltage
reference. A voltage reference may be a shunt regulator, and it is usually called upon to supply very
minimal current.

Ordinary diodes do not make very practical shunt regulators, because their forward voltages are
relatively small (0.3 to 0.7 V). Diodes are normally operated under forward bias conditions, but they
can be made to conduct under reverse bias if the applied voltage exceeds their reverse breakdown
voltage. Zener diodes are specifically designed to operate safely at their reverse breakdown volt-
age—the Zener voltage, V

Z

. Furthermore, Zener diodes are manufactured with a wide range of volt-
ages so that they can serve as shunt regulators or references. The common range of V

Z

 is from 2.4 to
33 V, with a typical tolerance of 5 percent, in increments of approximately 0.3 V at the low end, 1 V
in the middle, and 3 V at the upper end of the range. Beyond their specified data sheet tolerance, the
Zener voltage also varies with temperature and current. This voltage characteristic limits the accu-
racy to which a simple Zener-based regulator can function. As we continue, keep in mind the Zener’s
limitations and realize that, although it may not be well suited to directly regulating digital logic
voltages, it can come in handy in less-restrictive power applications including battery charging,
power supply clamping (e.g., preregulation), and coarse threshold comparison.

Figure 17.5 shows a Zener diode used in a shunt regulator circuit. Note that the cathode is at a
higher voltage than the anode and that the Zener diode is identified with a Z-curve at the cathode.
There are several common graphical representations for Zener diodes, but most involve some varia-
tion of a cathode Z-curve. This particular circuit uses the 5.1-V 1N4733A Zener diode with a 100-

Ω

RLOAD

VOUTVIN

RDROP

Shunt
Device

IDROP = ISHUNT + ILOAD

ILOADISHUNT

FIGURE 17.4 General shunt regulator.

VOUTVIN
RDROP

100 Ω

Load

10–15V ~5V @
0–45 mA

1N4733A
5.1 V ± 5%

FIGURE 17.5 Zener diode shunt regulator.

-Balch.book Page 377 Thursday, May 15, 2003 3:46 PM

378 Digital System Design in Practice

series resistor to regulate an input of between 10 and 15 V down to approximately 5 V over a current
range from 0 to 45 mA.

Aside from selecting a diode with the appropriate Zener voltage, a diode and resistor combination
must be selected that can properly handle the circuit’s worst-case power dissipation. Many types of
regulators, including this one, operate by converting excess power into heat. The resistor is chosen to
be as large as possible to minimize power dissipation while maintaining sufficient current through
the diode to establish the desired voltage. In this situation, the resistor is bounded at a maximum
value by its voltage drop at the maximum load current with a minimum input voltage, 10 V. The volt-
age drop in this situation is 4.9 V at 45 mA. 100

Ω

 is chosen, because it is smaller than the calculated
value of 108

Ω

, thereby providing a guaranteed minimum excess current for the diode to remain ac-
tive: 4 mA. The circuit must allow the diode to conduct sufficient current at all times to remain ac-
tive. Otherwise, the diode may take too long to begin conducting when the load current drops,
thereby allowing V

OUT

 to exceed its specified range. The 1N4733A is characterized with Zener
“knee” currents down to 1 mA, sufficiently below our 4-mA design point to remain active.

*

Under this most favorable circumstance of minimum input voltage and maximum load current,
the resistor and diode dissipate a minimum of 240 mW and 20 mW, respectively, for a total of just
over a 0.25 W. If the input remains at 10 V, but the load current drops to its minimum value, 0 mA,
the diode must shunt the full current to ground, resulting in 250 mW dissipated by the diode.

As the input voltage rises to its maximum of 15 V, the regulator must convert more power into
heat. Now, the resistor must drop 9.9 V, burning 980 mW. This results in a current through the resis-
tor of 100 mA, but the load is drawing only a maximum of 45 mA. Therefore, the diode must shunt
the difference, 55 mA, to ground, thereby dissipating 280 mW. Unfortunately, this is not the worst-
case scenario. The load is rated at a minimum current of zero, meaning that the diode must be able to
shunt the full 100 mA that flows through the resistor when the input is at its maximum. This equates
to a maximum diode power dissipation of 510 mW and an overall worst-case power dissipation for
the regulator of nearly 1.5 W.

After calculating the maximum operating conditions of the regulator components, we must verify
that they are within the manufacturers’ specifications. The resistor dissipates nearly 1 W. Finding a
resistor that can safely dissipate this quantity of power is fairly easy: a 2- or 3-W power resistor can
be chosen. For the diode, a check of the data sheet confirms that the maximum current through the
diode, 100 mA, is within the manufacturer’s specifications of a continuous Zener (reverse bias) cur-
rent of 178 mA.

†

Next, we must ensure that the diode can handle 510 mW of con-
tinuous power dissipation at the circuit’s maximum ambient air op-
erating temperature, T

A(MAX)

, which we will assume to be 40°C. The
1N4733A, manufactured in the axial-leaded DO-41 package shown
in Fig. 17.6, has several relevant specifications:

‡

•

P

D(MAX)

 = 1 W at 50°C, derate at 6.67 mW/°C above 50°C

•

T

J(MAX)

 = 200°C

•

θ

JA

 = 100°C/W

According to the first specification, P

D(MAX)

, we are operating safely. The power is approximately
half the rated value, and T

A(MAX)

 is under 50°C. Because the manufacturer also provides

θ

JA

, we can

* Zeners 1N4728A-1N4752A, Fairchild Semiconductor, 2001, p. 1.
†

Ibid.

‡

Ibid.

CathodeAnode

FIGURE 17.6 DO-41 package.

-Balch.book Page 378 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 379

perform a calculation to estimate how much margin we have. Recall that T

J

 = T

A

 +

θ

JA

P

D

. Therefore,
T

J(MAX)

 = T

A(MAX)

 +

θ

JA

P

D(MAX) = 40°C + 100°C/W × 0.51 W = 91°C. which is less than half the
rated maximum.

Observe that if the junction temperature calculation used 1 W instead of 0.51 W and 50°C instead
of 40°C, TJ(MAX) would be calculated at just 150°C, well under the 200°C specification. This would
ordinarily indicate that the device could handle more power at this temperature, yet the PD(MAX)
specification disallows more power. Inherent limitations of a semiconductor may be more restrictive
than the basic thermal resistance calculations would otherwise indicate. For this reason, it is impor-
tant to look at all of the published specifications as a whole instead of relying on just a subset when
determining the safe operating conditions for a semiconductor.

The shunt Zener regulator is fairly simple to construct but, aside from loose regulation accuracy, it
also has the disadvantage that constant current is drawn from the input supply regardless of how
much current the load is drawing. The diode establishes a fixed VOUT, which results in a fixed cur-
rent across the series resistor. In situations in which the VIN/VOUT differential is lower and the load
current is specified over a smaller range, this type of regulator can be very useful—particularly at
higher voltages for which other types of regulators get more complex. This narrower operating range
enables a more efficient circuit design, because the series resistor dissipates less power by virtue of
the lower voltage difference, and the diode dissipates less power because it has a narrower range of
current slack for which it has to compensate when the load current falls to its minimum value.

17.4 TRANSISTORS AND DISCRETE SERIES REGULATORS

A significant inefficiency of the shunt regulator is that it must consume current that is not required
by the load so as to maintain a fixed output voltage. Transistors can largely overcome this problem
when used instead of a dropping resistor. Unlike a resistor that requires a current in proportion to the
desired voltage drop, a BJT’s collector-emitter voltage can be arbitrarily large without a proportional
current flow. Consider the circuit in Fig. 17.7 with the same input/output ranges as the previous
shunt regulator example, but using the TIP31 NPN power transistor as the series, or pass, element.

VOUT is fixed by the transistor’s base voltage less its VBE, and the base voltage is fixed by a Zener
diode reference of 5.6 V using a 1N4734A. Assuming VBE = 0.7 V, VOUT ≈ 4.9 V. With the collector
floating with changing VIN, the input/output differential is taken up by VCE without any proportional
current requirement. The power dissipated by the pass transistor is dominated by VCE × IOUT. There-
fore, for constant VCE, the transistor dissipates less power under light load conditions and more

VOUTVIN

1 k Ω
Load

10–15V ~5V @
0–45 mA

1N4734A
5.6 V ± 5%

RLIMIT

TIP31

RMIN

1 k Ω

FIGURE 17.7 NPN series regulator.

-Balch.book Page 379 Thursday, May 15, 2003 3:46 PM

380 Digital System Design in Practice

power with heavier loads. VCE cannot be reduced beyond the point of saturating the transistor be-
cause this would result in the inability to maintain regulation.

Note the shunt resistor RMIN at the output. This resistor is present, because the minimum load cur-
rent is zero. With zero load current, the transistor’s VBE circuit would not be complete, and the tran-
sistor would be in cut-off. Maintaining the transistor in the active mode enables it to respond quickly
to changes in VCE. A 1-kΩ resistor is added to the output in parallel with the load to guarantee a min-
imum output current of 4.9 mA so that the transistor remains active.

The regulator’s power dissipation is a function of the input voltage and the load current. Table
17.1 summarizes the best- and worst-case power dissipation figures. Substantially lower power dissi-
pation can be observed as compared to the shunt regulator discussed previously. The best-case power
of 93 mW is less than 260 mW for the shunt circuit. The worst-case power of 669 mW is also much
less than the shunt regulator’s 1,490 mW. As expected, the majority of the power is dissipated by the
TIP31 pass transistor when the load current and VCE are at their maximum. The other components
dissipate so little power that their thermal analysis is unnecessary in most situations.

The TIP31’s maximum collector current is 3 A, well over our 49-mA operating point.* It is also
rated for 2 W at an ambient temperature of 25°C and for 40 W at a case temperature of 25°C. These
specifications imply that the device is intended to be used with a heat sink under more than lightly
loaded conditions. Our present application has the transistor dissipating roughly one-quarter of the
power rating without a heat sink at 25°C. However, if we want the circuit to be usable up to 40°C,
some additional consideration is necessary. The TIP 31 data sheet does not provide detailed thermal
resistance information, only a power derating curve versus case temperature and a maximum junc-
tion temperature of 150°C. Additional information is not needed if a heat sink is used, because the
thermal resistance of the heat sink would be known, which would allow the determination of the
case temperature for a given power dissipation. Knowing the case temperature would allow using the
power derating curve to determine the safe operating limits of the transistor.

In the absence of information that applies specifically to our application, some estimates will have
to be made. First, the transistor is being operated at one-quarter of its rating at 25°C. This probably
provides sufficient margin at 40°C. Second, we can use thermal resistance information from other
semiconductors packaged in a TO-220 package as a first-order approximation of the TIP31’s charac-
teristics. Other TO-220 devices have θJA = 65°C/W. Using this information, the transistor would ex-
perience a 33°C rise over ambient for TJ(MAX) = 73°C. While this is only an approximation, it is less

TABLE 17.1 Series Regulator Power Dissipation

Component
VIN = 10 V

ILOAD = 0 mA
VIN = 15 V

ILOAD = 45 mA

RLIMIT 19 mW 88 mW

Zener diode 25 mW 53 mW

RMIN 24 mW 24 mW

Transistor VCE 25 mW 504 mW

Total 93 mW 669 mW

* TIP31 Series, Fairchild Semiconductor, 2000, p. 1.

-Balch.book Page 380 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 381

than half the rated TJ(MAX) of 150°C. These estimates point in the right direction. However, the best
approach is to confirm these findings with the manufacturer. Semiconductor manufacturers’ applica-
tion engineers are able to answer such questions and provide advice on matters that are not explicitly
addressed in a data sheet.

As with the Zener shunt regulator, this circuit is relatively loose in its accuracy of VOUT over vary-
ing temperature and load. The Zener voltage reference itself will drift with temperature, but its cur-
rent is nearly static, so there will not be much drift with changing current. The transistor’s VBE
changes with temperature and current as well. If these drawbacks have you wondering how accurate
voltage regulators are ever constructed, the answer lies in various compensation schemes that in-
volve more components. However, the biggest contributor to accurate voltage references and regula-
tors is the integrated circuit, because an IC enables the pairing of transistors with closely matched
physical and thermal characteristics. When transistors and diodes are fabricated on the same slice of
silicon within microns of each other, they are nearly identical, and they operate at the same tempera-
ture. Close matching enables transistors and diodes to largely cancel out each other’s undesired vari-
ations when arranged in specific configurations.

A series regulator can also be designed to provide a regulated constant current instead of constant
voltage. Current sources are useful for battery chargers, among other applications. Figure 17.8
shows such a circuit using a PNP transistor. Once again, the variable input/output differential is
taken up by the transistor’s VCE, although it is the output that is allowed to float with a constant cur-
rent. A floating output voltage is necessary, because an ideal current source supplies constant current
regardless of the impedance that it is driving. A higher load impedance results in a higher voltage
output according to Ohm’s law. This is the converse of a voltage source wherein constant voltage is
desired at variable current. Real current regulators, of course, have limitations on the range of VOUT
for the circuit to remain in regulation, just as we have already observed that voltage regulators are
subject to current limitations.

The TIP32 is chosen for this circuit, because it is a mature BJT with characteristics similar to the
TIP31. Power circuits that require both NPN and PNP transistors sometimes use the complementary
TIP31 and TIP32 pair. This current regulator functions by establishing a fixed voltage drop across
RSET, thereby establishing a fixed emitter current. Assuming negligible base current, the collector
current drives the load with the same current. An emitter-base loop is established with a reference
voltage provided by the 1N4728A Zener diode. Per loop analysis, VZENER = IOUTRSET + VBE, as-
suming that the base current is negligible. When the Zener reference and VBE are fixed, RSET estab-
lishes the regulator’s output current. RLIMIT picks up the voltage difference between VIN and VZENER
and thereby serves as the Zener diode’s current limiter.

IOUTVIN

26.1 Ω
1%

Load

10–15 V ~100 mA @
< 7.1 V

1N4728A
3.3V ± 5%

TIP32

1 k Ω

RLIMIT

RSET

FIGURE 17.8 PNP current regulator.

-Balch.book Page 381 Thursday, May 15, 2003 3:46 PM

382 Digital System Design in Practice

The current regulator cannot supply a constant 100 mA for all values of VOUT. As the load imped-
ance is increased, there is a corresponding increase in VOUT, which reduces the difference with re-
spect to VIN. This differential eventually forces the transistor into saturation when its collector-base
junction becomes forward biased. Using the estimate of VCE(SAT) = 0.3 V provides us with a mini-
mum voltage drop across the transistor for the regulator to maintain 100 mA. The voltage drop
across RSET, 2.6 V, must also be factored into the VIN/VOUT differential. The maximum VOUT must
be evaluated along with minimum VIN to analyze the limiting scenario: VOUT(MAX) = VIN(MIN) –
2.6 V – 0.3 V = 7.1 V. This circuit can therefore be guaranteed to function properly up to 7.1 V. Of
course, if VIN is at the upper end of its range, VOUT can be higher as well. But the worst-case sce-
nario is what should be used when specifying the guaranteed parameters of a circuit.

Analysis of the regulator’s dropout voltage shows that the drop across RSET is the dominant term
within the regulator circuit. If dropout voltage is a concern, the drop across the resistor should be
minimized. This is why a low-voltage Zener has been selected rather than a 5- or 6-V diode. The
drop across RSET is the difference between VZENER and VBE. Minimizing VZENER minimizes the
drop across RSET.

Calculating power dissipation to perform a thermal analysis requires bounding the output voltage
at a practical minimum, because the transistor’s power dissipation increases with increasing VCE
and, hence, decreasing VOUT. RSET has a constant voltage drop at constant current, so it has constant
power dissipation of 0.26 W. For the sake of discussion, we can pick VOUT(MIN) = 0 V. Along with
VIN(MAX) = 15 V, the power dissipation of the transistor is IOUT(VIN – IOUTRSET – VOUT) = 1.24 W.
The TIP32 and TIP 31 have equivalent power and thermal ratings. The transistor is rated at 2 W
without a heat sink at an ambient temperature of 25°C, and a conservative design methodology
might call for a heat sink on the TO-220 package in this case. A heat sink enables calculation of the
package temperature for a given power dissipation and ambient temperature, which in turn enables
us to take advantage of the manufacturer’s power derating curve expressed in terms of package tem-
perature.

A small TO-220 heat sink can provide a thermal resistance of 30°C/W with natural convection.
Much lower values are achievable when a fan is blowing air across the heat sink and with a larger
heat sink. A temperature rise of 37°C is attained with PD = 1.24 W. Therefore, a 40°C ambient tem-
perature would result in a transistor case temperature of 77°C. The TIP32’s power derating curve
shows that the transistor is capable of over 20 W at this case temperature.* The heat sink thereby en-
ables a very conservative design with minimal cost or complexity.

17.5 LINEAR REGULATORS

Most voltage and current regulation requirements, especially in digital systems, can be solved with
ease by using integrated off-the-shelf regulators that provide high-quality regulation characteristics.
Constructing a regulator from discrete parts can be useful when its requirements are sufficiently out-
side the mainstream to dictate a custom approach. However, designing a custom regulator brings
with it the challenges of meeting the load’s regulation requirements over a potentially wide range of
operating conditions. Power supplies for digital circuits have the benefit that the voltages are com-
mon across the industry. This has enabled semiconductor manufacturers to design broad families of
integrated regulators that are preadjusted for common supply voltages: 5, 3.3, 2.5, 1.8, and 1.5 V.
Manufacturers also offer adjustable regulators that can be readily customized to a specific output
voltage. The result is the ability to treat regulators largely as “black boxes” once their overall charac-

* TIP32 Series, Fairchild Semiconductor, 2000, p. 2.

-Balch.book Page 382 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 383

teristics have been quantified and accounted for. High-quality off-the-shelf regulators are inexpen-
sive and provide a quality of regulation that is far more difficult to attain with discrete design.

One of the basic types of off-the-shelf regulators is the linear regulator. A linear regulator is an
analog integrated circuit that essentially implements a more complex version of the transistor-based
series regulator already discussed. Instead of one transistor, it includes more than a dozen. All of the
functions of voltage reference, error feedback, and voltage control are included. For the sake of com-
parison, this is akin to buying a 74LS00 IC instead of constructing NAND gates from discrete tran-
sistors. Most linear regulators have three terminals: an input, an output, and either a ground or
voltage sense input. Fixed regulators have a ground pin, and adjustable regulators use the third pin as
a voltage feedback.

Perhaps the most classic and widely used fixed linear regulator family is the LM78xx, with com-
mon variants including the 7805 and 7812, which provide fixed outputs of +5 V and +12 V, respec-
tively. These parts are available in a variety of packages with current ratings from 100 mA to 3 A.
Small TO-92 packages, commonly used for low-power transistors, and small surface-mount pack-
ages house the 100 mA versions, whereas TO-220 packages and the surface mount equivalent DPAK
house the higher current variants. The 78xx family provides line and load regulation performance in
the range of 100 mV: over the possible range of input voltages and output loads, the output voltage
will not change by more than 100 mV. Application of the 78xx family is illustrated in Fig. 17.9 using
the example of a 7805. It is recommended that high-frequency bypass capacitors be placed at the in-
put and output nodes to reduce noise and improve the overall circuit’s high-frequency response. Al-
though 0.33-µF and 0.1-µF values are the common manufacturer’s recommendations, larger high-
frequency capacitors can be used. Depending on the specific application, a reverse-bias protection
diode is also recommended to prevent device damage when the system is powered off. The regulator
is not designed to handle an output voltage that is higher than the input voltage by more than one di-
ode drop. If the load has sufficient capacitance to briefly maintain a nominal voltage after power is
turned off, current could flow through the regulator in reverse and damage it. The diode becomes
forward biased in this situation, shunting current away from the regulator.

Complementary to the 78xx positive voltage regulator family is the 79xx negative voltage regula-
tor family. These devices are very similar to the 78xx but require larger capacitors on the input and
output because of their internal structure. At least 2 µF and 1 µF on the input and output, respec-
tively, are recommended, along with a smaller 0.1-µF high-frequency capacitor on the output.

Aside from power dissipation, which is simply the product of the input/output differential and the
load current, a main consideration when designing with linear regulators is their dropout voltage.
Standard linear regulators such as the 78xx have dropout voltage specifications in the 2.5-V range. If
a 5-V output is desired, at least 7.5 V on the input is required.

As digital supply voltages have steadily decreased, it has become common to find systems with
multiple low-voltage supplies. For example, a system may use 3.3- and 2.5-V components. Higher
dropout voltages can complicate an otherwise simple power subsystem design in such instances.

VOUT = 5 VVIN > 7.5 V

Load

7805

0.33 µF 0.1 µF

1

2

3

FIGURE 17.9 LM7805 circuit.

-Balch.book Page 383 Thursday, May 15, 2003 3:46 PM

384 Digital System Design in Practice

Clearly, a regulator with a 2.5-V dropout voltage is not capable of producing 2.5 V from 3.3 V. Fur-
thermore, when the dropout voltage is on par with the output voltage, the regulator dissipates as
much power as the load consumes! The semiconductor industry saw these problems emerging and
developed families of low dropout (LDO) regulators with dropout voltages well under 0.5 V. There
are a wide variety of LDOs on the market today, but they are no longer members of standard families
such as the 78xx. Each manufacturer has its own product line. LDOs are advantageous not only be-
cause of more flexible input/output voltage relationships, but also because they enable lower power
dissipation for a given load current. With a voltage differential of just 0.2 to 0.3 V, a 5-A regulator
dissipates an order of magnitude less power than an older 2-V dropout device. These regulators are
manufactured by companies including Fairchild Semiconductor, Linear Technology, Maxim, Na-
tional Semiconductor, and Texas Instruments.

When an output voltage is desired that is not supported by a fixed regulator, adjustable linear reg-
ulators such as the ubiquitous LM317 and LM337 can be used for positive and negative voltages, re-
spectively. These devices have an adjustment pin, instead of a ground pin, that is used to vary the
output voltage. A basic LM317 circuit is shown in Fig. 17.10. Note the use of a reverse-bias protec-
tion diode as employed previously for the fixed regulator. Additionally, a larger capacitor is recom-
mended at the output to improve stability caused by internal differences with the 78xx fixed
regulator.

The real difference is in the LM317’s voltage adjustment mechanism. An internal circuit main-
tains a fixed 1.25 V between the output and adjustment pins, resulting in a current through R1 deter-
mined by its resistance. This current is also referred to as the programming current. Assuming that
negligible current flows into the adjustment pin, an accurate approximation is that the current
through R1 passes through R2 as well, creating a voltage drop across R2. The drop across R2 plus
the 1.25 V across R1 yields the regulated output voltage,

Typical resistance values for R1 are relatively small, ranging between 120 and 330 Ω. Values for
R2 are larger so that higher voltages can be developed as necessary. It is advantageous to select
smaller values for R1 and R2 so that the assumption of zero current through the adjustment pin is
more accurate. The actual adjustment pin current, IADJ, is a maximum of 100 µA.* In our example,

* LM317, National Semiconductor, 2001, p. 2.

VOUT = 3.3 VVIN > 5.8 V

Load

317

0.1 µF 0.1 µF

VIN

ADJ

VOUT

10 µF
200 Ω
R1

412 Ω
R2

1%

1%

FIGURE 17.10 LM317 circuit.

V OUT 1.25 1 R2
R1
-------+

 =

-Balch.book Page 384 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 385

the current through R1 is more than 6 mA—more than two orders of magnitude larger than IADJ. The
actual error imparted by IADJ = 100 µA is IADJR2 = 41.2 mV, or roughly 1 percent of the 3.3-V out-
put. This error can be reduced by increasing the programming current, which causes a corresponding
decrease in R2.

The LM317 has two key requirements to maintain a regulated output. First, a minimum load cur-
rent of 10 mA is necessary. This is partially addressed via the programming current—6 mA in our
example. If the load cannot be guaranteed to sink the remaining 4 mA, a 120-Ω resistor can be sub-
stituted for R1 with an accompanying adjustment to R2. Second, the input must exceed the output by
the LM317’s dropout voltage, which is as high as 2.5 V, depending on load current and temperature.
Dropout voltage decreases with decreasing load current and varies nonmonotonically with tempera-
ture.

A further improvement to the basic LM317 circuit is to add a 10 µF bypass capacitor between the
adjustment pin and ground to filter ripple noise being fed back through R1. This improves the regu-
lator’s ripple rejection. When this capacitor is added, the same issue of safe power-off comes up, be-
cause the capacitor will hold charge and discharge through the adjustment pin. As before, the
solution is a diode with its anode connected to the adjustment pin and its cathode connected to the
output pin. This provides a low-impedance path from the bypass capacitor through two diodes to the
input node.

Common three-terminal linear regulators can also be applied as current regulators. While both
fixed and adjustable regulators are applicable, the adjustable regulators are more flexible in this role
because of the low voltage differential maintained between the output and adjustment pins. In the
case of the LM317, this 1.25-V difference allows a constant current to be established by a series out-
put resistor as shown in Fig. 17.11. Note that the maximum output voltage for this circuit to maintain
regulation is bounded by an overall dropout voltage that is the sum of the LM317’s dropout voltage
plus the 1.25-V drop across RSET.

Because it is a series element, a linear regulator dissipates power equal to the product of the load
current and the input/output voltage differential. At high currents and voltage differentials, the nec-
essary cooling to prevent a regulator from overheating can be substantial. There is no way to reduce
the overall power wasted by a linear regulator. More efficient switching regulators are often used in
high-power applications. Yet there are times when the complexity of a switching regulator is unde-
sirable, and absolute power regulation efficiency is not a prime concern. Under these situations, a
small trick can be employed to reduce the power dissipated by the regulator by shifting a portion of
that heat to a less thermally sensitive power resistor, thereby easing the regulator’s cooling require-
ments.

Consider the example in Fig. 17.12, wherein a large voltage differential exists. The input is a 24-
V supply with a 10 percent range. The output is a standard 5-V level for a small digital circuit draw-
ing up to 500 mA. When the input voltage is at its maximum, a worst-case voltage differential of
21.4 V exists, which means nearly 11 W of power to safely dissipate. A large heat sink and/or mov-
ing air are normally required to maintain a safe junction temperature at this power level. Instead, a

IOUT = 100 mAVIN

Load

317
VIN

ADJ

VOUT

12.4 Ω

RSET

1%

FIGURE 17.11 LM317 current regulator.

-Balch.book Page 385 Thursday, May 15, 2003 3:46 PM

386 Digital System Design in Practice

27-Ω dropping resistor is inserted before the regulator. The dropping resistor is sized based on the
load current, the minimum input voltage, and the regulator’s dropout voltage. Working with a con-
servative dropout voltage of 3 V and a minimum input level of 21.6 V, the resistor must drop a max-
imum of 13.6 V at 500 mA. The closest standard resistor value, 27 Ω, yields a drop of 13.5 V at
maximum load with a power dissipation of 6.75 W. Finding a power resistor that can safely dissi-
pate about 7 W is not a problem. This reduces the power dissipated by the LM7805 to just 3.1 V ×
500 mA ≈ 1.6 W. However, the worst-case power dissipation occurs when the input is at its maxi-
mum of 26.4 V. The increased differential of 7.9 V results in a power dissipation of approximately
4 W, as expected. We did not save any power, but the regulator’s share of the power has been de-
creased by more than 60 percent, and it is much easier to cool 4 W than 11 W.

Linear regulators provide the easiest and least troublesome manner by which to provide a digital
circuit with clean power. They work without causing problems as long as proper thermal analysis is
performed and they are kept from overheating. The main reason for not using a linear regulator is
its inefficiency, particularly at higher input/output voltage differentials. It is quite convenient to use
a linear regulator to derive 3.3 V from 5 V at currents under 1 A. Power dissipation becomes a big-
ger problem when dealing with several amps. When tens of amps are required, the thermal problem
becomes critical, and a more efficient alternative must often be found in the form of a switching
regulator.

17.6 SWITCHING REGULATORS

An ideal power regulator would achieve 100 percent efficiency by drawing only as much power from
the source as required by the load. Assuming that the input and output voltages are unequal, the ideal
regulator would convert a supply current into a different load current to maintain constant power un-
der two different voltages. A linear regulator is nonideal, because it is inherently dissipative—it sim-
ply discards the excess power not required by the load, because it cannot convert an input current into
an unequal output current. Switching regulators approach the ideal much more closely, because they
are able to perform the current conversion process. Finite power losses in the switching regulator’s
components are what cause it to deviate from ideal efficiency. Depending on the input/output charac-
teristics and the circuit used, efficiencies between 80 and 95 percent are realistically achievable.

Switching regulators operate by alternately applying and removing input power from a passive
LC circuit. Figure 17.13 shows a simplified conceptual step-down regulator circuit, often called a
buck regulator. The switching element alternately connects the inductor to the input and ground.
When the switch selects the input, current flows through the inductor and charges the capacitor. Dur-
ing this time, the inductor develops a magnetic field resulting from the current passing through it. An
inductor resists changes in current, because a current change disrupts its magnetic field. Whereas a

VOUT = 5 V
@ 500 mA

VIN = 24 V
± 10%

Load

7805
1

2

3
RDROP

27 Ω

VINREG > 8.1 V

FIGURE 17.12 Shifting power dissipation to a resistor.

-Balch.book Page 386 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 387

capacitor opposes voltage changes by sinking or sourcing current, the inductor changes its voltage to
maintain a constant current flow. When the switch selects ground, the inductor instantly flips its volt-
age so that it can continue supplying current to the capacitor. The inductor holds a finite amount of
energy that must be quickly replenished by switching back to the input voltage. The role of the feed-
back and control circuit is to continuously modify the switching frequency and/or duty-cycle to
maintain a fixed output voltage.

There are varying designs for switching circuits. Two common topologies often seen today are
shown in Fig. 17.14. Most modern switching regulators employ power MOSFETs because of their
low RDS. Prior to the availability of power FETs, power BJTs were used as switches, and their finite
VCE(SAT) resulted in higher losses than seen with modern FETs. When a single transistor is used as
the switch, a diode serves as the ground shorting element, or rectifier. The diode is reverse biased
when the transistor is conducting, and it becomes forward biased after the switching event causes the
inductor’s voltage to flip. The inductor changes its voltage to maintain a constant current flow, which
causes its switch-side voltage to suddenly drop, and the diode clamps this dropping voltage to near
ground. Substantial current flows through the diode and motivates the selection of a low forward-
voltage Schottky diode (note the S-curve symbology for a Schottky diode). Power loss in this diode
is a major source of switching regulator inefficiency. This has given rise to the dual-transistor switch
circuit that replaces the diode with a FET as the main rectification element. When a transistor is used
in this manner as a rectifier, the common industry term is synchronous rectification. The FET’s low
RDS makes it a superior solution to the fixed voltage drop of the Schottky diode. However, a diode is
still present to serve as a rectifier during the short but finite turn-on time of the bottom FET.

Minimal power loss in the switching transistors is a key attribute that enables high-efficiency
switching regulators. A switch transistor is ideally either on or off. When off, the transistor dissipates
no power. When on, there is minimum voltage drop across the transistor and, hence, minimal power

Feedback

VOUT

VIN

Control

FIGURE 17.13 Conceptual step-down regulator.

VIN VIN

Bottom
Switch Control

Top
Switch ControlSwitch Control

FIGURE 17.14 Single and dual FET switching circuits.

-Balch.book Page 387 Thursday, May 15, 2003 3:46 PM

388 Digital System Design in Practice

dissipation. Switching control circuits seek to turn transistors on and off as rapidly as possible to
minimize the time spent in a region of higher voltage and current. The drive strength required to rap-
idly switch a large FET can be substantial, because a larger gate results in higher capacitance that
must be charged to change the transistor’s state. In reality, the finite on-off FET switching times are
another significant source of power loss.

Aside from their high efficiency, switchers are extremely flexible, because they can do more than
regulate down. Step-up regulators, often called boost regulators, can convert a lower input voltage
into a higher output voltage. Inverting regulators can generate negative output voltages from a posi-
tive input. Switchers can also be designed for buck-boost operation, whereby an output can be gener-
ated from an input that is near the output level. This is a very useful feature for some applications,
because it bypasses the problem of dropout voltage. Battery-powered portable devices commonly
use step-up or buck-boost regulators because of the cost and size advantage of using fewer battery
cells. Without a switcher, such a device would require more cells to meet the minimum dropout volt-
age of a linear regulator.

Each type of switching regulator has a different topology. Most contain FETs, diodes, inductors,
and capacitors. Some low-current switchers are now available that do not need inductors. A com-
plete presentation of switching power supply circuit design is unnecessary in the context of most
digital systems, because semiconductor manufacturers have done an excellent job of producing inte-
grated switching regulator ICs that are easy to use by following recommended circuit and connec-
tion diagrams. Perhaps the easiest way to use a switching regulator is to purchase an off-the-shelf
module that already has the full circuit assembled and tested. Companies including Datel, Texas In-
struments, and Vicor offer these ready-to-use modules.

More flexibility (and more work!) is possible when discrete ICs are used. Linear Technology,
Maxim, and National Semiconductor offer wide varieties of switching regulator controller ICs that
require the addition of FETs, inductors, capacitors, diodes, and resistors. (Some low-power regulator
ICs incorporate the FET switch on-chip to reduce circuit complexity.) These circuits can be fully
customized for individual applications, and manufacturers supply detailed example circuits and doc-
umentation to assist in the design effort. As with any semicustom design, more flexibility is possible
in terms of the circuit layout to squeeze into small spaces. The trade-off is increased design effort to
ensure that numerous discrete components operate properly.

Whatever implementation path is chosen, the incorporation of switching regulators into a system
brings with it a set of issues that are either not present or not as potentially troublesome when using
linear regulators. A switching regulator introduces noise and ripple because of its high-current on-off
operation. Many switcher design issues revolve around minimizing this noise and ripple. The selec-
tion of the inductor and capacitors is very important. An IC vendor will usually recommend a partic-
ular inductor for a given switching frequency and output current. Because power inductors can get
quite large, a current trend is to use smaller inductors at higher switching frequencies with the conse-
quence of introducing higher-frequency noise into the system. If the high-frequency noise cannot be
adequately filtered, a larger inductor may be used at a lower frequency.

Attenuating ripple and noise generated by the switching regulator is accomplished in large part by
using high-quality capacitors with extremely low equivalent series resistance, or ESR. The capaci-
tors’ ESR must be minimized because of the high current spikes sent through the inductor by the
switching element. Each current spike will develop a voltage across the capacitor’s finite ESR.
Higher resistance means higher voltage ripple. Ideally, ceramic surface-mount capacitors would be
used because of their excellent high-frequency characteristics. Some switchers do use these capaci-
tors, but their use is limited, because ceramics do not provide very high capacitances. High-power
switchers require large capacitors rated at hundreds or thousands of microfarads. Tantalum and alu-
minum electrolytic capacitors are commonly used in switcher circuits. Normal electrolytics do not
have adequate ESR for many switching applications, but manufacturers such as AVX, NIC, Nichi-

-Balch.book Page 388 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 389

con, Panasonic, Sanyo, and Vishay have developed special-purpose lines of low-ESR electrolytic ca-
pacitors. Typical ESR for these capacitors is from 10 to 100 mΩ.

17.7 POWER DISTRIBUTION

Power regulation and distribution circuits inherently handle significant quantities of power in rela-
tively compact volumes and are designed to provide power with minimal source impedance, making
safety a prime concern. Minimal source impedance is highly desirable when evaluating a regulator’s
ability to supply high current at constant voltage. This characteristic also means that there is nothing
preventing a short circuit or overload condition from drawing power beyond the circuit’s specifica-
tions. When high power density and low source impedance are brought together, there is the poten-
tial for serious injury and damage if a component were to fail and cause a short circuit.

Reliability of power distribution is directly related to safety, because an unreliable circuit may fail
in an unsafe manner. Yet even if the failure causes no damage, a failure is still quite undesirable. The
reliability of a circuit is influenced by how heavily loaded its individual components are. Operating
components at higher thermal loads (higher temperatures) degrades their longevity. Operating com-
ponents at greater fractions of their rated current, voltage, and power also reduces their life span.
Conservative designs use power components that are rated well in excess of their actual operating
load.

Many electrical safety codes and standards have been adopted over time to minimize the adverse
consequences of power circuit failures. In the commercial and residential AC wiring context, there
are strict regulations requiring insulated connections, minimum wire gauge, maximum wire length,
and fuses. The basic idea is to first reduce the chance of failure by employing conservative design
practices. Adequate insulation reduces the likelihood of shorting. Limits on wiring ensure that the
conductors can carry the desired load. Second, the inevitable failure’s effects must be minimized.
Engineering in general, but power engineering in particular, requires the anticipation of failure re-
gardless of how unlikely that failure is. Murphy’s law is a constant across all disciplines. Fuses are
the main failure-handling mechanism in power distribution. A fuse is rated for a certain current and
will blow when that current rating is exceeded. In the unlikely event of a short circuit, the fuse
blows, and all power is cut off to that branch of the power distribution system. Fuses are the last line
of defense, because they are simple, passive devices that deal with the problem in a quick and deci-
sive manner.

Figure 17.15 shows a logical view of a power distribution system where the AC-to-DC rectifica-
tion and preregulation functions are separated from the final DC-to-DC regulator that directly pow-
ers the load. Some power systems combine these elements into a single module, and others use a
distributed approach as shown here. The AC-to-DC and DC-to-DC functions are logically separate

AC-to-DC
Converter

120
VAC

Intermediate
Distribution

Local
Distribution

Fuse

DC-to-DC
Converter

Earth Ground Signal Ground

Load

FIGURE 17.15 Overall power distribution.

-Balch.book Page 389 Thursday, May 15, 2003 3:46 PM

390 Digital System Design in Practice

entities for a couple of reasons. First, they are usually associated with different levels of safety stan-
dards. AC power supplies must conform to strict standards, because they have the potential to short
circuit an AC wiring system with the resultant risk of serious injury and damage. Second, DC-to-DC
converters are tailored specifically to the voltages required by a digital logic circuit, whereas AC
power supplies can provide more standardized voltages given the widespread availability of DC reg-
ulators.

The example also shows two distinct ground nodes: Earth ground and signal ground. A grounded
AC wall outlet or other connection provides an absolute 0-V Earth ground connection into which ex-
cess charge can drain. This path prevents the accumulation of charge to the point of damaging sensi-
tive electronic components when a sudden electrostatic discharge may occur. It also ties separate
pieces of equipment to the same ground potential so that they can be connected without adverse con-
sequences. For example, if a printer and a computer are both connected via a cable, and each has a
different ground potential, a ground loop may develop whereby unexpected current flows between
the two dissimilar voltages. A ground loop can be disruptive to communication between the printer
and computer by manifesting itself as noise on the cable. In contrast to Earth ground, signal ground
is the return path to the voltage regulators. Signal and Earth ground are usually connected so that
there is a uniform DC ground potential throughout a system. However, many styles exist for making
this connection. Some engineers and situations favor connecting the two grounds at a single point,
often in the AC power supply. Others favor connecting the grounds at many points throughout the
system. Grounding is an important topic that is discussed later in the context of signal integrity.

Given their different treatment, different symbols are used for each type of ground. Purists have a
valid argument in favor of consistent representation for each type of ground. When drawing circuit
diagrams that must pass official certification standards, consistent representation may be enforced.
In other circumstances, it is common for individuals to use whatever representation they prefer.
When multiple ground symbols are present in a circuit diagram, the meaning of each symbol should
be explicitly determined, because different engineers and companies use their own styles.

As with household AC wiring, strict safety standards should always be observed when using AC-
to-DC power supplies. Underwriters Laboratories (UL) has become the de facto standard for safe
product certification in the United States, and UL certification is widely considered a mandatory re-
quirement despite not always being dictated by law. All reputable AC power supply vendors seek UL
certification before offering their products for sale. Safe power supply design has long since become
a well understood and economical practice, and there is no significant burden on the system design
and no incentive—financial or otherwise—to not employ a certified design. When designing a digi-
tal system, it is almost always best to purchase a precertified AC power supply module from a third
party. Well known power supply vendors include Artesyn, Astec, Cherokee, Condor, and Lambda.
These power supplies incorporate standard safety features including overload protection devices that
automatically shut down the supply when it gets too hot or is called upon to source too much current.
Some supplies contain internal fuses and are ready to plug into a wall outlet. Others require that a
separate AC wiring harness with fuse be connected.

Off-the-shelf power supplies are available in wide varieties of overall wattages and combinations
of output voltages and currents. In many cases, a single module can directly provide a digital sys-
tem’s necessary voltage supplies. There are also many instances in which a digital system has volt-
age and current requirements that are not directly served by one of these off-the-shelf configurations.
The proliferation of low-voltage digital supplies (e.g., 2.5, 1.8, and 1.5 V) has decreased the likeli-
hood of a one-size-fits-all power supply.

Safety requirements for DC-to-DC converters are usually less stringent than for AC-to-DC con-
verters, but the same concepts of fusing and overload protection can be applied. In applications in
which a DC power connection is externally accessible by the end-user, fusing and current limiting
precautions may be required for safety certification. Many switching regulator modules contain

-Balch.book Page 390 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 391

overload protection mechanisms that shut down in the event of excessive current draw. Safety stan-
dards for DC-to-DC converters are less uniform and strict, because it is often sufficient to rely on the
safety cut-off mechanisms in the AC power module. If a DC regulator fails, the worst-case scenario
is often that the AC supply’s overload protection will be activated and prevent damage to other
equipment and the AC wiring infrastructure.

Whenever power is distributed between two points, the conductors carrying that current must be
adequately sized for the flow. Wires have current ratings based on their resistance, the ambient oper-
ating temperature, the maximum allowable insulation temperature, and the number of wires bundled
together. It is important to conservatively specify wire capacity, because wire has a positive temper-
ature coefficient, meaning that resistance increases with temperature. If a wire is operated beyond its
safe capacity, a dangerous situation can develop in which heating increases resistance, which causes
more heating in a self-destructive cycle. Wire manufacturers should always be consulted on the rat-
ings for their products when selecting the necessary gauge wires for an application. The American
Wire Gauge (AWG) standard provides a measure of wire size, with thicker wires indicated by
smaller gauge numbers. Table 17.2 lists the resistance of solid copper wire per 1000 ft (304.8 m) at
25°C.* Current ratings are based on the allowable temperature rise over ambient, which is why a
wire’s environment directly affects its rating. AC wires enclosed in the walls of your home are rated
more conservatively because of the risk of fire in confined spaces. The conservative use of lower-
gauge wire results in less power loss and heating, with a resulting increase in safety and reliability.

An example of a distributed power regulation scheme is shown in Fig. 17.16. This system uses an
off-the-shelf AC-to-DC power supply to provide a 12-VDC intermediate power bus. Common inter-
mediate voltages include 48, 24, 12, and 5 V. The advantage of using a higher voltage is less current
flow through the intermediate distribution wiring for a given power level and hence lower resistive
losses (PD = I2R) in that wiring. Lower voltages have the benefit of easier component selection be-
cause of the lower voltage ratings. When using a switching regulator, there is a compromise between
very low and very high input voltages. Too high an input requires a small switching duty cycle,
which results in higher losses as the transistors turn on and off more often relative to the time that
they are in a static state. Too low an input causes higher current to be drawn from the source, which
leads to higher I2R losses in the regulator components. Often, 12 V is a good compromise between
switching losses and easier regulator design. Additionally, some systems require 12 V for analog in-
terface circuits or low-power motors such as a disk drive. This system can use whatever 12-V power
supply is easily available, as long as its capacity is greater than 43 W.

* The ARRL Handbook for Radio Amateurs, American Radio Relay League, 1994, pp. 35–36.

TABLE 17.2 Resistance of Solid Copper Wire at 25°C

Wire Gauge (AWG) Ω per 1000 ft (304.8 m) Wire Gauge (AWG) Ω per 1000 ft (304.8 m)

30 104 20 10.0

28 65 18 6.4

26 41 16 4.0

24 26 14 2.5

22 16 12 1.6

-Balch.book Page 391 Thursday, May 15, 2003 3:46 PM

392 Digital System Design in Practice

The fact that most systems can rely on an off-the-shelf AC power supply to provide an adequate
level of safety enables a design style of selecting a certified AC supply with an adequate power rat-
ing and then using a custom combination of regulators to provide the desired logic-level voltages.
The advantage to this approach is not requiring the perfect AC supply that provides every voltage at
the correct current rating. Instead, an overall system power requirement is calculated and a supply is
found that provides a suitable intermediate voltage at or above that level. In this example, the final
voltages are needed as follows: 12 V at 250 mA, 5 V at 2 A, 3.3 V at 5 A, and 2.5 V at 3 A. It is de-
cided to create the 5- and 3.3-V supplies with switching regulators and use a low dropout linear reg-
ulator to provide 2.5 V from 3.3 V, which is why the 3.3-V regulator must supply sufficient current
for both the 3.3-V and 2.5-V needs. It is assumed that the switching regulators will operate with 90
percent efficiency and therefore require approximately 43 W from the AC power supply.

Taking a distributed approach means that, if the system specifications ever change to require dif-
ferent voltages, the proven AC supply is unaffected as long as the overall power level remains con-
stant and the DC regulators can be adjusted as necessary. In many cases, adjusting the DC regulators
is as simple as changing the value of a voltage-sensing feedback resistor.

A separate AC power supply module is often connected to the main circuit board with a wiring
harness. In this case, wire must be chosen to safely carry 3.6 A at 12 V. Twenty-four gauge wire is
adequate for the task and a more conservative choice is 22 gauge. The best results for distributing
the regulated 5-, 3.3-, and 2.5-V supplies are achieved by using complete PCB planes or very wide
copper paths to connect the regulator outputs to the various ICs and components that they serve.
Distributing these final logic-level power supplies segues directly into electrical integrity issues.

17.8 ELECTRICAL INTEGRITY

An ideal power distribution system delivers a noise-free voltage supply at any current level required
by the load. It performs this task regardless of how quickly the load’s current demand changes and
how much ambient noise is present. Electrical integrity is a measure of how close to the ideal a

120 VAC
to

12 VDC
Supply

120
VAC

+5 VDC
Switching
Regulator

+3.3 VDC
Switching
Regulator

Intermediate
Distribution Local

Distribution

+2.5 VDC
LDO

Regulator

2 A / 10 W

3 A / 7.5 W

8 A / 26.4 W

3.6 A / 43 W

250 mA / 3 W

FIGURE 17.16 Distributed power regulation.

-Balch.book Page 392 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 393

power distribution system really is. Factors that influence electrical integrity include the quality of
the power conductors, the ability of the regulator to sense and respond to load variation, and the
level of noise attenuation designed into the system. Electrical integrity should be considered only
after the power distribution conductors have been adequately sized to carry the DC load with mini-
mal voltage drop.

Assuming low enough resistance to adequately carry the current load, the quality of power con-
ductors in the context of electrical integrity is a function of inductance and capacitance. Power is a
signal like any other and is subject to degradation from noise created by components in the system,
especially at high frequencies. Digital logic is infamous for creating high-amplitude and high-fre-
quency noise because of the rapid binary switching characteristic of synchronous logic circuits. A
sudden current spike is generated when a logic gate switches and charges its output node to a new
state. A good power distribution system has low inductance so that the impedance between the
power source and the switching load is minimal at the high logic switching frequencies. It also has
sufficient capacitance near the load to attenuate the noise created by the switching event. The capac-
itance can be thought of as a tiny battery that briefly supplies the excess switching current until the
power source can respond to the event.

Impedance at high frequency is minimized by increasing the surface area of a conductor, because
high-frequency energy tends to travel along the surface of conductors according to a phenomenon
known as skin effect. At DC, the entire cross section of a conductor carries current in a uniform dis-
tribution. As the frequency increases, the current distribution becomes nonuniform and moves out
toward the conductor’s surfaces. The inductance of a power supply wire is not going to be signifi-
cantly reduced by moving to a lower gauge wire, because the surface areas of, for example, 22 and
18 gauge wires are not very different. A good way to distribute power in a low-inductance manner is
with a solid sheet of metal. Modern PCBs are built up from individual copper layers, and it becomes
very practical and cost effective to dedicate multiple layers as low-inductance power distribution
planes.

Capacitance is distributed across a circuit board’s power conductors using a variety of different
capacitors. A typical system has a relatively small quantity of low frequency bypass capacitors, also
called bulk bypass capacitors. Bypass capacitors are also called decoupling capacitors. Both terms
refer to capacitors that help reduce power supply noise in a system. These are often aluminum or
tantalum electrolytic capacitors, because electrolytics can pack a large capacitance into a small
package. Standard aluminum electrolytic capacitors have a limited life span, because they use a wet
electrolyte that gradually dries over time. Increased operating temperature shortens their life span.
Tantalums use a solid electrolyte and are considered more reliable. New types of aluminum electro-
lytic capacitors have also been developed with extended life and temperature ratings.

The downside of electrolytics is their poor high-frequency response. Bulk bypass capacitors are
placed at regular intervals on a circuit board to effectively lower the impedance of the voltage source
(regulator). Values for bulk capacitors range from 10 to 1,000 µF. The specific quantity and type used
and how they are placed varies greatly among system implementations. Some ICs recommend spe-
cific bulk bypass values. An engineer often errs on the side of conservatism and sprinkles 100-µF
electrolytic capacitors around a circuit board so that there is one per supply voltage every few
inches.

A larger quantity of high-frequency bypass capacitors are placed as close to the power pins of ICs
as possible. These are ceramic capacitors, and they should be sized according to the expected noise
frequencies. Historically, an individual 0.1-µF ceramic capacitor has been placed at each power and
ground pin pair of each IC. It is important to minimize the inductance between each bypass capaci-
tor and each power pin, because the resulting impedance at high frequency will limit the capacitor’s
effectiveness. This goal has given rise to the standard rules of placing capacitors as close as possible
to their ICs and using surface mount components with much lower lead inductances as compared to

-Balch.book Page 393 Thursday, May 15, 2003 3:46 PM

394 Digital System Design in Practice

leaded capacitors. Whereas a leaded component can have inductance of many nanohenries, Table
17.2 lists approximate inductances near 1 nH for various sizes of 0.1-µF surface mount ceramic ca-
pacitors.* Capacitors, resistors, and inductors are available in standard sized surface mount packages
that are designated by their approximate dimensions in mils. Common sizes are 1210, 1206, 0805,
and 0603. Larger packages such as the 1810 exist for handling higher power levels. Smaller pack-
ages such as the 0402 are used when space is at an absolute premium, but handling such packages
whose dimensions are comparable to grains of sand requires special equipment.

The impedance of a 0.1-µF surface mount capacitor reaches a minimum value of under 100 mΩ at
around 10 MHz and remains below 1 Ω from approximately 1 MHz to 100 MHz. This explains why
0.1-µF capacitors have been popular as bypass capacitors for so long: many digital systems have
switching frequencies below 100 MHz. Above 100 MHz, 0.01-µF capacitors in 0603 packages be-
come attractive because of their lower impedance at higher frequencies. It gets harder to reduce very
high-frequency noise, because the inductance of surface mount bypass capacitors declines only to a
certain point.

Having discussed the basic issues of power distribution, attention can be turned back to the exam-
ple in Fig. 17.16. Distributing the regulated 5-, 3.3-, and 2.5-V logic-level supplies in a manner that
ensures high-frequency electrical integrity requires minimal impedance between the regulator and
the load. The consideration goes beyond DC resistance to include inductance, which has a more sub-
stantial impact on the conductor’s impedance at high frequency. As the regulator and load are sepa-
rated by higher impedance, the regulator’s ability to respond to fluctuations in load current is
degraded. Low-inductance distribution is achieved by using complete planes or very wide copper
paths to connect the regulator outputs to the various ICs and components that they serve.

Power plane design is directly related to the electrical integrity of other signals in the system and
will be covered in more detail later. The ideal situation is to devote entire PCB layers to serve as
power planes for each separate voltage. This eliminates power plane cuts that can cause other signal
integrity problems. Unfortunately, not all systems can afford the cost or, in some cases, the physical
size of many power planes. In a situation like this, multiple voltages must share the same PCB layer.
Figure 17.17 shows a hypothetical single power plane structure for the preceding example that re-
quires distribution of 12, 5, 3.3, and 2.5 V. The shaded regions represent continuous copper areas. A
ground return plane is required but not shown, because it occupies a second layer and is continuous
across all power plane regions. Each system has its own unique power distribution flow governed by
the grouping of components that require different supply voltages. This example assumes the com-

* Jeffrey Cain, Parasitic Inductance of Multilayer Ceramic Capacitors, AVX Corporation, p. 3.

TABLE 17.3 Surface Mount
Capacitor Lead Inductance

Package
Inductance

(pH)

1210 980

1206 1,200

0805 1,050

0603 870

-Balch.book Page 394 Thursday, May 15, 2003 3:46 PM

Voltage Regulation and Power Distribution 395

mon situation in which most of the system runs at 3.3 V, but the inner core logic of certain ICs (e.g.,
a microprocessor) runs at 2.5 V. The remainder of the system voltages are used for peripheral and I/
O functions. In many cases, the components cannot be cleanly separated into groups that use only
one or two voltages. These situations may demand multiple power planes.

Figure 17.17 also shows the placement of 47-µF bulk bypass capacitors in each power section.
Their exact placement is arbitrary, but they should be distributed across the board. Not shown are the
high-frequency bypass capacitors, because their placement is a direct function of where the ICs are
located. There are also additional capacitors that would be located within the bounds of the voltage
regulators, because each regulator has its own recommendations for input and output capacitors.

2.5 V
Regulator

12 V Input

5 V Regulator

3.3 V Regulator

Circuit Board Outline

2.5 V Logic

12 V I/O

3.3 V Logic

5 V I/O Logic
47 µ

47 µ

47 µ

47 µ

47
 µ

47
 µ

47 µ 47 µ 47 µ

47 µ47 µ

FIGURE 17.17 Multivoltage cut power plane.

-Balch.book Page 395 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

397

CHAPTER 18

Signal Integrity

Getting high-speed digital signals to function properly is one of those areas that many people call

black magic.

 It is so called, because fast digital signals behave like the analog signals that they really
are, which is not an apparent mode of operation from a binary perspective. The typical story of woe
is one in which a digital engineer continues to design faster circuits in the same way as slower cir-
cuits, and one day a system begins developing unexplained glitches and problems. From a digital
perspective, nothing substantial has changed. On closer inspection with an oscilloscope, individual
digital signals have mysterious transients and noise superimposed on them.

Signal integrity

 is the overall term for high-speed electrical design techniques that enable digital
signals to function digitally in the face of physical phenomena that would otherwise cause problems.
Many of the terms and techniques introduced in this chapter may sound familiar, because they have
received increased scrutiny and coverage in the trade press and at conferences as a result of the steady
increase in semiconductor operating frequencies. Signal integrity used to be a topic that many systems
could ignore simply by virtue of their older technology and slower signals. That luxury has largely
evaporated today, even for slow systems that unwittingly use ICs designed for high-speed operation.

A broad set of topics are discussed in this chapter with the goal of providing familiarity with sig-
nal integrity problems and general solutions to those problems. Transmission lines and termination
are absolutely critical interrelated subjects, because they literally make the difference between work-
ing and nonworking systems. Transmission lines address head-on the reality that wires have finite
propagation delay and are not ideal transparent conductors that ferry signals from point to point un-
changed. From a purely functional perspective, proper transmission line analysis and design is the
most important part of signal integrity, which is why these topics are presented first.

High-speed signals exist in a world of non-negligible electromagnetic fields that cause even small
wires to act as antennas. These antennas are capable of both radiation and reception of noise.
Crosstalk, electromagnetic interference, and electromagnetic compatibility are associated topics that
hinge around the reality that electrical signals do not remain neatly confined to the wires on which
they travel. The problems are twofold. First, excessive field coupling can cause a circuit to malfunc-
tion. Second, electronic products offered for sale in most countries of the world must comply with
government regulations regarding their electromagnetic emissions. You don’t want to bring home a
new DVD player to find that it crashes your computer when you turn it on!

The chapter concludes with another related topic, electrostatic discharge. Static electricity is
something that we are all familiar with, but its effects on a digital system are potentially disruptive
and even destructive. Static electric discharges cannot be prevented in normal environments, but
their effects can be reduced to the point of not causing problems.

-Balch.book Page 397 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

398 Digital System Design in Practice

18.1 TRANSMISSION LINES

Transmission lines, reflections, and impedance matching have been alluded to previously. The term

transmission line

can refer to any conductive path carrying a signal between two points, although its
usual meaning is in the context of a conductive path whose length is significant relative to the signal’s
highest-frequency component. Circuits are normally drawn assuming ideal conductors whose lengths
are negligible and assuming that the voltage at any instant in time is constant across the entire con-
ductor. When a wire “becomes a transmission line,” it means that it can no longer be considered ideal.
An electrical signal propagates down a wire with finite velocity, which guarantees that a changing
signal at one end will take a finite time to reach the other end. When a signal’s rate of change is slow
relative to the wire’s delay, many nonideal characteristics can be ignored. Older digital circuits that
ran at several megahertz with slow transition times were often not subject to transmission line effects,
because the wire delay was short compared to the signal’s rate of change.

A signal that changes rapidly forces one end of a transmission line to a significantly different volt-
age from other points along that conductor. At the instant this rapid change is produced by a driver,
the signal has not yet reached the load at the end of the wire. Rather than observing current and volt-
age that are in proportion to the load impedance, they are in proportion to the characteristic imped-
ance of the transmission line, commonly written as Z

O

. Z

O

 is not a DC load; it represents the
reactance developed by the conductors’ inductive and capacitive characteristics. It is the impedance
that would be observed between the two conductors of an infinitely long transmission line at nonzero
frequency. When a high-frequency signal transitions before the driver sees the end load, it is as if the
transmission line is infinitely long at that moment in time.

Transmission lines are composed of a signal path and a return path, each of which can be modeled
using discrete lumped elements as shown in Fig. 18.1. The model shown is that of an unbalanced
transmission line wherein all of the inductive and lossy properties are represented in one conductor.
This is acceptable for many transmission lines in a digital system, because printed circuit boards
commonly consist of etched wire conductors adjacent to ground planes that have negligible induc-
tance and resistance. A balanced transmission line model, such as that representing a twisted pair ca-
ble, would show series inductance and resistance in both conductors. Analysis is simplified by
assuming lossless conductors, which is often a suitable starting point in a digital system with moder-
ate wire lengths. Using this simplification, the characteristic impedance is defined as Z

O

 = .
Characteristic impedance is an important attribute, because it defines how a high-speed signal propa-

gates down a transmission line. A signal’s energy can fully transfer only between different transmission
line segments that have equal Z

O

. An impedance discontinuity results when two transmission lines are
joined with differing Z

O

. Impedance discontinuities result in some of a signal’s energy being reflected
back in the direction from which it arrived. This phenomenon is the crux of many signal integrity prob-
lems. An improperly terminated transmission line has the potential to cause reflections from each end
of the wire so that the original signal is corrupted to the point of being rendered useless. A reflection co-
efficient, represented by the Greek letter gamma (

Γ

), that determines the fraction of the incident voltage
that is reflected back from an impedance discontinuity is defined in the following equation:

RP

RS
L

C

FIGURE 18.1 Lumped transmission line model.

L C÷

-Balch.book Page 398 Thursday, May 15, 2003 3:46 PM

Signal Integrity 399

Gamma is a dimensionless quantity that ranges from +1 to –1 and is a function of Z

O

 and the next
segment’s impedance, Z

L

. It can be seen from this relationship that, when a transmission line is left
open, Z

L

 =

∞

 and

Γ

 = 1: the entire voltage is reflected back to the source. This is the default situation
for most digital signals, because a high-impedance logic input is effectively an open circuit from a
transmission line perspective. Incidentally, a short-circuited transmission line, though not very desir-
able for digital signals, results in

Γ

 = –1, because Z

L

 = 0, and causes the reflected signal to cancel the
incident signal at the load. When a resistor equal to Z

O

 is placed at the end of a transmission line
such that it connects the line’s signal and return paths,

Γ

 = 0, the line is said to be terminated, and no
reflections are induced.

Transmission line reflections are perhaps best understood in a qualitative manner by looking at a
time-domain view of a propagating signal. Figure 18.2 shows three scenarios that illustrate the bene-
fits of termination and the effects of the reflection coefficient. The first scenario shows an edge in-
jected into a 1 ns transmission line (about 6 in [0.15 m] long) that is improperly designed.
Substantial bounce is present at the load. A high-speed clock is shown in the second scenario in-
jected into the same transmission line. Note the bounce at both logic levels that can potentially cre-
ate detection problems at the load. Poorly designed transmission lines can exhibit a wide variety of
troublesome transient phenomena. Some may be better or worse than what is shown here. The third
scenario shows the same clock injected into the same transmission line but with proper termination.
The signal integrity is about as good as can be expected in a real circuit. There will always be small
transients, even when a transmission line is properly matched, because of nonideal characteristics in-
cluding stray inductance and capacitance in wires and termination components.

The need to minimize impedance discontinuities in modern printed circuit boards has given rise
to the concept of controlled-impedance PCB design and manufacture. When a signal path and return
path are arranged in various topologies, Z

O

 of the resultant transmission line is deterministic to an
accuracy defined by the tolerance of the dimensions and electrical properties of the PCB materials. If
all traces on a PCB are manufactured with similar Z

O

, signals are subject to low reflection coeffi-
cients as they travel throughout the board. Three of the common PCB transmission line topologies
are microstrip, symmetric stripline, and asymmetric stripline as illustrated in Fig. 18.3. These topol-
ogies assume one or two continuous ground planes adjacent to each signal layer. A continuous
ground plane offers low sheet inductance with excellent high-frequency characteristics. Microstrip
transmission lines are fabricated on the surface layers of PCBs where there is a single ground plane
underneath the surface signal layer. A symmetrical stripline is evenly suspended between the two
ground planes, while an asymmetric stripline has unequal spacings. Dual asymmetric striplines are
implemented to achieve higher wiring density in a PCB versus symmetric striplines because of the
higher ratio of signal to ground plane layers. Dual striplines have the potential for interference be-
tween adjacent signal layers, requiring more careful layout than with single striplines.

Z

O

 is a function of the trace geometry (width and thickness) and the relative permittivity and
height of the dielectric, or insulator, that separates the ground planes from the traces. Relative per-
mittivity,

ε

r

, also called the

dielectric constant,

 quantifies the effect of an insulating material on the
capacitance between two conductors relative to free space. The relative permittivity of free space is 1
by definition. Common insulators have

ε

r

 ranging from 2 to 10. For microstrip and stripline topolo-
gies, Z

O

 is defined in the following equations:

*

*

IPC-2141—Controlled Impedance Circuit Boards and High-Speed Logic Design,

 Institute for Interconnecting and Packaging
Electronic Circuits, 1996, pp. 11–14.

Γ
ZL ZO–

ZL ZO+
--------------------=

-Balch.book Page 399 Thursday, May 15, 2003 3:46 PM

400 Digital System Design in Practice

Microstrip:

Symmetric stripline:

Asymmetric stripline:

0 2 4 6 8 10 12 14

Time (ns)

Load

Source

0 2 4 6 8 10 12 14 16 18 20

Time (ns)

0 2 4 6 8 10 12 14 16 18 20

Time (ns)

FIGURE 18.2 Transmission line reflections.

ZO
87

εr 1.41+
-------------------------- 5.98H

0.8W T+
-----------------------ln=

ZO
60

εr

--------- 1.9 2H T+()
0.8W T+

------------------------------ln=

ZO
80

εr

1.9 2H1 T+()

0.8W T+
--------------------------------- 1

H1

4H2
----------–ln=

-Balch.book Page 400 Thursday, May 15, 2003 3:46 PM

Signal Integrity 401

A type of fiberglass known as FR-4 is a common dielectric found in PCBs. Its relative permittiv-
ity is approximately 4.7. Half-ounce copper foil is typically used for signal traces and has an approx-
imate thickness of 0.65 mils. Most PCBs are designed with Z

O

 between 50 and 75

Ω

. These basic
constraints lead to typical trace widths of between 4 and 10 mils and typical dielectric heights of
4 mils and higher. Dimensions outside of these ranges are perfectly acceptable and are justified by
the requirements of each application. Choosing a trace width is usually based on the packaging tech-
nologies and component densities being used. Higher densities usually require finer traces to wire
the circuits.

Actual PCB geometries are selected in concert with PCB vendors based on available materials
and dimensional requirements. Many circuit boards must conform to a standard thickness so that
they can plug into a system such as a PC. A common PCB thickness is 62 mils, roughly 1/16th of an
inch. Figure 18.4 shows a sample stack-up using FR-4 and 0.5-oz copper that might be provided by
a PCB vendor. This PCB has six layers configured as two power planes and four signal layers with
Z

O

 = 50

Ω

. Each signal layer uses 8-mil traces. The top and bottom signal layers are microstrips, and
the internal signal layers are asymmetric striplines. The PCB vendor does not have much flexibility
in assigning the dielectric thickness on the outer layers. Inner layers provide significant flexibility,
because the asymmetric heights can be traded-off against each other to achieve the desired imped-

εr

W

T

Symmetric Stripline

H

H

εr

W
T

Dual Asymmetric Stripline

H1

H2

TH2

H1

εr

W = trace width

H = dielectric
height

T = trace thickness

Microstrip

FIGURE 18.3 Microstrip and stripline transmission line topologies.

Signal #1 (Top)

Signal #4 (Bottom)

Signal #2

Signal #3

Ground

Power
0.005 in.

0.0073 in.

0.0073 in.

0.005 in.

0.035 in.

FIGURE 18.4 Sample six-layer PCB stack-up with 0.008-in traces and
ZO = 50 Ω.

-Balch.book Page 401 Thursday, May 15, 2003 3:46 PM

402 Digital System Design in Practice

ance with an overall PCB thickness. In this case, a desired thickness of 0.062 in is achieved by find-
ing a combination of dielectric heights that match both the mechanical and electrical requirements.

The materials specifications mentioned here are approximations and vary between PCB vendors.
Before beginning a PCB layout, always select a reputable vendor and confirm the layer stack-up to
be sure that your desired impedance can be achieved with the expected dimensions. A vendor should
be capable of quoting a stack-up that provides detailed specifications for the trace width and dielec-
tric heights so that your layout can be executed knowing that the design goals are realistic. After ac-
counting for various manufacturing variances, the vendor should be able to deliver controlled
impedance traces to an accuracy of

±

10 percent or better.
A signal must often change layers as it travels, because of obstructions caused by other devices

and other groups of traces that are competing for their journey across the same area of circuit board.
Vias are small metal-plated holes that are fabricated into the PCB to allow a signal to change layers
as it is routed across a board. When a signal moves between layers, its return current moves with it if
the two signal layers do not share a common return plane. For example, signal layers 3 and 4 share a
common return plane in Fig. 18.4, but signal layers 1 and 4 do not. A discontinuity results when the
return current is not presented with a low-impedance path to follow the signal’s layer change. Dis-
continuities may result in nonideal transmission line behavior, such as reflections and increased
noise radiation and susceptibility. Such discontinuities will be mentioned again later in the context
of grounding and electromagnetic interference.

High-frequency signals in the gigahertz range can also be adversely affected as traces change di-
rection. It is necessary for a trace to change direction so that it can route a signal to its load. How-
ever, the manner in which a corner is created has an effect on the transmission line’s characteristic
impedance. Recall that Z

O

 is a function of the trace’s capacitance and inductance. A straight trace
has approximately constant cross section throughout its length, resulting in constant Z

O

. If a trace
turns a 90° corner, its cross section changes as shown in Fig. 18.5. Changing cross section, or width,
results in different capacitance and inductance. The ideal situation is for a trace to smoothly curve
around corners to maintain constant cross section. Although this is usually done for the most de-
manding very high-speed circuits, it is uncommon for normal digital signals because of the burden
that smooth curves place on conventional PCB design software. Imperfections due to corners are
negligible for typical digital signals into the hundreds of megahertz. An alternative to a smooth curve
is implementing a 45° compromise to provide less of a disruption as compared to a 90° turn, but not
quite the cleanliness of a true curve.

Selecting the characteristic impedance for a PCB design is usually done according to industry
conventions, because certain connectors and cables are specifically designed with 50- or 75-

Ω

 im-
pedances. Many coaxial cables, particularly in video applications, are 75

Ω,

 and it is convenient to
minimize impedance discontinuities by matching the PCB to the cable. Most high-speed digital cir-

Constant
Width

Straight Trace 90° Corner

Corner Width

= W 2 ≈1.4 W

W

Ideal Curve

Constant
Width

45° Compromise

Corner Width
≈1.1 W

FIGURE 18.5 Effect of corners on trace impedance.

-Balch.book Page 402 Thursday, May 15, 2003 3:46 PM

Signal Integrity 403

cuits use 50-

Ω

 transmission lines, and some connectors are available with this impedance as well.
There are advantages and disadvantages in using higher- or lower-impedance transmission lines. A
lower-impedance transmission line requires a thinner dielectric between the signal and return paths.
This smaller gap makes the transmission line less susceptible to radiating and coupling noise. It also
allows multilayer circuit boards to be made thinner. The disadvantage of lower-impedance transmis-
sion lines is that they require higher drive current. Most ICs are capable of driving 50-

Ω

 transmis-
sion lines, and high-speed design makes the trade-off of improved noise immunity worth the added
power consumption. However, slower circuits may be more suited to 75-

Ω

 transmission lines for
power savings.

18.2 TERMINATION

In applying transmission line theory to a digital signal, one should first determine whether the com-
bination of signal transition speed and wire length combine to merit transmission line analysis. Dig-
ital signals are characterized not only by their repetitive frequency but also by the frequency
components in their edges. A signal with a rapid transition time will have high-frequency compo-
nents regardless of how long the repetition period. Rules of thumb vary, but a common reference
point is to treat a wire as a transmission line if the signal’s rise time is less than four times the prop-
agation delay of the wire. The common definition of rise time is the time that the signal takes to tran-
sition from 10 to 90 percent of its full amplitude. If the signal transitions slowly with respect to the
wire delay, it can be assumed that all points on the wire transition together as the applied signal tran-
sitions. When a signal transitions quickly and the wire is long relative to this time, the wire should be
treated as a transmission line. It is now common to see signals that transition in 1 ns, meaning that
wires with propagation delays greater than 250 ps (about 1.5 in, or 38 mm) require transmission line
analysis!

There are several basic termination schemes and numerous variant schemes that have been de-
signed for special digital signaling standards. From our previous discussion of the reflection coeffi-
cient, the first obvious termination scheme is to place a resistor equal to Z

O

 at the end of a
transmission line as shown in Fig. 18.6. This is known as

parallel termination

. Note that a transmis-
sion line is identified using a graphical representation of a coaxial cable. This does not mean that a
transmission line must be implemented as such, but it conveys the idea that the wire length is non-
negligible and cannot be treated as a single node of constant voltage as other wires are. A ground is
explicitly connected to the transmission line return path to clearly indicate the circuit’s return path.
Assuming ideal conditions where Z

O

 is exactly known, R = Z

O

, the output impedance of the driver is
0

Ω

, and there is no stray capacitance or inductance at either end of the transmission line, parallel
termination yields

Γ

 = 0, and no reflections are present. Of course, these ideal conditions are never
achieved, and real terminated transmission lines have some degree of imperfection. The goal is not

ZO = 50 Ω

50 Ω

FIGURE 18.6 Parallel termination.

-Balch.book Page 403 Thursday, May 15, 2003 3:46 PM

404 Digital System Design in Practice

to accomplish the impossible but to achieve a transmission line topology in which the reflections are
small enough to not degrade the load’s valid detection of logic-1 and logic-0 states.

Parallel termination resistors should always be placed as close to the end of a transmission line
as possible to minimize stub lengths between the terminator and the IC pin. Stubs appear as trans-
mission lines of their own and can cause more reflections if not kept short. It can be difficult to
squeeze termination components close to IC pins, but efforts should be made to achieve the best
practical results.

Terminating a line at one end as shown in Fig. 18.6 is proper for a unidirectional signal, because
the driver launches a signal into one end of the transmission line, and the termination is placed at the
load end to prevent reflections. When both ends of the line are driven, as is the case with bidirec-
tional buses, both ends require termination. The resistor at the driver end appears as a normal DC
load, and the resistor at the far end serves as a terminator.

Situations commonly arise in which a bus has more than one load. A microprocessor bus must
typically connect to several memory and peripheral ICs. The transmission line topology must be laid
out carefully to minimize the potential for harmful reflections. The best scenario is to create a single,
continuous transmission line terminated at each end that snakes through the circuit board and con-
tacts each IC so that the stubs to each IC are of negligible length as shown in Fig. 18.7. When an IC
at either end drives the bus, it drives a single transmission line that is terminated at the other end.
When an IC in the middle drives the bus, it drives two equivalent transmission lines that are termi-
nated at their ends. Graphically, the single transmission line can be drawn as shown using multiple
segments connected by nodes that indicate tap points for individual ICs. Because nodes are drawn
with the assumption of negligible length and constant voltage, they are conceptually transparent to
the transmission line segments on each side. Keep in mind that not all buses require a perfect trans-
mission line topology. Depending on their wire lengths and the switching times of the drivers, the
wires may be regarded as idealized and not require special handling.

Many nonideal topologies exist in which no attempt has been made to shorten stubs and there is
really no identifiable transmission line “backbone.” Instead, the wiring is fairly random. A topology
like this works either by virtue of the fact that the signal transition times are slow enough to not

ZO

IC

IC

ZO

IC
ZO

IC

ZO

ZO

FIGURE 18.7 Multidrop transmission line topology.

-Balch.book Page 404 Thursday, May 15, 2003 3:46 PM

Signal Integrity 405

make transmission line effects significant, or by plain luck. If the former, the circuit is perfectly
valid, because there is no reason to cause wiring headaches if a wire does not have to be regarded as
a transmission line. If the latter, luck can turn at any time with slight variations in components. This
often explains why one or two units work in the lab, but a small manufacturing run has a high per-
centage of failures.

Parallel termination has the unfortunate consequence of heavily loading a driver because it is, af-
ter all, a small resistance connected directly across the signal and return paths. The driver sees a load
of Z

O

 when it begins to switch its output but, once the line has stabilized, it still sees a load of R =
Z

O

. This is a substantial load with a 50- or 75-

Ω

 transmission line. A 3.3-V driver would have to
drive 66 mA into a 50-

Ω

 load. If many bus signals need to be terminated, the power dissipation and
stress on the driver ICs quickly mounts. This situation gets worse when terminating both ends of a
bidirectional line.

There are several variants of parallel termination that seek to minimize the DC current drawn by
the termination resistors.

Thevenin

, or

split termination,

operates using two resistors, each of which
is chosen to be twice Z

O

 as shown in Fig. 18.8. One resistor terminates to ground and the other to the
positive voltage rail. From an AC perspective, the positive voltage rail acts as a ground, and the par-
allel resistor combination appears as a single resistor equivalent of Z

O

 connected to ground. The
benefit of split termination is that the maximum DC current drawn from the driver is halved, because
a 100-

Ω

 load is observed to the opposing voltage rail. When the driver drives to V

DD

, the 100-

Ω

 re-
sistor to ground is the only load with a DC voltage drop across it. Split termination’s disadvantage is
that it always dissipates power, because the resistors establish a DC path between V

DD

 and ground.
The Thevenin concept can be carried further by employing a dedicated termination voltage rail,

V

TT

, that equals V

DD

÷

 2 and terminating to this rail using a resistor equal to Z

O

 as shown in Fig.
18.9. This scheme provides equivalent termination with less power dissipation, because the maxi-
mum voltage drop is V

DD

÷

 2 instead of V

DD

. An additional benefit is that the terminator only dissi-
pates power when the line is active. Bidirectional buses that are released to high-impedance states
during idle will not load the termination resistor during that idle time.

Another variant of parallel termination uses a capacitor in series with the resistor to reduce power
dissipation and is shown in Fig. 18.10.

AC termination

is suitable for clock signals or other DC bal-
anced signals (e.g., 8B10B encoded signals), because such signals allow the capacitor to charge to
V

DD ÷ 2 with the resultant benefits of reduced power dissipation as seen with VDD ÷ 2 termination.
Unbalanced signals remain at a static voltage for too long and charge the capacitor to either voltage
rail. When a transition finally occurs, the full VDD voltage drop appears across the terminator in a
conceptually identical arrangement to basic parallel termination. The capacitor value must be chosen
so that it maintains a nearly constant voltage during the balanced signal’s period. A common 0.1-µF

100 Ω

100 Ω

VDD

ZO = 50 Ω

FIGURE 18.8 Thevenin termination.

-Balch.book Page 405 Thursday, May 15, 2003 3:46 PM

406 Digital System Design in Practice

capacitor combines with a 50-Ω resistor to yield a time constant of 5 µs, which is suitable for most
applications.

Some engineers do apply AC termination to normal unbalanced signals such as a data bus. The
idea is to save power by presenting the termination resistor only during the high-frequency signal
transition events and not during the longer static time. Smaller capacitors, perhaps 100 pF, are re-
quired in this case to provide low impedance at the high frequency edge but a low RC time constant
so that it charges to the driven DC value quickly. Problems with this approach include added time for
the wire to stabilize as a result of ringing and difficulty in matching the capacitor to the variation in
driver’s edge rate. AC termination may be the best solution for certain weak drivers with multiple
loads, but some trial-and-error adjustment of the capacitor may be required in the lab.

Parallel termination can reduce power dissipation only to a point, because it is a shunt load to a
DC voltage rail. Multidrop bus topologies require parallel termination, which prevents reflections
from being formed at the transmission line ends. High-speed digital systems often employ point-to-
point buses for reasons including source-synchronous clocking and transmission line stub reduction.
Point-to-point buses also provide an advantage in not requiring parallel termination. Series termina-
tion can be used in these situations with its benefit of zero DC power dissipation. This technique was
already briefly discussed in the context of clock distribution.

Series termination, also called source termination, operates by purposely creating a reflection at
the load and then terminating that reflection at the source to prevent its re-reflection back to the load.
A unidirectional point-to-point transmission line with series termination is shown in Fig. 18.11.
When the driver first transitions, the transmission line presents its characteristic impedance as a load.
In combination with the termination resistor, a voltage divider is formed, and only half the voltage
propagates down the wire. When this half amplitude signal reaches the transmission line’s untermi-
nated end, a reflection coefficient of one causes the incident and reflected voltages to add with the re-
sult being the original full-amplitude signal. The receiving IC observes the full-amplitude signal.

50 Ω

VTT = 2

VDD

ZO = 50 Ω

FIGURE 18.9 VDD ÷ 2 termination.

50 Ω

Clock
ZO = 50 Ω

FIGURE 18.10 AC termination.

-Balch.book Page 406 Thursday, May 15, 2003 3:46 PM

Signal Integrity 407

The reflected signal propagates back to the driver. This time, the transmission line end is terminated
by the resistor connected to a power rail via the driver circuit itself, and the reflected energy is ab-
sorbed. There is no DC power dissipation with series termination, because the terminating resistor
does not shunt the transmission line to a separate DC potential.

The reflection intentionally created in a series-terminated transmission line makes this scheme
nonideal for high-speed multidrop buses, because it takes two round-trip times for the entire trans-
mission line to stabilize. A 12”-in (0.3 m) bus would require approximately 4 ns for the transmission
line to settle, which is a substantial fraction of the timing budget at speeds over 100 MHz.

Bidirectional point-to-point transmission lines can use series termination as well, with good re-
sults. Figure 18.12 shows a transmission line with series termination at each end. The mode of oper-
ation is the same as explained previously. When component A is driving, R1 serves as the series
termination, and the signal propagates toward R2. R2 connects to the high-impedance input circuit at
component B, effectively nullifying the presence of that resistor. A reflection is developed at the R2
end of the transmission line and is absorbed when it returns to the R1. Some delay and lowpass fil-
tering of the signal may result because of the RC time constant formed by R2 and any stray capaci-
tance at component B’s input node. If the stray capacitance is up to 10 pF, the time constant is up to
500 ps—small, but non-negligible for very high-speed circuits.

Selecting the perfect series termination resistor is an elusive task, because it is difficult to charac-
terize a driver circuit’s actual output impedance. This finite impedance combines with the series re-
sistor to yield the total termination impedance seen by the signal reflecting back from the load. A
driver circuit’s output impedance varies significantly with temperature, part-to-part variation, sup-
ply voltage, and the logic state that it is driving. It is therefore unrealistic to expect perfect series
termination across time and multiple units manufactured. Some devices that are specifically de-
signed for point-to-point transmission line topologies (e.g., certain low-skew clock buffers) contain
internal series termination circuits that are designed to complement the driver’s output impedance.
In the remaining cases, standard resistance values are chosen with the understanding that an imper-
fect termination will result. A typical value of 39, 43, or 47 Ω can be chosen for an initial prototype
build when using 50-Ω transmission lines, and the signal integrity can be evaluated in the labora-
tory. Switching to one of the other values may improve signal integrity by reducing the reflection
coefficient.

Practically speaking, there is a common range for a driver’s output impedance. If a 39 Ω termina-
tion resistor is chosen with the expectation that ZOUT = 10 Ω, and the actual impedance under certain
conditions is 3 Ω, the total termination will be just 42 Ω. For a 50 Ω transmission line, = 0.087,

50 Ω

ZO = 50 Ω

FIGURE 18.11 Series termination.

50 Ω 50 Ω

R1 R2

A BZO = 50 Ω

FIGURE 18.12 Bidirectional series termination.

Γ

-Balch.book Page 407 Thursday, May 15, 2003 3:46 PM

408 Digital System Design in Practice

and so 8.7 percent of the reflected half-amplitude signal will be re-reflected. This may not be a suffi-
cient amplitude disturbance to cause problems. If it is, the transmission line must be given time for
the reflections to diminish.

18.3 CROSSTALK

Initial transmission line analysis is typically performed with assumptions of ideal circumstances, in-
cluding the assumption that the transmission line is independent of others. In reality, a wire acts as
an antenna and is a radiator and receiver of electromagnetic fields. When two nearby wires couple
energy between each other, the phenomenon is called crosstalk and is another source of signal integ-
rity problems. Crosstalk is not always a problem, but the potential exists, and therefore circuit design
and layout should be performed with its consideration in mind.

Energy can be coupled between nearby conductors either capacitively or inductively. High-fre-
quency energy can pass through a capacitor, and a small capacitor is formed when two conductors
are in proximity to one another. The capacitance between two wires is a function of their surface
area and their spacing. When two wires are run parallel to one another on the same layer of a printed
circuit board, their mutually facing surface area is relatively small. A dual stripline configuration,
however, can present greater capacitive coupling problems, because wire traces may run parallel one
on top of the other with significant surface area. A common PCB routing rule is to route adjacent
dual stripline layers orthogonally whenever possible rather than parallel to each other as shown in
Fig. 18.13. Minimizing the surface area of a wire that is in close proximity to the other wire reduces
capacitive coupling.

Inductive coupling comes about because current flowing through a wire generates a magnetic
field. Each wire is a very small inductor. If two wires are run close to each other, the two small in-
ductors can couple their magnetic fields from one to the other. Crosstalk analysis uses the terms ag-
gressor and victim to aid in analysis. The aggressor is a wire that has current flowing through it and
is radiating an electromagnetic field. The victim is a nearby wire onto which the electromagnetic
field couples unwanted energy. Because the intensity of the magnetic field is proportional to the cur-
rent flowing through a wire, heavier loads will result in more coupling between an aggressor and
nearby victims. Most crosstalk problems in a digital system are the result of magnetic fields, because
of the high currents resulting from low-impedance drivers and fast edge rates.

Separation is an effective defense against crosstalk, because electromagnetic field coupling de-
creases with the square of distance. Doubling the separation between two wires reduces the coupling
at the victim by 75 percent. Dielectric height in a PCB is another contributing factor, because the
field intensity increases with the square of height between the aggressor trace and the ground plane.
The dielectric ranges in thickness according to the desired characteristic impedance and width of the

Upper
Signal Layer

Lower
Signal Layer

Parallel Routing
More Overlapping Surface Area

More Crosstalk Orthogonal Routing
Less Overlapping Surface Area

Less Crosstalk

FIGURE 18.13 Dual stripline coupling reduction.

-Balch.book Page 408 Thursday, May 15, 2003 3:46 PM

Signal Integrity 409

copper traces. As the dielectric gets thinner, the capacitance between the trace and ground plane in-
creases, thereby decreasing ZO. The trace’s inductance must be increased to compensate for this de-
creased capacitance, indicating that a trace must be narrower to achieve 75 Ω versus 50 Ω with a
certain dielectric height. Put another way, a 50-Ω transmission line has a lower dielectric height for a
given trace width and, hence, weaker fields to cause crosstalk.

Crosstalk is a three-dimensional problem, and length is the third variable in coupling energy onto
a victim trace. Traces that run parallel to each other are parallel antennas. Longer antennas can cou-
ple more energy. Therefore, many high-speed PCB designs enforce maximum parallelism rules that
define the maximum distance that is allowable for two traces to run parallel to each other. Parallel-
ism rules are related to separation rules. Traces that are spaced farther apart can tolerate longer par-
allel runs, because the separation reduces the aggressor’s radiated field strength.

It is difficult to make generalizations about separation and parallelism rules, because every situa-
tion is unique. Furthermore, the formulas that define field strength and coupling coefficients are
complex functions that incorporate dimensional and material parameters. A detailed crosstalk analy-
sis requires the use of specialized software that simulates the coupling phenomena using detailed
mathematical models of the driver and load circuits, the circuit board materials, and the three-dimen-
sional arrangement of multiple traces. Such programs are known as field solvers and are available
from a variety of vendors including Ansoft, Cadence, Innoveda, and Mentor Graphics.

When engineers do not have field-solving software at their disposal, very conservative design rules
are often used to minimize the probability of excessive crosstalk. Sensitive signals are spaced apart
from others. Parallelism is limited for signals whose spacing approaches the dielectric height where
field coupling is greater. These rules are very coarse approximations, and application-specific rules
need to be applied for very high-speed designs to avoid potentially thorny signal integrity problems in
the prototype. If a great deal of time and money are invested in designing a leading-edge high-speed
system, it is prudent to invest some time and money in appropriate signal integrity analysis tools.

One saving grace when dealing with crosstalk is that many signals do not have to be protected
from each other if it can be shown that noise caused by crosstalk will not affect the received signal.
Consider the case of a microprocessor bus’s individual wires that are traveling close together be-
tween ICs. Inductive coupling, which is the dominant crosstalk contributor, occurs when current is
flowing, because the magnetic field is proportional to current flow. Significant current flows during
the switching time of the digital signal. Once the signal has stabilized, the load presents the driver
with high impedance. This means that crosstalk between signals that transition together occurs
mainly while they are switching and then quiets down after the lines have stabilized. A properly de-
signed system does not sample signals until they have safely stabilized, at which point crosstalk
within the group becomes negligible.

The wires that compose a single bus can usually be routed in close proximity to each other with-
out regard for crosstalk within the bus. Clocks require special consideration, because one does not
want a great deal of noise from switching bus wires to couple onto the clock wire and cause a false
edge to appear. Likewise, the clock’s transitions can potentially couple onto data wires and cause an
incorrect observation at the receiver. Clocks are usually given preferential routing treatment aside
from their low-skew distribution requirement. Clock traces are often routed before all others, and
stricter minimum spacing rules may be used to minimize corruption of clock signals. Very conserva-
tive systems are designed by dedicating one or more entire PCB signal layers to clock routing so that
the clocks can enjoy substantial trace-to-trace spacing minimums.

Although signals within a bus are usually not sensitive to mutual crosstalk, signals that transition
asynchronously with respect to each other are prime candidates for trouble. Asynchronous signals,
by definition, transition relative to each other without a defined timing relationship. If a system has
two buses on different clock domains whose wires are mixed in close proximity with long parallel
runs, it is probable that one bus will often transition during the assumed stable time of the other bus

-Balch.book Page 409 Thursday, May 15, 2003 3:46 PM

410 Digital System Design in Practice

just as it is being sampled. Attention should be paid to the routing of asynchronous signals by sepa-
rating them and minimizing parallelism.

18.4 ELECTROMAGNETIC INTERFERENCE

Electromagnetic interference (EMI) and crosstalk are closely related topics. It has already been seen
that the quality and proximity of a ground plane has a significant impact on a transmission line and
the fields that it radiates. Magnetic field strength is proportional to current and is also a function of
the loop area defined by the conductors carrying that current. All circuits are loops, because current
cannot flow unless a complete loop is formed from the source, through the load, and back to the
source. Digital circuits are no exception to this rule, despite inputs typically having high impedance
and low DC input currents. A high-speed system moves substantial currents around many individual
loops formed by digital buses because of the rapid charging and discharging of transmission lines
and input nodes. Even though each bit in a data bus may not be drawn with an explicit return path
shown, that return path must exist for the circuit to function.

As the size of the loop formed by the signal’s source and return paths increases, that wire radiates
a magnetic field of greater strength and is more susceptible to picking up ambient magnetic fields.
The general term for a circuit’s sensitivity to coupling electromagnetic fields is EMI susceptibility. A
circuit forms a loop antenna, and a loop antenna is more efficient with increasing area. Loop area
and its effect on crosstalk have already been touched on in terms of dielectric height in a PCB. As
the signal wire is brought closer to the ground plane, as it is in a lower-impedance design, the loop
area and field strength decrease as illustrated in Fig. 18.14.

Minimizing loop area is a key reason why solid ground planes are necessary to high-speed sig-
nals. Consider the two scenarios, with and without ground planes, in Fig. 18.15. A ground plane al-
lows a high-speed return current to flow through a path of least inductance that is directly under the
signal trace. If the ground plane is replaced by a few discrete wires, those wires cannot lie directly
under all signal paths. The return current is forced to take a path that is a greater physical distance
from the signal path, with an associated increase in loop area and EMI susceptibility.

Vias along a set of PCB traces can inadvertently create larger loops. When a signal moves be-
tween PCB layers, its return current must follow. If a signal changes layers that are on opposite sides
of the same ground plane, the return current is able to follow without interruption. Signals often
move between layers that do not share the same return plane. In these cases, the return current finds
the lowest-impedance path to the return plane that is adjacent to the new signal layer. This path may
be direct, capacitive, or a combination of the two. If the new return plane is at the same DC level as
the current plane (e.g., two different ground planes), the path of least impedance may be directly
through a nearby via that connects the planes. If the new return plane is at a different DC level (e.g.,
a power plane serves as an AC ground), the return current capacitively couples between planes. Even
if the planes share the same DC level, capacitive coupling may be the path of least impedance.

Ground Plane

Signal Trace

Dielectric
Height

Loop Area

Ground Plane

Signal Trace

Dielectric
Height

Loop Area

FIGURE 18.14 Loop area vs. PCB dielectric height.

-Balch.book Page 410 Thursday, May 15, 2003 3:46 PM

Signal Integrity 411

Capacitive coupling can occur through bypass capacitors that connect the two return planes and
through interplane capacitance that is a function of the PCB dimensions and materials. Low-induc-
tance capacitors are critical to provide adequate high-frequency coupling between planes. Imped-
ance is a product of inductance and frequency. A bypass capacitor’s total circuit inductance is the
sum of the capacitor’s inherent inductance and additional inductance caused by PCB traces and vias
that connect it to the return planes. Typical surface mount capacitors in 0603 or similar packages can
exhibit total inductance of approximately 2 to 3 nH. This inductance, combined with typical capaci-
tance values of 0.1 or 0.01 µF, allow an impedance calculation at a given frequency. When multiple
bypass capacitors are in close proximity to a via, they form a parallel combination with lower total
inductance and higher total capacitance—both of which are desirable characteristics. The closer the
bypass capacitors are to a via in question, the smaller the loop that is created for high-frequency re-
turn current between two planes. Nearby capacitors improve the high-frequency characteristics of
the transmission line, whereas more distant capacitors increase the circuit’s EMI susceptibility.

Discrete bypass capacitors are often the path of least impedance between return planes. As operat-
ing frequencies rise, however, the finite inductance of discrete components becomes more of a prob-
lem. A PCB may be constructed with planes separated by very thin dielectrics to provide significant
interplane capacitance with negligible inductance. Capacitance increases with decreasing spacing
between planes, and inductance decreases with greater surface area that a plane offers. High-fre-
quency systems may require such construction techniques to function properly. These techniques
can increase system cost by requiring more expensive thin dielectric materials and a greater number
of PCB layers. Such costs are among many complexities involved in creating high-performance sys-
tems and must be considered when deciding on the practicality of a design.

The potential for via-induced EMI problems always exists. Conservative designs attempt to route
sensitive and very high-speed signals with a minimum number of vias to reduce ground discontinu-
ity problems. When vias are necessary, it is best to switch only between pairs of signal layers that are
on opposite sides of the same ground plane.

Return path discontinuities may also be caused by breaks in power and ground planes. A PCB
may contain multiple DC voltages (e.g., 5 and 3.3 V) on the same power plane to save money. Dif-

Driver IC

Ground Pin

Signal Pin

Receiver IC

Ground Pin

Signal Pin

Ground Plane

Minimum loop area with ground plane

Driver IC

Ground Pin

Signal Pin

Receiver IC

Ground Pin

Signal Pin

Ground Wire

Greater loop area with discrete ground wire

Loop

Loop

Signal Trace

Signal Trace

FIGURE 18.15 Greater loop circuit area without ground plane.

-Balch.book Page 411 Thursday, May 15, 2003 3:46 PM

412 Digital System Design in Practice

ferent voltage regions are created by splitting the plane. Return path discontinuities may result if the
split plane is used as an AC ground for adjacent signal layers as shown in Fig. 18.16. As with a via,
the return current finds the path of least impedance. An isolated split plane will force the return cur-
rent to find an alternate path. Ideally, this should not be done, and planes should be continuous. Most
engineers strive to never route a trace across a plane split so that potential signal integrity problems
are minimized. If a plane does need to be split, it can be isolated from adjacent signal layers with ad-
ditional solid ground planes. Alternatively, an adjacent plane spaced very close to the split plane can
provide high interplane capacitance and therefore serve as a low-impedance path for the return cur-
rent. Practical economic concerns often require engineers to employ nonideal approaches and still
deliver a working system. An isolated split plane requires more careful trace layout to absolutely
minimize the number of signals that cross the break. When signals must cross a break on a layer ad-
jacent to the split plane, the return path discontinuity can be minimized by placing bypass capacitors
across the break in close proximity to the traces. The mechanism at work here is the same where a
signal changes layers through a via. If an explicit return path is not created by a capacitor of your
choosing, the current will necessarily find its own path, which may be surprisingly long.

A special type of plane split, called a moat, is usually employed to isolate a small area of the PCB
for noise-sensitive circuitry. Moats can be fully isolated islands or partially connected islands as
shown in Fig. 18.17. When the moat is completely separate, routing concerns exist as for a split
plane. A partially connected moat eases the routing burden somewhat by allowing a small “draw-
bridge” across which signals can travel with an unbroken return path. The idea behind a partially
connected island is that stray currents do not flow across the island, because a less inductive path ex-
ists around the moat. Any noise that does make it into the island is attenuated somewhat as it passes

3.3-V Region 5-V Region

IC IC

CAP

Ideal Return Path

Actual Return Path

FIGURE 18.16 Split-plane return path discontinuity.

Fully Isolated
Island

C C

Routing Channel with
Capacitor Return Path

Partially
Connected

Island

Routing Channel
across Drawbridge

FIGURE 18.17 Moat routing.

-Balch.book Page 412 Thursday, May 15, 2003 3:46 PM

Signal Integrity 413

through the thin drawbridge. A fully isolated island requires power and ground to be supplied
through passive filters or some other connection.

Remember that a key goal in designing for signal integrity is to minimize loop area and return
path discontinuities so that less energy is radiated from a wire when it is driven, and less energy is
picked up as noise when other wires in the system are being driven.

18.5 GROUNDING AND ELECTROMAGNETIC COMPATIBILITY

By now it should be clear that grounding is a critical aspect of system design. Grounding becomes
more important as speeds increase, because more intense electromagnetic fields are present, and
higher frequencies radiate more efficiently from smaller antennas. Electromagnetic compatibility
(EMC) is the ability of a system to peacefully coexist with other systems so that it neither malfunc-
tions because of excessive EMI susceptibility nor causes other systems to malfunction as a result of
excessive electromagnetic field radiation. In most situations, EMC means being a good neighbor and
complying with governmental regulations on how much electromagnetic energy an electronic sys-
tem can radiate. The Federal Communications Commission governs such regulations in the United
States. Most digital systems applications are not particularly sensitive to ambient electromagnetic
energy. The chances are pretty low that a computer will malfunction during normal use because of
excessive ambient fields. Of course, this does not hold true in some demanding applications such as
aerospace and military electronics.

Our discussion is concerned with basic techniques for reducing a system’s radiated electromag-
netic emissions in the context of complying with government regulations. EMI reduction through
minimizing loop area and removing return path discontinuities is a fundamental starting point for
EMC. Reasonable steps should be taken up front to minimize the energy that a circuit board radiates.
If a sloppy design radiates significant energy, it may be difficult or impossible to effectively contain
these fields to the point of regulatory compliance.

Electromagnetic energy can escape from a circuit board by radiating into space or conducting
onto a cable. Radiated emissions can be blocked by enclosing the circuit board in a grounded metal
enclosure. This is why many computers and other electronic equipment have metal chassis, even
though the metal may be hidden under a plastic frame or bezel. Most metal enclosures are not per-
fect closed surfaces, because slots and holes are necessary for cables, switches, airflow, and so on.
Enclosures also must be assembled and are often opened for service, so there are numerous seams,
hinges, and joints that connect one sheet of metal to another. All openings in the metal are potential
leakage points for radiation, depending on their size. A hole forms a slot antenna whose efficiency is
a function of its size and the wavelength, λ, of energy being radiated. When engineers construct an-
tennas, λ ÷ 4 and λ ÷ 2 are typical dimensions that radiate most efficiently. Clearly, slots and holes
whose largest dimensions approach λ ÷ 4 are undesirable. Limiting chassis openings to be substan-
tially smaller than λ ÷ 4, perhaps λ ÷ 20, is necessary.

Keep in mind that the frequencies that must be shielded are not just the highest system clock fre-
quencies but also higher-order harmonics determined by the Fourier representation of a square wave.
It is not uncommon to find energy violating emissions limits at the eleventh, thirteenth, or fifteenth
harmonic of a digital clock. Therefore, it is best to make openings as small as possible. A rough start-
ing point might be the assumption that, for a typical system, harmonics above 1 GHz will not be
strong enough to cause problems. This may or may not be true, depending on the specific circum-
stance. The wavelength corresponding to 1 GHz in free space is 30 cm, and λ ÷ 20 = 1.5 cm, or about
0.6 in (1.5 cm). It is not as difficult as it may first appear to keep all openings smaller than that. Gaps
for airflow are easily implemented using fine grilles formed in the sheet metal with holes far smaller
than 0.6 in. Notice the grilles on computers, microwave ovens, and consumer electronics products.

-Balch.book Page 413 Thursday, May 15, 2003 3:46 PM

414 Digital System Design in Practice

The most troublesome gaps that cause EMC problems are improperly grounded connector shells
and poorly fitted seams between metal surfaces. Many connectors are available with metal bodies or
metal shields around plastic bodies. If these metal surfaces are securely mounted to the metal chassis
at multiple points such that openings are substantially smaller than λ ÷ 4, there should be no gap at
the connector to allow excessive radiation. Seams between individual sheets of metal, either mov-
able or fixed panels, must be designed to meet cleanly without the slightest buckling. Imperceptible
buckling at seams opens gaps that radiate unwanted energy. A well designed sheet metal chassis
should have all of its fixed panels adequately riveted or welded to ensure uniform contact across the
seam. Movable panels almost always require additional assistance in the form of conductive gaskets
and springs. A gasket or spring serves as a flexible conductor that closes any electrical gaps between
two metal surfaces that move over time and that may expand and contract with temperature changes.
Gasketing is directly akin to the rubber washer in a sink faucet—minute gaps must be closed to pre-
vent leakage.

Plastic enclosures can also be shielded by applying conductive coatings, although this is usually
more expensive than a sheet metal chassis, which is a reason why many products use metal rather
than all-plastic enclosures. Many small electronic products can get away with less expensive, more
attractive, and lighter uncoated plastic packaging, because their circuits do not radiate excessive en-
ergy. This may be because of their relatively slow signals, careful circuit design, or a combination of
both.

Unwanted high-frequency noise that may be conducted onto exterior cables should be filtered be-
tween the active circuitry and the cable connector. Passive differential and common-mode filters are
discussed earlier in this book. High-frequency data interfaces often have standard means of dealing
with noise, including application-specific off-the-shelf transformers and common-mode chokes.
Lower-frequency interfaces such as RS-232 may be effectively filtered with a second-order LC filter
using either a choke or ferrite bead for the inductive element. If noise is still able to couple onto in-
ternal wiring harnesses that lead outside the enclosure, the weapon of last resort may be a ferrite
core. Ferrite cores are available in clamshell types whereby the ferrite fits around a cable, and in ring
forms whereby the cable is wrapped several turns around the core. The ferrite increases the induc-
tance of the cable, which increases its attenuation of high frequencies. When you see a computer
monitor cable or some other type of cable that has a noticeable round bulge near one end, a clam-
shell ferrite has been added, because the equipment was unable to pass emissions regulations with-
out it.

Filters can also be employed to attenuate higher-order harmonics of digital signals as they are dis-
tributed on the circuit board to reduce the strength of ambient electromagnetic fields on the board
and within the enclosure. Clock distribution can account for a substantial fraction of unwanted emis-
sions, especially at higher-order harmonics that radiate through small metal gaps. One technique is
to insert lowpass filters at clock buffer outputs to attenuate energy beyond the fifth harmonic. A
square wave substantially retains its characteristics with only the first, third, and fifth harmonics
present. Unfortunately, component variation, mainly in capacitors, across the individual filters on a
low-skew clock tree can introduce unwanted skew at the loads. Instead of an LC or RC filter at the
source, inserting just a ferrite bead may provide sufficient high-frequency attenuation to substan-
tially quiet a system. If it is unclear whether such filtering is necessary, the design can include ferrite
beads as an option. Ferrite bead PCB footprints can be placed at each output of a clock driver in very
close proximity to any series termination resistors that might already be in the design. If the ferrites
are not needed, they can be substituted with 0-Ω resistors. Introduction of an extra 0-Ω resistor very
close to the clock driver should not cause problems in most systems. For truly conservative situa-
tions, these scenarios can be modeled ahead of time with field-solver software.

The method by which a system’s many ground nodes are connected has a major impact on EMC
in terms of noise radiating from cables leaving the chassis. Conceptually, there is a single ground

-Balch.book Page 414 Thursday, May 15, 2003 3:46 PM

Signal Integrity 415

node that all circuits use as their reference. This is easy to achieve at DC, because resistance is the
dominant characteristic that causes voltage drops, and solid sheets of metal have very low sheet re-
sistances. Additionally, there are no EMC problems at DC, because there is no AC signal to radiate.
Inductance becomes the problem in maintaining equipotential across an entire system’s ground
structure at high frequencies. Small voltage differences appear across a circuit board’s ground plane
despite its low sheet inductance. These differences can cause EMC problems despite having little to
no effect on signal integrity. The ideal situation is to ground everything to the same point to achieve
an equipotential ground node, but finite physical dimensions make this impossible.

Any opportunity for a cable to have a high-frequency potential difference with respect to the chas-
sis is an opportunity for unwanted electromagnetic radiation. The basic idea in many systems is to
take advantage of a chassis’ sheet metal surfaces as a clean ground reference because of low induc-
tance and negligible current circulation. If a circuit board is grounded to one face of the chassis, and
all cables are grounded to that same face, the ground potentials in that region will be nearly equal,
with less opportunity for radiated emissions.

A complete discussion of chassis grounding techniques for EMC design is beyond the scope of
this presentation. If you anticipate having to pass governmental electromagnetic emissions require-
ments, further reading is recommended. Electronic products are tested and certified for regulatory
compliance at licensed test ranges where it is also common to find EMC consultants to advise you
on solutions to emissions problems. Like most design tasks, it is better to seek help before building a
product than to wait until a problem arises, at which point it is usually more expensive and time con-
suming to resolve.

18.6 ELECTROSTATIC DISCHARGE

Electrostatic discharge (ESD) is another phenomenon related to EMC and grounding. Static electric
discharges are common occurrences and have been experienced by everyone. An insulated object ac-
cumulates a static electric charge and holds this charge until it comes into close proximity with a
conductor. The human body can easily accumulate a 15,000-V charge while walking on carpet. If a
person with a 15-kV charge comes into close proximity with a conductor at a substantially different
potential (e.g., Earth ground), the charge may be able to arc across the air gap and discharge into that
conductor. Higher potentials can jump across greater distances between the charged body and
nearby conductors. The problems with ESD are twofold. First, ESD can disrupt a circuit’s normal
operation by inducing noise that causes errors in digital signals. Second, ESD can permanently dam-
age components if the event is strong enough and the circuit is not protected. CMOS logic is partic-
ularly sensitive to ESD because of a FET’s high gate impedance and the possibility of punching
through the thin gate dielectric if a high potential is introduced.

When an ESD event occurs, it can couple onto a system’s internal wires by inductive or capacitive
means. A discharge is a brief, high-frequency, high-amplitude event with current peaking on the or-
der of 10 A at 300 MHz. When ESD occurs, a very strong magnetic field is generated by the fast cur-
rent spike. This field can be picked up by wires some distance away, and the coupling characteristics
are governed by the same EMI concepts discussed earlier. Larger loops and thicker dielectrics make
a more efficient antenna for ESD. A discharge to a chassis’ metal panel not only establishes a strong
magnetic field, it also creates a capacitor wherein the panel accepts the high-frequency signal and
then may capacitively couple this energy to nodes within the enclosure. ESD occurs so rapidly that
normal ground wires have too much inductance to drain the charge before it can do damage. A typi-
cal chassis is grounded to Earth through the AC power cord. This connection prevents gradual
charge accumulation to dangerous potentials, but it cannot be expected to drain ESD before a circuit
is disrupted.

-Balch.book Page 415 Thursday, May 15, 2003 3:46 PM

416 Digital System Design in Practice

The basic mechanisms for dealing with ESD are to create an environment where the charge is
spread out as quickly as possible, where circuits are designed to couple less energy, and where charge
that enters the circuit is shunted away from sensitive components. Spreading the charge delivered by
an ESD event minimizes concentrated currents at any one point and reduces the magnitude of result-
ant electromagnetic fields. The same grounding techniques used for EMC apply to ESD protection,
because they establish continuous low-inductance grounded surfaces. Fewer gaps in a metal chassis
are less restrictive to a high-frequency ESD pulse. Well grounded cables improve a system’s ESD
protection, because energy that makes its way onto a cable’s shield can be rapidly conducted by the
metal chassis instead of coupling onto the inner conductors and making its way into the circuit. A
high-quality shield makes positive electrical contact with the metal chassis in many places—ideally
continuous contact around its perimeter. In contrast, a thin wire, or pigtail, connecting a cable’s shield
to the chassis severely degrades the quality of the ground connection at high frequencies because of
its high inductance. EMC and ESD engineers strictly avoid pigtails for this reason.

Objects such as switches that protrude from an enclosure should be well grounded to that enclo-
sure so that charge can be dissipated by the enclosure rather than through internal circuits. Remem-
ber that the charge delivered by an ESD event must eventually find its way to ground, and it will find
the path of least inductance to get there. You want that path to be through a system’s ground structure
instead of through its circuitry.

Despite its common use in portable consumer electronics, plastic is a less desirable chassis mate-
rial as compared to metal, because it is unable to dissipate ESD on its own and it does not attenuate
electromagnetic fields. Thin metallic coatings can help substantially with ESD and EMC issues, be-
cause conductive surface area is important at high frequencies because of skin effect. However, such
coatings add to the cost of a product and may begin to flake off or wear over time.

The rules learned from EMC design—minimizing loop area with low-impedance transmission
lines and ground planes—apply to ESD protection, because less energy will be coupled by a smaller
loop. Older style single- and double-sided PCBs are more sensitive to ESD, because they typically
have larger return path loops as a result of their lack of a continuous ground plane. Using wide traces
to reduce the inductance of ground and power distribution can improve the situation somewhat, but
there is a practical limit to how wide the power traces can become before routing other signals be-
comes impossible. One can minimize trace lengths by keeping passive components such as bypass
capacitors and pull-up resistors close to ICs, and this may be one of the more significant circuit lay-
out steps that can be taken to minimize ESD sensitivity in single- and double-sided PCBs.

A well designed system should restrict the bulk of potentially destructive ESD exposure to I/O
circuitry. Inductive coupling can occur to any part of the circuit but, depending on distances and
quality of PCB grounding, inductive coupling effects on internal digital buses may be mild enough
to cause either no problems or only soft errors in which, for example, a memory read might return
wrong data during the ESD event. Soft errors can certainly be problematic, because memory can get
corrupted, or a microprocessor can crash after reading a corrupted instruction. If a system’s opera-
tional environment subjects it to occasional ESD events, and inductive coupling is sufficient to cause
soft errors, the solution is to somehow modify the circuit to reduce coupling or to become tolerant of
soft errors via the use of redundancy or error-correcting codes. Inductive coupling might be reduced
with multiple layers of shielding and better grounding. Redundant algorithms and error coding can
take the pessimistic view that soft errors are expected every so often and therefore explicitly deal
with them.

I/O components usually bear the brunt of ESD, because they must inherently connect to the out-
side world. If an ESD event occurs on an RS-232 cable, the RS-232 transceiver is going to be the
first semiconductor to see that spike. This is where blocking and shunting high-frequency energy
becomes important. A basic passive filter can be employed to attenuate high-frequency ESD events
on an individual wire. Figure 18.18 shows several variations of ESD filtering. Many other solutions

-Balch.book Page 416 Thursday, May 15, 2003 3:46 PM

Signal Integrity 417

are possible. Some scenarios rely on inductance of the wiring in combination with a single high-fre-
quency capacitor to attenuate ESD. Others explicitly insert ferrite beads to add inductance to the
circuit.

The example circuits shunt ESD to logic ground, but the ideal situation is to shunt the energy to
chassis ground. Chassis ground presumably would have a less direct connection to the IC being pro-
tected. However, there is added complexity in separating ground regions on a circuit board, and the
possibility then arises for unintended return paths to cause EMC problems. If logic ground is well at-
tached to chassis ground at the connector, a low-inductance loop is formed from the cable, through a
shunt capacitor, to logic ground, and finally to chassis ground. Inserting an inductor between the ex-
ternal cable connection and the shunt capacitor increases the inductance of this path, but the idea is
to make this path less desirable for ESD so that it finds a lower-inductance path to ground and by-
passes the wire leading to the IC altogether. Any ESD that makes it through the first inductor must be
immediately presented with a low-inductance path to ground so that it does not conduct through the
IC instead. A low-inductance path is created using a high-frequency surface mount capacitor con-
nected to the inductor and ground nodes with the shortest traces possible. This filtering not only im-
proves ESD immunity, it also reduces unwanted emissions that may cause regulatory compliance
problems.

An additional ESD protection mechanism is a high-speed Zener diode that can respond quickly
enough to clamp a node’s voltage and shunt excess energy to ground. This semiconductor solution
has the benefit of not being a lowpass filter, so it is therefore more applicable to high-speed inter-
faces such as Ethernet. Speed is a critical specification for an ESD clamping diode, because the ini-
tial ESD pulse typically ramps in less than 1 ns. A slow diode will add little or no ESD protection.
Clamping diodes may be implemented with discrete components on a circuit board and are also im-
plemented on some interface ICs for enhanced ESD tolerance. RS-232 transceivers are available
from companies such as Linear Technology and Maxim with integrated shunt diode structures that
provide up to 15 kV of protection, which is a standard threshold for ESD tolerance. RS-232 trans-
ceivers are prime candidates for ESD hardening, because the interface has become so inexpensive
and common that it is used in many abusive environments. There are also ESD protection products
specifically designed for high-speed interfaces, including Ethernet, that implement the same type of
technology. They are made by companies such as California Micro Devices, Philips, and Semtech.

IC
External

Connection

IC
External

Connection

IC
External

Connection

FIGURE 18.18 Various ESD filters.

-Balch.book Page 417 Thursday, May 15, 2003 3:46 PM

This page intentionally left blank.

419

CHAPTER 19

Designing for Success

A host of details allow the major components of a system to function properly. Miscellaneous topics
are often left out of many engineering discussions, because it is assumed that they will be covered
elsewhere. This chapter attempts to gather into one place some of the remaining practical issues that
make the difference between a smooth development process and one that is punctuated by a series of
obstacles that waste time and detract from the operation of unique design elements that represent a
system’s true value.

Acquiring the necessary components and fabricating circuit boards is a mandatory step between
design and testing. It is important to select technologies that are appropriate for both the application
and your own resources. Practical considerations such as business relationships and support costs
may constrain the choices of components and materials at your disposal. In extreme cases, it may
not be possible to realize certain design goals with limited resources. In other situations, alternative
implementation strategies may have to be employed to circumvent difficulties in obtaining the most
ideal component for a given application. These topics are covered first, because they should be taken
into consideration during initial conceptual and architectural definition phases of a project.

Next is a fairly simple topic near and dear to all digital systems: reset. Properly generating a reset
sequence that allows a microprocessor to boot when power is applied is a task that is easy to accom-
plish once learned and is usually taken for granted once it becomes reliable. However, reset is a topic
that requires introduction, because unpredictable reset behavior can become the Achilles’ heel of an
otherwise fine system.

The middle of this chapter discusses debugging strategies and how troubleshooting efforts can be
reduced when proper design decisions are made ahead of time. Designing a system that can be more
easily analyzed for problems does not initially occur to some engineers as a requirement. Some engi-
neers learn this lesson the hard way after a system has already been assembled, a subtle problem
arises, and there is no clear way to make a diagnosis. While head scratching and frustration over
mysterious problems cannot be eliminated from the development process, proper consideration for
debugging in the design phases of a project can greatly ease fault isolation.

The remainder of the chapter is devoted to support tools, both software and hardware, that assist
with the development and analysis of circuits. Schematic capture software packages are almost uni-
versally known. An analog circuit simulation tool that many digital electronics engineers could em-
ploy to greater advantage is Spice. Spice is presented herein, along with real circuit examples to
show how easily it can be used to answer questions that would otherwise be answered through trial
and error in the lab. Once in the lab, test instruments become important partners in gaining visibility
into the circuits’ operation. A brief introductory discussion of common test equipment provides an
orientation to what may be at your disposal once a prototype is ready for testing.

-Balch.book Page 419 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

420 Digital System Design in Practice

19.1 PRACTICAL TECHNOLOGIES

The combined semiconductor, electronics, and packaging industries develop many exciting and ad-
vanced technologies each year. An engineer may be tempted to use the latest and greatest compo-
nents and assembly techniques on a new project, but careful consideration should go into making
such decisions. Relevant constraints for any engineering organization are materials availability and
cost, ease of manufacture, development resources, and general risk assessment. These constraints
differ among organizations. A large company with extensive experience and support resources has a
different view of the world from that of a one-man design shop building microcontrollers. This does
not mean that a small organization cannot successfully utilize new technology. It does mean that all
organizations must evaluate the practicality of various technologies using constraints that are appro-
priate for their size and resources.

Materials availability is often a problem, even for large companies, when dealing with cutting-
edge technologies or newly introduced products. Cutting-edge technology is, by definition, one that
pushes the limits of what is achievable at any given time. Pushing the limits in any discipline gener-
ally carries with it the understanding that problems may arise in the early stages of product release.
New technologies may also carry higher initial costs while volumes and manufacturing yields are
still low. Part of engineering is balancing the risks and benefits of new technologies. When you move
into uncharted waters, an occasional setback is almost inevitable. Therefore, the new technology that
one may read about in the trade press or see advertised in company literature is not necessarily ready
for immediate use.

Aside from the general risk of new products, the economic strength that you represent as a cus-
tomer has a significant impact on your ability to gain access to these products. If you are a semicon-
ductor company that has just developed a new chip, and you have the staff to support only three
initial customers, would you want three large customers or three small customers? Developing rela-
tionships with manufacturers and their representatives can assist you in determining when a new
technology is practical to use and when it should be allowed to mature further. This applies equally
to more mature products. Even components that have been shipping for some time may be subject to
availability problems. The term

allocation

 is well known to component buyers. In a tight market,
vendors will preallocate their manufacturing capacity across a set of key customers to preserve suc-
cessful business relationships. Even when a product is mature and being manufactured in high vol-
ume, a small customer may be unable to purchase it, because it is “on allocation.” Allocation
problems affect large companies as well in times of increased demand. The semiconductor industry
tends to be quite cyclical, moving through phases of supply shortages and softness in demand.

Evaluating the risk of availability is an important step in the component selection process. More
mature components are generally easier to obtain. The exceptions to this rule are ICs that have short
production lives, such as some microprocessors and memory chips—especially DRAM. The micro-
processor and memory markets are highly competitive, and products are sometimes phased out after
just a few years. DRAM products are notorious for supply and obsolescence problems after their
volumes peak within the first few years of introduction. There are certain bread-and-butter micropro-
cessor and memory ICs that are supported for longer terms. These tend to be products for embedded
markets in which semiconductor process technology changes at a slower pace than in the main-
stream computer market.

Newer products are often available only through authorized distribution companies. Many mature
products can be purchased from catalog distributors. Catalog distributors include Digikey, Jameco
Electronics, JDR Microdevices, and Mouser Electronics. Larger engineering organizations with ded-
icated purchasing staff often prefer to deal with authorized distributors because of more direct access
to manufacturers. A small organization may be able to satisfy all or most of its procurement needs
with catalog distributors if mature technologies are acceptable.

-Balch.book Page 420 Thursday, May 15, 2003 3:46 PM

Designing for Success 421

Manufacturability should be taken into account when selecting components, because it may be
impossible to assemble a system without expensive equipment. High-end ICs and electronic compo-
nents utilize fine-pitch surface-mount technology almost exclusively because of the reduction in par-
asitics and the increase in signal density. Ball grid array (BGA) packages and 0402/0201 passive
components are challenging to properly mount on circuit boards. They require accurate application
of solder paste, precise positioning of components, and tightly controlled thermal profiles in solder
reflow ovens. Most leaded surface mount components can actually be assembled by hand with a
good quality soldering iron, although it may take some time and practice to do this. Ultra fine-pitch
components are extremely difficult to assemble by hand in a reliable and repeatable manner, and
BGAs are impossible to mount reliably without specialized equipment. These requirements should
be taken into consideration according to the manufacturing facilities at your disposal. Organizations
willing to spend the money necessary for high-end systems development routinely use BGAs and
other advanced packages. Products that must be assembled either by hand (e.g., small prototype
runs) or at lower-cost assembly shops that use older equipment must be designed with components
that are compatible with these approaches.

More complex digital ICs may require significant development resources whose costs cannot be
overlooked. When most digital systems were built from 7400 logic, the development tools required
ranged from pencil and paper to a basic schematic capture program. The barrier to entry from a tools
purchasing perspective was low and remains low for this class of design. Once a microprocessor is
added, things get a little more involved. First, a microprocessor requires boot ROM that somehow
must be programmed. EPROM—and now flash—programmers are common development tools in a
digital systems lab. (Don’t forget to socket the boot ROM rather than soldering it to the PCB, so that
it can be removed for programming!) With microprocessors also come software development tools
including assemblers and compilers. An assembler is the minimum software tool required to work
practically with a microprocessor. Because of their relative simplicity, assemblers can be obtained
for little or no cost for most microprocessors. Some manufacturers of embedded microprocessors
give away assemblers to promote the use of their products. High-level language compilers (e.g., C/
C++) for many microprocessors are also available at little or no cost, thanks to the GNU free soft-
ware project.

Programmable logic devices require a whole other set of development tools that can get rather ex-
pensive, depending on the complexity of the design and which devices are being used. An HDL such
as Verilog or VHDL is most commonly used to implement programmable logic, although some engi-
neers still use schematic capture for smaller designs—a practice that was more common in the days
of less-complex digital logic. Some PLD manufacturers also support proprietary design entry meth-
ods, although this support is more for legacy customers than for new mainstream business. The first
step in HDL-based design after writing the logic is to simulate it to verify its operation prior to de-
bugging in the lab. It is much easier to detect a problem in simulation, because all internal logic
nodes can be probed, and the circuit can be run at an arbitrarily low speed to observe its operation.
Lab debugging requires equipment such as oscilloscopes and logic analyzers to view logic nodes,
and less visibility is generally available as compared to a simulation. The next step is synthesis,
wherein the language constructs are converted into logic gate representations. Simulation and syn-
thesis tools can cost thousands or tens of thousands of dollars, although some manufacturers offer
very low-cost HDL design software for smaller designs. After synthesis, the logic must be mapped
and fitted to the specific chip’s internal resources. Mapping software is proprietary, based on the type
of PLD being used, because each manufacturer’s PLD has a different internal structure. This soft-
ware is provided at low or no cost to customers.

Configuring PLDs once required expensive programming equipment, but most modern CPLDs
and FPGAs are now in-circuit programmable via a serial or parallel interface. In fact, most CPLDs
and FPGAs use EEPROM or SRAM technology, which makes them almost infinitely reprogramma-

-Balch.book Page 421 Thursday, May 15, 2003 3:46 PM

422 Digital System Design in Practice

ble so that logic mistakes do not require replacing a potentially expensive IC. Smaller, more mature
PLDs may still require dedicated programming hardware, which may be reason enough to avoid
them if possible in favor of a small CPLD. The price difference between a PLD and a small CPLD is
now slim to none.

For reasons previously discussed, signal integrity software packages may be necessary when de-
signing high-speed digital circuits. These tools can be quite expensive, but the consequences of not
using them can be even more costly in terms of wasted materials and time if a circuit malfunctions
because of signal integrity problems. Before embarking on an ambitious high-speed design, make
sure that signal integrity issues are either well understood or that the resources are available for
proper analysis before fabricating a prototype. Certainly, not all designs require extensive signal in-
tegrity analysis. If it is known that the signal speeds and wire lengths are such that transmission line
effects, crosstalk, and EMI can be addressed through conservative design practices, minimal analy-
sis may be required. This determination generally requires someone with prior experience to review
a design and make predictions based on previous work.

Risk assessment in choosing which components and technologies to employ is an important part
of systems design. An otherwise elegant architecture can fall on its face if a key component or neces-
sary development tools are unavailable. Therefore, be sure to make choices that are practical for both
the application and the resources at your disposal.

19.2 PRINTED CIRCUIT BOARDS

The selection of appropriate technologies is a convenient segue into circuit construction, because the
manner in which a circuit is assembled can have a great impact on the viability of the resulting pro-
totype or product. Higher-speed circuits are more sensitive to construction techniques because of
grounding and inductance issues. Most high-speed circuits can be fabricated only with multilayer
PCBs, but more options are available for slower systems, especially in the prototyping phase of a
project.

Circuit boards can be of either the printed circuit or manual point-to-point wiring variety. As al-
ready discussed, PCBs consist of stacked layers of copper foil that have been uniquely etched to
connect arbitrary points in the circuit. The term “printed” refers to the standard technique of using
photolithography to expose a chemically treated copper foil with a negative image of the desired
etching. Similar to creating a photograph, the exposure process alters the photoresistive chemicals
that have been applied to the foil so that the exposed or nonexposed areas are etched away when the
foil is placed into a chemical acid bath. PCBs are an ideal technology, because they can be mass pro-
duced with fine control over the accuracy of each unit. Simple single- and double-sided PCBs can be
manually fabricated using a variety of techniques, and the cost of having such boards professionally
manufactured is low. Multilayer PCBs must be fabricated professionally because of the complexity
of creating plated vias and accurately aligning multiple layers that are etched separately and then
glued together. The major cost involved in designing a small PCB is often the specialized computer
aided design (CAD) software necessary to create the many features that a PCB implements, includ-
ing accurate traces, pads, and IC footprints. Low-end PCB CAD packages are available for several
hundred dollars. High-end tools run into the tens of thousands of dollars.

Once a PCB is fabricated, it is assembled along with the various components to which it is de-
signed to connect. Assembly may be performed manually or at a specialized assembly firm, almost
all of which use automated assembly equipment. It is difficult to manually assemble all but relatively
simple boards because of the fine-pitch components and the element of human error. Automated as-
sembly equipment substantially increases reliability and improves assembly time for multiple
boards, but at the expense of increase setup time to program the machines for a specific design.

-Balch.book Page 422 Thursday, May 15, 2003 3:46 PM

Designing for Success 423

Automated assembly is performed using one or two soldering techniques, depending on the types
of components on a PCB. Before the widespread use of surface mount technology (SMT), the stan-
dard process was to program a pick-and-place machine to automatically insert leaded components
into the correct holes in the PCB. The machine trims the leads as they are inserted so that a small
length protrudes from the bottom, or solder side, of the PCB. When the PCB is fully stuffed, it is
placed onto rails that carry it through a wave-soldering machine. A wave-soldering machine contains
a bath of liquid solder over which the PCB is dragged. The metal component leads, in combination
with the plated holes and pads of the PCB, wick molten solder up into the gaps, and the solder hard-
ens as the PCB exits the molten solder wave. Wave soldering is a mature assembly technology that
has worked well for decades.

Certain design rules are necessary for successfully wave soldering a PCB and preventing excessive
solder from shorting adjacent leads. First, a PCB’s top and bottom surfaces are finished with a thin
layer of solder mask so that only metal intended for soldering is exposed. The molten solder will not
adhere to the solder mask. Second, minimum lead spacing rules are followed that ensure that the lead
gaps are too large for the solder to wick into them. Finally, rows of component leads are oriented in a
single line perpendicular to the solder wave to minimize solder bridges, or shorts. If the leads of a
DIP package are moved through the wave abreast, or in a parallel orientation, they are more prone to
picking up an excessive quantity of solder in the many gaps formed between the leads. When the DIP
is rotated 90° so that the lead rows are perpendicular to the wave, the solder can more freely travel
down the narrow column and not get excessively stuck in one inter-lead gap. There are a variety of
PCB layout tricks to reduce solder bridging in wave-soldered PCBs. If your PCB is expected to be
professionally wave soldered, it is advisable to consult the assembly firm before designing the PCB.
Manufacturing engineers at assembly firms are very knowledgeable about what works and what
doesn’t, because they work with this equipment on a daily basis. Each assembly firm has its own set
of manufacturability guidelines that have been developed based on the tools at their disposal. Rules
for one firm may not be fully in agreement with those of another. A half-hour conversation ahead of
time can save days of headaches caused by myriad short circuits in an improperly designed PCB.

Wave soldering does not work for many SMT boards, because the small gaps in fine-pitch compo-
nent leads act as efficient solder sponges, resulting in completely shorted boards. SMT PCBs use a
solder paste reflow assembly process. The process begins by applying solder paste to the SMT pads
through a special stencil. The stencil has openings in the exact locations where solder paste is de-
sired. A pick-and-place machine then stuffs the PCB. Careful handling of the stuffed board is neces-
sary, because adhesion of the solder paste is all that holds the parts in place. Many PCBs have
components on both sides. In these situations, the bottom-side components are held in place with the
solder paste’s natural adhesion, which prevents them from falling off when they are upside down
during the remainder of the assembly process. Once all SMT components have been loaded onto the
PCB, the PCB is moved through a reflow oven with carefully controlled temperature zones to suit
the solder, component, and PCB properties.

A PCB with both through-hole and SMT components usually requires a two-step process consist-
ing of reflow followed by selective wave soldering. Selective wave soldering is accomplished with
varying types of masks that are temporarily applied over the bottom-side SMT components so that
they do not get shorted or stripped off the board in the solder wave. It is preferable to design a PCB
without the need for a two-step process to save both time and money in assembly. An SMT PCB
with only a few necessary through-hole components (e.g., connectors) may be more efficiently as-
sembled by having a person manually solder the through-hole components after reflow.

As with wave soldering, the reflow process has its own set of manufacturing guidelines to in-
crease the reliability of the manufacturing process. The intended assembly firm should be contacted
before PCB design to fully understand its engineers’ manufacturing rules. A standard rule for both
wave soldering and reflow is to leave a minimum spacing, or

keep-out

, between the PCB edge and

-Balch.book Page 423 Thursday, May 15, 2003 3:46 PM

424 Digital System Design in Practice

all components. These keep-outs make the PCB easier to handle and allow it to ride on rails through
the pick-and-place, wave, and reflow machines. A typical component-to-edge keep-out is 0.2 in (5
mm). Very dense PCBs that cannot tolerate such keep-outs may require snap-off rails fabricated as
part of the PCB. Such rails are not uncommon and are almost free, because they are formed by rout-
ing slots at the edges of a PCB as shown in Fig. 19.1. A related assembly rule is the inclusion of tool-
ing holes at several locations around the PCB perimeter. These holes provide alignment and
attachment points for the assembly machines.

Pick-and-place machines generally require assistance in perfectly aligning a high-pin-count SMT
package to its designated location on the PCB. Most passive components and small multilead SMT
packages can be automatically aligned once the PCB is locked into the machine. The alignment of
packages such as QFPs and BGAs is aided with fiducial markers that are designed into the PCB in
the vicinity of these IC locations. Fiducials are typically small circles or bull’s eye symbols etched in
the surface copper layer that can be optically detected by the pick-and-place machine as the dis-
penser head closes in on the desired location. Figure 19.2 illustrates fiducial placement around QFP

Snap-Off Rail

Snap-Off Rail

Finished PCB Area

Finished PCB Area

FIGURE 19.1 Removable PCB rails.

U4

U5

Copper Pads

FiducialsSilk Screen Markers

FIGURE 19.2 Fiducial markers for SMT alignment.

-Balch.book Page 424 Thursday, May 15, 2003 3:46 PM

Designing for Success 425

footprints. Also shown are visual inked silk-screen markers for people’s benefit that are created to
identify different components with unique reference designators and to draw shapes that assist in cir-
cuit assembly and troubleshooting. The fiducials do not have to be in a standard location. What is
important is that their exact location is known and entered into the machine so that an absolute loca-
tion can be determined once the fiducials are optically detected.

19.3 MANUALLY WIRED CIRCUITS

PCBs are an excellent solution for high-speed and production systems, but manual wiring may be
suitable for building small quantities of lower-speed circuits. Manual wiring can be performed in a
variety of ways and has the benefits of low material cost and less support infrastructure, and it is the
quickest way to start building a circuit. The time and money spent designing a PCB can be amortized
across multiple units built, but each manually wired circuit consumes the same construction re-
sources. It is important to understand the limitations of manual circuit wiring, because it can take
days of tedious work to build a single circuit board. For an engineer on a budget, it may be the
cheapest and quickest way to prototype a lower-speed digital system.

Breadboard

is an industry term for a blank circuit board that consists solely of equally spaced
holes. A breadboard is generally made of fiberglass and has hundreds or thousands of holes aligned
on 0.1-in (2.54-mm) centers to match the common pin spacing of DIPs and many other electronic
components. The term breadboard comes from a loose similarity to a slice of bread that is permeated
with holes. If the breadboard is designed for solder assembly, it is built with thin copper pads around
each hole so that solder will adhere to the board. Some breadboards contain plated holes with pads
on both sides of the board for increased solder adhesion. As shown in Fig. 19.3, some breadboards
add thin mesh planes by taking advantage of the small spaces between copper pads. These planes are
not as effective as a PCB’s continuous plane, but they have less inductance than discrete wires. The
presence of a mesh plane is not bad, but it should not lead to the false impression that high-quality
transmission lines can be constructed.

Building a circuit from scratch on a breadboard is done by inserting components into the board
and then running small wires, usually 30 gauge, point to point between their leads. DIPs and other
components with preformed leads on 0.1-in centers can be directly inserted into the board. Some
connectors, as well as TO-220 voltage regulators, transistors, and diodes, have a compatible 0.1-in
lead pitch. Resistors, capacitors, and inductors with axial or radial lead configurations may require
bending their leads so that they can lie flat on the board. An axial leaded component is most com-
monly in a cylindrical package with one lead protruding from the center of each face—the two leads

FIGURE 19.3 Breadboard with plated holes and mesh plane.

-Balch.book Page 425 Thursday, May 15, 2003 3:46 PM

426 Digital System Design in Practice

run through the component’s axis. A radial leaded component is also cylindrical but has both leads
protruding from the same face—the two leads are at equal radii from the component’s center. Other
components that do not have 0.1-in lead pitch also require lead bending: TO-92 packages (used for
transistors and low-power voltage regulators) and common connectors including DB-9, DB-25, and
RJ-45. These days, it may be impossible to find some desirable ICs in DIP packages. PLCCs are a
popular low-cost surface mount package for lower-lead-count ICs. PLCC sockets are available with
leads on 0.1-in centers, making it possible to prototype a circuit with PLCCs on a standard bread-
board.

Sockets are desirable for manually wired circuits, not only for mating incompatible IC packages
but also for component protection during soldering and for ease of component replacement. If a sol-
dering iron is applied to an IC pin for too long, the IC may be damaged. Careful soldering is neces-
sary to ensure that ICs are not damaged during construction. Additionally, static control measures
must be taken when handling CMOS components because of the risk of damaging the MOSFET
gate oxide. Both of these problems are eliminated when using IC sockets, because the sockets are
not as sensitive to heat, and they are insensitive to ESD. A further benefit is gained if an IC is dam-
aged during the initial prototype debugging process. Rather than having to unsolder all of the IC’s
pins, a socket allows a new IC to be easily installed.

Soldering a circuit on a breadboard can be done with minimal planning, but it is important to con-
sider power distribution ahead of time. Adequate wires should be used so that components at one
end of the board are not operating at a significantly different DC level from those at the other end. It
may be prudent to run smaller gauge power bus wires around the board before beginning the more
dense signal wiring; 24- or 26-gauge wire will ensure negligible DC voltage drop across a typical
board. Implementing a mesh power distribution scheme will also marginally lower the inductance
between IC power pins and bulk bypass capacitance. The absence of low-inductance power planes is
a critical limitation of breadboards. Each IC should have adequate bypassing with ceramic disc ca-
pacitors arranged so that their lead length is minimized. A common scheme for bypassing a DIP IC
is to directly connect the capacitor leads to the power pins. This often results in a diagonal configura-
tion in which the capacitor runs from one corner of the IC to the other, because power pins in a DIP
are often at opposing corners of the package. Pins 7 and 14 are ground and V

CC

, respectively, for
most 14-pin DIP logic ICs. Figure 19.4 shows a power distribution scheme for a breadboard in
which the power buses are formed with meshed wires, high-frequency bypass capacitors are wired

Power
Input

C C

C

C

C

C

C

C
C

C

C C

C

C

FIGURE 19.4 Breadboard power distribution.

-Balch.book Page 426 Thursday, May 15, 2003 3:46 PM

Designing for Success 427

directly to power pins, and low-frequency bulk electrolytic capacitors are arranged throughout the
board. This hypothetical circuit contains 7400-type logic ICs in 14-, 16-, and 20-pin DIPs as well as
VLSI memory and microprocessor ICs in 28- and 40-pin DIPs.

An alternative to conventional breadboards for temporary prototypes of small circuits is the

sold-
erless breadboard

. A solderless breadboard isn’t a fiberglass board, but a plastic frame in which
many small spring-clips are embedded. Holes are on 0.1-in centers, and the spring clips are typically
arranged in rows of five contacts separated by a gap, or channel, across which a standard 0.3-in
(76.2 mm) wide DIP is inserted. Figure 19.5 shows a small solderless breadboard. Power distribu-
tion is often assisted by means of a continuous spring-clip bus running across the top and bottom of
the breadboard. Connections are made by inserting solid wires between various spring clips. Since
each spring clip has five contacts, a maximum of five connections can be made to a single node. If
more are necessary, an unoccupied spring clip nearby must be used for the excess connections and
then bridged to the other spring clip via a wire. Solderless breadboards are perfect for small experi-
ments and are used in many academic lab settings, because solder irons and other assembly tools are
not necessary. Clearly, solderless breadboards are not for every circuit. Aside from electrical integ-
rity issues, they cannot accept common PLCC packages without a special breakout product that es-
sentially converts a PLCC to a DIP. Nevertheless, substantial digital circuits can be prototyped on a
solderless breadboard, including low-speed microprocessors with memory and basic peripherals.

Soldering is not the only way to prototype a digital system with permanent connections.

Wire-
wrapping

is a technique that has been around for decades and was actually used for production as-
sembly in many minicomputers and mainframes during the 1960s and 1970s. The wire-wrapping
process establishes electrical connections by tightly wrapping small wire, typically 30 gauge, around
square pins. Several turns of wire are made as shown in Fig. 19.6, resulting in a surprisingly durable
electromechanical connection, even without the benefit of insulation that is often stripped off. Wire-
wrapping requires the use of special IC sockets with long, square posts that protrude through the bot-

Channel for
DIP Mounting

Power Bus

FIGURE 19.5 Solderless breadboard.

DIP Sockets — Edge View

FIGURE 19.6 Wire-wrap connections.

-Balch.book Page 427 Thursday, May 15, 2003 3:46 PM

428 Digital System Design in Practice

tom side of a breadboard. Wire-wrap sockets are still available for DIPs in standard sizes for two or
three wraps per post. The actual wrapping is accomplished with a special tool—either manual or au-
tomatic.

A benefit of wire-wrapping is that dense wiring can be achieved without the risk of melting
through insulation with a hot soldering iron. Changes in connectivity are made by unwrapping a
wire. However, if the wire to be unwrapped is at the bottom of a stack of other wires, those others
may need to be removed as well. A fully manual wire-wrap process requires that a wire be cut to
length and stripped at each end to expose approximately 1 in of bare wire, and the wrapping tool is
turned around the square post at each end. Automatic wire-wrap guns are available that automati-
cally strip and wrap wire, making the process move fairly quickly. The popularity of wire-wrapping
has diminished significantly over time as clock frequencies have increased and PCBs have become
much less expensive in small prototyping quantities. It may still be an appropriate construction tech-
nique for those who are less comfortable with a soldering iron and who require very dense wiring.

19.4 MICROPROCESSOR RESET

Almost all digital systems hinge around some type of microprocessor that controls the basic opera-
tion of specific peripherals. Smaller embedded systems may use microcontrollers that contain inte-
grated microprocessor and memory elements. Others include discrete microprocessors. Regardless
of the form, a microprocessor requires a clean initialization sequence for it to begin executing the
program that has been designed for it. It is advisable to design a simple and reliable scheme for the
microprocessor to boot so that initial system bring-up can proceed smoothly. Once a microprocessor
successfully boots, it can be used to run software that helps with the remainder of system bring-up.
Functions such as memory debug, accessing control bits in peripheral logic, and setting up a debug-
ging console that can be accessed from a terminal program. All require that the microprocessor be
alive. When a microprocessor doesn’t boot correctly, it is difficult to make further progress, because
the microprocessor is usually the gateway to the rest of the system.

Reset is the first hardware element, subsequent to stable power supplies, that a microprocessor
needs to boot. Some microcontrollers have built-in power-on-reset circuits that guarantee a valid re-
set pulse to the internal microprocessor. Other microprocessors require that an external reset pulse
be applied. While not complicated, generating a reliable power-on-reset has eluded more than one
engineer. Dedicated power-on-reset ICs have become available in recent years that all but guarantee
clean reset behavior once the power supplies become stable. At their simplest, these devices have
three terminals (power, ground, and reset), and reset is held active-low for several hundred millisec-
onds after power passes a predetermined threshold. More complex devices have multiple power in-
puts for multivoltage systems, and the deassertion of reset occurs only when all power inputs have
exceeded certain thresholds for a minimum time. Power-on-reset ICs are available from companies
including Linear Technology, Maxim, and National Semiconductor.

When a dedicated power-on-reset chip is unavailable, the function can be implemented using dis-
crete components in many configurations. Two simple schemes involving an RC circuit along with a
discharge diode are shown in Fig. 19.7. Both circuits hold the microprocessor in reset for approxi-
mately 10 ms after power is applied. The first circuit uses just three passive components and starts
out with RESET* at logic 0. As the capacitor charges, it reaches the logic-1 voltage threshold of the
microprocessor. A diode is present to rapidly discharge the capacitor when power is removed. It be-
comes forward biased as V

CC

 drops and a charge is present on the capacitor. This ensures that the re-
set circuit will behave properly if the system is quickly turned on again and also prevents a capacitor
discharge path through the microprocessor. Incomplete discharge is more likely with a larger RC

-Balch.book Page 428 Thursday, May 15, 2003 3:46 PM

Designing for Success 429

time constant, as is required by some microprocessors. Better results are obtained using a Schottky
diode, because its lower forward voltage discharges the capacitor to a lower voltage.

The second circuit is more robust, because it uses a Schmitt trigger to drive the microprocessor’s
input, guaranteeing a clean digital transition despite variations in the slope of the RC voltage curve.
This is especially helpful when long RC time constants are required to generate long reset pulses as
dictated by a microprocessor. A 74LS14 or similar Schmitt-trigger logic gate may be convenient to
design into a system, and it can be used in places other than the power-on-reset circuit. Alternatively,
a smaller voltage comparator can be used to implement the same function by designing in hysteresis.
Before power-on, the inverter input node is at 0 V. At power-on, the voltage step of the power supply
passes through the capacitor, because the voltage across the capacitor is initially 0 V and brings the
input node to a logic-1 voltage, which in turn causes RESET* to be driven to logic 0. The resistor im-
mediately begins pulling the voltage toward ground and eventually causes RESET* to be deasserted.
The diode is present to clamp the inverter input node to ground during power-down. Clamping is de-
sirable, because the resistor has already pulled the input node to ground and, without the diode, a
negative V

CC

 step would force the input node to a negative voltage. When the diode is present, the in-
put node remains near 0 V and is able to serve its intended purpose during an immediate power-on.
The diode also prevents a large negative voltage from potentially damaging the inverter.

Power-on is not the only condition in which a microprocessor reset may be desired. Especially
during the debugging process, it can be very useful to have a reset button that can quickly restart the
system from a known initial state when software under development encounters fatal bugs. Many of
the aforementioned power-on-reset ICs contain circuitry to

debounce

an external pushbutton. When a
button is pushed, it may appear that a clean electrical connection is made and then broken when the
button is released. In reality, the contact and release events of a button are noisy for brief periods of
time as the internal metal contacts come into contact with each other. This noise or bounce may last
only a few milliseconds, but it can cause a microprocessor to improperly exit its reset state. Debounc-
ing is the process of converting the noisy edges of a pushbutton into a clean pulse. Filtering is a gen-
eral solution for debouncing a noisy event and can be performed in an analog fashion or digitally by
taking multiple samples of the event and forcing the bouncing samples to one state or the other.

19.5 DESIGN FOR DEBUG

“To err is human” is a truism that directly applies to engineering. The engineering process is a com-
bination of design and debugging in which inevitable problems in the original implementation are

VCC

1 µF

10 k Ω

RESET*

VCC

1 µF

RESET*

10 k Ω

FIGURE 19.7 Discrete power-on-reset circuits.

-Balch.book Page 429 Thursday, May 15, 2003 3:46 PM

430 Digital System Design in Practice

detected and fixed. Hardware problems include logic mistakes, incorrect circuit board connections,
and improperly assembled systems. Regardless of its nature, a problem must be isolated before it
can be corrected. Bugs can be hard to find in a digital system, because time is measured in nanosec-
onds, and logic 1s and 0s are not visually distinct as they flow across wires. The debugging process
is made easier by employing specific design elements and methodologies that improve visibility into
a system’s inner workings.

A basic debugging aid is the ability to probe a digital circuit with an oscilloscope or logic ana-
lyzer so that the state of individual wires can be observed. (A logic analyzer is a tool that rapidly
captures a set of digital signals and then displays them for inspection. Test equipment is discussed in
more detail later on.) Some circuits require little or no modification to gain this visibility, depending
on their density, packaging technology, and operating speed. A circuit that uses DIPs or PLCCs ex-
clusively can be directly probed with an oscilloscope probe, and clip-on logic analyzer adapters may
be used to capture many digital signals simultaneously. As circuits get denser and use fine-pitch sur-
face mount ICs, it becomes necessary to use connectors specifically designed for logic analyzer at-
tachment. The correct type of connector should be verified with your logic analyzer manufacturer.
Using logic analyzer connectors provides access to a set of predetermined signals fairly rapidly, be-
cause a whole connector can be inserted or removed at one time rather than having to use individual
clips for each signal.

Logic analyzer probing becomes more of a challenge at high frequencies because of transmission
line effects. Top-of-the-line logic analyzers are designed to minimally load a bus, and they include
controlled impedance connectors to reduce unwanted side effects of probing. Depending on the trace
lengths involved and the specific ICs, minimal impact is possible with speeds around 100 MHz.
Careful PCB layout is essential for these situations, and it is desirable to minimize stubs created by
routing signals to the connectors. At frequencies above 100 MHz, transmission line effects can rap-
idly cause problems, and special impedance matching and terminating circuitry may be necessary to
achieve nonintrusive logic analyzer probing. Logic analyzer manufacturers have circuit recommen-
dations that are specifically customized to their products.

The ideal scenario is to have logic analyzer visibility for every signal in a system. In reality, 100
percent visibility is not practical. More complex buses are more difficult to debug and, consequently,
stand to benefit more from logic analyzer connectors. A simple asynchronous microprocessor bus,
on the other hand, can be debugged with an inexpensive analog oscilloscope if a logic analyzer is not
available. Whereas logic analyzers stop time and display a timing diagram of the selected signals
over a short span of time, analog oscilloscopes usually do not have this persistence. The persistence
problem can be addressed with a technique known as a

scope loop

. A scope loop is usually imple-
mented in software but can be done in hardware as well, and it performs the same simple operation
continuously so that an oscilloscope can be used to observe what has become a periodic event.

Debugging a basic microprocessor bus problem with a scope loop can be explained with a brief
example. Figure 19.8 shows a portion of a digital system in which a RAM is connected to a micro-
processor and enabled with an address decoder. In normal operation, the microprocessor asserts an
address that is recognized by the decoder, and the RAM is enabled. One possible bug is an incor-
rectly wired address decoder. If the microprocessor is unable to access the RAM, the first thing to
check is whether the RAM’s chip select is being asserted. A single RAM access cannot be effec-
tively observed on a normal analog oscilloscope, because the event may last well under a microsec-
ond. Instead, a scope loop can be created by programming the microprocessor to continually
perform RAM reads. The chip select can now be observed on an oscilloscope, because it is a peri-
odic event. If the chip select is not present, the address decoder’s inputs and output can be tested one
by one to ensure proper connectivity. If the chip select is being asserted, other signals such as output
enable or individual address bits can be probed. Oscilloscopes have at least two channels, and the
second channel can be used to probe one other signal in conjunction with chip select to observe rela-

-Balch.book Page 430 Thursday, May 15, 2003 3:46 PM

Designing for Success 431

tive timing. For example, if output enable is not asserted at the same time as chip select, the RAM
will not respond to a read.

As a bus gets more complex, the two or four channels of a typical oscilloscope do not provide suf-
ficient visibility into what is happening. This is where logic analyzers with dozens of channels are
truly useful and why dedicated connectors are helpful in debugging digital systems.

Logic analyzer connectors alone can provide access to board-level signals only. Many digital sys-
tems implement logic within PLDs, with the result that many logic nodes are hidden from the board-
level perspective. Proper simulation of a PLD can flush out many bugs, but others may escape detec-
tion until a real system is functioning in a lab environment. It is helpful to allocate unused pins on a
PLD for test purposes so that internal nodes that are normally hidden can be driven out of the PLD
and captured on a logic analyzer or oscilloscope.

19.6 BOUNDARY SCAN

When testing a newly fabricated system, there is generally the assumption of a properly wired and
assembled circuit board. A high-quality manufacturing process should make this assumption realis-
tic. The proliferation of BGA and very fine-pitch packaging has made PCB assembly a more delicate
operation, because there is less room for error and less visibility to check for proper solder connec-
tions. BGAs are especially troublesome, because the solder ball connections are largely hidden from
view. To make matters worse, a faulty BGA connection cannot simply be touched up in the lab with
a soldering iron. The entire BGA must usually be removed from the board, cleaned, reprocessed, and
then reattached. X-ray inspection machines are used to help verify proper BGA assembly, but these
machines are imperfect and costly. If a prototype board initially arrives in the lab and fails to per-
form basic operations, the problem can be either assembly related or design related. This uncertainly
lengthens the debugging process, because individual wires must be probed to verify connectivity be-
cause of the lack of visibility under a BGA package. Very fine-pitch leaded packages are also subject
to inspection difficulty, because solder shorts can be hidden from view behind a screen of dense pins.

Members of the IEEE saw these assembly verification problems looming in the 1980s as packag-
ing density continued to increase. The IEEE Joint Test Action Group (JTAG) was formed to address
testability problems, and they developed the IEEE 1149.1 Standard Test Access Port and Boundary
Scan Architecture. Because the full name of the standard is a mouthful, most people refer to IEEE
1149.1 simply as JTAG. JTAG is a simple yet powerful technology, because it places test resources
directly into ICs and enables chaining multiple ICs together via a standard four- or five-wire serial
interface. In essence, JTAG forms a long chain of shift registers whose contents can be set and read
back through software. The placement of these shift registers, or test cells, determines the types of

MPU RAM

Address
Decoder

Chip
Select

Data Bus

Write Enable/Output Enable

Address Bus

FIGURE 19.8 Microprocessor RAM interface.

-Balch.book Page 431 Thursday, May 15, 2003 3:46 PM

432 Digital System Design in Practice

problems that can be debugged. Test cells can perform internal scan as well as boundary scan opera-
tions. Internal scan can help chip designers debug their logic, because all of the flip-flops in a chip
can be incorporated into a scan chain. The scan chain can be loaded with a specific test state, the
chip can be clocked once, and then the new state can be shifted out. This is akin to single-stepping
software. While not speedy, JTAG provides excellent visibility into a chip’s inner workings with lit-
tle added cost.

Boundary scan is the more interesting side of JTAG for board-level debugging, because it allows
the scan chain to drive and sense I/O pins independently of the logic that normally controls them.
This means that the connections between two JTAG-equipped ICs can be fully verified electroni-
cally. One device can drive a wire, and the other can capture that driven state and report it back to the
JTAG test program. JTAG is an excellent complement to BGA technology, because it can rapidly de-
termine the correctness of otherwise hidden connections. Most connections can be verified only
when the ICs at each end both contain JTAG logic. Connections from a JTAG-enabled IC to a mem-
ory IC often can be tested by writing data to the memory through the boundary scan chain and then
reading it back in the same manner. JTAG logic is very common in BGA-packaged ICs, but not as
common with other packages. If you are designing with BGA or very fine-pitch packages, JTAG
support is a criterion that should be considered when selecting components. In some cases, there is a
choice between vendors who do and do not support JTAG. In other cases, you may have to select a
non-JTAG device and accept the reduction in testability.

The JTAG interface is designed to be easy to implement so that it does not place undue demands
on already complex boards. Four primary signals compose the interface: test mode select (TMS),
test clock (TCK), test data input (TDI), and test data output (TDO). A fifth signal, test reset
(TRST*), is supported by some vendors but is not strictly necessary for JTAG operation. Devices are
daisy chained by repeatedly connecting TDO to TDI until a chain has been formed with a set of TDI
and TDO signals as shown in Fig. 19.9. TMS, TCK, and TRST* are bussed to all devices. One of the
first questions that comes up in synchronous design is a circuit’s tolerance for clock skew. JTAG can
tolerate almost arbitrary clock skew, because inputs are sampled on the rising edges of TCK, and
outputs are driven on the falling edges. Almost half a clock period of skew is permissible. If JTAG is
run at several megahertz, the skew is unconstrained for all practical purposes, because hundreds of
nanoseconds corresponds to wire lengths well in excess of what can fit onto a normal circuit board.
JTAG’s skew tolerance means that normally restrictive rules for clock distribution such as length

Device #1

TDI TCK TMS TRST* TDO

Device #2

TDI TCK TMS TDO

Device #N

TDI TCK TMS TRST* TDO

Chain TDI

Chain TMS

Chain TRST*

Chain TCK Clock Distribution
(No Skew Control)

Chain TDO

FIGURE 19.9 JTAG chain.

-Balch.book Page 432 Thursday, May 15, 2003 3:46 PM

Designing for Success 433

matching and low-skew buffers can be largely ignored. Of course, signal integrity considerations
still apply so that TCK is delivered without excessive distortion to each IC. TRST* is active low and
allows supporting devices to have their JTAG logic restarted. TMS is active high and places an IC
into test mode by activating its JTAG controller.

JTAG scan chains are normally operated with special software designed to apply and check user-
defined test patterns, or vectors. IC manufacturers who support JTAG provide boundary scan de-
scription language (BSDL) files that tell JTAG software how to interact with an IC. A standard pro-
cedure is to combine a PCB netlist (a file that lists each connection on the board in detail) with
multiple BSDL files in a JTAG software package to come up with a set of test vectors. These vectors
are then run through each board after it is assembled to verify connectivity between JTAG-equipped
devices. Vendors of JTAG testing packages include Asset InterTech, Corelis, and JTAG Technolo-
gies. Verifying an assembled PCB with JTAG can save days of manual debugging when there may
be problems in the assembly of BGA and fine-pitch components.

19.7 DIAGNOSTIC SOFTWARE

Software can help the debugging process by implementing scope loops, but the potential exists for
much higher-level assistance. Special-purpose diagnostic programs are extremely helpful in detect-
ing problems that could otherwise take much more time to isolate. The basic idea behind a diagnos-
tic is for the software to thoroughly test elements of the hardware one at a time. A complete memory
diagnostic, for example, would test every bit in every memory location. If the test fails, the nature of
the failure provides valuable clues as to what is wrong. If there is a pattern to the failure, an improp-
erly connected address or data bit may be the culprit. If the pattern is random, there may be a timing
problem that causes marginal behavior over time or the device may be bad. Diagnostics are useful in
several phases of development, including initial debug, extended reliability testing, troubleshooting
damaged systems, and screening newly fabricated systems in either laboratory or manufacturing en-
vironments.

During initial debug, when little has already been shown to work, diagnostics can serve as both
scope loops and sources of stimulation that exercise a wide range of functionality so that all features
can be tested at least once. Memory tests are one of the most common classes of diagnostics, be-
cause a reliable memory interface is critical to any microprocessor-based system’s operation. It is
impractical to manually test millions of memory locations, but a program can easily perform this
task in a quick, automated fashion. The specific patterns that a memory diagnostic uses should be
chosen with knowledge of potential problems that may be uncovered. These patterns are written to
memory in a complete write pass and then verified on a subsequent read pass. It is undesirable to test
one memory location at a time, because certain problems can lie hidden from this approach. If the
data bus is not connected, simple capacitance on the data wires might allow the microprocessor to
“read” back a data value that was just written.

Aside from timing problems that can affect all transactions, circuit board connections are prime
candidates for trouble because of potential errors during assembly or subsequent damage from ex-
cessive handling. A good diagnostic will pass only if there are no shorts or opens in the address, con-
trol, and data bus wiring. A shorted or open control signal will generally be easiest to find, because
many, if not all, memory accesses are affected by these faults. Data bus wiring problems manifest
themselves as a failure to read or write certain values to individual bit positions. An open data bit
wire would result in reading a constant or random value, depending on the specific circuit. If a data
bit is shorted to ground or power, the read value would be stuck at that logic level. If two data bits
are shorted together, they will always assume the same value and will not be independently written.

-Balch.book Page 433 Thursday, May 15, 2003 3:46 PM

434 Digital System Design in Practice

Address bus wiring problems result in aliasing or an unexpected displacement within the memory
range. In a 16-bit addressing range, a disconnected A[15] would float to a default logic level and re-
sult in the lower and upper 32,768 locations overlapping. If A[15] and A[14] were shorted together,
the two bits would have only two logic states instead of four, causing the middle 32k of the address
space to overlap with the upper and lower 16k regions.

It may be useful to have multiple memory diagnostics to help with different phases of debugging.
Some engineers like basic walking-ones and walking-zeroes patterns to quickly determine if any
data bits are stuck. As their names imply, walking-ones and walking-zeroes tests set all bits in a word
to one state and then walk the opposite state across each bit position. An eight-bit walking ones test
could look like this: 00000001, 00000010, 00000100, 00001000, 00010000, 00100000, 01000000,
10000000. These tests verify that each bit position can be independently set to a 0 or 1 without inter-
ference from neighboring bits.

Testing an entire memory after simple data bus wiring problems are resolved can be done effi-
ciently by selecting a set of appropriate data patterns. Pattern selection depends on the diagnostic
goals. Is it sufficient to verify only stuck address bits? Both stuck address and data bits? Or is it nec-
essary to verify every unique bit in a memory array? Stuck data bits can be uncovered with a quick
walking-ones and walking-zeroes test targeted to just a few memory locations. It is important to sep-
arate the write and read phases of a short diagnostic, and therefore use multiple memory locations, to
guarantee that the microprocessor is not merely reading back bus capacitance. Isolating and verify-
ing every bit in a memory array can be a more complex operation than first imagined, because spe-
cific memory design aspects at both the board and chip levels may require application specific
patterns to achieve 100 percent coverage. A common memory diagnostic approach is to first test for
stuck data bits in a quick test and then verify the address bus with a longer test and, in the process,
achieve good, but incomplete, bit coverage. This level of coverage in concert with the testing that is
performed by semiconductor manufacturers provides a high degree of confidence in the memory
system’s integrity.

Verifying address bus and decode logic integrity can be done with a set of ramp patterns. Each
memory location is ideally written with a unique value, but this is not possible in systems where the
data bus width is less than the address bus width. A microprocessor with 32-bit wide memory bus
and 2

20

 locations can write a unique incrementing address into each word during a write phase and
the verify on a subsequent read phase. A system with an 8-bit memory and 65,536 locations cannot
write unique values in a single pass. An initial approach to verifying a 64-kB memory array is to
write a repeating ramp pattern from 0x00 to 0xFF throughout memory and then read it back. This
tests only the lower half of the address bus, because there are only 256 unique values written. Alias-
ing is a potential problem, because a 256-byte memory would appear identical to a 64-kB memory
without further effort. The diagnostic requires a second pass to test the upper half of the address bus
by writing the MSB of the address to each byte. Each pass is incomplete on its own, but together
they are an effective diagnostic.

There are many memory diagnostic techniques, and engineers have their own favorites. The re-
peating, alternating pattern of 0x55 and 0xAA is popular, because it provides some verification that
each bit position can hold a 1 or 0 independent of its nearest neighbors. This is in contrast to the pat-
tern of 0x00 and 0xFF that could pass even if every data bit were shorted to every other data bit.
However, 0x55 and 0xAA cannot isolate all data bus problems, because there is no restriction that
shorts must occur between directly adjacent bits. Traces on a PCB are routed in many arbitrary pat-
terns and shorts between nonadjacent bits are possible.

Each system requires a customized diagnostics suite, because each system has different memory
and I/O resources that need to be tested. Serial communications diagnostics are common, because
most systems have serial ports. A loop-back cable is connected to the serial port so that all data
transmitted is received at the same time. The loop-back forms a complete data path that can be auto-

-Balch.book Page 434 Thursday, May 15, 2003 3:46 PM

Designing for Success 435

matically tested with software. Pseudorandom patterns are sent out and checked on the receive side
to verify proper serial port operation. The same basic test can be performed on many types of com-
munications interfaces, including Ethernet.

Diagnostic software not only assists during initial debugging, it can also be used for extended sta-
bility and reliability testing where continual exercise of logic and data paths provides confidence in a
design’s integrity. Verifying proper memory accesses for a brief duration in a laboratory setting is in-
sufficient for a production or high-reliability environment, because semiconductors are subject to
variation over individual units, temperature, and voltage. Once a system appears to be functioning
properly, it should be subjected to a

four-corners

test procedure. Four-corners testing subjects a sys-
tem to the four worst-case permutations of temperature and voltage to ensure that there are no timing
problems over the system’s intended range of operation. It is called four-corners because tempera-
ture and voltage effects on timing can be represented graphically on Cartesian coordinates as shown
in Fig. 19.10. As the temperature drops and voltage increases, the speed of a logic gate increases.
Conversely, the gate slows down as temperature rises and voltage drops. Both extremes can cause
problems if incorrect timing analysis was performed.

The first step in extended testing is often to run a diagnostic loop overnight and verify that there
were no failures after millions of iterations. This is usually performed at room temperature (25°C)
and nominal voltage conditions. With nominal conditions verified, a thermal chamber is used to
maintain high and low temperatures for long durations as voltage is varied from high to low. Increas-
ing confidence is gained when multiple systems are run through four-corners testing. Thermal cham-
bers can be rented from a testing firm if you do not have the financial resources to acquire one. A
common commercial operating temperature range is 0 to 50°C (32 to 122°F), and common digital
voltage supplies are specified with a tolerance of ±5 percent. A diagnostic loop would be run for a
long period of time at each of the four combinations of temperature and voltage. When multiple sup-
plies exist in a system, a case can be made for more permutations of test cases. This can become
quite burdensome with three or four different voltage rails. The decision must be made according to
the requirements and context of each situation.

An investment of time in diagnostic development also pays dividends when manufacturing new
circuit boards and systems by providing a ready-to-use testing regimen. Once a new system passes a

Temperature

Voltage

Slower

Faster

Low Temperature
High Voltage

Low Temperature
Low Voltage

High Temperature
Low Voltage

High Temperature
High Voltage

FIGURE 19.10 Four-corners effects on semiconductors.

-Balch.book Page 435 Thursday, May 15, 2003 3:46 PM

436 Digital System Design in Practice

comprehensive diagnostic suite, it can be packaged and shipped to a customer. Similarly, systems
may come back from the field or from development work in the laboratory with damage from exces-
sive handling, and diagnostics can be run to help isolate and fix the problems.

19.8 SCHEMATIC CAPTURE AND SPICE

Various types of computer aided design (CAD) software assist digital engineers in designing and im-
plementing circuits and systems. Some types of CAD tools have already been discussed, including
HDL simulators, PLD fitters, and electromagnetic field solvers. Perhaps the most universal CAD
tool for electrical engineers of all disciplines is a schematic capture program. Schematic capture is to
circuits what word processing is to text. At the most basic level, schematic capture programs allow
the drawing and manipulation of graphical symbols. However, their utility extends to converting the
information represented by the graphical connections into varying types of data formats used in sub-
sequent stages of system development. Two of the most common and useful data conversion results
are a

bill of materials

(BOM) and a

netlist

. A BOM is a complete summary of all components used
in the schematic and generally has identical components grouped together so that one can quickly
determine how many units of each component are used in a design.

A netlist is an exhaustive list of all the electrical connections in the schematic and is the means of
transferring a schematic into a PCB layout program. With a schematic in hand, a circuit can be pro-
totyped with either a manual wiring process or a tedious manual PCB design process. Both of these
methods involve a person translating each drawn wire in the schematic into a wire on a circuit board.
The assembly complexity and potential for errors increase as the design itself gets larger. The advan-
tage of an automatically generated netlist is that errors are minimized as the entire design database is
transferred from the schematic capture tool to the PCB layout tool. Each layout tool has its own pro-
prietary data interchange format, so it is important for a schematic capture program to support the
desired data format.

A wide variety of schematic capture programs are available, and they range in price from hun-
dreds to many thousands of dollars, depending on their intended application. Major vendors include
Cadence, OrCAD (owned by Cadence), Innoveda, and Mentor Graphics. At least one program, Or-
CAD, is available in a free student/demonstration edition that has limited features and can be used to
draw circuits of moderate complexity.

Another CAD program that is applicable to many disciplines is the

Spice

family of analog simula-
tors. Spice (or SPICE), an acronym for

simulation program with integrated circuit emphasis,

 was
originally developed at the University of California at Berkeley in the 1970s and has become a stan-
dard means of simulating circuit behavior. Many variants of Spice are available, and source code is
available as well. Spice tools share a common basic syntax and feature set. Circuits have tradition-
ally been represented manually in a netlist-like format for Spice processing. However, some vendors
now enable schematic capture software to convert a drawn circuit into the Spice input format.
PSpice is a well known variant that has been available for PC platforms for many years. It is now
sold by Cadence, which has continued the practice of offering free student and demonstration ver-
sions. PSpice was used to evaluate some of the analog circuits and concepts discussed in this book.

Spice is a powerful tool. Two of its basic modes of operation are AC sweep and transient analysis.
AC sweep performs frequency-domain analysis on a circuit and is used to characterize filters and the
frequency response of general circuits. Transient analysis provides a time-domain view of an analog
circuit and can be used to simulate a transmission line or view a filter’s output in the time domain as
it would be seen on an oscilloscope. Spice simulations are an excellent means of performing “what-
if” evaluations of circuits while still in the design phase. Transmission line terminations can be eval-
uated to gauge signal integrity, and filters can be tested to determine the frequencies over which they

-Balch.book Page 436 Thursday, May 15, 2003 3:46 PM

Designing for Success 437

are effective. The degree to which a Spice simulation matches reality depends on how closely the
real conditions are modeled. Performing highly accurate simulations is a skill that requires a thor-
ough understanding of circuit theory. However, useful first-order approximations of analog behavior
can be readily achieved. A key source of divergence between simulation and reality in a digital de-
sign is the parasitic properties of wires and components that become significant at high frequencies.
An idealized resistor or wire might require the explicit addition of parasitic inductance and capaci-
tance to get a more accurate simulation.

A basic example of Spice simulation can be shown using the first-order RC filter in Fig. 19.11.
This lowpass filter uses idealized components and has f

C

≈

 10 MHz with a steady attenuation slope
of 20 dB per decade.

Circuits are presented to Spice by uniquely naming or numbering each node and then instanti-
ating circuit elements that reference those node names. Figure 19.12 shows the Spice circuit descrip-
tion for the idealized RC filter. Ground is represented as 0. Resistors and capacitors are designated
with identifiers beginning with R and C, respectively. V denotes a voltage source, and this voltage
source is specified with a 0-V DC component and a 1-V AC component. The

.AC

 command in-
structs Spice to perform an AC sweep over a logarithmic (decade) range from 100 kHz to 1 GHz
with 10 data points per decade. Note that the voltage source does not specify a frequency. This is be-
cause our simulation is an AC sweep that evaluates a range of frequencies. Finally,

.PROBE

 in-
structs Spice to display the results graphically.

The expected filter transfer function in Fig. 19.13 is obtained following a brief simulation of the
circuit description input.

Improving the simulation’s realism can be achieved by introducing parasitic inductance in series
with the ideal capacitor. The actual inductance varies with package type and the wiring scheme used.

V1 VIN 0 DC 0Vdc AC 1Vac
R1 VIN VOUT 75
C1 0 VOUT 220p
.AC DEC 10 1e5 1e9
.PROBE
.END

FIGURE 19.12 Spice circuit description for ide-
alized RC filter.

220 pF

75 Ω
VOUTVIN

V1 R1

C1

FIGURE 19.11 Idealized RC filter for Spice
analysis.

0.001

0.01

0.1

1

1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

Frequency (Hz)

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

FIGURE 19.13 Bode magnitude plot for idealized RC filter.

-Balch.book Page 437 Thursday, May 15, 2003 3:46 PM

438 Digital System Design in Practice

For the sake of discussion, 2 nH is selected to observe the effects of parasitic inductance. The previ-
ous circuit description is modified as shown in Fig. 19.14. A new node is created,

PARA

, that is used
to place the inductor between the output node and the capacitor.

Running the simulation with the added parasitic inductor yields a transfer function that has simi-
lar characteristics up to a decade past f

C

, and then a notch is observed, after which the attenuation
actually decreases because of the inductor’s increasing impedance at high frequencies (Fig. 19.15).
Increasing the parasitic inductance, as would be experienced with a leaded capacitor, would cause
the notch to move to lower frequencies in simulation.

Transmission line analysis can be performed with Spice’s transient analysis capability. Different
termination circuits and transmission line topologies can be investigated in varying degrees of detail,
depending on the accuracy of the models used. It may be difficult to generate an accurate model of
an IC driver or receiver, but relatively good estimates can be obtained by combining multiple ideal
elements. The circuit shown in Fig. 19.16 uses a pulse voltage source with a 5-

Ω

 series resistor to
simulate the driver’s output resistance and an inductor to represent the IC package’s lead inductance.

V1 VIN 0 DC 0Vdc AC 1Vac
R1 VIN VOUT 75
L1 PARA VOUT 2nh
C1 0 PARA 220p
.AC DEC 10 1e5 1e9
.PROBE
.END

FIGURE 19.14 Bode magnitude plot for RC fil-
ter with parasitic inductance.

0.001

0.01

0.1

1

1.00E+05 1.00E+06 1.00E+07 1.00E+08 1.00E+09

Frequency (Hz)

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

FIGURE 19.15 Bode magnitude plot for RC filter with parasitic inductance.

5 pF

5 Ω
VOUTVDRIVE

4n

V1 RS

VDIE

LPKG

VPIN
47 Ω

RT

VIN ZO = 50 Ω

T1

TD = 1n

CL

10 kΩ

RL

FIGURE 19.16 Transmission line circuit.

-Balch.book Page 438 Thursday, May 15, 2003 3:46 PM

Designing for Success 439

A 47-

Ω

 series termination resistor connects the simulated driver to a 50-

Ω

 transmission line model
that has a delay of 1 ns, corresponding to a physical length of approximately 6 in (15 cm). The load
is represented by a 10-k

Ω

 resistance to ground and 5 pF of shunt capacitance.
Each node in the circuit is uniquely named so that the circuit can be represented in Spice’s de-

scription format. Spice supports a variety of voltage and current sources. Voltage sources can emit
constant DC levels; sine waves of varying phase, frequency, and amplitude; pulses; and other forms
of circuit stimulation. The pulse voltage source is chosen for this transmission line analysis with a
period of 10 ns, rise and fall times of 1 ns, and a 50 percent duty cycle to simulate a 100-MHz clock
driver. Figure 19.17 shows the circuit description for the circuit in Fig. 19.16. Note the

+PULSE

specification following the voltage source declaration that specifies amplitude when off, amplitude
when on (3.3-V driver is simulated), delay, rise time, fall time, high time, and period. The delay can
be used to shift the pulse and is set here arbitrarily to 1 ns. Ideal lossless transmission lines are repre-
sented with a T prefix and are specified with ground nodes at the input and output as well as charac-
teristic impedance and delay.

Following the circuit description is the

.TRAN

command that instructs Spice to perform a tran-
sient analysis for 120 ns and to display the results only after 100 ns. The first 100 ns are used to es-
tablish steady-state conditions so that the results are not affected by the circuit state at time zero
when all elements are discharged. Waiting for a circuit to stabilize is not necessary in all cases and
could have been omitted here with little effect. The first parameter to

.TRAN

is the step size, which
is set to 0 to use the best simulation resolution. Selecting a larger step size shortens the simulation,
which may be desirable for certain long analyses.

Figure 19.18 shows the plotted simulation results from the transmission line analysis showing
minimal distortion. Little overshoot and undershoot are observed. How well this simulation matches
a real laboratory observation depends on the accuracy of the circuit model and the accuracy of the
observation. An ideal transmission line model is used in this example. If a good quality PCB with
ground plane is used and stub lengths on termination components are minimized, the results should
match relatively well. If the driver has significantly different output impedance, there will be less of
a correlation.

One of the benefits of using Spice is the ability to try many different test cases to gain an under-
standing of how variance in certain circuit parameters affects the circuit’s behavior. If a parameter is
varied slightly, and the behavior changes dramatically, a warning should be recognized that the cir-
cuit is sensitive and small differences between the model and reality can cause trouble. Variation in
driver output impedance, termination resistance, and transmission line impedance are useful param-
eters for experimentation. Fig. 19.19 shows the simulation results of the transmission line circuit
with a 33-

Ω

 termination resistor instead of a 47-

Ω

 device. This simulation is done not to experiment
with variance of purchased resistors but to examine the effects of a significantly different termina-

V1 VDRIVE 0
+PULSE 0 3.3 1n 1n 1n 4n 10n
RS VDRIVE VDIE 5
RT VPIN VIN 47
LPKG VDIE VPIN 4n
T1 VIN 0 VOUT 0 Z0=50 TD=1ns
CL 0 VOUT 5p
RL 0 VOUT 10k
.TRAN 0 120ns 100n
.PROBE
.END

FIGURE 19.17 Spice circuit description for transmission
line analysis.

-Balch.book Page 439 Thursday, May 15, 2003 3:46 PM

440 Digital System Design in Practice

tion. As expected, there is greater distortion, because the transmission line is not as well terminated.
Approximately 0.5 V of overshoot and undershoot are observed.

The preceding examples provide a brief glimpse of what is possible with Spice. In addition to
passive circuits, semiconductors and active components can be modeled, enabling detailed simula-
tions of analog amplifiers and digital circuits. Spice enables simulation to the desired level of resolu-
tion without forcing undue complexity. Small, quick simulations suffice for circuits with significant
margins. More complex and detailed simulations that use highly accurate models are called for when
operating near the limits of technology where margins for errors are very small.

19.9 TEST EQUIPMENT

Test equipment needs vary, depending on the complexity of a project. There are general types of test
equipment used to debug and measure wide varieties of circuits, and there are very specialized tools
designed for niche applications. This section provides a brief introduction to the more common
pieces of test equipment found in typical engineering laboratories. As with any equipment, costs and
capabilities vary widely. A 25-MHz analog oscilloscope may cost several hundred dollars, whereas a

–1

0

1

2

3

4

100 102 104 106 108 110 112 114 116 118 120

Time (ns)

V
o

lt
s

FIGURE 19.18 Transmission line with RT = 47 Ω.

–1

0

1

2

3

4

100 102 104 106 108 110 112 114 116 118 120

Time (ns)

V
o

lt
s

FIGURE 19.19 Transmission line with RT = 33 Ω.

-Balch.book Page 440 Thursday, May 15, 2003 3:46 PM

Designing for Success 441

1-GHz digital oscilloscope can cost tens of thousands of dollars. Both oscilloscopes perform the
same basic function, but one performs that function at much higher frequencies and with more pow-
erful measurement features. The following companies are among those who manufacture some or all
of the test equipment mentioned in the following text: Agilent Technologies, B&K Precision, Fluke,
Kenwood, LeCroy, and Tektronix.

Perhaps the most basic test tool is the

multimeter

, available in analog and digital varieties. A digi-
tal multimeter is called a

DMM

. Multimeters measure voltage, resistance, current, and sometimes
capacitance, inductance, and diode forward voltages. Measuring voltage and current are passive
functions, but the other capabilities require injecting current into a component under test to discern
its voltage or other properties. DMMs are very common because of their low cost and ease of use.

Another relatively inexpensive test device is called a

logic probe

and is useful for engineers on a
budget. A logic probe is placed onto a digital signal, and its indicators, visual and/or audible, tell
whether a logic 0 or logic 1 is present and whether the line is clocking or pulsing high or low. Very
basic debugging can be done with a logic probe in the absence of an oscilloscope. A logic probe, for
example, can determine if a chip-select is being asserted to a device on a microprocessor’s bus. Un-
fortunately, a logic probe cannot provide other useful information such as pulse duration and the rel-
ative timing of multiple signals.

Oscilloscopes have been mentioned in various contexts thus far. Their basic function is to display
a time-domain view of voltage over very narrow time spans. Traditionally, oscilloscopes were fully
analog instruments with cathode-ray tubes (CRTs) that required constant scanning to maintain a vis-
ible image. As such, a traditional analog oscilloscope is most useful with repetitive signals that could
continually retrigger the trace moving across the CRT. Digital oscilloscopes, or digital storage oscil-
loscopes (DSOs), are hybrid analog and digital devices that sample an analog input and then load the
digitized data stream into a buffer where it can be manipulated as a computer graphic. This memory
feature allows digital oscilloscopes to capture single-shot events and display them indefinitely. Most
oscilloscopes have at least two channels, allowing two signals to be displayed simultaneously and
correlated with one another. More expensive oscilloscopes have four or more channels.

Once a waveform is displayed, analog and digital oscilloscopes enable various measurements to
be taken, including frequency, amplitude, and relative timing between channels. Low-budget analog
oscilloscopes may have only grid markings on the screen from which measurements can be manu-
ally estimated. More expensive oscilloscopes have built-in marker functions that automate the mea-
surement process to varying extents.

The bandwidth of an oscilloscope is an important characteristic that indicates the frequency han-
dling capabilities of its amplification and sampling circuits. An oscilloscope cannot be expected to
provide meaningful observations when operated near the limits of its specified bandwidth. Keep in
mind that digital signals contain high-frequency components created by sharp transition edges. A
100-MHz clock signal represents more than 100 MHz of bandwidth. Using an oscilloscope with
greater bandwidth enables observations with less attenuation of higher frequencies. Rules of thumb
vary on bandwidth versus actual signal frequency. Accepting an order-of-magnitude difference be-
tween a digital signal frequency and oscilloscope bandwidth yields good results. If this appears too
expensive, a trade-off must be made between cost and the accuracy of measurements.

DSOs have another important defining characteristic: sampling rate. Sampling rate effects differ,
depending on the capabilities of the oscilloscope and on whether the signal being measured is a sin-
gle-shot event or repetitive, such as a clock. Some DSOs treat these two classes of signals differ-
ently. Single-shot events must be sampled in a single pass and are subject to a Nyquist limit imposed
by the sampling rate. Measuring a signal with frequencies too near the Nyquist frequency (one-half
the sampling rate) results in unacceptable distortion of the signal. Good results are attainable when
measuring signal frequencies that are less than one-fifth to one-tenth of the sampling rate. Some
DSOs are able to sample higher-frequency repetitive signals by combining the samples from many

-Balch.book Page 441 Thursday, May 15, 2003 3:46 PM

442 Digital System Design in Practice

passes. These DSOs take relatively few samples on each pass, which is why a signal must be repeti-
tive so that multiple passes are sampling essentially the same waveform. Sampling resolution is a
closely related characteristic. It is common to find DSOs with eight-bit resolution, which is adequate
for many digital probing needs because of these signals’ binary nature. Certain analog applications
may require finer resolution to take proper measurements, and such improvements come at a cost.

A relative of the oscilloscope is the logic analyzer, a device that is intended for purely digital test
applications. Like a DSO, a logic analyzer captures signals at high sampling rates as they occur and
then freezes them for human analysis for an arbitrarily long time. The principal differences are that a
logic analyzer captures single-bit samples and, consequently, is able to work with dozens or hun-
dreds of channels at the same time. High channel count enables a logic analyzer to capture complex
buses in their entirety so that a complete picture of a bus’s digital state can be displayed. An oscillo-
scope can show that a write-enable is coinciding with a chip-select. A logic analyzer can also show
the specific data and address that are being transacted during that write operation. Logic analyzers
are characterized by sampling rate, the number of channels supported, buffer depth, and triggering
capabilities. At a basic level, a logic analyzer contains a large memory into which new samples are
loaded every clock cycle. Faster, wider, and deeper memories cost more money than slower, nar-
rower, shallower memories.

An important logic analyzer feature is its triggering capability. A simple type of triggering is one
in which the logic analyzer waits for a specific pattern to present itself and then fills its entire buffer
with the data following the pattern occurrence. If a serial port driver is being debugged, the logic an-
alyzer trigger might be the address of a control register in the UART. Probing all signals on the mi-
croprocessor bus with the logic analyzer enables long instruction sequences to be correlated with
hardware behavior to determine where a fault lies. When the microprocessor accesses a UART regis-
ter, the logic analyzer triggers and stores all subsequent state information until the analyzer’s mem-
ory is filled. The trigger point can usually be configured at an arbitrary offset in the analyzer
memory. If the beginning of memory is chosen, the result is that the state following the trigger is
captured. If the end of memory is chosen, the state leading up to the trigger is captured. Choosing a
middle memory location captures the state both before and after the trigger event. Each debugging
effort is best assisted by choosing a specific triggering option. If, for example, the wrong data is be-
ing transmitted from the UART, the state prior to the trigger event is likely to be useful, because it
would show the microprocessor’s instructions that presumably caused the data error. If, instead, the
microprocessor appears to crash after transmitting data, the state after the trigger event may be more
useful.

More complex digital buses and algorithms benefit from more powerful triggering capabilities.
Many logic analyzers can trigger after a number of occurrences of the same pattern are observed or
after several predetermined patterns are observed in specific sequences. In the previous UART de-
bugging example, incorrect results may not occur until after many bytes have been transmitted. Al-
ternatively, incorrect results may occur only after a certain byte sequence has been sent. A good
analyzer can be configured to trigger on arbitrary combinations of patterns and occurrences.

-Balch.book Page 442 Thursday, May 15, 2003 3:46 PM

443

APPENDIX A

Further Education

One of the exciting aspects of electrical engineering is that the state of the art changes quickly. Con-
sequently, there is always the need to learn about new technologies, methods, and components. The
modern engineer is fortunate to have a multitude of educational resources from which to draw. The
Internet has made technical information more accessible than ever to anyone with a modem. Educa-
tional resources for engineers include

•

Trade publications and subscription periodicals

•

Technical books

•

Manufacturers’ web sites and publications

•

Third-party web sites

•

Colleagues and conferences

Trade publications and other periodicals are a good way to keep aware of current trends in the in-
dustry, because articles are often written about new and interesting technologies. Even advertise-
ments provide an education, because manufacturers’ claims can be compared against each other and
against information acquired elsewhere. Many trade publications are funded by advertisements and
can therefore offer free subscriptions to qualified subscribers with relevant professional responsibili-
ties and technical needs. The following periodicals are recommended by the author:

•

Circuit Cellar

 (paid subscription). The focus is on embedded systems with articles describing
real implementations and discussions of how to make practical systems work.

•

EDN

and

Electronics Design

 (free subscriptions). Articles are written by staff editors and pro-
fessional engineers on topics from current trends to specific design implementation techniques
and technical advice.

•

EE Times

 (free subscription). This is a general electronics industry weekly news with articles on
current trends and new technologies.

Technical books are available on practically every aspect of engineering. Chances are that you are
already aware of this option, because you are reading this book right now! The following books are
recommended as references for various topics that arise in digital electrical engineering:

•

Computer architecture—

Computer Organization and Design: The Hardware/Software Interface,

David A. Patterson and John L. Hennessy, Morgan Kauffman.

•

Signal integrity and PCB design—

High-Speed Digital Design: A Handbook of Black-Magic,

Howard W. Johnson and Martin Graham, Prentice Hall.

-Balch.book Page 443 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

444 Appendix A

•

Semiconductor theory (transistors, op-amps, etc.)—

Microelectronic Circuits,

Adel S. Sedra and
Kenneth C. Smith, Saunders College Publishing.

The publications provided by manufacturers about their own parts and the technologies that they
incorporate are, collectively, a treasure trove of information that is highly valued by this author.
Semiconductor manufacturers have always published literature that describes the specifications of
their devices in addition to application notes on recommended usage scenarios. The Internet has in-
creased the accessibility of these publications to the point at which numerous manufacturers’ web
sites can be scoured in a short while to get information on a specific topic. Much can be learned by
reading data sheets, even when all of the topics covered are not already understood. Application
notes are highly beneficial, because they contain detailed descriptions of how a chip is actually used.
The context and advice provided by application notes can fill in the questions that arise from reading
a data sheet. While nearly all component manufacturers have web sites with useful information, the
following companies stand out in the author’s view because of the quality and comprehensive collec-
tion of technical information that is freely available to all visitors:

•

Altera—FPGAs and CPLDs (www.altera.com)

•

AVX Corporation—passive components (www.avxcorp.com)

•

Fairchild Semiconductor—discrete semiconductors, logic, analog, and mixed-signal ICs
(www.fairchildsemi.com)

•

Linear Technology—analog and mixed-signal ICs (www.linear.com)

•

Maxim Integrated Circuits—analog and mixed-signal ICs (www.maxim-ic.com)

•

Micron Technologies—memory (www.micron.com)

•

Microchip Technology—microcontrollers and nonvolatile memory (www.microchip.com)

•

National Semiconductor—analog and mixed-signal ICs (www.national.com)

•

Texas Instruments—discrete semiconductors, logic, analog, and mixed-signal ICs (www.ti.com)

•

Xilinx—FPGAs and CPLDs (www.xilinx.com)

Many useful third-party web sites are maintained by generous and experienced members of the
world’s technical community. Almost every engineering topic imaginable can be found with a quick
web search. While these sites can be very helpful, the information found should be correlated with
other sources whenever possible. There is both good and bad information available on the web, and
some sites do contain erroneous data that can cause much grief.

Numerous technical conferences exist in both broad and specialized areas of electrical engineer-
ing. Notices for these conferences can be found in trade publication advertisements.

-Balch.book Page 444 Thursday, May 15, 2003 3:46 PM

445

INDEX

7400
74LS00 data sheet, 51–54
74LS138, 222
ACT, F, HCT, LS types, 50
design examples, 43–50
logic family, 41–43
power and speed characteristics, 50

8B10B coding,

see

 channel coding

A

absolute maximum ratings, 51
AC
AC electrical characteristics, 53

analysis, 279–283
Bode plot, 284
circuit, 274
filter,

see

 filter
Spice circuit simulation,

see

 Spice
accumulator

6800 microprocessor, 123
68000 microprocessor, 139
8051 microcontroller, 126–127
8086 microprocessor, 134
defined, 59
implied addressing, 73
PIC microcontroller, 131
subroutine call, 60–61
usage in assembly language, 73

Actel, 258
active filter,

see

 filter
active-low/high signals, 19

in typical computer, 64
symbology, 64

ADC (analog-to-digital converter)
flash, 345–346
operation, 340–341

sample and hold, 345
sampling rate, 341–344
sigma-delta, 347–348
successive approximation, 345–347
types, 345

address
address banking, 67–68
address bus, 57, 64, 64–65, 68–69, 74

aliasing, 65
computer design example, 64–65
defined, 58
memory access time, 149
memory read, 64–65
memory write, 66–67
using demultiplexer, 29
Verilog design example, 227–228
within memory, 78

addressing
instruction decoding, 146–147
types, 73–75

Advanced Micro Devices, 83–85
aliasing

address space, 65
sampling, 344

Altera, 255, 258
ALU (arithmetic logic unit)

defined, 59
DSP, 168
superscalar architecture, 163–164

AM (amplitude modulation), 108
AMCC, 199
Ampere,

see

 current
Analog Devices, 167, 346
anode, 293
ANSI (American National Standards Institute), 102
Ansoft, 409

-Balch.book Page 445 Thursday, May 15, 2003 3:46 PM

Copyright 2003 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

446 Index

arc, in FSM, 48, 238
arithmetic, 14–17

checksum, 207–209
floating point, 165–167
microprocessor instructions, 58

Artesyn, 390
ASCII (American Standard Code for Information Inter-

change), 102–103
ASIC (application specific integrated circuit)

defined, 222
synthesis library, 223
versus PLD and FPGA, 249–251, 261

ASK (amplitude shift keying), 108
assembly

benefits, 75–76, 132
defined, 72
directive, 73

Asset InterTech, 433
Astec, 390
asynchronous

DRAM interface, 89
EPROM interface, 80–81
FIFO interface, 95
inputs to flop-flops, 19
microprocessor bus, 65–67
reset using Verilog, 226
signals and crosstalk, 409
SRAM interface, 87

Atmel, 258
atomic operation, 90
AVX Corporation, 389
AWG (American wire gauge), 391

B

bandpass filter,

see

 filter
band-reject filter,

see

 filter
bandwidth

communications, 98–99, 108, 197
disparity between microprocessor and memory, 149,
157
memory improvement, 170–171

bank address register, 67–68
base, BJT,

see

 transistor
baseband, 108
baud, 109
BCD (binary coded decimal), 43, 123
behavioral HDL design,

see

 HDL
BER (bit error rate), 203
BGA (ball grid array), 40, 421, 424

big-endian, 137, 212
binary encoded FSM,

see

 FSM
binary operator, 4
binary, base-2, 11
bit

defined, 11
versus baud, 109

BJT,

see

 transistor
Bode plot, 284, 437
Boolean logic

defined, 4
simplification, 7–8
using HDL, 222

boot
defined, 57
flash memory, 83

boundary scan,

see

 JTAG
branch

defined, 58–60
effect on PC, 60, 74
PIC microcontroller, 132
pipelining problems in microprocessor, 162–163
reset vector, 62
software locality, 150–151
to subroutine, 60

branch prediction, 164
breadboard, 425

solderless, 427
breakout box,

see

 RS-232
bridge

network, 217–218
PCI bus, 72

broadcast address, 112, 112
bubble diagram,

see

 FSM, state transition diagram
buffer, 29–30, 229

bus, 68–69
control logic, 229
memory, 100, 171
tri-state,

see

 tri-state buffer
bus

asynchronous, 65–67
buffer, 229
clock domain crossing, 236–237
contention or fight, 29–30
defined, 29–30, 57
fault, 141
I/O controller, 71–72
interface design example, 227–229
interface FSM design example, 239, 241–242

-Balch.book Page 446 Thursday, May 15, 2003 3:46 PM

Index 447

microprocessor with cache, 156
network topology, 110–111
ripper, schematic diagram, 49
RS-485 network, 112–114

bypass capacitor,

see

 capacitor
byte, 11

C

cache
burst DRAM access, 90
coherency, 157
controller, 150, 156
defined, 150
direct mapped, 152–153
flush, 151
flush algorithm, 154
fully associative, 152, 161
hit, 150
instruction and data, 154–155
levels, 157
line, 151
locking memory regions, 156
miss, 150
no-write, write-through, and write-back, 151
performance, 171
set associative, 153–154
sizing, 157
thrashing, 153, 155
virtual memory relationship, 160

CAD (computer aided design), 436
Cadence, 224, 244, 409, 436
California Micro Devices, 417
CAM (content addressable memory), 189–191

binary versus ternary, 189–190
internal structure, 189
linked to SRAM, 190
management, 189–191

capacitor
AC properties, 274–275
aluminum, 393
bypass and decoupling, 275, 393–394, 411–412
DRAM, 88–89
filter, 283–285
lead inductance, 394
nonideal model, 277
series and parallel combination, 276
switching regulator noise reduction, 388
tantalum, 393
unit of measure, 272

carrier, 108
carry bit, 14
CAS,

see

 DRAM
cathode, 293
CE (chip enable), 80, 89–90
cell, network, 111
ceramic

EPROM package, 80
resonator, 356

channel
8B10B coding, 203–207, 405
8B10B comma pattern, 203
bandwidth, 99
BER, 203
coding, 194, 199
communication, 197, 199
DMA, 70
FET,

see

 transistor
characteristic impedance,

see

 impedance, transmission
line

chassis grounding, 413–415
checksum, 194

calculation logic, 207–209
chemical diffusion, 36
Cherokee, 390
choke,

see

 inductor
CISC (complex instruction set computing), 145–147,

149
clock

ceramic resonator, 356
computer design example, 67
defined, 18
distribution, 357–360
distribution limitations, 367–368
DLL,

see

 DLL
domain crossing, 95, 233–237
electromagnetic radiation, 413
enable (on a flip-flop), 19
Fourier analysis, 280
FPGA, 258
frequency and period, 24–25
frequency synthesis, 364–365
generation options on PIC, 131–132
jitter, 27, 199, 357, 364, 367
logic and Verilog, 226
low skew buffer, 357
matching wire delay, 358
microprocessor performance, 169–170
multiboard distribution example, 361, 363–364

-Balch.book Page 447 Thursday, May 15, 2003 3:46 PM

448 Index

oscillator circuit, 356
oscillator tolerance, 356–357
period limitations, 162
PLL,

see

 PLL
power filtering, 357, 364
quartz crystal, 356
RC oscillator, 273–274
reference for UART, 101
signal integrity, 358–359, 409
skew, 25–27, 358, 367
skew in source-synchronous interface, 181
speed of microprocessor, 58
standard RS-232 frequencies, 104
synchronization in UART, 101
tree, 357–358, 367
zero delay distribution, 362–363

clock-to-out time, flip-flop,

see

 flip-flop
CMOS (complementary MOS)

EPROM, 80
semiconductor process, 38, 308
SRAM, 87–88

coil,

see

 inductor
collector, BJT,

see

 transistor
collision detection, 113, 217
combinatorial logic, 22, 224–225
comma pattern,

see

 channel coding
common mode signal, 290
comparator,

see

 op-amp
compliment, logical, 4
computer,

see also

 microprocessor
defined, 56
design example, 63–67
DMA, 68–70
performance metric, 169–172
physical and virtual memory, 158
use of DRAM, 90

Condor, 390
Conexant, 199
Conner-Winfield, 357
conservation of charge, 267
context switch, 139
Corelis, 433
Coulomb, 267, 272
counter

FSM, 237–238
ripple, 19–21
synchronous, 22–23

CPLD,

see

 PLD
CPU,

see

 microprocessor

CRC (cyclic redundancy check), 194, 207, 209–215
crosstalk,

see

 signal integrity
Crystal Semiconductor, 346
CS (chip select), 64–65
CTS, 356
current

ampere, 267
regulator, 381, 385

cutoff frequency,

see

 filter
Cypress Semiconductor, 252, 255, 257, 358

D

DAC (digital-to-analog converter)
current output, 349
operation, 341
R-2R ladder, 348–349
sampling artifacts, 344–345

Darlington pair, 303–304
data bus, 57
data link layer, 194
data memory, 56
data rate matching, 95–96
data sheet

FET, 307
logic IC, 51–54
op-amp, 316–317

Datel, 388
DB25, 102, 106
DC circuit, 274
DC electrical characteristics, 53
DCE (data communications equipment), 104
DDR (double data rate)

FPGA I/O, 261
SDRAM,

see

 SDRAM
SRAM,

see

 SSRAM
DE9, 102, 106
debugging, 430, 433
decibel, 281–282
decoupling capacitor,

see

 capacitor
demodulation, 108
DeMorgan’s Law, 8, 232
demultiplexer (or demux), 28
die, silicon, 36, 250–251
dielectric

constant, 400–401
flash memory bit structure, 81
impedance effects, 402–403
PCB, 408–409

differential

-Balch.book Page 448 Thursday, May 15, 2003 3:46 PM

Index 449

data transmission, 107–108, 113
mode signal, 290

Digital Equipment Corporation, 216
diode, 34

clamp in reset circuit, 428–429
clipping circuit, 295
defined, 293
ESD protection, 417
forward voltage, 294
I-V characteristic, 294
LED (light emitting diode), 34, 198, 299
LED driving with BJT, 301–303
logic functions, 298–299
photodiode amplification, 326–327
power supply backup, 297–298
rectification, 296–297
Schottky, 295, 299
shunt voltage regulator, 377–379
switching regulator, 387
voltage reference, 294–295, 372–373
voltage regulator protection, 383
Zener voltage, 294, 377, 379

DIP (dual in-line package), 38, 80
direct addressing, 74
DIX Ethernet,

see

 Ethernet
DLL (delay locked loop), 366–367

FPGA, 259–260
DMA (direct memory access)

bus control, 142
controller (DMAC), 68–70
system performance, 171

DMM (digital multimeter), 441
DMOS (double-diffused MOS), 309
don’t care, logical usage, 10
doping, 34, 293
drain, FET,

see

 transistor
DRAM (dynamic RAM)

bit structure, 88
burst transactions to cache, 156
CAS*, 88–89
defined, 78
EDO, 91
FPM, 90
internal structure, 88–89
performance versus SRAM, 149
RAS*, 88–89
rate matching with FIFO, 95–96
refresh, 88–89
synchronous,

see

 SDRAM

DSP (digital signal processor), 167–169
D-subminiature connector family, 106
DTE (data terminal equipment), 104
dual-port memory, 93
duty-cycle, 18

E

Ecliptek, 356
ECS, 356
EEPROM (electrically erasable programmable ROM),

85–86
PLD programming, 253

EIA/TIA (Electronics Industry Association and Tele-
communications Industry Association), 102

electric potential, 267
EMI (electromagnetic interference)

radiation, 413
signal integrity, 410–412

emitter, BJT,

see

 transistor
energy, 267
EPROM (erasable programmable ROM)

asynchronous interface, 80–81
defined, 79
OTP (one-time programmable), 80
programming voltage, 79
silicon bit structure, 79

equality comparison, 12
error detection, 99, 115–116, 194, 207

checksum, 207
CRC, 207

ESD (electrostatic discharge), 415–417
Ethernet, 199, 215–219

8B10B coding,

see

 channel coding
autonegotiation, 218
collision detection, 217
CRC-32,

see

 CRC
DIX, 216
frame format, 216–217
jumbo frame, 217
MAC (media access controller), 194, 216–217
MAC address, 194, 216
preamble, 216
twisted-pair wiring, 197

Exemplar, 244
exponent, floating-point, 165

F

Fairchild Semiconductor, 307, 316–317, 384
falling-edge triggered, flip-flop,

see

 flip-flop

-Balch.book Page 449 Thursday, May 15, 2003 3:46 PM

450 Index

Farad,

see

 capacitor
FCC (Federal Communications Commission), 413
FEC (forward error correction), 207
ferrite, 279
FET,

see

 transistor
fiber optic cable, 108, 197–198

single and multi mode, 198
splicing, 198

FIFO (first-in-first-out), 236–237
clock domain crossing, 95
data rate matching, 95–96
defined, 94
FPGA usage, 261
interfaces, 95
internal structure, 94
overflow and underflow, 94
source-synchronous bus interfacing, 369–370

filter
active, 331–333
ADC and DAC, 345, 348
anti-aliasing for ADC, 350–351
bandpass, 286–287
band-reject, 286–287
cutoff frequency, 283–284
defined, 283
EMI reduction, 414
ESD protection, 416–417
gain, 283–284
highpass, 286
lowpass, 283–285
pass and stop bands, 285
passive, 283
PLL feedback loop, 362
second-order, 285–286
transformer, 290

firmware, 57
flash

bit structure, 81
block protection, 85
boot block, 83
defined, 81
erasure, 84
NOR versus NAND, 82

flip-flop
7400 family, 42
defined, 18
falling/rising-edge trigger, 18–19
FPGA, 257–258
FPGA I/O, 261–263

metastability, 234–235
PLD, 253–254
timing parameters, 23–24
using Verilog, 225–226

floating point, 138, 165–167
floorplanning,

see

 FPGA
flow control,

see

 handshaking
FM (frequency modulation), 109
forward bias, 293
four-corner handshaking,

see

 handshaking
Fourier analysis,

see

 frequency-domain analysis
Fowler-Nordheim Tunneling, 81
FPGA (field programmable gate array)

clock distribution, 259–260
defined, 257
floorplanning, 259
internal timing, 258
logic cell, 257–258, 261
RAM, 260–261
routing, 258–259
third party cores, 261

frame, network, 111, 194, 207
framing

defined, 45, 99
detection logic, 202–203
networks, 112
UART, 99–101

frequency-domain analysis, 279–283, 341
decibel usage, 281–282

FSM (finite state machine)
binary and one-hot encoding, 243–244
bus interface design example, 239, 241–242
defined, 237
Moore and Mealy types, 239
partitioning, 243
pattern matching design example, 238
pipelining, 245–247
serial communications design example, 47
state transition diagram, 48, 238
Verilog design, 239–241

FSK (frequency shift keying), 109
full-adder, 14–15
full-duplex, 113
fundamental frequency, 280
fuse

PLD, 252–253
power, 389
PROM, 79

-Balch.book Page 450 Thursday, May 15, 2003 3:46 PM

Index 451

G

gain,

see

 filter
GAL, 252–253
Galois Field, 200, 209
gate, FET,

see

 transistor
Gennum Corporation, 203
glue logic, 227–228
ground

earth and signal, 390
ESD, 415–417
GND symbol, 44–45
plane and impedance, 398–399
reference node, 268

H

half-adder, 14
half-duplex, 113, 217
half-power point,

see

 filter, cutoff frequency
handshaking, 99–100

four-corner method, 236
RS-232, 104
XON/XOFF, 100, 107

harmonic frequency, 280
Harvard architecture, 149, 155, 168–169
HDL (hardware description language), 221–226

behavioral and RTL, 222, 228–229
sensitivity list, 224
test bench, 224
Verilog, 222–226
VHDL, 222

header, network, 111, 194
heat sink, 375–376, 382
HEC (header error check), 209
henry,

see

 inductor
hertz, 24
hexadecimal, base-16, 11
hold time, flip-flop,

see

 flip-flop
hub, star network, 110–111, 217
hysteresis, 335

I

I/O (input/output), 56
bus expansion, 70–72
direct memory access, 68–69
FPGA structure, 261–263
interaction with cache, 155
pads and die size, 250–251
performance, 171–172

PLD, 253–254
timing in FPGA, 261
voltage in PLD, 257

I

2

C (inter-IC bus), 119–120
IBM, 71, 134
IC (integrated circuit), 35
IEEE (Institute of Electrical and Electronics Engineers)

1149.1,

see

 JTAG
802.3,

see

 Ethernet
Ethernet MAC addresses, 194
floating-point, 165–167

immediate addressing, 74
impedance

capacitor, 274, 411
defined, 274
inductor, 276, 417
logic driver output, 407
match with transformer, 291
obtaining magnitude, 282–283
PCB, 400–402
power distribution, 393
transmission line, 398, 400–402

implied addressing, 73
index register, 75
indexed addressing, 75
indirect addressing, 74–75
inductor

description, 276
ESD handling, 417
filter, 285–286
noise filtering, 276–277
nonideal model, 278
switching regulator, 386–387
transformer, 288–291

ingot, semiconductor, 36
Innoveda, 409, 436
instruction

basic types, 58
CISC and RISC, 145–149
decoding, 59, 146–148
defined, 56
reordering, 164
set, 56, 169

Intel, 39, 83, 121, 125–126, 134, 199, 216
interrupt

computer design example, 66–67
defined, 62
instruction, 123, 136
logic design example, 232–233

-Balch.book Page 451 Thursday, May 15, 2003 3:46 PM

452 Index

masking, 62–63
nonmaskable, 62
return-from instruction, 62
sharing memory, 93–94
source and priority, 62
UART, 100
vector, 62, 123, 136, 142

Intersil, 346
inversion,

see

 compliment, logical
IP (Internet Protocol), 194–195
ISA (Industry Standard Architecture) bus, 71
ISR (interrupt service routine)

defined, 62
serial communications, 66–67

ITU (International Telecommunication Union), 210

J

JEDEC (Joint Electron Device Engineering Council),
78–79

joule,

see

 energy
JTAG (Joint Test Action Group), 431–433

BSDL (boundary scan description language), 433
signals, 432

JTAG Technologies, 433
jumbo frame,

see

 Ethernet
junction temperature, 378–379

K

Karnaugh map (K-map), 8–10
kernel, of OS, 139–140, 158–160

L

Lambda, 390
LSI (large-scale integration), 39
laser, 198
last-in-first-out,

see

 stack
latch

address, in 8051, 126–127
avoidance in HDL, 229
creation in HDL, 229–230
defined, 21
in SRAM, 86

Lattice Semiconductor, 252, 254, 255, 258
lead frame, 39
LSB (least-significant bit), 12
LED,

see

 diode
LFSR (linear feedback shift register), 200, 209–210
linear regulator,

see

 voltage regulator
Linear Technology, 107, 384, 388, 417

little-endian, 137, 212
locality

caching, 150–151
virtual memory, 160

logic
7400 family, 42
graphical representation, 6
symbolic representation, 5–6

logic analyzer, 430–431, 442
logic cell,

see

 FPGA
logic probe, 441
logic synthesis, 223–224, 226, 232
lookup table, 188

FPGA, 257–258
loop analysis, 268–270

M

MAC,

see

 Ethernet
macrocell,

see

 PLD
magnetic

crosstalk and EMI, 408–412
inductor, 276

magnitude
binary, 13
frequency, 24
time, 24

mantissa, floating-point, 165
mask

instruction, 133
interrupt, 62–63, 232
photolithography, 36

Maxim, 106, 384, 388, 417
memory

aliasing, 65
architectural planning, 92
bandwidth and RISC microprocessor, 148–149
burst transactions to cache, 156
bus expansion, 70–71
cache, 150
CAM, 189–191
CS*,

see

 chip select
diagnostic testing, 433–434
DMA, 68–69
DRAM, 88–92
dynamic, 78
EEPROM, 85–86
EPROM, 79
FIFO, 94–96
flash, 81–85

-Balch.book Page 452 Thursday, May 15, 2003 3:46 PM

Index 453

general structure, 78
in a computer, 56
JEDEC standards, 78–79
location relative to cache, 150
lookup table, 188
microprocessor performance gap, 149
multiport, 92–94
OE*,

see

 output enable
PROM, 79
protection in multitasking environment, 158–159
SDRAM, 173–179
SRAM, 86–88
SSRAM, 182–185
static, 78
system performance, 170–171
types, 77–78
WE*,

see

 write enable
Mentor Graphics, 409, 436
mesh network topology, 110
metal

chassis, 413
deposition, 36
layers of an IC, 36
PCB, 393

metastability,

see

 flip-flop
Microchip Technology, 86, 131, 149
microcontroller, 88, 119, 122, 232

8051 and 8048, 125–126
PIC, 131–134

Micron Technology, 176, 183
micron, unit of measure, 35
microprocessor

6800, 122–125
68000, 139–142, 146–147
8086, 134–138
addressing modes, 73–75
bandwidth improved by cache, 155
basic composition, 58–59, 61
bus, 57
bus expansion, 70–72, 229
bus fault, 141
bus FSM design example, 239, 241–242
bus interface design example, 227–229
cache, 150
CISC and RISC, 145–149
clock distribution design example, 361, 363
core clock synthesis, 364
debugging, 430
DSP, 167–169

Harvard architecture, 149
in a computer, 56
instruction prefetch, 164
interface to EPROM, 80–81
memory performance gap, 149
memory read, 65–66
memory write, 66–67, 90
performance metric, 169–170
pipelining, 162–163
reset circuit, 428–429
shared memory, 93–94
superscalar, 163–164
support logic, 227

MIPS microprocessor, 148
MMU (memory management unit), 158–161
mnemonic, 72
Model Technology, 224
modem, 104, 108–109
modulation, 108–109
Moore’s Law, 39
MOS (metal oxide semiconductor), 37, 306
MOSFET,

see

 transistor
Motorola, 119, 122–125, 139, 146–147, 167

6800 assembly language, 73–75
MPLS (multiprotocol label switching), 217
MSB (most-significant bit), 12
MSI (medium-scale integration), 39
multi
multicast address, 112
multiplexer

defined, 28
register read logic, 230–231
creating a FIFO with, 94–95
defined, 93

multitasking, 139
mutual inductance,

see

 transformer

N

National Semiconductor, 107, 346, 384, 388
negative number,

see

 two’s compliment
netlist, 436

HDL synthesis, 223
PLD, 254, 256
schematic capture, 436

network
access sharing, 111–112
addressing, 111–112
arbitration, 112
collision detection, 113

-Balch.book Page 453 Thursday, May 15, 2003 3:46 PM

454 Index

data format, 111–112
defined, 110
Ethernet,

see

 Ethernet
layers, 193
router, 195
RS-485 design example, 114–117

network layer, 194–195
nibble, 12
NIC, 389
Nichicon, 389
NMOS

EPROM, 80
semiconductor process, 38, 306

node analysis, 271
noise

filter types,

see

 filter
reduction with capacitor, 275
reduction with inductor, 276–277

nonmaskable interrupt,

see

 interrupt
nonvolatile memory, 57, 77–78, 82
notch filter,

see

 filter
N-type silicon, 34
null-modem,

see

 RS-232
Nyquist frequency,

see

 sampling

O

octal, base-8, 13
octet,

see

 byte
OE (output enable) signal, 64, 80–81, 87, 89–90
ohm,

see

 resistor
Ohm’s law, 267
one-hot FSM,

see

 FSM
one’s complement, 16, 208
op-amp/operational amplifier

active filters, 331–333
analog summation, 328–330
bandwidth, 324–325
biased inverting circuit, 315–316
closed loop circuit, 312
CMRR, 321–323
comparator, 333–338
data sheet, 316–317
difference amplifier, 330–331
finite gain impact, 314
full-power bandwidth, 324
gain-bandwidth product, 324
high input resistance circuits, 326–328
hysteresis, 335
ideal model, 311–312

input bias current, 319–320
input offset voltage, 316, 318
input resistance, 325–328
inverting topology, 315–316
nonideal characteristics, 316–325
noninverting gain, 312–313
PSRR, 318
real open-loop gain, 316
slew rate, 325
unity gain buffer, 314
unity-gain bandwidth, 324
virtual short circuit, 315

opcode
assembly language, 72–75
defined, 58

OSI (Open System Interconnection), 193–194
open-collector/drain driver, 119
OrCAD, 436
OS (operating system)

cache, 155
multitasking, 158–159
page table, 160
supervisor and user modes, 139

oscillator,

see

 clock
oscilloscope

microprocessor debugging, 430
types, 441
uses, 279, 281

OTP EPROM,

see

 EPROM
overflow,

see

 FIFO

P

package
diode, 378
IC types, 38–41
manufacturing capability, 421
thermal resistance, 375
voltage regulator, 383

packet, network, 188–189
defined, 111
format, 111
length count versus framing, 115–116
network design example, 115–116

switching, 218
page table,

see

 virtual memory
page-mode transaction,

see

 DRAM, FPM
paging

address banking,

see

 address banking
virtual memory, 158–160

-Balch.book Page 454 Thursday, May 15, 2003 3:46 PM

Index 455

PAL (programmable array logic), 252
Panasonic, 389
parasitic electrical properties, 277–279
parity, 99, 101, 116–117
partitioning of logic, 243
pass band,

see

 filter
passive filter,

see

 filter
payload, network, 111, 194
PC (program counter)

branching,

see

 branch instruction
defined, 59
interrupt, 62
relative addressing, 74

PCB (printed circuit board)
assembly, 422–423
construction, 422
controlled impedance, 400–402
design software, 422
ESD handling, 416
fiberglass construction, 401
keep-out, 423–424
moat, 412
plane splits, 412
power distribution, 393–395
power planes, 393–395
reflow assembly process, 423
trace geometries, 401–402
trace parallelism, 409
transmission line topologies, 400–401
via, 402, 410–411
wave soldering, 423

PCI (peripheral component interconnect) bus, 72
PGA (pin grid array), 40
Philips, 119, 417
photolithography, 36
photoresist, 36
physical layer, 194
piezoelectric property, 356
pipelining, 162–163, 245–247
plastic leaded chip carrier (PLCC), 40, 80
PLD (programmable logic device)

CPLD, 255–257
defined, 222
development tools, 421
fitting software, 254, 256–257
fuse-based, 252
GAL and PAL, 252–254
I/O, 257
macrocell, 253–254

product term sharing, 256
sum of products, 252
synthesis library, 223
timing, 254
versus ASIC, 249–251
versus FPGA, 257–258

PLL (phase locked loop), 199
FPGA, 259–260
frequency synthesis, 364–365
jitter sensitivity, 364
operation, 362
VCO, 362
versus DLL, 366–367
zero-delay clock distribution, 362–363

PMC-Sierra, 199
PMOS semiconductor process, 38, 306
pop, stack,

see

 stack
posted write, 72
power

backup using diode, 297–298
decibel, 281–282
defined, 268
dissipation,

see thermal analysis
distribution, 275, 289, 389–395
electrical integrity, 393–395
rectification, 296–297
regulation, see voltage regulator
safety, 389–390

preamble, Ethernet, see Ethernet
prescaler, 232, 234
product term, 9

sharing in PLD, 256
program memory, 56
programs, 56
PROM (programmable ROM), 79
propagation

electrical signals on wire, 359
in timing analysis, 24–25
part-to-part variation, 360

protocol, network, 111, 112, 194
error handling, 207
stack, 193–194

PSK (phase shift keying), 109
P-type silicon, 34
push, stack, see stack

Q

QAM (quadrature amplitude modulation), 109
quantization, 341

-Balch.book Page 455 Thursday, May 15, 2003 3:46 PM

456 Index

quartz
crystal, see clock
window on EPROM, 80

QuickLogic, 258

R

radian frequency, 274–275
RAM (random access memory)

computer design example, 64
defined, 57
FPGA, 258, 260–261

RAS (row address strobe), see DRAM
RC circuit, 272–273
reactance, see capacitor
recommended operating conditions, 50
rectifier, see diode
reference designator, 44
reflection coefficient, see transmission line
refresh, DRAM, see DRAM
register

defined, 30
within microprocessor, 59

relative addressing, 74
reliability testing, 435
repeater, 114
reset

button debounce, 429
computer design example, 67
control path logic, 50
microprocessor, 62
power-on circuit, 132, 428–429
vector, 62

resistor, 267
filter, 283–285
nonideal model, 277
pull-down and pull-up, 298
series and parallel combination, 271–272

return current, see signal integrity
ring network topology, 110–111
ripple counter, 19–21
RISC (reduced instruction set computing), 145,

148–149, 162
MIPS microprocessor, 148
PIC microcontroller, 131

rising-edge triggered, flip-flop, see flip-flop
ROM (read only memory)

computer design example, 64
defined, 57
full-custom mask, 79

router, network, 195
routing, see FPGA
RS-232, 102–107

bit-rate generator in 8051, 130
breakout box, 104–105
DCE/DTE, 104
null-modem connection, 104
signals, 105
versus RS-422, 107
voltage levels, 106

RS-422, 107–108
RS-485, 112–114

distance limitation, 113
network design example, 114–117

RTL HDL design, see HDL

S

sampling, 341–344
Nyquist frequency, 343, 350–351

Sanyo, 389
schematic diagram

CAD, 436
defined, 6
LED driver, 45
ripple counter, 20
serial receive logic, 49

Schmitt trigger, 338, 429
Schottky diode, see diode
scrambling, 200–202
SDRAM (synchronous DRAM)

asynchronous timing requirements, 179
auto-precharge (AP), 176
back-to-back transactions, 178
burst termination, 178
CAS latency, 176, 181
data mask, 175, 177, 180
DDR, 179–182
DDR source-synchronous interface, 181
internal structure, 174
mode register, 177
precharge, 175–176
read command, 176–177, 181–182
refresh, 179
row activation, 175
synchronous command interface, 174–175
write command, 177–178, 182

search engine, see CAM
segmented memory, 134–136
selector, see multiplexer

-Balch.book Page 456 Thursday, May 15, 2003 3:46 PM

Index 457

semiconductor, 33, 293
junction temperature, 375

Semtech, 417
serdes, 199–203
serial communications

computer design example, 64–65
defined, 98
interrupt handling, 66–67
logic design example, 45–50
short distance, 118–120

setup time, flip-flop, see flip-flop
seven-segment display, 43
shift register

defined, 30–31
in serial communications, 47
JTAG, 431–432

signal integrity
clock distribution, 358–359
crosstalk, 408
EMC, 413
EMI, 410–412
reflections, 398–400
return current, 402, 410–413
transmission line delay threshold, 359
transmission line, see transmission line

significand, floating-point, 165
silicon, 34
silicon dioxide, 306
sine wave, see frequency domain analysis
skin effect, 393
SMT (surface mount technology), 423
socket number, 196
SOIC (small outline integrated circuit), 40
software

address banking, 67–68
analogy to finite state machine, 237
assembly language, 72–76
CAD, see CAD
CAM management, 189–191
defined, 56
development tools, 421
diagnostic, 433–435
handshaking, 100, 104, 107
interaction with network hardware, 111
interrupt handling, 62–63
interrupt instruction, 123, 136
interrupt versus polling, 66–67
locality and caching, 150–151
mask-ROM, 79

memory access patterns, 90–91
memory aliasing, 65
network design example, 117
networking, 195
page table management, 160
subroutine, see subroutine
virtual memory, 160–161
volatile variables and cache, 156
watchdog timer operation, 132

solder
breadboard circuit assembly, 425–426
reflow assembly process, 423
wave assembly process, 423

source, FET, see transistor
source-synchronous, 181

disadvantage, 369
timing analysis, 368–369

SP (stack pointer)
defined, 60
supervisor and user modes, 139

SPI (serial peripheral interface), 119–120
spectrum analyzer, 281
speculative execution, 164
Spice, 436–440

filter simulation, 437–438
transmission line simulation, 438–440

SRAM (static RAM)
asynchronous, 86–88
bit structure, 86
cache, 150
defined, 78
linked to CAM, 190
performance versus DRAM, 149
synchronous, see SSRAM

SSRAM (synchronous SRAM)
burst counter, 184
DDR burst length, 185
DDR interface, 185–187
flow-through, 183
pipelined, 183
QDR, 187–188
synchronous interface, 183–184
ZBT, 184

SSI (small-scale integration), 39
stack

defined, 60
interrupt, 62
push and pop, 60–61
usage, 61

-Balch.book Page 457 Thursday, May 15, 2003 3:46 PM

458 Index

star network topology, 110–111, 217
start bit, 45–47, 99, 101, 99
state, 18
state machine, see FSM
static electricity, 309
status flags

ALU, 59
subroutine call, 60

stepper, see photolithography
sticky status bit, 232–233
stop band, see filter
stop bit, 99, 101
subnet, 195
subroutine

assembly language, 73
defined, 60
return-from, 60

sum of products, 9
PLD, 252

superpipelining, see pipelining
superposition principle, 329
superscalar architecture, 163–164
switch, network, 194, 218
Sylvania, 42
synchronizing across clock domains, see clock
synchronous

FIFO interface, 95
inputs to flip-flops, 19
logic, defined, 21–22
reset using Verilog, 226
SDRAM interface, 174–175
source-synchronous, see source-synchronous
timing analysis, 23–25

Synopsys, 224, 244
Synplicity, 244
synthesis, see logic synthesis

T

TCP (transmission control protocol), 195–196
termination, see transmission line
test

design for, 430
equipment, 440–442

test bench, see HDL
Texas Instruments, 42, 107, 167, 199, 252, 326, 346,

358, 366, 384, 388
thermal analysis, 374–376

derating for temperature, 376
discrete current regulator, 380–382

discrete series regulator, 380–382
junction temperature, 375
power dissipation, 268, 295, 300, 375–376, 378–379
shunt regulator, 378–379
thermal resistance, 375, 380

timeout, 117, 132
timer, 129–130

logic design example, 232, 234
multitasking, 158
prescaler, 232, 234
watchdog, 132

timing analysis, 23–25
clock domain crossing, 233–235
clock skew and jitter, 25–27
high speed example, 368

timing diagram, 19
microprocessor read, 66
microprocessor write, 66

TLB (translation lookaside buffer), 161
totem pole output stage, see TTL
trailer, network, 111, 194
transducer, 98
transformer

common mode filter, 290
defined, 288
impedance matching, 291
placed after rectifier, 297
power distribution, 289

transistor, 33
BJT (bipolar junction transistor), 34
BJT beta constant, 300
BJT digital amplifier, 301–303
BJT logic functions, 304–305
BJT operation, 300–301
current regulator, 381
Darlington pair, 303–304
DRAM cell, 88
EPROM bit structure, 79
FET (field effect transistor), 34
FET and static electricity, 309
FET digital amplifier, 308
FET operation, 306–307
FET parasitic properties, 308
FET power applications, 309
FET, depletion-type, 309
flash bit structure, 81
JFET (junction FET), 309
power dissipation, 300, 303
series voltage regulator, 379–382

-Balch.book Page 458 Thursday, May 15, 2003 3:46 PM

Index 459

SRAM cell, 86
switching regulator, 386–387

transmission line, see signal integrity
AC termination, 405–406
characteristic impedance, 398
defined, 398
graphical representation, 403
model, 398
parallel termination, 403–404
PCB topologies, 400–401
reflection coefficient, 399
reflections, 406–407
RS-422, 107–108
series/source termination, 358–359, 406–407
Spice simulation, 438–440
termination, 358–359, 403–407
Thevenin (split) termination, 405
versus wire, 403

transport layer, 194–195
tri-state buffer, 229

bus expansion, 71
defined, 29
memory and microprocessor usage, 65
versus open-collector, 119

truth table, 4
TTL (transistor–transistor logic), 50, 299, 304–305

totem-pole output, 305
twisted pair, 197
two’s complement, 16–17

U

UART (universal asynchronous receiver/transmitter)
data buffer, 100
defined, 99
general structure, 100
handshaking, 99–100
versus serdes, 199

unary operator, 4
underflow, see FIFO
Underwriters Laboratories, 390
unicast address, 112
UNIX, 158
unsigned arithmetic, 14–16
unused logic gates in schematic diagram, 44–45
user datagram protocol (UDP), 196
UV (ultraviolet) light

EPROM erasure, 79–80
photolithography, 36

V

VCC, 44–45, 306
VCO, 362
Vectron International, 357
VEE, 306
Verilog, 222–226

? operator, 232
address decoding logic, 227–228
always block, 224
bidirectional signals, 232
blocking and non-blocking assignment, 225
case, 228–229, 244
constants, 225
continuous assignment, 224
CPU support logic, 227–233
default case, 230–231, 239
finite state machine design, 239–241
flip-flop, 225–226
inout, 232
interrupt logic, 232–233
latch avoidance, 229
pipelined FSM design example, 245–247
posedge and negedge, 225–226
reg, 222–223, 229
sensitivity list, 224
timer design, 232, 234
wire, 222–223

VHDL, 222
via, see PCB
Vicor, 388
virtual memory

conceptual cache, 160
defined, 158
MMU, 158–161
page table, 160
TLB, 161
working set of memory, 160

Vishay, 389
Vitesse, 199
VLAN (virtual LAN), 217
VLSI (very-large-scale integration), 39
volatile memory, 57, 77–78, 86
voltage

adjustable linear regulator, 384–385
characteristics, 373–374
description, 372
diode shunt, 377–379
discrete series regulator, 379–382
dropout voltage, 373

-Balch.book Page 459 Thursday, May 15, 2003 3:46 PM

460 Index

integrated linear regulator, 382–386
LDO, 384
reducing power dissipation with resistor, 385–386

regulator, 297
ripple, 388
ripple rejection, 374
switching type, 386–388
thermal analysis, see thermal analysis
defined, 267
reference, 295, 372–373, 379
ripple, 372

von Neumann architecture, 149

W

wafer, semiconductor, 36
wait state, 71, 125
Watt, see power
winding, transformer, see transformer

wire
delay matching in clock distribution, 358
gauge and resistance, 391
inductance, 276
propagation delay, 359
proximity and crosstalk, 408–409
transmission line, see transmission line

wire-wrap circuit assembly, 427–428
write enable (WE) signal, 65, 71, 87, 90

X

Xerox, 216
Xilinx, 255, 258
XON/XOFF, see handshaking

Y

Zener voltage, see diode
Zilog, 122

-Balch.book Page 460 Thursday, May 15, 2003 3:46 PM

	COMPLETE
DIGITAL DESIGN
	COMPLETE
DIGITAL DESIGN
	Copyright
	CONTENTS
	PREFACE
	ACKNOWLEDGMENTS
	ABOUT THE AUTHOR

	PART 1 Digital Fundamentals
	Chapter 1 Digital Logic
	1.1 BOOLEAN LOGIC
	1.2 BOOLEAN MANIPULATION
	1.3 THE KARNAUGH MAP
	1.4 BINARY AND HEXADECIMAL NUMBERING
	1.5 BINARY ADDITION
	1.6 SUBTRACTION AND NEGATIVE NUMBERS
	1.7 MULTIPLICATION AND DIVISION
	1.8FLIP- FLOPS AND LATCHES
	1.9 SYNCHRONOUS LOGIC
	1.10 SYNCHRONOUS TIMING ANALYSIS
	1.11 CLOCK SKEW
	1.12 CLOCK JITTER
	1.13 DERIVED LOGICAL BUILDING BLOCKS

	Chapter 2 Integrated Circuits and the 7400 Logic Families
	2.1 THE INTEGRATED CIRCUIT
	2.2 IC PACKAGING
	2.3 THE 7400- SERIES DISCRETE LOGIC FAMILY
	2.4 APPLYING THE 7400 FAMILY TO LOGIC DESIGN
	2.5 SYNCHRONOUS LOGIC DESIGN WITH THE 7400 FAMILY
	2.6 COMMON VARIANTS OF THE 7400 FAMILY
	2.7 INTERPRETING A DIGITAL IC DATA SHEET

	Chapter 3 Basic Computer Architecture
	3.1 THE DIGITAL COMPUTER
	3.2 MICROPROCESSOR INTERNALS
	3.3 SUBROUTINES AND THE STACK
	3.4 RESET AND INTERRUPTS
	3.5 IMPLEMENTATION OF AN EIGHT- BIT COMPUTER
	3.6 ADDRESS BANKING
	3.7 DIRECT MEMORY ACCESS
	3.8EXTENDING THE MICROPROCESSOR BUS
	3.9 ASSEMBLY LANGUAGE AND ADDRESSING MODES

	Chapter 4 Memory
	4.1 MEMORY CLASSIFICATIONS
	4.2 EPROM
	4.3 FLASH MEMORY
	4.4 EEPROM
	4.5 ASYNCHRONOUS SRAM
	4.6 ASYNCHRONOUS DRAM
	4.7 MULTIPORT MEMORY
	4.8THE FIFO

	Chapter 5 Serial Communications
	5.1 SERIAL VS. PARALLEL COMMUNICATION
	5.2 THE UART
	5.3 ASCII DATA REPRESENTATION
	5.4 RS- 232
	5.5 RS- 422
	5.6 MODEMS AND BAUD RATE
	5.7 NETWORK TOPOLOGIES
	5.8NETWORK DATA FORMATS
	5.9 RS- 485
	5.10 A SIMPLE RS- 485 NETWORK
	5.11 INTERCHIP SERIAL COMMUNICATIONS

	Chapter 6 Instructive Microprocessors and Microcomputer Elements
	6.1 EVOLUTION
	6.2 MOTOROLA 6800 EIGHT- BIT MICROPROCESSOR FAMILY
	6.3 INTEL 8051 MICROCONTROLLER FAMILY
	6.4 MICROCHIP PIC MICROCONTROLLER FAMILY
	6.5 INTEL 8086 16- BIT MICROPROCESSOR FAMILY
	6.6 MOTOROLA 68000 16/ 32- BIT MICROPROCESSOR FAMILY

	PART 2 Advanced Digital Systems
	Chapter 7 Advanced Microprocessor Concepts
	7.1 RISC AND CISC
	7.2 CACHE STRUCTURES
	7.3 CACHES IN PRACTICE
	7.4 VIRTUAL MEMORY AND THE MMU
	7.5 SUPERPIPELINED AND SUPERSCALAR ARCHITECTURES
	7.6 FLOATING- POINT ARITHMETIC
	7.7 DIGITAL SIGNAL PROCESSORS
	7.8PERFORMANCE METRICS

	Chapter 8 High-Performance Memory Technologies
	8.1 SYNCHRONOUS DRAM
	8.2 DOUBLE DATA RATE SDRAM
	8.3 SYNCHRONOUS SRAM
	8.4 DDR AND QDR SRAM
	8.5 CONTENT ADDRESSABLE MEMORY

	Chapter 9 Networking
	9.1 PROTOCOL LAYERS ONE AND TWO
	9.2 PROTOCOL LAYERS THREE AND FOUR
	9.3 PHYSICAL MEDIA
	9.4 CHANNEL CODING
	9.5 8B10B CODING
	9.6 ERROR DETECTION
	9.7 CHECKSUM
	9.8CYCLIC REDUNDANCY CHECK
	9.9 ETHERNET

	Chapter 10 Logic Design and Finite State Machines
	10.1 HARDWARE DESCRIPTION LANGUAGES
	10.2 CPU SUPPORT LOGIC
	10.3 CLOCK DOMAIN CROSSING
	10.4 FINITE STATE MACHINES
	10.5 FSM BUS CONTROL
	10.6 FSM OPTIMIZATION
	10.7 PIPELINING

	Chapter 11 Programmable Logic Devices
	11.1 CUSTOM AND PROGRAMMABLE LOGIC
	11.2 GALS AND PALS
	11.3 CPLDS
	11.4 FPGAS

	PART 3 Analog Basics for Digital Systems
	Chapter 12 Electrical Fundamentals
	12.1 BASIC CIRCUITS
	12.2 LOOP AND NODE ANALYSIS
	12.3 RESISTANCE COMBINATION
	12.4 CAPACITORS
	12.5 CAPACITORS AS AC ELEMENTS
	12.6 INDUCTORS
	12.7 NONIDEAL RLC MODELS
	12.8FREQUENCY DOMAIN ANALYSIS
	12.9 LOWPASS AND HIGHPASS FILTERS
	12.10 BANDPASS AND BAND- REJECT FILTERS
	12.11 TRANSFORMERS

	Chapter 13 Diodes and Transistors
	13.1 DIODES
	13.2 POWER CIRCUITS WITH DIODES
	13.3 DIODES IN DIGITAL APPLICATIONS
	13.4 BIPOLAR JUNCTION TRANSISTORS
	13.5 DIGITAL AMPLIFICATION WITH THE BJT
	13.6 LOGIC FUNCTIONS WITH THE BJT
	13.7 FIELD- EFFECT TRANSISTORS
	13.8POWER FETS AND JFET S

	Chapter 14 Operational Amplifiers
	14.1 THE IDEAL OP- AMP
	14.2 CHARACTERISTICS OF REAL OP- AMPS
	14.3 BANDWIDTH LIMITATIONS
	14.4 INPUT RESISTANCE
	14.5 SUMMATION AMPLIFIER CIRCUITS
	14.6 ACTIVE FILTERS
	14.7 COMPARATORS AND HYSTERESIS

	Chapter 15 Analog Interfaces for Digital Systems
	15.1 CONVERSION BETWEEN ANALOG AND DIGITAL DOMAINS
	15.2 SAMPLING RATE AND ALIASING
	15.3 ADC CIRCUITS
	15.4 DAC CIRCUITS
	15.5 FILTERS IN DATA CONVERSION SYSTEMS

	PART 4 Digital System Design in Practice
	Chapter 16 Clock Distribution
	16.1 CRYSTAL OSCILLATORS AND CERAMIC RESONATORS
	16.2 LOW- SKEW CLOCK BUFFERS
	16.3 ZERO- DELAY BUFFERS: THE PLL
	16.4 FREQUENCY SYNTHESIS
	16.5 DELAY- LOCKED LOOPS
	16.6 SOURCE- SYNCHRONOUS CLOCKING

	Chapter 17 Voltage Regulation and Power Distribution
	17.1 VOLTAGE REGULATION BASICS
	17.2 THERMAL ANALYSIS
	17.3 ZENER DIODES AND SHUNT REGULATORS
	17.4 TRANSISTORS AND DISCRETE SERIES REGULATORS
	17.5 LINEAR REGULATORS
	17.6 SWITCHING REGULATORS
	17.7 POWER DISTRIBUTION
	17.8ELECTRICAL INTEGRITY

	Chapter 18 Signal Integrity
	18.1 TRANSMISSION LINES
	18.2 TERMINATION
	18.3 CROSSTALK
	18.4 ELECTROMAGNETIC INTERFERENCE
	18.5 GROUNDING AND ELECTROMAGNETIC COMPATIBILITY
	18.6 ELECTROSTATIC DISCHARGE

	Chapter 19 Designing for Success
	19.1 PRACTICAL TECHNOLOGIES
	19.2 PRINTED CIRCUIT BOARDS
	19.3 MANUALLY WIRED CIRCUITS
	19.4 MICROPROCESSOR RESET
	19.5 DESIGN FOR DEBUG
	19.6 BOUNDARY SCAN
	19.7 DIAGNOSTIC SOFTWARE
	19.8SCHEMATIC CAPTURE AND SPICE
	19.9 TEST EQUIPMENT

	Appendix A Further Education

	INDEX

