BY SHELLEY GRETLEIN < NATIONAL INSTRUMENTS

Designing embedded-
system applications

with

"’1&""0 meet time-to-market and productivity pres-
- sures, embedded-system developers increasingly
consider and use high-level design-software tools
that provide more abstraction, simpler repre-
sentations of programming constructs, and au-
tomatic code generation. Embedded systems are
generally restrictive, requiring a focus on execution speed,
execution reliability, determinism, power consumption, and
memory usage. To realize the promise of higher-level design
software such as UML (Unified Modeling Language), Na-
tional Instruments LabView, and frameworks such as Eclipse,
designers must continue to pay attention to the challenges as-
sociated with embedded-system development. These higher-
level design tools do not program themselves, and designers
must continue to make trade-offs among factors including
performance, memory usage, and power consumption. As
a designer, you should evaluate the following development
areas when using high-level design tools: memory usage and
management, programming structures within embedded-sys-
tem applications, processor-intensive calculations, and hybrid
development—combining low- and high-level languages.

=

=—=w=— 3%

MEMORY MANAGEMENT

Applications that run solely on Windows rarely have to
consider memory usage or management because Windows can
access large amounts of virtual memory. However, an embed-
ded-system application running on an RTOS (real-time oper-
ating system) does not use virtual memory because doing so
hinders determinism. Also, when you restart an application in
Windows, you “wipe clean” the application’s memory, but in
the RTOS, embedded-system applications start when you reset
the real-time device and stop when you turn it off. Therefore,
you should design your deterministic applications to be mem-
ory-conscious. For example, always preallocate space for your
arrays equal to the largest array size that you will encounter
(see sidebar “Data types and variables”).

Proper memory allocation is a big part of efficiently pro-
gramming embedded-system applications. In general, dy-
namic-memory allocation is an expensive operation that you
should avoid. With dynamic-memory allocation, you can cre-

high-level tools

ate data types and structures of any size and length to suit
your program’s needs. Dynamic-memory allocation differs
from automatic or static-memory allocation and creates an
object that remains allocated until the programmer or a gar-
bage collector explicitly deallocates it.

RECOMMENDED
=¥
PREALLOCATING
ARRAY USING
A CONSTANT REPLACE ARRAY SUBSET
.5 A
el |
= |
a
ey
INew Data

NOT RECOMMENDED

DYNAMIC-MEMOQRY ALLOCATION
USING BUILD-ARRAY FUNCTION

-
Iew Data

' Dynamic-mermory allocation is expensive in lime-critical
code. It is especially detrimental if dynamic allocation ocours
inside a loop to store data in arrays. A common way to avoid
dynamically aliocating memary in a loop is to preallocate the
memary for any arrays before the loop starts execution,

JULY 10, 2008 | EDN 67

In general, dynamic-memory management is an important
aspect of modern software-engineering techniques. However,
real-time-system developers avoid using it because they fear
that the worst-case execution time of the dynamic-memory-
allocation routines is not bounded or has an excessively large
bound. The following section highlights two examples—in C
and in a higher-level graphical language, such as LabView.

In C, programmers most commonly use the function “mal-
loc” to attempt to “grab” a continuous portion of memory and
define it by: void *malloc(size_t number_of_bytes). Therefore,
the function returns a pointer of type void * that is the start in
memory of the reserved portion of sizeof() number_of_bytes. If
the system cannot allocate memory, it returns a NULL pointer.
Because it returns a void ¥, the C standard states that you can
convert this pointer to any type. The size_t argument type is
defined in stdlib.h and is an unsigned type.

Therefore, char *cp; cp=malloc(100) attempts to get 100
bytes and assigns the start address to cp. Also, it is common
to use the sizeof() function to specify the number of bytes: int
*ip; ip=(int *) malloc(100%sizeof(int)).

Some C compilers may require you to cast the type of con-
version. The (int *) defines coercion to an integer pointer.
Coercion to the correct pointer type is crucial to ensure that
you correctly perform pointer arithmertic. It is beneficial to use
sizeof() even if you know the size you want; it makes for de-
vice-independent—that is, portable—code.

In a graphical programming language such as LabView, dy-
namic-memory allocation can occur when using the build-
array and concatenate-string functions. Alternatively, you can
replace the build-array primitive with a replace-array-subset
function to replace elements in a preallocated array. You should
create the prealtlocated array outside the loop by using an array

Desired scaling Bit Actual scaling | Absolute

value Multiplier shift . value | error
W s EssEea] e
0d408 | 78 "o || 04425 0.0003
10 I8 5| 009375 | 000625
10 102 —10 009961 | 0.00039

: ?!I

nl
E =
n
=
==
~r

Designers can use the Embedded LabView FPGA
virtual instrument to scale by a noninteger value,

68 EDN | JULY 10, 2008

ELEVATOR | CONTROL | E| EVATOR CONTROLLER | CONTROL| pOOR
COMMUNICATE WITH
BUTTON
ELEVATOR BUTTON FLOOR BUTTON

UML case diagrams show the static structure of an
abject, the internal structure, and relationships.

constant or the initialize-array function. See the LabView code
in Figure 1, which compares the implementations.

EMBEDDED-PROGRAMMING STRUCTURES

Engineers commonly use programming structures, such as for
loops, while loops, and others, and case structures in desktop
applications, but you should also review and optimize these
structures for embedded-system applications. Each structure has
its own use. At a simple level, if you know how many times you
need to loop, then use a for loop. If you want to loop until the
system meets a certain condition, then use a while loop. How-
ever, note that, whatever you can do with a for loop, you can do
with a while loop; the number of loops can also be a condition.
And, although you can use a while loop for anything a for loop
can do, it’s often recommended to use for loops instead of while
loops because for loops have memory optimizations such that,
if you know the number of iterations, you could preallocate the
array. For embedded-system applications, there are a few more
cases to avoid or consider when using programming structures.

Depending on the compiler, a constant inside a loop can
cause each loop iteration to make a copy of that data, resulting
in increased execution time and memory usage. You can avoid
this situation either by moving the constant outside the loop
or by using local variables to pass data into the loop. Therefore,
avoid placing large constants inside loops. When you place a
large constant inside 2 loop, the system allocates memory and
initializes the array at the beginning of each loop iteration.
This operation can be expensive in time-critical code. A better
way to access the data is to place the array outside the loop and
wire it through a loop tunnel, or you can use a global variable.

For simple decision-making, it is often faster to use the select
function instead of a case structure. Because each case in a case
structure can contain its own block diagram, there is signifi-
cantly more overhead associated with this structure than with
a select function. However, it is sometimes more optimal to
use a case structure if one case executes a large amount of code
and the other cases execute little code (Figure 2). You should
decide whether to use a select function versus a case structure
on a case-by-case basis.

Structs in C and clusters in LabView are usefu} for bundling
heterogeneous data into manageable packages. However, in-
formation about the contents must also propagate with that
data. Especially when passing data to subfunctions, individual

*Over 2500 Std.
DC-DC Converters
*Surface Mount
*From 2V to
10,000 VDC Output
*1-300 Watt Modules
*|solated/Regulated/
Programmable Models
Available
*Military Upgrades Available
*Custom Models,

Consult Factory

. edlate'y
a log ! i 5.00
See full o electr nic
or
Englneenng
' E Assistance
Call Factory

or send direct

for FREE PICO Catalog

Call toll free 800-431-1064

in NY call 914-738-1400

Fax 914-738-8225

P I C 0 Electronics,inc.
143 Sparks Ave. Petham, N.Y. 10803-18889

INDUSTRIAL * COTS » MILITARY

70 EDN | JULY 10, 2008

1 L "; iacquire Signal.vi
4] | B :

1

|

E HathScript Hode.vi B|ork Diagram
Ede E&. bew Praject Qperate Took ‘eindow He-iu

1 e[Eeme)E .

Original Signal (w/ Noise) —» |

£ ~— Smoothened Signal

iSmoothening Factor

F = fFt2{sig;

Driginal Signal {w/Noise

Lo —————F T
h.

oise amplitude

max_val = Fi{i);

| % Recomstruct
new = fft2(F);

H7.0 Perfcem Ft 1o tresk dovn cmwnts

| F % Gat matrh &5 one big cobenn, sorted in reverse arder
Fio=F);
F1 = sort{abs{F1));

| 2 Get minx mcex of slermart ba use For threshaldng
| §=cedip * lergthlF1));

% Get tha valus of the max eleinent to aliow

% Thrashald the values
CF =F.* (abs(F} > max_val);

|| Gmonthened Signal
LE ;—@

{Time Delay]

(E]
B @

Graphical programming allows you to combine textual m-file-based mathemat-
ics plus C, assembly, or VHDL code into your designs.

elements rather than structs or clusters
usually increase the speed of your appli-
cations. Use them to avoid passing un-
necessary data-type information to the
subfunction. The performance of passing
a cluster or struct depends a lot on how
you pass the information. For example,
in C, you could pass the structure “in
place”—that is, by pointer—and get
good performance, possibly better than
passing the individual elements, depend-
ing on the use case.

PROCESSOR-INTENSIVE MATH

You also have to consider the types
of calculations you are performing to
optimize your application. Some calcu-
lations, for example, are “processor-in-
tensive” tasks. In general, a processor-
intensive task is any task that is limited
by how fast the processor can compute
the data. Video encoding is an example
of a processor-intensive application; [/O-
bound tasks are more memory-intensive.

A more common way to optimize an
application is through its calculations.
A binary shift is one such optimization
technique. In C programming, the oper-
ators for binary shifting are << and >>.
Shifting to the left causes numbers to
multiply by the power of two that you
shifted them. Shifting to the right is
identical, except it divides by the power
of two.

For example, suppose you want to plot
a pixel in VGA mode 13h by copying

the color to the screen offset x+yx320.
Because 320 is the same as 64+256, you
can use screenf((y<<8)+(y<<6))+x]=
colorinstead of screen[y X 320+x]=color.
This approach is much faster than multi-
plication, a complex operation, because
binary shifts are simple operations. Han-
dling scaling in the LabView FPGA ool
is similar: Just use a multiply function
and then a scale-by-power-of-two func-
tion. First, multiply the input value by a
known integer, generating a larger inter-
mediate result. Shifting the intermediate
result to the left (scale-by-power-of-two
function with a negative n value) is ef-
fectively a division by a power of two.
Combining the multiplication and divi-
sion gives the effective scaling or multi-
plication of the input value by a nonin-
teger value. Figure 3 shows an example
of this scaling implementation. You can
further optimize the code by replacing
the bit-shift control with a constant.

As part of these calculations, it is im-
portant to make sure that the intermedi-
ate result of the multiplication fits into
the data type you are using. With the
saturation-multiply function, you can
multiply two 16-bit integers, generate a
32-bit value, and know that the result
fits into the 32-bit integer. If the final
result needs to be a 16-bit integer, then
the scale-by-power-of-two function must
shift the intermediate product back into
the 16-bit range with the coerce func-
tion (Figure 3). The integer multiplier

nd bit-shift value determine

) AT EDN.COM (>

results in an effective scal-

he noninteger-scaling value
5y which you are multiply-

ample, toscale by 1.5, set the
multiplier to 3 and the bit
shift ro —~1. This step leads
to 3/2, which equals 1.5. To

i Go 1o www.edn.
ing the input value. For ex- { com/ms4248 and

, click on Feedback

‘ Loop to post o com-

i ment on this article.

{

1 ing constant of 3/32, which
‘ equals 0.09375, an error of
z 0.00625 from your intended
! value. However, you could
| also use a multiplier of 102
1 and a shift of ~10 (divide by
i 1024), which gives you an

scale by 1/7 (~0.1428), set the multiplier
to 73 and the shift to ~9. This step leads
to 73/512, which equals approximately
0.1425.

Combining a multiplication and a
scale-by-power-of-two function does not
provide an exact result for every non-
integer-scaling value, but it does offer a
good approximation within the limited
resolution of integers. The key is to find
the right combination of multiplier and
bit-shift value. For example, to divide
by 10, you can use a multiplier of 3 and
bit shift of ~5 (divide by 32). Doing so

effective scaling constant of 102/1024,
approximately equal to 0.09961, an error
of 0.00039 from your intended value. In
general, you achieve better results when
you use larger multipliers and bit-shift
values.

As you increase the multiplier, make
sure that you do not exceed the range of
the intermediate-result data type; oth-
erwise, you will saturate this value and
receive an incorrect result. To find the
right multiplier and bit-shift values, it is
often easiest to pick a suitably large bit-
shift value that you base on the output-

DATA TYPES AND VARIABLES

Some environments automatically :
handle data-type conflicts by con-
verting the smaller data type into
the larger one. For example, if a
type conflict exists between an in-
teger and a floating-point number,
your programming language may
convert the integer into a floating-
point number and then perform the °
operation. This conversion is ex- :
pensive and, in many cases, unnec-
essary. In most cases, you can avoid :
casting and coercion by using the
correct data type for each variable. :
However, if the data must be cast
or coerced, it can be more efficient
to convert the data before sending
it to the operation or function.

For this discussion, it is best to
establish some definitions to make
Sure your programmers are speak-
ing the same language. Wikipe-
dia defines a global variable as *“a
variable that does not belong to
any subroutine or class and can be
accessed from anywhere in a pro-
gram! Likewise, a local variable
is “a variable that is given local
scope. Such variables are accessi-
ble only from the function or block
in which [they are] declared?”

in general, you can modify
global variables from anywhere

within the application; however,
using global variables is a poor
programming fechnique. A giobal
variable has unlimited potential

¢ for creating mutual dependencies,

and adding mutual dependen-

‘ cies increases complexity. Another
challenge of using global variables

is their associated complexity with
code reuse because of the interde-

- pendencies.

Local variables, on the other
hand, can have a scope that is de-
clared, written to, and read, usually
with no side effects~except if your
variable data is bound to the user

. interface. For example, with Na-

. tional Instruments’ LabView, every
. time you access a local variable, it
‘ executes extra code to synchronize
. the variable with the user interface

or front panel. You can improve

code performance, in many cases,
~ by using a global variable instead
: of a local variable. The global vari-

able has no extra front-panel syn-

i chronization code. Therefore, glo-

bals of 8 bytes or less are faster

* than local variables. If a global is

. larger than 8 bytes, you cannot ac-
‘ cessit atomically, and it requires a
. mutex, making it slower and mak-
' ing it a shared resource.

PXI
Source
Measure
Unit

{ Masisms Fress
- AOnA »uadraen) bW G
| ot o ¥« 10
Lo
Quadrant It A Quadrant }
Sink A Saurce
LA

Introducing Affordable
Power and Precision in PXI

NI PX1-4130 SMU Features

= 4-quadrant operation up to
+20Vand 2 A

= 1 nA measurement resolutior
= Additional +6 V utility channe

» Compact size —up to 17 SM
channels in a 19 in., 4U spac

ni. comlsmu

800 891 8841

NATIONAL
INSTRUME/

Smarter
Wireless
Design

Get Device Freedom
For Your Real-time
Network Applications

ZigBee® RCM4510W

63,

FCC, IC, CE and
Telec Certified

Rabbit makes it easy
to add wireless capability
to your design.

Get Started Today!

rabbit-wireless-kits.com

RABBIT o™

<5

08034

YOU OFTEN OBTAIN
THE BEST RESULTS BY
USING A HYBRID

OF HIGH- AND LOW-
LEVEL CODE.

value range and data types and then cal-
culate the corresponding multiplier for
your desired scaling value. Also, by using
a constant value for the bit shift, you
use fewer resources on the FPGA when
compiled. Table 1 shows sample scaling
values and the corresponding multiplier
and bit-shift values.

For processors with no floating-point
units, converting to floating point to
perform an operation and then con-
verting back to an integer data type
can be expensive. For example, using
a quotient-and-remainder function is
faster than using a normal divide func-
tion, and using a logical-shift function
is faster than using a scale-by-power-of-
two function.

Integer-math routines available on
fixed-point platforms, such as an FPGA,
make data processing a little more chal-
lenging. You can use integer-math func-
tions to scale or multiply data by whole
integer values. You can use bit shifting
to multiply or divide a value by any
power of two. When you combine these
two operations, you create a simple
method to scale or multiply a value by a
noninteger scaling constant.

A common application of scaling an
input value by a constant is in simulators
of sensors, such as LVDTs (linear-vari-
able-differential transformer) and syn-
chrofresolvers. Each of these sensors has
an excitation-voltage input that a sine-
wave signal feeds. The sensor modulates
the amplitude of the excitation signal
based on the position of the sensor,
and the system passes the resulting out-
put signal to the measurement system.
When you want to simulate such a sen-
sor, you need to measure the excitation
signal and generate an analog-output
value that corresponds to the excitation
voltage scaled by a value corresponding
to the position of the simulated sensor.
This operation requires you to quickly
multiply the analog-input measurement
by a noninteger value and generate the

result on an analog-output channel.

You often obtain the best results by
using a hybrid of high- and low-level
code. With many high-level, open pro-
gramming languages, you can use C or
assembly code directly within your ap-
plication. It is best to use low-level algo-
rithms within your code if you want to
reuse algorithms or if there is a small nu-
meric or array algorithm you can code
more optimally. LabView uses a graphi-
cal-system-design approach that encom-
passes many models of computation.
You can combine textual m-file-based
mathematics with graphical program-
ming; insert C, assembly, or VHDL code
into your designs; and access models
such as state and simulation diagrams
(Figure 4). Therefore, you can choose
the right approach for each unique chal-
lenge you are trying to solve. You must
also emphasize the importance of per-
formance profiling. Make sure that you
spend time optimizing the 20% of the
code that takes 80% of the time. This
20/80 pattern is extremely prevalent,
yet programmers too often spend hours
unnecessarily fine-tuning the 80% of
their code that does not significantly af-
fect performance.

By following good embedded-pro-
gramming practices, you can better op-
timize your code to meet the constraints
of your embedded-system application.
Implementing one or two of these tech-
niques may noticeably improve the per-
formance of your application, but the
best approach is to incorporate a combi-
nation of all these techniques.=on

AUTHOR’S BIOGRAPHY
Shelley Gretlein is a real-time-
and embedded-product strate-
gist at National Instruments,
where she works with real-

: time and embedded hardware
and software products, including LabView
Real-Time, LabView FPGA, LabView
Embedded, and LabView control design
and simulation, as well as hardware targets,
including CompactRIO and PXI. She also
evaluates future technologies for upcom-
ing product integration, including RTOSs,
FPGAs, and general software technologies.
Gretlein holds bachelor’s degrees in com-
puter science and in management systems
from the University of Missouri—Rolla.
She enjoys wakeboarding, running, triath-
lons, and renovating.

