
Comparative Study of
Computer Languages

Computation Statements
Part IX

R. Ramaswamy

Programming a computer consists in writing down
instructions to the computer in a symbolic lan¬
guage or in a high-level language like FOR;
TRAN, COBOL, BASIC*. PI /1 PASrAl

which the machine can decipher. The machine cannot
directly execute the instructions given in high-level lan¬
guages. The only language which the machine can obey is the
machine language. So programs m symbolic languages are
converted to machine languages before the machine can
start executing them.

Wc write the programs only in symbolic languages
because it is easier this way. Such programs are called source
piograms. Ihesc programs are converted to machine lan¬
guage piograms by means of appropriate compilers. The
machine language programs are called the object programs.
Compiler is another program which converts the source
programs in high-level languages to object programs in
machine languages. Instructions in high-level languages are
written in the lorm ot statements.

Statements aie the basic units from which programs are
built. A statement in computer language is analogous to
sentences in spoken languages. Just as a sentence gives com¬
plete sense to the humans, a statement gives complete mean¬
ing ot sense to the computer. Statements constitute the
commands or instiuctions to the computer to do specific
jobs like computing an expression, assigning values,
transferring contiols, printing the results, giving informa¬
tion to the computci and so on. There are different types of*
statements to do diflcient jobs.

Executable and non-executable statements

Statements art broadly classified as executable and non-
Iptable. Statements which art used to give information

to the computer or to the readers are called non-executable
statements. For example, declaration statements give infor¬
mation to the computer. They are non-executable. Com¬
ment statements give information to the readers and they arc
also non-executable. Executable statements cause the com¬
puter to do some functions like reading data, outputting the
result, computing an expression and so on.

The following are examples of executable statements:
1. Computation statements
2. Input statements
3. Output statements
4. Control statements

The following are examples of non-executable statements;
1. Comment statements
2. Declaration statements
3. Format statements
4. Subroutine defining statements

In this lesson, we will study the features of ttye computa¬
tion statement or the assignment statement or the arithmetic
statement in the different languages.

Computation statement hi

The computation statement can. also be called the arith¬
metic statement or the assignment statement. The computa¬
tion statement is probafelythe most important statement in
any computer language since it is only this statement that
gives the result or selmm*io*nyproblem, Tbegtowalform
of a computation statement is: ' ’■

Variable * Expression
or simply V * £ .
where V is anytoigned variable (integer or rem, amffcis
any valid FORlIfcAN expression (integer hr The jfym

ELECTRONICS FOR YOU

entities are separated by the symbol called the assignment
operator. The above form of statement instructs the compu¬
ter to calculate or compute the value of the expression on the
right hand side (RHS) of the assignment operator and store
the value in the variable on the left hand side (LHS) of the
assignment operator.

The symbol = is also called the replacement operator. It
does not have the same meaning as the equality symbol used
in conventional algebra. For example, if we write A = B in
algebra, it means that the values of A and B are equal or the
values on the LHS and the RHS are equal. If we write A = B
in FORTRAN, it means that the value of B is assigned to A,
whatever may be the original value of A. This means that the
values of A and B may be unequal before writing the above
statement. After writing the statement, the value of B is
assigned to A. That is why the above statement is also called
the assignment statement.

This is not called equality statement in FORTRAN. Sup¬

pose one writes:
A = A + 1.0

This statement is illegal in conventional algebra because it
requires that the LHS and the RHS must be equal prior to
writing the statement. Obviously, A cannot be equal to A +
1.0. But this statement is legal in FORTRAN, since its
meaning is different. This means that the old value of A is
added to I and is assigned as the new value to the same
variable A. If the old value of A is 25.0, then the new value of
A after executing the above statement becomes 26.0. In
summary, an arithmetic statement or a computation state¬
ment or an assignment statement in FORTRAN, does the

following three things:

1. It evaluates the expression on the RHS of the assign¬

ment symbol.
2. If required, it converts the mode of the evaluated result

to the mode of the variable to the left of the assignment

symbol.
3. It stores the result obtained from the second step as the

value of the variable given on the LHS of the assignment

sign.
Suppose the value of I is 2 and one writes:

a = i
We find that the RHS is in the integer mode and the LHS is
in the real mode. Since the storage mode is real, the number
is stored as 2.0 in the variable A. Suppose the value of A is

2.0 and one writes:
I = A

We find that the RHS is in the real mode and the LHS is in
the integer mode. Since the storage mode is integer, the
number is stored as 2 in the variable I. Suppose the value of
A is 15, then the above statement stores only the integer part
of A after truncating the decimal part. That is, 1 will store
only 2. We may have to do such conversions in our computa¬
tions later since a problem logic may require such

conversions.
The following are examples of valid FORTRAN arith-

MAflCH 1988

metic or computation or assignment statements:
A = X + Y+Z/ B

I = B + C/D + 23.5
I = 123.4/56.7* 23.9

B = 23/67 + 123/78 -67/23

A = 1
I = -A
I = 112.1/1.2

C = 146/2 + 192/16
VOL = 3.I43*R**2*H

Consider the example I = 112.1/1.2. The variable on the
LHS is in the integer mode whereas the expression on the
RHS is in the real mode. The computer evaluates the expres¬
sion on the RHS in the real mode and gets the result as
93.416666. But the storage on the LHS is in the integer
mode. So the integer part of the computed value on the RHS
alone is taken and the result stored simply as 93. in the
location 1. In the example C = 146/2 + 192/16, the LHS is in
the real mode and the RHS is in the integer mode. The
computation of RHS gives 8S and it is stored in the variable
C as 85.0. In summary, we say that the expression on the
RHS is evaluated in the mode in which it is framed and
converted into the mode in which it is required to be stored
by the variable on the LHS. The mode of the variable on the
LHS decides the mode of the result.

The following are examples of invalid FORTRAN arith¬

metic statements:
A = 3.0X + B (An operator between 3.0 and X is

missing)
-K = A + B (The LHS cannot be a signed variable)
A + B = C + D (The LHS cannot be an expression)
B = C + 9 ' (The expression on the RHS is in the

mixed mode and hence not permitted)
24 = A + B (The LHS cannot be a constant)
EXP(X) = A**2 (The LHS cannot be a library function)
A+B+C (An arithmetic statement must have an

assignment symbol. The example is simply
an expression and not an arithmetic
statement)

What does a computation statement look like?

A computation statement looks like a formula. We know
that a formula has a variable on the LHS and an expression
on the RHS, the two being separated by the symbol (=). The
computation statement also has the same structure. We
know that the solution to a problem lies on the LHS of a
formula. In the same way, the solution to a problem lies only
on the LHS of a computation statement. Since a computa¬
tion statement contains the solution to a problem, we say
that it is the most important statement in any programming
language. If at all the solution to a problem is to be output by
a computer, it must appear as a value of a variable on the
LHS of an assignment or a computation statement. Our
objective in life is to find solutions to problems. We find that
solutions lie on the LHS of computation statements and that

61

is why computation statements are the most important ones.

Computation statement in COBOL

Whatever be tne computer language used, a computation
statement has the same purpose or function. i.e., to iristiuct
the computer to compute the expression on the RHS ol the
assignment operator and store the \alue in the variable on
the I.HS. I he coding forms may slightly vary Irom language
to language. I he general form ol Ihceomputationstatcment

in COBOL is:
COM PC It Variable -I v(suitable -2)

(literal)
(arithmetic expression)

In writing general forms in COBOL, certain notations are
used: Small case letters indicate that they are programmer
coined-, vertically stacked items inside braces imply that one
of the enclosed items must be used; items given in square
brackets arc optional and the ellipsis (...) 01 three dots
indicates that the preceding items can be repeated if
required.

She following are examples of valid arithmetic
statements.

COM PCIE ARLA- X
COM PC It VOLUME = 32
COMPUTE GROSS-PAY ■■ BASIC-PAY +

ALLOWANCES
The computer is instructed to cc mpuic the expression on the
RHS ot the assignment symbol (-) and store the value in the
variable on the I.HS. When wc say COM PC 1E ARI A - X.
the value ot the variable X is asked to be stored in the
variable ARLA. In the second example, the literal 32 is
assigned to the variable VOLIJ M L. In the third example, the
computed value ol the expression in the RHS is stored in the
variable CiROSS-PAY. 1 he lortn of the computation state¬
ment is similai to LORI RAN, except that the word COM-
PUIL precedes the variable on the I.HS. 1 he word
COM PHIL comes from the reserved words list.

Descriptive form of computation statement

In COBOL., theie is another form ol writing the computa¬
tion statement using descriptive forms for the operators
instead ol symbolic toims. 1 hese forms use the descriptive
verbs, ADI), SC BI RAC I, MCI I IPl.Y and DIVIDE. I he
exponential operator has no conesponding verb.

ADD statement

There aie two forms ol the ADD statement. I hey are as
follows:
ADD (literal-1)

(variable-1) ... IO (variable-3)
ADD (literal-1) ;literal-1)

(variable-1) (variable-2) ... GIVING (variable-3)
In the first form, all the operands preceding the word 10 are
first added and the result is tlten added to the item following
the word TO and stored in that tield. Lor example, if one

writes:
ADD A, B, C. TO D

A, B, C are added first. Then this total is added to the
variable D on the RHS ot the word TO and stored in that
variable. I he old value of D disappears. L) is called the
receiving or the storing field. The storing field must always
be a variable. I he above A DD statement is equivalent to the
following COMPUTE statement:

COMPUTE D = D*A + B + C
In the second form, the operands preceding the word GIV¬
ING are added and the result stored in the variable succeed¬
ing the word GIVING. If one writes:

ADD A. B. C GIVING L)
A, B and C are added and the sum replaces the tield D. The
old value of D disappears. The above ADD statement is
equivalent to the following C OMPUTE statement:

COMPUTE 1) 8 A + B + C
It must be noted that one must not write ADD A 10 5

since the receiving field or the storing field is not a variable.
But one can write ADD 5 I () A. In this case, 5 is added to A
and the sum stored in the tield A.

SUBTRAC T statement

I here are two forms of the SIJ BI RAC I statement. T hey
are:
SUBTRACT (variable-1) ... EROM (variable-2)

(literal-1)
SUBTRACT (variable-1) ... FROM (variable-2)

(literal-1) (literal-2)
GIVING (variable-3)

In the first lorm, all the operands before the word FROM
are added and the sum subtracted from the operand succeed¬
ing the word EROM and stored in that operand. If one
writes-

SUBTRACT A, B, C FROM U
A, B and C are added first. This sum is then subtracted from
D and the result stored in L) itself. I he old value of D
disappears. This is equivalent to the following COMPUT E
statement:

COMPUTE D = D - (A + B + C)
In the second form, all the variables preceding the word
FROM are added and the sum subtracted from the variable
immediately following the word FROM and stored in the
variable immediately following the word GIVING. If one
writes:

SUBTRACT A, B, C, FROM D GIVING E
A, B and C are added first, the sum subtracted from D and
then the result stored in the location E. The old value of E
disappears. This is equivalent to the following COMPUTE
statement:

COMPUTE E = D - (A + B + C)

MULTIPLY statement

There are two forms ofthe MULTI PI. Y statement. They are
as follows:

ELECTRONICS FOR YOU

MULTIPLY (variable-1) BY (variable-2)
(literal-1)

MULTIPLY (variable-1) BY (variable-2)GIVINC.
(literal-1) (literal-2) (variable- 3)

If one writes:
MULTIPLY A BY B

then A is multiplied by B and the product stored in B. This is
equivalent to the following COMPUTE statement:

COMPUTE B = A * B
If one writes:

MULTIPLY A BY B GIVING C
then A is multiplied by B and the product stored in C. 1'his is
equivalent to the following COMPUTE statement:

COMPUTE C = A * B
Note that one must not write MULTIPLY A BY 3, but

one can write MULTIPLY 3 BY A. One can write MULTI¬
PLY A BY 3 GIVING C. This is permitted since it is the
variable C that is the storing field.

DIVIDE statement

The DIVIDE statement can be written in the following
three forms:
DIVIDE (variable-1) INTO (variable-2)

(literal-1)
DIVIDE (variable-1) INTO (variable-2)GlVING(variable-

(literal-1) (literal-2) 3)

DIVIDE (variable-1) BY (variable-2) GIVING (variable-3)
(literal-1) (literai-2)

In the first form, the variable-2 is divided by the variable-1 or
the literal-1 and the quotient stored in the variable-2. If one
writes:

DIVIDE A INTO B

then B is divided by A and the quotient stored in B. This is
equivalent to the following COMPUTE statement;

COMPUTE B = B/A

In the above case, B must not be a literal, since it is the
receiving or the storing field.

second form, the variable-2 or the literal-2 is divided
by the variable-1 or the literal-1 and the quotient stored in

the variable-3. If one writes:
DIVIDE A INTO B GIVING C

then B is divided by A and the quotient stored in C. This is
equivalent to the following COMPUTE statement:

COMPUTE C = B/A

In this case, both A and B can be literals.
In the third form, the variable-1 or the literal-1 is divided

by the variable-2 or the literal-2 and the quotient stored in

the variable-3. If one writes:
DIVIDE A BY B GIVING C

then A is divided by B and the quotient stored in C. This is

equivalent to the following COMPUTE statement:

COMPUTE C = A/B

In this case also, both A and B can be literals.

ROUNDED and SIZE ERROR options

The above two options can be given at the end of any form
of arithmetic statement. When the ROUNDED option is
given, the least significant digit of the resulting value is
rounded off to the nearest integer. When the SIZE ERROR
option is given, the control is transferred to any other para as
required; if the final value after executing the ROUNDED
OPTION, if any, exceeds the size of the receiving field. If one
writes:

DIVIDE A BY B GIVING C ROUNDED ON SIZE
ERROR GO TO E-PARA

a SIZE ERROR arises if the number of digit spaces allotted
for the result field C is less than the computed result after
executing the ROUNDED option. For example, let C be
allotted three digit spaces to the left of the decimal point and
two digit spaces to the right of the decimal point.

Suppose the initial computed value of C is 2345.346. First
the ROUNDED OPTION is executed. The value of C
becomes 2345.35. We find that a SIZE ERROR condition
arises since in the receiving field there are only three digit
spaces to the left of the decimal point, whereas in the com¬
puted result there are lour places. So in the receiving field the
result appears truncated as 345.35. The most significant digit
is truncated and the result becomes erroneous.

This situation is brought to the attention of the pro¬
grammer by the SIZE ERROR option. When the SIZE
ERROR condition occurs, the computer is asked to display
the condition or take any other action appropriate to that
condition by means of an imperative statement. Remember
that the computer is inanimate and we have to give fool¬
proof instructions as to what should be done under different
conditions. Note that the SIZE ERROR option does not
cause the printing or storing of the correct result. The above
option can also be used with the COMPUTE statement as
follows:

COMPUTE C ROUNDED = A/B ON SIZE ERROR
GO TO E-PARA.

Examples Illustrating the Results Obtained from the Different

COMPUTE Statements

Operations A B C l> E F

Values before operations
Values after the follow¬
ing operations:

5 6 4 3 2 1

ADD A IO B 5 11 4 3 2 1
ADD A, B TO C 5 6 15 3 2 1
ADD A, B. C TO D 5 6 4 18 2 1
ADD A, B, C GIVING D 5 b 4 IS 2 1
SUBTRACT A FROM B 5 1 4 3 2 1
SUBTRACT A. B FROM C
SUBTRACT A, B FROM C

5 6 -7 3 2 1

GIVING D 5 6 4 -7 2 1
MULTIPLY A BY B 5 30 4 3 2 1
MULTIPLY A BY B GIVING C 5 6 30 3 2 1
DIVIDE A INTO B 5 1.2 4 3 2 1
DIVIDE A INTO B GIVING C 5 A 1.2 3 2 1
DIVIDE A BY B GIVING C 5 6 .83 3 2 1
DIVIDE 3 INTO B 5 2 4 3 2 1

MARCH 1986 63

Computation statement in BASIC

As already pointed out, the function of the computation
statement is the same in all languages, i.e., to compute the
expression and assign the computed value to a variable. The
general form of the computation statement in BASIC is:

Variable = expression
or V = E
The LHS is any valid unsigned variable and the RHS is any
valid BASIC expression. The only restriction is that the
variable on the left and the variables constituting the expres¬
sion on the right of the assignment symbol must be of the
same type (either numeric or string). The following are
examples of valid computation statements:

X = 13.7
A$ = “BALASUBRAMANIAN"
A$ = B$ + C$ + D$
A12 = 3/13*7.4 + A/B +C -D
GROSS.PAY = BASIC.PAY + ALLOWANCES

The computation statement or the assignment statement
does the following two things:

1. It evaluates the expression on the RHS of the assign¬
ment or the replacement symbol (=).

2. It stores the result obtained from the first step as the
value of the variable given on the LHS of the replacement
sign.

Consider the following computation statement:
A = A + 1

We know that an equation of this type is illegal in conven¬
tional algebra. But in computer languages it is valid. The
above statement means that the old value of A is added to 1
and is stored as the new value in the same location A. It must
be noted that the computer can output only the values stored
by the variable on the LHS of a computation statement or an
assignment statement. So, if at all any value or values are to
be output by the computer, they must have appeared as
values of variables on the LHS of an assignment statement.
So one can easily understand the importance of computa¬
tion statements.

Computation statement in PL/1

As regards the computation statement, FORTRAN,
BASIC, PL/1 and PASCAL have similar structures.
COBOL form of computation statements is somewhat des¬
criptive, though the meaning is the same as in the other
languages. The general form of computation statement in
PL/1 is:

variable = expiession
or simply V = E

where V is any unsigned variable and E is any valid PL/1
expression. Data types on both sides of the assignment
operator must be same. The following are examples of valid
computation statements:

Cl = P*(1+R/IOO)**N-P
N = MOD (M, 7) + 1

► SORT ((A2-N*MEAN*MEAN)/(N-I))

Computation statement in PASCAL

The general form of the computation statement or the
assignment statement in PASCAL is as follows:

variable := expresssion
or simply V = E
where V is any valid PASCAL variable and E is any valid
PASCAL expression. The two entities are separated by a
combination symbol (:=) called the assignment operator. It is
only in PASCAL that the assignment operator is given a
different coding from the equality sign. The meaning of the
computation statement is that the computed value of the
expression on the RHS of the assignment operator is
assigned to the variable on the LHS. If one wants to add 1 to
the old value of A and assign it to the same variable one must
write the assignment statement

A := A + I
If one writes:

A = A + I
it is illegal in PASCAL, though it is legal in BASIC and
PL/1. In FORTRAN it must be written as A = A + 1.0 to
avoid the mixed mode error in the expression on the RHS.
There is another hitch in writing the computation statements

in PASCAL in the case of numeric entities. In the case of
numeric variables we have integers and reals. If V and E are
both integer types or real types there is no mismatch in the
modes. If V is an integer and E is real, there is mismatch.
However, if V is real and E is integer, there is no mismatch
since the integer is internally converted to real and stored in
the variable on the LHS.

This means that an integer can be assigned to a real
variable, but a real must not be assigned to an integer
variable. If A, B and C are declared as reals and E and F are
declared as integers, then, the following assignment or the
computation statements are valid:

A := B*C ♦ 3.5/6
E := E + F + E DIV F - E MOD F
A := E + F*E
E := TRUNC (A + B + C)
F. := ROUND (A + B + C)

1 n the first example, both the sides are reals and so there is no
problem. In the second example, both the sides are integers
and so there is no problem. In the third example, the LHS is
real and the RHS is integer. This is valid, since it is permissi¬
ble to assign an integer to a real variable. The RHS is
computed by doing integer arithmetic > converted to real
and finally stored in the variable on the LHS. In the fourth
example, the LHS is an integer. The TRUNC function on
the RHS converts the real expression inside the argument
after computation to integer, thereby avoiding the mis¬
match. in the last example, the ROUND function converts
the real expression inside the argument after computation to
integer, thereby avoiding the mismatch with the integer
variable on the LHS.

So,to convert a real to integer, use either the TRUNC or
the ROU N D function, whichever is appropriate to the situa-

ELECTRONICS FOR YOU

tion. For converting an integer to real assign the integer to
real.

The following arc examples of invalid PASCAL compu¬
tation statements:

A + B := C + D (LHS cannot be an expression)
-A := B* C + D (LHS cannot be a signed variable)
A = B + C (the assignment operator is not properly

coded)

25 := C -D (LHS cannot be a constant)
A := 25.5/67.8 (II A is declared as integer, it is invalid.

but if A is declared as real, it is valid)
HXP(X) := A - B (the LHS cannot be a function)

Comparing different languages

Let us see how the assignment operator and the equality
operator are coded in the different languages.

Language Assignment
Operator

Equality
Operator

FORI RAN T ■EQ.
COBOL =
BASIC = EQ
PI., 1 =r

PASCAL. •- -

In COBOL and PL/1 there *■> no distinction in coding the
two operators. In other languages there is some difference.

COBOL is a special-purpose language in that it is intended
only for programming business problems. The operational
statements are highly descriptive so that they are self-
documenting. Self-documenting means being self-
explanatory or meaningful. The oft repeated operations in
business problems are addition, subtraction, multiplication
and division and these operators have descriptive forms in
COBOL.

FORTRAN also is a special-purpose language in that it is
intended only for scientific problems, it is not as if business
problems cannot be coded in FORTRAN. It is only a ques¬
tion of efficiency. BASIC, PL/1 and PASCAL are general-
purpose languages in that they can be used to program both
business and scientific problems.

(To be continued)

YOUR ADS CAN NOW BE
DESIGNED AT EFY

If you are unable to release advertisements in lime due to difficulty in
getting the design* prepared, you may take the help of EFY’s art
department. Your ads can bedesigned at a nominal cost, and in time,
so that you don't miss an issue.
You may also get your literature prepared and printed through us.

-EFY

FROM NOW ON, THIS IS
WHAT TEMPERATURE

PROGRAMMER IS
ALL ABOUT.

Features:
* Microprocessor based reliability &

easy programmability by push Duttons.

* Digital Readout of set point, elapsed
time and process temperature.

* Programme can be constructed of
variable Heat/Cool,Ramps and Soak
in any sequence.

* Nonvolatile Memory capacity upto 10
profiles of 9 steps each.

* Has a built-in proportional controller.

* Optional Analogue output provided
for multi-zone applications.

* Optional Field Selectability of input sensor.

* Application areas include heat treatment,
stress relieving, ceramics etc.

For further details, contact-

MASIBUS ELECTRONICS
L-128G1DC Estate,Odhav. Ahmedabad 382415
Tele 887341 Telex: Care 0121-539

DEALERS: • TUSHAR ENCG. ENTERPRISES. 21 /C. Eastern
Society, Fetehganj. Baroda 390 002. Ph.: 64597. * INDUSTRIAL
RESEARCH ASSOCIATES. 302. Achaiya Comm. Centre. C ,embur.
Bombay 400 074. Ph.: 5511972* NUCLEAR SCIENCES. Alenin
Saranl, Suite No. 7.1 st Floor. Calcutta 700 013. Ph„ 212737
* ASIATIC ENGG. CO.. RB.No. 4. Vytilla, Cochin 682 019. * DIGITAL
PROMOTERS. 108, Sahyog. 58. Nehru Place. New Delhi 110019.
PfU 6437849* UDAY INSTRUMENTS INTERNATIONAL. 13-A.
Second Cross St, Venkatesapuram Colony, Ayanavaram, Madias
600023.* Resident Representatives m Bangalore and Hyderabad.

MARCH 1988 55

