Comparative Study of
Gomputer Languages

Computer Organisation and

Evolution of Gomputer

Languages

computer does not have only the single function
of computation but also several other functions
like reading the data and the program, storing
them, doing arithmetic as per the program, out-
putting the result in a printed form in the desired format and
so on. Each of these functions are done by separate
functionat units, but all of them act in coordination under a
common control. Thus, it is said that a computer is a huge
system composed of several related functional units which
act under a common control to achieve a common objective.
A system is a composite entity made of interrelated ele-
mentary units or sub-systems which jointly perform a task
under the direction of a single control. The human being is
also a system, composed of different functional units acting
under a single control —the brain. In short, a system is a
composite entity whose constituents work together to
achieve a common goal. The constituents of a computeralso
act together under a common control to accomplish the
common job of data processing and so we say that the
computer is a system.

Computer organisation

Computer is a system composed of different functional
units for performing different jobs. It consists of the follow-
ing major functional units;

L. Input unit,

2. Memory unit,

3. Arithmetic logic unit,

4. Output unit, and

5. Control unit.

The function of the input unit is to read the data and the
program while the memory unit stores the data, the program

2.

2t
'y

Part Ill

R. Ramaswamy

and the result. The function of the arithmetic logic unit is to
do the necessary computation as per the program of instruc-
tions and the output unit prints the result in a useful form.

There must be somebody to control the activities of these
functional units. Just as the brain controls the functioning of
the different human organs, the control unit controls the
functions of the other units of the computer. The different
functional units and their interrelationship is schematically
represented in Fig. 6.

The thick lines indicate the flow of data, whereas the
dotted lines denote the flow of control information. One can
notice that the control pervades through all the functional
units, whereas the data flows between specific units only. As
far as the user is concerned, each functional unit is a black
box, i.e. one need not know what these functiona! units are
made of and how they do their assigned job. Suffice it to
know that the different functional units are made of elec-

CONTROL
UNIT
|
v
MEMORY
UNIT

ARITHMETIC
LoGiC
UNIT

AUXILIARY
MEMORY

Fig. 6: Schematic representation of the functional units in a
computer.

ELECTRONICS FOR YOU

tronic components which are capable of doing the above
functions quickly, accurately, reliably and completely
automatically.

In addition to the automatic control, there is also a man-
ual control provided in the computer. This is known as the
console. Messages can be communicated through the type-
writer attached to the console called the console typewriter.
The computer will respond to the queries of the operator by
typing messages on the typewriter or by displaying on a
television screen attached to the console. This is called the
visual display unit (VDU).

The computer can do any processing on the data only if the
program and the data reside on the main memory. For
solving large problems with large volume of data, the com-
puter requires large memory space. To provide memory
space within the computer will be relatively costly and so the
computers are provided with auxiliary memory which is
located outside. Just as the humans use paper media as their
auxiliary memory, computers use magnetic discs.

When the auxiliary memory is attached to the computer,
the control unit takes charge of the auxiliary memory unit
also and directs it to transfer information to the main
memory and back, as and when required. 'he combination
of the control unit, the memory unit and the arithmetic logic
unit is called the central processor unit or the CPU.

Evolution of computer languages

The development of computer languages started with the
discovery of the computer in 1948. The earliest computer
language developed for the machine is called the machine
language. A machine language program is a set of instruc-
tions written for implementation by the machine using only
the two digits-- I and 0.

Every instruction or data is coded by a suitable combina-
tion of Is and 0s. Just as a combination of dots and dashes is
used to send messages by telegraph, a suitable combination
of Is and Os is used to establish communication with the
machines. So a machine language program consists of a
coded string of Is and Os, each string code having some
specific meaning for the computer.

The next development is the discovery of the assembly
language, in which the binary codes are replaced by alpha-
betic codes. Though the alphabetic codes are somewhat
more meaningful than number codes, they are difficult to
learn, since they are not akin to spoken languages.

Then comes the discovery of high level languages which
are more akin to spoken languages. FORTRAN, COBOL,
BASIC, PL/1and PASCAL fallin the category of high level
languages. They are easy to learn, since they are very much
akin to the spoken English language.

The ultimate aim of computer scientists is to make the
computers understand the spoken languages, so that man
will be relieved from the burden of learning a new language
for the sake of establishing communication with the compu-
ters. Till then, man has to study these high level languages if

SEPTEMBER 1985

at all he wants to communicate with the computer machines.

Machine language programs

We have said that a machine language program will
appear as a coded string of numbers 1 and 0 in the binary
notation. For ¢cxample, a machine language program to
instruct the computer to add two numbers stored in the
locations I and J, and finally store the result in the location
K may look somewhat as follows:

oot 1111 1000

0011 1110 1000

otir 1000 1100

It is obvious that the above string of Is and 0s is com-
pletely unintelligible to the layman. Even for the well versed,
it is a difficult job to remember the code correctly and write
it without making any mistakes. What do these strings of
binary digits mean?

‘Taking the first line, the string of first four digits ‘0001’
may mean ‘store’. The string of next four digits *1111" may
mean ‘the contents of the location I'. The string of the last
four digits ‘1000° may mean “a location called the accumula-
tor’. Thus thec combination of 12 binary digits in the first line
may mean ‘store the contents of 11n the accumulator’.

The 12 digits in the second line may mean ‘add the con-
tents of J with the number stored in the accumulator and
store the result in the accumulacor’. The 12-digit string in the
third line may mean, ‘move the contents of the accumulator
to the location K.

It can be noticed that since the machine language program
is a string of binary digits having no rcsemblance to any
spoken language, checking the program becomes veiy diffi-
cult, if not impossible. Again different computers have diff-
erent codes and so the programmer has to lcarn the codes for
cach machine, which is time consuming and laborious.

Another serious drawback with the machine language is
that one must have a knowledge of the machine parts to
write the program, i.e. thc machine language is highly
machine dependent, and so a programmer who does not
know about the machine cannot write a good machine lang-
uage program. No wonder that man’s efforts were directed
towards reducing this communication gap between the man
and the machine and bringing the machines nearer to the
common man.

Assembly language programs

It has been seen that in the machine language, number
codes are used to identify the different memory locations,
their contents and the different operations. In the assembly
language, the number codes are replaced by mnemonic
name codes, which are easier to remember and identify. For
example, an assembly language program for the problem
given in the last section may look somewhat as follows:

LDA I (meaning load I in the accumulator)

ADD J (meaning add the contents of J with the

contents of the accumulator)

23

MVA K (meaning move the contents of the
accumulator to the location J)

It can be seen from the above that there is one to one
correspondence between the machine language and the
assembly language codes. Assembly languages are simply
modified machine languages, where the binary codes are
replaced by alphabetic codes which are somewhat easier to
identify. In other respects, the assembly languages also
suffer from the same disadvantages as machine languages,
i.e. the assembly languages are also highly machine depend-
ent and learning them is also laborious and time consuming.

The machine languages and the assembly languages are
called the low level languages. Efforts made in the direction
of making the program more meaningful and compact cul-
minated in the development of the so-called high level
languages.

High level languages

High level languages are more akin to English. The for-
mulae used for computation look almost hke algebraic for-
mulae and the instructions for doing the different operations
also look almost like ordinary English. In addition, the
instructions are macros, in that one high level language
instruction may be equal to a large number of machine
language instructions, thus making the program very com-
pact. Some of the popular languages in current use are
FORTRAN, COBOL., BASIC, PL/1 and PASCAL.

‘The vast gap between the machine or the assembly fan-
guages and the high level languages can be seen in the
following versions of the high level language instructions for
the problem given carlier:

K=1+J(FORTRAN version)

ADD 1 TO J GIVING K (COBOL. version)

K =1+ J(BASIC version)

K=z=1+J(PL/I version)

K: = [+ J (PASCAL version)

It can be seen that the above instructions, or statements as
they are called, are more intelligible than any ot the machine
or the assembly language instructions. We also notice that
one statement in a high level language is equivalent to three
statements in the low level language. In fact, it can be many
more. That is why, the high level languages are macros.
Again high level languages are practically machine inde-
pendent and a person who has not scen a machine and does
not know the machine parts can still write a good program
following the rules of the language.

Whatever the high level language in which the humans
write the programs for the problems, the computer will
understand only the machine language. So the high level
Janguage programs have to be translated into the machine
language. This is done by a special program called the
compiler.

Compiler programs are used to translate the high level
language programs to machine language programs. The
high level language programs are called the source pro-

U

grams. The machine language program is called the object
program.

The compiler programs check the grammar of the source
program before translating the same to object programs.
Any grammatical or syntax error in the source program will
be pointed out immediately by the compiler program. Only
if the source program is grammatically correct, the compiler
program will translate it to the object program.

Requirements of high level languages

Earlier it was mentioned that the ordinary spoken lan-
guages like English are not suitable for communication with
the computers. It is because these languages do not have
unambiguous meanings for a particular set of words. Com-
puters being machines cannot distinguish ambiguities in
meanings. The computer requires to be exactly told in an
unambiguous language as to what is to be done. One set of
words must mean only one thing, Hence, any computer
language must satisfy the following requirements:

1. The language must be context free.

2. The language must be unambiguous.

3. The language must be both semantically and syntacti-
cally exact.

Consider the following statements in English:

I. He is sitting under the table.

2. He is using a logarithm table.

The meaning of the word ‘table’ in the above two state-
ments depends on the context. Such context dependence is
not suitable for computer languagces and that is the reason
why the spoken languages are unsuitable for computers.
Only onc meaning can be ascribed to a structure or a string
of characters in a computer language.

Let us now look at the following statement: *They are
flying kites’. This may mean that some people referred to by
‘they’ are flying kites. In another sense, ‘they’ refer to flying
kites which are some sort of insects. Thus, it can be said that
the language is grammatically or syntactically ambiguous,
since the same pronoun ‘they’ refer to two different things.
We say that the grammar or the syntax is not unambiguous,
but the computer cannot distinguish such syntactical unam-
biguities.

Let us now consider the following statement. ‘The table is
eating the chair’. The sentence is grammatically correct, but
its meaning is absurd, i.e. the semantics or the meaning is
illogical. Computer languages must be both syntactically
exact and semantically Jogical.

The development of computer languages requires lot of
skill and ingenuity together with a knowledge of the ana-
tomy of the computer. The high level languages have been so
ingenuously developed that man does not see the machine at
all when he learns the language but only sees the grammar.
In other words, the gramma: of the computer language
makes the computer transparent to man. Thus we say that
the high level computer languages are machine independent.
It is this single feature that makes the learning of high level

ELECTRONICS FOR YQU

computer languages easy for all.

Computer languages and microcomputers

With the advent of a large number of microcomputers in
the market, the different manufacturers have made some
changes in the standard rules onginally prescribed for the
different languages. This has resulted in the appearance of
different versions for the same language. Fortunately, the
variations are only minor in nature and the readers can refer
to the minor changes by referring to the manual ot that
particular computer. When one becomes a computer profes-
sional, onc must refer only to manuals. The programming
lessons and other programming books must be consulted
only for learning the general philosophy of computer
languages.

In this scrial, the character scts in the different languages
are introduced first, followed by the rules lor coding the
constants or the different data types dealt with by the difi-
crent languages, the rules for coding the variables or identi-
fiers and special words if any in the different languages, facts
about variables and constants in the different computer
languages, the rules lor coding arithmetical, relational and
logical operators and forming cexpressions n ditterent
languages.

It has already been pointed out that statements in compu-
ter languages give complete meaning to the computer just
like sentences give complete mceaning to the humans in
spoken languages. So, the rules for coding different state-
ments for doing different jobs are dealt with next.

Just as a plot ora theme is required for writing stories, 1m a
similar way algorithms are required to write programs. Ihe
development of algorithms for different problems are also
described.

A computer program operates on data. Data has to be
properly arranged and orgamiscd for casy access by the
computer. It can be kept independent and grouped into
arrays or records. Diffcrent applications require different
types of groupings. We have to study how the different
languages support the different data groupings or data
structures as they are called.

Finally, we have to study complete programs for ditferent
types of problems (scientific and business) in the different
languages.

Let us first study the character sets used in the difierent
computer languages.

FORTRAN characters

The first thing to do before starting the study of any
language is to learn the characters used in that language.
There are three types of characters in every language,
namely, the alphabetic, numeric and special. The following
are the different types of characters used in FORTRAN for
coding the various entities:

Alphabetic: ABCDEFGH
OPQRSTUV

1 J KL M N
W XY Z (26

SEP1EMBER 1985

Numeric: 01 23 4 5 678 90
Special: + plus
- minus
slash (division symbol)
* astenisk (multiphication symbol)
- equality sign (assignment operator swmbol)
dectmal pont
, comma
{ opening biacker
) closing bracket
' guote mark
$ dollar sign (1)

In all, there are 26 + 10 + 1, i.c. 47 characters used in
FOR I RAN. Since we are already tamliar with these char-
acters. learming the character set in FORTRAN does not
give tise to any problem.

COBOL characters
lhe following are the characters used in COBOL for
coding purposes.

Alphubetic: ABCOCDLEFGHIDI 1T K M N
OP QRS T UVWNY Z (20

Numeric: nF 2 Y4 5 6 7 % 9

Special: + plus

- nunus ot hvpben symbol
Jash tdivision svtmbol)

* astenish (mudbphcation svibol)
Ulll.llll\‘ st (assigniment operatos winbol)
»reater than

less than
pened o deciaal pomt

. comma
semicolon
quote idrk

(opemng brachet

) closing bracket

$ dolla wign

blank (15)

There are 26 + 10 + 15, e S1 characters in all used for
codmng purposes i COBOI . Since the character setis taken
from Lnghsh alphabets, Arabic numerals and the symbols
used 1 conventional algebia, there is no special difficulty in
learning the seripts of COBOL.

BASIC characters

Alphabetic: AR CD I G I 1 K1 M
O Pr QR W XY 7 (26
Numenic: 0 123 £ 9l
Special: v plus
minus

Sash (division symbol)
+ asternisk (multipheation symbol)
A espoaentiation operator symhol
~equaltty sign (assigniment operator)
. decmal point
, comma
. semicolon
colon
" quote mark
{ opening bracket
) closing brachet
= greater than
< Jess than
7 question mark
Of. peicentage
hash symbol
$ dollar sign
\ hackslash (20)

v

25

Here, the total number of characters are 26 + {0+ 20, 1.e.
56 characters used for coding purposes in BASIC. As in
other computer languages, these characters are tamiliar
ones and so do not present any difficulty in learning them.

PL/{ characters
“The following are the characters used in PL/] for coding

purposes:

Alphabetic: ABCDI FGHI JKI1I M N
OPQRS I UVWXYZ Q20

Numeric: D1 2345 6 7 8 90110

Special: + plus

- munus
sash (division symbol)

* astenisk (multiphication symbol)

- equality sign (assignment operator symbol)

break or underscorc character

(opening bradhet

) clostng bracket
decamal poim

, comma

. semicolon
colun

" quote mark

$ dollar sign

o greater than

< less than

& AND operator symbol

~ NOI operator symbol

t OR opetator symbol

4 percent

* question mark (21)

Inall there are 26 + 10+ 21, i.c. 57 charactersused in PL! |
for coding purposes. The symbol A is alternatively used for
NOT operator. The symbols\ and | are alternatively used
for AND operator, So, total number of characters come to
60. Since these characters are famihiar ones, no further

explanation is required.

PASCAL characters

The following is the character set used in PASCAL for
coding purposes.

Alphabetic: ABCDEFGHI1 JKL M
OPQRSTUVWXY Z (2)
Numeric: 01 23 4 5 6 7 8 910
Special: + plus
- minus

slash (division symbol)
* asterisk (multiplicanon symbol)
= equality symbol

. = assignment operator

. decimal point

, comma

; semicolon

: colon

' quote mark

(opening bracket

) closing bracket

[opening square bracket
} closing square bracket
> greater than

< less than

t pointer (18)

Totally, there are 26 + 10 + 18, i.e. 54 characters used in
PASCAL for coding purposes. All these characters are
familiar ones as in other computer languages.

26

Blank character

Blank is treated as character only in COBOL. In other
languages blank is not strictly treated as a character. But
blanks have to be given wherever the grammer rules
demand.

While writing, the blank may be indicated by putting the
small case letter 'b’. While communicating with the compu-
ter the space bar is simply pressed once. For alphabetic
characters some computers will also accept small case let-
ters. But for the sake of uniformity we will use only capital
letters for coding purposes.

Summary

In this article, the evolution of computer languages lead-
ing tu the development of high level languages has been
discussed. Every language has a character sct and a
grammer. So also are 21l compute: languages. The character
sets used in FORTRAN, COBOL, BASIC, PL./1 and PAS-
C'AL have also been described.

It has already becn pointed out that the rules of the
computer languages have become slightly implementor
dependent. So some of the characters given in this article
may not be available in all machines and there may also be
some slight modifications for the symbols. One mustlalways
refer to the manual of the particular machine for the exact
list of character set.

(To be continued)

HAND BOOKON JUST
ELECTRONIC ouT
INDUSTRIES Latest 1985 Ediion

By Gulshan Kumar
This book published
M first time in India contains

detailed project profiles which
have great demand in market
having bright future alongwith
latest manufacturing techniques,
assembling details, circuit diagrams,

cost analysis, profitabllity, market
survey, with suppliers of machinery

and raw material etc. etc.
Hurry, wet your copy by VPF from.

THAMD
IROOK
oM

HLETTROMIC:
NPT RS

SMALL INDUSTRY RESEARCH INSTITUTE
CONTACT AT : 4449, NAI SARAK. (£ DELHI -110 006

ALSQO ;4/43, ROOP NAGAR.CE) ¥ B. 2106, DELMI. 7
Phone Nos: 2018117 - 2010808 - 2816804

[Price Rs. 1501-] [Pages 680] rF"ostage Free. |

ELECTRONICS FOR YOU

