
A program u> a set of instructions written in a
computer language, for solving a problem. Each
instruction is called a statement in the computer
language. Statements in a computer language

are analogous to sentences in a spoken language. Just as a
sentence gives complete meaning to the humans,a statement
gives complete meaning to the computer. Just as a story
consists o(a set of logically organised sentences, a program
consists of a set of logically organised statements.

Minimum statements required to program simple problems

What are simple problems? By simple problems we mean
problems whose solutions can be obtained by means of a
single formula. We have already pointed out that a problem
may have either a single formula or a set of formulae. When
the problem solution requires the computation of more than
one formula, the logic is said to be complex, otherwise the
logic is simple or straightforward

A program must read the data and the processing steps. It
must print the result on paper. We need statements to do the
above functions. First, we need an input statement to read
the data. Next, a computation statement to compute the
result. Lastly, an output statement for printing the result on
paper. Some comment statements inside the program will be
useful to the readers to know what the program is about and
what it is doing at every stage. Just as a story is organised by
logically sequencing the sentences, a program is organised
by logically sequencing the different statements. The mini¬
mum statements for writing a program are:

I. Input statement
2. Computation statement
3. Output statement
4. Comment statement
We have already seen how the first three types of state¬

ments can be written in the different languages. Now we can
see how a simple program can be organised in each of the
languages. The comment statements will be explained as we
describe the program organisation.

ro

Comparative
Study of
Computer
Languages

Program
Organisation (1)

Part XIV
R. Ramaswamy

FORTRAN program organisation

A program consists of a set of statements, written on a line
by line basis. Each line is 80 characters long. In FOR TRAN

only one statement can be wiitten in a line. There are some
restrictions as to the columns in which the statements must
be written. Statements can be written only from columns
seven to 72. We have said that statements are referenced by
giving labels or names in the form of integer numbers.

The statement numbers are written in columns two to five,
li the statement is longer than one line, it can be continued in
the next line. To tell the computer that a line contains the
continuation of the statement from the previous line, a
character, say, I (or any other character) is keyed in column
six. So, the column six is called the continuation mark
column. The statement can be continued in the third, fourth,
fifth line and so on, every time keyinga different character in
the sixth column. The computer senses the end of a state¬
ment by the absence of any continuation mark in the sixth
column of the next line.

Columns 73 to 80 are left blank. The first column is
reserved to give indication to the computer that the remain¬
ing information keyed in that line are comments intended for
the readers and not intended for processing purposes. This
indication is given to the computer by keying the letter C in
the first column. So, the first column is called the comment
column. Due to the restrictions in the columns in which the
different items have to be keyed, we say that a FORTRAN
program is highly column oriented.

ELECTRONICS FOR YOU

Program files

A program must be stored in a machine decipherable
media before it can be used for processing data. In the
microcomputer environment, floppy diskettes are used for
storing programs as well as data. Just as the humans use
paper for storing information, the computer uses the floppy
diskettes for storage purposes. The storage media is called
the auxiliary memory. It is also called the computer file or,
simply, file. When we write the program in the floppy
diskette, we say that we store the program as program file.
One can ask why not store the program in paper media itself,
just as humans do.

Unfortunately, machines cannot decipher what is written
on paper. (Hopefully such machines will come to popular
use very soon.) Humans cannot decipher what is written on
the floppy diskettes. The humans first write the program on
paper files. Then they transfer the same to the machine
decipherable media—the floppy diskette—usingthe compu¬
ter itself or suitable data entry machines. When you store a
number of programs in a file, you must be able to call any
one program at a time. For this purpose, programs are
labelled or given names. A program name is coined as per
certain rules. The general form for a program name is

XL

where L is a three-character code indicating the language in
which the program is wntten, called the secondary name.
Since we write the program in FORTRAN, we give the secon¬
dary name as for. The letter X stands for what is called the
primary name coined by combining a maximum of eight
characters suggestive of the nature of the program.

Suppose you are writing a program for payroll, you can
give the primary name as payrol. The primary and the
secondary names are separated by a period. The program
names in the different languages are:

PAYROL.FOR (in FORTRAN)
PAYROL.COB (in COBOL)
PAYROL.BAS (in BASIC)
PAYROL.PLI (in PL/1)
PAYROL.PAS (in PASCAL)

You can access any program in the file by calling its name,
just as we access any person by calling his name.

A FORTRAN program for finding simple and compound

interest

We will now make use of the statements we have studied
so far and see how we can organise a fortran program for

finding the simple and compound interest for a principal P,
at a rate of R per cent and for a peiiod of N years. Input
statements are given to access the data through the console.

The program looks as shown in Box 1.

Explanation of the program

The FORTRAN program shown in the Box I has 13 lines.
The first statement is a comment statement, since it starts
with letter C in the first column. The information meant for

the readers is called documentation. By documentation we
mean any explanation, verbal or pictorial, given to the read¬
ers for the understanding of the problem and the program.
ITie second and the third lines contain the write-format

pair statements for printing a prompt string to tell the pro¬
grammer about the values to be entered through the console.

The fourth and the fifth lines give the read-format pair
statements to get the data through the console. The sixth line
contains the computation statement for computing the sim¬
ple interest. In order to convert the integer variable N to real,
the library function FLOAT (N) is used. The seventh line
contains the computation statement for computing the com¬
pound interest. The eighth and the ninth lines contain the
WRlTE-FORMAl pair statements for printing the headings.
The tenth and the eleventh lines contain the wri ie-formai

pair statements for printing the results under the proper
headings. The twelfth line contains the Slot’statement while
the thirteenth line contains the END statement. These two
statements require further explanation which is given below.

The STOP and the END statements

Any program written in a high-level language is processed
in two stages. The first stage is called the compilation stage
and the second stage is called the execution stage. During the
compilation stage the computer reads the high-level lan¬
guage program, called the source program, and checks up
the grammatical correctness of the statements and, if all the
statements are correct, it converts the source program into
the machine language program called the object program.

We have already pointed out that whatever the language
in which you write the program, the computer can execute
the program only if it is in the machine language. If there are

grammatical errors, the computer will print those errors.
The programmer has to correct those errors and again sub¬
mit the program for compilation. It is only during the compi¬
lation stage that the computer uses the END statement. The
END statement tells the computer that there are no more
fortran statements pertaining to that program. Hence, the
END statement will occur at the physical end of the program.
The end statement is said to be the logical conclusion of the
source program.

AUGUST 1986 71

Once the compilation is successful, the computer will give
a no errors message, thereby implying that the source
program has been converted to the object program or the
machine language program. When the computer gives the
signal that the compilation is successful, the operator gives
the execution command. During the execution stage, the
computer executes the statements in the sequence in which
they are listed and finally, on encountering the Slop state¬
ment. it literally halts the operations after printing the word
s rop.

Remember that the END statement does not appear in the
object program. The last executable statement in the object
program is the si OP statement and we say that the stop

statement is the logical conclusion of the object program.
Once the stop statement is executed, the entire program is

erased from the main memory and the control is said to be
returned to the operating system. It is the operating system
residing in the computer that manages all the programs
given by the users. If you want the program to be re-run, you
have to give the execution command once again.

It may be noted that there may be more than one si op

statement in a program depending on the problem logic, but

there can be only one END statement at the physical end of

the program. The five lines at the end of Box I show the

output. When the computer encounters the READstatement.

it halts until the operator enters the data for the variables P,
R and N through the console. The computer then prints the

headings and the results as shown in the last two lines.

FORTRAN program using the data statement

In the last example, we saw how we can give instructions
to the computer to get the data through the console. Suppose
you want to enter data in the program itself, it can be done by

using the data statement. The four statements which occur
immediately after the comment statement are replaced by

the data initialisation statement or the data statement as
follows:

DATA P, R, N/ 100.0. 10.0,5.0/
There is no change in the other statements. In this program
the data for the input variables P, R and N are initialised in
the data statement.

One drawback in this method is that, if we want to com¬
pute SI and Cl for another set of values, we have to change
the program. That is, the data statement must be rewritten
with another set of values and the whole program has to be
re-compiled. In the former case there is no re-compilation,
but there is only re-execution. When the data are given in the
data statement, the read-format pair statements are
removed, otherwise the program looks the same. The output
will remain the same as shown in the last two lines of Box 1.

Structure of a FORTRAN program

A fortran program is organised as a sequence of
statements each of which is either an instruction or an
information to the computer or the reader. The statements

which give information to the computer belong to the class
of declaration statements and they are non-executable. The
statements which give information to the readers are called
the comment statements and they are also non-executable.
By structure we mean the arrangement of the constituents of
the system.

By system wc mean an organisation made of interrelated
elementary functional units. The smallest logical unit of a
K)R IRAN program is the statement. A FORTRAN program is
organised by a series of statements which are logically
related to each other. The structure of a FORTRAN program
can be schematically represented as shown below.

Each line represents a statement. The series of lines, one
alter the other, denote the series of statements written, one
after the other. Remember that there is a logic in the
sequence. This means that if the positions of the statements
are changed, the entire meaning will be changed. Simple FOR-

l RAN programs involving straightforward logic can be orga¬
nised as above. Later we will discuss how programs
involving complex logic can be organised.

Structure of a COBOL program

A coboi. program is made of statements just like For¬

tran. But the statements in .■ COBOL program art grouped
in a structure similar to that of a textbook. Just as a textbook
is divided into chapters, and chapters are divided into sec¬
tions and sections are divided into paragraphs and pra-
graphs are divided into sentences, a COBOL program is
divided into four named divisions and divisions are divided
into one or more named sections and sections are divided
into one or more named paragraphs and paragraphs are
divided into one ormoresentencesand sentences are divided
into one or more statements.

A COBOL program enforces further discipline in the struc¬
ture by allotting well defined places in the program forgiving
the different specifications or declarations. It consists of four
divisions, each with its own logical position and function in
the program. The four divisions are:

1. ideniification division
2. environment division
3. DATA division
4. procedure division

Of these four divisions, the actual commands for perform¬
ing the computations are contained only in the PROCEDURE

division. The other three divisions are there only to give
information to the computer about the name of the pro¬

gram, the peripheral devices used, the descriptions of data
types and so on. Such elaborate formalities are required by
COBOL because of the nature of the problem it has to handle.

We know that a computer uses two things, namely the
program and the data. Data can be either structured or

ELECTRONICS FOR YOU, 72

unstructured. It is mandatory in COBOL to declare all data,
whether they are input or output or generated in the pro¬
gram. The form of declaration for the structured data is
different from the instructional data. Now we will consider
the structure of a COBOL program which deals only with
unstructured data.

A schematic representation of the structure of a COBOL

program is shown below:

Rules for keypunching COBOL programs

The COBOL programs are said to be column oriented. This

means that different entries must be made from different
columns in each line. Each line consists of 80 columns. One
character can be punched in each column. There are two
margins in the COBOL program and they are called the
A-margin and the B-margin. A-margin starts from the
eighth column and the B-margin starts from the twelfth
column. All divisions, sections and paragraphs have labels
or names. These names must be punched from the A-maigin.
Later we will see that certain level numbers like FD, 01,77

etc also must be punched from the A-margin.
All sentences and certain level numbers like 88 must be

punched from the B-margin. Sentences cannot be keyed
beyond column 72. Columns 73 to 80 must be left blank. If
one wants to key comment statements, it can be done by
putting an asterisk symbol in the seventh column. Every line
that contains a comment statement must have an asterisk
symbol in the seventh column. Statements can be continued
from one line to the next without any restriction, provided
you don't break a word. But if a sentence is terminated in one
line, a second sentence cannot be keyed from the same line,
i.e. more than one sentence cannot be keyed in a line.

It must be noted that statements are separated by blanks
and sentences are terminated by periods. The period is a
necessary punctuation in coboi to indicate the termination
of sentences, division headers, section headers and para
headers. Improper punctuation will give rise to syntax

errors.
We will now give some explanations about the entries

made in the various divisions. There are difficulties in
explaining completely each of these divisions one by one,
since in order to understand some entries in one division we
must understand their functions in other divisions. This
interdependence is somewhat confusing to the beginners,
but things will become clear when one gets an overall picture
of a C OBOL program. Till then the readers should patiently
go through the ordeal.

identification division. This is the first division ol a
COBOl program. The function of this division is to specify
the name of the program by which it will be known to the
computer. This division has only one function and so it has
only one para. The mandatory entries in the idi-.niihca-

I ion division are

A B
IDENTIFICA1 ION DIVISION.
PROGRAM-II).
name ol the program as coined by ihe piogrammer.

The first entry is the name of the division, and is identified
by the word division and its location. The division header
must be punched from the A-margin. The period at the end
of the word division is a necessary punctuation. T here are no
sections in this division. T here is only one mandatory para¬
graph whose name is program-id.The pragraph label must
also be punched from the A-margin. The entries must be
made from the B-margin.

In this case, the entry is the program name which is coined
by the programmer following the same rules for coining data
names. A typical name can be PAYROLL. There are some
optional paragraphs in this division which are used for
documentation purposes. Since these paragraphs are not
mandatory, the beginners need not worry much about them.

A typical example of entries with the one mandatory para¬

graph is given below:

issssssrsssB
73

I he iDtN l IFK’AI ion division is the simplest one in the

c ouoi progiam and its description is complete, and so we

will not come back again to this division since its inter¬

dependence with othei divisions is little.

environment division. This is the second division in a

COBOL program with two functions, and they are done by
two sections. The functions are:

1. To give the names of the computer which compile and
execute the program

2. I o give the names of peripherals which handle the

input and the output files.

And the two sections are:
1. CONUCiURA i ion section

2. IN Pin-OUTPUT section

1 he configuration section is composed of two manda¬
tory paragraphs, namely the SOURCE-COMPUTER, the
OBJECT-COMPUTER and one optional paragraph, namely,
the SPECIAL-NAMES para. The special-names para is used
only when one has to connect some system defined names
with some programmer coined names. We will see its use
later.

The lNPUT-oiJ l PUI section is required only when files are
used. Presently wc will omit it since we are going to consider
independent data items alone. The typical entries in the
environment division of a COBOL which uses only inde¬
pendent data items are shown below:

A tt
environment division.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ORION 8000.
OBJECT-COMPUTER. ORION 8000

DATA division. The function of this division is to describe
the organisation of the data that will be used in the program.
It is composed of two sections, namely the hi t. section and
the working-storage section. In the file section we des¬
cribe the file data (that is data items present in the input and
the output files alone)and in the woRKlNG-s roRAGEsection
we describe all the independent data items. The typical
entries in the data division which uses only independent
data items arc shown below:

A B
DATA DIVISION.
WORKING-STORAGE SECT ION.
7? data-name PIC string of A's or X's or 9’s
77

PROCEDURkdivision. The function of this division is to do
all processings w th the data and output them in the desired
format and in the required devices, either on the printer or
on the disc or on the screen. It must be noted that all data
used in this division must have been completely described in
the data division. There is a lot of interdependence between
PROCEDURE division and the data division. The structure
of the procedure division is shown below:

A B
PROCEDURE DIVISION,
para-header.

entries,
para-header,

entries.

In this division we give all the commands to perform the
various jobs like reading the data, computing the expres¬
sions, printing the results etc.

The commands are given by what are called statements.
Statements can be grouped to form a sentence. Sentences
can be grouped to form a single logical unit called a para¬
graph. If necessary, the paragraphs can be grouped to form a
section. Normally we do not have sections in the proce¬

dure division. It may be noted that the section headers and
the para headers ih this division are all programmer-coined.

Summary

COBOL program consists of four divisions, each with its
own logical positions and functions. Since these divisions
are somewhat interdependent we cannot study these divi¬
sions independently one after the other. In other computer
languages like Fortran or basic, one can start writing
complete programs after learning to coin statements. But in
COBOL one has to study the various formalities required to
be entered for writing a complete program.

Now that we have studied the essential statements to write
a COBOL program which uses only independent data items
and also the formalities to be obeserved in writing the var¬
ious statements in the different sections, we will consider a
typical COBOL program for finding the simple and the com¬
pound interest in the next article. You will find that the

statements in the first three divisions are only declaration
statements and their function is to give information to the
computer about the program and the data which it uses. So
wc call them non-executable statements, whereas the state¬
ments in the last division, PROCEDURE division, are said to
be executable statements.

(To be continued)

EFY SUBSCRIBERS
AH EFY subscriber* are requested to always mention their
subscription number when writing to us about matters relat¬
ing to their subscription. This number is given on the left top
comer of the mailing slip patted on the EFY envelope*
carrying each issue.

In the absence of this number, action on any letter or
payment becomes difficult to take, causing unnecessary
delays and inconvenience.

74 ELECTRONICS

