
Comparative Study of
Computer Languages

Input Output Statements(3)

Part XII
R. Ramaswamy

The input statements give instructions to get the
data into the program and the output statements
give instructions to output the result on paper.

As in the case of FORTRAN and COBOL wc
have three methods foi getting the data into the program m
BASIC. They are:

1. Entering the data through the console.
2. Entering the data as a part of the program in the

program itself.
3. Entering the data by asking the computer to read a data

file kept separately.
We shall study the first two methods in this article and

consider the third method later when we study about files.

Input statements in BASIC

The name of the statement which gives instructions to get
the data through the console is called the INPUT statement.
The general form of the INPUT statement is

INPUT list
The word 'INPUT is a code word which means that the
computer is asked to get the data through the console. The
list contains the variables separated by commas, whose
values are entered or keyed through the console by the
operator. Suppose one writps an INPUT statement as

INPUT A, B, C
On encountering the INPUT statement, the computer stops
and puts a ? mark. Then the operator must key in the values
of the variables one by one, separating each value by a
comma. After entering three values corresponding to the

thiec variables in the list, the compulci piocccds to pioccss
the other statements in the piogiam. C)1 couise. the type and
the number ol variables in the list and the type and the

number ol values keyed through the console must match,

otherwise an error condition will result.
When the computer simply puts a 7 maik, the opetator

must know how many values he has to key. So we can give a

prompt string to the operator to know how many values he
has to key thiough the console by adding the prompt string

within quote marks as shown below.
INPll I -LNII R I HI VAl lit SOt A.B.C,", A, B. C

When the computer encounters the above INPUI state¬

ment, it simply prints the words within the quote marks
without putting a question mark. Obviously this string is
meaningful to the operator and so he starts keying the values
ol the variables A, Band C as displayed in the prompt string.
I he computer will proceed further only altci getting the
values ol A, B and C.

Interactive mode or conversational mode

Ihe above mode of entering data into the program
through the console is called the interactive mode or the
conversational mode. In this mode you can establish a dia¬
logue between yourself and the computer. The computer will
ask for the data by displaying the prompt string on the
screen. You enter the data by keying on the console. If you
enter wrongly, the computer gives a message on the screen as

JUNE 1966 61

“REENTER". The operator then re-enters the data. Thus
the conversation can continue. Though this conversational

mode is possible in other languages, it is found that BASIC is
most suitable.

Statements for entering data in the program itself

The statement or the instruction to enter the data in the
program itself is called the READ-DATA statement. I he
two key words READ and DA l A go togethei, although
they do not appear in the same statement or necessarily
follow each other directly. However, tor every variable listed
alter the word READ in a statement, theie must tollow a
statement with the word DAI A at some point in the pro¬
gram followed by the constants.

The computer matches the first READ variable with the
first DATA constant, the second vaiiable with the second
DA I A constant and so on. 1 he DA IA statement can be
placed anywhere in the program as long as it precedes the
END statement. The following example illustrates the
READ-DATA statement.

READ A, B. US

DA IA 27,6. 789, 0. -KRIS"

I he variables in the READ list and the constants in the
DA I A list are separated by commas. The data can be either
in the intcgci mode or in the leal mode, the only restriction
being that the numeric data must correspond to the numeric
variables and the string data must correspond to the string
variables. We can also write the above READ-DA TA state¬
ment as follows:

Rt AD A, B, (. . D$

DA IA 27 6
DAIA 789. 0
DAI A "KRIS"

We observe that the number of DA IA statements need not
be equal to the number of READ statements, but the
number ol constants must be equal to the number of varia¬
bles appearing in the READ list. If the number of variables
exceeds the number of constants, the computer will give an
‘out of data' erior message. If the number of constants
exceeds the numbei of variables, the surplus constants will
be ignored.

Since READ statements generally precede the DATA
statements, the usual practice is to place the READ state¬
ments at the beginning of the program and the DATA
statements at the end before the END statement, y

Visualising the data access in the READ-DATA statements

One can visualise the method of data access by the BASK.'
compiler in the READ-DATA statement. The BASIC com¬
piler organises the contents of all the DATA statements in
the program into a data block. During program execu¬

tion one can visualise a pointer to move down the data block.
When the computer reads the value of A, the pointer is

directed to the data 27.6, somewhat as shown below. As soon
as it reads the first data, the pointer moves down and posi¬
tions itself against the next data and so on.

Data pointer Data
-* 27.6 "3 Data

| 789 l Block

° I “KRIS" J
Sometimes it may be required to read the same set of data

in another set of Variables, say. E, F, G, H$. In that case the
pointer can be restored to its original position by making use
of a statement called the RESTORE statement.

RESTORE statement. The RESTORE statement
transfers the pointer, regardless ol where it is, to the first
value of the data block. Suppose one writes

READ A, B, C, PS
DATA 27.6, 789, 0, "KRIS"
RES I ORE ^
REAL) E, E, U, H$

As soon as the first R EAD statement isexecutcd, the pointer
comes down below the last data. At that time it is not
pointing towards any data. As soon as the computer encoun¬
ters the RESTORE statement, the pointer moves up and
positions itself against the first data. So when the second
READ statement is encountered, the same set ol four values
are read into the variables E, F, G, H$. If the RESTORE
statement is not there, the computer will give an ‘out of data’
error message. Any number of RESTORE statements can be
given. Everytime the computer encounters the RES I ORE
statement, the pointer is simply returned to the top of the
data block.

The READ-DATA statement in BASIC is analogous to
the DA TA statement in FORTRAN and the VALUE clause
statement described in the WORKING SI OR AGE SEC¬
TION in COBOL. In all these cases, the data is entered in the
program itself. In BASIC, no formatting is required, i.c. the
descriptions about the type of data, the length of data, etc arc
not required as in the case of FOR TRAN or COBOL.

Output statements for printing the result on paper

The PRINT statement is used to output numerical or
string data in the printed form. The general form of the
PRINT statement is

PRINT list

The word PRINT isacode word to tell thccomputerto print
the values. The list contains the list of variables whose values
are to be printed. The variables are separated by commas.
Suppose one writes

PRINT A, B, C, D

The values of A, B, C and D are printed in one line according
to the built-in formal.

Normally the printer length is 80 columns. This length is
divided into four zones of 20 columns each. Each value is
printed starting from the first column of each zone. If the
values of A, B, C and D are 23.5,45.67.8 and 80 respectively,
they will be printed somewhat as shown below:

1st zone 2nd zone 3rd zone 4th zone
23.5 45 67.8 80

ELECTRONICS FOR YOU

You may notice that the first column in each zone is blank.
I his space is for the sign. If the number is positive the first
column will be left blank. If the number is negative the sign
will be printed in the first column. If the list contains more
than four variables, the items will be printed in the next line.
So if the data items cannot be accommodated in one line, the
printer will automatically go to the next line and print the
data items zone-wise.

Suppose you want to print the data items closer, you can
use semicolons as separators between successive variables.
In the case of numbers one space will be left between two
data items and in the case of strings no space will be left
between the data items. Suppose one writes

PRINT A; B;l; I)

Then the computer will print the values of A, B, C and D
continuously, leaving one space between the successive
values as follows:

23.5 45 67.8 80

Suppose the value of A$ is “SANKARA", the value of B$ is
"SUBRA” and the value of C$ is “MAN1AN”, and il one
writes

PRINI AS; BS, < $

the computer will print the result as
SANK Alt ASH BRA MANIAN

The semicolons between string variables in the PRIN I list
will concatenate the string data items.

In case you want to print the result with some descriptive
items, the descriptive items can be pul within quotes and the
PRINT statement written as follows-

PR1N1 “VOLUME Of- 'HE CYLINDER IS”. X

If the value of X is 4.58, the computer will print as
VOLUME OF I HE CYLINDER IS 4.58

In the case of PRIN I statements, which we have consi¬
dered so far, the computer prints the result in a predefined
format. It does not give the programmer sufficient facility to
place the output data in the required locations. To overcome
this difficulty, BASIC has another provision called the IAB
function statement.

The TAB function

The general form of the TAB function is
TAB(X)

where X can be either a variable or an expression or a
constant. Of course the variable, the expression and the
constant must all be numeric. The expression X will be
evaluated first and its integer value will be taken to position
the printer before starting any printing operation. Suppose
one writes

PRINT TAB(15); X

The TAB(I5) function causes the value of X to be printed
from the 15th column onwards. Once the TAB function is
introduced, the permitted delimiter is the semicolon.

More than one TAB function can be used in the same
PRINT statement to position more than one variable in the
printer line. Suppose one writes

JUNE 1966

PRINT TABOO); “RAJA”; TAB<I4); “GOP A LAN”

The above statement will generate the output from the 10th
column onwards as

RAJAGOPAI.AN

Now, if one writes
PRINI IA B(10). “RAJA”; I AB(I2); “GOPALAN"

We find that the value of the second TAB is less than the
current print position and so the print value is shifted to the
second line with the same T AB setting and the output will
appear as

RAJA
GOPALAN

It must be noted that everytime TAB function is executed in
the same statement, the printer position is counted from the
beginning of that line and not from the position it completed
the printing of the previous value.

Print using statement

Sometimes it may be required to output only specified
number of characters, either digits or strings in specified
locations justified whether right or left. T his can be done by
representing the position of each digit or character by some
special symbol called the image, l or example, the image
symbol for numeric digits is # (pronounced as hash).

Suppose you have a number 234.5679 stoied in the loca¬
tion A and you want the computer to print the value rounded
off to two digits to the right of the decimal point. One gives

the specification as follows;
PRINI USING “####.#«"; A

With the above specification, called the integer image speci¬
fication, the value of A is printed only with two digits to the
right of the decimal point, i.e.. rounded oil to two decimal
places. T he output will appear as

234.57

The remaining digits after the second decimal place are
simply truncated. Suppose you have tour values to be output
with different number of digits with different spacings
between .them, the specifications can be written as

PRINI using "nmM mn mmh.h «#”; a. b. c\ d

The hash symbol has got the necessary provision to suppress

non-significant zeros.
Considci you have a number 00987.654 located in A, the

specification for this will be given as
print using “mm.ntr\ a

The computer will print the result as

987.65

You can notice that the two zeros in the non-significant
positions have been suppressed. Again notice that the result
,in a numeric field is always right justified and this is what we
‘require for the sake of alignment of the columns.

The USING statement can also be given as a separate
assignment statement and used later in any number of
PRINT statements. For example, one can write

fors = -mtt.tm mtm mm mmmvt
PRINT USING FORS; A; B; C; D

Just as we write the format statement in FORTRAN separ-

63

ately, in BASIC also the format statement can be separately
written as shown above. The same format statement can be
used for any number of PRINT statements if required.

String image specification

We have said that the positions of numeric digits are
symbolically represented by the hash sign, f he hash sign is
called the integer image specification. In a similar way a
fixed length string data Held ol more than one position is
specified by a pair of slashes (/) separated by zero or more
characters. The width of the field is equal to the number of
characters between the two slashes plus two. Any character
can be placed between the slashes. These characters will be
ignored by the computer and it will take them only as
symbols for printing string data.

The string will be printed left justified in the given field
width. If the string is longer than the field width, then it will
be truncated on the right. II the iield is longer than the string,
then the string will be printed from the left end of the field,
leaving blanks on the right end, i.e. we say that the strings
arc printed left justified in the given field. Suppose we give a
print statement as follows:

I OR$ - “/ / •
WIN I USING FORS. "R. KK1SHNAN"

The FORS field is 22 characters long, Ihe string data is only
II characters long. The name R. KRISHNAN will be
printed in the first 11 positions and the remaining 11 posi¬
tions on the right will be left blank. We can use a single
ampersand symbol (&) to represent strings of different
length. Suppose one writes as follows:

FOR$ -- “A"
WIN ! USING FORS; AS

In this case the length of the string stored by the variable AS
can be anything within the permitted length for a string
constant. The full string will be printed without any trunca¬
tion by the above FORS specification.

Print statement without any list

l o give vertical spacing, the PRI NT statement without any

list is used. One dummy PRINT statement will skip to the
next line. Suppose you want to print two items A and B in
successive lines, one has to write as follows:

PRIM A
PRIM
PRIM H

But il you want to skip two lines, you have to give two
dummy PRIM statements.

The purpose ol the tonnat statements is to tell the compu¬
ter where and how the result should be printed on the paper.
With some experience one can write many complex printing
formats by combining different specifications depending
on the need. In BASIC there is no format statement for
reading data. Only for printing purposes formats are
required in BASIC. If no formats are given the result will still
be printed, but in that case the computer wilt use the built-in
format for printing purposes. In FORTRAN formats are

required both for reading and printing the data. In COBOL
also formats are required both for reading and printing the

data.
In BASIC formats can be either included in the print

statement or given separately. In FORTRAN and COBOL
formats have to be given by separate statements. In FOR¬
TRAN and BASIC the formats statements can be placed
anywhere in the program. But in COBOL the format state¬

ments can be placed only in the DATA DIVISION of the
program. The way of coding the formats in these languages
are different.

Input statements in PL/1

We have three ways of entering data into a PL/1 program
same as in the case of FORTRAN, COBOL and BASIC.

These arc:
1. Entering the data through the console.
2. Entering the data in the program itself.
3. Entering the data in the program by reading a file.
In this article we will consider the first two methods and

study Ihe third method later.

Input statements for entering the data through the console

1 he general lorm ol the input instruction or the statement
for entering the data through the console is

GF.I I ISl(liM)

Ihe two words GET and I 1ST are key words which have
special meaning to the computer. The word list inside the
parentheses contains the list of variables whose values are to
be entered through the console. I he variables in the list are
separated by commas. Suppose one writes

GUI LIS I (A. B. C)

The computer on encountering this statement will stop and
wait until the operator keys in the data values for A, B and C.
The variables can be cither integers or reals or character
strings or bit strings. This information must have already
been given in the declaration statement in the beginning of
the program. We have already said in the article on coding
rules for variables, that every variable introduced in a PL/1
program must be declared as belonging to any one of the
four categories. The declaration statement itself will be used
as the format for reading the input data. There is no separate
format statement required in PL/1.

The values that are keyed in must conform to the specifi¬
cations of the variables declared earlier, otherwise an error
message will be given by the computer. The GET LIST
statement in PL/1 is analogous to the READ statement in
FORTRAN, the INPUT statement in BASIC and the
ACCEPT statement in COBOL. Though the above state¬
ments are intended fordoing the same function of getting the
data into the program through the console, the way of
coding the instructions in the different languages are
different.

Input statements for entering the data in the program

In PL/1, the data values for the different variables can be

ELECTRONICS FOR YOU 64

initialised in the declaration statement itself. The data values
can be either numeric or string. Suppose you want to initia¬
lise the values of three variables A, B and C then you write
down the declaration statement as

DCI. (A. B, (') FLOAT BINARY STATIC INIT (12.5. 345, 79);

The word STATIC is a code word which tells the computer
that the variables having this attribute can have their values
initialised. INIT is another code word which simply means
initial values. The actual values of the variables A, B. and (.’
are enclosed within parentheses immediately after the code
words STATIC INIT. The first part of the declaration is the
same we have seen earlier.

Suppose one wants to give initial values for.strings, c.g., to
give values for two variables Ml and M2 as JANUARY and
FEBRUARY respectively. Then the statement is

DO.(MI, M2)C.'HAR(10) VARYING STAI IC INI I (‘JANUARY-.
FEBRUARY’);

I he string values must be enclosed within quotes. The other

key words have the same meaning which we have said earlier.
I he DCL-STAT1C-1NIT statement in PL/1 is analogous to
the DATA statement in FORTRAN, the VALUE clause

statement in COBOL, and the READ-DATA statement in
BASIC.

Output statements to print the result on paper

Just as in BASIC, we have both formatted and unformat¬
ted print statements. The general form oi the unformatted
print statement in PL/1 is as follows;

PUT L.IS I (A. B, C, D);

A, B, C and D can be either numeric or string. Of course,
they must have been declared in the beginning of the pro¬
gram, as it is mandatory to declare every variable that is used
in a PL/1 program. If the variables are numeric, the values
will be printed in the exponent notation with seven signifi¬
cant digits in the mantessa part. If the values of A, B, C and
D are 1,2,3 and 4 respectively, then the computer will print
the result as follows:

I O(KXXK)L+00 2.000000E+00 3.000000E+00 4.000000K+00

The computer divides the print line into zones, each zone
having a width of 14 columns. The first value is printed in the
first 14 columns, the second value is printed in the second 14
columns and so on. If there are more items, printing will be
continued in the next line. The programmer has no control
over the printing positions of the values. The computer is

said to print the result according to a built-in format. Strings
also will be output in a similar manner. Suppose you want to
print the values of A and B in separate lines, you have to

write as follows:
PUT SKIP LISTtA):
PU T L1ST(B);

The key word SKIP will cause the movement of the print
head to the next line after printing the value of A. The value
of B will then be printed in the first zone of the next line. The

PU I" SKIP statement without any list will cause the move¬
ment of the print head to the next line without printing
anything in that line. This statement is useful for giving

JUNE 1988

vertical spacing between the output values.

Formats for output data items

Though no formats are required to read data items, it is
necessary to have formats for presenting the output in a
meaningful way. The formatforeach of the output data item
is given in the output statement itself. The general form of
the output statement with the format specifications for each
data item is as follows: «

PUT EDIT (list) (formal list)

The code word EDI I tells the computer that the data items
in the list must be printed as per the format list given at the
end of the variable list. We will now introduce the format

specifications.
A format. The general form is A(w), where A is a code

word to tell the computer that the data item is a string and w
represents the width of the string. If w is omitted, then w is
assumed to be the length of the output siring. II w is greater
than the output string length, then blanks are added to the
right. If w is less than the output string length, the string is
truncated from the rightmost position.

F format. I he general form is F(w,d), where F is a code
word to tell the computer that the data item is numeric, w
represents the width of the field or the number of digits in the
field and d is the number of digits to the right ot the decimul
point, this format is used to output the data item in the
floating point notation.

X format. This formal is used to skip columns in a line.
The general form is X(w), where X is a code word to tell the
computer that it must move its print head by w columns in

the same line.
Suppose you want to output four data items A, B, C and I)

whose values are ‘KRIS’, 23, 42.1 and 432.1 respectively.
One can write the formats in the output statement as follows:

PUT EDIT (A, B. C. D)(A(4), X(2). F<3). X(2),F(4,I). X<2), F(5.l))

The printed output will appear as follows:
KRIS 23 4Z1 432.1

Now if one wants to print the values of A and B in one line
and the values of C and D in the third line, one writes the
statement as follows:

PUT EDIT (A, B. C, D) (A<4), X(2), F(3), SKIP<2), F(4.l). X(2),
F(5.l))

The word SKIP(2) causes the print head to skip two lines,
counting being done from the current line. In general,
SKIP(n) skips n lines and gives n-1 blank lines.

REMOTE format. The format specifications can also be
given as a separate statement with a label put before it. Then
this label is referred to in the format list. The advantage is
that this labelled format can be used with a number of output
statements. This type of formatting is referred to as
REMOTE FORMAT in PL/1.

We give some label to the format list alone and write:
LI: FORMATtA(4),X(2),F(3),X(2),F(4,l),X(2),F(5,l));

LI is called the label or name of the format statement. The
name followed by the colon mark enables the computer to
identify it as the label of the statement. In FORTRAN we

65

give numbets to statements tor reference purposes. In PL I

we give names coined by alphabets or alphabets and

numbers. A statement label is coined in the same way as we

coin the name of a variable I o punt the values ol A. U, (

and I) as per the above loimai, we write

Hi i t l»ll (li. t . I» (Kil in.

I he letter R is a code to indicate that the lorntat is a

R1MOI1 FORMA I and it is given in the s'utement which

is labelled by the name enclosed within parentheses imme¬

diately lollowing the leltei R I he same lormat can be used

by any number ol output statements il required.

formats can be given lot punting icals in the seientilic

notation or the exponent notation. I he geneial lonn is

I (vv.d), where w delines the Held width and d gives the

number ol digits to the right ol the decimal point. I he output

will appear as

•ii iMdtkltli He

So the lormat which one must give is HI.Lb). I he total

Width ol the item is 13. One space is left toi the sign, one Un

ihe decimal point, one lor the integer pail ol the numbei, sis

lor the fractional part ol the number and loui tor the expo*

item coding part. I he l.(13,6) lormat can output the biggest

as well as the smallest number that can be output by the

1*1 I program. I he minimum value ol vv is d+7 II w is less

than d *7, an ei rqr message will be given. It w isgrcalei than

d-*/’, the number will be printed right justified in the held

leaving blanks on the lelt. (1<■ in- contnim-a>

ELECTRONIC
INFORMATION SERIES

i:n.
BOOKS

28 titles speed and simplify finding, reviewing and
comparing detailed device information on "Transistor,
Diode, Thyristor, Discontinued Transistors, Discontinued
Diode, Discontinued Thyristor, Audto/Video Consumer ICs,
Digital ICs, Interface ICs, Linear ICs, Module/Hybrid
Memory ICs, Microprocessor ICs, Microcomputer Systems,
Microprocessor Software, Discontinued Digital, Discon¬
tinued Linear. Discontinued Interface, Optoelectronics,
Discontinued Optoelectronics. Power Semiconductors,
Application Notes Reference, Microwave, Discontinued
Microwave. Master Type Locator, Discontinued Type
Locator, Power Supplies, 1C Functional Equivalence Guide

1. Save Data Collection and Search time
2. Find the Precise Device for your special needs

the Ideal way
3. Quickly end easily compare Manufacturer's

specifications
4. Get up-to-date accurate information

Write lor Details to

The Exclusive Agents in Indin:

NEW ELECTRICAL/
ELECTRONIC PROJECT

REPORTS
Consultancy Bureau has just

with latest

* AUDIO MAGNETIC TAPES
* AIR CONDITIONING b

REFREGERATION
’ AUTO ELECTRICAL

ACCESORIES
' BATTERY AND ITS PARTS
* BLACK b WHITE

TELEVISION
* CARBON FILM RESISTORS
‘ COLOUR TELEVISION
1 COMPUTER RIBBONS
' COMPUTER STATIONARY
* COPPER/ ALLUMINIUM

ELECTRIC CABLES/WIRES
' 0 C MICRO MOTORS FOR

TAPE RECORDER
* DEFLECTION COMPONENTS
' DIGITAL ELECTRONIC

WATCHES
‘ DRY CELL BATTERIES
' ELECTRICAL APPLIANCES
‘ ELECTRIC FANS
* ELECTRIC MOTOR
' ELECTROLYTIC

CAPACITORS
* ELECTRONIC T V TUNER
* ELECTRONIC TELEPHONE
' ELECTRONIC TOYS
' EXHAUST FANS
* FERRITE MAGNETS
' FLOPPY DISC
* FLOPPY DISC DRIVES
* FLUORESCENT TUBES
* G L S LAMPS
' GENERATING SETS b

PUMP SETS

prepared on the following items

upto date dates:

* HT & IT INSULATORS
* HEATING b COOLING

THERMOSTAT
* IGNITION COIL
* INTEGRATED CIRCUITS
‘ INTERCOM
* INVERTERS b CONVERTERS
* METAL FILM RESISTORS
* MICRO FILM PROJECTORS
* MICROWAVE OVEN
* MULTI CHANNEL TV TUNER
* NICKLE CADMIUM CELLS
* P V C INSULATION TAPE
* PORCELAIN INSULATORS
* POWER CAPACITORS
* POWER TRANSFORMERS
* PRINTED CIRCUIT BOARDS
* SOLAR CELLS
* SOLAR COOKER
* SOLAR PUMP
‘ SOLDERING PASTE
■ SPARK PLUGS
* STEP DOWN

TRANSFORMERS
* STEREO TAPE RECORDERS
’ SUBMERGED ARC FLUX
* TELEVISION ANTENNA
* T V PICTURE TUBE
* T V SIGNAL BOOSTER
* VIDEO CASSETTE
* wpD ft urp

* VOLTAGE STABILIZERS
‘ WATER HEATERS
* WELDING ELECTRODES
* WIRE WOUND

POTENTIOMETERS

* WIRE WOUND RESISTORS

Allied Publishers Subscription flqency
750 Mount Road MADRAS 600002.

Our report contains latest market, survey process of
manufacture in details, raw material, plant and machinery
equipment availability with their cost, cost analysis, flew
Sheet, profitability, working capital, BEP, etc. along with

other valuable details.

Price Rs350/- each (Rupees Three hundred fifty only) All
reports are ready in stock . Immediate delivery on confirm
order. Reputed companies can place their order by V.P.P.

Rush Your order to:

CONSULTANCY BUREAU
1-333 NARAINA V1HAR fP)
NEW DELHI 110 028
PHONE: 50 53 95, 541 86 67

EtECTRON.CS FOR YOU

