

HANDS-ON ELECTRONICS/POPULAR ELECTRONICS

~
(-]

signal. An example is a binary signal
called “clear,” which might be repre-
sented by the mnemonic CLR. Many
fimes binary signals are grouped to-
gether and related as in a binary
number. For example, the bits in an 8-
bit word might be given the names A0
through A7. In any case, you will see
many different variations.

Inversion. Inversion is expressed
mathematically by placing a bar over
the variable. In Fig. 6, the input of the
inverter is A while the output is B. Note
that B is expressed in tems of A. That

Fig. 6. The complement of a variable can
be represented by placing a bar over that
variable as shown here.

expression is read B is equal to noT A.
The not bar indicates that signal A has
been inverted. Remember that A can
be either a binary 0 or abinary1. noT A,
of course, is the opposite. or comple-
ment.

Sinceitis difficult to type abarovera
letter as shown in Fig. 6, other simpler
methods have been devised for repre-
senting inversion. Sometimes the inver-
ted variable is indicated by an asterisk
or a prime (similar to an accent). Using
the variables in Fig. 6:

B=A*orB=A’

AND Function. The logical anD
operation is indicated by placing a
dot between the two variables fo be
anped. That is illustrated in Fig. 7. The
two inputs to the anD gate are A and B

A
8

C=A-8

Fig. 7. aNping of variables is indicated
by using a dot between them.

while the output is designated C. Look
at this expression for the output:

C=AB

In regular algebra AB would mean
multiply A and B together. That's why
the output of an anp gate is often
called the product of the inputs. As in
regular algebra, it is not necessary to
show any symbol between the two
variables (aithough sometimes a dot is
used). Instead, they are simply just writ-
ten adjacent to one another.

Figure 8 shows a four-input anD gate
with different input variables. Many
times you will see the output expression
written with some variables separated
by parentheses. Each input term ap-
pears within a set of parentheses to
keep them visually separated to avoid
confusion. But since each expression is
written directly adjacent to the next, it

D7
EB

CLK
RST

TX = (D7)(EBHCLK)RST)

Fig. 8. The variables in Boolean algebra
need not be one letter in length, but for
clarity, separating them with parentheses
becomes necessary.

means that the variables are anoed
together. In Fig. 8, we say that the out-
put product is:

TX = (D7)(EB)(CLK)(RST)

or Function. The logical or is indicat-
ed by placing a pius sign between the
variables. That is illustrated with the
three-input or gate shown in Fig. 9.

T
G NZ=T1+G+RDY
ROY

Fig. 9. oring of variables is indicated
with plus signs. Note the three inputs.

Often you will hear the output of an or
gate referred fo as the sum of the input
variables.

NAND Function. The NAND OF NOT-AND
function is simply the inverted product
of the input variables. An example is
shown in Fig. 10. The output expression
is written just as it would be for an anD
gate. but with a NoTindication givento
the entire expression. That can be
done by putting a bar over the entire
expression as shown in Fig. 10. Alter-
nately, the anoed input terms can be
put into parentheses and an asterisk or

D=ABC

O m>

Fig. 10. In a NAND expression, the result of
all AnNping is simply inverted.

apostrophe used to indicate the nort of
the function. Note that the B term has a
NOT bar over it.

The nor Function. To produce the
NOR function, we simply invert a basic

or output. Figure 11 shows a four-input
NOR gate. The output expression is
formed by simply writing the input vari-
ables separated by plus signs. Then, a
bar is placed over the entire expres-
sion to invert it. Again note that one
term, DZ, is inverted at the input.

AJ
BK
[
0z

EX=AJ+BK+C5+DZ

Fig. 11. Multiple-input NANDs do not need
to have their variables separated by
parentheses for clarity.

Now using those basic (Boolean) ex-
pressions for each of the logic gates.
more complex circuits can be easily
represented.

Deriving Boolean Expressions.
Knowing the basic rules outlined in the
previous section, you can now derive
a complete Boolean expression for
any larger, more complex logic circuit.
The process is simply to work your way
through the various logic gates starting
with the inputs and building the equa-
tion a step at a time. A couple of ex-
amples will illustrate the process.
Refer to the circuit in Fig. 12. Note
that the input variables are labelled.
The output is designated G. Our job is
to write the expression for G in terms of
the input variables. It's really not as
complicated as it sounds.

A AB
8
c -
c 2 G=AB+C +DEF
0
E OEF

Fig. 12. You end up with a sum of products
expression for this circuit after analysis.

To begin, you start with the variables
at the inputs to each of the circuits on
the left. Write the expression for the out-
put of each circuit. For example. the
output of anp-gate 1 is simply AB. The
output of the inverter 2 is Nor C. The
output of anp-gate 3 is DEF.

The outputs of gates 1 and 3, and
inverter 2, form the inputs to or-gate 4.
To complete the expression, simply Or
together each of the inputs to gate 4.
The output expression G then be-
comes:

AB+C +DEF

Take a look at the expression we just
derived. You often hear an expression
like that referred to as a sum of prod-
ucts. In this case, the products are the
anped variables AB and DEF. The sum.
of course, refers to the oring together
of each of the products.

A slightly more complex circuit is
shown inFig. 13. Still the evaluation pro-
cess is the same. Work your way
through the circuit from left to right writ-
ing the output expression for each
gate. The output of gate 1 is Al(K) as
shown. We use parentheses in this case
to show the separation between the

ANK) M =B (A1(K) +J)

Al AlK) +J

K

J
B

Fig. 13. The output of one gate becomes the
input of the next in this circuit.

two variables, yet they are written ad-
jacent to one another to indicate a
product or AND function.

Next, the output of gate1is ored with
the input of J. The resulting output from
gate 2 is:

AK)+J

That becomes one of the inputs to AND-
gate 3. That expression is anped with
input B to produce the final output ex-
pression:

M=B(AI(K) +J)

Again parentheses are used 1o keep
the variables separated and to ensure
the correct logical operation is ex-
pressed.

Take a look at the example inFig. 14.
Again, the procedure is o develop the
output expressions of the input gates,

< x El

W+X+Y)
Z= (W+X+ YW+ X)

w W+X)

X

Fig. I4. You end up with a product of sums
expression for this circuit dfter analysis.

then work your way from left to right to
create the output. The output from
gate1is:

(W+X+Y)

The output of gate 2 is:
(W+X)

Those two outputs become the inputs
to anp-gate 3. We create the final out-
put expression, Z, by simply ANDIng o-
gether the two expressions. The result is:

Z=(W+X+Y)W+X)

You might hear that kind of expression
called a product of sums.

Generating a Circuit From Equa-
tions. Now let's consider the process
of drawing the logic circuit corre-
sponding 1o a given Boolean expres-
sion. Let’s start with the simple
expression below:

W=XY+2

The various logic functions implied
by the equation are prefty easy to
spot. The X and Y are written adjacent
to one another indicating that the two
signals are anped. Simply draw an AND
gate with X and-Y as the input. The
output of that anp gate XY is then go-
ing fo be ored with another input
called Z. The plus sign tells us we need
an or gate to do that. If only the varia-
ble Z is available, an inverter is
needed to produce Z. The resulting Cir-
cuit is shown in Fig. 15.

A slightly more complex example is
given below:

X=(A+B+C)(D+E)(F)

The parentheses tell you that you
have three different groups of varia-
bles anped together to form the output,
X. The variables in the groups are ored

X XY

s W=XY+Z

4 2 -
4

Fig. 15. By drawing the logic symbols that
correspond to the Boolean expressions
you'll arrive at the correct circuit.

together. You can start by creating the
circuits for each group of variables.
The plus signs inside the parentheses
indicate an or gate should be drawn.
To start you can draw an or gate with
inputs A, B, and C. Another expression
is derived by oring the input variables
D and E. Simply draw an or gate with
the two variables as the inputs. The
variable F inside parenthesis will be

anped together with the other two ex-
pressions. Finally, to complete the cir-
cuit simply draw an anp gate with
three inputs and connect them to the
outputs of the two or gates and a
source of signal F. See Fig. 16.

oQIE >

F X =(A+B+C)ND+ENF)

D
E

Fig. 16. The product of sums expression
shown was used 1o generate this circuit.

Exercise problems. Here are a cou-
ple of problems for you to practice on.
4. Write the output expression of the
circuit shown in Fig. 17.

2. Draw the logic diagram corre-
sponding to the expression:

M=(F+G+H)J+K+L)

Assume no inverted signals are avail-
able.

[z X3

F
¢]

Fig. 17. Write the equation for the circuit.

Truth Tables. You have already seen
how truth tables are used to define all
possible combinations of inputs and
outputs for the various logic elements.
Truth tables. however, can also be
used to describe larger, more com-
plex logic circuits. The nice thing about
a truth table is that it gives you a com-
plete picture of what's going on in the
circuit for any set of input states.

Developing a truth table for any log-
ic circuit is relatively easy. All you have
fo do is write out all the possible input
states, and for each one compute the
output state for every gate in the circuit
until the final output is derived. Let’s
take a couple of simple examples to
show how you can evaluate the output
state for a given set of inputs.

Take a look at the circuit shown in
Fig. 18A. Where N is the number of in-

6861 AHVNNVF

-~
-~

HANDS-ON ELECTRONICS/POPULAR ELECTRONICS

~
®

Fo %F

EO—D__\—_‘} 3)06

A
INPUTS OUTPUTS
GATE 1 INVERTER 2 GATE 3
0 E F F G
0 0 0 0 1 1
0 0 1 0 0 [1}
0 1 0 0 1 1
0 1 1 [1} 0 [1}
1 0 0 0 1 1
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 1 0 1

Fig. 18. The possible outputs for circuit A can be displayved in a truth table like B.

puts, the total number of different input
states is 2N, The circuit shown has three
inputs, so with three inputs, there are:

8=23

Those eight possible combinations are
the binary numbers 000 (decimal 0)
through 111 (decimal 7). Therefore, we
will make atruth table with eight possi-
ble input states as shown in Fig. 18B.

The remainder of the fruth table will
contain the outputs at each element in
the circuit. For example, note that we
have the output of anp gate 1, the out-
put from inverter 2, and the output from
oR gate 3. Knowing how each of the
logic gates work, you can then deter-
mine the oulput of each gate given
the various combinations of inputs,
and record those values in the table.
For example, the input to gate 1is D
and E. Since it is an anp gate, the only
time it will produce a binary-1 output is
when both D and E are binary 1's. Sim-
ply locate those states in the inputs
and record binary 1's beside them. All
of the other entrigs in the DE column will
be binary 0. The F columnis created by
simply inverting the F column.

You now know both inputs to or-
gate 3. The DE and F columns can then
be ored together to produce the final
output, G. Again, remembering that
an or gate produces a binary-1 output
if either or both of its inputs are binary 1.
you can complete the G column.

Be sure you go through the circuit
and the truth table carefully so that you
understand exactly what is going onin
each column.

Let's take one more example to be

sure you know how to develop the tuth
table from a given logic circuit. Refer
to Fig. 19A. That circuit has four dif-
ferent inputs, therefore, it will have:

24=16

possible input combinations. Those
are the four-bit binary numbers 0000
(decimal 0) through 11 11 (decimal 15).
They are illustrated in the truth table
shown in Fig. 19B.

The remaining columns in the truth
table are the output of gate 1 (A +B);
the output of gate 2 (C+ D). and the
final output, F. Again, using the input

states, develop the output for gate 1
and then gate 2. Those are or gates,
and so produce a binary-1 output
when either or both inputs are binary 1.
For gates 1 and 2 simply search
through the table for those rows where
binary 1s occur at the inputs of the
gates and record binary 1's in the cor-
responding output column. Once you
have done that for both gates, you will
have the inputs to gate 3. Gate 3 isan
AND gate, so its output is 1 when the
output columns for gates 1 and 2 are
both binary 1. Again look through all of
the columns in the truth table to be sure
you understand how they apply to the
circuit.

Exercise Problem. To see if you can
do this yourself, try the foliowing prob-
lem.

3. Draw the circuit for the Boolean ex-
pression:

Z=Y(VW+ X+ VX)

Assume only the inputs V, W, X and Y
are available. Develop the truth table
showing the outputs for all inverters
and gates.

Writing from a Truth Table. In many
cases, you will start with a truth table
and develop the Boolean expression
from it. That is what usually happens
when you are designing a digital cir-
cuit. Typically, you will define a desired

A
8
D—
4
0
A
INPUTS QUTPUTS

A B C 0 GATE 1(A+B) GATE2{C +D) GATE 3 (E)
0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0
0 1 0 1 1 1 1
0 1 1 0 1 1 1
0 1 1 1 1 1 1
1 0 0 0 1 0 0
1 0 0 1 1 1 1
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 1 0 0
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

Fig. 19. You must use all possible input combinations for the circuit A for the table, B.

output condition that is generated
when specific input states occur. To
develop your design, you build a truth
table filling in the columns with the de-
sired output states for the given inputs.
Then, the truth table can be used 1o
help write the Boolean equation, and
the logic circuit itself, can be deduced
from the equation. Once the logic cir-
cuit is drawn, it can be implemented
with ICs or other components.

A simple example of that is a design
where we have two inputs and want a
specific output to occur. For example,
perhaps you want the output F to be
binary 1 when input D is equal o1 and
input E is equal to 0. For all other input
states, we want the output to be binary
0. That set of conditions can be drawn
in a truth table as shown in Fig. 20A.
With two inputs, there are four possible
input combinations. We want the out-
put to be a binary1when D is equal to1

oo ‘D—OF'DE
£o Dc 2

Fig. 20. A truth table (A) must be
generated from a circuit (B) before
deriving the Boolean equation.

andEisequal to 0. All other input states
produce a binary 0 output. The fruth
table shows that set of conditions.

Now to derive the Boolean expres-
sion from the truth table, we ook at the
output column F and note where bin-
ary 1's occur. Next, we look at the input
states that produce that output. Then
we write an expression that is the prod-
uct of the input variables. For example,
in the truth table of Fig. 20A. the equa-
tion becomes:

F=DE

We write the D because a binary 1 ap-
pears in the D column. We write E
because a zero exists in the E column.
That simple equation, of course, can
be implemented with a single two in-
put aND gate. An inverter is be needed
to produce E if only the E input is avail-
able. The resulting circuit appears in
Fig. 20B.

Now let's take a more complex ex-
ample. Suppose that we want to de-
velop a simple circuit for comparing
two bits. We would like the output of
the circuit to be binary 1 when the two
bits are equal, and binary O when they
are different. That is described in the
truth table shown in Fig. 21A. The two
inputs are X and Y, therefore, the four
possible input combinations are listed.
We want the output Z to be binary 1
when the bits are alike. So we write a
binary1 when both bits are 0 and when
both bits are 1. The remaining input

states produce a binary 0 output.
XY
XY
A
X XY
Y
X
v XY
Z=XY+XY

Fig. 21. The truth table, A, generates a
sum of products equation for circuit B.

Now we can write the equation for
the circuit. We look at the output col-
umn and note the places where the
binary 1's occur. Then we write an aND
ed expression using the inputs. The first
binary1output occursif X=0and Y =0.
Therefore, the equation for that state is:

Z=XY
The other binary 1 output occurs when

X=1and Y =1. Therefore, the input ex-
pression is:

Z=XY

To complete the Boolean expression.
we simply Or the two AND expressions
together. That is because the output
becomes binary 1 under either con-
dition. The resulting output expression:

Z=XY +XY

The resuiting circuit is illustrated in Fig.
21B.

Let's take it one step further, and de-
velop a more complex circuit. Sup-
pose we have three inputs and the
desired outputs are indicated by the
binary 15 in the truth table of Fig. 22A.
To develop the output expression for

ABC
ABC
ABC
A
A _DfRBE+A§E+ABE
8 ABC

o)

Fig. 22. The conditions for a binary 1
output (A) must be ored together to
produce the Boolean equation (B).

the truth table, write an AND expression
using the input variable for each place
where a binary1 appears in the output.
The first AND expression is ABC. The vari-
able with the Nor sign is used when @
binary 0 appears at the input, and the
variable itself is used when a binary-1
state occurs.

The other two conditions that pro-
duce a binary- output are ABC and
ABC. Finally the output expression is
built by oring together the three input
conditions that cause a binary 110 ap-
pear:

) D=ABC+ABC+ABC
The corresponding circuit is shown in
Fig. 22B.

That procedure works regardless of
the number of inputs used. As the
number of inputs increases, the
Boolean expressions become far more
complex. As it fums out, most of the
larger more complex networks can be
simplified by the use of Boolean rules.
In the next installment, we will intro-
duce the Boolean rules and show you
ways to tum complex circuits into sim-
pler ones.

But first, another exercise problem
can be found on page 94. Why not tum
there now to check your understand-
ing. The answers to all of problems in
this month’s installment can be found
there. []

(Continued on page 94)

6861 AHVNNVF

~
©o

