
Q

CO(o o re-
HOW THEY WORK, HOW YOU USE THEM, WHAT THEY CAN DO FOR YOU

Bytes, bits, decimals, octals, hexadecimals:
what are they? Here's the easy -to- understand
story of computer machine language.

Numbers such as 96 or 302,529 are
made up of digits; the number 96 consists
of the two digits 9 and 6, while the
number 302,529 consists of six digits. In
general, all the numbers we use in day -
to -day life are made up of the ten differ-
ent digits 0 through 9. The number sys-
tem we use is called the decimal system
since the prefix deci means ten. It isn't
just coincidence that we also happen to
have exactly ten fingers. Early man used
his fingers for counting, and another
word for finger is digit. If we had twelve
fingers, then most likely our numbers
would use twelve different digits rather
than just ten.

As the name implies, digital computers
also work with digits. But since a compu-
ter does not have ten fingers, there is no
reason why it should have to use exactly
ten different digits. Because it happens
to be convenient to build computers that
way, computers work with just two dif-
ferent digits-0 and 1. Since these digits
have only two values, we call them bi-
nary digits, or bits. Putting several of
these bits together gives us a binary
number such as 010 or 11001011.

The reason why bits are used rather
than the decimal digits 0 through 9 is that
a 0 or 1 is very easy to represent in an
electrical circuit. Inside the computer,
the 1 may be represented by a voltage on
a wire, while the 0 is represented by
either no voltage or a very small voltage.

Following the same idea, bits may be
stored in a punched card as a hole for a 1

and no hole for a 0. In general, it is easy
to store a 1 as the presence of something
while a 0 is the absence of it. This can
apply to the voltage in a circuit, a hole in
a card, a magnetic field in a piece of
recording tape, or a light in a bulb. Since
there are only two possible bits, there is
little chance for error -the bit is either a 0
or a 1 with no digits between.

The disadvantage of binary numbers
is that each digit only carries a very small

amount of information. Large numbers
require very many digits to express
them. For example, the binary number
1001101001 seems quite large and yet is
equal to only slightly more than six
hundred. As a result even fairly common
numbers turn out to be quite long in
binary. This creates problems, not so
much for the computers as for the people
who use them. More on this in a mo-
ment.

Binary numbers would not be too use-
ful if there wasn't general agreement on
what they mean and how to use them,
and, if it was difficult to convert numbers
to and from binary. Fortunately, this is
not the case. Binary numbers follow
some very simple rules.

Starting at the right end of a simple
binary whole number, the rightmost bit
has a value of 1 and each bit to its left has
a value twice that of the one to its right.
For example, in the binary number 101
the rightmost 1 has a value of 1. The digit
to its left has a value of 2. The next digit a
value of 4, and so on. To convert this
number from binary to decimal we
would simply write the value of each
digit underneath it, multiply each digit
by its value, and add the results, like
this:

1 0 1

x4 x2 x1

4 +0 +1 =5
It is fairly easy to make a table of some

simple binary numbers and their deci-
mal equivalents:

Binary Decimal
000 0

001 1

010 2

011 3
100 4
101 5
110 5

111 7

BY PETE STARK

To continue the table, we would have to
add more bits to the binary numbers,
since with three bits we can only go up to
7. Four bits will take us from 8 to 15, but
then we must add more bits so that quite
a few may be needed to represent some
common numbers in binary.

When a binary number is handled by a
computer, the number always has a cer-
tain number of bits regardless of the
decimal number it represents. If fewer
bits are needed, then the computer pads
the number with zeroes at the left. Each
binary number as stored by the compu-
ter is called a word . Its length is called the
word length.

Large computers may have word
lengths of 32, 36, or even 60 bits; small
computers may have word lengths of
just 8 or 12 bits. Eight -bit words, or
eight -bit chunks of larger words, are
often called bytes. Most of the small
home or hobby computers use such byt-
es.

When a small number is stored in a
byte, extra zeroes are inserted in front of
it to stretch it to the full eight bits, as in
00000101 which is simply 101, or 5 in
decimal. The largest number which will
fit into a byte is one having eight ones,
that is, 11111111. In decimal, this trans-
lates into 255, not large enough for most
applications.

To store really large numbers having
perhaps ten or twenty bits we must use
two or more bytes. For example, the
binary number 1001101001 would be
stretched out to a full sixteen bits by
adding zeroes to make it
0000001001101001. Then the first eight
bits would be handled as one byte and
the last eight as another.

Although the use of binary numbers is
convenient from the point of view of the
computer's internal circuitry, it is quite
difficult for us humans who have to look
at them printed on paper or displayed on
a TV screen. Just a few minutes spent

JUNE 1978 11

www.americanradiohistory.com

www.americanradiohistory.com

studying long binary numbers or trying
to tell them apart is enough to give
anyone a headache. For this reason we
use octal or hexadecimal numbers rather
than binary.

An octal number is one which uses
only the digits 0 through 7. Eights and
nines are not allowed. It is called octal
since the prefix oct means eight. This
number system has exactly eight differ-
ent digits. It is used because the conver-
sion between binary and octal is very
simple and requires only a small amount
of circuitry. In fact, the computer cir-
cuitry which connects to a keyboard or
printer already has most of what is
needed to do the conversion.

To convert a binary number to octal,
the computer simply separates the bits
into groups of three and converts each
group into a decimal number from 0
through 7 using the conversion table we
have already discussed. For example,
the binary number 101101 would be split
into 101 and 101, which converts into the
octal number 55.

Octal numbers are a bit awkward
when the binary number to be converted
doesn't have the right word length. A
six-bit or nine -bit number is easily split
into groups of three, but an eight -bit
byte is not. The solution is to add a few
extra zeroes at the left if needed. For
instance, the byte 01010011 would be
stretched to 001010011, then split into
001 -010 -011 and converted into octal
123.

Hexadecimal numbers, on the other
hand, use sixteen different digits (hex
means six and deci means ten.) Since we
only have the ten digits 0 through 9
available, hexadecimal numbers 'invent'
a few more digits simply by calling them,
A, B, C, D, E, and F; these letters take the
place of the digits which would stand for
10 through 15 if they existed. We can
prepare a short table which relates bi-
nary and hexadecimal (or hex for short):

Binary Hex
0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A
1011 B
1100 C
1101 D

1110 E

1111 F

Converting a binary number to hex is
done by splitting it into groups of four
bits, and then converting each group
with the aid of this table. For instance,
the byte 01010011 would be split into
0101 -0011 and translated into 53 in hex.

Octal and hexadecimal numbers, al-
though not internally used by the corn-

12 MODERN ELECTRONICS

puter, are often used by the people who
have to communicate with computers. It
is easier to read and visualize a short
octal or hexadecimal number than a long
binary number. It would be most con-
venient if everything could be done in
decimal, but this is often not practical for
various reasons and octal or hex num-
bers are the best compromise.

But why use both octal and hexadeci-
mal? Why not just one? The answer lies
in the fact that some binary numbers are
easily split into groups of three bits but
not four. Others are easy to split into
groups of four but not three. Obviously a
byte of eight bits is easier to split into two
groups of four than into three groups of
three bits. On the other hand, a fifteen -
bit word would be easily split into
groups of three bits, but not four. Hence
the word length of the computer deter-
mines which number system is used
much of the time.

Since most microprocessor -based
home and hobby computers use eight -
bit bytes, most use hexadecimal num-
bers. Many years ago, hexadecimal was
almost unknown. Even early microp-
rocessors such as the Intel 8008 used
octal rather than hex (despite their 8 -bit
bytes.) But today hexadecimal numbers
are most common. A popular miscon-
ception is that hex is modern and octal is
in some way old fashioned.

This prejudice against octal showed
up recently when Heath introduced
their H8 computer system which uses
the 8 -bit 8080A microprocessor. At a
time when most 8080 systems used hex,
Heath chose to use octal numbers in all
their programs and literature. Almost
immediately there were some who
claimed that Heath made a mistake in
going back to an 'obsolete' system. Yet
there are many good reasons for going to
octal rather than hexadecimal.

Look at the 8080 microprocessor a bit
more closely. It is an 8 -bit computer, and
we have agreed that splitting an 8 -bit
byte into three -bit groups requires the
addition of an extra zero at the left. This
is more awkward than simply dividing it
into two groups of four bits. If this were
all there were to it, then hex would be
preferable to octal. But there is another
side to the story.

In any computer system, a program is
required to instruct the computer what
to do. This program is written in a special
code called a programming language. The
most fundamental language (and the
only on which the computer under-
stands without prior translation) is
called machine language. In machine lan-
guage simple machine instructions are
coded as binary numbers and stored in
the computer's memory.

In the 8080 processor there is a group
of temporary storage circuits called regis-
ters, used to hold numbers or other data
while they are being processed. These
are called the A, B, C, D, E, H, and L

registers. A common instruction in a
program is to move a number from one
register to another. Let's look at a typical
pair of these 'Move' instructions.

Move A to B: 01000111
Move B to A: 01111000

There is something very orderly about
these machine language codes. Both
start with 01, and that means 'Move'.
The next three bits specify the destination
where the number is to be moved to. The
last three bits specify the source of the
data. Now rewrite these codes in
hexadecimal:

Move A to B: 47
Move B to A: 78

There certainly doesn't seem to be much
sense to this. But rewrite in octal and a
pattern emerges:

Move A to B: 107
Move B to A: 170

When you write down some more possi-
ble Move instructions, the picture be-
comes much better:

Instruction
Move A to B
Move A to C

Move A to D

Move A to E

Move B to A
Move C to A
Move D to A
Move E to A

Octal Hex
107 47
117 4F
127 57
137 5F
170 78
171 79
172 7A
173 7B

In octal these instructions make some
sense. The first digit is always a 1 for
Move. The second digit specifies the
destination. The third specifies the
source. In hex there is not much similar-
ity.

Now, when you consider that the 8080
has seven of these registers, plus an
external memory which is programmed
as if it were an eighth register, there are
56 possible Move instructions. A
number can be moved from any one of
eight sources to any one of the other
seven destinations, and 8x7 =56. If you
had to memorize the 56 codes, which
would be easier, octal or hexadecimal?
Octal, of course.

The Move is just one of many 8080
instructions. Many of the others are
based on the same kind of source -to-
destination idea. In each case, octal nota-
tioñ makes the instructions easier to re-
member than hexadecimal.

So there is more to choosing between
octal and hexadecimal than just the word
length of a computer. We choose octal
over hex (or vice versa) because it makes
programming simpler or more obvious,
even though it may at first seem a bit
more awkward. Either way, whether
you write it, 1750 or 3E8, it is still easier
for a human than to write it as
001111101000.

www.americanradiohistory.com

www.americanradiohistory.com

