
elektor electronics - 9/200660

HANDS-ON FPGA

Paul Goossens

Welcome back to the beginner-
friendly course we run in
support of our extremely
popular FPGA Development
System. This month we
examine the simulation
capabilities of Quartus.
Simulation makes it a lot
easier to design circuits and
track down errors in your
designs. The accompanying
examples show how you can
use the audio interface of the
prototyping board.

It’s handy to be able to test your
design during the design process.
VHDL allows you to create test
benches, which make it a lot easier to
test and simulate VHDL designs.
Unfortunately, Quartus does not sup-
port VHDL test benches. It has a
graphic simulator instead. Although
the simulator provides less user func-
tionality, it is easier to use. The simu-
lator is more than adequate for most of
the sample applications in this course.

Virtual
The simulator is actually a combination
of a virtual signal generator and a logic
analyser. Here we use it to simulate
the operation of an audio interface
implemented with the hardware.

Codec
The ‘ex10’ sample application
described in this instalment uses the

audio codec (IC12) on the prototyping
board. From the schematic diagram,
you can see that a 12.288-MHz clock
signal is applied to this IC. The clock
signal is also routed to an I/O pin
(B12) of the FPGA. Unfortunately, that
was not shown in the original
schematic diagram.

The data transfer clock (BCKIN) is sup-
plied by the FPGA. This clock signal
must be synchronised to the 12.288-
MHz clock signal.

The timing diagram for data transfers
between the codec and the FPGA is
shown in Figure 1. As you can easily
see, it takes 156 clock pulses of the
CODECCLK signal to transfer a set of
samples for the two channels. 

The frequency of that signal on the pro-
totyping board is 12.288 MHz. If you
divide that figure by 256, you arrive at
a sampling rate of 48 kHz.

Counter

All communications are synchronised
to this clock. The simplest approach is
to first create a counter that counts
how many pulses of the CODECCLK
signal have been generated. This sig-
nal is assigned the name ‘12_288MHz’
in our design.
This counter is also represented by the
COUNT signal in the PCM3006.VHD
file, which is declared on line 54 as an
8-bit unsigned number. This signal can
thus take on values the range of 0–255,
which is exactly what we need.
We let this number increment in syn-
chronization with the CLK signal
(12.288 MHz).
The NEW_COUNT signal always con-
tains the value that COUNT must
assume on the next clock pulse. This is
done by the following line:

NEW_COUNT <= 
(COUNT+1) MOD 256;

FPGA Course (4)FPGA Course (4)



This line is not in a process, so the
function is evaluated each time
COUNT changes.
The value of NEW_COUNT is loaded
synchronously into COUNT in line 71.

Simulation
Now you can test this code using the
Quartus simulator. For that purpose,
we created a simulation file named
‘ex10-1.vwf’. If you open this file, you
will see several signals in the left-hand
column and plots of the input signals
versus time on the right.
Before you can use this file, you must
configure Quartus so the simulator can
use the file.

To do that, select ‘Settings’ in the
‘Assignments’ menu. In the new win-
dow that appears, select ‘Simulator
Settings’. Enter the file name ‘ex10-
1.vwf’ in the Simulation Input box.
The simulation starts as soon as you
select ‘Start Simulator’ in the ‘Process-
ing’ menu. The result of the simulation
(Figure 2) is displayed after the simula-
tion is completed.
What matters at this point is the
COUNT signal. As you can see from
the simulation results, this counter is
indeed incremented by 1 each time a
rising edge occurs on the 12.288-MHz
signal line. Note that COUNT has
been changed to a 7-bit number due
to optimization. Later on we’ll explain
why that is possible. What matters
now is that the counter is synchro-
nized to the clock.

Alias
The next step is to generate the data
transmission clock (BCKIN). This sig-
nal must be low for two clock intervals
of the main clock signal, after which it
must be high for two clock intervals.
That corresponds exactly to the third
bit of the COUNT signal. This signal
(called BCKOUT in the VHDL file) can
thus be used at the output without any
further processing.

The same holds true for the LRCK sig-
nal. This signal must be low for the
first 128 clock pulses and then high for
the following 128 clock pulses. That
corresponds exactly to the most signif-
icant bit (highest-order bit) of the
COUNT signal. That means you can
use bit 7 of the COUNT signal as
LRCKOUT.
The new status of LRCKOUT can be
defined using the following line:

NEW_LRCKOUT <=
NEW_COUNT(7);

Another way to do this is to use the
‘alias’ keyword, which allows a signal
to have more than one name. If you
write

ALIAS NEW_LRCOUT : STD_LOGIC is
NEW_COUNT(7);

you can use the signal NEW_LRCOUT
in the rest of the source code. The com-
piler will know that this signal is iden-
tical to NEW_COUNT(7).

Synchronous
Data bit reception is synchronised to
the rising edge of BCK. The signal
POSEDGE_BCK is used to detect the
rising edge of BCK. It must indicate
whether the BCK signal changes from
low to high on the next rising edge of
the system clock.

That requires knowing the current sta-
tus of BCK and the status after the
next clock pulse. These signals are
COUNT(2) and NEW_COUNT(2),
which are also assigned the names
BCK_INT and NEW_BCK by alias
statements in lines 62 and 63.
The POSEDGE_BCK signal is gener-
ated by the following line:

POSEDGE_BCK <= NEW_BCKOUT
AND (NOT BCKOUT_INT);

Data must be sent on the falling edge
of BCK as shown in Figure 2. The signal
NEGEDGE_BCK is generated in a sim-
ilar manner for his purpose.

Glitches
Now it’s time to look at these new
signals in more detail. First configure
the settings to have the simulator use
the file ex10.vwf, and then start the
simulation.

You will see the signals
NEGEDGE_BCK, POSEDGE_BCK and
LRCIN in the simulation results. The
last signal of this group is the same as

9/2006 - elektor electronics 61

�����

�����

��� �	 �
 �� � � �	 �
 �� � �

��� � � � �
 �	 � � � �
 �	

���� ����

�� ��

��

��

��

��

�� ��

��������� ��

� � � � �	
 �		

������ � � � ��

���� ������� �� �� �������

��! ��"

Figure 1. Timing diagram for data transfers between the codec and the FPGA.

Part 4: Simulation



the LRCOUT signal in the VHDL
design.
The POSEDGE_BCK signal and its
counterpart NEGEDGE_BCK are gen-
erated using combinational logic. That
means these signals are not synchro-
nised by flip-flops. The disadvantage
of this is that these signals can briefly
assume an incorrect level if the input
signals have different path delays.
That phenomenon appears in the sim-
ulation in the form of short pulses. The
technical term for these short pulses is
‘glitches’.

Shift registers

The incoming and outgoing data are
read in and ‘pushed out’ by shift regis-
ters. On each rising edge of the BCK
signal, the contents of the SHIFTIN
register are shifted left by one position.
The incoming data is stored in bit 0.
The transmit shift register, SHIFTOUT,
operates in a similar manner. It shifts
the bits by one position on each falling
edge of BCK. The most significant bit
of this shift register is also the serial
data output.

Each time a new set of samples must
be transmitted, this shift register is
loaded using the R_IN and L_IN sig-
nals. The contents of the receive shift
register are also loaded into the
LEFT_OUT and RIGHT_OUT registers.

Interface
At the same time, the NEW_SAMPLE
output is set high for one clock inter-
val. This signal indicates that a new
set of samples has arrived. The periph-
eral logic can use this signal to process
the new data.

Data must be applied to the inputs of
the RIGHT_IN and LEFT_IN inputs in
order to be transmitted. A high level at
the LOAD input causes the data on the
inputs to be stored, and it will then be
sent with the next transmission.

Example
In the example, you can see that the
data outputs are connected directly to
the associated data inputs. The
NEW_SAMPLE output signal is con-
nected to the LOAD input.
This causes the received samples to be
sent back to the codec on the next
transmission. In other words, the sig-
nals at the inputs appear unchanged
at the outputs after a short delay.

Another simulation
Overall operation of the circuit is
illustrated by the file ex10-3.vwf . In
this simulation, we used a random bit
pattern for DOUT. The simulation
clearly shows that this bit stream
appears at the DIN output after
approximately 31 µs. The received
data is thus sent back to the codec
without any modification.

As you can easily see, several signals
are missing in this simulation. The rea-
son for this is that these signals ‘dis-
appeared’ in during compilation,
because the compiler attempts to gen-
erate a design that is compact a pos-
sible. As a result, certain signals may
become redundant, and the compiler
will not implement these signals in
the FPGA. As a result, Quartus cannot
simulate the signals during the simu-
lation session.

Filter
The bypass function described above
is not particularly useful in practice. A

elektor electronics - 9/200662

HANDS-ON FPGA

-80

+0

-72

-64

-56

-48

-40

-32

-24

-16

-8

d
B
r

A

10 20k20 50 100 200 500 1k 2k 5k 10
060025 - 4 - 13

k

Hz

LOWPASS 500Hz
BANDPASS 1kHz - 4kHz

Figure 3. The characteristics of the various filter sets.

Figure 2. Data is transmitted on the falling edge of BCK, as can be seen from the simulation.



more useful technique is to process the
input signal and then output the
results via the codec.

The example file ex11 implements an
audio filter. Communication with the
codec takes place via the previously
described PCM3006.VHD core.
The samples are processed in the
FIR.VHD code segment. The filter oper-
ates on the FIR principle. ‘FIR’ stands
for ‘finite impulse response’. Filters of
this sort are often used in digital sig-
nal processing.

In a FIR filter, the passband character-
istics are determined by a set of
parameters called coefficients. These
coefficients can be modified as desired
in Quartus. Just as in the previous
instalment, the Memory Content Edi-
tor is the tool for that purpose. The
coefficients are stored in the memory
segment named ‘COEF’. The memory
segment named ‘IN’ holds the most
recent 128 audio samples.
Several hex files with coefficients are

available for the project so you can
easily try out various filters. The charac-
teristics of the various filter sets are
shown in Figure 3.

Signal generator
The final example, ex12, implements
a simple sinewave generator. It prod-
ucts sinusoidal signals on the out-
puts. The signal on the right channel
lags the signal on the left channel by
90 degrees.

The sinusoidal signals are generated
using an arithmetic unit that can com-
pute sine and cosine values. This unit
needs an angle (phase) and an ampli-
tude (mag) for this purpose. The unit
then calculates the corresponding X
(cosine) and Y (sine) values.

The arithmetic unit uses the CORDIC
algorithm, which is suitable for calcu-
lating goniometric functions using sim-
ple operations. CORDIC has the unique
property that it multiplies the length of

each vector by approximately 1.645.
That means you have to ensure that
the results fit within the range of a 16-
bit signed number, so the input value
must not exceed 4DDO. If you use a
larger value, the resulting sinewave
will be highly distorted.

Signal
To obtain a sinusoidal signal, a con-
stant value must be applied the mag
input. In addition, the phase must be
increases slightly for each sample.
That is the function of the
mag_phase_accu block. Each time a
new sample is sent, the signal
new_sample goes high briefly. That
tells this block that it must increment
the value of phase by a certain amount.
That amount can be set using the dip
switches. The larger the amount, the
higher the frequency at the output of
the codec. The block cordic then per-
forms the calculation and sends the
result to the codec.

(060025-4)

9/2006 - elektor electronics 63

CORDIC
CORDIC (Coordinate Rotation Digital Computer) is a method
that can be used to implement goniometric functions efficient-
ly in digital systems. It describes how to calculate goniometric
functions using only add and shift operations.

CORDIC uses vectors. These vectors can be described as a
combination of real and imaginary numbers (corresponding
to their X and Y coordinates), or as a combination of a length
and an angle.

If two vectors (A and B) are multiplied together, the length of
the resulting vector (C) is equal to the length of vector A times
the length of vector B. The angle of the resulting vector is the
sum of the angles of vector A times and vector B. This multi-
plication takes the following form in X,Y notation:

Xc = (Xa × Xb) – (Ya × Yb)

Yc = (Ya × Xb) + (Xa × Yb)

As you can clearly see, this requires using multiplications. If
we ensure that these multiplications are all powers of 2,
everything becomes very simple. Multiplication by a power of
2 (such as 2–2) is equivalent to shifting bits. That is very easy
to do using digital logic.

The CORDIC method describes how to calculate goniometric
functions by multiplying an initial vector by vectors with X
coordinates equal to 1 and Y coordinates that are always
powers of 2. As a result, this method can be implement very
efficiently in digital circuitry.

Example
Consider the following expression as an example: 
100 × cos(30°). As our starting point, we take the vector
(100, 0), which has length of 100 and an angle of 0°. The

desired angle is greater than the current angle, so the first
operation is to multiply the vector by the vector (0, 1). Our
vector now has an angle of 90°. That is greater than the
desired angle.

The next step is thus to reduce the angle. For that purpose,
we multiply by the vector (1, –1). Note that the Y value of this
vector is negative, so angle of this vector is also negative.

After this multiplication, the angle of our vector is (90° – 45°)
= 45°. This is still greater than 30°, so the next step is to mul-
tiply by the vector (1, –0.5). This causes to angle of our vec-
tor to become (45° – 26.57°) = 18.43°.

The angle is now smaller than what we want. We thus use
the vector (1, 0.25) in the next step. That increases the angle
by 14.04°. After this step, the angle of our vector is 32.47°.
We get closer to 30° with each step, so the result is more
accurate with each step.

Each multiplication changes the length of our vector as well
as its angle. In the present case, we now have a vector with
a length of 100 × (1 × 1.41 × 1.12 × 1.03) = 162.66. That
means we have to multiply this value by a correction factor.
Another option would be to make the length of the initial vec-
tor 61.5 in order to finally obtain a vector with a length of
100. This multiplication factor is always the same, regardless
of which angle we want.

No matter which option we choose, the desired cosine value
is given by the X coordinate of our vector, while the Y coordi-
nate represents the sine value. We get those values for free!

X Y Angle Length

0 1 90° 1

1 1 45° 1.41

1 1/2 26.57° 1.12

1 _ 14.04° 1.03

…. …. …. ….




