
www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 1

MICRO
SERIES

Jim Lyle

o

USB Primer

P
ar

t

of 4
2

ne of USB’s
earliest and most

important goals was
to make it easy to use. It

has to be easy because the computer
marketplace is rapidly expanding to
include increasingly less-technical users.

These users don’t know what an
interrupt or DMA channel is, let alone
how to finesse them into a working
configuration. Nor should they have to.
Even highly technical users are tiring
of the difficulties involved in config-
uring or upgrading their computers.

From my perspective, it’s not that
difficult to install an ISA or PCI card.
I’ve been doing this for years and I
know how to set the jumpers (plug-
and-play usually takes care of it
anyway). I rarely get the cables on
backwards anymore or offset by one
row of pins, either.

But, one part of the process still
strikes fear into my heart. One part
of the installation never goes quite
the way the instructions claim
(when I finally do get around to
reading them). There’s one element

2

Classes and Drivers

Figure 1 —USB uses well-defined protocol layers to reduce
complexity and improve standardization.

Now that we
have some
of the USB

basics from Part 1,
we’re raring to go with
USB! Jim wonders if
an OS can provide all
the drivers for the
many devices there
are today. With USB
classes, he explains,
it’s entirely possible.

4

Client software

USB class driver

USB host driver

USB host controller

Function

Class layer

“Standard request” layer

USB interface

Host system Host system

that rarely fails to “blue screen” the
machine repeatedly and strangely:

THE DRIVER
I’ve spent days trying to install the

drivers for a seemingly simple device.
Sometimes, it’s incompatibilities
with other drivers or software. Some-
times, the driver wasn’t tested well or
has a bug and needs a patch or up-
grade. Sometimes I never do find the
problem.

Wouldn’t it be nice if all the driv-
ers you ever needed came with the OS?
You’d just plug something in and it
would work. No more installation
headaches; no problems moving from
one machine to the next or even from
one type of machine to another (e.g.,
from PC to Mac to Linux to worksta-
tion). There would be reduced disk
and memory requirements, too, and
one-stop shopping for upgrades. Over-
all, compatibility and reliability
would improve dramatically.

Developers would find tremendous
advantages as well, bringing more
products to more platforms in less
time and with less effort. Adding USB
would no longer require the expertise
(and the time, often in the critical path)
needed to write drivers. Testing and
support requirements would be reduced,
and so would the overall project risk.

There are thousands of different
kinds of devices already, and more are
on the way. An OS can’t possibly
provide all the drivers for all of these
types of devices. Or can it?

2 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

Although lots of different products
are or will be available, many of them
have more similarities than differences.
In some cases, identical devices are
produced by different manufacturers.
In other cases, the products are differ-
ent but the functions are similar.

Consider mice, track balls, and
touchpads. They are physically differ-
ent (and there’s variation even within
those broad categories), but the overall
function is the same—moving a cursor
on the screen. They all provide an x
and y displacement and two or more
buttons (or the equivalent).

What about full-page scanners,
hand scanners, digital still cameras,
and slow-scan video cameras? All
produce an image of some form. Or
printers? Color or black-and-white,
laser or inkjet, Postscript or not—all
put an image on paper.

With a little insight and forethought,
most devices can be grouped into fewer
categories, each with a common pur-
pose and set of requirements. Then, it’s
possible to define a common API for
each category and therefore the re-
quirements of a single, generic driver
suitable for use with any of the de-
vices in that group. USB is trying to
accomplish exactly this by defining a
variety of device classes.

The USB specification defines the
mechanical and electrical requirements
for all USB devices as well as the fun-
damental protocols and mechanisms
used to configure the device and trans-
port data. The class definitions are
add-on documents that refine the basic
mechanisms and use them to establish
the class-specific blueprint for both
the device and the generic driver.

There will always be unique devices
as well as manufacturers that choose
to differentiate their product from the
competition within the driver. For
these cases, vendor-specific drivers
will always be necessary.

But for most products, it’ll be pos-

sible to use generic drivers that are part
of (or included with) the OS. That’s
one of the most important advantages
of USB.

Comm, Printer, Image, Mass Stor-
age, Audio, and HID (human interface
device) are a few of the defined USB
classes. Some devices may fit into
more than one category.

For example, there are combination
printers/scanners. Although physically
this is one device, logically it is two.
Part of the device fits into the Printer
class and uses that generic driver. Part
of it fits into the Image class and uses
that driver. Devices in more than one
class are called compound devices.

DEVICE CLASSES
Windows 98 includes many but not

all of the USB class drivers. This situ-
ation is unfortunate, but it couldn’t be
helped because some of the class defi-
nitions weren’t finished in time (some
still aren’t complete).

Future releases and service packs
will add additional class drivers until
most or all of them are available and
supported. Apple and Sun Microsystems
also have class driver implementations
available or underway for their respec-
tive platforms.

As the name implies, HIDs are
designed for some kind of human input
or output. The most common examples
are keyboards, pointer devices like mice,
and game controller devices such as
joysticks and gamepads.

This class also includes things like
front panels or keypads (e.g., on a tele-
phone or a VCR remote control), dis-
play panels or lights, as well as tactile
and audible feedback mechanisms—
essentially, anything you might press,
twist, step on, measure, move, read,
feel, or even hear.

Seemingly, this class would include
almost anything connected to a com-
puter, but it doesn’t. Its primary pur-
pose is control. Although it’s very
flexible, this class definition doesn’t
handle large amounts of data well. It
doesn’t need to; other device classes
can better serve that purpose.

In a USB speaker, for example, the
volume, tone, and other controls fall
well within the HID class. But, the
sound channels are data intensive, so

they are better handled by the Audio
class. In fact, many products in the
other classes are compound devices
with HID handling the controls.

Given the diversity of USB applica-
tions in general and HID devices in
particular, how can any one driver hope
to do all the things required by its class?
The first part of the answer comes
from the physical interface. There’s
only one! All USB devices communi-
cate with the host via their USB port.

This sounds self-evident, but the
implications are tremendous. The USB
port works according to the same
basic principles for all devices, in all
modes of operation. The class driver
never needs to worry or know about
ISA or PCI buses, SCSI, IDE, or ATAPI
interfaces, serial ports, parallel ports,
keyboard ports, mouse ports, game
ports, or anything else for that matter.

The class driver doesn’t even need
to know much about USB ports. Even
that physical interface is abstracted
and managed by the USB Host driver.
This abstraction, or layering, is another
key concept that makes class drivers
possible.

Each layer has its own responsibili-
ties and it uses APIs provided by the
lower levels to accomplish them. It
doesn’t need to know how the lower
levels work or which ones are present.

Figure 1 shows a simplified view of
the various protocol layers that might
be present for a USB device. Note that
there are connections at all levels, but
most of these are logical.

The single physical connection is
between the USB host controller and
the device’s USB interface and is at the
lowest level (shown in black). This
layer is the hardware—the cables,
connectors, and state machines.

The first layer of software, which
is required in all cases (in light blue), is

Figure 2 —USB devices use logical “pipes” to transfer
information. This device uses two.

Host system USB device

Control

Interrupt

Figure 3 —This sample report for a USB joystick shows
you one possible data organization.

Byte 0:

Byte 1:

Byte 2:

Byte 3:

<reserved> data

X data

Y data

4 3 2 1
Buttons padding

(unused)

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 3

nous data to the host. This
pipe is poorly named; USB
doesn’t support true inter-
rupts but rather enables the
device to predefine a maxi-
mum poll interval. This way,
if a key is pressed, the mouse
moved, or the joystick
steered, the device can report
in a timely fashion without a
specific request (from the
driver) to do so.

The HID class driver starts
with the physical/standard request
API common to all USB devices and
adds the HID standard pipe structure
and command superset. The differ-
ence from one HID device to another
is the data it returns and what the data
means.

HID data is packaged into structures
called reports. Figure 3 shows a sample
report for a joystick. It’s simple and
composed of four bytes.

The first byte is unused here but is
reserved for a throttle position on

the USB host driver on the computer.
On the USB device it is the essential
firmware that manages the hardware
and provides the standard requests
(also called “chapter 9” requests be-
cause they are in that chapter of the
specification). There’s a logical connec-
tion between these layers for configur-
ing and controlling the USB interface.

The device driver layer comes next
(shown in grey) and is usually the class
driver(s) on the host side and the cor-
responding firmware on the device side.
The logical connection at this level
carries class-specific commands and
requests, although these often use
protocols modeled after those in the
layer below.

The top (dark blue) layer is the one
the user sees and cares about. For ex-
ample, the client software on the host
might be a flight simulator and the
associated function might be a joystick.
At this layer, the only thing the client
software (and user) cares about are the
joystick inputs. It doesn’t care (and
doesn’t need to know) how those inputs
are read, packaged, and transported.

PROTOCOL LAYERS
To communicate with a USB device,

the host software opens up a series of
pipes, and uses them to transport data.
The pipes correspond to hardware end-
points, which are individual channels,
usually with dedicated buffers or FIFOs.

Pure HID devices use only two
pipes (see Figure 2). The control (default)
pipe, required by all USB devices, is
used for receiving and responding to
specific requests or commands. The
standard requests use this pipe, and
many of the class definitions (includ-
ing HID) add class-specific requests.

The interrupt pipe sends asynchro-

another model. The second and third
bytes are the x and y coordinates, respec-
tively. The fourth byte contains infor-
mation about the four buttons (one
button per bit, with four unused bits
that are zero-filled to pad out the byte).

This is just one example for one
joystick. Other HID devices have
different report structures. Other joy-
sticks may have other structures, too.
Some may order the data differently or
have additional functions and capa-
bilities (e.g., force-feedback).

SAMPLE REPORT
Obviously, the HID class driver

can’t keep report maps for all possible
implementations of all possible devices.
The device has to be able to describe
the report to the class driver. This too
is in keeping with standard USB
mechanisms.

USB devices use predefined data
structures called descriptors to describe
their identification, capabilities, re-
quirements, and protocols. The USB

unsigned char ReportDescriptor[59] = {
 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
 0x15, 0x00, /* LOGICAL_MINIMUM (0) */
 0x09, 0x04, /* USAGE (Joystick) */
 0xa1, 0x01, /* COLLECTION (Application) */
 0x15, 0x00, /* LOGICAL_MINIMUM (0) */
 0x26, 0xff, 0x00, /* LOGICAL_MAXIMUM (255) */
 0x75, 0x08, /* REPORT_SIZE (8) */
 0x95, 0x01, /* REPORT_COUNT (1) */
 0x81, 0x03, /* INPUT (Cnst,Var,Abs) */
 0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
 0x09, 0x01, /* USAGE (Pointer) */
 0xa1, 0x00, /* COLLECTION (Physical) */
 0x09, 0x30, /* USAGE (X) */
 0x09, 0x31, /* USAGE (Y) */
 0x95, 0x02, /* REPORT_COUNT (2) */
 0x81, 0x02, /* INPUT (Data,Var,Abs) */
 0xc0, /* END_COLLECTION */
 0x15, 0x00, /* LOGICAL_MINIMUM (0) */
 0x25, 0x01, /* LOGICAL_MAXIMUM (1) */
 0x75, 0x01, /* REPORT_SIZE (1) */
 0x95, 0x04, /* REPORT_COUNT (4) */
 0x81, 0x03, /* INPUT (Cnst,Var,Abs) */
 0x05, 0x09, /* USAGE_PAGE (Button) */
 0x19, 0x01, /* USAGE_MINIMUM (Button 1) */
 0x29, 0x04, /* USAGE_MAXIMUM (Button 4) */
 0x55, 0x00, /* UNIT_EXPONENT (0) */
 0x65, 0x00, /* UNIT (None) */
 0x95, 0x04, /* REPORT_COUNT (4) */
 0x81, 0x02, /* INPUT (Data,Var,Abs) */
 0xc0 /* END_COLLECTION */
};

Listing 1 —This ReportDescriptor function corresponds to Figure 1. USB devices use descriptors
to describe themselves to the host PC.

Figure 4 —This schematic shows you a typical connection between
the USBN9602 and the USB connector (or cable).

4 Issue 107 June 1999 CIRCUIT CELLAR ® www.circuitcellar.com

spec defines device and configuration
descriptors that must be provided by
all devices. The HID class definition
adds information to these and goes on
to define a report descriptor.

The report descriptor provides the
map that the HID class driver needs
to understand and interpret the report.
The structure of the report descriptor
is complex, though flexible. Fortunately,
it doesn’t complicate the device-side
firmware because it is a data structure
that can be written and compiled
externally and then remain constant.

Listing 1 shows a sample report
descriptor. The details are beyond the
scope of this article, but note that it
defines the type of application, size,
maximum and minimum values, and
subtypes of the various report fields.

So, a class-compliant USB product
can entirely specify what it is and how
it works in the onboard firmware. This
makes the job of building, testing, and
modifying a USB interface easier and
more modular, and it brings it within
the capabilities of most developers.

In the joystick, there are only three
essential blocks—the ADC, USB inter-
face, and microcontroller. The micro
ties it all together, sampling the joy-
stick at intervals and passing the data
up through the USB interface (also
managed by the micro).

The only new element is the USB
interface. There are many varieties
available: some are integrated with the
microcontroller and some are separate
components. These interfaces contain

the state machines and buffers necessary
to transmit and receive serial data on
the USB. Conceptually, it’s a smarter-
than-average UART-like function.

National Semiconductor’s USBN-
9602 is one example of a USB inter-
face. One side is attached to the USB
cable or connector with a circuit like
the one in Figure 4. (This figure and
the ones following are not complete
schematics; they merely highlight
specific functions and interfaces.)

C3 and C4 bypass the USBN9602’s
internal voltage regulator (used by the
internal USB transceiver). R1 is the
required pullup that the device uses to
signal its presence (and data rate) on
the bus. The other components reduce
EMI and transmission line effects to
provide a cleaner signaling environment.

TYPICAL CONNECTIONS
The other side of the USBN9602 is

the data path to the microcontroller.
This data path is flexible and allows
easy use with a variety of serial or
parallel interfaces (there’s even a
DMA interface for high data rates).

Figure 5a shows a Microwire inter-
face to a COP8 microcontroller, as well
as the requisite dot clock oscillator
circuit. Figure 5b shows an SPI interface
to a 68HC11, and Figure 5c shows a
parallel interface to an 80C188EB.

To make it even easier, several USB
device manufacturers provide sample
firmware source code. For the USBN-
9602, National provides source code
in C with compiler options for all of

Figure 5 —This schematic shows a serial interface between the USBN9602 and a COP8 microcontroller. It also shows the oscillator circuit. b—Here’s another serial interface. In
this case, the microcontroller is a 68HC11. c—In this parallel interface to the USBN9602, the microcontroller is an Intel 80C188EB. But, this example would be typical of any
case where an 8-bit data bus is available.

a) b) c)

the microcontrollers mentioned here
(and readily ported to others). This
code is available on the web. Such
firmware provides a ready-made solu-
tion to the some or all of the necessary
device-side protocol layers.

If you want to build a mouse, key-
board, or other HID device, just modify
the descriptor tables and a few top-level
(function and class layer) firmware
routines. Even if you’re not building
an HID device, the firmware layer
that manages the USB interface device
and responds to the standard requests
provides a solid basis to start with.

PLAIN AND SIMPLE
USB simplifies the lives of developers

and experimenters alike. It’s possible
for OSs like Windows 98 to provide
most of the drivers you’ll ever need
for USB devices via class drivers, which
make USB easier to incorporate into
products and embedded systems. I

www.circuitcellar.com CIRCUIT CELLAR ® Issue 107 June 1999 5

Jim Lyle is a staff applications engineer
at National Semiconductor where he
has worked with flash memory, micro-
controllers, and USB products. Jim has
also worked as a development engineer
and technical marketing engineer for
Tandem Computers, Sun Microsystems,
and Troubador Technologies. You may
reach him at jim.lyle@nsc.com.

SOURCES

USBN9602, COP8
National Semiconductor
(408) 721-5000
Fax: (408) 739-9803
www.national.com

68HC11
Motorola
(512) 895-2649
Fax: (512) 895-1902
www.mcu.motsps.com

80C188EB
Intel Corp.
(602) 554-8080
Fax: (602) 554-7436
www.intel.com

RESOURCES

USB information, www.usb.org
HID device information, www.usb.

org/developers/hidpage.htm and
www.microsoft.com/hwdev/hid

USBN9602 firmware source code,
www.national.com/sw/USB

Circuit Cellar, the Magazine for Computer Applications.
Reprinted by permission. For subscription information,
call (860) 875-2199, subscribe@circuitcellar.com or
www.circuitcellar.com/subscribe.htm.

