
Serial Communication: UART, SPI, and
I2C

Computer Science & Engineering Department
Arizona State University

Tempe, AZ 85287

Dr. Yann-Hang Lee
yhlee@asu.edu

set 7 -- 1

Asynchronous Serial Communication -- UART

q Universal asynchronous receiver/transmitter
q Transmit bits in a single channel
v simplex (one way)
v half-duplex (one direction at a time)
v full-duplex (two way)

q A sequence of bits – packet or character
v ASCII code – 7 bits for 128 characters (alphabet, numerical,

and control)
v fixed length or variable length

v Start, stop, and parity bits

set 7 -- 2

EIA RS232

q Connection and signal
characteristics

q Data terminal equipment
and data communication
equipment

q Logic '1' (marking) – -3v to -
25v with respect to signal
ground

q Logic “0” (spacing) – +3v to
+25v

q Not assigned –between -3v
and +3v (a transition
region)

set 7 -- 3

RS232 (continued)

q Flow control (handshaking)
signals to avoid buffer
overflow or lock-up.

q RTS – to prepare the DCE
device for accepting
transmission

q CTS -- to inform the DTE
device that transmission may
begin

q DCD: data carrier detected
q DSR: DCE ready
q SG: system ground
q DTR: DTE ready

DTE FEP DB25 DCE MOD DB25

1 FG --------------- 1 FG

2 TX --------------> 2 TX

3 RX <-------------- 3 RX

4 RTS --------------> 4 RTS

5 CTS <-------------- 5 CTS

6 DSR <-------------- 6 DSR

7 SG --------------- 7 SG

8 DCD <-------------- 8 DCD

20 DTR --------------> 20 DTR

set 7 -- 4

Signal Format for ASCII Character

q data, start, stop, and (even or odd) parity bits

set 7 -- 5

Basic Operations

q Parallel / serial
conversion

q Buffering (FIFO)
q Clock synchronization

and Data sampling
q Baud rate generator
q Parity generator and

checking
q Example: 16550

set 7 -- 6

Dragonball MX1 UART

q Standard RS-232 type Non Return to Zero (NRZ) encoding format and
IrDA-compatible infrared modes.

q Supports up to 1 Mbps data rate.
q Full 8-wire serial DCE interface[1] for Modem Flow Control

v Hardware Flow control support for RTS, and CTS signals
v Software Flow control support for DSR, DCD, and RI signals
v RTS and DTR edge detect interrupt (edge selectable)

q Voting logic for improved noise immunity (16X oversampling)
q Auto Baud Rate detection
q RTS, IrDA asynchronous WAKE, and Receive asynchronous WAKE

interrupts will wake MCU from STOP mode
q 2 DMA requests (transmit FIFO DMA request and Receive FIFO DMA

request)
q Escape Character Sequence Detection

set 7 -- 7

Dragonball MX1 UART

set 7 -- 8

Interrupts of Dragonball MX1 UART

q Automatic Baud Rate Detection
q Idle Condition Detected
q Escape Sequence
q BREAK
q Parity and frame Errors
q WAKE

v set at the detection of a start bit
by the receiver

q Asynchronous IR WAKE
v a pulse is detected on the

UART_RX pin
q Asynchronous WAKE

v a falling edge is detected on the
RXD pin

q Data Terminal Ready
q Request to Send
q RTS Delta

q Receive Status
q Receiver Overrun
q Receive Data Ready

v RxFIFO is filled at a defined level
q Receiver DMA Ready
q Serial Infrared

q Transmitter DMA Ready
q Transmitter FIFO Empty
q Transmitter ready

v the transmitter has one or more
slots available in the TxFIFO

q Transmit Complete

set 7 -- 9

Programming of MX1 UART
#define _reg_PORTA_GIUS (*((volatile unsigned long *)(IO_ADDRESS(0x21C020))))
#define _reg_PORTA_GPR (*((volatile unsigned long *)(IO_ADDRESS(0x21C038))))
#define _reg_UART1_UCR1 (*((volatile unsigned long *)(IO_ADDRESS(0x206080))))
#define _reg_UART1_UCR2 (*((volatile unsigned long *)(IO_ADDRESS(0x206084))))
#define _reg_UART1_UCR4 (*((volatile unsigned long *)(IO_ADDRESS(0x20608C))))
#define _reg_UART1_UFCR (*((volatile unsigned long *)(IO_ADDRESS(0x206090))))
#define _reg_UART1_UBIR (*((volatile unsigned long *)(IO_ADDRESS(0x2060A4))))
#define _reg_UART1_UBMR (*((volatile unsigned long *)(IO_ADDRESS(0x2060A8))))
#define _reg_UART1_USR2 (*((volatile unsigned long *)(IO_ADDRESS(0x206098))))
#define _reg_UART2_UTXD (*((volatile unsigned long *)(IO_ADDRESS(0x207040))))
#define TXDC 0x00000008

_reg_PORTB_GIUS &= 0x0FFFFFFF; What are these assignments?
_reg_PORTB_GPR &= 0x0FFFFFFF;

_reg_UART1_UCR1 = 0x5;
_reg_UART1_UCR2 = 0x4027;
_reg_UART1_UCR4 = 1;
_reg_UART1_UFCR = 0x00000A81;
_reg_UART1_UBIR = 0x0000000F;
_reg_UART1_UBMR = 0x00000049;

set 7 -- 10

Receive a string
static int mx1uart_console_read(struct console *co, const char *s, unsigned long count)

{
char *w;
int c;
unsigned long rx;

c = 0;
w = (char *)s;

rx = _reg_UART1_URXD;
_reg_UART2_UCR4 |= DREN;
do
{

c++;
*w++ = (char)rx;
if (c == count)

break;
}while((rx = _reg_UART1_URXD) & CHARRDY);
return c; //return the count

}

set 7 -- 11

Transmit a string

static void mx1uart_console_write(struct console *co, const char *s, unsigned long count)
{

int i;
_reg_UART2_UCR4 &= ~DREN;
/* disable interrupts */
if(_reg_UART1_UCR1 & UCR1_TRDYEN ||_reg_UART1_UCR1 & UCR1_TXMPTYEN)

_reg_UART1_UCR1 &= ~(UCR1_TRDYEN | UCR1_TXMPTYEN);
for (i = 0; i < count; i++)
{

do
{ ;
}while(!(_reg_UART1_USR2 & TXDC));
_reg_UART1_UTXD = (unsigned long)s[i];

}
/* Finally, wait for transmitter to become empty and restore the TCR */
do
{ ;
} while (!(_reg_UART1_USR2 & TXDC));
/* reenable interrupts */
_reg_UART1_UCR1 |= (UCR1_TRDYEN | UCR1_TXMPTYEN);

}

set 7 -- 12

q A duplex, synchronous, serial communication between CPU
and peripheral devices
v Master mode and slave mode
v Bi-directional mode
v Synchronous serial clock

q Signals:
v MOSI: master out slave in
v MISO: master in slave out
v SS: select signal from master to slave
v SCK: serial clock

Serial Peripheral Interface (SPI)

MOSI

MISO

SCK

SS1

SS2

MOSI

MISO

SCK

SS

MOSI

MISO

SCK
SS

processor peripheral 2

peripheral 1

set 7 -- 13

SPI Operation

q Data registers in the master and the slave form a distributed
register.

q When a data transfer operation is performed, this distributed
register is serially shifted by the SCK clock from the master

q Can shift in burst mode

shift reg. shift reg.

MOSI

MISO

transmit data reg

receive data reg

transmit data reg

receive data reg

set 7 -- 14

CPOL and CPHA (Polarity and Phase)

q CPHA=0 – the first edge on the SCK line is used to clock the
first data bit (the first bit of the data must be ready when
selected)

q CPHA=1 – if required, the first SCK edge before the first data
bit becomes available at the data out pin

set 7 -- 15

SPI Block Diagram

set 7 -- 16

I2C protocol – Background

q Inter-Integrated Circuit Protocol

q I2C is a low -bandwidth, short-distance, two-wire interface for
communication amongst ICs and peripherals

q Originally developed by Philips for TV circuits
q Currently, many devices are available that have hardware

interfaces compatible with this protocol
q Figure shows example connection of devices based on this

protocol

set 7 -- 17

I2C Features

q Only two bus lines are required
Ø The SDA(for data) and SCL(for clock)

q Each device connected to the bus is software
addressable
v Devices can be 7-bit or 10-bit addressed

q Simple master-slave relation amongst devices (either
can be receiver or transmitter)

q Multi-bus master collision detection and arbitration is
supported

q Serial, 8-bit oriented, bi-directional data transfer can be
achieved up to100 kbit/s (and up to 3.4Mbit/s in the
high speed mode)

set 7 -- 18

I2C Benefits

q Designer
v I2C bus compatible devices allow a system design to rapidly progress

directly from a functional block diagram to a prototype
v ICs can be added and removed from the system without affecting

other ICs on the bus (this clipping and unclipping of devices allows
easy modification and upgradation)

v Easy fault diagnosis

q Manufacturer
v Simple 2-wire serial communication
v Reduces interconnection on the ICs (lesser pins) and hence cheaper

PCBs
v Completely integrated I2C-bus protocol eliminates the need for

address decoders
v Multi-master capability of the I2C-bus allows rapid testing and

alignment of end user equipment via external connections to an
assembly line

set 7 -- 19

When to choose the I2C

q 8-bit oriented digital control applications
q A system that usually consists of at least one

micro-controller and other peripheral devices such
as memories

q The inter-connection cost of the devices in the
system must be minimized

q Does not require high-speed data transfer (typical
control functions do not require high-speed data
exchange)

set 7 -- 20

The I2C-Bus

q Supports any fabrication (NMOS, CMOS or bi-polar)
q Two wires SDA(serial data) and SCL(serial clock)

carry information
q Each device is recognized by a unique address and

can operate as either receiver or transmitter
q Devices have master-slave relation
q I2C bus is a multi-master bus
q Generation of clock signals in the I2C bus is always

the responsibility of the master devices

set 7 -- 21

Key terminology

q Transmitter: The device which sends data to the bus

q Receiver: The device which receives data from the bus
q Master: The device which initiates a transfer, generates clock

signals and terminates a transfer
q Slave: The device addressed by a master

q Multi-master: More than one master can attempt to control the bus
at the same time without corrupting the message

q Arbitration: Procedure to ensure that, if more than one master
simultaneously tries to control the bus, only one is allowed to do so
and the winning message is not corrupted

q Synchronization: Procedure to synchronize the clock signals of two
or more devices

set 7 -- 22

Key Steps: Overview

q Suppose Micro-controller A wants to send info to micro-controller B
1. A (master) addresses B(slave)
2. A (master-transmitter) sends data to B(slave-receiver)
3. A terminates the transfer

q Suppose Micro-controller A wants to receive info from micro-
controller B
1. A (master) addresses B(slave)
2. A (master-receiver) receives data from B(slave-transmitter)
3. A terminates the transfer

set 7 -- 23

I2C Bit-Transfer

q One clock pulse is generated for each data bit that is
transferred

q Data Validity
v The data on the SDA line must be stable during the HIGH(1) period of

the clock. The data line(SDA) can change data only when the clock
signal (SCL) is LOW(0)

set 7 -- 24

I2C START/STOP Conditions

q START condition: Signals begin of transfer (occupies the bus)
v A HIGH to LOW transition on the SDA line while the SCL is HIGH

q STOP condition: Signals end of transfer (releases the bus)
v A LOW to HIGH transition on the SDA line while the SCL is HIGH

q Both these are always generated by the Master

q Repeated START condition is allowed
v Repeated start is used for changing the slave, or changing the

direction of data transfer (Send/Receive) for the same slave

set 7 -- 25

I2C Data Transfer

q Every byte on the SDA line must be 8-bits long
q Each byte must be followed by an acknowledgement from the receiver
q Data byte is transferred bit-wise with the MSB as the first bit sent
q A slave can force the master to wait by holding the clock line SCL LOW

set 7 -- 26

Acknowledgement Scheme

q The acknowledge-related clock-pulse is generated by the master

q The transmitter (master or slave) releases the SDA line i.e. SDA is
HIGH for the ACK clock pulse

q The receiver must pull-down the SDA line during the acknowledge
clock pulse (stable LOW) during the HIGH period of the clock
pulse

set 7 -- 27

Acknowledgement Scheme

q The receiver is obliged to generate an acknowledge after each
byte received

q When a slave does not acknowledge slave address (when busy), it
leaves the data line HIGH. The master then generates either
STOP or attempts repeated START

q If a slave-receiver does ack the slave address, but some time later
during the transfer can not receive more data (this is done by
leaving SDA HIGH during the ack pulse), then the master either
generates STOP or attempts repeated START

q If a master-receiver is involved in a transfer, it must signal the end
of data to the slave -transmitter by not generating an ack on the last
byte that was clocked out of the slave. The slave -transmitter must
release the data line to allow the master to generate a STOP or
repeated START condition

set 7 -- 28

Data Transfer With 7-Bit Device Address

q After START condition (S), a slave address(7-bit) is sent.

q A read/write (R/W’) direction is then sent(8th bit)
q Data transfer occurs, and then always terminated by STOP

condition. However, repeated START conditions can occur.

set 7 -- 29

Master-Transmitter to Slave-Receiver Data Transfer

q In this, the transmission direction never changes. The set-up
and transfer is straight-forward

set 7 -- 30

Master-Receiver and Slave-Transmitter Data Transfer

q Master initiates the data transfer by generating the START
condition followed by the start byte (with read/write bit set to 1 i.e.
read mode)

q After the first ack from the slave, the direction of data changes and
the master becomes receiver and slave transmitter.

q The STOP condition is still generated by the master (master sends
not-ACK before generating the STOP)

set 7 -- 31

Read and Write in the Same Data Transfer

q Change in direction of data transfer can happen by the master
generating another START condition (called the repeated START
condition) with the slave address repeated

q If the master was a receiver prior to the change, then the master
sends a not-ack (A’) before the repeated START condition

set 7 -- 32

7-Bit Addressing

q The addressing info is contained in the first byte after the STA RT
condition and it determines which slave will be selected by the
master

q The first 7 bits contain the address and LSB contains the direction
of transfer(R/W’ : 0 = write;1= read)

q When an address is sent, each device compares the first seven
bits and considers itself addressed.

set 7 -- 33

7-Bit Addressing

q A slave address can be made up of a fixed and a
programmable part.
v The I2C-bus committee coordinates the allocation of I2C

device hardware addressing.
v However, since many devices can be identical in the system,

each device will have a software address as well. The number
of address bits reserved for software depends on the device.

q A ‘general call’ addressing is also available, to
address all the slaves at the same time.

set 7 -- 34

Multi-Master Clock Synchronization

q In the I2C bus, clock synchronization is performed using the wired-AND
connection of the interfaces to SCL line.
v If at least one master clock goes from HIGH to LOW, then the SCL is held

LOW irrespective of the other masters’ clock.
v The SCL line goes to a HIGH state only when all the master clocks are in

HIGH (this SCL HIGH is triggered by the last master clock that entered into its
HIGH state).

q The synchronized clock is generated with its LOW period determined by
the device with the longest clock LOW period and its HIGH period
determined by the one with the shortest clock HIGH period.

set 7 -- 35

Multi-Master Arbitration Using the Clock Syn.

q If more than one device is capable of being a master, then an arbitration
mechanism is needed to choose the master that takes control of the bus

q Arbitration takes place on the SDA, while the SCL is at the HIGH line,
v the master which transmits a HIGH level,
v another master is transmitting LOW level will switch off its DATA output stage

because the level on the bus does not correspond to its own level.

set 7 -- 36

Software Interface to I2C Bus

q The earlier slides assume that the micro-controllers have an on-chip
hardware interface to the I2C bus. However, it is also possible to use a
software interface

q In this case, the software constantly monitors the bus. Hence, these
controllers are inherently slower as they have to spend time for polling
(Example: The bus has to be polled a minimum of 2 times per clock pulse
to detect START/STOP)

q The START process is lengthier also.
v START ; START byte (00000001);ACK clock pulse; Repeated START

set 7 -- 37

I2C Conclusion

q Compared to other serial bus protocols like SPI and
Microwire
v The pin (and connection) requirements are the least in I2C
v The noise immunity is higher for I2C
v There is a feedback to the the transmitter (Ack signal) for

conveying the success of the transfer
v I2C now has fast and high speed modes of operation

