
mCs such as the 8051 and 8096 and UARTs such as the 82510
provide hardware support for a multiprocessor asynchronous
serial-communication protocol (MicroLan). This feature is
useful in applications in which a number of processors inter-
connected in a multipoint configuration jointly perform a
task, with a master processor controlling slaves by sending
data or commands in a selective manner (Figure 1). The pro-
tocol operates as follows:

When the master wishes to transmit a block of data to a

slave, it first sends an address byte that identifies the slave.
All data and address bytes are nine bits long. An address byte
differs from a data byte in that its ninth bit is one (for a data
byte it’s zero). The communication subsystem normally ini-
tializes in a mode where the serial-port interrupt activates
only when the ninth bit is one. Thus, no slave receives an
interrupt from a data byte. An address byte, however, inter-
rupts all slaves, which then examine the received byte. Next,
the addressed slave switches to a mode in which data bytes

MCS-51 endows MicroLan-like protocol to UARTs
SK SHENOY, NPOL, KOCHI, INDIA

EDN DESIGN IDEAS

If S=2 and D<8, then Q=P, R=S–1, and
E=D+8.
If S=2 and D>7, then Q=P, R=S, and
E=(D–8)/2.
If S=3 and D<12, then Q=P, R=S–1, and
E=D+4.
If S=3 and D>11, then Q=P, R=S, and
E=(D–12)/2.
If S=4 and D<14, then Q=P, R=S–1, and
E=D+2.
If S=4 and D>13, then Q=P, R=S, and
E=(D–14)/2.
If S=5 and D<15, then Q=P, R=S–1, and
E=D+1.
If S=5 and D>14, then Q=P, R=S, and
E=(D–15)/2.
If S=6, then Q=P, R=S–1, and E=D.
If S=7, then Q=P, R=S–1, and E=D.

According to this algorithm, the con-
version requires both addition and sub-
traction, depending on S and D. You can express each sub-
traction as an addition to implement both in the same circuit.
Thus, you can express the algorithm as follows, where
CO=Carry out:
If S=2 and D<8, then Q=P, R=S–1, Z=8, and E=D+Z (CO=0).
If S=2 and D>7, then Q=P, R=S, Z=8, and E=(D–8)/2=
(D–16+Z)/2=(D+Z)/2 (CO=1).
If S=3 and D<12, then Q=P, R=S–1, Z=4, and E=D+Z (CO=0).
If S=3 and D>11, then Q=P, R=S, Z=4, and E=(D–12=
D–16+Z)=(D+Z)/2 (CO=1).
If S=4 and D<14, then Q=P, R=S–1, Z=2, and E=D+Z (CO=0).
If S=4 and D>13, then Q=P, R=S, Z=2, and E=(D–14)/2=
(D–16+Z)/2=(D+Z)/2 (CO=1).
If S=5 and D<15, then Q=P, R=S–1, Z=1, and E=D+Z (CO=0).
If S=5 and D>14, then Q=P, R=S, Z=1, and E=(D–15)/2=
(D–16+Z)/2=(D+Z)/2 (CO=1).
The value of Z depends on S: Z=25–S. Once you define Z, the
algorithm performs the same D+Z operation for each S. The
carry-out (CO) signal determines whether R is equal to S or
S–1. Therefore, this implementation simultaneously solves

two problems. Furthermore, the same technique applies for
S=6 and S=7, when Z=0.

In Figure 1, a 338 decoder, IC1, converts S to Z, which IC2
adds to D. If the CO is a 1, E is (D+Z)/2; otherwise, R is S–1.
To choose between both options, the circuit uses the CO sig-
nal to control data selectors IC4 and IC5. These devices select
between two possible outputs: S or S–1 and D+Z or (D+Z)/2,
respectively. A second adder, IC3, implements S–1 by sum-
ming the S inputs with 15. The circuit derives (D+Z)/2 by
shifting D+Z into the inputs of data selector IC5. Additional
logic ensures that no conversion occurs when S=0 and that
E=D/2 when S=1.

The 8-bit input is P0/S2/S1/S0/D3/D2/D1/D0, and the 8-
bit output is P0/R2/R1/R0/E3/E2/E1/E0. The schematic does-
n’t show P0 because this parameter’s value doesn’t change.
The circuit was tested with a Motorola (www.mot.com)
MC145554 m law PCM codec-filter and an 8TR641 (AT&T,
www.att.com) E1 multiplexer. (DI #2192) e

To Vote For This Design, Circle No. 412

Converting output A of A law to A’ of mm law incurs a loss of information. However,
no information loss occurs when converting from B to B’, because the slopes of the
two curves are the same at that point.

B

B'

A

A'

2/128 OUTPUT 4/128 8/128 16/128

A LAW

 LAW

1/128 3/128 7/128 157/128 INPUT LEVEL

S4

S3

S2

S1

S0

FIGURE 2

http://www.mot.com
http://www.att.com

also receive interrupts, while other
slaves go about their business uninter-
rupted by the data transfer. The address
bytes thus control the data flow into a
particular node. Indication of the end of
a data block can come from either send-
ing a data-length field at the beginning
of the block or from the receipt of
another slave or reserved address.

The crucial requirement for realizing
the protocol is a means of distinguish-
ing address from data bytes. You can
effect this identification in many popu-
lar UARTs by using an obscure feature
found in most UARTs: the capability to
transmit and recognize (with an inter-
rupt on) the break condition. This con-
dition is nothing but a “space,” or low, in the transmit line,
of a duration equal to or greater than an entire asynchronous
character-transmission time, including stop bits (Figure 2).
In this scheme, the whole data block (including address) from
a master is sandwiched between break characters to form a
data “frame” (Figure 3), and the address byte is recognizable
as the one that immediately follows a break character.

The Turbo C program in Listing 1 demonstrates the trans-
fer of variable-size messages between two PCs (with 8250-
compatible UARTs) using the method described here. Figure
4 shows the 8250 register formats. The procedure works with
most other UARTs. You can download the file from EDN’s
Web site, www.ednmag.com. At the registered-user area, go
into the “Software Center” to download the listing from DI-
SIG #2193. A null-modem cable interconnects the PCs’ COM
ports. The destination PC accepts only the messages
addressed to it. Note that, although the PCs here intercon-
nect in a point-to-point manner, usually the stations inter-
connect using balanced RS-422 or tristate drivers in a multi-
point configuration, as in Figure 1.

A global variable, Receive_Count, initialized to zero, han-

dles frame reception. Initially, the protocol enables only
receive-error interrupts. Each time the routine detects a break,
the UART raises a receive-error interrupt, and the ISR (inter-
rupt service routine) then enables the receive-data interrupts.
On subsequent receive interrupts, if Receive_Count is zero,
the ISR checks if the first address byte matches the station’s
address. If not, the receiver goes back to the initial waiting
state, with the receive-error interrupts enabled and the
receive-data interrupts disabled, such that the routine ignores
the subsequent data bytes. If an address match occurs, the ISR
stores the subsequent incoming data bytes in the receive
buffer, with Receive_Count as index. If Receive_Count is
nonzero when the break interrupt occurs, it is an end-of-
frame break. Then the routine calls the frame-processing
function, Receive_Count resets to zero, and the receiver again
reverts to the initial waiting state.

To transmit a break, the protocol sets bit 6 (set break) of the
line-control register to one. The UART then takes its trans-

EDN DESIGN IDEAS

RxD

MASTER SLAVE 1 SLAVE N

TxD RxD RxD TxDTxD

FIGURE 1

BREAK ADDRESS DATA 1 DATA N BREAK

FIGURE 3

B7 B6 B5

SET BREAK

B4 B3 B2 B1 B0

LCR

B7 B6 B5

Tx MACHINE STATUS

Tx DATA EMPTY

B4 B3 B2 B1 B0

LSR

B7 B6 B5 B4 B3 B2 B1 B0

IER

INTERRUPT ON
Rx ERROR CONDITION

Rx DATA
INTERRUPT

B7 B6 B5 B4 B3 B2 B1 B0

IIR

INTERRUPT
PENDING

INTERRUPT TYPE
1 1 Rx ERROR CONDITION
1 0 Rx DATA AVAILABLE
0 1 Tx REGISTER EMPTY
0 0 MODEM INTERRUPT

FIGURE 4

START DATA (NULL)

BREAK

STOP

MARK

SPACE

FIGURE 2

A master-slave arrangement uses RS-422 transceivers to effect a multipoint data-
transfer configuration.

The ability to recognize the break condition is key to the mas-
ter-slave transfer protocol.

This n-byte data frame shows the data block sandwiched
between break characters.

These 8250 register formats demonstrate the multipoint-
transfer protocol.

EDN DESIGN IDEAS

mission line low until bit 6 receives a zero. To make the dura-
tion of the break equal to one character-transmission delay,
the routine transmits a null (00 hex) character. Bit 6 of the
line-control register (transmit machine status) indicates
when this delay is over; the break bit then resets. To enable
detection of the break, bit 2 of the interrupt enable register
(interrupt on receive error condition) sets during UART ini-
tialization. Bit 0, set to one, enables receive data interrupts.
In the ISR, bits 1 and 2 of the interrupt-identification register
indicate the interrupt type.

In this scheme, no CPU overhead is wasted examining each
character to detect addresses/packet boundaries. Also, a slave
must process only three interrupts per data packet transmit-

ted on the bus, and blocks of data not addressed to the slave
do not disturb it. Because the break is not a legitimate data
character, it is data transparent; you can use it for binary-data
exchange. The packet-boundary detection is immune to data
errors. You can make it even more robust by including data-
length and check-sum fields in the frame to enable error
detection. You can also use parity error detection. Note that
the method can support broadcast/multicast message trans-
fer by designating some addresses for these purposes. You can
also implement any-node-to-any-node communication by
polling the master, as in the SDLC protocol. (DI #2193) e

To Vote For This Design, Circle No. 413

LISTING 1–TRANSFER OF VARIABLE-SIZE MESSAGES BETWEEN TWO PCS

