MCS-51 endows MicroLan-like protocol to UARTS

SK SHENOY, NPOL, KocHlI, INDIA

nCs such as the 8051 and 8096 and UARTSs such as the 82510
provide hardware support for a multiprocessor asynchronous
serial-communication protocol (MicroLan). This feature is
useful in applications in which a number of processors inter-
connected in a multipoint configuration jointly perform a
task, with a master processor controlling slaves by sending
data or commands in a selective manner (Figure 1). The pro-
tocol operates as follows:

When the master wishes to transmit a block of data to a

slave, it first sends an address byte that identifies the slave.
All data and address bytes are nine bits long. An address byte
differs from a data byte in that its ninth bit is one (for a data
byte it’s zero). The communication subsystem normally ini-
tializes in a mode where the serial-port interrupt activates
only when the ninth bit is one. Thus, no slave receives an
interrupt from a data byte. An address byte, however, inter-
rupts all slaves, which then examine the received byte. Next,
the addressed slave switches to a mode in which data bytes

http://www.mot.com
http://www.att.com

EDN

DESIGN IDEAS

also receive interrupts, while other
slaves go about their business uninter-
rupted by the data transfer. The address
bytes thus control the data flow into a
particular node. Indication of the end of
a data block can come from either send-
ing a data-length field at the beginning
of the block or from the receipt of
another slave or reserved address. +

FIGURE 1 MASTER

The crucial requirement for realizing
the protocol is a means of distinguish-

ing address from data bytes. You can

effect this identification in many popu-

SLAVE 1 SLAVE N
RxD TxD RxD TxD RxD TxD
— — + - +
K
N
C

lar UARTSs by using an obscure feature
found in most UARTSs: the capability to
transmit and recognize (with an inter-
rupt on) the break condition. This con-
dition is nothing but a “space,” or low, in the transmit line,
of a duration equal to or greater than an entire asynchronous
character-transmission time, including stop bits (Figure 2).
In this scheme, the whole data block (including address) from
a master is sandwiched between break characters to form a
data “frame” (Figure 3), and the address byte is recognizable
as the one that immediately follows a break character.

The Turbo C program in Listing 1 demonstrates the trans-
fer of variable-size messages between two PCs (with 8250-
compatible UARTs) using the method described here. Figure
4 shows the 8250 register formats. The procedure works with
most other UARTs. You can download the file from EDN’s
Web site, www.ednmag.com. At the registered-user area, go
into the “Software Center” to download the listing from DI-
SIG #2193. A null-modem cable interconnects the PCs’ COM
ports. The destination PC accepts only the messages
addressed to it. Note that, although the PCs here intercon-
nect in a point-to-point manner, usually the stations inter-
connect using balanced RS-422 or tristate drivers in a multi-
point configuration, as in Figure 1.

A global variable, Receive_Count, initialized to zero, han-

I BREAK ’I FIGURE 2
 — MARK
N N
C C—— SPACE
|START| DATA (NULL) |sTor|

The ability to recognize the break condition is key to the mas-
ter-slave transfer protocol.

BREAK ADDRESS DATA1l DATAN BREAK

This n-byte data frame shows the data block sandwiched
between break characters.

A master-slave arrangement uses RS-422 transceivers to effect a multipoint data-
transfer configuration.

dles frame reception. Initially, the protocol enables only
receive-error interrupts. Each time the routine detects a break,
the UART raises a receive-error interrupt, and the ISR (inter-
rupt service routine) then enables the receive-data interrupts.
On subsequent receive interrupts, if Receive_Count is zero,
the ISR checks if the first address byte matches the station’s
address. If not, the receiver goes back to the initial waiting
state, with the receive-error interrupts enabled and the
receive-data interrupts disabled, such that the routine ignores
the subsequent data bytes. If an address match occurs, the ISR
stores the subsequent incoming data bytes in the receive
buffer, with Receive_Count as index. If Receive_Count is
nonzero when the break interrupt occurs, it is an end-of-
frame break. Then the routine calls the frame-processing
function, Receive_Count resets to zero, and the receiver again
reverts to the initial waiting state.

To transmit a break, the protocol sets bit 6 (set break) of the
line-control register to one. The UART then takes its trans-

LCR

| 7 | 86 | &s | B4 | B3 | B2 | B2 | BO |
SET BREAK
LSR
| 87 | 86 | &5 | Ba | B3 | B2 | B2 | BO |
R I S oy
Tx MACHINE STATUS
IER
| 87 | 86 | 85 | Ba | B3 | B2 | B2 | BO |
INTERRUPT ON Rx DATA
Rx ERROR CONDITION ™ INTERRUPT

IR

INTERRUPT
PENDING
INTERRUPT TYPE
1 1 RxERROR CONDITION
1 0 RxDATA AVAILABLE
0 1 TxREGISTER EMPTY
0 0 MODEM INTERRUPT

These 8250 register formats demonstrate the multipoint-
transfer protocol.

EDN

mission line low until bit 6 receives a zero. To make the dura-
tion of the break equal to one character-transmission delay,
the routine transmits a null (00 hex) character. Bit 6 of the
line-control register (transmit machine status) indicates
when this delay is over; the break bit then resets. To enable
detection of the break, bit 2 of the interrupt enable register
(interrupt on receive error condition) sets during UART ini-
tialization. Bit O, set to one, enables receive data interrupts.
In the ISR, bits 1 and 2 of the interrupt-identification register
indicate the interrupt type.

In this scheme, no CPU overhead is wasted examining each
character to detect addresses/packet boundaries. Also, a slave
must process only three interrupts per data packet transmit-

DESIGN IDEAS

ted on the bus, and blocks of data not addressed to the slave
do not disturb it. Because the break is not a legitimate data
character, it is data transparent; you can use it for binary-data
exchange. The packet-boundary detection is immune to data
errors. You can make it even more robust by including data-
length and check-sum fields in the frame to enable error
detection. You can also use parity error detection. Note that
the method can support broadcast/multicast message trans-
fer by designating some addresses for these purposes. You can
also implement any-node-to-any-node communication by
polling the master, as in the SDLC protocol. (DI #2193)

To Vote For This Design, Circle No. 413

LISTING 1-TRANSFER OF VARIABLE-SIZE MESSAGES BETWEEN TWO PCs

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>

/* COM PORT DEFINITIONS AND GLOBAL VARIABLES */

#define com_xreg 0x3£f8 /* Default is coml; 2£8 for com2 */
#define DATA_PORT com reg + 0

#define LINE_CNTRL com_reg + 3

#define MODEM_CNTRL com_reg + 4

#define INT ENABL com reg + 1

#define INT_IDENT com _reg + 2

#define LINE_STS com_reg + 5

#define MODEM STS com reg + 6

#define BAUD_LOW com _reg + 0

#define BAUD_HIGH com reg + 1

#define DLAB_SET 0x80

#define BAUDNMSB [

#define BAUDLSE Oxc /* 9600 BPS */

#define CNTRL_CMD 7 /* 8 BIT, 2 STOP BIT, NO PARITY */

#define WAIT TX RDY() while (((inportb(LINE_STS))&0x60) !=0x60)
* Check for Tx buf empty & Tx shift reg empty */

~

unsigned char sdatabuf[256],rdatabuf[256]; /* Send & Recv buffers */
int Receive Count = 0; /* Counter for data stored in rdatabuf[] */
void interrupt(*CldComHandler) (void);

unsigned char Myaddr,Txaddr;

void processdata(void) /* TO DISPLAY RECELVED DATA PACKET */
{

1j;
cprintf (“\n\rRX Data > "); clrecl(); /* Received data cursor */
for (i = 1; i< Receive Count; i++)} /* Leaving out Addr byte */
putch(rdatabuf[i]}; /* Display received data */
cprintf ("\n\r"); /* New line */
clreol(); /* Clear line */

void interrupt service sio{veid) /* ISR: TAKES CARE OF PACKET RECEPTICN */

unsigned char iir ;
iir = (inportb(INT_IDENT) »> 1) & 3; /* Get interrupt type */
switch(iir)

case 0: /* Modem status int DSR,CTS,RI,RLSD */
inportb (MODEM STS); /* Ignore; reading IIR resets int %/
break;/# reading IIR resets int +*/

case 1: /* Tx int */
break;/* reading IIR resets int */

case 2: /* Rx int */
rdatabuf [Receive Count++] = inportb(DATA PORT); /+ Store packet data */
if ({Receive_Count == 1) && (rdatabuf[0])= Myaddr))
/* If First({Address) byte but no address match */

outportb (INT_ENABL,0x4); /* IER; enable Only Rx Machine error int */
Receive Count = 0;

break;

case 3: /* Rx error (Break detect etc.) */
inportb (DATA_PORT}; /* Read Null char */
if{((inportb(LINE_STS))&0x10) == 0x10)
/* Break detected; Reading LSR Resets int */

if (Receive Count) /* Complete Frame Over */
{

pT (i /* the frame */
outportb (INT_ENABL,0x4); /* IER; enable only Rx Machine error int */

else outportb (INT ENABL,O0x5); /* IER; enable RX Data int also */
Receive Count = 0; /* Reinitialize for next frame */

outportb(0x20,0x20); /* EOI to 8259 PIC ¥/
return;

‘(Joid init_serial io{void) /* TO INITIALISE SERTAL PORT */

outp (LINE_CNTRL, DLAB_SET) ; /* DLAB_SET */

outp (BAUD_LOW, BAUDLSE) ; outp (BAUD_HIGH, BAUDMSB) ; /* 9600 BAUD */

outp (LINE_CNTRL,CNTRL CMD); /+* 8 BIT,2 STOP BIT,NO PARITY */

outp (MODEM CNTRL, 8) ; /* DTR,RTS & OUT2 SET */

OldComHandler = getvect(Oxc);/* Oxb for com2 */

disable();

setvect (Oxc, (service_sgio)); /* 0xb for com2 */

outporth (0x21, ((inportb(0x21))&(10x10))};/* PIC mask word 0x8 for com2 */
outportb (INT ENABL,(0x4); /* IER; enable only Rx Machine error int */
enable() ;

}
‘Eoid SendBreak (void) /* TO TRANSMIT A BREAK OF ONE CHARACTER DURATION */

outportb (LINE CNTRL, inportb(LINE_CNTRL) | 0x40); /* LCR; set break */
outportb (DATA PORT,0); /* Send NULL data */

WAIT TX RDY(); /* Wait on TxShift Reg Empty; Null char is shifted out */
outportb (LINE_CNTRL, inportb (LINE_CNTRL) & Oxbf); /* LCR; remove break */

}

/* TO TRANSMIT A DATA PACKET */
‘EOid SendBuffer (unsigned char packet(],int DatLen)

int i;

SendBreak(); /* Send START OF PACKET break */
WAIT TX RDY(); /* Wait for Tx Ready */

outportb (DATA_PORT,Txaddr); /* Send Tx address */
for (i=0; i<DatLen; i++) /* For each message byte */

{
WAIT_TX RDY(); /* Wait for Tx Ready */
outportb (DATA_PORT,packet[il): /* Send next data char */

WAIT_TX RDY(}; /* Wait for Tx Ready */
SendBreak(); /* Send END OF PACKET break */
WAIT TX RDY(); /* Wait for Tx Ready */

}

ungigned char getaddr{char* mess) /* TO READ AN ADRRESS FROM THE CONSOLE */
{

unsigned char c, databuf[100];
int addr,count = 0;

eprintf ("\n\r%s",mess); /* Prompt for input */
clreol():
while(l) /* Forever Loop */

if({c=getche(}) == 27} exit(D); /* Exit if Escape key pressed */
databuf [count++] = ¢; /* Get typed characters intoc the buf */
if(¢c == ’\r’) /* Lf Enter Key pressed */

if((sscanf (databuf,"%d", &addr) != 1) || ((addr > Oxff) || {addr < 0}})
{ /* Read and check the string in the buffer for validity */
putch(7); /* Bell #*/
cprintf ("\r\nError: Type in a number between 0 and 2557);
cprintf ("\n\r%a",mess); /* Transmit Prompt */
clreol{); /* Clear to end of line */
count = 0;

else break;
return((unsigned char)addr);

void restoreint(void) /* FUNCTION WHICH DOES THE CLEAN-UP AT EXIT TIME %/

setvect (Oxc, (0OldComHandler}); /* Reatore int vector; Oxb for com2 %/
outportb(0x21, ((inportb(0x21)) | (0x10)));/* PIC mask word 0x8 for com2 */

