
1

AVR304: Half Duplex Interrupt
Driven Software UART

Features
• Runs asynchronously (interrupt driven)
• Capable of handling baud rates of up to

38.4 kbaud @1 MHz XTAL
• Runs on any AVR device with 8-bit

timer/counter and external interrupt

Introduction
Lots of control applications communicate
serially in one direction at a time only
(half duplex). This application note
describes how to make a half duplex
UART on any AVR device using the 8-bit
Timer/Counter0 and an external inter-
rupt. This software can be used to imple-
ment a serial port on a device with no
hardware UART, or it can be used to
implement a second serial-port on AVR
devices already equipped with a UART.

Theory of Operation
Asynchronous serial data communica-
tion follow some rules simple rules on
data transfer . Data is transmitted
sequentially, one bit at a time. To inform
the receiver that a new byte is arriving,
each byte is placed between so-called
start- and a stop bits. This construction is
called a frame. The frame format shown
in Figure 1 and Figure 2. The frame has
1 start-bit, 8 data bits, and 1 stop-bit.
This frame type is implemented in this
application note. The frame format can
be extended, and might also include par-
ity bits and more stop bits.

Figure 1. UART Communication Frame Format

Figure 2. Serial frame of ASCII “A” ($41)

Idle line is signaled by holding the line at
logical one. The start bit is always a
zero, and the UART receiver will detect
the start of a frame by the first falling
edge. Following the start bit come the
data bits, followed by a stop bit which is
always a logical one. This stop bit is held
stable at one until the next start bit is
sent.

In asynchronous transmissions, no sep-
arate clock is provided to the receiver.
Correct reception of data is guaranteed
by keeping all bit lengths equal. The
receiver will synchronize from the first
falling edge of the start bit, and find the
next sampling time with its own timer.

START
BIT D0 D1 D2 D3 D4 D5 D6 D7 STOP BIT

RECEIVER
SAMPLING

START
BIT 1 0 0 0 0 0 1 0 STOP BIT

RECEIVER
SAMPLING

8-Bit
Microcontroller

Application
Note

AVR304

0941A-A–8/97

AVR3042

The bit length is determined by the baud rate used for the
communication. In the case of a UART, the baud rate is
equal to the number of bits transmitted per second. The
transmitter and receiver has to be set up using the same
baud rate equally for correct reception.

As seen in Figure 1, the frame starts with a falling edge.
This falling edge generates an initial interrupt (using exter-
nal interrupt). The interrupt starts Timer/Counter0, and pre-
set it to time out in exactly 1.5 bit lengths. This 1.5 bit length
delay is required to generate the next sampling event at the
bit-center of the first data bit. The next 8 interrupts are gen-
erated by a predef ined delay (1 bi t length) using
counter/timer 0. Figure 3 shows the flowchart for receiving
serial data.

Figure 3. Flowchart for receiving serial data

Transmitting data is even easier, as all bits have equal
length and the timer can be preset at a constant delay (1
bit-length). The first bit is the start-bit. This is always a logi-
cal zero (or space). This bit informs the receiver that data is
coming up. Then the data bits can be shifted out, LSB first
(least significant bit) first, MSB last. Finally, the last bit must
be a stop bit (if not, the receiver can't separate the data
bytes). This is always a logical one (or mark). Figure 4
shows the flowchart for transmitting serial data.

Figure 4. Flowchart for transmitting serial data

Connection
The RS-232 standard requires a voltage level of -15/+15V.
To generate these signaling levels, a separate interface cir-
cuit is needed which converts the MCU's voltage to the RS-
232 voltage. An example of a single chip interface circuit is
MAXIM's MAX233. It operates from a single 5V power sup-
ply, and has an onboard DC-DC converter to convert the 5
volts to the RS-232 signaling levels.

The receive pin must be connected to PD2 because of the
external interrupt. It is not important which pin is used as
the transmit pin, and this application note will use PD4. Fig-
ure 5 shows how the MCU should physically be connected
to an RS-232 line.

WAIT FOR START-BIT

WAIT 1.5 BIT LENGTHS

SAMPLE DATABIT

WAIT 1 BIT LENGTHS

INCREMENT BIT-COUNTER

BIT-COUNTER = 9?
N

FINISHED - BYTE RECEIVED

Y

SEND START-BIT (LOW)

WAIT 1 BIT LENGTH

SHIFT OUT DATA BITS

INCREMENT BIT-COUNTER

WAIT 1 BIT LENGTH

SEND THE STOP BIT (HIGH)

WAIT 2 BIT LENGTHS

FINISHED - BYTE TRANSMITTED

ALL BITS DONE?
N

Y

AVR304

3

Figure 5. Physical connection to an RS232 serial line

Implementation
These software UART routines use Timer/Counter 0 and
one external interrupt. The clock provided to the MCU will
limit the maximum baud rate obtainable. This software
UART is capable of handling baud rates up to 38.400
kbit/s, at 1MHz clock frequency. At this speed nearly all
computing power is used, but the MCU is still available for
other tasks between each byte being transmitted.

The bit length is determined by the number of cycles (C•N)
requ i red to genera te another over f low. w i th the
Timer/Counter. 256-N is the value pre stored in the
timer/counter, and C is the Timer/Counter 0 prescaling fac-
tor, as described in the T/C Prescaler in the AVR
databook,. The value N can be calculated from the follow-
ing formula, where Xtal is the frequency of the system:

Note that the prescaling factor C should be one of the val-
ues 1, 8, 64, 256, or 1024. The absolute minimum value of
N•C is 17. If N•C is set to be smaller, the overflow will occur
even before the T/C interrupt handler has finished). Abso-
lute maximum value of N is (170+20/C), as the receiver has
to generate a delay of 1.5 bit periods when receiving the
start bit.

“UART_INIT” SUBROUTINE - INITIALISE
UART
Before data can be transferred using the UART, the UART
has to be initialized, by calling the subroutine “uart_init”.
This subroutine will set up the Timer/Counter prescaler,
and enable the Timer/counter and external interrupt
needed for communication. Upon return from the subrou-
tine, a 'sei' instruction should follow to enable global inter-
rupts. This will enable the UART. By issuing a 'cli' instruc-
tion at a later time, the UART can be disabled.

VCC

RS232C
COMPONENTS

IBM PC OR
OTHER MCU’S

R1IN

T1OUT

R1OUT

T1IN

10
16

12
17

4

5

PD2

PD4

AT90SXXXXX

MCU

3

2

11
15

MAXIM
MAX233

7

6 9

Note: See Maxim’s Databook for further information

N
Xtal

BaudRate C⋅----------------------------------=

17
C
------ N 170

20
C
------+≤ ≤

AVR3044

Figure 6. “uart_init” Flow Chart

“UART_TRANSMIT” SUBROUTINE -
TRANSMITTING A BYTE
This routine is used when the software wish to transmit
data. It sets the transmit- and the busy-flags, disables
external interrupt (this disables reception when transmit-
ting), sets the correct baud rate (t/c0 interrupt) and sets the
start bit.

NB! This routine cancels all other pending activities. Calling
“uart_transmit” will clear the UART shift register “u_buffer”,
clearing any data currently stored in this register. If called
while receiving data, the transmitted data may be corrupted
if a Timer/Counter overflow interrupt occurs while executing
the subroutine. By waiting until the BUSY flag is cleared in
“u_status”, safe transmissions are guaranteed. The use of
“u_status” is explained in detail below.

Table 1. “uart_init” Subroutine Performance Figures

Parameter Value

Code Size 8 words

Execution cycles 11, including the RET instruction

Register Usage • Low registers
• High registers
• Global registers
• Pointers

:None
:2
:1
:None

Table 2. “uart_init” Register Usage

Register Input Internal Output

R16 “u_tmp” - Scratch register

R18 “u_status” - Erased status-registers
(used by the others routines) - read
only

U_TMP ← PRESCALE

TCCR0 ← U_TMP

U_TMP ← INT0

UART_INIT

MCUCR ← U_TMP

U_STATUS ← 0

RETURN

AVR304

5

Table 3. “uart_transmit” Subroutine Performance Figures

Parameter Value

Code Size 13 words

Execution Cycle 17 (including RET)

Register Usage • Low registers
• High registers
• Global registers
• Pointers

:1
:4
:3
:None

Table 4. “uart_transmit” Register Usage

Register Input Internal Output

R20 “u_transmit” - Byte to be
transmitted. When external
interrupt is disabled, contents are
copied into “u_buffer”.

R19 “u_reload” - to save time in the
interrupt routine, this register
contains the timer reload value.

R18 u_status” - This register is used to
indicate the different states of the
UART. See separate section for
details. This subroutine sets the
transmit- and busy-flags.

R14 “u_buffer” -UART shift register.
When the UART is locked by this
subroutine, the value from
“u_transmit” is copied here.

R17 “u_bit_cnt” - bit counter, reset by this
subroutine.

R16 “u_tmp” - A scratch register.

AVR3046

Figure 7. Flow Chart for “uart_transmit”

“U_STATUS” REGISTER BYTE
The u_status byte is used by all functions. It have three bits
implemented:

1. “BUSY”. This bit indicates when the UART is busy. If
only the busy bit is set, the UART is currently receiv-
ing data.

2. “TD”. Transmitting Data. This bit is set in conjunc-
tion with the Busy-flag. If this bit is set, the UART is
currently transmitting data. The bit is set by
“uart_transmit”, and automatically cleared after the
stop bit has been sent in “tim0_ovf”.

3. “RDR”. Receive Data Ready. This bit is set when-
ever “u_buffer” contains valid received data. When
the UART begins to transmit or receive, the bit will
be cleared. The bit can also be cleared by software
after received data has been read from “u_buffer”.

Software will detect new incoming data is present by read-
ing a one in the RDR-bit. Whenever this bit goes high, new
data has arrived. If the software is waiting for available time
to send data, he can read the BUSY flag, and call
“uart_transmit” whenever this flag is cleared.

The “u_status” byte is read-only and should not be altered
by user software. To clear the RDR bit however, software is
allowed to do so by using a “cbr” (Clear Bit in Register)
instruction operating directly on the “u_status” register.

“TIM0_OVF” INTERRUPT SERVICE ROUTINE
This routine takes care of sending and receiving each bit in
the transmission. The routine is called automatically on
Timer/Counter overflow, to send or receive the next bit.

The Timer/Counter overflow interrupt is enabled by
“uart_transmit” or “ext0_int”, when transmitting or receiving
the start bit respectively. Upon entering, the Timer/Counter
is preset to give the next overflow in one bit length. Then
the next bit is handled, before the routine exits. If the bit
handled was the stop bit, the Timer/Counter overflow inter-
rupt is cleared, and the external interrupt is again enabled.

U_STATUS ← BUSY v TD

U_TMP ← 0

GIMSK ← U_TMP

UART_TRANSMIT

RETURN

U_BIT_CNT ← $FF

U_BUFFER ← U_TRANSMIT

U_TMP ← TOIE0

TIFR ← U_TMP

TIMSK ← U_TMP

U_RELOAD ← (256 N + 8 ÷ C)

U_TMP ← (256 N + 14 ÷ C)

TCNT0 ← U_TMP

PORTD(PD4) ← 0

AVR304

7

Table 5. “tim0_ovf” Interrupt Service Routine Performance Figures

Parameter Value

Code Size 35 words

Execution Cycles min. 18, max. 28 - including the “reti” instruction. Varies according to task (read/write - data/stop/start-
bit - etc.)

Register Usage • Low registers
• High registers
• Global registers
• Pointers

:2
:4
:4
:None

Interrupt Usage Timer/Counter 0 overflow interrupt

Table 6. “tim0_ovf” Register Usage

Register Input Internal Output

R15 Internal SREG storage

R19 “u_reload” - to save time in the
interrupt time, this register contains
the timer reload value.

R18 “u_status” - uses this register to
determine what task to perform

R14 “u_buffer” - the UART shift-register
for received and transmitted data.

R17 “u_bit_cnt” - bit counter.

R16 “u_tmp” - Scratch register

AVR3048

Figure 8. Flow Chart for “tim0_ovf”

TIM0_OVF

R0 ← SREG

U_BIT_CNT ← U_BIT_CNT + 1

TCNT0 ← U_RELOAD

TD = 0?

U_BIT_CNT > 7?

PD4 ← U_BUFFER (LSB)

LSR U_BUFFER

SREG ← R0

RETURN

RDR ← 1, BUSY ‹ 0

RETURN

SREG ← R0

C ← 1

U_BIT_CNT > 7? PD4 ← U_BUFFER (LSB)

U_BIT_CNT = 8?C ← 0

ROR U_BUFFER

U_TMP ← SREG

U_BIT_CNT = 9?

SREG ← U_TMP

ROL U_BUFFER

RDR ← 1, BUSY ← 0

U_TMP ← INT0

GIMSK ← U_TMP

U_TMP ← 0

TIMSK ← U_TMP

N

Y

N

N

N

N

Y

Y

Y

AVR304

9

“EXT_INT0” INTERRUPT SERVICE ROUTINE
The external interrupt 0 is active whenever the UART is
idle. Upon an external interrupt, the “ext_int0” routine is
called. This routine initiates the reception of serial data (an
alternative name would be: “uart_reception”. An external
interrupt occurs on a falling edge on the 'INT0 pin (a falling

edge marks the beginning of the start-bit - see fig. 1). This
activates the Timer/Counter overflow interrupt and gener-
ates a 1.5 bit delay for the first start bit. Before exiting, the
external interrupt is disabled to prevent falling edges in the
incoming byte from reinitializing the receiver.

Table 7. “ext_int0” Interrupt Service Routine Performance Figures

Parameter Value

Code Size 12 words

Execution Cycles 15, including reti

Register Usage • Low registers
• High registers
• Global registers
• Pointers

:1
:4
:3
:None

Interrupt Usage External Interrupt INT0

Table 8. “ext_int0” Register Usage

Register Input Internal Output

R15 Status Register Temporary Storage

R19 “u_reload” - this register contains
the timer reload value.

R18 u_status” - This register is used to
indicate the different states of the
UART. See separate section for
details. This subroutine sets
(unconditionally) the busy-flag and
clears the transmit and receive
ready flags.

R17 “u_bit_cnt” - bit counter, reset by this
routine

R16 “u_tmp” -scratch register

AVR30410

Figure 9. Flow chart for “ext_int0”

Tips and Warnings
In the implementation, some IO-registers are manipulated
without preserving current register settings. In the case of
GIMSK, GIFR, TIMSK, and TIFR, altering these registers
might also affect the operation of other peripherals. Soft-
ware should normally manipulate the bits needed, preserv-
ing the rest, but to speed up the UART, the routines sets
these registers by brute force. Any other bits that were in
use, will be cleared. If other peripherals are being used, all
UART routines must be extended to preserve all other
flags.

Example Program
There is an example program included in this application
note. The program will wait for a character. Upon reception,
the received data is presented on port B, Simultaneously,
the software UART returns the message: 'You typed <char-
acter>'.

R0 ← SREG

U_STATUS ← BUSY

U_TMP ← 256 (N × 1.5) + 29 ÷ C

EXT_INT0

RETURN

TCNT0 ← U_TMP

U_TMP ← TOIE0

TIFR ← U_TMP

TIMSK ← U_TMP

U_BIT_CNT ← 0

GIMSK ← 0

U_RELOAD ← 256 N + 8

SREG ← R0

AVR304

11

Performance Figures

Summary
In this application note, a software UART has been imple-
mented. The MCU is capable of using 38400 baud at 1
MHz crystal. The UART is initialized by calling “uart_init”
and enabling global interrupts. If the UART is idle, it will
automatically receive incoming data. To transmit data, a
subroutine called “uart_transmit” is called with the data to
send stored in the “u_transmit”.

Table 9. Overall Performance Figures

Parameter Value

Code Size 72 words - UART routines only
100 words - complete application note

Register Usage • Low Registers
• High Registers
• Pointers

:2
:5
:None

Interrupt Usage Timer/Counter 0 Interrupt
External Interrupt 0

Peripheral Usage Timer/Counter0
Port B, all pins (example program only)
Port D, pin 2 and 4
EEPROM (example program only)

