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turn around and head back up. The 
positive-going step at Point B there-
fore begins life with a head start, as if 
sitting on a pedestal of height H. 

The pedestal reduces the distance the 
signal must traverse to cross its thresh-
old. The signal at Point B, because of 
the pedestal effect, crosses the receiver 
threshold early. The degree of advance-
ment of edge B is a predictable func-
tion of the cable’s attenuation charac-
teristics. It happens the same way every 
time you repeat the experiment.

The received pulse after the data 
slicer (following the comparator, but 
before sampling) comes out narrow-
er than you would expect due to the 
advancement of edge B. That pulse-
narrowing effect is called pulse-width 
compression. 

All bandwidth-limited systems 
built from conductive transverse-elec-
tromagnetic-mode transmission lines 
exhibit a similar effect. High-frequen-
cy losses always narrow a short pulse if 
that pulse is preceded by a long string 
of ones or zeros.

You can make the degree of pulse-
width compression at the output of the 
data slicer into an excellent indicator 
of transmission-line perform ance.

This measure of performance in-
terests me because I’ve noticed in re-
cent years how difficult it has become 
to probe signals at the end of a high-
speed serial link. 

For one thing, the signal often en-
ters a chip from underneath on BGA 
balls, providing no opportunity to at-
tach a probe. Even if you could probe 

the signal from vias available on the 
back side of the PCB (printed-circuit 
board), those vias may not lie suffi-
ciently close to the receiver to afford a 
good view of the received signal. 

For example, in a 6.25-Gbps link, 
the signal rise/fall time at the receiv-
er is on the order of 100 to 160 psec. 
Suppose that the input capacitance of 
the receiver creates a reflection equal 
to 20% of the received-signal ampli-
tude. At the receiver location, that 
reflection appears coincident with 
each rising or falling edge, delaying 
each edge but possibly not affecting 
data reception. At a via just 0.25 in. 
away, that same reflection appears 90 
psec later, assuming a round-trip de-
lay of 0.5 in. at 180 psec/in. This ad-
ditional round-trip delay places the 
20% reflection at an apparent posi-
tion near the center of the data eye. 
At that position, the reflection may 
appear formidable. To overcome this 
timing impediment, you must place 
your probe within a short fraction of 
one rise/fall time of the bitter end of 
the link. You must also select a probe 
that does not inordinately load down 
the signal under test—a requirement 
that is becoming increasingly diffi-
cult to meet.

Pulse-width compression works well 
as a measure of system bandwidth be-
cause it overcomes the limitations of 
probe placement and loading. It also 
measures the whole system up to and 
including the data slicer.EDN
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 T
he signal in Figure 1 originates in a pristine state at its 
transmitter. After passing through a long coaxial cable, 
high-frequency losses within the cable round off the signal 
edges, making each edge somewhat less steep at the receiv-
er than at the transmitter. 

Notice what happens at Point A. The received signal 
does not have time to fall completely down to the bottom before it must 
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Howard Johnson discusses PCB-
trace losses. See his video at www.
edn.com/techclips. And stay tuned to 
this link for more videos to come.
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Howard Johnson, PhD, of Signal Con-
sulting, frequently conducts technical 
workshops for digital engineers at Oxford 
University and other sites worldwide. 
Visit his Web site at www.sigcon.com or 
e-mail him at howie03@sigcon.com.

Figure 1 After receiving a long string of ones, the pulse-width-compression effect 
advances the positive transition at Point B. 
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