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0.0 Introduction 
 
The AUVic Communication System (AUVic-CS) allows for communication between the host and 
all systems on the AUV.  Communication with all systems is done through a well-defined interface 
enforced by the AUVic-CS.  Systems are effectively “black boxed” as only the communication 
protocol needs to be known to interact with the system and systems are inherently independent of 
each other.   
 
The AUVic-CS consists of three types of components: the host PC, the hub, and intelligent 
peripherals (sensor or actuator).  Each intelligent peripheral is a self contain unit that can be 
communicated with using the protocol defined in this documentation.  An intelligent peripheral is 
required to follow this protocol and will be independent of any other systems on the AUV (except 
for power).  This allows these peripheral to be designed in parallel.   
 
The hub acts as a protocol translator between the host and intelligent peripheral network.  The 
intelligent peripherals communicate with the hub over a multi-drop, half-duplex Inter-Integrated 
Circuit (I2C) network and the host communication with the hub via a standard RS232 serial port.  
The hub also provides error checking and recovery and has the ability to reset any peripheral on 
the I2C network by toggling the Dallas 1-Wire (D1W) digital switch contained on each peripheral. 
 
A common backplane containing power and signal lines is routed to each peripheral and the hub.  
The power lines provide each peripheral with +5V, +12V, -12V, and ground.  The signal lines 
consist of both the I2C and D1W network lines and an end mission signal line.  The end mission 
line is controlled by an external switch on the AUV and informs all systems when a mission run 
has been completed or aborted. 
 
The host performs integrated processing of data received from the various intelligent peripherals 
in the AUV.  This document will only refer to the operation of the host in so far as it is involved in 
the communication system.  For detailed information on the operation of the host please refer to 
the documentation AUVic Host Operation (in progress). 
 
This document discusses the AUVic-CS in detail so that future AUVic teams can understand its 
operation, enhance the design if required, and troubleshoot the system should problems arise.   
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1.0 Specifications 
 
All intelligent peripheral must communicate via I2C using open collector pins.  The hub circuit 
board contains the required pull-up resistors to allow the I2C bus to float high.  The I2C bus uses 
a regulated +5V to indicate a high.   
 
ELECTRICAL CHARACTERISTICS FOR HUB 
Symbol Parameter Conditions Value 

(Typical/Max) 
Units

VHUB Hub Supply Voltage  5 / - V 
IHUB Supply Current for Hub  (Note 1)   mA 
 
SYSTEM CHARACTERICTICS 
(Pull-up Resistors on I2C Lines, RUP = 4.7k, VDD = +5V) 
Symbol Parameter Conditions Value 

(Min/Typical/Max) 
Units

LI2C I2C Operating Length1 22 AWG solid wire 3.5 / - / -  m 
LD1W D1W Operating Length2 22 AWG solid wire 3.5 / - / - m 
LSERIAL Serial Operating Length Standard serial cable 3.0 / - / - m 
NSLAVES Number of Slaves3  0 / - / 112  
BI2C I2C Baudrate4   100/400/1000 Kbps 
BSERIAL Serial Baudrate4  300/115/921 Kbps 
1 Using a simple pull-up resistor on the I2C lines.  Length can be increased by using a current amplified [1]. 
2 Using a simple pull-up resistor on the D1W line. 
3 Maximum number of slaves may be limited by the required electrical specification of the I2C bus. 
4  System has only been tested at typical baudrate settings. 
 
PROGRAMMABLE VALUES (Can be set at design time by modifying the Hub program) 
Symbol Parameter Nominal Value Units 
TOI2C I2C Timeout 3 ms 
TOSCI SCI Timeout 6 ms 
RETRIESSLAVE Times Hub will try to communicate with a 

slave on the I2C network before considering it 
offline 

2  

RETRIESHUB Times Host will try to communicate with Host 
before considering a packet faulty 

2  
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2.0 Infrastructure 
 
The communication system allows communication between the host and all other system on the 
AUV (with the exception of the camera that is attached via USB). Figure 3.1 provides an overview 
of the systems on the AUV and illustrates how the AUVic-CS is used to allow communication with 
different sensors and actuators.  The sections specific to the AUVic-CS are shown in red.  The 
hub acts as a serial (RS232) to I2C protocol translator and provides error detection and recovery 
to improve system performance (see section 8 for details).   
 

 
 

Figure 2.1 Communication System Overview 

2.1 RS232 Connection 
 
A standard serial cable connects the host to the hub.  This connection has been tested with a 3m 
long serial cable, as this length should easily be sufficient for the AUV.  The serial link is capable 
of operation at speeds between 300bps to 921Kbps, but the AUVic-CS has only been tested at 
115Kbps.  Higher speeds may require the interrupt service routine (ISR) in the hub to be 
implemented in assembler. 
 

2.2 I2C Network 
 
The Inter-Integrated Circuit (I2C) protocol was developed by Philips Inc. for the high speed 
transfer of data between IC in close proximity to each other.  An I2C network consists of a data 
line (SDA) and a clock line (SCL).  Both lines are open-collector and require a pull-up resistor.  An 
I2C network may be setup in a single master, multiple slaves or a multiple master configuration.  
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The current master is responsible for driving the clock line and has complete control over the 
network.  Slave addresses can be set to 7 or 10-bits  
 
The AUVic-CS uses 7-bit addressing in a single master, multiple slave configuration.  With 7-bit 
address the network support 112 usable addresses (several address are reserve for special 
operation), but the electrical specification of the I2C network are the limiting factor on how many 
peripherals can be supported.  The network has been tested to a length of 3.5m using 22 AWG 
solid wires and 4.7Kohm pull-ups on each line.  This length should be sufficient for the AUV and 
greater lengths have not been tested.  The hub is capable of operating a 100Kbps, 400Kbps, or 1 
Mbps I2C network, but the AUVic-CS has only been tested at 400Kbps. 
 
An I2C network is a master/slave network so it is common to refer to the master of the network 
and the slaves.  In the AUVic-CS the master is the hub and the slaves are the peripherals.  On 
occasion, this document will use this terminology when referring to the hub (master) or 
peripherals (slaves). 
 

2.3 Dallas 1-Wire Network 
 
The D1W network supports 2^48 logical addresses, but the electrical specifications of the D1W 
network are the limiting factor on how many devices can be supported.  The D1W network has 
been tested to a length of 3.5m using 22 AWG solid wires and 4.7Kohm pull-ups.  This length 
should be sufficient for the AUV and greater lengths have not been tested.  The hub performs 
D1W communication in software and the baud rate has not been calculated as it is not critical.  
For information on how the D1W network is used in the AUVic-CS see section 4. 

 

2.4 Common Network Lines (Backplane) 
 
Several power lines and signals are common to the nodes in the AUVic-CS.  All nodes will 
receive 5V, 12V, –12V, and ground from a common power supply in order to operate.  The hub 
and all peripherals will contain the I2C network signals (SCL and SDA), the D1W signal, and an 
end mission signal (see section 7.0).  Additional control lines are also being carried to each board 
for future expansion and are connected to I/O pins on the hub. 

 
2.5 Dockside PC (TCP/IP Network) 
 
As shown in Figure 2.1, a dockside PC will also be able to communication with the AUVic-CS via 
a TCP/IP connection to the host.  This will allow manual control of the AUV, the ability to log data, 
and greatly aid in debugging.  For more information please consult “AUVic TCP/IP Network” (in 
progress). 
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3.0 Dallas 1-Wire Network 
 
The Dallas 1-Wire (D1W) network allows the hub to reset any peripheral on the I2C network.  Each 
peripheral contains a DS2406 D1W digital switch IC that can reset a peripheral when the hub toggles 
the switch.  It is a requirement of the communication protocol that all peripherals on the I2C network 
provide this capability.  This allows the hub to reset a system if it is hanging the I2C network.  
 
Each DS2406 IC has a unique address that is burned into it at the factor.  This address is guaranteed 
to be unique and allows multiple DS2406’s to reside on a D1W bus.  During design time this address is 
read from the device (see Appendix V for example code) and related to the I2C address of the 
peripheral by the host.  The host can inform the hub to reset a given peripheral if it is believed to have 
stopped operating correctly (sections 8 and 9 for how the hub and host determines if a system should 
be reset).   
 

4.0 End Mission Signal 
 
The end mission signal is contained on the backplane running between the hub and all 
peripherals in the AUV.  This signal informs all peripheral that a mission run is over and is 
triggered by toggling an external switch on the AUV.  The AUVSI competition rules require that all 
systems cease processing and collecting data when a mission run has ended and that all 
actuators (i.e. the motors) move to an idle state.  It is recommended that this signal be attached 
to an interrupt pin to ensure a peripheral promptly responds to the signal. 
   



 6

5.0 Protocol 

5.1 Flow of Packets 
 
The AUVic-CS operates as a half-duplex network with strict rules controlling the flow of packets.  
The rules governing the AUVic-CS are: 
   1. All communication starts with a packet sent by the host. 
   2. The host requires a reply to every packet. 
 
These two rules are sufficient to describe the operation of the AUVic-CS.  Figure 5.1 illustrates 
how a typical packet moves through the network.  The host sends a packet to the hub via RS232.  
If the packet is addressed to the hub than it immediately processes the packet and sends a reply 
to the host.  The host is now free to send another packet.  If the packet is for a peripheral on the 
I2C network, then the hub will simply forward the packet as it is received from the host.  It is a 
requirement of all peripherals that they send a reply to every packet they receive. The hub 
forwards any data it received on the I2C network to the host.  The host is free to send another 
packet only after it has received a reply. 
 
These rules imply several invariants about the AUVic-CS: 

• a peripheral can only receive a packet from the host (forwarded by the hub) 
• a peripheral can only send a packet that is a reply to the host 
• packets addressed to the hub come from the host 
• the hub can only send a packet that is a reply to the host 
• a reply must be sent for every packet received 
• the host can only receive a packet that is a reply  

 
Of course, it is possible that the host will not receive a reply to a packet due to a corrupt packet.  
Sections 7, 8, and 9 discusses in detail how the AUVic-CS detects and handles errors that can 
occur.   
 
 

 
Figure 5.1.  Typical Network Operation 

 

5.2 Packet Structure 
 
The AUVic-CS uses packets to send information between the host, hub, and peripherals on the 
I2C network.  Figure 5.2 shows the structure of these packets. 
 

Destination \ Source (1 Byte) 
Length  (1 Byte) 

Type (1 Byte) 
Contents (0-20 Bytes) 

Checksum (2 Byte) 
Figure 5.2 Packet Structure 

 
Each node on the I2C network along with the host is given a unique address.  The 
destination/source byte is used to send packets to a specific node on the network.  The half-
duplex nature of the AUVic-CS, along with the fact that all packets originate from the host, is 
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taken advantage of to allow a single byte to represent either the destination or source of a packet.  
This allows the host to check who a reply packet is from.  This is useful as the host may send a 
packet to a node of the I2C network, but receive a reply from the hub indicating that an error has 
occurred. 
 
When a packet is traveling from the host to the hub or a node on the I2C network the 
destination/source byte represents the intended destination of the packet.  When a packet is 
traveling from the hub or a node on the I2C network the destination/source byte represents the 
source of the reply packet.  For example, if the host sends a packet to the port motor controller 
then the destination\source is set to the port motor controller address.  The reply from the port 
motor controller also sets the destination\source byte to the port motor controller address to 
indicate it is the source of the reply.  There is no need to indicate that the reply is for the host as 
replies are always for the host. 
 
The length byte indicates the number of content bytes in a packet.  The minimum length of a 
packet is 0 (destination/source, length, type, 0 content bytes, checksum) and the maximum length 
of a packet is set to 20 (destination/source, length, type, 20 content bytes, checksum). The length 
byte is used by nodes on the network to determine when a complete packet is received. 
 
The type byte informs a node on the network what sort of packet it has received.  Every packet 
that a node can receive must have a unique type byte so it knows how to correctly process the 
packet.  For example, the motor controllers can accept over 15 different packet types (set motor, 
set acceleration, set current limit, etc...) and must perform a different action for each type of 
packet. 
 
A packet can contain between 0 and 20 content bytes.  How the content bytes are interpreted is 
dependent on the packet type.  For example, when a motor controller received a set motor packet 
it interprets the 2 content bytes as a 16-bit word where the MSBit indicates the direction and the 
10 LSBits represents the motor speed between 0 (stop) and 1023 (full speed).  It is the 
responsibility of each peripheral in the system to define what packet types it can accept and the 
format of any content bytes in these packets.   
 
The checksum is used to verify that a packet has been received without error. The AUVic-MC 
uses a 16-bit CRC checksum based on the CCITT polynomial (x16+x12+x5+1).  [2] can be 
consulted for more information on how a CRC checksum is generated.  When a node receives a 
packet it calculates the expected checksum and compares it to the received checksum.  If the two 
checksum do not agree than the node can conclude that the received packet contains errors (see 
sections 7, 8, and 9 for details on how corrupt packets are handled). 
 
It was deemed that a 16-bit CRC checksum provided the best mix of characteristics (see Table 
5.1).  The increased probability of receiving a corrupt packet that passes the CRC check – an 
undetected communication error – from using an 8-bit CRC is too high.  A 32-bit CRC checksum 
requires too much program memory and causes an unacceptably low level of packet efficiency.  
The AUVic-CS consists of relatively short line lengths in an electrically quite environment so the 
number of packets that will become corrupt should be minimal and the AUVic-CS is capable of 
recovering from corrupt packets (see section 8 and 9).   
 
 
Characteristic 8-bit CRC 16-bit CRC 32-bit CRC 
Memory (bytes) 256 512 1024 
Approx. Processing Time (per byte)1 400 ns 1000 ns 2000 ns 
Worst-case Burst Error Detection (%) 99.219 99.997 99.999 
1 Assuming a PIC16F876 using a 20MHz clock 

Table 5.1 Comparison of CRC Table Look-up Algorithms 
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5.3 Standard Packets 
 
The AUVic-CS defines several standard packets that all peripherals on the I2C network and the 
hub must be able to respond to.  These standard packets are network services that provide the 
host with a uniform way to handle commonly required tasks.  Each of these network services 
(Acknowledge, Error, Diagnostic, Status, End Mission, Shutdown) along with broadcasting will be 
discussed. 
 
An acknowledge packet provides nodes with a uniform way to reply to a packet.  The reply to all 
packets should be of this type unless otherwise specified.  Having a uniform packet type for 
replies simplifies the logic required to process replies.  Figure 4.4 gives the structure for an 
acknowledge packet.   

 
Destination (1 Byte) 

Length (1 Byte) 
Type (10) 

Contents (Variable) 
Checksum (2 Byte) 

Figure 4.4 Acknowledge Packet 
 
Error packets provide a uniform way in which nodes can report an error to the host.  A single 
content byte is used to indicate the type of error.  Appendix V contains a listing of predefined error 
types that is very comprehensive, but a peripheral is free to define other error codes if required.  
For example, if a node determines that a packet is corrupt because the checksum check fails 
then it can respond with an error packet with the content byte set to SLAVE_CRC_FAILED.  
Figure 4.5 gives the structure for an error packet. 

 
Destination (1 Byte) 

Length (0) 
Type (15) 

Error Code (1 Byte) 
Checksum (2 Byte) 

Figure 4.5 Error Packet 
 
The diagnostic packet is used by the host to determine if a given address is present on the 
system.  During initialization the host can send out diagnostic packets to determine what 
peripherals are currently attached to the network.  The host can indicate an error if a given 
peripheral is not present.  Ideally, the host would then try to accomplish its mission with the 
peripherals that are currently available.  In practice, it may be more economical to simply resolve 
the error.  The reply to a diagnostic packet is a diagnostic packet and not an acknowledge packet 
in order to allow the host to take special action for diagnostic packet if desired. The structure of 
the diagnostic packet is given in Figure 4.6. 

 
Destination (1 Byte) 

Length (0) 
Type (1) 

Checksum (2 Byte) 
Figure 4.6 Diagnostic Packet 

 
A status packet is used to query a peripheral for its current state.  The response to this packet is 
dependent on the peripheral, but should contain the value of all properties that can be modified 
by “set” packets.  That is, any property of a peripheral that can be modified by sending it a packet 
should have its current value contained in the reply to a status packet.  For example, the motor 
controllers implement a “set temperature limit” packet so will provide the current temperature limit 
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setting in the reply to a status packet.  The number of content bytes and how they are interpreted 
is defined by each peripheral.  Figure 4.7 gives the structure of a status packet. 

 
Destination (1 Byte) 

Length (1 Byte) 
Type (3) 

Contents (Variable) 
Checksum (2 Byte) 

Figure 4.7 Status Packet 
 
The end mission packet informs a peripheral that a mission run is over.  At the end of a mission 
all sensor must stop collecting data and all actuators should be brought to an idle state.  The end 
mission packet allows the host to determine that a mission should be considered complete.  
During a competition run the end mission signal will be generated by toggling an external switch 
and the signal delivered to each node explicitly.  The structure of the end mission packet is given 
in Figure 4.8. 

 
Destination (1 Byte) 

Length (0) 
Type (4) 

Checksum (2 Byte) 
Figure 4.8 End Mission Packet 

 
The shutdown packet informs a peripheral that it should immediately shutdown.  In normal 
operation this packet should not be used.  It is intended to be used as an emergency shutdown of 
all systems.  The action taken to a shutdown packet is dependent on the peripheral. For example, 
a motor controller should immediately turn off the motors upon receiving a shutdown packet 
whereas the sonar system should simply stop collecting data.  Figure 4.9 gives the structure for a 
shutdown packet. 

 
Destination (1 Byte) 

Length (0) 
Type (2) 

Checksum (2 Byte) 
Figure 4.9 Shutdown Packet 

5.4 Broadcasting Packets 
 
Broadcasting is supported by the AUVic-CS in order to allow the end mission and shutdown 
packets to be delivered to all peripherals in a timely and convenient fashion.  In addition, 
broadcasting is directly supported by the I2C protocol making it simple to implement.  The 
broadcast address is 0x00 and all peripherals and the hub should accept and process 
broadcasted packets. The hub will send a reply to the host indicating that the broadcasted packet 
was sent over the I2C network.  However, no verification is done to ensure that all peripherals 
correctly received the packet.   
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6.0 I2C Communication 
 
In order to understand the operation of the AUVic-CS it is necessary to understand how the I2C 
network operates.  The I2C network is a half-duplex, master/slave network. The network is half-
duplex as only one device (either a peripheral or the hub) can place data on the network at a time.  
In a master/slave network all communication is initiated by the master (i.e. the hub) – a slave (i.e. 
a peripheral) only places data onto the bus when explicitly request to do so by the master.  Low-
level timing and electrical details for the I2C bus can be found in [3].  Here the logical operation of 
the I2C network will be discussed. 
 
Data is transferred a byte at a time and the peripheral must acknowledge each byte before 
operation continues.  The master controls the rate data is placed on the bus by controlling the 
SCL line.  The logic level of the SDA line must only be changed when the SCL line is low.  Data is 
read from the network on a low to high transition of the SCL line.  This allows two unique 
conditions to occur on the bus that are exploited by the I2C protocol.  A start condition is 
generated by pulling the SDA line low when the SCL line is high and a stop condition is generated 
by allowing the SDA line to float high when the SCL line is high.  The start condition signal 
informs all devices on the network that the master will be placing an address onto the network 
and the stop condition informs peripherals that the communication sequence is over and that their 
receive logic should be reset.  
 
The master starts a write sequence by first generating a start condition.  In the next 7 clock pulse 
(SCL going from low to high) the master places the address onto the bus and on the 8th clock 
pulse the master pulls the SDA line low to indicate a write operation (see Figure 6.1).    An 
additional 9th clock pulse is sent by the master to allow the peripheral to acknowledge (ACK) it 
has received the last byte by pulling the SDA line low.  Failure to ACK indicates that the address 
was not recognized by any peripheral on the network.  Data is now sent to the peripheral 8-bits at 
a time followed by an acknowledge from the peripheral.  The peripheral can indicate that no more 
data should be placed on the bus by issuing a not acknowledge (NACK) on the 9th clock pulse 
after a byte is read.  However, in the AUVic-CS a slave never issues a NACK and communication 
is always terminated by the master generating a stop condition to inform the slave that no more 
data will be placed on the network. 

Figure 6.1 I2C Write with 7-bit Address (source: [4]) 
 
 
Figure 6.2 illustrates an I2C read operation.  Like a write operation a start condition is generated 
followed by the address of the peripheral the master wishes to read data from.  The 8th byte is set 
high to indicate a read operation.  The peripheral now sends an ACK bit on the 9th clock pulse 
from the master by holding the SDA line low.  By keeping the SDA line low the peripheral can 
take as much time as required to prepare the data to send to the master.  Once the peripheral is 
ready to send a byte it lets the SDA line float high causing the master to generate clock pulses 
and read in the byte.  On the 9th clock pulse the master sets the state of the SDA line and the 
peripheral latches the value.  On an ACK, the slave can hold the SDA line low and prepare 
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another byte to send.  A NACK indicates that the master does not wish to read any more data 
from the peripheral.  The communication sequence is terminated by generating the stop condition. 
 

Figure 6.2 I2C Read with 7-bit Address (source: [4]) 
 
 
The AUVic-CS takes advantage of the nature of the I2C protocol to reduce the resource 
requirements of peripherals.  By exploiting the I2C protocol the amount of RAM, program memory, 
and timers available on a peripheral can be reduced.  It is assumed that peripherals are using 
devices that can distinguish between an address byte and a data byte in hardware (by looking for 
a start condition).  That is, there is a flag set in hardware to indicate if the currently received byte 
is an address (and thus the start of a communication sequence) or a data byte.  Currently, every 
peripheral in the AUV is using a PIC16F876 microcontroller to interface to the I2C network.  The 
PIC16F876 meets the requirement of setting a byte in hardware to indicate the type of byte 
received.  It is expected that the majority of microcontrollers with I2C hardware will meet this 
requirement.  Section 7.0 discusses in detail how this is exploited to simplify the communication 
logic and remove the need for a communication timeout timer. 
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7.0 Peripheral Operation 
 
Each peripheral adds functionality to AUViking that can be accessed using the AUVic-CS.  The 
functionality provided by each peripheral and the manner in which this functionality is 
implemented is unique to each peripheral.    In order to hide this complexity, all peripherals 
provide a well-defined interface to allow access to the functionality it provides. 
 
This section explores the design specifications that every peripheral must adhere to.  Failure to 
meet these specifications may result in the AUVic-CS failing to operate.  The specifications here 
make no assumptions about the peripheral allowing peripherals to use a wide set of processors 
and electrical components. 
 

7.1 Typical Operation 
 
Typical operation is for the hub to transmit a packet to a peripheral and then request a response 
to the packet.  The hub requests a response to all packets to ensure the packet was received by 
the peripheral without error. The peripheral receives a packets, processes it, and sets up a reply 
packet for the hub.   
 
A race condition occurs between the peripheral preparing the reply packet and the hub requesting 
the reply.  If the hub were to request a reply from a peripheral too soon it would read back an 
error packet. Peripherals are responsible for handling this situation by holding the SDA line low 
until it is ready to transmit a reply as discussed in section 6.0.  This ensures the hub always reads 
back the intended reply from a peripheral regardless of the time it takes for a peripheral to 
process a packet. 
 
Figure 7.1 gives a flow chart illustrating suitable logic for a peripheral on the AUVic-CS.  The 
“Receiving New Packet” and “Transmit Reply” functions are contain in the I2C interrupt service 
routine (ISR) that is called whenever a byte is received on the I2C network.  Although it is 
possible to built a peripheral with a processor that does not provide interrupt support for the I2C 
network, it is not recommended.  The “Program Start” function runs whenever the ISR is not 
running.  I2C communication will be slow relative to any microcontroller so a peripheral spends 
the majority of it’s processing time “Perform(ing) Slave Processing” as desired. 
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Figure 7.1 Flow Chart for Peripheral on the AUVic-CS 
 
When a hub sends a packet to a peripheral the peripheral executes the “Receiving New Packet” 
logic.  As discussed in section 6.0, the peripheral can determine that a new packet is to be read 
by checking a hardware flag and the last bit of the address byte.  Once a packet is received 
successfully the “Packet Received” flag is set to inform the “Program Start” logic that the packet 
should be processed.   
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Transmitting a packet is handled by the “Transmit Reply” logic.  The race condition discussed 
above is handled by using a “Master Reply” flag which informs the “Program Start” logic that the 
hub is pending a response and the “Packet Received” flag which informs the “Transmit Reply” 
logic that the last packet is still being processed and the reply packet is not ready yet.   
 

6.2 Handling Communication Errors 
 
The reply packet from a peripheral is always a valid reply packet. The reply packet is set to 
indicate an unknown error until a packet is successfully received or a specific error is detected.  
This ensures the hub will receive a valid error packet as a response should a communication 
error occur.  When a valid packet is received, the reply packet is set accordingly.  Once the hub 
reads the reply packet or starts to send a new packet to the peripheral, the reply packet is reset to 
an unknown error packet.   
 
If the peripheral is able to determine the cause of a communication failure it sets the error code of 
the reply packet appropriately.  This aids in debugging and can be used by the hub to determine 
how to respond to the error packet.  Until a valid packet is received or an error can be detected by 
the peripheral, the reply packet indicates an unknown error.   
 
Figure 6.1 indicates the communication errors that can be detected by a peripheral.  An 
“Unknown RX State” error occurs if the hub sends a peripheral more bytes than expected and an 
“Unknown TX State”  error occurs if the hub requests more bytes than the total length of the reply 
packet.  A “CRC Failed” error is reported on a checksum error  and an “Unknown Packet Type” 
error indicates that the peripheral cannot recognize the packet type.   
 
Table 6.1 lists the errors that will be reported for different communication errors.  In all cases it is 
assumed that the checksum is still valid.  Otherwise, most errors simply result in the peripheral 
indicating that the checksum was invalid (the exception to this is corruption of the length byte).   
 

Test Response To Hub 
Destination Corrupt – address not on I2C network ERROR_I2C_TIMEOUT 

Destination Corrupt – addressed to incorrect 
peripheral 

Depends on Peripheral 
(likely an invalid packet type) 

Length Corrupt – indicates additional content bytes ERROR_SLAVE_UNKNOWN 

Length Corrupt – indicates too few content bytes ERROR_SLAVE_I2C_CRC_FAILED 

Type Corrupt – indicates an unknown packet type ERROR_SLAVE_PKT_TYPE_UNKNOWN 

Type Corrupt – indicates a valid packet type Depends on Peripheral 
(in general, this is a serious error) 

Any Content Byte Corrupt Depends on Peripheral and Packet Type 
(in general, this is a serious error) 

Checksum Corrupt ERROR_SLAVE_I2C_CRC_FAILED 
Table 6.1 Response by Slave to Various Communication Errors 

 
The I2C protocol is exploited to remove the need for a communication timeout timer.  To illustrate 
why a communication timeout timer is required with many protocols consider the following 
example.  Assume the length byte of a packet becomes corrupt and indicates that the length of 
the packet is 255 bytes (the maximum length that could be specified).  The peripheral will now 
stay in the “Read Packet Contents” state (see Figure 5.1) until 255 bytes are received.  After 
trying to send the packet to the peripheral several times and receiving only error packets as 
replies (as the peripheral is still looking for more content bytes) the hub will conclude that the 
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peripheral is not operating correctly.  The hub can now use the D1W network to reset the 
peripheral, but this is not a desirable way to resolve the problem as it disrupts the operation of the 
peripheral. 
 
As such, it is typical to use a communication timeout timer.  In this scheme when the hub detects 
an error packet from a peripheral it waits a set period of time before attempting communication 
again.  This delay from the hub allows the communication timeout timer on the peripheral to 
expire which will cause an interrupt.  During the interrupt service routine the communication logic 
will be reset so the peripheral is ready to receive another packet from the hub.   
 
The use of a communication timeout timer is typical when using the RS232 protocol as it has no 
mechanism to indicate the start or end of a packet (the hub uses such a timer for RS232 
communication with the host).  The use of a communication timeout timer requires an available 
timer on every peripheral and a method for the hub to delay before sending a reply.  This required 
delay by the hub also results in slower recovery from communication errors.   
 
A communication timeout timer is not required with the I2C protocol if a hardware flag is set 
whenever a start condition occurs.  The peripheral can now use this flag to determine if it needs 
to reset the communication logic.   For example, if the length byte should become corrupt as 
illustrated above, the peripheral will recover as it resets the communication logic when a new 
packet (which begins with a start condition being generated) is sent from the hub.  When a 
communication timeout timer expires it is indicating that the logic should be reset to accept a new 
packet – this is precisely what explicit detection of a start condition does.  This allows a peripheral 
to recover from any communication error as the communication logic is always reset at the start 
of receiving or transmitting a new packet. 
 
An important design requirement of peripherals is they must not contain state information.  
Removing all state information from a peripheral allows it to be reset with minimal affect on its 
operation.  This is exploited by the host to allow recovery from otherwise fatal errors. The 
following two cases illustrate how state information can easily be removed from a peripheral and 
why this results in only minor disruption of the peripherals operation: 

• Inertial Guidance System: The goal of the inertial guidance system (IGS) is to estimate 
the position of AUViking by using a 3-axis compass and an accelerometer.  The current 
position of AUViking could be stored in the IGS, but this would result in the position state 
information being lost upon a reset.  Instead, the IGS simply indicates the relative 
movement of AUViking since the last time it was polled and the host keeps track of the 
position of AUViking.  A small lost in positional accuracy will occur after a reset, as the 
current relative position information in the IGS will be lost. 

• Motor Controller: Resetting a motor controller will cause the attached motor to stop 
moving.  The desired speed of the motor is determined by the host using data from all 
sensors on AUViking.  This desired speed is sent to the motors at a frequency of 10Hz or 
greater so only a minor disruption in operation occurs.   

Some peripherals may contain properties that are sent only once during initialization.  For 
example, the motor controllers have properties specifying current and temperature limits that are 
set by the host only once during initialization of AUViking.  It is the responsibility of the host to 
resend this initialization information after it resets a peripheral.       

Resetting of a peripheral to recover from an error should only be used when no other recovery 
method is available.  Alternative methods can often avoid the minor disruption of the peripherals 
operation that result from resetting.  These disruptions are designed to be minimal, but are still 
undesirable and could hamper the operation of AUViking if they occur regularly. 
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8.0 Hub Operation 
 
The hub is an integral component of the AUVic-CS.  It is an intelligent protocol translator between 
the host and I2C network capable of detecting and recovering for communication errors, resetting 
peripherals using the D1W background network, responding to network services, and monitoring 
itself to determine if it is malfunctioning.  All of these aspects will be examined here. 

 
8.1 Typical Operation 
 
In typical operation the host sends a packet to the hub that is addressed to a peripheral on the 
I2C network.  Figure 8.1 provides a flow chart of the logic used to receive packets from the host.  
Packet reception is handled in an ISR.  At the start of receiving a packet a communication timer is 
set to aid in recovering for communication errors (see section 8.2).  Upon reception of the 
destination byte the hub determines if the packet is addressed to itself.  If not, a flag is set that 
indicates that all bytes received should be forwarded to the I2C network.  Upon reception of each 
byte the hub logic determines what part of the packet it is and processes the byte accordingly.  
When the checksum byte is received the hub sets the packet state to RECEIVED or ERROR 
depending on the validity of the checksum. 
 
As shown in Figure 8.1, on reception of the destination byte a check is also made to determine if 
the packet should be broadcasted.  A broadcasted packet requires special attention as the hub 
and all peripherals must process the packet and no response is required from any of the 
peripherals.  The hub will provide the host with a response in order to meet the protocol 
requirements.   
 
Figure 8.2 is a flow chart of the main processing loop of the hub.  When a packet is received the 
state will be set to either RECEIVED or ERROR.  If it is set to ERROR the hub sends an error 
packet to the host as a reply and than resets the communication logic.  The error type will report 
what type of error has occurred (see section 8.2).   
 
Otherwise, the hub checks the forward and broadcast flags to determine how to proceed.  If the 
packet is for the hub (forward flag not set or broadcast flag set) than it is processed by the hub 
and an appropriate reply sent to the host.  Otherwise, the hub must request a reply from the 
peripheral the packet was forwarded to. 
 
Figure 8.3 is a flow chart of the logic used to request a reply from a peripheral.  A communication 
timer is set to allow recovery from errors and than the hub attempts to read the reply.  Upon 
successfully reading a reply it is forwarded to the host. 
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Figure 8.1 Reception and Forwarding of Packets from Host 
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Figure 8.2 Main Processing Loop of Hub 
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Figure 8.3 Requesting Reply from a Peripheral 
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8.2 Handling Communication Errors 
 
The hub must handle communication errors on the serial link and on the I2C network.  Error 
detection is not performed on the D1W link.  If an error occurs on the D1W network the result is 
the desired peripheral will not be reset.  The host is free to attempt resetting a peripheral multiple 
times. 
 
Communication errors on the serial link are handled by the 16-bit CRC checksum and the 
communication timer.  Most communication errors result in one or more bits in the packet being 
corrupt.  This results in a CRC check failure that will be reported to the host so it can re-transmit 
the packet if desired.   
 
However, as illustrated in section 7.3, a communication timer is required to handle the possibility 
of the length byte becoming corrupt or bytes being lost.  The communication timer is set when the 
destination byte of a packet is received.  If the communication timer expires it indicates a 
communication error as a complete packet should have been received in this time frame.  Figure 
8.4 illustrates the logic of the communication timer ISR.   
 
If the serial communication timer expires when attempting to receive a packet from the host then 
a reply packet is sent to the host indicating that the timer has expired.  The hub now resets it’s 
packet receive logic in preparation to receive the next packet (possibly a resend of the last 
packet).  An I2C stop condition is also generated to inform all peripherals that the hub has 
finished forwarding the current packet. 
 

 
 

Figure 8.4 Communication Timer ISR 
 
Figure 8.3 illustrates the error recovery performed by the hub over the I2C network.  A 
communication timer is used to ensure the hub does not wait indefinitely for a reply.  If a packet is 
forwarded by the hub to a peripheral that does not exist on the I2C network (i.e. the destination 
byte is invalid or became corrupt) then the hub would wait indefinitely for a reply.  When the 



 21

communication timer expires (see Figure 8.4) it sets a flag that causes all I2C read operation to 
return immediately.  The hub will then send an error packet to the host indicating the I2C timer 
expired. 
 
If the timer has not expired, the hub checks to see if the checksum of the reply packet is valid and 
that the peripheral is not reporting an error.  On an invalid checksum the hub requests the reply 
from the peripheral again.  On an error packet the hub resends the last packet and requests the 
reply again.  After a user defined number of attempts at obtaining a valid response the hub 
reports an error packet to the host.  If a valid response is received it is forwarded to the host. 

 
8.3 Communication with the Hub 
 
Like peripherals on the I2C network the hub has an address that allows the host to send packets 
to it.  The hub can accept diagnostic, shutdown, end mission, status, and reset packets.  The 
effect of this network services on the hub are: 

• Diagnostic: The host sends the hub a diagnostic packet to check if the hub is present and 
communicating properly.  This allows the host to report an error if communication with the 
hub fails.  

• Shutdown: Causes the hub to turn off all indicator LED’s.   
• End Mission: Causes the hub to turn off all indicator LED’s.   
• Status: The hub has no user programmable settings so simply returns a status reply 

packet with no content bytes.   
• Reset: The host can reset any peripheral by sending a reset packet to the hub.  In order 

for the host to reset a specific peripheral is must know the D1W address of the digital 
switch connected to that peripheral.  This is accomplished by a simple lookup table that 
relates I2C addresses to D1W addresses.  Figure 8.5 gives the packet structure for a 
reset packet.   

 
Destination (1 Byte) 

Length (0x06) 
Type (0xA0) 

D1W Address (6 Bytes) 
Checksum (2 Byte) 

Figure 8.5 Reset Packet 

8.4 Watchdog Timer 
 
A watchdog timer is used on the hub to make it more robust.  When the hub is operating as 
desired, it will reset the watchdog timer often enough that it never expires.  If the watchdog timer 
does expire (0.9-4.2 sec) it indicates a serious problem has occurred and the hub will reset itself.   
Resetting the hub should allow it to recover from any errors and allow communication between 
the host and I2C and D1W networks to continue.   
 
If the watchdog timer is found to be expiring, it indicates a serious error that should be properly 
debugged.  The watchdog timer is provided to make the hub more robust, but should not be used 
as a method to recover from a known error. 
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9.0 Host Operation 
 
The host is responsible for communicating with all sensors on AUViking, processing the data from 
these sensors, and determining how to best set actuators on AUViking in order complete the 
AUVs mission.  The algorithms used to process sensor information and follow mission plans is 
critical to AUViking, but have no influence over the AUVic-CS so will not be discussed. This 
section will focus on how the host interacts with the communication system. 

 
9.1 Round-robin Schedule  
 
A straight forward, round-robin schedule is used on AUViking in order to obtain sensor 
information and set actuators at a roughly periodic rate.  A round-robin schedule operates by 
simply sending packets in the order they are listed in the schedule and wrapping around to the 
start of the schedule after the last packet in the schedule is sent.  The round-robin schedule is 
simple to implement and the desired 10Hz packet frequency can easily be obtained.  Its limitation 
is that it has no functionality to send some packets more frequently than others.   
 
An alternative scheduling system could be used that allowed more flexibility over how often a 
packet was sent.  For example, a timer could be used to only send the battery voltage packet only 
once a second as this sensor information is not required at 10Hz or a priority scheme could be 
used that indicates the relative frequency packets should be sent.  The round-robin schedule can 
simulate relative priorities by scheduling some packets more often than others.  However, the 
high data rate of the AUVic-CS allows these more complicated scheduling systems to be avoided 
as there is no harm in receiving packets more often than required as long as all packets are sent 
at the desired frequency.  
 
A round-robin schedule that could be used on AUViking is shown in Figure 9.1. Many of these 
packets (marked with a * in Figure 9.1) are not required by the algorithms on AUViking, but have 
been added as they provide extra information about the state of AUViking that may provide useful 
information when testing AUViking. 
 

3 * Set Motor 
3 * Get Motor Flags 

3 * Get Motor Status* 
Get Pressure Data 

Get Battery Voltages 
Get Temperature Flags 

Get Sensor Status* 
Get Sonar Data 

Get Sensor Status* 
Get Inertial Guidance Data 

Get Compass Data 
Get IGS Status* 

Figure 7.1 Round-robin Schedule 
 

9.2 Typical Operation 
 
A simplified, high level overview of how the host operates is given in Figure 9.2.  When AUViking 
first comes online it initializes the system (turns off LED’s, clears system variables, etc.) and 
makes sure the AUVic-CS is operating correctly by sending a diagnostic packet to the hub and all 
peripherals.  If an error results from any of the diagnostic packets all systems are sent the 
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diagnostic packet again until either no errors are reported or the AUVic-CS is deemed to be 
malfunctioning.  Ideally, AUViking would attempt to determine what systems are online and try to 
complete the mission with only these systems.  In practice, this is time consuming to implement 
and it is easier to simply have the host report an error so the problem can be resolved. 
 
From the point of view of the AUVic-CS the operation of the host is trivial.  It simply sends all 
packets using the round-robin schedule followed by processing the received data.  The result of 
processing the data is how to set the motor speed and directions to best complete the current 
goal of AUViking.  This information is sent to the motors with the set motor packet that is at the 
top of the round-robin schedule.  
 
This process is repeated until the mission is completed or aborted.  A mission may be aborted 
either by the host determining the maximum mission time has elapsed or an external switch being 
toggled.  At this time all systems are sent an end mission packet and the AUV is brought to the 
surface by slowly turning off the motors.   
 

9.3 Handling Communication Errors 
 
Communication errors will occur and it is critical that the host be able to respond correctly to any 
communication error it might receive.  There are two possible sources of errors that host must be 
able to detect: a lost packet on the RS232 link and an error packet as a reply.  As shown in 
Figure 9.2, a communication timer is used to ensure a response is received in a reasonable 
amount of time (nominal 6ms) in order to detect lost packets and all responses are checked to 
determine if a communication error is being reported. 
 
A valid response to any communication error is to resend the packet.  This is due to the fact that 
the most likely cause of a communication error is noise in the environment corrupting the packet.  
Because of this, the host will always resend a packet three times before assuming further action 
is required.   
 
After receiving three consecutive errors the host will report the error via an LED and to the 
dockside PC via TCP/IP (if the TCP/IP channel is available).  This situation represents a serious 
error that indicates the environment is too electrically noisy or a logical error exists in one of the 
systems (for example, a peripheral has entered a logical state that is causing it to continually 
calculate the checksum incorrectly). 
 
The action taken by the host is determined by the last communication error it receives as it 
assumes all three communication errors were the same to simplify the error handling logic.  This 
is a reasonable assumption as logical errors will most likely result in the same communication 
error whereas an electrically noisy environment will result in random errors.  Since there is no 
action the host can take to improve the level of electrical noise in the environment the host simply 
assumes the error is a logical one and that all three errors were the same. 
 
Given that proper testing is done on each system before and after it is integrated into AUViking it 
is reasonable to assume that any logical errors that appear in a system (host, hub, or peripheral) 
will be due to a rarely occurring event (i.e. a specific communication error, a unique sequence of 
packets).  Recovering from such an error is difficult as the system has likely entered a state it was 
not intended to enter.  Even if the logical error can be determined it is highly probable the host will 
not be able to resolve the problem by simply sending it a certain sequence of packets. 
 
The hub and all peripherals have been designed so they can be reset without seriously affecting 
their operation.  This design requirement allows a peripheral to be reset at any time in order to 
attempt recovery from unforeseen errors.  The host uses this to attempt recovery once three 
communication errors have been received.  A check is made to determine if the error is being 
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reported by the hub or a peripheral.  If the hub is reporting the error the host will wait for 5 
seconds in order to allow the watchdog timer on the hub to expire.  This will reset the hub and 
hopefully resolve the error.  For peripherals, the D1W reset network is used to reset the 
peripheral in hopes of resolving the error. In either case, the host assumes the error is resolved 
and simply continues on to the next packet in the round-robin schedule.   
 
There are several situations where this error recovery mechanism will fail.  As an example, if the 
hub were in a state where it is clearing the watchdog timer, but failing to respond to packets then 
the AUVic-CS will cease to operate.  No communication system is without the possibility of failure 
which is why many commercial systems contain redundant communication channels and backup 
systems.  For financial reasons this is not feasible on AUViking and the nature of AUViking 
makes it reasonable to simply perform a system wide reset should the current recovery 
mechanisms fail. 
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Figure 9.2 Main Processing Loop of Host 
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10.0 Programming 
 
The PIC16F876 on the hub can be programmed either by in-circuit serial programming (ICSP) or 
by the resident bootloader via the serial port.     
 
To program the hub using ICSP requires a PIC programmer.  The circuit has been designed for 
compatibility with the Newfoundland Warp13 programmer (www.newfoundelectronics.com), but 
should be compatible with all programmers supporting ICSP.  ICSP is intended to be used only 
when loading the PIC with a new bootloader.   
 
Programming the PIC using a bootloader does not require a PIC programmer and allows new 
programs to be downloaded much quicker.  Because of this, the motor controller program has 
been designed to ensure there is sufficient memory free to allow a bootloader.  The motor 
controller uses Shawn Tolmie’s bootloader (www.microchipc.com).  Complete instruction on how 
to use the bootloader can be found on his website.  
 

11.0 Conclusion 
 
The AUVic Communication System allows the host to communicate with all systems in the AUV.  
It is hoped the AUVic-CS will provide robust enough to find utility in future iterations of the AUVic 
AUV.  Future expansion is support as the I2C and D1W networks can both support multiple 
slaves and the baudrate of all communication links can be increased.  
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Appendix I – Hub Schematic 
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Appendix II – Bill of Material 
 
 
Coun

t 
Component Name Location Value Description Digi-key # Price 

Each* 
Total 
Cost 

1 PIC16F876-20/SP IC1 uC Microchip PIC16F876 20MHz 
PDIP Microcontroller 

PIC16F876-
20/SP-ND 

13.01 13.01 

1 MAX3225EPP IC2 IC 1Mbps RS-232 
TRANSCEIVER  

N/A sampl
e 

0.00 

1 ECS-147.4-S-4 Q1 XTAL 14.7456 MHZ QTZ CRYSTAL X431-ND 1.33 1.33 
1 C320C104M5U5C

A 
C1 0.1uF CAP 50V 20% CER RADIAL 399-2155-ND 0.25 0.25 

2 ECU-S2A150JCA C2, C3 15pF 100V MONOLITH CERM CAP P4839-ND 0.63 1.26 
5 ECE-A1EKK2R2 C4-C8 2.2uF CAP ELECT 25V KK RADIAL P971-ND 0.34 1.70 
1 1N5817-T D1 DIOD

E 
DIODE SCHOTTKY 20V 1A  1N5817DICT 0.65 0.65 

1 CFR-25JB-10K R1 10K 1/4W 5% CARBON FILM RES 10KQBK-ND 0.092 0.10 
3 CFR-12JB-4K7 R2-R4 4.7K 1/8W 5% CARBON FILM RES 4.7KEBK-ND 0.092 0.28 
7 LTL-4233-R1 * LED LED RES LAMP 5MM 5V  160-1051-ND 0.43 3.01 
1 LTL-4223-R2 PWR LED LED RES LAMP 5MM 12V 

RED  
160-1112-ND 0.43 0.43 

2 22-05-2051 ISCP, 
BOOTLO
ADER 

CONN 5 CIR HED.100 FRICT LOCK WM4203-ND 1.30 2.60 

  BACKPL
ANE 

CONN     

  END_MI
SSION 

CONN     

  POWER
_BUS 

CONN     

1 182-009-212-161 SCI CONN DB9 FMAL R/A SHELL .318 182-709F-ND 1.82 1.82 
* I2C_ACT, SCI_ACT, I2C_TO, SCI_TO, I2C_CRC, SCI_CRC, and I2C_ERR (Note: LED’s have built in resistors) 
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Appendix III – PCB Layout 
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Appendix IV – PIC16F876 Pinout 
 
 
Pin Pin Name Sonar Module Function Sub-System 

1 *MCLR/VPP Connected to ISP header ISP 
2 RA0/AN0 Bootloader MUX Select 0 MUX Select 
3 RA1/AN1      Bootloader MUX Select 1 MUX Select 
4 RA2/AN2/Vref- Bootloader MUX Select 2 MUX Select 
5 RA3/AN3/Vref+ I2C Activity LED Indicator LED 
6 RA4/TOCKI Dallas 1-wire Bus Dallas 1-wire 
7 RA5/AN4/*SS Serial Activity LED Indicator LED 
8 VSS Ground Power 
9 OSC1/CLKIN Connected to 14.7456MHz oscillator Timer 

10 OSC2/CLKOUT Connected to 14.7456MHz oscillator Timer 
11 RC0/T10S0/T1CKI Serial Communication RTS Line Serial 
12 RC1/T10S1/CCP2 Serial Communication CTS Line Serial 
13 RC2/CCP1 Spare Spare* 
14 RC3/SCK/SCL I2C Communication Clock Line I2C 
15 RC4/SDI/SDA I2C Communication Data Line I2C 
16 RC5/SDO Serial Invalid Pin  Serial 
17 RC6/TX/CK Serial Communication Tx Line Serial 
18 RC7/RX/DT Serial Communication Rx Line Serial 
19 VSS Ground Power 
20 VDD Regulated +5V Power 
21 RB0/INT Shutdown Signal Shutdown 
22 RB1 I2C Timeout LED Indicator LED 
23 RB2 SCI Timeout LED Indicator LED 
24 RB3/PGM I2C CRC Failed LED Indicator LED 
25 RB4 Serial CRC Failed LED Indicator LED 
26 RB5 System Lost LED Indicator LED 
27 RB6/PGC Connected to ISP header ISP 
28 RB7/PGD Connected to ISP header ISP 

* Spare pins are brought are connected to the network header for future expansion. 
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Appendix V – Error Codes 
 
Error 
Code 

Error Name 
 

Purpose 

0xE0 ERROR_SCI_CRC_FAILED Indicates hub has detected a CRC error with the last packet 
received from the host. 

0xE1 ERROR_I2C_CRC_FAILED Indicates the hub has detected a CRC error with the last 
packet received from a peripheral. 

0xE2 ERROR_PKT_TYPE_UNKNOWN Indicates the hub has received a packet from the host with a 
packet type it does not know how to process. 

0xE3 ERROR_I2C_RX_STATE_UNKNOWN Indicates the hub has entered an invalid state when trying to 
receive a packet from a peripheral. 

0xE4 ERROR_I2C_TX_STATE_UNKNOWN Indicates the hub has entered an invalid state when trying to 
send a packet to a peripheral. 

0xE5 ERROR_SCI_STATE_UNKNOWN Indicates the hub has entered an invalid state when trying to 
receive or send a packet using the serial port. 

0xE6 ERROR_SCI_TIMEOUT Indicates the hub has timed out while waiting to receive a 
packet from the host. 

0xE7 ERROR_I2C_TIMEOUT  Indicates the hub has timed out while waiting to receive a 
packet from a peripheral. 

0xE8 ERROR_I2C_MAXIMUM_RETRIES Indicates the hub has tried to resend a packet to a peripheral 
a user defined number of times and was unable to deliver it 
successfully. 

0xE9 ERROR_TIMER Indicates the hub communication timer has expired, but the 
reason is unknown. 

0xEF ERROR_UNKNOWN Indicates the hub has encountered a problem receiving the 
last packet from the host, but the nature of the problem in 
unknown. 

0xF0 ERROR_SLAVE_SCI_CRC_FAILED Indicates a peripheral has detected a CRC error with the last 
packet received from the serial port (some peripherals can 
communicate using I2C or the serial port for debugging 
purposes). 

0xF1 ERROR_SLAVE_I2C_CRC_FAILED Indicates a peripheral has detected a CRC error with the last 
packet received from the hub. 

0xF2 ERROR_SLAVE_PKT_TYPE_UNKNOWN Indicates a peripheral has received a packet from the hub 
with a packet type it does not know how to process. 

0xF3 ERROR_SLAVE_I2C_RX_STATE_UNKNOWN Indicates a peripheral has entered an invalid state when 
trying to receive a packet from the hub. 

0xF4 ERROR_SLAVE_I2C_TX_STATE_UNKNOWN Indicates a peripheral has entered an invalid state when 
trying to send a packet to the hub. 

0xF5 ERROR_SLAVE_SCI_STATE_UNKNOWN Indicates a peripheral has entered an invalid state when 
trying to receive or send a packet using the serial port. 

0xFF ERROR_SLAVE_UNKNOWN Indicates the slave has encountered a problem receiving the 
last packet from the hub, but the nature of the problem in 
unknown. 

  
 


