FET
 DATABOOK

NATIONAL SEMICONDUCTOR

FET

DATABOOK

行

Introduction

FET Selector Guides
Process Characteristics
Preferred Parts Data Sheets

Analog Switches
Applications
Physical Dimensions

National Semiconductor Corporation
2900 Senmiconductor Drive, Santa Clara Galforma 95051 (408) 737-5000/TW× (910) 3399240

National does mot assume aryy responsitialiy for use of ary colcultiv described, no cirmitt patent hrenses dee implred and Vatmad

"namitacturet umder one ar \quad ar the foltowng if S prtents 3083262. 3139758, 323174, 3303356, 3317671, 3323071 $\begin{array}{llllll}3381071 & 3408542 & 3471021, & 346423 & 3440498, & 3518750 .\end{array}$ 7579897, 3557431 . $2560776=\quad 3566218 \quad 35 / 1630,3575609$. $\begin{array}{lllllll}-15 / 9059 & 3593064 & 354 / 640 & 3650 / 469 & 3617859 & 3631312 .\end{array}$ $36.3305236,38131 \quad 36413011$
Section 1-Introduction
Introduction $1 \cdot 3$
Product Profile 1-3
How To Use This Catalog $1-4$
FET Parts List 1.5
FET Cross Reference Guide 113
Analog Switch Cross Reference Guide 121
Section 2-FET Selector Guides
Choose the Proper FET 2-3
FET Application Guide 2.4
Important Parameters by Application 2.6
FET Process Comparison Curves 2-7
Selection Guide 2.9
Switches, and Choppers, N.Channel 2.9
RF, VHF, UHF Amplifiers, N-Channel $2 \cdot 11$
Low Frequency - Low Noise Amplifiers, N -Channel 2.12
Ultra Low Imput Current Amplifiers, N-Channel $2 \cdot 13$
General Purpose Amplifiers, N-Channel 2-13
General Purpose Duals, N-Channel 2-15
Low Frequency Low Noise Duals, N Channel 2-17
Wide Band-Low Noise Duals, N-Channet 2-17
High CMRR Duals, N Channel. 2-18
Ultra Low Leakage Duals, N-Channel 2-18
Switches, P-Clannel $2 \cdot 19$
Amplifiers, P -Channel 2-19
Pro Electron FETs (European) 220
Section 3-Process Characteristics
Introduction 3.2
Process 50 N -Channel JFET 3-3
Process 51 N-Channel JFET 3-6
Process 52 N -Channel JFET 3-8
Process 53 N -Channel JFET 3-10
Process 55 N-Channel JFET 3-12
Process 58 N -Channel JFET 3-14
Process 83 N -Channel JFET 3-16
Process 84 N -Channel JFET 3-18
Process 86^{+}Monolithic Dual JFET. $3-20$
Process 88 P-Channel JFET 3.21
Process 89 P-Channel JFET 3-23
Process 90 N -Channel JFET 3.25
Process $92 \mathrm{~N} \cdot$ Channel Junction Match. $3-27$
Process 93 N-Channel JFET 3-29
Process 94 N -Channel JFET 3-31
Process 95 N -Channel JFET 3-33
Process 96 N-Channel JFET 3-35
Process $98^{*} \mathrm{~N}$-Channel JFET 3-37

[^0]
Table of Contents

Section 4-Preferred Parts Data Sheets
2N3684-87/PN3684-87 N-Channel JFETs. 4-3
2N3954-55/2N3954A-55A. N-Channel Monolithic Dual JFETs 4.4
2N3956-58 N-Channel Monolithic Dual JFETs 4.5
2N4091-93/PN4091-93 N-Channel JFETs. 4-6
2N4117-19/2N4117A-19A. N-Channel JFETs 4-7
2N4338-41 N-Channel JFETs 4-8
2N4391-3/PN4391-3 N-Channel JFETs 4-9
2N4416/2N4416A N-Channel JFETs 4.10
2N4856-63/PN4856-61 N-Channel JFETs 4.11
2N5114-16 P-Channel JFETs 412
2N5196-99 N-Channel Monolithic Dual JFETs 4-13
2N5245-47 N-Channel JFETs 4-14
2N5358-60 N-Channel JFETs 4-15
2N5361-64 N-Channel JFETs 4-16
2N5397, 2N5398 N-Channel JFETs 4-17
2N5432-34 N-Channel JFETs 4-18
2N5457-59 N-Channel JFETs 419
2N5460-62 P-Channel JFETs 4-20
2N5484-86 N-Channel JFETs 4-21
2N5515-24 N-Channel Monolithic Dual JFETs 4-22
2N5545-47 N-Channel Monolithic Dual JFETs 4-23
2N5564-66/NPD5564-66 N-Channel Monolithic Dual JFETs 4-24
2N5638-40 N-Channel JFETs 4-25
2N5902-09 N-Channel Monolithic Dual JFETs 4.26
2N5911, 2N5912 N-Channel Monolithic Dual JFETs 4-27
2N5949-53 N-Channel JFETs 4-28
2N6483-85 N-Channel Monolithic Dual JFETs $4-29$
Ji08-10 N-Channel JFETs. 4-30
J111-13 N-Channel JFETs. 4.31
J174-77 P-Channel JFETs $4-32$
J201-03 N-Channel JFETs. 4.33
J210-12 N-Channel JFETs. 4.34
J270, J271 P-Channel JFETs. 4.35
J300 N-Channel JFET 4.36
J304, J305 N-Channel JFETs 4-37
J308-10 N-Channel JFETs 4-38
NDF9401-10 N-Channel Monolithic Cascode Dual JFETs. 4-39
NF5101-03/PF5101-03 N-Channel JFETs. 4-40
NPD8301-03 N-Channel Monolithic Dual JFETs 4-41
U308-10 N-Channel JFETs 4-42
Section 5-Analog Switches
Analog Switches Selection Guide 5-3
Definition of Terms. 5.4
AH0014/AH0014C DPDT MOS Analog Switch 5-5
AH0015/AH0015C Ouad SPST MOS Analog Switch 5.5
AH0019/AHOO19C Dual DPST-TTL/DTL Compatible MOS Analog Switch. $5 \cdot 5$
AH0120 Series Analog Switches 5-8
AH0130 Series Analog Switches 5-8
AH0140 Series Analog Switches 5.8
Section 5-Analog Switches (Continued)
AH0150 Series Analog Switches 5.8
AH0160 Series Analog Switches 5-8
AH2114/AH2114C DPST Analog Switch 5-15
AH5009 Series Monolithic Analog Current Switches. 5-31
AM181 Series Monolithic N-Channel High Speed Switch with Drivers 5-17
AM2009/AM2009C 6-Channel MOS Multiplex Switch 5-26
AM3705/AM3705C 8-Channel MOS Analog Multiplexer 5-28
AM9709 Series Monolithic Analog Current Switches 5-31
AM97C09 Series Monolithic Analog Current Switches 5-31
CD4007M/CD4007C Dual Complementary Pair Plus Inverter 5.41
CD4016M/CD4016C Quad Bilateral Switch 5.44
CD4051M/CD4051C Single 8-Channel Analog Multiplexer/Demultiplexer 5-48
CD4052M/CD4052C Dual 4-Channel Analog Multiplexer/Demultiplexer 5-48
CD4053M/CD4053C Triple 2-Channel Analog Multiplexer/Demultiplexer 5-48
CD4066M/CD4066C Quad Bilateral Switch 5-54
LF11201/LF 12201/LF 132014 Normally Closed Switches 5-60
LF 1 1202/LF 12202/LF 132024 Normally Open Switches 5-60
LF $11331 / L F 12331 / L F 133314$ Normally Open Switches with Disable 5-60
LF 11332 /LF 12332 /LF 133324 Normally Closed Switches with Disable 5-60
LF $11333 /$ LF $12333 /$ LF 133332 Normally Closed, 2 Normally Open Switches with Disable 5-60
LF 11508 /LF 12508 , LF 13508 8-Channel Analog Multiplexer 5-70
LF11509/LF12509/LF 13509 4-Channel Differential Analog Multiplexer 5-70
MM450/MM550 MOS Analog Switch 5-85
MM451/MM551 MOS Analog Switch 5-85
MM452/MM552 MOS Analog Switch 5-85
MM454/MM544 4-Channel Commutator. 5-89
M V455/MM555 MOS Analog Switch 5.85
MM4504/MM5504 6-Channel MOS Multiplex Switch 5-26
Section 6-Applications
FET Application Guide 6.3
Monolithic Dual FETs vs 2-Chip Dual FETs 6.4
Why Use Cascode Dual FETs? 6.8
Simple VHF Analog Switches 6-10
Noise of Sources 6-12
The Noise Figure Fallacy. 6-15
Low Noise FET Amplifiers 6-17
The Low Noise JFET - The Noise Problem Solver 6-20
FET Circuit Applications 6-26
A Novel FET Micropower Voltage Regulator 6-37
A Linear Multiple Gain Controlled Amplifier 6-39
Binary/BCD Gain Programmed Amplifiers 6-47
FET Curve Tracer 6.50
JF:ET Glossary of Symbols 6-52
Section 7-Physical Dimensions
Package Information $7-3$

Section 1

Introduction

Introduction

This is National Semiconcluctor＇s first Field Effect Transistor／Analog Switches Data Book．It is the direct result of the designer＇s desire to have a complete，concise，up to date handbook for dis－ crete FETs and FET analog switches．

There are over 1000 Junction FETs and analog switches available from at least 8 major suppliers and many smaller ones．In order to ease the de－ signer＇s task，National has selected approximately 350 types as representative of a product that reflects the best available current technology． Certain of these products have been designated preferred parts．To qualify as a preferred part，

Product Profile

Field Effect Transistors．National offers 17 JFET processes which cover the full range of possible products．Devices with leakage currents as low as 0.1 pA are available along with devices suitable for operation at VHF frequencies．Low noise FETs for audio and subaudio applications are available along with the industry＇s broadest line of mono－ lithic dual FETs．National invented the monolithic dual JFET and consistently wins praise for consis－ tent performance to the tightest offset and drift specifications．National＇s cascode dual JFETs （Process 84，94）offer superior CMRR and low leakage currents even at extended voltages．

Analog Switches．Natiorial Semiconductor has for many years supplied a full line of analog switches which served the designer＇s needs for high quality， competitively priced products．Recognizing the need for improved reliability and lower cost as
a product must offer the latest technology，the best performance，excellent deliverability and competitive prices．These preferred parts should be considered first in all applications．

If you are a first－time user of FETs and FET analog switches，you will find this catalog invaluable in making your selection．Old hands will appreciate the concise selector guides and accurate process curves．Whatever your experience，you will find National＇s Sales Representatives，Field Applica－ tion Engineers and Factory Personnel willing and able to help with any application problems or questions．
industry usage increased，National developed the BI－FETTM technology and other monolithic FET structures which have become the industry stan－ dard for analog switches．The preferred parts shown in this data book utilize these processes． Most are function，pin and specification compatible with earlier products available in the market place．

High Reliability Product．National Semiconductor is committed to supplying the military／aerospace markets with the highest quality product available． Presently，National is qualified to supply 85% of all FETs on the MIL－S－19500 OPL－more than any other supplier．Our capability covers a wide range of standard and special testing and processing to levels as specified in MIL－S－19500，MIL－STD－750， MIL－STD－883，MIL－M－38510．Contact your local representative or regional office for information concerning your specific requirements．

How to Use This Catalog

The Field Effect Transistor/Analog Switch Data Book is divided into 7 sections. The following information is contained in each.

Section 1 Alpha-numeric parts lists and cross reference guides
Section 2 FET selector guides including a complete guide by application to all part types offered by National. This is the complete guide to National FET specifications and is indexed in Section 1. Preferred parts are shown with gray overprinting.
Section 3 FET process characteristics giving complete information on all processes, including all parts manufactured from a particular process by package type.
Section 4 FET preferred parts data sheets.
Section 5 Analog switch selector guides and data sheets.

Section 6 Applications notes on FETs and analog switches.
Section 7 Physical Dimensions

The following suggested procedure will help you find the device you need.

Part Number Known: Go to section 1. If alter nate type found in cross reference guide, then compare alternate specification in section 2 against desired part type for compatibility.

Specification Known: Refer to "FET Process Comparison Chart" in section 2 to find the most compatible process. Then turn to the specific process in section 3 for a listing of specific device type numbers available in that process. Take special note of preferred part types. Full data sheets are available in section 4.

Application Known: For FETs, turn to "Choose the Proper FET" and "FET Application Guide" in section 2. Refer also to "Important Parameters by Application" as needed. Once a process is selected, refer to section 3 and to the proper preferred part type. For analog switches, refer to section 5"Ana\log Switch Selector Guide" ${ }^{\prime \prime}$.

None of the Above: Contact local representative or regional office for assistance.

FET Parts List

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
- 2N2608	89/11	2-19		323
2N2609	$88^{\prime} 11$	$2 \cdot 19$		321
2N3069	52,02	$2 \cdot 13$		3.8
2N3070	52,02	2.13		3.8
2N3329	89/23	2-19		3-23
2N3330	89/23	2-19		3-23
2N3331	89/23	2-19		3-23
2N3332	89/23	2.19		3-23
2N3368	52/02	$2 \cdot 13$		3-8
2N3369	52/02	$2 \cdot 13$		3.8
2N3370	52/02	2.13		3.8
2N3382	88/23	2.19		3-21
2N3384	88/23	2-19		3.21
2N3386	88/23	$2 \cdot 19$		321
2N3436	55/02	2-13		3-12
2N3437	55/02	2.13		3.12
2N3438	55\%02	2.13		3.12
2N3458	52/02	2-13		38
2N3459	52/02	2-13		38
2N3460	52/02	$2 \cdot 13$		38
2N3684	52/25	2.13	4-3	38
2N3685	52/25	2.13	$4 \cdot 3$	3.8
2N3686	52/25	2.13	$4 \cdot 3$	3-8
2N3687	52/25	$2 \cdot 13$	4.3	3-8
2N3819	50/74	2.11		3-3
2N3821	55/25	2-13		3-12
2N3822	55/25	2.13		3-12
- 2N3823	50/25	2-11		33
2N3824	55/25	29		312
2N3921	83/12	$2 \cdot 15$		$3 \cdot 16$
2N3922	83:12	2.15		316
2N3954	83/12	$2 \cdot 15$	4.4	3.16
2N3954A	83/12	2.15	4.4	3-16
2N3955	83/12	2.15	4.4	$3 \cdot 16$
2N3955A	83/12	2-15	4.4	3-16
2N3956	83/12	$2 \cdot 15$	4.5	$3 \cdot 16$
2N3957	83/12	2.15	4.5	$3 \cdot 16$
2N3958	83/12	2-15	4.5	3-16
2N3966	50/25	2-9		3-3
2N3967	52/25	2-13		$3 \cdot 8$
2N3967A	52/25	2-13		38
2N3968	52/25	2-13		38
2N3968A	52/25	2-13		38
2N3969	52/25	2-13		3 -8
2N3969A	52/25	2-13		3.8
2N3970	51/02	$2 \cdot 9$		3 -6
2N3971	51/02	2.9		36
2N3972	51/02	29		36

FET Parts List (continued)

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
2N3993	88/23	$2 \cdot 19$		$3-21$
2N3993A	88/23	2-19		$3-21$
2N3994	88/23	2-19		$3-21$
2N3994A	88/23	2-19		$3-21$
2N4084	83/12	2-15		3-16
2N4085	83/12	2-15		3-16
- 2N4091	51/02	$2-9$	4-6	3-6
- 2N4092	51/02	29	$4 \cdot 6$	3-6
- 2N4093	51/02	2-9	4-6	$3 \cdot 6$
2N4117	53/25	$2 \cdot 13$		$3-10$
2N4117A	53/25	$2 \cdot 13$	4-7	$3-10$
2N4118	53/25	2-13		3.10
2N4118A	53/25	2-13	4-7	3-10
2N4119	53/25	2-13		3-10
2N4119A	53/25	2-13	4-7	3-10
2N4220	55/25	2-14		3-12
2N4220A	55/25	2-14		3-12
2N4221	55/25	2-14		3-12
2N4221A	55/25	2-14		3-12
2N4222	55/25	2-14		3-12
2N4222A	55/25	2-14		3-12
2N4223	50/25	2-11		3-3
2N4224 2N4338	50/25	2-11		3-3
2N4338	52/02	$2 \cdot 14$	4-8	3-8
2N4339	52/02	2-14	4-8	3-8
2N4340	52/02	2-14	$4-8$	3.8
2N4341	52/02	2-14	4-8	3-8
2N4381	89/11	2-19		3.23
2N4382 2N4391	88/11	$2 \cdot 19$		3-21
2N4391	51/02	2.9	4-9	3-6
2N4392 2N4393	51/02	2.9	4-9	3-6
2N4393	51/02	$2 \cdot 9$	4-9	3-6
-2N4416	50/25	2-11	4.10	3-3
- 2N4416A	50/25	2-11	4-10	3-3
- 2N4856	51/02	$2-9$	4-11	3-6
2N4856A	51/02	$2-9$		3-6
- 2N4857	51/02	2-9	4-11	3-6
2N4857A	51/02	2.9		3.6
- 2N4858	51/02	2-9	4-11	3-6
- 2N4858A	51/02	2-9		3-6
- 2N4859	51/02	2-9		3-6
- 2N4860	51/02	$2 \cdot 9$		3.6
- 2N4860	51/02	2-9		3-6
- 2N4860A	51/02	2-9		3-6
- 2 N 4861	51/02	2.9		3-6
2N4861A	51/02	$2 \cdot 9$		3-6
2N5018	88/11	2-19		3-21
2N5019	88/11	$2 \cdot 19$		3-21

[^1]FET Parts List
(Continued)

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
2N5020	89/11	2.20		323
2N5021	89/11	2.20		323
2N5045	83/12	2.16		3-16
2N5046	83/12	2.16		3.16
2 N 047	83/12	2.16		3-16
2N5078	50/25	2.11		33
2N5103	50/25	2.14		3-3
2N5104	50/25	2.14		3-3
2N5105	50/25	$2 \cdot 14$		$3 \cdot 3$
- 2N5114	88/11	2-19	4.12	321
- 2N5115	88/11	2-19	4-12	321
- 2N5116	88/11	$2 \cdot 19$	4-12	3-21
2N5196	83/12	2-16	4-13	3-16
2N5197	83/12	$2 \cdot 16$	4-13	316
2N5198	83/12	2.16	4-13	3.16
2N5199	83/12	2.16	4-13	3-16
2N5245	90/77	2-11	414	3.25
2N5246	90/77	$2 \cdot 11$	414	325
2N5247	90/77	2.11	4-14	325
2N5248	50/74	2-11		33
2N5358	55/25	2-14	4.15	$3 \cdot 12$
2N5359	55/25	2-14	4-15	312
2N5360	55/25	$2 \cdot 14$	4.15	312
2N5361	55,25	2.14	4-16	3-12
2N5362	55/25	$2 \cdot 14$	4-16	3-12
2N5363	55/25	2.14	4-16	3-12
2N5364	55/25	2.14	4-16	3-12
2N5397	90/25	2-11	4-17	325
2N5398	90/25	2.11		325
2N5432	58/07	2.9	4-18	3-14
2N5433	58/07	29	4-18	3-14
2N5434	58/07	29	4-18	3-14
2N5452	83/12	2-16		3-16
2N5453	83/12	216		3-16
2N5454	83/12	2-16		3-16
2N5457	55/72	2-14	4-19	312
2N5458	55/72	2.14	4.19	3-12
2N5459	55/72	2.14	4-19	3-12
2N5460	89/71	2.20	4-20	3-23
2N5461	89/71	2.20	4.20	3-23
2N5462	89/71	2.20	4.20	323
2N5484	50/72	2-11	4-21	33
2N5485	50/72	2-11	4-21	33
2N5486	50/72	2-11	4.21	3-3
2N5515	95/12	2-17		3.33
2N5516	95/12	2-17		3-33
2 N 5517	95/12	2-17		3.33
2N5518	95/12	2-17		3-33

[^2]FET Parts List
(Continued)

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
2N5519	95:12	217		333
2N5520	95/12	2-17	422	$3 \cdot 33$
2N5521	95/12	2-17	4-22	$3-33$
2N5522	95/12	$2 \cdot 17$	4.22	3.33
2N5523	95/12	$2 \cdot 17$	4-22	3.33
2N5524	95/12	2-17	4-22	3-33
2N5545	*83/12	216	4.23	3-16
2N5546	-83/12	216	4.23	316
2N5547	+83/12	2-16	423	3.16
2N5555	50/72	2.9		3.3
2N5556	50/25	2-14		3.3
2N5557	50/25	2-14		33
2N5558	50/25	2-14		3.3
2N5561	t98/12	216		337
2N5562	198/12	216		3.37
2N5563	+98/12	2-16		3.37
2N5564	96/12	217	4-24	3.35
2N5565	96/12	2-17	4-24	3.35
2N5566	96/12	2-17	424	3-35
2N5638	51/72	210	425	3.6
2N5639	51,72	2-10	4-25	3.6
2N5640	$51 / 72$	2-10	425	3-6
2N5653	51/72	2-10		3.6
2N5654	51/72	2-10		36
2N5668	50/72	2-11		3.3
2N5659	50/72	2-11		3.3
2N5670	50:72	211		33
2N5902	84:24	2.18		3.18
2N5903	84/24	2.18		3-18
2N5904	84/24	2.18		3-18
2N5905	84/24	2.18		3-18
2N5906	84/24	2.18	4-26	3-18
2N5907	84/24	218	4.26	3-18
2N5908	84/24	218	4.26	3-18
2N5909	84/24	2-18	4.26	$3-18$
2N5911	93/24	2-17	427	329
2N5912	93,24	217	4.27	329
2N5949	50/77	2-11		3.3
2N5950	50/77	2-11		3-3
2N5951	50/77	2-11		3-3
2N5952	50:77	211		$3 \cdot 3$
2N5953	50/77	211		3.3
2N6483	95/12	217	4-29	3.33
2N6484	95/12	2-17	429	3.33
2N6485	95.12	2-17	429	$3 \cdot 33$
BC264A	50/77	2.20		3-3
BC264B	50/77	2.20		3.3
BC264C	50/77	220		3.3

[^3]FET Parts List

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
BC2640	50/77	2-20		3-3
BF244A	50,74	220		33
BF244B	50/74	$2-20$		3-3
BF244C	50/74	220		33
BF245A	50,77	220		33
BF245B	$50 / 77$	220		3.3
BF245C	50,77	220		3-3
BF246A	51/74	$2-20$		3-6
BF246B	51/74	220		36
BF246C	51/74	220		3-6
BF247A	51,77	$2-20$		36
BF247B	51:77	220		36
BF247C	$51 / 77$	2-20		3-6
BF256A	50,77	220		3-3
BF256B	$50: 77$	220		3-3
BF256C	50/77	220		33
J108	58,72	210	4-30	3.14
$J 109$	58/72	$2 \cdot 10$	4-30	$3 \cdot 14$
$J 110$	58.72	2-10	4.30	3-14
$J 111$	51/72	2.10	4.31	36
$J 112$	51/72	210	4.31	3-6
$J 113$	51:72	210	4.31	36
J114	90/72	210		3-25
$J 174$	88/74	2.19	4.32	321
J175	88.74	2.19	4.32	321
$J 176$	88.74	219	4.32	321
$J 177$	88:74	219	4-32	3-21
J201	52/72	2-14	4-33	3-8
J202	52,72	2.14	4.33	38
J203	52,72	2.14	433	38
J210	90:72	2.14	4.34	3-25
J211	90/72	214	434	325
J212	90/72	$2 \cdot 14$	4-34	325
J270	88,74	2.20	4.35	321
1271	88/74	220	4.35	3-21
J300	90/72	2-11	4.36	325
J304	$50 / 72$	$2 \cdot 11$	4.37	33
J305	$50 \cdot 72$	2-11	4.37	33
J308	92:72	2.11		$3-27$
J309	92/72	2.11	438	327
J310	$92 \cdot 72$	211	438	327
J401	+98/60	216		337
J402	198/60	2.16		3-37
J403	+98/60	$2 \cdot 16$		3-37
J404	198/60	216		3.37
J405	+98/60	216		3-37
J406	+98/60	2-16		337
J410	83/60	2-16		316

TProcess in development

FET Parts List
(Continued)

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
J411	83/60	2-16		3-16
J412	83/60	$2 \cdot 16$		3-16
MPF 102	50/72	$2 \cdot 12$		3-3
MPF 103	55/72	$2 \cdot 14$		3-12
MPF104	55/72	2-14		3-12
MPF 105	55/72	2-14		3-12
MPF 106	50/72	2-12		3-3
MPF 107	50/72	$2 \cdot 12$		3-3
MPF 108	55/72	2-12		3-12
MPF 109	55/72	2-14		3-12
MPF111	50/72	$2 \cdot 15$		$3 \cdot 3$
MPF 112	55/72	$2 \cdot 15$		312
NDF9401	94/24	2-18		331
NDF9402	94/24	2-18		3.31
NDF9403	94/24	2-18		3-31
NDF9404	94/24	2-18		3-31
NDF9405	94/24	2-18		3-31
NDF9406	94/12	2-18	4.39	3-31
NDF9407	94/12	2-18	4.39	3-31
NDF9408	94/12	$2 \cdot 18$	4.39	3-31
NDF9409	94/12	2-18	4.39	3-31
NDF9410	94/12	2-18	4.39	3.31
NF5101	51/25	$2 \cdot 12$	4.40	3-6
NF5102	51/25	2-12	4.40	3-6
NF5103	51/25			3-6
NPD5564	96/67	2-17	4.24	3-35
NPD5565	96/67	$2 \cdot 17$	4.24	3-35
NPD5566	96/67	2-17	4-24	3-35
NPD8301	83/67	2-16	4-41	3-16
NPD8302	83/67	$2 \cdot 16$	4.41	3-16
NPD8303	83/67	2-16	4-41	3-16
NPD9801	+98/67	216		
NPD9802	+98/67	2-16		
NPD9803	+98/67	2-16		
P1086E	88/71	2-19		3-21
P1087E	88/71	2-19		321
PF5101	51/72	2-12	4.40	36
PF5102	51/72	2-12	4.40	3-6
PF5103	51/72	2-12	4-40	3-6
PN3684	52/72	2-15	4-3	3-8
PN3685	52/72	2-15	4.3	38
PN3686	52/72	2-15	4-3	38
PN3687	52/72	2-15	4.3	
PN4091	51/72	2-10	4.6	3-6
PN4092	51/72	2-10	4.6	3-6
PN4093	$51 / 72$	2-10	4.6	3-6
PN4220	55/72	2-15		$3-6$ $3-12$
PN 4221	55/72	2-15		3-12

[^4]FET Parts List
(Continued)

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
PN4222	55/72	2-15		3-12
PN4223	50/72	$2 \cdot 12$		3-3
PN4224	50/72	$2 \cdot 12$		3-3
PN4302	52/72	2.15		3.8
PN4303	52/72	2.15		3.8
PN4304	52/72	$2 \cdot 15$		3.8
PN4342	89/71	2.20		3-23
PN4343	88/71	2.20		3-21
PN4360	89/71	2-20		323
PN4391	51/72	$2 \cdot 10$	4.9	36
PN4392	51/72	2-10	4.9	3.6
PN4393	51/72	2-10	4.9	3.6
PN4416	50/72	2-12		33
PN4856	51/72	$2 \cdot 10$	411	36
PN4857	51/72	2-10	4-11	3.6
PN4858	51/72	$2 \cdot 10$	4-11	36
PN4859	51/72	2-10		3-6
PN4860	51/72	2-10		36
PN4861	$51 / 72$	210		3.6
PN5033	89/71	220		$3-23$
PN5163	50/72	2-15		$3-3$
TIS58	50/74	215		33
TIS59	50,74	$2 \cdot 15$		3-3
TIS73	$51 / 77$	2-10		3.6
TIS74	51/77	210		36
TIS75	51/77	$2 \cdot 10$		36
U1897E	51/72	2.10		3-6
U1898E	51/72	2-10		3-6
U1899E	51/72	2-10		36
U231	83/12	$2 \cdot 16$		316
U232	83/12	2.16		316
U233	83/12	216		316
U234	83/12	216		316
U235	83/12	2-16		316
U257	93/24	217		329
U300	88/11	220		321
U301	88,11	220		321
U304	88/11	219		321
U305	88/11	$2 \cdot 19$		321
U306	88/11	2-19		3-21
U308	92/07	$2 \cdot 12$		327
U309	$92 / 07$	2-12	4.42	327
U310	92/07	212	442	327
U312	90/07	2-12		3-25
U320	58/09	2-12		314
U321	58/09	2-12		3-14
U322	58/09	2-12		3.14
U401	+98/12	2-16		3.37

[^5]FET Parts List (conturued)

DEVICE	PROCESS/PACKAGE	SELECTION GUIDE	PREFERRED PARTS DATA SHEET	PROCESS PAGE
U402	+98/12	216		3-37
U403	+98/12	2-16		3-37
U404	+98/12	2-16		3-37
U405	+98/12	2-16		3.37
U406	+98/12	2-16		337
$\cup 421$	186/24	$2-18$		3.20
$\cup 422$	186/24	$2 \cdot 18$		320
$\cup 423$	+86/24	2.18		320
$\cup 424$	+86:24	$2 \cdot 18$		320
$\cup 425$	+86/24	2-18		3-20
U426	+86/24	218		3-20
U430	92/24	2-17		327
U431	92/24	2-17		3-27

[^6]
JFET Cross Reference Guide

This guide contains cross reference information to more than 850 Junction FETs, including many obsolete or otherwise unavailable types. Every effort has been made to recommend a replacement FET which will plug into an existing socket and work as well as the part it replaces. Let the replacement code be your guide. If you do not find a particular part in this guide and you know its specification, you should refer to "How To Use This Catalog" in this section.

REPLACEMENT CODE

* Identical specification and pin configuration
- Equal or better specification, identical pin configuration
- Similar specification acceptable for all but the most critical applications, similar pin configura tion
CF Consult Factory or Local Sales Representative, available on special order
N No equivalent process
\(\left.\begin{array}{lcc}INDUSTRY TYPE \& REPLACEMENT \& NATIONAL

PUMBER \& CODE \& NUMBER\end{array}\right]\)| NUM |
| :--- |
| 2N2386 |

industry type NUMBER	replacement CODE	nAtional PART NUMBER
2N3329	-	2N3329
2N3330	*	2N3330
2N3331	,	2N3331
2N3332	*	2N3332
2N3365	-	2N4340
2N3366	-	2N4338
2N3367	-	2N4338
2N3368		2N3368
2N3369	*	2N3369
2N3370		2N3370
2N3376	-	2N3329
2N3378	-	2N3330
2N3380	-	2N3331
2N3382		2N3382
2N3384	*	2N 3384
2N3386	*	2N3386
2N3436	*	2N3436
2N3437	*	2N3437
2N3438	*	2N3438
2N3452	-	2N3685
2N3453	-	2N4118
2N3454	-	2N4119
2N3455	-	2N3685
2N3456	-	2N4118
2N3457	-	2N4119
2N3458		2N3458
2N3459	*	2N3459
2N3460	*	2N3460
2N3574	-	2N3329
2N3575	-	2N3329
2N3578	-	2N2608
2N3684	.	2N3684
2N3684A	-	2N3684
2N3685		2N3685
2N3685A	-	2N3685
2N3686		2N3686
2N3686A	-	2N3686
2N3687		2N3687
2N3687A	-	2N3687
2N3819		2N3819
2N3820		2N3820
2N3821		2N3821
2N3822	*	2N3822
2N3823	,	2N3823
2N3824	*	2N3824
2N3909	-	2N3331
2N3909A	-	2N3331
2N3921		2N3921
2N3922	*	2N3922
2N3954	*	2N3954
2N3954A	*	2N3954A
2N3955	*	2N3955
2N3955A	*	2N3955A
2N3956	*	2N3956
2N3957	*	2N3957
2N3958		2N3958
2N3966	*	2N3966

INDUSTRY TYPE NUMBER	REPLACEMENT CODE	NATIONAL PART NUMBER	INDUSTRY TYPE NUMBER	$\begin{aligned} & \text { REPLACEMENT } \\ & \text { CODE } \end{aligned}$	NATIONAL PART NUMBER
2N3967	*	2N3967	2N4856	,	2N4856
2N3967A	*	2N3967A	2N4856A	*	2N4856A
2N3968	*	2N3968	2N4857	*	2N4857
2N3968A	*	2N3968A	2N4857A	.	2N4857A
2N3969	*	2N3969	2N4858	,	2N4858
2N3969A	*	2N3969A	2N4858A	*	2N4858A
2N3970	*	2N3970	2N4859		2N4859
2N3971	*	2N3971	2N4859A	*	2N4859A
2N3972	*	2N3972	2N4860	*	2N4860
2N3993	*	2N3993	2N4860A	*	2N4860A
2N3993A	*	2N3993A	2N4861	.	2N4861
2N3994	*	2N3994	2N4861A		2N4861A
2N3994A	*	2N3994A	2N4867	CF	
2N4082	CF		2N4867A	CF	
2N4083	CF		2N4868	CF	
2N4084	${ }^{*}$	2N4084	2N4868A	CF	
2N4085	*	2N4085	2N4869	CF	
2N4091	*	2N409 1	2N4869A	CF	
2N4092	*	2N4092	2N4881	N	
2N4093	*	2N4093	2N4882	N	
2N4117	*	2N4117	2N4883	N	
2N4117A	*	2N4117A	2N4884	N	
2N4118	*	2N4118	2N4885	N	
2N4118A	*	2N4118A	2N4886	N	
2N4119	*	2N4119	2N4977	\cdots	2N5432
2N4119A	*	2N4119A	2N4978	.	2N5433
2N4139	CF		2N4979	\square	2N5434
2N4220	*	2N4220	2N5018	*	2N5018
2N4220A	*	2N4220A	2N5019	-	2N5019
2N422 1	*	2N4221	2N5020	*	2N5020
2N4221A	*	2N4221A	2N5021	*	2N5021
2N4222	*	2N4222	2N5033	-	PN5033
2N4222A	*	2N4222A	2N5045	,	2N5045
2N4223	*	2N4223	2N5046	*	2N5046
2N4224	*	2N4224	2N5047	*	2N5047
2N4302	\bullet	PN4302	2N5078	*	2N5078
2N4303	-	PN4303	2N5103	,	2N5103
2N4304	\bullet	PN4304	2N5104	*	2N5104
2N4338	*	2N4338	2N5105	*	2N5105
2N4339	,	2N4339	2N5114	*	2N5114
2N4340	*	2N4340	2N5115	*	2N5115
2N434 1	-	2N4341	2N5116	*	2N5116
2N4342	-	PN4342	2N5163	*	2N5163
2N4343	-	PN4343	2N5196	r	2N5196
2N4360	-	PN4360	2N5197	*	2N5197
2N4381	-	2N4381	2N5198	*	2N5198
2N 4382	,	2N43B2	2N5199	-	2N5199
2N4391	*	2N4391	2N5245	\checkmark	2N5245
2N4392	*	2N4392	2N5246	*	2N5246
2N4393	*	2N4393	2N5247	.	2N5247
2N4416	*	2N4416	2N5248	*	2N5248
2N4416A	*	2N4416A	2N5265	CF	
2N4417	N		2N5266	CF	
2N4445	-	2N54.32	2N5267	CF	
2N4446	-	2N5433	2N5268	CF	
2N4447	-	2N5432	2N5269	CF	
2N4448	-	2N5433	2N5270	CF	

JFET Cross Reference Guide
(Continued)

INDUSTRY TYPE
NUMBER
AD5908
AD5909
ADB30
AD831
AD832
ADB33
AD833A
AD835
AD836
AD837
ADB38
ADB39
ADB40
AD841
ADB42
AD845
ADB46
BF244A
BF244B
BF244C
BF245A
BF245B
BF246A * *
BF246B
BF246C
BF247A
BF247C
BF256A
BF256B
BF256C
BF264A
BF264B
BF264C $~ * ~+~+~+~$
BF264D
C413N
C6B1
C6B1A
C683
C6B3A
C6B5
C685A
CM640
CM641
CM642
CM643
CM644
CM645
CM646
CM647
CP640
CP643
CP650
CP651
CP652
CP653

REPLACEMENT
CODE

NATIONAL PART
NUMBER
2N5908
2N5909
2N5906
2N5907
2N5908
2N5909
2N5909
NDF9407
NDF9408
NDF9408
NDF9409
NDF9410
2N5520
2N5521
2N5523
2N5911
2N5912
BF244A
BF244B
BF244C
BF245A
BF245B
BF245C
BF246A
BF246B
BF246C
BF247A
BF247B
BF247C
BF256A
BF256B
BF256C
BF264A

BF264C
BF264D
2N4859
2N4338
2N433B
2N4339
2N4339
2N4220
2N4220
2N4391
2N4391
2N4392
2N4391
2N4393
2N4392
2N4392
U322
2N4391
U322
U320
U322
U320

INDUSTRY TYPE NUMBER	REPLACEMENT CODE	NATIONAL PART NUMBER
E100	-	J202
E101	-	J201
E102	-	J202
E103	\bullet	J203
E105	N	
E106	N	
E107	N	
E108	\bullet	J108
E109	-	J109
E110	-	J110
E111	\bullet	J111
E112	-	J112
E113	-	J113
E114	-	$J 114$
E174	-	J174
E175	-	J175
E176	-	J176
E177	-	$J 177$
E201	-	J201
E202	-	J202
E203	\bullet	J203
E210	\bullet	J210
E211	-	J211
E212	-	J212
E230	-	PN3685
E231	-	PN3684
E232	-	PN368
E270	\bullet	J270
E271	\bullet	J271
E300	\bullet	J300
E304	-	J304
E305	-	J305
E308	-	J308
E309	\bullet	J309
E310	-	J310
E311	-	J309
E312	-	J310

E400 CF
E401 CF
E402 CF
E410 CF
E411 CF
E412 CF

E420	\bullet	U257
E421	\bullet	U257
FEO654A	\bullet	PN4416
FEO654B	\bullet	PN4303
FE3B19	\bullet	$2 N 3819$
FE5245	\bullet	$2 N 5245$
FE5246	\bullet	$2 N 5246$
FE5247	\bullet	2 N5247
FE5457	\bullet	2 N5457
FE5458	\bullet	2N5458
FE5459	\bullet	2N5459
FE5484	\bullet	2N54B4
FE5485	\bullet	2N54B5
FE5486	\bullet	2N54B6

JFET Cross Reference Guide
(Continued)

INDUSTRY TYPE NUMBER	$\begin{gathered} \text { REPLACEMENT } \\ \text { CODE } \end{gathered}$	NATIONAL PART NUMBER	INDUSTRY TYPE NUMBER	REPLACEMENT CODE	NATIONAL PART NUMBER
FM1 100A	-	2N5906	$J 114$	*	$J 114$
FM1 101A	\square	2N5906	J174	*	$J 174$
FM1102A	-	2N5907	J175	*	J175
FM1103A	-	2N5908	J176	*	$J 176$
FM1104A	\square	2N5909	$J 177$	*	$J 177$
FM105A	-	NDF9401	J201	*	J201
FM1106A	\square	NDF9401	J202	*	J202
FM1107A	\square	NDF9402	J203	*	J203
FM1108A	-	NDF9403	J270	*	J270
FM1109A	-	NDF9405	J271	*	J271
FM1110A	-	2N3957	J300	*	J300
FM1111A	\square	2N3958	J304	*	J304
FM3954	-	2N3954	J305	*	J305
FM3954A	-	2N3954A	J401	*	J401
FM3955	-	2N3955	J402	,	J402
FM3955A	-	2N3955A	J403	*	J403
FM3956	-	2N3956	J404		J404
FM3957	-	2N3957	J405	*	J405
FM3958	-	2N3958	J406	*	J406
FT0654A	-	2N3824	J410	*	J410
FT0654B	-	2N3824	J411		J411
FT0654C	-	2N4221	$J 412$	*	J412
FT3820	-	2N3820	J1401	*	J 1401
IMF3954	-	2N3954	J1402	*	$J 1402$
IMF3954A	-	2N3954A	J1403	+	J1403
IMF3955	-	2N3955	J1404		J1404
IMF3955A	-	2N3955A	J1405		J1405
IMF3956	\bullet	2N3956	J1406		J1406
IMF3957	-	2N3957	KE3684	-	PN3684
IMF3958	-	2N3958	KE3685	-	PN3685
IT100	-	2N5115	KE3686	-	PN3686
IT101	\square	2N5116	KE3970	-	PN4391
IT108	\bullet	2N5486	KE3971	-	PN4392
IT109	-	2N5397	KE3972	-	PN4393
ITE3066	-	2N4340	KE4091	-	PN4091
ITE3067	\square	2N4338	KE4092	-	PN4092
1 TE3068	-	2N4338	KE4093	-	PN4093
\|TE4117	-	2N4117	KE4220	-	PN4220
ITE4118	\bullet	2N4118	KE4221	-	PN4221
ITE4119	\bullet	2N4119	KE4222	-	PN4222
ITE4338	\bullet	2N4338	KE4223	-	PN4223
ITE4339	-	2N4339	KE4224	-	PN4224
ITE4340	\bullet	2N4340	KE4391	-	PN4391
\|TE4341	\bullet	2N4391	KE4392	-	PN4392
ITE4391	*	PN4391	KE4393	-	PN4393
ITE4392	*	PN4392	KE4416	-	PN4416
ITE4393	-	PN4393	KE4856	-	PN4856
ITE44 16	\bullet	PN4416	KE4857	-	PN4857
ITE4867	-	PN3686	KE4858	-	PN4858
ITE4868	\square	PN3685	KE4859	-	PN4859
ITE4869	-	PN3684	KE4860	-	PN4860
$J 108$	*	J108	KE4861	\bullet	PN4861
J109	*	J109	KE5103	\bullet	2N5952
J110	*	J110	KE5104	\bullet	2N5953
J111	*	J111	KE5105	-	PN4416
J112	*	J112	MFE2000	-	2N4416
$J 113$	*	$J 113$	MFE2001	\square	2N4416

INDUSTRY TYPE NUMBER	$\begin{aligned} & \text { REPLACEMENT } \\ & \text { CODE } \end{aligned}$	NATIONAL PART NUMBER	INDUSTRY TYPE NUMBER	$\begin{aligned} & \text { REPLACEMENT } \\ & \text { CODE } \end{aligned}$	NATIONAL PART NUMBER
MFE2004	-	2N4393	NF532	-	2N3822
MFE2005	\square	2N4392	NF533	-	2N3821
MFE2006	\square	2N4391	NF580	-	2N5432
MFE2007	-	2N4857	NF581	-	2N5432
MFE2008	-	2N4391	NF582	-	2N5434
MFE2009	\square	2N4856	NF583	-	2N5434
MFE2010	\square	2N4856	NF584	-	2N5432
MFE2011	-	2N5433	NF585	-	2N5433
MFE2012	-	2N5433	NF4302	-	PN4302
MFE2093	-	2N3687	NF4303	-	PN4303
MFE2094	-	2N3686	NF4304	-	PN4304
MFE2095	\square	2N3685	NF4445	-	2N5432
MFE2133	\square	2N4392	NF4446	-	2N5433
MFE4007	\square	2N2608	NF4447	-	2N5432
MFE4008	-	2N2608	NF4448	\bullet	2N5433
MFE4009	-	2N3329	NF5101	*	NF5101
MFE4010	-	2N3330	NF5102	*	NF5102
MFE4011	\square	2N3330	NF5103	*	NF5103
MFE4012	-	2N3331	NF5163	-	2N5163
MPF 102	*	MPF 102	NF5457	\bullet	2N5457
MPF103	*	MPF 103	NF5458	-	2N5458
MPF104	*	MPF104	NF5459	-	2N5459
MPF105	*	MPF 105	NF5485	-	2N5485
MPF106	*	MPF 106	NF5486	-	2N5486
MPF107	*	MPF 107	NF5555	-	2N5555
MPF108	*	MPF 108	NF5638	-	2N5638
MPF109	*	MPF 109	NF5639	-	2N5639
MPF 111		MPF 111	NF5640	-	2N5640
MPF112	*	MPF112	NF5653	\bullet	2N5653
MPF161	-	2N5461	NF5654	-	2N5654
MPF256	-	J211	NPD5564	*	NPD5564
MPF820	-	J309	NPD5565	*	NPD5565
MPF970	-	P1086E	NPD5566	+	NPD5566
MPF971	\bullet	P1087E	NPD8301	*	NPD8301
MPF4391	*	PN4391	NPD8302	*	NPD8302
MPF4392	*	PN4392	NPD8303	*	NPD8303
MPF4393	*	PN4393	NPD9801	-	NPD9801
NDF9401	*	NDF9401	NPD9802	*	NPD9802
NDF9402	*	NDF9402	NPD9803	*	NPD9803
NDF9403	*	NDF9403	P1069E		
NDF9404	*	NDF9404	P1086E	*	P1086E
NDF9405	*	NDF9405	P1087E	*	P1087E
NDF9406	*	NDF9406	P1117E	CF	
NDF9407	*	NDF9407	P1118E	CF	
NDF9408	*	NDF9408	P1119E	CF	
NDF9409	*	NDF9409	PF510	-	PN4392
NDF9410	*	NDF9410	PF511	-	PN4392
NF500	-	2N4224	PF5101	*	PF5101
NF501	-	2N4224	PF5102	*	PF5102
NF506	-	2N3823	PF5103	*	PF5103
NF510	-	2N4092	PN3684	*	PN3684
NF520	-	2N4224	PN3685	*	PN3685
NF521	-	2N4220	PN3686	*	PN3686
NF522	-	2N4224	PN3687	*	PN3687
NF523	-	2N4220	PN4091	*	PN4091
NF530	-	2N3822	PN4092	*	PN4092
NF531	-	2N3821	PN4093	*	PN4093

INDUSTRY TYPE NUMBER	REPLACEMENT CODE	NATIONAL PART NUMBER	INDUSTRY TYPE NUMBER	REPLACEMENT CODE	NATIONAL PART NUMBER
PN4220	*	PN4220	TD5906A	-	2N5906
PN4221	*	PN4221	TD5907	-	2N5907
PN4222	*	PN4222	TD5907A	-	2N5907
PN4223	*	PN4223	TD5908	-	2N5908
PN4224	*	PN4224	TD5908A	\square	2N5908
PN4302	*	PN4302	TD5909	-	2N5909
PN4303	*	PN4303	TD5909A	\cdots	2N5909
PN4304	*	PN4304	TD5911	\square	2N5911
PN4342	*	PN4342	TD5911A	\square	2N5911
PN4343	*	PN4343	TD5912	-	2N5912
PN4360	*	PN4360	TD5912A	\cdots	2N5912
PN4391	*	PN4391	Tis25	N	
PN4392	*	PN4392	TIS26	N	
PN4393	*	PN4393	TIS27	N	
PN4416	*	PN4416	TIS34	\bullet	2N5486
PN4856	*	PN4856	TIS41	-	2N4859
PN4857	*	PN4857	TIS42	-	PN4392
PN4858	*	PN4858	TIS58	*	TIS58
PN4859	*	PN4859	TIS59	*	TIS59
PN4860	*	PN4860	TIS68	N	
PN4861	*	PN4861	TIS69	N	
PN5033	*	PN5033	TIS70	N	
PN5163	*	PN5163	TIS73	*	TiS73
SU2078	-	2N3955	TIS74	*	TIS74
SU2079	-	2N3956	TIS75	*	TIS75
SU2080			TIS78	N	
SU2081			TIS79	N	
SU2098	-	2N3954	TIS88A	-	2N5486
SU2098A	-	2N3954	U110	\square	2N5020
SU20988	-	2N3954A	U112	\bullet	2N4381
SU2099	-	2N3955A	U114	-	2N5020
SU2099A	-	2N3955A	U133	-	2N5020
SU2365	-	U40 1	U146	-	2N5020
SU2365A	-	U401	U147	-	2N5020
SU2366	\bullet	U402	U148	\bullet	2N2608
SU2366A	-	U402	U149	-	2N2609
SU2367	-	U403	U168	-	2N2608
SU2367A	\bullet	U403	U182	-	2N4857
SU2368	\bullet	U404	U183	-	2N3823
SU2368A	-	U404	U184	\bullet	2N4416
SU2369	\bullet	U405	U197	\bullet	2N4338
SU2369A	-	U405	U198	-	2N4340
SU2410	-	U424	U199	-	2N4341
SU2411	-	U425	U200	-	2N4393
SU2412	\square	U426	U201	\bullet	2N4392
TD5452	-	2N5452	U202	-	2N4391
TD5453	-	2N5453	U231	*	U231
TD5454	-	2N5454	U232	*	U232
TD5902	-	2N5902	U233	*	U233
TD5902A	-	2N5902	U234	*	U234
TD5903	-	2N5903	U235	*	U235
TD5903A	-	2N5903	U240	-	2N5432
TD5904	-	2N5904	U241	-	2N5433
TD5904A	-	2N5904	U242	-	2N5432
TD5905	-	2N5905	U243	-	2N5433
TD5905A	-	2N5905	U244	N	
TD5906	-	2N5906	U248	*	2N5902

INDUSTRY TYPE NUMBER	REPLACEMENT CODE	NATIONAL PART NUMBER	INDUSTRY TYPE NUMBER	$\begin{aligned} & \text { REPLACEMENT } \\ & \text { CODE } \end{aligned}$	NATIONAL PART NUMBER
U248A	*	2N5906	U1897E	\bullet	U1897E
U249	*	2N5903	U1898E	-	U1898E
U249A	*	2N5907	U1899E	-	U1899E
U250	*	2N5904	U 1994E	-	PN4416
U250A	*	2N5908	U2047	-	PN4416
U251	*	2N5905	UC155	-	2N4416
U251A	*	2N5909	UC200	-	2N4393
U252	*	2N5911	UC201	\square	2N4416
U253	*	2N5912	UC210	-	2N3822
U254	*	2N4859	UC220	-	2N4220
U255	*	2N4860	UC241	-	2N3822
U256	*	2N4861	UC250	\bullet	2N4391
U257	\bullet	U257	UC251	-	2N4392
U266	N		UC400	\square	2N2609
U280	-	2N3954	UC401	-	2N5019
U281	-	2N3954	UC410	-	2N2609
U282	\bullet	2N3955	UC420	-	2N3329
U283	-	2N3955	UC588	-	2N4416
U284	-	2N3956	UC703	-	2N3822
U285	-	2N3957	UC705	-	2N3824
$1) 290$	N		UC707	-	2N4391
U291	N		UC714	-	2N4416
U300	*	U300	UC734	-	2N4416
11301	*	U301	UC734E	-	PN4416
$\cup 304$	\bullet	2N5114	UC755	-	2N4391
1305	-	2N5116	UC756	\square	2N4224
U306	\bullet	2N5117	UC805	-	2N3331
U308	*	U308	UC807	-	2N4861
U309	*	U309	UC814	-	2N3331
U310	*	U310	UC851	\square	2N2608
U311	-	U311	UC854	CF	
U312	*	U312	UC855	CF	
U320	*	U320	UC2139	CF	
U321	*	U321	UC2147	CF	
U322	*	U322	UC2148	CF	
U328	N		UC2149	CF	
U329	N		VCR2N	-	2N4092
U330	N		VCR3P	-	2N5115
U331	N		VCR4N	-	2N4341
U350	*	U350	VCR5P	\square	2N3331
U401	*	U401	VCR7N	-	2N4119
U402	*	U402			
U403	*	U403			
U404	*	U404			
U405	*	U405			
U406	*	U406			
U421	,	U421			
U422	*	U422			
U423	*	U423			
U424	*	U424			
U425	*	U425			
U426	*	U426			
U430	*	U430			
U431	*	U431			
U1714	-	2N4340			
U1715	N				
U1837E	-	2N5486			

DEVICE NUMBER	TYPE/R $\mathrm{RON}^{\prime} / V_{\mathrm{A}} / V_{\mathrm{S}}$	NATIQNAL PIN-FOR-PIN	FUNCTIONAL EQUIVALENT	DEVICE NUMBER	TYPE/RON $/ V_{A} / V_{S}$	NATIONAL PIN-FOR PIN	FUNCTIONAL EOUIVALENT
Analog Devices							
AD7516	4-SPST $280 \leq \cdot 75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4066		DG181	2-SPST/30s3/ $75 \mathrm{~V} .15 \mathrm{~V} / \cdot 15 \mathrm{~V}, 5 \mathrm{~V}$	AM181	
				DG182	2-SPST $7552 / 10 \mathrm{~V}, 15 \mathrm{~V} / 15 \mathrm{~V} .5 \mathrm{~V}$	AM182	
Fairchild				DG 184	2-DPST 30 s $75 \mathrm{~V}, 15 \mathrm{~V}$ 15V.5V	AM184	
F4016	$4 \mathrm{SPST} 800 \leq 2 / 75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4016		DG185	2 DPST 75:31 $10 \mathrm{~V} .15 \mathrm{~V} \cdot 15 \mathrm{~V} .5 \mathrm{~V}$	AM185	
F4051	8-Ch MUX/280ss/75V/7.5V	CD4051		DG187	SPDT 30: 75 V .15 V -15V.5V	AM18/	
F4052	4 Ch MUX 280 s - 75 V 75 V	CD4052		DG188	SPDT'75s/ $10 \mathrm{~V} .15 \mathrm{~V} / 15 \mathrm{~V} .5 \mathrm{~V}$	AM188	
F4053	3-SPDT 280s, $75 \mathrm{~V} \cdot 7.75 \mathrm{~V}$	CD4053		DG190	$2 \mathrm{SPOT}, 30 \leq 175 \mathrm{~V}, 15 \mathrm{~V} 15 \mathrm{~V}, 5 \mathrm{~V}$	AM190	
F4066	4-SPST $28052.75 \mathrm{~V}, 75 \mathrm{~V}$	CD4066		DG191	2-SPDT/758/ $10 \mathrm{~V} .15 \mathrm{~V} / 15 \mathrm{~V} .5 \mathrm{~V}$	AM191	
				1H5001	SPST $30 \leq 2+8 \mathrm{~V}, 18 \mathrm{~V}, 12 \mathrm{~V}$		1 2AH0133
Harris				1H5002	SPST 5012.8 V 18V.12V		1/2AH0133
HD4051	8-Ch MUX $280 \mathrm{~s} / \mathrm{/} \cdot 75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4051		1 H 5003	2-SPST/30¢2, 10V/ 18 V .12 V		AHO133
HD4052	4-Ch MUX/280s: $\cdot 75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4052		1H5004	2-SPST $50 \mathrm{O} 2^{\prime} \cdot 10 \mathrm{~V}, 18 \mathrm{~V}, 12 \mathrm{~V}$		AH0134
HD4053	$3 \mathrm{SPDT} / 280 \mathrm{~S} / 7.75 \mathrm{~V} / 75 \mathrm{~V}$	CD4053		IH5005	2.SPST/108/.10V/18V.12V		AHO141
HD4066	4.SPST $280 \mathrm{S2} \cdot 7.75 \mathrm{~V} / 75 \mathrm{~V}$	CD4066		1H5006	2.SPST/302, 10V/18V.12V		AH0133
				1H5007	2-SPST 80¢/.10V: 18 V .12 V		AHO134
Intersil				1455009	4 Ch MUX,100: 0 2V	AH5009 AM9709	
DG11 1	$\begin{aligned} & 2 \text { SPST } 100450: 810 \mathrm{~V} 20 \mathrm{~V} . \\ & 10 \mathrm{~V} .5 \mathrm{~V} \end{aligned}$		AM182	1H5010	4 Ch MUX 115022 O 2 V	AH5010.AM9/10	
				1 145011	4 SPST 100』, 02 V	AH5011 AMG711	
DG112	$\begin{aligned} & \text { 2-SPST } 100-450 \mathrm{~S} / 10 \mathrm{~V} \cdot 20 \mathrm{~V} . \\ & 10 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$		AM182	1H5012	4-SPST/ $1402 \cdot 02 \mathrm{~V}$	AH5012,AM9712	
				1H5013	3-SPST'100s $2 \cdot 0.2 \mathrm{~V}$	AH5013	
DG116	$\begin{aligned} & 4-\mathrm{SPST} 100-450 \mathrm{~s} \cdot 10 \mathrm{~V} 20 \mathrm{~V} . \\ & 10 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$		AHOO15	1H5014	3-SPST/150:2, 0.2 V	AH5014	
				1H5015	3-SPST $100 \mathrm{~s} / \mathrm{O} 0.2 \mathrm{~V}$	AH5015	
DG118	$\begin{aligned} & 4 \text { SPST } 100-450 \Omega / 10 \mathrm{~V} / 20 \mathrm{~V} . \\ & 10 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$		AH0015	1H5016	3-SPST/150S2.0 2V	AH5016	
				MM450/MM550	2-DPDT/200-600s/ 10 V	MM450/MM550	
DG126/DG426	2-DPST/80St $+10 \mathrm{~V} / 18 \mathrm{~V} .12 \mathrm{~V}$	AHO126		MM451 MM551	4-Ch MUX/200-600:2/10V	MM451, MM551	
DG129/DG429	2-DPST 30s $610 \mathrm{~V} / 18 \mathrm{~V} .12 \mathrm{~V}$	AH0129		MM452 MM552	4-SPST? 90 600: 10 V	MM452 MM552	
OG133/DG433	2 SPST 30s 10 V , $18 \mathrm{~V}, 12 \mathrm{~V}$	AHO133		MM45 M M 5,5	3 SPST 200 600: 10 V	MM455/MM55	
OG134/DG434	2 SPST 80s, 10V. $18 \mathrm{~V}, 12 \mathrm{~V}$	AH0134		DG508		LF11508	
OG139/DG439	DPDT/30s?/10V/ 15 V	AH0139		06509		LF11509	
DG140/DG440	2-DPST $10 \leq / 10 \mathrm{~V} / 18 \mathrm{~V} .12 \mathrm{~V}$	AH0140		1H5060	$16 \mathrm{Ch} \mathrm{Mux} / 400 \mathrm{sl}^{*}$ * 15 V	LF 11506	
OG141/DG441	2.SPST 10S 10 V (18V.12V	AH0141		1H5070	8-Ch Diff MUX/400!2/*/15V	LF11507	
OG142/DG442	DPDT/80¢/ 10V/ 18V.12V	AH0142	\checkmark				
DG143/DG443	SPDT/8052/ 10 V : 18 V .12 V	AH0143					
DG144/DG444	SPDT/3012 10V 18 V .12 V	AH0144					
DG145/DG445	2-DPST/10s/ $/ 10 \mathrm{~V} / 18 \mathrm{~V}, 12 \mathrm{~V}$	A H0145		Motorola			
DG146/DG446	SPDT/1022/10V: $18 \mathrm{~V}, 12 \mathrm{~V}$	AH0146		MC14016	4-SPST'400s, $75 \mathrm{~V} \cdot 7.5 \mathrm{~V}$	C04016	
DG151/DG451	2-SPST/15S/.75V/+15V	AH0151		MC14051	8.Ch MUX/280s: $75 \mathrm{~V}, 75 \mathrm{~V}$	CD4051	
DG152/DG452	2SPST/50SL $75 \mathrm{~V} / 15 \mathrm{~V}$	AH0152		MC14052	4-Ch MUX/280s' $75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4052	
DG153/DG453	2-DPST $10 \mathrm{~S} \cdot 75 \mathrm{~V} / 15 \mathrm{~V}$	AH0153		MC14053	$3 \mathrm{SPDT} / 280 \leq 5 \cdot 7.5 \mathrm{~V}=75 \mathrm{~V}$	CD4053	
DG154/DG454	2-DPST/50SU.75V.15V	AH0154		MC14066	4-SPDJ1280s2 75 V 7.5 V	CD4066	
DG161/DG461	SPDT/15s/, $75 \mathrm{~V} /+15 \mathrm{~V}$	AH0161		MC14529	4-Ch MUX 270s: 75 V , 75 V		CD4051
DG162/DG462	SPDT/50s?/75V/.15V	AH0162					
OG163/DG463	DPDT/158: $75 \mathrm{~V} \cdot 15 \mathrm{~V}$	A H0163					
DG164/DG464	DPDT/50s/ $/ 75 \mathrm{~V} / 15 \mathrm{~V}$	AH0164					
DG172	4-SPST/200 600s2/10V/ 20 V .10 V .5 V		AH0015				

DEVICE NUMBER	TYPE/R ${ }_{\text {ON }} / V_{A} / V_{S}$	NATIONAL PIN-FOR.PIN	FUNCTIONAL EOUIVALENT	DEVICE NUMBER	TYPE/R $\mathrm{ON} / \mathrm{V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{S}}$	NATIONAL PIN-FOR-PIN	FUNCTIONAL EOUIVALENT
RCA				DG191	2SPPDT/75s2/ $10 \mathrm{~V}, 15 \mathrm{~V} / \cdot 15 \mathrm{~V}, 5 \mathrm{~V}$	AM0191	
CD4016	4-SPST 850: $1.75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4016		DG201	4-SPST/ $100 \mathrm{~s} / \mathrm{*} /$ / 15 V	LF11209	
CD4051	8.Ch MUX 280:2 $75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4051		DG501	8 Ch MUX $/ 200-80052 / 5 \mathrm{~V}, 15 \mathrm{~V}, 5 \mathrm{~V}$		AM3705
CD4052	4-Ch MUX 280 S $\cdot 75 \mathrm{~V} \cdot 75 \mathrm{~V}$	CD4052		DG511	4.Ch Diff MUx/200-700s2/10V/		MM454/MM554
CD4053	3-SPDT/280:2'75V/75V	CD4053			20V, 10 V		
CD4066	4.SPST 28083.75V.75V	CD4066		DG506	16 Ch Mux/400s.2.\%/15V	LF11506	
				DG507	8.Ch. Diff. MUX $40052 / * / 15 \mathrm{~V}$	LF11507	
				DG508	8-Ch Mux/400s2/*/15V	LFT1508	
Siliconix				DG509	4-Ch. Diff MUX/400 $2 / 2 / 15 \mathrm{~V}$	LF11509	
DG111	$\begin{aligned} & \text { 2.SPS ᄃ } 100450 \mathrm{~s}, \cdot 10 \mathrm{~V} / 20 \mathrm{~V} \text {. } \\ & 10 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$	AM0182		DGM122	$\begin{aligned} & \text { 2-DPST/ } 100-500 \leq 2 / 10 \mathrm{~V} / 20 \mathrm{~V} \\ & 10 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$		AH0019
DG126	$2 \mathrm{DPST} / 80 \mathrm{n}$ + $10 \mathrm{~V},-18 \mathrm{~V}, 12 \mathrm{~V}$	AH0126		S1455;Si555	3-SPST/200 600:2/ $10 \mathrm{~V} / 20 \mathrm{~V}$,		MM455/MM555
DG129	2-DPST'30,2, 10V,-18V. 12 V	AH0129			10v,5V		MM455/MM55
DG133	2.SPST 30s, 10 V - 18 V .12 V	AH0133					
DG134	2-SPST $80 \mathrm{SL} \cdot 10 \mathrm{~V}$ 18V,12V	AHO134		Solitron			
DG139	DPDT 30 S1, $90 \mathrm{~V} \cdot 15 \mathrm{~V}$	AH0139		CM4016	4.SPST/4002 $/ \cdot 7.5 \mathrm{~V} / \cdot 7.5 \mathrm{~V}$	CD4016	
DG140	2-DPST/10s2/10V: 18V,12V	AH0140		CM4051	8-Ch Mux/280s2/.75V/-7.5V	CD4051	
DG141	2-SPST $10 \leq, 10 \mathrm{~V}$ 18V,12V	AH0141		CM4052	4.Ch MUX/2808/2/75V/17.5V	CD4052	
DG142	DPDT $80 \mathrm{~s}, 10 \mathrm{~V}, 18 \mathrm{~V}, 12 \mathrm{~V}$	AH0142		CM4053	3-SPDT/280S2/ $175 \mathrm{~V} / 175 \mathrm{~V}$	CD4053	
DG143	SPDT $80 \mathrm{~S} 2+10 \mathrm{~V}-18 \mathrm{~V}, 12 \mathrm{~V}$	AH0143		CM4116	4-SPST/800S//7.5V/175V	CD4016	
DG144	SPDT $3052+10 \mathrm{~V}$ 18V.12V	AH0144					
DG 145	2 DPST 10SO, 10V, $188 \mathrm{~V}, 12 \mathrm{~V}$	AH0145		Teledy ${ }^{\text {a }}$-Cr			
DG146	SPDT/ 10 S2 $10 \mathrm{~V}, 18 \mathrm{~V}, 12 \mathrm{~V}$	AHO146		CAG-10	SPST/50:2/-10V.4V/-15V.5V		
DG151	2-SPST/15s2, - $75 \mathrm{~V} / \cdot 15 \mathrm{~V}$	AHO151		CAG-13	2-SPST/50s: $10 \mathrm{~V}, 18 \mathrm{~V}, 15 \mathrm{~V}$		$\text { AHO } 134$
DG152	2-SPST/5082.75V/15V	AH0152		CAG. 14	SPST/50@2/ 10V.5V/15V.5V		1/2AMO182
DG153	2-DPST/10s2'75V 15V	AHO153		CAG- 21	2-DPST/30 2 ; $6 \mathrm{~V}, 10 \mathrm{~V}: 18 \mathrm{~V}, 15 \mathrm{~V}$		AH0129
DG154	2-DPST $50 \leq 2 / 7.5 \mathrm{~V} / 15 \mathrm{~V}$	AH0154		CAG. 22	2-SPST/3082-6V,10V/18V,15V		AH0133
OG161	SPDT $1551,75 \mathrm{~V} /{ }^{\text {S }} 15 \mathrm{~V}$	AH0161		CAG-23	2-SPST/50sz/ 10V/ 18V,15V		AHO134
DG162	SPDT/50 $2, \cdot 75 \mathrm{~V} \cdot 15 \mathrm{~V}$	AH0162		CAG-24	2-SPST/30s/ $6 \mathrm{~V}, 10 \mathrm{~V} / 18 \mathrm{~V}, 15 \mathrm{~V}$		AHO133
DG163	DPDT/15:2/ $7.5 \mathrm{~V} \cdot 15 \mathrm{~V}$	AH0163		CAG.27.10	2-SPST/10:2/6V.10V/18V/15V		AH0141
DG164	DPDT/50s2, $75 \mathrm{~V} \cdot 15 \mathrm{~V}$	AH0164		CAG-30	SPST/60s/10V/19V.5V		1/2AM182
DG172	4.SPST/200-600s,', 10V --20V.		AH0015	CAG-42	2.SPST/60S2/10V/18V 15 V		AHO134
	10V,5V			CAG 45	2-SPST/60S2/10V/18V, 15V		AHO134
DG173	$\begin{aligned} & \text { DPDT } 150-500 \Omega 2 \text { 10V } 20 \mathrm{~V} \\ & 10 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$	AH0014		CAG-48 CD4066	$\text { 2.SPST/60s2/ } 10 \mathrm{~V} /-18 \mathrm{~V}, 15 \mathrm{~V}$		AHO134
DG181	2 -SPST $30 \Omega 275 \mathrm{~V}, 15 \mathrm{~V}, 15 \mathrm{~V} .5 \mathrm{~V}$	AM181		$\begin{aligned} & \text { CD4066 } \\ & \text { CS4R } \end{aligned}$	4-SPST/280¢3/-75V/75V 2-DPST $15 \Omega 2+10 \mathrm{~V}, 18 \mathrm{~V}, 15 \mathrm{~V}$	CD4066	AH0140
DG182	2-SPST: 75 S: $10 \mathrm{~V}, 15 \mathrm{~V}+15 \mathrm{~V}, 5 \mathrm{~V}$	AM182					AHOI
DG184	2-DPST $30 \Omega 275 \mathrm{~V}, 15 \mathrm{~V}, 15 \mathrm{~V}, 5 \mathrm{~V}$	AM184		Texas instrum			
DG185	$2 \mathrm{DPST} / 75 \mathrm{~S}, 10 \mathrm{~V}, 15 \mathrm{~V}, 15 \mathrm{~V}, 5 \mathrm{~V}$	AM185		TF4015	4-SPST/400s2 $+7.5 \mathrm{~V} /+7.5 \mathrm{~V}$	CD4016	
DG187	SPDT/30s2/ $7.5 \mathrm{~V}, 15 \mathrm{~V} / \cdot 15 \mathrm{~V}, 5 \mathrm{~V}$	AM187		TF4051	8-Ch Mux/280s $2 /-75 \mathrm{~V} / 75 \mathrm{~V}$	CD4051	
DG188	SPOT $7582,10 \mathrm{~V} .15 \mathrm{~V} \cdot 15 \mathrm{~V}, 5 \mathrm{~V}$	AM188		TF4052	4-Ch MUX/280s2/ $7.5 \mathrm{~V} / 7.75 \mathrm{~V}$	CD4052	
DG 190	2-SPDT $/ 30 \mathrm{~S}, 7.5 \mathrm{~V}, 15 \mathrm{~V} /+15 \mathrm{~V}, 5 \mathrm{~V}$	AM190		TF4053	3-SPDT/280s $2 / \cdot 75 \mathrm{~V} / .75 \mathrm{~V}$	CD4053	

7

Section 2
FET Selector Guides 2

Choose The Proper FET

National Semiconductor utilizes 17 different FET geometries to cover, without compromise, the full spectrum of applications. Specific part number characteristics are summarized into application areas further on within this section. In addition, this section includes process comparison charts which graphically indicate the typical values of a q ven parameter for all geometries under identical test conditions. Detailed data on each process, along with a list of all part numbers manufactured from each process, is to be found in Section 3.

To further simplify the selection procedure, t:ee FET Family Tree is included for quick identification. After narrowing down the process types, it is suggested that the process sheets and specific part number characteris. tics be consulted.

FET FAMILY TREE

FET Application Guide

National Semiconductor manufactures a broad line of silicon Junction Field Effect Transistors (JFETs). National's JFETs provide excellent performance in many areas such as RF amplifiers, analog switching, low input current amplifiers, low noise high impedance amplifiers and outstanding matched duals for operational amplifiers input applications.

The following FET guides enable the user to determine when to use FETs and where to look for the best choice.

POPULAR PRODUCT TYPES			2N4338-41, 2N3684-7			$\begin{aligned} & \text { d } \\ & 1 \\ & \text { N } \\ & \text { N } \\ & \sum_{N}^{\prime} \end{aligned}$		$\begin{aligned} & \text { op } \\ & \stackrel{1}{2} \\ & \stackrel{0}{\circ} \\ & \stackrel{N}{N} \end{aligned}$			N 1 1 0 0 10 N N 0 1 0 0 0 N N		0	$\begin{aligned} & \stackrel{N}{1} \\ & \stackrel{1}{\sim} \\ & \underset{N}{N} \end{aligned}$			$\begin{aligned} & 0 \\ & 1 \\ & \stackrel{1}{0} \\ & 0 \\ & { }_{N}^{0} \end{aligned}$	10 1 1 0 0 N N
PROCESS DESIGNATION	50	51	52	53	55	58	83	84	86	88	89	90	92	93	94	95	96	98
Low Current Amplitier			S	P	S		P	P	P		P				P	P		P
Low Freg Amplio 100 Hz			S		S		P			S	S				P	P		P
High Freg Amplr $\sim 100 \mathrm{MHz}$	P											P	P	P			P	
General Purpose Amplifier	P		P		P						P							
Low Noise Amp ($10 \mathrm{~Hz} \mathrm{en}_{\mathrm{n}}$)	S	S			S	S	P								P	P	P	P
Low Noise Amp . 50 MHz	P				S							P	P	P			P	
High Fiequency Mixet	P											P	P					
Dual Diff Palı							P	P	P					P	P	S	P	P
AGC Amplifier	P				P													
Electrometer Preamp				P				P	p						P			S
Microvolt Ampliter				P				P	P						P			P
Low Leakutge Diode				P														
Diff'Angle Ended Inp Stag							P	P	P					P	P		P	P
Active Filter	P		S		P						S							
Oscillator	P		S		P						S	P	P					
Voltage Variable Reststor	P	P	S		P					P	P							P
Hybrad Chips	P	P		P	P		P	P	P	P	P				P			
Analog. Digital Smitch		P				P				P							5	5
Multiplexing	P	P			S	S				P								
Choppers		P				P				P							P	
Nixie Drivers																		
Reed Relay Replacement						P												
Sub pA Dual Diff Pair								P	P									
Sample Hold	P	P			S				S	P								P
Bufter Interface to CMOS										P	P							
Matched Switch							S							5	S		P	P
HF . 400 MHz Prime												p	P					
Current Limiter		P								P								
Current Source			P	5	P						S							

ADVANTAGES OF USING FIELD-EFFECT TRANSISTORS

APPLICATION	ADVANTAGES	FINAL ASSEMBLY WHERE USED
DC Amplifiers	High $Z_{\text {in }}$ Low drift duals Low noise	Tiansducers, military guidance systems, control systems, temp indicators, multimeters
Low frequency amplifiers	Small coupling capacitors Low noise, distortion High input impedance	Sound detection, microphones, inductive transducers, hearing aids, high impedance transducers
Operational amplifiers	Summing point essentrally zero. Low device noise. Less loading of transducers	Contiol systems, potted op amps, test equipment, medical electionics
Medium and high frequency amplifiers	Low cross modulation Low device noise Simplified circuitry	FM tuners, communication received scope inputs, most instrumentation equipment, high impedance mputs
$\begin{aligned} & \text { Mixers - } 100 \mathrm{MHz} \\ & \text { and up } \end{aligned}$	Low mixing noise Low cross modulation	FM tuners, communication receivers
Oscillators	Low drift	Transmitters, iecervers, organ
Logic gates	Virtually infinite fan in Simplified circuitry Zero storage time Symmetrical	Guidance controls, computer manket mun. militay teaching ands, traffic control, telemetry
Choppers	Zero offset Low leakage currents Simplified circuitry Eliminates input transformers	Op amp modules guidance controls instrumentation equipment
AD Converters Multiplex switching (arrays) and sample hold	Improved isolation of input and output. Zero offset. Symmetrical. Low resistance Simplified circuitry	Contiol system, DVM's and any readout equipment, medical electronics
Relay contact replacement	Solid state reliability Zero offset, High isolation Symmetrical No inductive spring No contact bounce High repetition rate	Test equipment, airborne equipment instrumentation market
Voltage variable resistor	Symmetrical Solid state reliability Functions as variable resistor. Low noise. High isolation Improved resolution	Organ, tone controls, control ckts to mput operational amplifiers
Current limiters Sources	Two lead simplicity Wide selection range Low voltage operation	Hybrid circuits, amplifiers, power supply protection, timing ckts, voltage regulators

Important Parameters by Application

LISTED IN APPROXIMATE ORDER OF IMPORTANCE

Low Frequency Amplifier	Source Follower	Electrometer Amplifier	Low Drift Amplifier	Low Noise Amplifier	High Frequency Amplifier	Oscillator	Differential Amplifier	Analog and Digital Switch	
$Y_{\text {f }}$	Yfs	${ }^{1} \mathrm{G}$	${ }^{1} \mathrm{D} 2$	e_{n}	Re(yfs ${ }^{\text {d }}$	$y_{f s}$	$\begin{aligned} & \left\|V_{G S 1}-V_{G S 2}\right\| \\ & \Delta_{i} V_{G S 1}-V_{G S 2} \mid \end{aligned}$	RDS(ON)	
${ }^{1}$ DSS	${ }^{\text {IG }}$	$\mathrm{Yff}_{\text {f }}$	$\mathrm{Yfs}^{\text {@ }}{ }^{\text {D }} \mathrm{D}$	${ }^{\mathrm{G}} \mathrm{G}$	Rely is	1 DSS	دT	ID(off)	
VGS(off)	$\mathrm{Cr}_{\text {rss }}$	$I_{\text {D }}$	$V_{G S} @ 1 \mathrm{DZ}$	i_{n}	NF	Crss	$\\|_{\mathrm{G} 1}{ }^{-\mathrm{I}_{\mathrm{G} 2} \mid}$	$\mathrm{C}_{\text {iss }}$	
$\mathrm{C}_{\text {iss }}$	$\mathrm{C}_{\text {iss }}$	e_{n}	${ }^{\prime} \mathrm{G}$	Yfs	$\mathrm{C}_{\text {rss }}$	$\mathrm{C}_{\text {iss }}$		Crss	
$\mathrm{Crss}^{\text {r }}$	IDSS	9 gos	$B V_{\text {GSS }}$	${ }^{1}$ DSS	Relyos)	VGS ${ }^{\text {chf }}$)	$V_{\text {f }}$	VGS(off)	
e_{n}	VGS(off)			VGS(off)	IDSS	$B V_{G S S}$	$V_{f s} 1 / y_{f s} 2$	$B V_{G S S}$	
$B \vee G S S$	BVGSS				$V_{\text {GS }}$ (off)		$\mathrm{V}_{\mathrm{OS}} 1$ - $\mathrm{V}_{\mathrm{OS}} 2$ CMRR		
							$V_{\text {GS }}$ (off)		

FET Process Comparison Curves

Dual FET Drain Saturation Current vs
Cutoff Voltage

$\mathrm{V}_{\mathrm{GS} \text {（OFF）}}$－GATE－SOURCE CUTOFF VOLTAGE（V）

Dual FET Transconductance vs Cutoff Voltage

$\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$－GATE SOURCE CUTOFF VOLTAGE（V）

Single FET Drain Saturation Current vs Cutoff Voltage

$\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$－GATE．SOURCE CUTOFF VOLTAGE（V）

Single FET Transconductance vs Cutoff Voltage

$\mathrm{V}_{\text {GS（OFF）}}$－GATE－SOURCE CUTOFF VOLTAGE（V）

Drain－Gate Voltage

FET Process Comparison Curves (continued)

SWITCHES／CHOPPERS（Continued）

号	
${ }^{5}$	
$\stackrel{\mathscr{C}}{>}$	
－	
	 츰
$\stackrel{3}{5}$	
를	

\%	
$\stackrel{3}{8}$	

${ }_{2}^{2}$	

[^7]Selection Guide

N-Channel FETs

$\begin{gathered} \text { Transistor } \\ \mathbf{T} \mathbf{y p e} \end{gathered}$	$\begin{aligned} & \text { Case } \\ & \text { Style } \end{aligned}$	BV $_{\text {GSS }}$ $\mathrm{BV}_{\mathrm{GDO}}$	$I_{\text {gss }}$ 'dgo	Min ${ }^{\text {(V) }}$	Max	$\begin{aligned} & v_{p} \\ & \text { @ }{ }^{v_{D S}} \\ & \text { (v) } \end{aligned}$	$\begin{gathered} 10 \\ (n A) \end{gathered}$	${ }_{\text {Min }}$	${ }_{\text {Max }}{ }^{\text {doss }}$	$\begin{aligned} & \text { (e } \mathrm{v}_{\mathrm{DS}} \\ & \text { (v) } \end{aligned}$	${ }_{\text {Min }}^{\text {(um }}$	${ }_{\text {Max }}^{\text {(}}$ (${ }_{\text {g }}$		$\underset{(\mu \mathrm{mho}) \text { e }^{\mathrm{G}_{\text {Os }}}}{\mathrm{V}_{\mathrm{DS}}}$		$\stackrel{c_{\text {iss }}}{(p F) @ V_{D S}}$		$\begin{aligned} & v_{G S} \\ & (V) \end{aligned}$	$\begin{aligned} & c_{\text {rss }} \\ & \text { (pFF) }{ }^{(1)} \mathrm{v}_{\mathrm{DS}} \\ & \max \end{aligned}$		$\begin{aligned} & \mathrm{v}_{\mathrm{GS}} \\ & (\mathrm{v}) \end{aligned}$		Process	$\begin{aligned} & \text { Pkg. } \\ & \text { No. } \end{aligned}$
	T0. 72	$40 \quad 1$	$10 \quad 20$	0.6	1.8	10	1	30	90	10	20	210	10	3	10	3	10	0	1.5	10	0		53	25
2N4117A	70.72	40	$1 \quad 20$	0,6	1.8	10	1	30	90	10	70	210	10	3	10	3	10	0	-1.5	10	0		53	25
2N417A	T0.72	$40 \quad 1$	$10 \quad 20$	1	3	10	1	80	240	10	80	250	10	5	10	3	10	9	1.5	10	0		53	25.
2 N 4118 A	T0.72	40 i	$1-20$	\%	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1.5	to	0		53	25
2N4119	ro. 32	$40 \quad 1$	$10 \quad 20$	2	6	10	1	200	600	10	160	330	10	10	10	3	10	0	1.5	10	0		53	25
2N419A	T0.72	$40 \quad 1$	20	2	6	10	1	200	600	10	100	330	10	10	10	3	10	0	1.5	10	0		53	25

혼울	\% ס ¢ \%	
旡 ${ }^{\circ}$		
${ }_{\text {g }}^{\text {g }}$		
$\underbrace{\circ} \frac{0}{2 \\| \frac{\tilde{r}}{2}}$		
$\stackrel{\square}{\square}$	000000000000000	
$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$		

Selection Guide
N－Channel FETs

产安	
珨家安	
$>$	$\bigcirc 0000$
\％	
妙窝	

产安	
$\stackrel{\ddots}{\circ} \mathrm{S}$	$000000000=0 \stackrel{\text { E }}{\mathbb{N}} \underset{\mathrm{N}}{\mathrm{~N}}$
$5 \geq$	$00000000000 \stackrel{\substack{\text { E } \\ \text { ¢ }}}{\text { E }}$
	$8 \stackrel{8}{-}-\cdots-\ldots+\cdots$
	$\geq 2 \ldots \ldots, \ldots 9 \ldots$

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l} \text { case }^{\text {Stryle }} \end{array}$	dperating conditions for these characteristics										$\begin{gathered} v_{p} \\ \left(V_{1}\right)^{2} \\ \operatorname{Min} \quad \max \end{gathered}$		$\begin{gathered} \text { Ioss } \\ \text { (mA) } \\ \mathrm{Min}_{\text {max }} \end{gathered}$	$\begin{gathered} G_{4 s} \\ \substack{\text { (mmhol } \\ \text { Min Max }} \end{gathered}$	$\begin{gathered} \mathrm{G}_{\text {oss }} \\ \begin{array}{c} \text { (umhe) } \end{array} \\ \text { Max } \end{gathered}$	$\begin{gathered} \text { IGss } \\ \text { (pA) }{ }^{(0) V_{D G}} \\ \text { Max } \end{gathered}$		$\begin{array}{cc} \mathrm{C}_{\text {Sss }} \mathrm{C}_{\text {rss }} & \mathrm{BV} \\ (\mathrm{PFF} & (\mathrm{PF}) \\ \text { Max } & \text { V) } \\ \text { Max } & \text { Min } \end{array}$					$\begin{gathered} \text { IDSS } \\ \text { Match } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{G}_{\mathrm{f}} \\ \text { Match } \\ \% \end{gathered}$	Goss 1 （umho）	$\begin{gathered} \mathrm{l}_{\mathrm{G} 1} \mathrm{I}_{\mathrm{G} 2} \\ 125 \\ \left(\mathrm{In}_{\mathrm{A}}\right) \end{gathered}$	$\begin{gathered} \text { Process } \\ \text { No } \end{gathered}$	$\begin{aligned} & \text { Pkg. } \\ & \text { No. } \end{aligned}$
		$\begin{aligned} & \mathrm{OP} . \mathrm{CH} A \\ & \mathrm{~V}_{\mathrm{DG}} \end{aligned}$ (v)	$\begin{aligned} & \text { HAR } \\ & I_{0} \\ & (W A) \end{aligned}$	$\begin{aligned} & \hline\left.\mathrm{v}_{\mathrm{GS} 121}\right\|^{\prime} \mathrm{vDS}^{\mathrm{mV})} \\ & (\max) \end{aligned}$	$\begin{aligned} & \text { DRIFT } \\ & \text { (} \mu \mathrm{V} / \mathrm{C}) \\ & \Delta \mathrm{V}_{\mathrm{GS}} \\ & \mathrm{Max} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{I}_{\mathbf{G}}^{(\mathrm{AA})} \\ & \text { Max } \end{aligned}$		$\underset{\substack{(1 / \text { mass } \\ \text { max }}}{\mathbf{G}_{\text {max }}}$	$\begin{gathered} \text { CMRA } \\ \text { CdB! } \\ \text { Min } \end{gathered}$																				
2N3921	то．71	10	700	50	10	250	1500	20					30	1010	$15 \quad 15$	35	1000	30	18	60	50	100	10 k		50			${ }^{83}$	12
2N3922	T0．71	10	700	50	25	250	1500	20					30	10） 10	$15 \quad 75$	35	1000	30	18	60	50	100	10 k		50			83	12
2N3934	T0．71	10	200	50	10	100	300	50						2 N 39546	on umproved	revacemm													12
2N3935	T0－71	10	200	50	25	100	300	50						2N39546．	wr	lase													12
2n39544	T0．7	20	200	50	5.0	50				05	4.0	10	45	$05 \quad 50$	1030	${ }^{36}$	100	${ }^{30}$	40	1.2	50	150	100	5.0	30			83	12
2N3954	T0．71	20	200	5.0	10	50				0.5	4.0	10	4.5	0.5050	$10 \quad 3.0$	35	100	30	4.0	1.2	so	rat	－140	5.6	35		10	53	：2
2N3955A	т0．71	20	200	5.0	15	50				05	40	10	45	$0.5 \quad 50$	$1.0 \quad 3.0$	35	100	30	40	12	50	160	：00	5.0	30		10	83	12
2N3956	то．7．	20	200	10	25	50				0.5	40	10	4.5	05850	$1.0 \quad 30$	35	100	30	4.0	1.2	50	150	100	5.4	50		10	83	12
2N3956	ro．71	20	200	15	50	50				0.5	4.0	10	4.5	0.550	$4.0 \quad 30$	35	100	96	40	3.2	50	150	100	50	5.0		10	83	12
2N3957	T0．71	20	200	20	75	50				05	40	1.0	45	$0.5 \quad 50$	$4.0 \quad 30$	35	100	39	40	1.2	50	150	100	10	10		10	${ }^{83}$	12
2N3958	T0．73	20	200	25	100	50					40	10	45	0550	$10 \quad 30$	35	100	30	4.0	1.2	50	750	－00	15	15		10	83	12
2N4082	T0．71	10	200	15	10	100	300	10						20，39546	an mumpun	melact													12
2N4083	то－71	10	200	15	25	100	300	10						2N 39546	am murraved														12
2N4084	T071	10	700	15	10	250	1500	20		012	413		30	$10 \quad 10$	1515	35	10^{100}		18	60	50	100	10 k		50			83	12
2N4085	то－71	10	200	15	25	250	1500	20					311	10 H	158	35	1000	0	18	60	50	100	10 k		50			83	12

Selection Guide
N-Channel FETs

P-Channel FETs

\% ${ }_{\text {¹ }}$	
	出
\%	
	$0000000000000 \underline{0} 00$

Section 3 Process Characteristics

促

Introduction

This section contains complete design curves for all of National Semiconductor discrete FET processes. In all cases, temperature and $\mathrm{VGS}_{\text {(off }}$) distribution data is provided to facilitate worst-case design. In addition, a complete list, by package, of all device types supplied from this process is included to aid in cross reference searches and the selection of preferred device types.

The curves in this section should be considered typical of the process supplied by National Semiconductor. Every effort is made to keep the process in tolerance with the published graphs, but the exact distribution of any specific lot of material is not guaranteed.

gate is also backside contact

DESCRIPTION

Process 50 is designed primarily for RF amplifier and mixer applications. It will operate up to 450 MHz with low noise figure and good power gann. These devices offer outstanding performance at $V H F$ aircraft and communications frequencies Their major advantage is low crossmodulation and intermodulation, low noise figure and good power gain. The device is also a good choice for analog switching where low capacitance is very important.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {GSS }}^{\prime}$	$V_{D S}=0 V, I_{G}=-1 \mu \mathrm{~A}$	-25	-40		V
Zero Gate Voltage Drain Current	Ioss	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	1.0	10	20	mA
Forward Transconductance	g_{fs}	$V_{\text {DS }}=15 \mathrm{~V}, V_{\text {GS }}=0$	3.0	5.5	7.0	mmbos
Forward Transconductance	g_{fs}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		1.1		mmhos
Reverse Gate Leakage	$\mathrm{I}_{\text {GSS }}$	$V_{G S}=-20 \vee, V_{D S}=0$		-5.0	-100	pA
"ON" Resistance	ros	$V_{\text {DS }}=100 \mathrm{mV}, V_{G S}=0$	100	175	500	$\Omega 2$
Pinch Off Voltage	$V_{\text {GS(OFF) }}$	$V_{D S}=15 V, I_{D}=1 \mathrm{nA}$	-0.7	-3.5	- 6.0	V
Output Conductance	gos	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{D}=1 \mathrm{~mA}, f=1 \mathrm{kHz}$		10		$\mu \mathrm{mhos}$
Feedback Capacitance	$\mathrm{Cr}_{\text {rss }}$	$V_{D G}=15 \mathrm{~V}, V_{G S}=0$		0.7	0.9	pF
Input Capacitance	$\mathrm{C}_{\text {is, }}$	$V_{\text {DS }}=15 \mathrm{~V}, V_{G S}=0$		3.5	4.0	pF
Noise Voltage	e_{n}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, f=100 \mathrm{~Hz}$		B. 0		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Noise Figure	NF:	$\begin{aligned} & V_{\mathrm{OG}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}, \\ & R_{G}:=1 \mathrm{k} \Omega, \mathrm{f}-400 \mathrm{MHz} \end{aligned}$		2.2	4.0	dB
Power Gain	$\mathrm{G}_{\text {PS }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=400 \mathrm{MHz}$		12		dB

This process is available in the following device types *Denotes preferred parts

TO-72 (CASE 25)	${ }^{*}$ 2N5486
2N3B23	$2 N 5555$
2N3966	$2 N 5668$
2N4223	2N5669
2N4224	2N5670
2N4416	*J304
*2N4416A	*J305
2N507B	PN4223
2N5103	PN4224
2N5104	PN4416
2N5105	PN5163
2N5556	MPF102
2N5557	MPF106
2N5558	MPF107
	MPF110
TO.92 (CASE 72)	MPF111
*2N5484	
*2N5485	

2N3B19 BC264D
2N5248 BF245A
BF244A BF245B
BF244B BF245C
BF256A
BF256B
TIS59 BF256C
TO-92 (CASE 77) QUALIFIED PER MIL-S-19500
2N5949
2N5950
2N5951
2N5952
2N5953
BC264A
BC264B

Process 50

Process 50

Channel Resistance vs Temperature

Common Drain-Source Characteristics

Transconductance vs Drain Current

Leakage Current vs Voltage

Output Conductance vs Drain Current

Norse Voltage vs Frequency

Noise Figure Frequency

Forward Transadmittance

Output Admittance

Reverse Transadmittance

COMMON GATE

Forward Transadmittance

 Process 51 N-Channel JFET

GATE IS ALSO BACKSIOE CONTACT

DESCRIPTION

Process 51 is destgned primarily for electronic switching applications such as low ON resistance analog switching. It features excellent $\mathrm{C}_{\text {Iss }}$ $\mathbf{R}_{\mathrm{DS}(\mathrm{ON})}$ time constant. The inherent zero offset voltage and low leakage current make these devices excellent for chopper stabilized amplifiers, sample and hold circuits, and reset switches. Low feedthrough capacitance also allows them to handle video signals to 100 MHz .

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source 8reakdown Voltage	$8 \mathrm{~V}_{\text {GSS }}$	$V_{D S}=O V, I_{G}=-1 \mu \mathrm{~A}$	-30	-50		V
Zero Gate Voltage Drain Current	$I_{\text {DSS }}$	$\begin{aligned} & V_{D S}=20 \mathrm{~V}, V_{G S}=0 \\ & \text { Pulse Test } \end{aligned}$	5.0	65	170	mA
Reverse Gate Leakage	$\mathrm{I}_{\text {gss }}$	$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$		-15	-200	pA
"ON" Resistance	$r_{\text {DS }}$	$V_{D S}=100 \mathrm{mV}, V_{G S}=0$	20	35	100	Ω
Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$		8.5		mmhos
Pinch Off Voltage	$V_{\text {GS(OFF) }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-0.5	-4.5	-9.0	\checkmark
Drain "OFF" Current		$V_{D S}=20 \mathrm{~V}, V_{G S}=-10 \mathrm{~V}$		15	200	pA
Feedback Capacitance	$\mathrm{C}_{\text {rss }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		3.5	4.0	pF
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		12	16	pF
Noise Voltage	e_{n}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$		6.0		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Turn-On Time	$\mathrm{t}_{\text {on }}$	$V_{D D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA}$		12	20	ns
Turn-Off Time	$\mathrm{t}_{\text {off }}$	$V_{D D}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.6 \mathrm{~mA}$		40	80	ns

This process is available in the following device types. *Denotes preferred parts.

TO-18 (CASE 02)
2N3970
2N3971
2N3972
*2N4091
${ }^{*}$ 2N4092
${ }^{*}$ 2N4093
*2N4391
*2N4392
*2N4393
*2N4856
2N4856A
${ }^{\text {2 }} 2 \mathrm{~N} 4857$
2N4857A
*2N4858
2N4858A
2N4859
2N4859A
2N4860
2N4860A

2N4861	*PN4092
2N4861A	*PN4093
TO-72 (CASE 25)	*PN4391
*NF5101	*PN4392
* NF5102	*PN4856
*NF5103	*PN4857
TO-92 (CASE 72)	*PN4858
*2N5638	*PN4859
*2N5639	*PN4860
* 2 N5640	*PN4861
2N5653	U1897E
2N5654	U1898E

TO-92 (CASE 74)
8F246A
BF2468
8F246C

TO. 92 (CASE 77)

8F247A
8F2478
8F247C
TIS73
TIS74
TIS75
QUALIFIED PER MIL-S-19500
2N4091 JAN, JANTX, JANTXV 2N4092 JAN, JANTX, JANTXV 2N4093 JAN, JANTX, JANTXV 2N4856 JAN, JANTX, JANTXV 2N4857 JAN, JANTX JANTXV 2N4858 JAN, JANTX, JANTXV 2N4859 JAN, JANTX, JANTXV 2N4860 JAN, JANTX, JANTXV 2N4861 JAN, JANTX, JANTXV
Process 51

$v_{g s}$-gate source voltage (v)

Transconductance vs Drain Current

ID - ORAIN CURRENT (mA)

Common Drain-Source Characteristics

Process 52 N-Channel JFET

gate is also backside contact

DESCRIPTION

Process 52 is designed primarily for low level audio and general purpose applications. These devices provide excellent performance as input stages for piezo electric transducers or other high impedance signal sources. Their high output impedance and high voltage breakdown lend them to high gain audio and video amplifier applications. Source and drain are interchangeable.

CHARACTERISTIC	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B \vee G S S$	$V_{D S}=0 V, I_{G}=-1 \mu \mathrm{~A}$	--40	-70		V
Drain Saturation Current	${ }^{1}$ DSS	$V_{D S}=20 \mathrm{~V}, V_{G S}=0 \mathrm{~V}$	0.2	1.5	12	mA
Forward Transconductance	gfs	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	1.0	2.5	5.0	mmho
Forward Transconductance	9fs	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		700		$\mu \mathrm{mho}$
Reverse Gate Leakage Current	IGSS	$V_{G S}=-30 \mathrm{~V}, V_{D S}=0 \mathrm{~V}$		-10		pA
Drain ON Resistance	r DS	$V_{D S}=100 \mathrm{mV}, V_{G S}=0 \mathrm{~V}$	250	400	2000	Ω
Gate Cutoff Voltage	$V_{\text {GSIOFFI, }}$ Vp	$V_{D S}=15 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=1 \mathrm{nA}$	-0.3	1.0	-8.0	V
Output Conductance	gos	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		2.0		$\mu \mathrm{mho}$
Feedback Capacitance	$\mathrm{Crss}^{\text {r }}$	$V_{D G}=15 \mathrm{~V}, V_{G S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		1.3	1.8	pF
Input Capacitance	Ciss	$V_{D G}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		5	6	pF
Noise Voltage	e_{\square}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=100 \mathrm{~Hz}$		10		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

This process is available in the following device types
*Denotes preferred parts

TO-18 (CASE 02)
2N3069
2N3070
2N3071
2N3368
2N3369
2N3370
2N3458
2N3459
2N3460
*2N4338
*2N4339
*2N4340
*2N4341

TO-72 (CASE 25)
*2N3684
*2N3685

* 2N3686
*2N3687
2N3967
2N3967A
2N3968
2N3968A 2N3969 2N3969A

TO-92 (CASE 72)
*J201

* J202
* J203
*PN3684
*PN3685
*PN3686
*PN3687
*PN4302
*PN4303
*PN4304

Output Conductance vs Draın Current

Noise Voltage vs Frequency

Transconductance vs Drain Current

Transfer Characteristics

Transfer Characteristics

Leakage Current vs Voltage

Common Drain-Source
Characteristics

[^8]

Leakage Current vs Voltage

Transfer Characteristics

Transfer Characteristics

Transfer Characteristics

Output Conductance vs Drain Current

Transfer Characteristics

Transfer Characteristics

gate is backside contact

DESCRIPTION

Process 55 is a general purpose low level audio amplifier and switching transistor. Wafer processing is similar to process 52 but process 55 uses a larger geometry. This results in higher $Y_{f s}, I_{D S S}$, and capacitance and lower $R_{\text {DSton) }}$. It is useful for audio and video frequency amplifiers and RF amplifiers under 50 MHz . It may also be used for analog switching applications.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {Gss }}$	$V_{D S}=0 V, I_{G}=-1 \mu \mathrm{~A}$	-40	-70		V
Zero Gate Voltage Drain Current	$\mathrm{I}_{\text {dss }}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	0.5	5.0	20	mA
Forward Transconductance	$g_{t s}$	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	2.0	4.5	7.0	mmho
Forward Transconductance	$\mathrm{g}_{\text {f }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		1200		$\mu \mathrm{mhos}$
Reverse Gate Leakage	Igss	$V_{G S}=-30 \mathrm{~V}, V_{D S}=0$		-10	-100	pA
"ON" Resistance	${ }^{\text {r DS }}$	$V_{\text {OS }}=100 \mathrm{mV}, V_{G S}=0$	140	250	600	Ω
Pinch Off Voltage	$V_{\text {GS(OFF) }}$	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-0.5	-2.0	-8.0	V
Feedback Capacitance	$\mathrm{C}_{\text {rss }}$	$V_{D G}=15 \mathrm{~V}, V_{G S}=0, f=1 \mathrm{MHz}$		1.5	2.0	pF
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}$		6.0	7.0	pF
Output Conductance	$\mathrm{g}_{\text {os }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		2		umhos
Noise Voltage	e_{n}	$V_{O G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}, \mathrm{f}=100 \mathrm{~Hz}$		10		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

This process is available in the following device types. *Denotes preferred parts.

TO-18 (CASE 02)
2N3436
2N3437
2N3438
TO-72 (CASE 25)
2N3821
2N3822
2N3824
2N4220
2N4220A
2N4221
2N4221A
2N4222
2N4222A

* 2 N5358
*2N5359
*2N5360
*2N5361
*2N5362
*2N5363
*2N5364

TO-92 (CASE 72)
*2N5457
*2N5458
*2N5459 MPF 103 MPF 104 MPF 105 MPF108 MPF109 MPF112
PN4220
PN4221
PN4222

I_{D} - DRAIN CURRENT (mA)

Noise Voltage vs
Frequency

Transfer Characteristics

ID - DRAIN CURRENT (mA)

DESCRIPTION

Process 58 was developed for analog or digital switching applications where very low $\mathrm{r}_{\mathrm{DSION} \text {) }}$ is mandatory. Switching times are very fast and $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{C}_{\text {iss }}$ time constant is low. The 6Ω typical on resistance is very useful in precision multiplex systems where switch resistance must be held to an absolute minimum. With r_{DS} increasing only $0.7 \% /{ }^{\circ} \mathrm{C}$, accuracy is retained over a wide temperature excursion.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {GSS }}$	$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	-25	-30		V
Zero Gate Voltage Drain Current	loss	$\begin{aligned} & V_{D S}=5 \mathrm{~V}, V_{G S}=0 \\ & \text { Pulse Test } \end{aligned}$	100	400	1000	mA
Reverse Gate Leakage	Ioss	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		50	-500	pA
"ON" Resistance	ros	$V_{\text {DS }}=100 \mathrm{mV}, V_{G S}=0$	3.0	6.0	20	Ω
Pinch Off Voltage	$V_{\text {GS (off) }}$	$V_{D S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{nA}$	-0.5	-5.0	-12	\checkmark
Drain "OFF" Current	I D(off)	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=-10 \mathrm{~V}$		0.05	20	nA
Feedback Capacitance	$\mathrm{C}_{\text {rss }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		12	25	pF
Input Capacitance	$\mathrm{C}_{\text {Iss }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		25	50	pF
Forward Transconductance	$g_{\text {fs }}$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{D}=2 \mathrm{~mA}$		10		mmhos
Output Conductance	g_{os}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$		100		$\mu \mathrm{mhos}$
Noise Voltage	e_{n}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$		6.0		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

This process is available in the following device types. *Denotes preferred parts.

TO-39 (CASE 09)
U320
U321
U322
TO-52 (CASE 07)
*2N5432
*2N5433
*2N5434
TO-92 (CASE 72)
*J108
*J109
*J110

Common Drain-Source Characteristics

V_{DS} - DRAIN.SOURCE VOLTAGE (V)

Common Drain-Source
Characteristics

Output Conductance vs Drain Current

I_{D} - ORAIN CURRENT (mA)

Capacitance vs Voltage

Parameter Interactions

Normalized Drain
Resistance vs Bias
Voltage

Transconductance vs
Drain Current

ID - DRAIN CURRENT (mA)

Switching Turn-On vs Gate-Source Voltage

Noise Voltage vs Frequency
 - FREQUENCY (kHz)

Switching Turn-On
Time vs Drain Current

Process 83 N-Channel JFET

DESCRIPTION

Process 83 is a monolithic dual JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasureable offset current. Likewise matching characteristics are virtually independent of operating current and voltage, providing design flexibility. Most GP 2 N types are sorted from this family.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {GSS }}$	$V_{D S}=0 V, I_{G}=-1 \mu \mathrm{~A}$	-50	-70		V
Zero Gate Voltage D. ain Current	Ioss	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	0.5	2.5	8.0	mA
Forward Transconductance	9 fs	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	1.0	2.5	5.0	mmho
Pinch Off Voltage	$V_{\text {GSIOFF }}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-0.5	-2.0	-4.5	v
Gate Current	I_{G}	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		3.0	50	pA
Forward Transconductance	g_{fs}	$\mathrm{V}_{\mathrm{DG}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$	600	850		$\mu \mathrm{mhos}$
Output Conductance	Gos	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		1.0	5.0	$\mu \mathrm{mhos}$
"ON" Resistance	ros	$V_{D S}=100 \mathrm{mV}, V_{G S}=0$		450		Ω
Noise Voltage	e_{n}	$\begin{aligned} & V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{~Hz} \end{aligned}$		10	50	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Differential Match	$\left\|V_{G S 1} \cdot V_{G S 2}\right\|$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		7.0	25	mV
Differential Match	$\Delta V_{\text {GS1-2 }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		10	50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection	CMRR	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$	80	95		dB
Feedback Capacitance	$\mathrm{C}_{\text {rs }}$	$\begin{aligned} & V_{D G}=15 \mathrm{~V}, I_{D}=0.2 \mathrm{~mA} . \\ & f=1 \mathrm{MHz} \end{aligned}$		1.0	1.2	pF
Input Capacitance	C_{15}	$\begin{aligned} & V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$		3.4	4.0	pF

This process is available in the following device types. *Denotes preferred parts.

TO-71 (CASE 12)

2N3921	2N5047	U233	J410
2N3922	${ }^{\text {2N }}$ 2N5196	U234	J411
*2N3954	*2N5197	U235	J412
*2N3954A	*2N5198		8-Pin MiniDIP (CASE 67)
*2N3955	*2N5199		*NPD8301
*2N3955A	2N5452		*NPD8302
*2N3956	2N5453		*NPD8303

Transfer Characteristics

$V_{\text {gs }}$ - gate solirce voltage ivi

Transfer Characteristics

$v_{\text {gs }}$ - gate souace voltage ivi

Common Drain-Source Characteristics

$V_{\text {DS }}$ - DRAIN SOURCE VOLTAGE, VI

Leakage Current vs Voltage

 $V_{D G}$ - DRAINGATE VOLTAGE IV;

VGSIOFFI - GATE Cutoff vOLTAGE iV)

Output Conductance

 vs Drain Current

ID - DRAIN CURRENT (.al

Transconductance vs Drain Current

T_{A} - AMBIENT TEMPERATURE (\mathbf{C})
Channel Resistance vs Temperature

CMRR vs Drain Current

Differential Drift

This process is available in the following device types. *Denotes preferred parts.
TO-78 (CASE 24)

2N5902	${ }^{*}$ 2N5906
2N5903	${ }^{*}$ 2N5907
2N5904	${ }^{*}$ 2N5908
2N5905	*2N5909

Process 84

v_{gs}-gate source voltage (v)

Noise Voltage vs
Frequency

Differential Offset

$I_{\text {D }}$ - draincurrent (ua)

Common Drain Source Characteristics

Transconductance vs Drain Current

Noise Voltage vs Current
 Io - orain current (μ a)

Process 86 Monolithic Dual JFET

DESCRIPTION

Process 86 is a monolithic dual JFET with a diode isolated substrate. It is intended for critical amplifier input stages requiring low noise, sub picoamp bias currents and high gain. Exacting process control results in consistent parameter distribution with tight match and low drift

This process is available in the following device types. *Denotes preferred parts.

TO-78 (CASE 24)
U421
U422
U423
U424
U425
U426

PROCESS IN DEVELOPMENT

GATE IS BACKSIOE CONTACT

DESCRIPTION

Process 88 is designed primarily for electronic switching applications where a P channel device is desirable. Inherent zero offset voltage, low leakage and low $R_{\text {DS(ON) }} C_{\text {ISS }}$ time constant make this device excellent for low level analog switching, sample and hold circuits and chopper stabilized amplifiers. This device is the complement to Process 51.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {gss }}$	$V_{D S}=0 V, I_{G}=1 \mu \mathrm{~A}$	30	40		V
Zero Gate Voltage Drain Current	Ioss	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-5.0	-30	-90	mA
Forward Transconductance	g_{s}	$V_{D S}=-15 \mathrm{~V}, V_{G S}=0$	4.0	13	17	mmhos
Forward Transconductance	g_{s}	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{D}=-2 \mathrm{~mA}$		3.5		mmhos
Gate Leakage	IGss	$V_{G S}=20 \mathrm{~V}, V_{D S}=0$		0.05	1.0	nA
"ON" Resistance	${ }^{\text {r }}$ D	$V_{D S}=-100 \mathrm{mV}, V_{G S}=0$	50	80	200	Ω
Pinch Off Voltage	$V_{\text {GSIOFF) }}$	$V_{D S}=-15 \mathrm{~V}, t_{D}=-1 \mathrm{nA}$	0.5	5.0	10	\checkmark
Drain "OFF" Current	I D(OFF)	$V_{\text {DS }}=-15 \mathrm{~V}, V_{\text {GS }}=10 \mathrm{~V}$		-0.05	-10	nA
Feedback Capacitance	$\mathrm{C}_{\text {rss }}$	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		4.0	5.0	pF
Input Capacitance	C_{55}	$V_{\text {OS }}=-15 \mathrm{~V}, \mathrm{I}_{0}=-2 \mathrm{~mA}, f=1 \mathrm{MHz}$		14	15	pF
Output Conductance	gos	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{D}=-2 \mathrm{~mA}$		100	300	$\mu \mathrm{mhos}$
Noise Voltage	e_{n}	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{D}=-2 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$		20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

This process is available in the following device types. *Denotes preferred parts.

TO-18 (CASE 11)
2N2609
2N4382
2N5018
2N5019
*2N5114
*2N5115
*2N5116
U300
U30 1
U304
U305
U306

TO-72 (CASE 23)
2N3382
2N3384
2N3386
2N3993 *J177
2N3993A *J270
2N3994 *J271
2N3994A
TO-92 (CASE 71)
P1086E
P1087E
PN4343

TO-92 (CASE 74)
*J174
*J175

+ J270

QUALIFIED PER MIL-S-19500
*2N5114JAN, JANTX, JANTXV
*2N5115JAN, JANTX, JANTXV
*2N5116JAN, JANTX, JANTXV

Process 88

Transfer Characteristics

Output Conductance vs Drain Current

Leakage Current vs Voltage

Transconductance vs Drain Current

Common Drain-Source Characteristics

Channel Resistance vs Temperature

Noise Voltage vs
Frequency

DESCRIPTION

Process 89 is designed primarily for low level amplifier applications. This device is the complement to Process 55. Commonly used in voltage variable resistor applications.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{G S S}$	$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{G}=1 \mu \mathrm{~A}$	20	40		V
Zero Gate Voltage Drain Current	$I_{\text {DSS }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	-0.3	-4.0	-20	mA
Forward Transconductance	9 fs	$V_{\text {DS }}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	1.0	2.5	4.0	mmhos
Forward Transconductance	g_{t},	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{D}=-0.2 \mathrm{~mA}$		700		$\mu \mathrm{mhos}$
Gate Leakage	$\mathrm{I}_{\text {GSS }}$	$V_{G S}=20 \mathrm{~V}, V_{\text {DS }}=0$		0.02	1.0	$n \mathrm{~A}$
Pinch Off Voltage	V GSIOFF)	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{D}=-1 \mathrm{nA}$	0.5	3.0	9.0	\checkmark
Feedback Capacitance	$\mathrm{Crss}^{\text {cher }}$	$V_{D G}=-15 V, V_{G S}=0, f=1 \mathrm{MHz}$		2.0	2.5	pF
Input Capacitance	C_{15}	$\mathrm{V}_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		7.0	8.5	pF
"ON" Resistance	ros	$V_{\text {DS }}=-100 \mathrm{mV}, V_{G S}=0$		450		Ω
Output Conductance	$\mathrm{g}_{\text {OS }}$	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\square}=0.2 \mathrm{~mA}$		5.0	15	$\mu \mathrm{mhos}$
Noise Voltage	en_{n}	$\begin{aligned} & V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.2 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{~Hz} \end{aligned}$		30		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$

This process is available in the following device types. * Denotes preferred parts.

TO-18 (CASE 11)
2N2608
2N4381
2N5020
2N5021
TO-72 (CASE 23)
2N3329
2N3330
2N3331
2N3332

TO-92 (CASE 74)
2N3820
QUALIFIED PER MIL-S•19500
2N2608JJAN

Process 89

Output Conductance vs Drain Current

Capacitance vs Voltage

GATE IS ALSO BACKSIDE CONTACT

DESCRIPTION

Process 90 is designed for VHF/UHF mixer/ amplifier and applications where Process 50 is not adequate. Has sufficient gain and low noise, common gate configuration at 450 MHz , for sensitive receivers. The high transconductance and square law characteristics insures low crossmodulation and intermodulation distortions. Common-gate operation simplifies circuitry. Consider Process 92 for even higher performance.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {gss }}$	$V_{D S}=0 V, I_{G}=-1 \mu \mathrm{~A}$	-20	-30		V
Zero Gate Voltage Drain Current	Ioss	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0$	3	18	40	mA
Forward Transconductance	$\mathrm{g}_{\text {f }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	5.5	8.0	10	mmhos
Forward Transconductance	g_{fs}	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	4.5	5.8		mmhos
Reverse Gate Current	Igss	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-5.0	-100	pA
"ON" Resistance	$r_{\text {ds }}$	$V_{D S}=100 \mathrm{mV}, V_{G S}=0$		90		Ω
Pinch Off Voltage	$V_{\text {GSIOFF) }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-1.5	-3.5	-6.0	V
Output Conductance	gos	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{D}=5 \mathrm{~mA}$		45	100	$\mu \mathrm{mhos}$
Feedback Capacitance	C_{rs}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		1.0	1.2	pF
Input Capacitance	C_{15}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		4.0	5.0	pF
Noise Voltage	en_{n}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$		13		$n \mathrm{~V} / \sqrt{H z}$
Noise Figure	NF	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=450 \mathrm{MHz}$		3.0		dB
Power Gain	G_{pg} (CG)	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{f}=450 \mathrm{MHz}$		11		dB

This process is available in the following device types *Denotes preferred parts.

TO-52 (CASE 07) U312

TO. 72 (CASE 25)

* 2N5397

2N5398

Common Drain-Source Characteristics

Transconductance vs
Drain Current

Process 90

gate is also backside contact

DESCRIPTION

Process 92 is designed for VHF/UHF amplifier, oscillator, and mixer applications. As a common gate amplifier, 16 dB at 100 MHz and 12 dB at 450 MHz can be realized. Worst case 75 ohm input impedance provides ideal input match.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {gss }}$	$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	-20	-30		V
Zero Gate Voltage Drain Current	Ioss	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0$, Pulsed	10	38	80	mA
Forward Trans conductance	$\mathrm{gfs}_{\text {s }}$	$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{G S}=0$, Pulsed		19		mmhos
Forward Trans conductance	$g_{\text {f }}$	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	10	13	18	mmhos
Reverse Gate Current	$\mathrm{I}_{\text {Gss }}$	$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{D S}=0$		-15	-100	pA
"ON" Resistance	r_{DS}	$V_{O S}=100 \mathrm{mV}, V_{G S}=0$	35	45	80	Ω
Pinch Off Voltage	VGsioffi	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-1.5	-4.0	-6.5	\checkmark
Output Conductance	g_{cs}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		160	250	$\mu \mathrm{mhos}$
Feedback Capacitance	C_{gd}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		2.0	2.5	pF
Input Capacitance	C_{gs}	$V_{D G}=10 \mathrm{~V}, \mathrm{l}_{D}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$		4.1	5.0	pF
Noise Voltage	e_{n}	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{D}=10 \mathrm{~mA}, f=100 \mathrm{~Hz}$		6.0		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Noise Figure	NF	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, I_{0}=10 \mathrm{~mA}, \\ & f=450 \mathrm{MHz} \end{aligned}$		3.0		dB
Power Gain	$G_{\text {pg }}$	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, 1_{\mathrm{O}}=10 \mathrm{~mA}, \\ & \mathrm{f}=450 \mathrm{MHz} \end{aligned}$		12		dB

This process is available in the following device types. *Denotes preferred parts.

TO-52 (CASE 07)
U308

* U309
*U310

TO-99 (CASE 24)
U430
U431

TO-92 (CASE 72)
J308
*J309
+J310

Transconductance vs Drain Current

ID - ORAIN CURRENT (mA)

Transfer Characteristics

Transfer Characteristics

Output Conductance vs Drain Current

			DESCRIPTION Process 93 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages, and high slew rate op amps. Monolithic structure eliminates thermal transient errors, and provides freedom to pick operating current and voltage.				
CHARACTERISTIC	PARAMETER		ST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{G S S}$	$V_{O S}=0 \mathrm{~V}$	$i_{G}=-1 \mu \mathrm{~A}$	-25	-30		V
Zero Gate Voltage Drain Current	loss	$V_{D S}=10 \mathrm{~V}$	$V, V_{G S}=0$, Pulsed	3.0	18	40	mA
Forward Transconductance	g_{fs}	$V_{D S}=10 \mathrm{~V}$	$V, V_{G S}=0$, Pulsed		8.0		mmhos
Forward Transconductance	g_{f}	$V_{D G}=10$	$V \cdot I_{0}=5 \mathrm{~mA}$	5.0	6.0	10	mmhos
Output Conductance	$\mathrm{g}_{\text {os }}$	$V_{D G}=10$	$\mathrm{V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		50	100	$\mu \mathrm{mhos}$
Pinch Off Voltage	$V_{\text {GS (OFF }}$)	$V_{\text {DS }}=10 \mathrm{~V}$	$V, I_{D}=1 \mathrm{nA}$	-1.5	-3.5	-6.0	V
"ON" Resistance	ros	$V_{D S}=100$	$00 \mathrm{mV}, \mathrm{V}_{\text {GS }}=0$		100		Ω
Gate Current	Is	$V_{D G}=10$	$\mathrm{V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		10	100	pA
Noise Voltage	$\mathrm{e}_{\text {п }}$	$V_{D G}=10$	$\mathrm{V}, \mathrm{I}_{0}=5 \mathrm{~mA}, f=100 \mathrm{~Hz}$		9.0	30	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Differential Match	$V_{G S 1} \cdot V_{G S 2} \mid$	$V_{D G}=10$	$\mathrm{V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		9.0	30	mV
Differential Match	$\Delta V_{\text {GS1-2 }}$	$V_{\text {DG }}=10$	$\mathrm{V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		15	40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection	CMRR	$V_{D G}=10$	$\mathrm{V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$		90		dB
Feedback Capacitance	$\mathrm{Cr}_{\mathrm{rs}}$	$V_{D G}=10$	$V, I_{D}=5 \mathrm{~mA}, \mathbf{f}=1 \mathrm{MHz}$		1.0	1.2	pF
Input Capacitance	C_{15}	$V_{D G}=10$	$\mathrm{V}, \mathrm{I}_{\square}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		4.2	5.0	pF

This process is available in the following device types. *Denotes preferred parts.
TO-78 (CASE 24)
Process 93 is a monolithic dual JFET with a diode Prolated substrate. It is intended for wide band stages, high slew rate op amps. Monolithic structure eliminates thermal transient errors, and provides freedom to pick operating current and voltage.
*2N5912 U257

I_{D} - DRAIN CURRENT (mA)

Transfer Characteristics

Transfer Characteristics

Output Conductance vs Drain Current

ID - DRAIN CURRENT (mA)

Transfer Characteristics

Transfer Characteristics

Differential Drift

Common Drain-Source Characteristıcs

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{\text {gss }}$	$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	-40	-70		V
Zero Gate Voltage Drain Current	${ }^{\text {I Dss }}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	0.5	3.0	10	mA
Forward Trans. conductance	$g_{f s}$	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	1.5	3.5	7.0	mmho
Forward Trans. conductance	g_{t}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$	0.9	1.2	1.8	mmhos
Pinch Off Voltage	$V_{\text {gsioff }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-0.5	-2.0	6.0	V
Gate Current	I_{G}	$V_{D G}=35 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.20 \mathrm{~mA}$		1.0	15	pA
Feedback Capacitance	$\mathrm{Crss}^{\text {a }}$	$V_{D S}=15 \mathrm{~V}, V_{G S}=0, f=1 \mathrm{MHz}$		0.01	0.02	pF
Input Capacitance	C_{15}	$V_{D S}=15 \mathrm{~V}, V_{G S}=0, f=1 \mathrm{MHz}$		4.0	5.0	pF
Noise Voltage	ε_{n}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}, f=10 \mathrm{~Hz}$		12	50	$n \mathrm{n} / \sqrt{\mathrm{Hz}}$
Output Conductance	g_{os}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		<0.1		umhos
Differential Match	$\left\|V_{G S 1} \cdot V_{G S 2}\right\|$	$V_{D G}=15 \mathrm{~V}, I_{D}=0.2 \mathrm{~mA}$		5.0	25	mV
Differential Match	$\Delta V_{G S 1} 2$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		6.0	50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection	CIMRR	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		125		dB

This process is available in
the following device types.
*Denotes preferred parts.
TO-71 (CASE 12)
*NDF9406
*NDF9407
*NDF9408
*NDF9409
*NDF9410
TO-78 (CASE 24)
NDF9401
NDF9402
NDF9403
NDF9404
NDF9405

Common Drain-Source Characteristics

Process 94

DESCRIPTION

Process 95 is a monolithic duai JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasureable offset current. Low noise voltage and high CMRR for critical $1 / \mathbf{f}$ applications.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{G S S}$	$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$	-40	-70		V
Zero Gate Voltage Drain Current	1 OSS	$V_{\text {OS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	0.5	3.0	8.0	$m A$
Forward Transconductance	$\mathrm{g}_{\text {fs }}$	$V_{\text {OS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	1.0	2.5	4.0	mmhos
Forward Transconductance	g_{4}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$	0.5	0.7		mmhos
Gate Leakage	$\mathrm{I}_{\text {GSS }}$	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		-5.0	-100	pA
Pinch Off Voltage	$V_{\text {GS(IFF }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	-0.5	-2.5	-4.0	V
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$		10	14	pF
Noise Voltage	en_{n}	$\begin{aligned} & V_{O S}=15 \mathrm{~V}, I_{O}=0.2 \mathrm{~mA}, \\ & f=10 \mathrm{~Hz} \end{aligned}$		8.0	30	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Noise Voltage	e_{n}	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, I_{D}=0.2 \mathrm{~mA}, \\ & f=100 \mathrm{~Hz} \end{aligned}$		6.0	10	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Output Conductance	g_{05}	$V_{\text {DG }}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		0.3	1.0	$\mu \mathrm{mhos}$
Feedback Capacitance	$C_{\text {rss }}$	$V_{\text {OS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}$		3.5	5.0	pF
Differential Match	$\mid V_{G S 1}-V_{G S 2}!$	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$		6.0	25	$m V$
Differential Match	$\Delta V_{\text {GS1-2 }}$	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{D}=0.2 \mathrm{~mA}$		9.0	60	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Common Mode Rejection	CMRR	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~mA}$	86	115		dB

This process is available in the following device types. * Denotes preferred parts.

TO-71 (CASE 12)	
2N5515	${ }^{*}$ 2N5522
2N5516	${ }^{*}$ 2N5523
2N5517	${ }^{*}$ 2N5524
2N5518	${ }^{*}$ 2N6483
2N5519	*2N6484
*2N5520	*2N6485
*2N5521	

Process 95

Transconductance
Characteristics

vas gate source voltage (v)

Dutput Conductance vs Drain Current

Io - ordin current imal

Capacitance vs Voltage

Transfer Characteristics

Common Drain Source Characteristics

Channel Resistance vs Temperature

Noise Voltage vs Current

id -orain currentimal

Differential Dffset

CMRR vs Drain Current

DESCRIPTION

Process 96 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages. Also ideal for matched voltage variable resistor applications over 60 dB tracking range.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MiN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	$B V_{G S S}$	$V_{D S}=0 V, I_{G}=-1 \mu \mathrm{~A}$	-40	-55		V
Zero Gate Voltage Drain Current	loss	$V_{O S}=15 \mathrm{~V}, V_{G S}=0$	5.0	15	30	mA
Forward Transconductance	$g_{\text {ts }}$	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	9.0	18	30	mmhos
Forward Trans conductance	$\mathrm{gfs}_{\text {f }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	7.5	9.0		mmhos
Output Conductance	$\mathrm{g}_{\text {os }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{D}=2 \mathrm{~mA}$		15	45	$\mu \mathrm{mhos}$
Pinch Off Voltage	$V_{\text {GS(OFF) }}$	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1.8	-3.0	\checkmark
"ON" Resistance	$r_{\text {ds }}$	$V_{D S}=100 \mathrm{mV}, V_{G S}=0$	35	70	120	$s 2$
Gate Current	1695	$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$		-8.0	-100	pA
Gate Current	I_{G}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{D}=2 \mathrm{~mA}$		15	200	pA
Noise Voltage	e_{n}	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz}$		4.5	10	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Feedback Capacitance	C_{r}	$V_{D G}=15 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		2.5	3.0	pF
Input Capacitance	C,s	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}, \mathrm{f}=1 \mathrm{MHz}$		10	12	pF
Differential Voltage	$V_{G S 1} \cdot V_{G S 2}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{D}=2 \mathrm{~mA}$		8.0	25	mV
Differential Voltage	$\Delta V_{\text {GS }}$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{0}=2 \mathrm{~mA}$		9.0	50	$\mu \mathrm{V},{ }^{\circ} \mathrm{C}$
Common Mode Rejection	CMRR	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$	76	95		dB

This process is available in the following device types. "Denotes preferred parts.

TO-71 (CASE 12)
*2N5564
*2N5565
*2N5566

8-Pin DIP (CASE 67)
*NPD5564
*NPD5565
*NPD5566

Transconductance vs Drain Current

Io - brain current (ma

Transfer Characteristics

Noise Voltage vs Current

Transfer Characteristics

Transfer Characteristics

Noise Voltage vs Frequency

Common Draın-Source Characteristics

Output Conductance vs Drain Current

DESCRIPTION

Process 98 is a high gain, general purpose, monolithic dual JFET with a diode isolated substrate. It is intended for amplifier input stages requiring high gain, low noise and low offset drift over temperature. Strict processing controls result in low input bias currents and virtually immeasurable offset currents. Matching characteristics are essentially independent of operating current and voltage.

This process is available in the following device types. *Denotes preferred parts.

TO. 71 (CASE 12)
2N5561
2N5562
2N5563
U401
U402
U403
U404
U405
U406
8-Pin DIP (CASE 60)
J401
J402
J403
J404
J405
J406

农

Section 4
Preferred Parts Data Sheets

2N3684-87/PN3684-87 N-Channel JFETs

General Description

The 2N3684/PN3684 thru 2N3687/PN3687 series of N -channel JFETs is characterized for general purpose small signal amplifier applications requiring low noise and tightly specified $\mathrm{I}_{\mathrm{DSS}}$ ranges.

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		$\begin{aligned} & \text { 2N3684/ } \\ & \text { PN3684 } \end{aligned}$		2N3685/ PN3685		2N3686/ PN3686		$\begin{aligned} & \text { 2N3687/ } \\ & \text { PN3687 } \end{aligned}$		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$V_{G S}=-30 V, V_{\text {OS }}=0$			-0.1		-0.1		-0.1		-0.1	nA
		$150{ }^{\circ} \mathrm{C}$			-0.5		-05		-0.5		-0.5	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{D S}=0$		-50		-50		-50		-50		V		
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, 10=1 \mathrm{nA}$		-2	-5	-1	-3.5	-0.6	-2	-0.3	-1.2			
Ioss	Saturation Drain Current	$V_{D S}=20 V, V_{G S}=0$		2.5	7.5	1	3	0.4	12	0.1	0.5	mA		
ros(on)	Drain Source ON Resistance	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 1$)$			600		800		1200		2400	Ω		
g_{f}	Common-Source Forward Transconductance, (Note 3)	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	2000	3000	1500	2500	1000	2000	500	1500	$\mu \mathrm{mho}$		
gos	Common Source Output Conductance				50		25		10		5			
Crss	Common-Source Reverse Transfer Capacitance				12		12		1.2		1.2			
$\mathrm{C}_{\text {iss }}$	Common Source Input Capacitance				4		4		4		4			
e_{n}	Equivalent Short-Circuit Input Spot Notse Voltage	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=20 \mathrm{~Hz}$		0.15		0.15		0.15		0.15	$\frac{\mu \mathrm{V}}{\sqrt{H z}}$		
NF	Noise Figure	$\begin{aligned} & V_{D S}=10 V, V_{G S}=0, \\ & R_{\text {gen }}=10 \mathrm{M}, \mathrm{BW}=6 \mathrm{~Hz} \end{aligned}$	$f=100 \mathrm{~Hz}$		0.5		0.5		0.5		05	dB		

[^9]
2N3954-55/2N3954A-55A N-Channel Monolithic Dual JFETs

General Description

The 2 N3954 thru 2N3955/A series of N-channel monolithic dual JFETs is designed for low to medium frequency differential amplifier applications requiring low noise, high common-mode rejection, and very tight match.
Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage -50V
Gate-to-Gate Voltage $+50 \mathrm{~V}$
Gate Current

Total Device Dissipation $85^{\circ} \mathrm{C}$
Case Temperature
(Each Side) 250 mW
Power Derating (Each Side)
(Both Sides)
Storage Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics ($22^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS		2N3954		2N3954A		2N3955		2N3955A		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
	Gate Hemen Cument			VGS 30V			100		-100		-100		-100	p A
	Gate Roverse Cutant	VOS 0	TA 125 C		500		-500		\$00		500	nA		
BVGSS	Gater Solte Bradiduwn Vallaqe	$V S^{-0} \mathrm{IG}^{-} 1 \mu \mathrm{~A}$		-30		50		50		50		V		
VGSIoffI	Gate Sourer C.atoll Voltage	$v_{D S}=20 \mathrm{~V} / \mathrm{D}$ 1 nA		10	45	10	-4!	13	45	10	45			
$V_{\text {GS }}(\mathrm{f})$	Gate Source Formand Voltagt'	$V_{D S}=0 / G=1 m 4$			20		20		20		20			
V_{GS}	Gate Sontce Voltaqe	VOS 20 V	$1 \mathrm{D}-50 \mu \mathrm{~A}$		42		42		42		-42			
			$1 D^{-200 \mu A}$	-05	-40	05	40	$0 \vdots$	40	(1) 4	40			
${ }^{1} \mathrm{G}$	Gate Opreatam Current	$\begin{aligned} & V_{D S} 20 V \\ & \mathrm{I}_{\mathrm{U}}-200 \mu \mathrm{~A} \end{aligned}$			-50		50		50		50	pA		
			TA-125 C		250		250		-250		250	${ }_{11}$		
${ }^{1}$ DSS	Soturdalion Dram Curemt	$V_{\text {DS }}-20 \mathrm{~V} \mathrm{~V}_{\mathrm{GS}}-0$		05	50	05	50	05	50	05	50	${ }^{11} \dot{\sim}$		
9ts	Commor Source Forwat Tiansconctuctance	$\begin{aligned} & V_{D S}-20 V \\ & v_{G S} 0 \end{aligned}$	t 1 kH ,	1000	3000	1000	3000	1000	3000	1000	3000	fimho		
			f $200 \mathrm{MH} /$	1000		1000		1000		1000				
905	Cummon Source Outpat Co idue tance		1-1 kH_{7}		35		36		35		35			
C_{15}	Lir nomo Source Inmat Capacitanca		f 1 MHz		4.		40		40		40	pF		
C_{1},	Cormon Source Reverse Transªl Capacalatke				12		12		12		12			
$\mathrm{C}_{\text {dgo }}$	Drain Gate Cafucitance	$\begin{aligned} & V_{D G}-10 V \\ & I_{S}=0 \end{aligned}$			15		15		13		15			
NF	Connman Sourice soot Noise Fipurc	$\begin{aligned} & v_{D S}-20 \mathrm{~V} \\ & v_{G S} 0 \\ & R_{G} \quad 10 \mathrm{MS} \end{aligned}$	f $100 \mathrm{H}_{2}$		05		95		05		05	dB		
$1 \mathrm{G} 1 \mathrm{l} \mathrm{G}_{2}$	Differential Gate Curisit	$\begin{aligned} & V_{1 O S}=20 \mathrm{~V} . \\ & I_{D}=200, i \mathrm{~A} \end{aligned}$	$t=125 \mathrm{C}$		10		10		10		10	nA		
'0SS1/0ss 2	Drann Saturation Cintent Redia	VDS -20 V VGS 0		095	10	0.95	10	085	10	095	10			
VGS1 VGS2	Differential Gate Sulle Voldaqe	$\begin{aligned} & V D S-20 \mathrm{~V} \\ & 10=200 \mathrm{~mA} \end{aligned}$			50		50		100		50	mV		
D.VGS1 VGS?	Gate Surie Differential Voltage Change with lemper ature		$\begin{aligned} & T-25 \mathrm{C} 10 \quad 55^{\circ} \mathrm{C} \\ & T-25 \mathrm{C} 10125^{\circ} \mathrm{C} \end{aligned}$		08		04		2.0	1.2				
					10		05		25					
$9+519+52$	Tiansconductance Ratio		f 1 kHz	097	10	प 97	10	097	10	095	10			

2N3956-58 N-Channel Monolithic Dual JFETs

General Description

The 2N3956 thru 2N3958 series of N-channel monotithic dual JFETs is designed for low to medium frequency differential amplifier applications requiring tight match. low noise and high common-mode rejection.

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{PARAMETER}} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CDNOITIONS}} \& \multicolumn{2}{|l|}{2N3956} \& \multicolumn{2}{|r|}{2N3957} \& \multicolumn{2}{|r|}{2N3958} \& \multirow[t]{2}{*}{UNITS}

\hline \& \& \& \& MIN \& MAX \& MIN \& MAX \& MIN \& MAX \&

\hline \multirow[b]{2}{*}{IGSS} \& \multirow[b]{2}{*}{Gate Reverse Currerit} \& \multirow[b]{2}{*}{$V_{G S}=-30 \mathrm{~V}, V_{D S}=0$} \& \& \& -100 \& \& -100 \& \& 100 \& pA

\hline \& \& \& $T_{A}=150{ }^{\circ} \mathrm{C}$ \& \& -500 \& \& -500 \& \& 500 \& $n A$

\hline BVGSS \& Gate Source Breakdown Voltage \& \multicolumn{2}{|l|}{$V_{\text {OS }}=0 V, G_{G}=-1-A$} \& 50 \& \& -50 \& \& -50 \& \&

\hline $\mathrm{V}_{\text {GSIoft }}$ \& Gate-Source Cutoff Voltage \& \multicolumn{2}{|l|}{VDS -20V.10 $=1 \mathrm{nA}$} \& 10 \& 45 \& -10 \& -45 \& -1.0 \& --45 \&

\hline $V_{G S(f)}$ \& Gate Source Forward Voltage \& $V_{D S}=O V, 1 G=1 \mathrm{~mA}$ \& \& \& 20 \& \& 20 \& \& 20 \& v

\hline \multirow[b]{2}{*}{V_{GS}} \& \multirow[b]{2}{*}{Gate-Source Voltage} \& \multicolumn{2}{|l|}{$V_{D S}=20 \mathrm{~V} 1 \mathrm{D}-50 \mathrm{~mA}$} \& \& -42 \& \& -4.2 \& \& -42 \&

\hline \& \& \multicolumn{2}{|l|}{$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, 1 \mathrm{D}=200 \mathrm{uA}$} \& 05 \& 40 \& -0.5 \& -40 \& -05 \& -40 \&

\hline \multirow[b]{2}{*}{${ }^{\text {G }}$} \& \multirow[b]{2}{*}{Gate Operating Current} \& \multirow[b]{2}{*}{$V_{D S}=20 \mathrm{~V}, I_{\text {d }}=200 \mu \mathrm{~A}$} \& \& \& 50 \& \& 50 \& \& 50 \& $p A$

\hline \& \& \& $\mathrm{T}_{\mathrm{A}}=125 \mathrm{C}$ \& \& 250 \& \& 250 \& \& -250 \& 11 A

\hline 1 DSS \& Saturation Dram Current \& \multicolumn{2}{|l|}{$V_{\text {DS }}=20 \mathrm{~V}$ VS -0} \& 05 \& 50 \& 0.5 \& 50 \& 05 \& 50 \& mA

\hline \multirow[b]{2}{*}{$\mid y_{\text {fs }} \mathrm{i}$} \& \multirow[t]{2}{*}{Common Source Forward Transconductance} \& \multirow{5}{*}{$V_{D S}-20 \mathrm{~V}, V_{G S}=0$} \& $f=1 \mathrm{kHz}$ \& 1000 \& 3000 \& 1000 \& 3000 \& 1000 \& 3000 \& \multirow{3}{*}{umho}

\hline \& \& \& $\mathrm{f}-200 \mathrm{MH} /$ \& 1000 \& \& 1000 \& \& 1000 \& \&

\hline Gos \& Common Source Output Conductance \& \& f $1 \mathbf{k H z}$ \& \& 35 \& \& 35 \& \& 35 \&

\hline \multirow[t]{2}{*}{$\mathrm{C}_{\text {rss }}$

$\mathrm{C}_{\text {rss }}$} \& \multirow[t]{2}{*}{| Common Source tnjut |
| :--- |
| Capacitance |
| Common Source Reverse |
| Transfer Capacitance |} \& \& \multirow{3}{*}{f 1 MHz} \& \& 40 \& \& 40 \& \& 4.0 \& \multirow{3}{*}{pF}

\hline \& \& \& \& \& 12 \& \& 12 \& \& 12 \&

\hline $\mathrm{C}_{\text {dgo }}$ \& Drain Gate Capacitance \& $V_{D G}=10 \mathrm{~V}, \mathrm{IS}-0$ \& \& \& 15 \& \& 1.5 \& \& 15 \&

\hline NF \& Common-Source Spot Noise Figure \& $$
\begin{aligned}
& V_{D S}=20 \mathrm{~V}, V_{G S}=0, \\
& R_{G}-10 \mathrm{M} \leq
\end{aligned}
$$ \& $f=100 \mathrm{~Hz}$ \& \& 0.5 \& \& 05 \& \& 0.5 \& dB

\hline $l_{\text {IG }} \mathrm{I}_{\mathrm{G} 2}$ \& Differential Gate Reverse Current \& \multicolumn{2}{|l|}{} \& \& 10 \& \& 10 \& \& 10 \& nA

\hline ${ }^{\prime}$ DSS 1^{\prime} IDSS2 \& Saturation Drair Current Ratio \& \multicolumn{2}{|l|}{$V_{D S}-20 V, V_{G S}=0$} \& 0.95 \& 10 \& 090 \& 10 \& 0.85 \& 10 \&

\hline $V_{G S 1} \mathrm{~V}_{\mathrm{GS} 2}$ \& Differential Gate Source Voltaqe \& \multirow{4}{*}{$V_{D S}=20 \mathrm{~V} \mathrm{ID}=200 \mathrm{LA}$} \& \& \& 15 \& \& 20 \& \& 25 \& \multirow{3}{*}{mv}

\hline \multirow[b]{2}{*}{נ. $\mathrm{VGS1}^{-} \mathrm{V}_{\mathrm{GS} 2}$} \& \multirow[t]{2}{*}{Gate-Snurce Voltage Differential Change With Temperature} \& \& T-25 ${ }^{\circ} \mathrm{C}$ to - $-55^{\circ} \mathrm{C}$ \& \& 40 \& \& 6.0 \& \& 80 \&

\hline \& \& \& T-25C to 125 C \& \& 50 \& \& 75 \& \& 100 \&

\hline $9 \mathrm{ft}_{5} 1 \mathrm{Cf}_{\mathrm{f}} 2$ \& Transconductarice Ratio \& \& $f=1 \mathrm{kH}$ \& 095 \& 10 \& 0.90 \& 10 \& 085 \& 1.0 \&

\hline
\end{tabular}

2N4091-93/PN4091-93 N-Channel JFETs

General Description

The 2N4091/PN4091 thru 2N4093/PN4093 series of N-channel JFETs is characterized for analog switch applications requiring low ON resistance and moderate capacitance. This series is qualified for JAN, JANTX level processing per MIL-S-19500/431.
Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Reverse Gate-Drain or Gate-Source Voltage $\quad-40 \mathrm{~V}$ Gate Current 10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature
(Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 2 N series
1.8 W
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) PN Series, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad 350 \mathrm{~mW}$ Storage Temperature Range

2 N series
PN series
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

* JEDEC registered data

Note 1: Pulse width $=300 \mu$ s; duty cycle $\leq 3 \%$.

Input Pulse
Rise time : 1 ns Fall time <1 ns Puise width $=1 \mu \mathrm{~s}$
Pulse dutv cycle $\leq 10 \%$
Pulse generator impedance $=50 \Omega$

Sampling Scope
Rise time $=0.4 \mathrm{~ns}$ Input resistance $=10 \mathrm{Ms} 2$ Input capacitance $=1.7 \mathrm{pF}$

2N4117-19/2N4117A-19A N-Channel JFETs

General Description

The 2N4117 thru 2N4119/A series of N-channel JFETs is designed for ultra low leakage (IGSS <1 pA) amplifier applications.

Typical $\mathrm{I}_{\mathrm{G}}<0.1 \mathrm{pA}$ at $\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$. Perfect for all smoke detector applications.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage
Gate-Current $-40 \mathrm{~V}$ 50 mA
Total Device Dissipation
(Derate $2 \mathrm{~mW} /{ }^{\rho} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$)
Storage Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case
for 10 seconds)

300 mW $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS		2N4117/ 2N4117A		2N4118/ 2N4118A		$\begin{aligned} & \text { 2N4119/ } \\ & \text { 2N4119A } \end{aligned}$		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX					
'GSS	Gate Reverse Current			$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$			-10		-10		-10	pA
	2N4117 Series Only	$150^{\circ} \mathrm{C}$			-25		-25		-25	nA		
IGSS	Gate Reverse Current	$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$			-1		-1		-1	pA		
	2N4117A Series Only		$150^{\circ} \mathrm{C}$		-2.5		-2.5		2.5	nA		
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, V_{\text {DS }}=0$		-40		-40		-40				
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-0.6	-1.8	-1	-3	-2	-6			
IDSS	Saturation Dran Current	$V_{D S}=10 \mathrm{~V}, V_{G S}=0$		0.03	009	0.08	0.24	0.20	0.60	mA		
9fs	Common-Source Forward Transconductance	$V_{D S}=10 V, V_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$	70	210	80	250	100	330	$\mu \mathrm{mho}$		
gos	Common-Source Output Conductance				3		5		10			
$\mathrm{C}_{\text {Iss }}$	Common-Source Input Capacitance		$f=1 \mathrm{MHz}$		3		3		3	pF		
Crss	Common-Source Reverse Transfer Capacitance				15		1.5		1.5			

2N4338-41 N-Channel JFETs

General Description

The 2 N 4338 thru 2 N 4341 series of N -channel JFETs is characterized for low to medium frequency amplifier applications. Tight selections of $\mathrm{V}_{\mathrm{GS}}(\mathrm{fff})$, IDSS. g_{f} results in consistent characteristics in all applications.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)
Gate-Drain or Gate-Source Voltage $-50 \mathrm{~V}$
Gate Current 50 mA
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 300 mW (Derate $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$)
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ Maximum Operating Temperature $\quad 175^{\circ} \mathrm{C}$ Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER		CONDITIONS		2N4338		2N4339		2N4:40		2N4341		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
${ }^{\text {I GSS }}$	Gate Reverse Current			VGS ${ }^{-30 V}$, VDS 0			01		01		01		-01	$n \mathrm{~A}$
		150 C			-0 1		01		01		01	$\mu \mathrm{A}$		
BVGSS	Gate Source Breakdown Voltage	${ }^{6} \mathrm{G} \quad-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}-0$		--50		50		50		50				
$V_{\text {GS }}$ (off)	Gate-Souice Cutoff Voltage	$V_{\text {DS }}-15 \mathrm{~V}, \mathrm{ID}=01 \mu \mathrm{~A}$		-0 3	1	06	1.8	1	3	2	-6			
IDioff	Dram Cutoff Curient	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{GS}}=11 \end{aligned}$			005 (5)		${ }^{0} 00^{5}$		$\begin{gathered} 005 \\ -51 \end{gathered}$		0.07 101	$\begin{aligned} & n A \\ & N_{1} \end{aligned}$		
Ioss	Saturation Drain Current	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}-0$		02	06	05	1.5	12	36	3	9	mA		
9fs	Common Source Forward Transconductance	$V_{\text {DS }}{ }^{-15 V}, V_{G S}-0$	$f-1 \mathrm{kHz}$	600	1800	800	24010	1300	3000	2000	4000	$\mu \mathrm{mho}$		
gos	Common Source Output Conductance				5		15		30		60			
rds	Drain-Source ON Resistance	$V_{D S}=0, V_{G S}=0$			2500		1700		1500		800	$!2$		
$\mathrm{C}_{\text {ISs }}$	Common-Source lipput Capacitance	$V_{\text {DS }}-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}-0$	f-1 MHz		7		7		7		7	$p \mathrm{~F}$		
C_{555}	Common Source Reverse Tidnsfer Capacitance				3		3		3		3			
NF	Noise Figure	$\begin{aligned} & V_{D S}-15 \mathrm{~V}, V_{G S} 0 \\ & R_{\text {ger }} \quad 1 \mathrm{M}, \mathrm{BW}=200 \mathrm{~Hz} \end{aligned}$	$\dagger 1 \mathrm{kHz}$		1		1		1		1	dB		

2N4391-3/PN4391-3 N-Channel JFETs

General Description

The 2N4391/PN4391 thru 2N4393/PN4393 series of N -channel JFETs is characterized by low ON resistance. moderate capacitance and low noise. Applications include low ON resistance, high speed switches and high gain, low noise amplifiers.
Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)
Reverse Gate-Drain or Gate-Source Voltage --40V
Gate Current 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature
(Derate $10 \mathrm{~mW} / \sim \mathrm{C}$) 2 N Series $\quad 1.8 \mathrm{~W}$
(Derate $3 \mathrm{~mW} / \mathrm{C}$) PN Seres $\mathrm{T}_{\mathrm{A}}-25^{\circ} \mathrm{C} \quad 350 \mathrm{~mW}$ Storage Temperature Range
2N Series
$-55^{\circ} \mathrm{C}$ to +200 C
PN Series
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1^{\prime} 16^{\prime \prime}$ from case for 10 seconds)
300 C

Electrical Characteristics* $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS			$\begin{array}{r} 2 N 4391 \\ \text { PN4391 } \end{array}$		2N4392 PN4392		2N4393/ PN4393		UNITS			
		MIN	MAX	MIN	MAX	MIN	MAX							
IGSS	Gd* Revprise Cumen				VGS - 20v Vos $\quad 1$		2N Spiles		100		100		100	DA
		PN Spries		1				,		1	7 A			
		150 C		200				-200		-200				
BVGSS	Gorp Source Brearde win Voltaqe	$\mathrm{I}^{-}-1 \ldots$ A VOS ${ }^{-1}$			40		40		40		V			
IDloffl	Drain Cutatt Curent	VDS 20 V	V G - 5V	2N Series						100	${ }_{\sim} \mathrm{A}$			
				PN Selles						1	n. ${ }^{\text {a }}$			
				$150^{\circ} \mathrm{C}$						200				
				2N Series				100			pA			
			$\because 65-N$	PN Serres				1			11 A			
				150 C				200						
			$\because 5512 \mathrm{~V}$	2N Selues		100					PA			
				PN Serees		1					11 A			
				150 C		200								
VGSti,	Gitp Source Forwares Vortage	IG - $1 \mathrm{~mA} \mathrm{~V}_{\text {dS }}-0$. Note 21				1		1		1	V			
VGStoft	Gat* Snurce Cutnfe Voltage				-4	10	2	5	-05	3				
Joss	Saturation Dia, Curens	VOS-20V VES-3 (Note 11			50	150	25	75	5	30	MA			
		VGS-0	$\cdots 3 \mathrm{ll}$							04	v			
Vosionl	Dram Source on Vo tage		$15 \quad 6 \mathrm{HA}$					04						
			$\mathrm{iD}^{1}-12 \mathrm{ma}$			04								
'OSton'	Static Dram Soure ON Resistance	$V_{G S}-V_{10}{ }^{-1} 1 . A$				30		60		100	!			
$r_{\text {dston }}$	Diam Soutce ON Retistance	$V_{G S}=V_{1 D}$	0	f 1 kHz		30		60		100	?			
C_{15}	Common Source Imput Capactance	VDS 20V $V_{G S}{ }^{-u}$		f-1 MHz		14		14		14	(1) F			
$\mathrm{Crsss}^{\text {r }}$	Commor Source Rayersi Transfer Catpacitance	vos 0	$\because 6 \mathrm{cs} 5 \mathrm{~V}$							35				
			\% 0.5 -7V					35						
			$165=12 \mathrm{~V}$			35								
$t^{\text {d }}$	Turn ON Delay Time	$V_{D D}-10 \mathrm{~V}$ VGSiril -0				15		15		15				
tr_{r}	Rise Time	2N PN4391	10.0n1 12 mA	$\begin{aligned} & \text { Sioffi } \\ & 12 \mathrm{~V} \end{aligned}$		5		5		5				
$\mathrm{t}_{\mathrm{oft}}$	Turn OFF Delay Tinie	2N PN4392	$6 \mathrm{~mA}$	7 V		20		35		50	ns			
${ }_{t}+$	$F_{\text {all }} \mathrm{T}_{\text {mex }}$	2N'PN4393	3 nA	5 V		15		20		30				

Note 1: Pulse test required, puise wirlth $=300 \mu \mathrm{~s}$, duty cycle $=3^{\circ} \%$.
Note 2: Not tested on PN series.
*JEDEC registered data

Input Pulse

Rise time - 0.5 ns Rise time 0.4 ns Fall time $0.5 \mathrm{~ns} \quad$ Input resistance $=50 \Omega$ Pulse duty cycle $=1 \%$

2N4416/2N4416A N-Channel JFETs

General Description

The 2N4416/2N4416A N-channel JFET is designed for VHF/UHF amplifier, mixer and oscillator applications.
Qualified for JAN, JANTX, JANTXV level processing per MIL-19500/428.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$	
Gate-Drain or Gate-Source Voltage	
2N4416	
2N4416A	-30 V
Gate Current	-35 V
Total Device Dissipation (Derate $\left.1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right)$	10 mA
Storage Temperature Range Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case $-65^{\circ} \mathrm{C}$ to $+2000^{\circ} \mathrm{C}$ for 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	PARAMETER	CONDITIONS		MIN	MAX	UNITS
${ }^{\text {I GSS }}$	Gate Reverse Current	$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.1	nA
			$150^{\circ} \mathrm{C}$		-0.1	$\mu \mathrm{A}$
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$	2N4416	-30		V
			2N4416A	-35		
$V_{G S}(\mathrm{off})$	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$	2N4416		-6	V
			2N4416A	-2.5	6	
IDSS	Drain Current at Zero Gate Voltage, (Note 1)	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$		5	15	mA
$\mathrm{gfs}^{\text {f }}$	Common-Source Forward Transconductance, (Note 1)		$\mathrm{f}=1 \mathrm{kHz}$	4500	7500	umho $\mu \mathrm{mho}$
g_{os}	Common-Source Output Conductance				50	
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		$f=1 \mathrm{MHz}$		0.8	pF
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance				4	pF
Coss	Common-Source Output Capacitance				2	

High Frequency Characteristics

PARAMETER		CONDITIONS	100 MHz		400 MHz		UNITS	
		MIN	MAX	MIN	MAX			
giss	Common-Source Input Conductance		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$		100		1000	$\mu \mathrm{mho}$
$\mathrm{b}_{\text {iss }}$	Common-Source Input Susceptance			2500		10,000	$\mu \mathrm{mho}$	
goss	Common-Source Output Conductance			75		100	$\mu \mathrm{mho}$	
$\mathrm{b}_{\text {oss }}$	Common-Source Output Susceptance			1000		4000	$\mu \mathrm{mho}$	
gfs_{s}	Common-Source Forward Transconductance, (Note 1)				4000		$\mu \mathrm{mho}$	
G_{ps}	Common Source Power Gain	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	18		10		dB	
NF	Noise Figure	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$		2		4	dB	

Note 1: Pulse test duration $=2 \mathrm{~ms}$.

2N4856-61/PN4856-61 N-Channel JFETs

General Description

The 2N4856/PN4856 thru 2N4861/PN4861 series of N -channel JFETs is designed for analog switch applications requiring low ON resistance and moderate capacitance.

Qualified for JAN, JANTX, JANTXV level processing per MIL-S-19500/385. 2N series only.
Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)
Reverse Gate-Drain or Gate-Source Voltage 2N4856/PN4856-2N4858/PN4858
Reverse Gate-Drain or Gate-Source Voltage 2N4859/PN4859-2N4861/PN4861
$-30 \mathrm{~V}$
Gate Current 50 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Case Temperature
(Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 2 N Series
1.8 W
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) $\quad \mathrm{PN}$ series, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad 350 \mathrm{mV}$ Storage Temperature Range
$2 N$ Series
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$
Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PARAMETER}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CDNDITIONS}} \& \multicolumn{2}{|l|}{2N4856,59/ PN4856,59} \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \text { 2N4857,60/ } \\
& \text { PN4857,60 }
\end{aligned}
$$} \& \multicolumn{2}{|l|}{$$
\begin{array}{r}
\text { 2N4858,61/ } \\
\text { PN4858,61 }
\end{array}
$$} \& \multirow[t]{2}{*}{UNITS}

\hline \& \& \& \& MIN \& MAX \& MIN \& MAX \& MIN \& MAX \&

\hline \multirow[t]{2}{*}{$B V_{\text {GSS }}$} \& Gate-Source Breakdown \& \multirow[b]{2}{*}{$\mathrm{I}_{G}=-1 \mu \mathrm{~A}, V_{D S}=0$} \& 2N/PN4856-58 \& -40 \& \& -40 \& \& -40 \& \& \multirow[b]{2}{*}{\checkmark}

\hline \& Voltage \& \& 2N/PN4859-61 \& -30 \& \& -30 \& \& -30 \& \&

\hline \multirow{6}{*}{IGSS

ID (off)} \& \multirow{3}{*}{Gate Reverse Current} \& \multirow[b]{2}{*}{$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$} \& 2N Series \& \& -250 \& \& -250 \& \& -250 \& pA

\hline \& \& \& PN Series \& \& -1 \& \& --1 \& \& -1 \& \multirow[b]{2}{*}{nA}

\hline \& \& $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ \& $150^{\circ} \mathrm{C}$ \& \& -500 \& \& -500 \& \& -500 \&

\hline \& \& \multirow{3}{*}{$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$} \& 2N Series \& \& 250 \& \& 250 \& \& 250 \& pA

\hline \& Drain Cutoff Current \& \& PN Series \& \& 1 \& \& 1 \& \& 1 \&

\hline \& \& \& $150^{\circ} \mathrm{C}$ \& \& 500 \& \& 500 \& \& 500 \& nA

\hline $\mathrm{V}_{\text {GS }}$ (off) \& Gate-Source Cutoff Voltage \& \multicolumn{2}{|l|}{$$
V_{D S}=15 \mathrm{~V}, I_{D}=05 \mathrm{nA}
$$} \& -4 \& -10 \& -2 \& -6 \& -0.8 \& -4 \& \checkmark

\hline IDSS \& Saturation Drain Current \& \multicolumn{2}{|l|}{$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,1$ Note 1)} \& 50 \& \& 20 \& 100 \& 8 \& 80 \& $m \mathrm{~A}$

\hline \multirow{3}{*}{VDS(on)} \& \multirow{3}{*}{Drain-Source ON Voltage} \& \multirow{3}{*}{$V_{G S}=0$} \& $\mathrm{I}_{\mathrm{D}}=20 \mathrm{~mA}$ \& \& 0.75 \& \& \& \& \& \multirow{3}{*}{V}

\hline \& \& \& $\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$ \& \& \& \& 0.50 \& \& \&

\hline \& \& \& $\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$ \& \& \& \& \& \& 0.50 \&

\hline $\mathrm{r}_{\text {ds }}(\mathrm{on})$ \& Drain-Source ON Resistance \& $V_{G S}=0, I_{D}=0$ \& $\mathrm{f}=1 \mathrm{kHz}$ \& \& 25 \& \& 40 \& \& 60 \& Ω

\hline $\mathrm{C}_{\text {iss }}$ \& Common-Source Input Capacitance \& \multirow[b]{2}{*}{$V_{D S}=0, V_{G S}=-10 V$} \& \multirow[b]{2}{*}{$f=1 \mathrm{MHz}$} \& \& 18 \& \& 18 \& \& 18 \&

\hline Crss \& Common-Source Reverse Transfer Capacitance \& \& \& \& 8 \& \& 8 \& \& 8 \& pF

\hline t_{d} \& Turn ON Delay Time \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \& \& 6 \& \& 6 \& \& 10 \& ns

\hline ${ }_{\text {tr }}$ \& Rise Time \& \& \& \& 3 \& \& 4 \& \& 10 \& ns

\hline $t_{\text {toff }}$ \& Turn OFF Time \& \& \& \& 25 \& \& 50 \& \& 100 \& ns

\hline
\end{tabular}

Note 1: Pulse test required, pulse wicth $=100 \mu \mathrm{~s}$, duty cycle $\leq 10 \%$.

Input Pulse
Rise time $=0.25 \mathrm{~ns}$
Fall time $=0.75 \mathrm{~ns}$
Pulse width $=100$ ns
Pulse duty cycle < 10%

Sampling scope

Rise time $=0.75 \mathrm{~ns}$
Input resistance $=1 \mathrm{M} \Omega$ Input capacitance $=2.5 \mathrm{pF}$

2N5114-16 P-Channel JFETs

General Description

The 2N5114 thru 2N5116 series of P-channel JFETs is designed for low ON resistance analog switch applications.

Qualified for JAN, JANTX, JANTXV level processing per MIL-S-19500/476.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Reverse Gate-Drain or Gate-Source Voltage	30 V
Gate Current	50 mA
Total Device Dissipation, Free-Air	
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	500 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case for 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS					2N5114		2N5115		2N5116		UNITS					
		MIN	MAX	MIN	MAX	MIN	MAX											
BVGSS	Gate-Source Breakdown Voltage						$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$					30		30		30		\checkmark
IGSS	Gate Reverse Current	$V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$						500		500		500	pA					
						$150^{\circ} \mathrm{C}$		1.0		10		1.0	$\mu \mathrm{A}$					
		$\begin{aligned} 2 N 5114 & =12 V \\ V_{D S}=-15 V, V_{G S}=2 N 5115 & =7 V \\ 2 N 5116 & =5 V \end{aligned}$						-500		500		-500	pA					
O(off)	ram					$150{ }^{\prime} \mathrm{C}$		-1.0		-10		-10	$\mu \mathrm{A}$					
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{nA}$					5	10	3	6	1	4	V					
IDSS	Saturation Draın Current	$\begin{aligned} & V_{\mathrm{GS}}=0, \mathrm{~V}_{\mathrm{DS}}=\quad 2 \mathrm{~N} 5114=-18 \mathrm{~V} \\ & 2 \mathrm{~N} 5115=-15 \mathrm{~V} \end{aligned}$					-30	-90	-15	-60	-5	-25	mA					
$\mathrm{V}_{\mathrm{GS}}(\mathrm{f})$	Forward Gate-Source Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$						-1		-1		-1						
Vosion)	Drain-Source ON Voltage	$v_{G S}=0,10=\quad \begin{aligned} & 2 \mathrm{~N} 5114=15 \mathrm{~mA} \\ & 2 \mathrm{~N} 5115=-7 \mathrm{~mA} \\ & 2 \mathrm{~N} 5116=-3 \mathrm{~mA} \end{aligned}$						-1.3		03		-0.6	V					
roston)	Static Drain-Source ON Resistance	$V_{G S}=0,1 D=-1 \mathrm{~mA}$						75		100		150	$\Omega 2$					
${ }^{\text {r css (on) }}$	Drain Source ON Resistance	$V_{G S}=0, L_{D}=0$				$\mathrm{f}=1 \mathrm{kHz}$		75		100		150	Ω					
$\mathrm{c}_{\text {iss }}$	Common-Source Input Capacitance	$V_{D S}=-15, V_{G S}=0$				$\mathrm{f}=\mathrm{MHzz}$		25		25		25	pF					
Crss	Common Source Reverse Transfer Capacitance	$V_{D S}=0, V_{G S}=\quad \begin{aligned} & 2 \mathrm{~N} 5114=12 \mathrm{~V} \\ & 2 \mathrm{~N} 5115=7 \mathrm{~V} \\ & 2 \mathrm{~N} 5116=5 \mathrm{~V} \end{aligned}$						7		7		7						
	Turn ON Delay Time		2N5114	$\begin{gathered} 2 \mathrm{~N} 5115 \\ \hline-6 \mathrm{~V} \\ 12 \mathrm{~V} \\ 910 \mathrm{~S} 2 \\ 220 \Omega 2 \\ -7 \mathrm{~mA} \end{gathered}$	2N5116			6		10		12	ns					
${ }^{\text {d }}$ d		$V_{D D}$ VGG R_{L} R_{G} ID (on)	$\begin{gathered} -10 \mathrm{~V} \\ 20 \mathrm{~V} \\ 430 \Omega \\ 100 \Omega \\ -15 \mathrm{~mA} \end{gathered}$		-6 V8 V$2000 \Omega$$390 \Omega$3 mA													
tr_{r}	Rise Time							10		20		30						
$t_{\text {off }}$	Turn OFF Time							6		8		10						
t_{f}	Fall Time							15		30		50						
							Input Pulse Rise time <1 ns Fall time <1 ns Pulse width $=100 \mathrm{~ns}$ Repetıtion rate $=\mathfrak{1 M H z}$				Sampling Scope Rise time $=0.4 \mathrm{~ns}$ Input resistance $=10 \mathrm{MS}$ Input capacitance $=1.5 \mathrm{pF}$							

2N5196-99 N-Channel Monolithic Dual JFETs

General Description

The 2N5196 thru 2N5199 series of N-channel monolithic dual JFETs is designed for low to medium frequency differential amplifiers requiring low leakage and tight match.
Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage
Gate Current
Device Dissipation (Each Side). $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
50 mA
(Derate $2.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
250 mW
Total Device Dissipation, $\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
500 mW
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case
for 10 seconds)
$300^{\prime} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	CONDITIONS		MIN	MAX	UNITS
Gate Reverse Curient	$V_{G S}{ }^{-}-30 \mathrm{~V}, V_{D S}=0$			-25	pA
		$150{ }^{\circ} \mathrm{C}$		-50	nA
BVGSS Gate-Source Breakdown Voltage	$1 \mathrm{G}^{-}-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}-0$		-50		
$V_{\text {GStoff }}$ G Gate Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-07	-4	V
$V_{\text {GS }} \quad$ Gate Source Voltage	$V_{O G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		-02	-38	
Gate Operating Current				-15	pA
		$125^{\circ} \mathrm{C}$		-15	nA
IDSS Saturation Dram Current	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 .($ Note 1)		0.7	7	mA
gfs Common Source Forward Transconductance	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 1$)$	f $=1 \mathrm{kHz}$	1000	4000	umho
9fs Common Source Forward Transconductance	$\mathrm{V}_{\text {DG }}=20 \mathrm{~V} .1 \mathrm{D}-200 \mu \mathrm{~A}$. (Note 1)		700	1600	
gos Common-Source Output Conductance	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			50	
gos Common-Source Output Conductance	$V_{\text {DG }}=20 \mathrm{~V}, 1 \mathrm{D}-200 \mu \mathrm{~A}$			4	
$\mathrm{C}_{15 s}$ Common Source Input Capacitance	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{MHz}$		6	pF
Crss Common Source Reverse Transfer Capacitance				2	
NF Spot Noise Figure		$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{G}}=10 \mathrm{MS} 2 \end{aligned}$		0.5	dB
en Equivalent Input Noise Voltage		$\mathrm{f}-1 \mathrm{kHz}$		0020	$\frac{\mu \mathrm{V}}{\sqrt{\mathrm{Hz}}}$

Matching Characteristics

PARAMETER		CONDITIONS		2N5196		2N5197		2N5198		2N5 199		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX					
${ }^{\prime} \mathrm{G}_{1}{ }^{-1} \mathrm{G} 21$	Differential Gate Carrent			$\begin{aligned} & V_{D G}=20 \mathrm{~V}, \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$125^{\circ} \mathrm{C}$		5		5		5		5	nA
$\frac{\operatorname{lDSS} 1}{\operatorname{IDSS} 2}$	Saturation Drain Current Ratio	$V_{D S}=20 \mathrm{~V} \cdot V_{G S}=0 \mathrm{~V}$ (Note 1)		095	1	095	1	095	1	0.95	1			
$\frac{\mathrm{gfs}^{1}}{\mathbf{9 f s} 2}$	Transconductance Ratio, (Note 1)	$\begin{aligned} & V_{D G}=20 \mathrm{~V} \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	t-1 kHz	097	1	097	\dagger	095	1	0.95	1			
$1 V_{G S 1}{ }^{-V_{G S 2}}$	Differential Gate Source Voltage				5		5		10		15	mV		
$\frac{\Delta V_{G S 1}-V_{G S 21}}{\Delta T}$	Gate-Source Differential Voltage Change with Temperature. (Note 2)		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{B}}=125^{\circ} \mathrm{C} \end{aligned}$		5		10		20		40	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$		
			$\begin{aligned} & \mathrm{T}_{A}=-55^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{B}=25^{\circ} \mathrm{C} \end{aligned}$		5		10		20		40			
$\mid g_{\text {os } 1}-g_{\text {os } 2 \mid}$	Differential Output Conductance		$\mathrm{f}=1 \mathrm{kHz}$		1		1		1		1	$\mu \mathrm{mho}$		

Note 1: Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
Note 2: Measured at end points, T_{A} and T_{B}.

2N5245-47 N-Channel JFETs

General Description

The 2N5245 thru 2 N 5247 series of N-channel JFETs is designed for common-source or common-gate VHF/UHF amplifier, mixer and oscillator applications to 400 MHz .

Absolute Maximum Ratings

Drain-Gate Voltage 30 V
Source Gate Voltage 30 V
Drain Current
Forward Gate Current
Total Device Dissipation @ $25^{\circ} \mathrm{C}$ (Derate above $25^{\circ} \mathrm{C}$)
Operating Junction Temperature Range
Storage Temperature Range Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		2N5245		2N5246		2N5247		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$V_{G S}=-20 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$			-1		-1		-1	nA
		$\mathrm{TA}=100^{\circ} \mathrm{C}$			-500		-500		-500			
BVGSS	Gate-Source Breakdown Voltage	$I_{G}=-1 \mu A, V_{D S}=0$		-30		-30		-30		V		
$\mathrm{V}_{\text {GS (off) }}$	Gate Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		-1	-6	-0.5	-4	-15	-8			
IDSS	Saturation Drain Current	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 1$)$		5	15	15	7	8	24	mA		
9fs	Common-Source Forward Transconductance	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$	4.5	7.5	30	6.0	4.5	8.0	mmho		
gos	Common-Source Output Conductance				50		50		70	$\mu \mathrm{mho}$		
$\mathrm{Re}_{\left(y_{\text {fs }}\right)}$	Common Source Forward Transconductance		$\mathrm{f}=400 \mathrm{MHz}$	4.0		2.5		40		mmho		
	Common-Source Output		$\mathrm{f}=100 \mathrm{MHz}$		75		75		100			
Reivos ${ }^{\text {S }}$	Conductance		$\mathrm{f}=400 \mathrm{MHz}$		100		100		150			
$\mathrm{Re}_{\left(\mathrm{y}_{\text {IS }}\right)}$	Common-Source Input Conductance		$\mathrm{f}=100 \mathrm{MHz}$		100		100		100			
Ciss	Common Source Input Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		4.5		4.5		4.5	pF		
Crss	Common-Source Reverse Transfer Capacitance				1		1		1			
NF	Nosse Figure	$V_{D S}=15 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega 2$	$f=100 \mathrm{MHz}$		2		2		2	dB		
		$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$	$f=400 \mathrm{MHz}$		4		4		4			
G_{ps}	Common-Source Power Gain	$V_{D S}=15 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$	$f=100 \mathrm{MHz}$	18		18		18				
		$V_{D S}=15 \mathrm{~V},\left.\right\|_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{kS}$	$\mathrm{f}=400 \mathrm{MHz}$	10		10		10				

Note 1: Pulse Test PW $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

2N5358-60 N-Channel JFETs

General Description

The 2N5358 thru 2N5360 series of N-channel JFETs is characterized for general purpose audio and RF amplifiers requiring tightly specified IDSS ranges.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage $-40 \mathrm{~V}$
Gate Current 10 mA
Total Device Dissipation
$\left(25^{\circ} \mathrm{C}\right.$ Free-Air Temperature)
Power Derating (to $+175^{\circ} \mathrm{C}$)
Storage Temperature Range
Operating Temperature Range Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS		2N5358		2N5359		2N5360		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$V_{\text {DS }}=0, V_{G S}=-20 \mathrm{~V}$			-100		-100		-100	pA
		$\mathrm{T}=150^{\circ} \mathrm{C}$			-100		-100		-100	ก A		
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, I_{D}=100 \mathrm{nA}$		-0.5	-30	0.8	-4.0	-0.8	-4.0			
BVGSS	Gate-Source Breakdown Voltage	$V_{D S}=0, I_{G}=-10 \mu \mathrm{~A}$		-40		-40		-40				
IDSS	Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$, (Note 1)		0.5	9.0	0.8	1.6	1.5	3.0	mA		
V_{GS}	Gate-Source Voltage	$V_{D S}=15 \mathrm{~V}, 1 \mathrm{D}=($ Note 2$)$		03	-1.5	-0.4	-2.0	-0.5	-2.5	V		
gfs	Common-Source Forward Transconductance	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1000	3000	1200	3600	1400	4200			
$\left\|V_{f s}\right\|$	Common-Source Forward Transadmittance		$f=100 \mathrm{MHz}$	800		900		1400		$\mu \mathrm{mho}$		
goss	Common-Source Output Conductance		$f=1 \mathrm{kHz}$		10		10		20			
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance		$f=1 \mathrm{MHz}$		2		2		2	pF		
$\mathrm{C}_{\text {ISS }}$	Common-Source Input Capactance				6		6		6			
NF	Norse Figure		$\begin{aligned} & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{M} \Omega \end{aligned}$		2.5		2.5		2.5	dB		

Note 1: Pulse test duration $=300 \mu \mathrm{~s}$. Duty cycle $\leq 3 \%$
Note 2: ${ }^{\prime} \mathrm{D}$ test conditions for Test 5: $2 \mathrm{~N} 5358=50 \mu \mathrm{~A} ; 2 \mathrm{~N} 5359=80 \mu \mathrm{~A} ; 2 \mathrm{~N} 5360=150 \mu \mathrm{~A}$

渚

2N5361-64 N-Channel JFETs

General Description

The 2N5361 thru 2N5364 series of N-channel JFETs is characterized for general purpose audio and RF amplifiers requiring tightly specified IDSS ranges.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage
Gate Current
Total Device Dissipation
$\left(25^{\circ} \mathrm{C}\right.$ Free-Air Temperature)
Power Derating (to $+175^{\circ} \mathrm{C}$) Storage Temperature Range Operating Temperature Range Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	PARAMETER	CONDITIONS		2N5361		2N5362		2N5363		2N5364		UNITS
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
IGSS	Gate Reverse Current	$V_{D S}=0, V_{G S}=-20 V$			-100		-100		100		100	pA
			$\mathrm{T}=150^{\circ} \mathrm{C}$		$\cdot 100$		100		-100		-100	nA
VGS(off)	Gate Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{nA}$		-10	-60	2.0	-7.0	-2.5	-8.0	-2.5	-8.0	
$B \vee \mathrm{GSS}$	Gate-Source Breakdown Voltage	$V_{D S}=0, I_{G}=-10 \mu \mathrm{~A}$		-40		-40		40		-40		
IDSS	Saturation Dran Current	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 1$)$		2.5	5.0	4.0	8.0	7.0	14.0	9.0	18.0	mA
VGS	Gate Source Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=($ Note 2)		-10	-5.0	-1.3	-50	-20	${ }^{6} .0$	-2.0	-6.0	V
9fs	Common-Source Forward Transconductance	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1500	4500	2000	5500	2500	6000	2700	6500	
$Y_{\text {fs }}$	Common-Source Forward Transadinittance		$\mathrm{f}=100 \mathrm{MHz}$	1700		1900		2100		2200		$\mu \mathrm{mbo}$
goss	Common-Source Output Conductance		$\mathrm{f}=1 \mathrm{kHz}$		20		40		40		60	
$\mathrm{Cr}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		2		2		2		2	pF
$\mathrm{C}_{\text {ISS }}$	Common-Source Input Capacitance				6		6		6		6	
NF	Norse Figure		$\begin{aligned} & f=100 \mathrm{~Hz}, \\ & R_{G}=1 \mathrm{MS} \end{aligned}$		25		25		25		25	dB

Note 1: Pulse test duration $=300 \mu \mathrm{~s}$.
Note 2: I_{D} test conditions for Test 6: $2 \mathrm{~N} 5361=250 \mu \mathrm{~A} ; 2 \mathrm{~N} 5362=400 \mu \mathrm{~A} ; 2 \mathrm{~N} 5363=700 \mu \mathrm{~A} ; 2 \mathrm{~N} 5364=900 \mu \mathrm{~A}$.

2N5397, 2N5398 N-Channel JFETs

General Description

The 2N5397 thru 2N5398 series of N-channel JFETs is designed for VHF/UHF common-source or commongate amplifiers, mixers and oscillators.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage
$-25 \mathrm{~V}$
Gate Current
Total Device Dissipation
(Derate $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
Storage Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ $65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS		2N5397		2N5398		UNITS		
		MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-0.1		-0.1	nA
		$150^{\circ} \mathrm{C}$			-0.1		-0.1	$\mu \mathrm{A}$		
BVGSS	Gate.Source Breakdown Voltage	$V_{D S}=0, I_{G}=-1 \mu \mathrm{~A}$		-25		-25		V		
$V_{\text {GS (off) }}$	Gate. Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1.0	-6.0	-1.0	-6.0			
IDSS	Saturation Drain Current	$\mathrm{V}_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$		10	30	5	40	mA		
$\mathrm{V}_{\mathrm{GS}(\mathrm{f})}$	Gate-Source Forward Voltage	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}$			1		1	V		
g_{fs}	Common-Source Forward Transconductance, (Note 1)	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	6000	10,000			$\mu \mathrm{m}$ ¢o		
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				5500	10,000			
gos	Common-Source Output Conductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			200					
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					400			
$\mathrm{C}_{\mathrm{rss}}$	Common-Source Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$f=1 \mathrm{MHz}$		1.2			pF		
		$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					1.3			
$\mathrm{C}_{\text {ISS }}$	Common Source Input Capacitance	$V_{D G}=10 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~mA}$			5.0					
		$V_{D S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					5.5			
$\mathrm{g}_{\text {iss }}$	Common Source Input Conductance	$V_{\text {DG }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$	$f=450 \mathrm{MHz}$		2000			$\mu \mathrm{mho}$		
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					3000			
Goss	Common-Source Output Conductance	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$			400					
		$\mathrm{VDS}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$					500			
g_{fs}	Common Source Forward Transconductance, (Note 1)	$\mathrm{V}_{\mathrm{DG}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		5500	9000					
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				5000	10,000			
G_{ps}	Common-Source Power Gain (Neutralized)	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$		15				dB		
NF	Common-Source, Spot Noise Figure (Neutralized)				3.5					

Note 1: Pulse test duration -2 ms

2N5432－34 N－Channel JFETs

General Description

The 2N5432 thru 2N5434 series of N－channel JFETs is designed for analog switch applications requiring very low ON resistance．

Absolute Maximum Ratings（ $25^{\circ} \mathrm{C}$ ）
Reverse Gate－Drain or Gate－Source Voltage $\quad-25 \mathrm{~V}$ Gate Current 100 mA
Drain Current 400 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$
Free－Air Temperature，（Note 1）
Storage Temperature Range
300 mW
Lead Temperature（ $1 / 16^{\prime \prime}$ from case for 10 seconds）
$300^{\circ} \mathrm{C}$

Electrical Characteristics（ $25^{\circ} \mathrm{C}$ unless otherwise noted）

PARAMETER		CONDITIONS		2N5432		2N5433		2N5434		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-200		－200		－200	pA
		$150^{\circ} \mathrm{C}$			－200		－200		－200	nA		
BVGSS	Gate－Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		－25		－25		－25		V		
${ }^{1}$（off）	Drain Cutoff Current	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$			200		200		200	pA		
			$150^{\circ} \mathrm{C}$		200		200		200	nA		
$V_{\text {GS }}$（off）	Gate Source Cutoff Voltage	$V_{D S}=5 V, I_{D}=3 \mathrm{nA}$		－4	\cdots	－3	－9	－1	－4	V		
IDSS	Saturation Drain Current	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 .($ Note 21		150		100		30		mA		
rDS（on）	Static Drain－Source ON Resistance	$V_{G S}=0, I_{D}=10 \mathrm{~mA}$		2	5		7		10	Ω		
VDS（on）	Dram Source ON Voitage				50		70		100	mV		
${ }^{\text {rds }}$（on）	Drain－Source ON Resistance	$V_{G S}=0, I_{D}=0$	$f=1 \mathrm{kHz}$		5		7		10	S2		
$\mathrm{C}_{1 \text { ss }}$	Common－Source Input Capacitance	$V_{D S}=0, V_{G S}=-10 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$		30		30		30	pF		
$\mathrm{C}_{\text {rss }}$	Common－Source Reverse Transfer Capacitance				15		15		15			
t_{d}	Turn ON Delay Time	$\begin{aligned} & V_{D D}=1.5 \mathrm{~V}, V_{G S}(\mathrm{on})=0 \\ & V_{\mathrm{GS}\{\mathrm{off}\}}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{D}(\mathrm{on}\}}=10 \mathrm{~mA} \end{aligned}$			4		4		4	ns		
t_{r}	Rise Time				1		1		1			
toff	Turn OFF Delay Time				6		6		6			
17	Fall Time				30		30		30			

Note 1：Derate linearly at the rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ．
Note 2：Pulse test required pulse width $300 \mu \mathrm{~s}$ ，duty cycle $\leq 3 \%$ ．

Input Pulse

Rise time $=0.25$ ns Fall time $=0.75 \mathrm{~ns}$ Pulse width $=200 \mathrm{~ns}$ Pulse rate $=550 \mathrm{pps}$

Sampling Scope

Rise time $=0.4 \mathrm{~ns}$
Input resistance $=10 \mathrm{M}$
Input Capacitance $=1.5 \mathrm{pF}$

2N5457-59 N-Channel JFETs

General Description

The 2N5457 thru 2 N 5459 series of N -channel JFETs is designed for general purpose small-signal amplifier and moderate $O N$ resistance analog switch applications.

Absolute Maximum Ratings

Drain-Source Voltage	25 V
Drain-Gate Voltage	25 V
Source-Gate Voltage	25 V
Total Device Dissipation at $25^{\circ} \mathrm{C}$	310 mW
\quad (Derate above $25^{\circ} \mathrm{C}$)	$2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature $135^{\circ} \mathrm{C}$ Storage Temperature Range Lead Temperature ($1 / 16^{\prime \prime}$ from case $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ \quadfor 10 seconds) $\quad 300^{\circ} \mathrm{C}$	

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS		2N5457			2N5458			2N5459			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
IGSS	Gate Reverse Current			$V_{G S}=-15 \mathrm{~V}, V_{D S}=0$			-0.01	-1.0		-0.01	-1.0		-0.01	-10	nA
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$				-200			-200			-200			
$B V_{\text {gSS }}$	Gate-Source Breakdown Voltage	$V_{G}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		-25	-60		-25	-60		-25	-60		V		
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V} \cdot \mathrm{ID}=10 \mathrm{nA}$		-05		-60	10		-70	-20		-8.0			
IDSS	Sdturation Dram Current	$V_{D S}=15 \mathrm{~V}, V_{G S}=0,($ Note 1 r		10		5.0	20		90	40		16	mA		
9fs	Common-Source Forward Transconductance	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	$t=1 \mathrm{kHz}$	1,000		5,000	1.500		5.500	2.000		6,000	umho		
gos	Common Source Output Conductance				10	50		15	50		20	50			
$\mathrm{C}_{\text {ISS }}$	Common Source Input Capacitance		$\mathrm{f}=1 \mathrm{MHz}$		45	70		4.5	7.0		45	7.0	pF		
$\mathrm{C}_{\text {rSS }}$	Common Source Reverse Transfer Capacitance				1.0	3.0		1.0	3.0		10	3.0			
NF	Norse Figure	$\begin{aligned} & V_{D S}=15 V, V_{G S}=0 . \\ & R_{G}-1 \mathrm{MS}, \\ & N B M=1 \mathrm{~Hz} \end{aligned}$	$\mathrm{f}-1 \mathrm{kHz}$		004	3.0		0.04	30		0.04	3.0	dB		

Note 1: Pulse test PW $\leq 630 \mathrm{~ms}$; duty cycle $\leq 10 \%$.

2N5460-62 P-Channel JFETs

General Description

The 2N5460 thru 2 N5462 series of P-channel JFETs is designed for general purpose amplifier applications.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage
40 V
10 mA
310 mW
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER		CONDITIONS		2N5460		2N5461		2N5462		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$V V_{D S}=0$			5		5		5	nA
		, VDS $=$	$180^{\circ} \mathrm{C}$		1		1		1	$\mu \mathrm{A}$		
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=0$		40		40		40				
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=-15 \mathrm{~V}, 1_{D}=0.1 \mu \mathrm{~A}$		0.75	6.0	1.0	7.5	1.8	9.0	V		
VGS	Gate-Source Voltage	$V_{D S}=-15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=-0.1 \mathrm{~mA}$	0.5	4.0					V		
			$\mathrm{l}_{\mathrm{D}}=-0.2 \mathrm{~mA}$			0.8	4.5					
			$\mathrm{I}_{\mathrm{D}}=-0.4 \mathrm{~mA}$					1.5	6.0			
IDSS	Saturation Drain Current	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$		1.0	5.0	2.0	9.0	4.0	16	mA		
gfs	Common-Source Forward Transconductance, (Note 3)	$V_{D S}=-15 \mathrm{~V}, V_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1000	4000	1500	4000	2000	6000	umho		
gos	Common-Source Output Conductance				75		75		75			
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance	$V_{D S}=-15 V, V_{G S}=0$	$\mathrm{f}=1 \mathrm{MHz}$		7.0		7.0		7.0	pF		
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance				2.0		2.0		2.0			
NF	Noise Figure	$\begin{aligned} & V_{D S}=-15 V, V_{G S}=0 \\ & R_{\text {gen }}=1 \mathrm{M}, \mathrm{BW}=1 \mathrm{~Hz} \end{aligned}$	$f=100 \mathrm{~Hz}$		2.5		2.5		2.5	dB		
e_{n}	Equivalent Input Noise Voltage				115		115		115	$\frac{n V}{\sqrt{H z}}$		

Process 50

2N5484-86 N-Channel JFETs

General Description

The 2N5484 thru 2N5486 series of N-channel JFETs is designed for VHF/UHF amplifier, mixer and oscillator applications.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
\section*{Drain-Gate Voltage}
Source Gate Voltage
Drain Current
Forward Gate Current
Total Device Dissipation@ $25^{\circ} \mathrm{C}$ (Derate above $25^{\circ} \mathrm{C}$)
Operating Junction Temperature
Range
Storage Temperature Range
Lead Temperature (1/16' from case for 10 seconds)
$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$
$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		2N5484		2N5485		2N5486		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$V_{G S}=-20 \mathrm{~V}, V_{\text {DS }}=0$			-10		-1.0		-1.0	nA
		$T_{A}=100^{\circ} \mathrm{C}$			-200		-200		-200			
$B V_{G S S}$	Gate-Source Breakdown Voltage	$I_{G}=-1 \mu A, V_{D S}=0$		-25		-25		-25		V		
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nA}$		-0.3	-3.0	-0.5	-4.0	-2.0	-6.0			
IDSS	Saturation Drain Current	$V_{D S}=15 \mathrm{~V}, V_{\text {GS }}=0$, (Note 11$)$		10	5.0	4.0	10	8.0	20	mA		
gfs	Common-Source Forward Transconductance	$V_{D S}=15 \mathrm{~V}, V_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$	3000	6000	3500	7000	4000	8000	$\mu \mathrm{mhos}$		
gos	Common Source Output Conductance				50		60		75			
$\mathrm{Re}_{\left(\mathrm{yfs}_{f}\right)}$	Common-Source Forward Transconductance		$\mathrm{f}=100 \mathrm{MHz}$	2500								
			$\mathrm{f}=400 \mathrm{MHz}$			3000		3500				
$\mathrm{Re}_{\left(Y_{O S}\right)}$	Common Source Output Conductance		$\mathrm{f}=100 \mathrm{MHz}$		75							
			$\mathrm{f}=400 \mathrm{MHz}$				100		100			
$\mathrm{Re}_{\left(y_{15}\right)}$	Common-Source Input Conductance		$f=100 \mathrm{MHz}$		100							
			$\mathrm{f}=400 \mathrm{MHz}$				1000		1000			
$\mathrm{Ciss}^{\text {S }}$	Common-Source Input Capacitance				5.0		5.0		50	pF		
Crss	Common-Source Reverse Transfer Capacitance		$\mathfrak{f}=1 \mathrm{MHz}$		1.0		1.0		1.0			
$\mathrm{C}_{\text {OSS }}$	Common-Source Output Capacitance				20		2.0		2.0			
NF	Noise Figure	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{R}_{\mathrm{G}}=1 \mathrm{MS}$?	$f=1 \mathrm{kHz}$		25		2.5		2.5	dB		
		$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega 2$	$\mathrm{f}=100 \mathrm{MHz}$		30							
							2.0		2.0			
		$V_{D S}=15 \mathrm{~V}, \mathrm{D}=4 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega$	$\mathrm{f}=400 \mathrm{MHz}$				4.0		4.0			
G_{ps}	Common-Source Power Gaın	$V \mathrm{DS}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$	16	25							
		$V_{D S}=15 \mathrm{~V}, 1 \mathrm{D}=4 \mathrm{~mA}$				18	30	18	30			
			$\mathrm{f}=400 \mathrm{MHz}$			10	20	10	20			

Note 1: Pulse test pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

2N5515-24 N-Channel Monolithic Dual JFETs

General Description

The 2N5515 thru 2 N 5524 series of N -channel monolithic dual JFETs is designed for low to medium frequency differential amplifiers requiring very low noise and high common-mode rejection.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage $\quad-40 \mathrm{~V}$
Gate Current
Device Dissipation (Each Side), $\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
50 mA
250 mW
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
375 mW
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

PIN	FET (12)
1	S1
2	D 1
3	G 1
5	S 2
6	D 2
7	G 2

Electrical Characteristics $\left(22^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Matching Characteristics

PARAMETER		CONDITIONS			$\begin{aligned} & \text { 2N5515, } \\ & \text { 2N5520 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N5516, } \\ & \text { 2N5521 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N5517. } \\ & \text { 2N5522 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N5518, } \\ & \text { 2N5523 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 2N5519, } \\ & \text { 2N5524 } \end{aligned}$		UNITS			
		MIN	MAX															
	Differentral Gate Current				$V_{\text {DG }}$	$=20 \mathrm{~V}, 1 \mathrm{D}=200 \mu \mathrm{~A}$	$125^{\circ} \mathrm{C}$		10		10		10		10		10	nA
$\frac{\mathrm{IDSS} 1}{\mathrm{IDSS} 2}$	Saturation Diain Current Ratio	$V_{\text {DS }}=20 \mathrm{~V}, \mathrm{~V}_{\text {GS }}{ }^{-} 0$, (Note 1)			095	1	0.95	1	095	1	095	1	090	1				
$V_{\mathrm{GS} 1} \mathrm{~V}_{\mathrm{GS} 2}$	Differential Gate. Source Voltage	$\mathrm{V}_{\text {DG }}-20 \mathrm{~V} .1 \mathrm{D}-200 \mu \mathrm{~A}$				5		5		10		15		15	mV			
$\lambda_{1} \mathrm{VGS1} \mathrm{VGS} 2$	Gate Source Voltage Differential Drift.			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25 \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{B}}=125 \mathrm{C} \end{aligned}$		5		10		20		40		80				
$\pm T$	(Note 1)			$\mathrm{T}_{\mathrm{A}}-55^{\circ} \mathrm{C}$, $\mathrm{T}_{\mathrm{B}}=25^{\circ} \mathrm{C}$		5		10		20		40		80	$\mu V i^{\text {c }} \mathrm{C}$			
$190519052 \mid$	Differential Output Conductance			$f=1 \mathrm{kHz}$		01		01		0.1		0.1		01	$\mu \mathrm{mho}$			
$\begin{gathered} 9 \mathrm{f}_{\mathrm{s}} 1 \\ \mathrm{~g}_{\mathrm{f} 2} \end{gathered}$	Transconductance Ratio, (Note 1)			097	1	097	1	0.95	1	095	1	0.90	1					
CMRR	Common Mode Rejection Ratio. (Note 2)	$V \mathrm{VD} \quad 10$ to $20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}} \quad 200 \mu \mathrm{~A}$			100		100		90						dB			

Note 1: Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
Note 2: $C M R R=20 \log _{10} \Delta V_{D D} / \Delta V_{G S 1}-V_{G S 2} 1,\left(\Delta V_{D D}=10 V\right)$.

2N5545-47 N-Channel Monolithic Dual JFETs

General Description

The 2N5545 thru 2N5547 series of monolithic dual JFETs is designed for low to medium frequency differential amplifiers requiring matched gate-source voltage, high common-mode rejection, and low output conductance.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage -50 V
Gate Current 30 mA
Device Dissipation (Each Side), $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
250 mW
Total Device Dissipation, $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $2.67 \mathrm{~mW} / \mathrm{C}$)
400 mW
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case
for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	CONDITIONS		MIN	MAX	UNITS
				-100	$p \mathrm{~A}$
GSS Gate Reverse Current	$\mathrm{VGS}^{-} 30 \mathrm{~V} \cdot \mathrm{VDS}^{-0}$	150 C		-150	$n A$
BVGSS ${ }_{\text {G }}$ Gate Source Breakdown Voltage	$1 G-1 \mu A, V_{0 S}=0$. 50		V
VGS(off) Gate Source Cutoff Voltage	$V_{D S}-15 V, 1 D=05 n A$		-0 5	-45	
IG Gate Operating Current	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$			-50	OA
IDSS Saturation Drain Current	$V_{D S}-15 \mathrm{~V}, \mathrm{VGS}^{\text {G }}=0$		05	8	mA
9fs Common-Source Forward Transconductance	$V_{D S}-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$f=1 \mathrm{kHz}$	1500	6000	$\mu \mathrm{mho}$
905 Common Source Output Conductance				25	
$\mathrm{Ciss}^{\text {a }}$ Common Source Input Capacitance		$\mathrm{f}-1 \mathrm{MHz}$		6	pF
$\mathrm{C}_{\text {rss }} \quad$ Common-Source Reverse Tiansfer				2	
NF \quadSpot Noise Figule $2 N 5545$	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$	$\begin{aligned} & f=10 \mathrm{HL}, \\ & R_{G}=1 \mathrm{MS2} \end{aligned}$		3.5	dB
2N5546				5	
$\begin{aligned} & e_{n} \quad \text { Equivalent Input Norse Voltage } \\ & 2 N 5545 \end{aligned}$		$f=10 \mathrm{~Hz}$		180	$\frac{n V}{\sqrt{H z}}$
2N5546				200	

Matching Characteristics

PARAMETER		CONDITIONS		2N5545		2N5546		2N5547		UNITS		
		MIN	MAX	MIN	MAX	MiN	MAX					
${ }^{16} \mathrm{G} 1^{-1} \mathrm{G} 21$	Differential Gate Current			$V_{D G}-15 V / D=200 \mu \mathrm{~A}$	125 C		5		5		5	nA
IDSS1	Dram Current Fatio at	$V_{\text {DS }}=15 \mathrm{~V} V_{G S}-0$		095	1	090	1	090	1			
IDSS2	Zero Gate Voltage											
'VGS1 VGS2	Differential Gate Source	$V_{D G}=15 \mathrm{~V}$	$10=50 \mu \mathrm{~A}$		5		10		15	$m V$		
	Voltage		${ }^{\prime} \mathrm{D}=200 \mathrm{kA}$		5		10		15			
$\frac{\Delta^{\prime V G S 1-V G S 21}}{\Delta T}$	Gate Source Voltage Differential Drift, (Note 1)	$V_{D G}-15 V, 1 D-200 \mu \mathrm{~A}$	$\begin{aligned} & T_{A}=25^{\prime} C_{r} \\ & T_{B}=125^{\prime} \mathrm{C} \end{aligned}$		10		20		40	$\mu V^{\sim} \mathrm{C}$		
			$\begin{aligned} & T_{A}=-55^{\circ} \mathrm{C} \\ & T_{B}=25 \mathrm{C} \end{aligned}$		10		20		40			
$\underline{9 f s} 1$	Transconductance Ratio		$\mathrm{f}=1 \mathrm{kHz}$	0.97	1	095	1	0.90	1			
$9+52$												
gos 1 gos 2	Differential Output Conductance				1		2		3	$\mu \mathrm{mho}$		

Note 1: Measured at end points, T_{A} and T_{B}.

2N5564-66/NPD5564-66 N-Channel Monolithic Dual JFETs

General Description

The 2N/NPD5564 thru 2N/NPD5566 series of N-channel monolithic dual JFETs is designed for broadband low noise differential amplifier or applications requiring dual matched moderate ON resistance analog switches.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Gate-to-Gate Voltage
$\pm 40 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage
$-40 \mathrm{~V}$
Gate Current
50 mA
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $2.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
325 mW
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(Derate $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
650 mW
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case
for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

	PARAME TER	CONOITIONS		MIN	MAX	UNITS
IGSS	Gate Reverse Current	$V_{G S}=-20 \mathrm{~V}, V_{D S}=0$			-100	pA
			$150^{\circ} \mathrm{C}$		-200	$n \mathrm{~A}$
BVGSS	Gate-Source Breakdown Voltage	$1_{G}=-1 \mu A, V_{D S}=0$		-40		
VGSIOFF)	Gate-Source Cutoff Voltage	$V_{O S}=15 \mathrm{~V}, I_{D}=1 n \mathrm{~A}$		-0.5	3	V
$V_{G S(f)}$	Gate-Source Voltage	$V_{O S}=O V, I_{G}=2 \mathrm{~mA}$			10	
IDSS	Saturation Drain Current	$V_{O S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 .($ Note 1$)$		5	30	mA
rDS(ON)	Static Drasri Source "ON" Resistance	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$			100	S
gfs_{5}	Common Source Forward Transconductance (Note 1)	$V_{D G}=15 V, 1{ }^{\prime}=2 \mathrm{~mA}$	$f=1 \mathrm{kHz}$	7500	12,500	$\mu \mathrm{mho}$
			$\mathrm{f}=100 \mathrm{MHz}$	7000		
9 os	Common-Source Output Conductance		$f=1 \mathrm{kHz}$		45	
$\mathrm{C}_{\mathrm{rss}}$	Common-Source Reverse Transfer Capacitance		$f=1 \mathrm{MHz}$		3	pF
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance				12	
NF	Spot Noise Figure		$f=10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{M}$		10	$d B$
e_{n}	Equivalent Input Noise Voltage		$f=10 \mathrm{~Hz}$		50	$\frac{n V}{\sqrt{H z}}$

Matching Characteristics

Note 1: Pulse test required, pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
Note 2: Measured at end points, T_{A} and T_{B}.

2N5638-40 N-Channel JFETs

General Description

The 2N5638 thru 2N5640 series of N-channel JFETs is designed for analog switch applications requiring low ON resistance and moderate capacitance.
Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)
Drain-Source Breakdown Voltage
Drain-Gate Breakdown Voltage
Source-Gate Breakdown Voltage
30 V
Forward Gate Current
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$
Operating Junction Temperature Range
Storage Temperature Range 10 mA
310 mW $2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	CONDITIONS			2N5638		2N5639		2N5640		UNITS	
				MIN	MAX	MiN	MAX	MIN	MAX		
$\begin{array}{ll} \hline \text { BVGSS } & \text { Gate Reverse Breakdown } \\ \text { Voltage } \end{array}$	$G_{1}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\text {OS }}=0$			30		-30		-30		v	
	$V_{S S}=-15 \mathrm{~V}, V_{D S}=0$				-10		--1.0		-1.0	nA	
IGSS Gate Reverse Current			$T_{A}=100 \mathrm{C}$		-1.0		-10		-1.0	$\mu \mathrm{A}$	
		$\mathrm{VGS}^{-}-12 \mathrm{~V}, 2 \mathrm{~N} 5638$			10		10		10	nA	
ID(off) Dian Cutoff Current	$V_{D S}-15 \mathrm{~V}$	$\begin{aligned} & V_{G S}--8 V, 2 N 5639 \\ & V_{G S}=-6 V, 2 N 5640 \end{aligned}$	$T_{A}=100 \mathrm{C}$		1.0		10		10	$\mu \mathrm{A}$	
IDSS Saturation Drain Current	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$, Note 11			50		25		50		mA	
VDSion: Dram-Source ON Voltage	$V_{G S}=0$	$\begin{aligned} & 1 \mathrm{D}-12 \mathrm{~mA}, 2 \mathrm{~N} 5638 \\ & 1 \mathrm{D}-6 \mathrm{~mA}, 2 \mathrm{~N} 5634 \\ & 1 \mathrm{D}^{-3 \mathrm{~mA}, 2 \mathrm{~N} 5640} \end{aligned}$			05		05		05	v	
$\begin{aligned} & \text { Static Drain Source ON } \\ & \text { Resistance } \end{aligned}$	$v_{G S}=0, L_{D}=1 \mathrm{~mA}$				30		60		100	!	
Drain Source ON rdsion) Resistance	$V_{G S}-0.10=0$		$\mathrm{f}=\mathrm{l} \mathrm{kHz}$		30		60		100		
$\mathrm{C}_{155} \quad$Common Source Input Capacitance	$V_{G S}--12 \mathrm{~V}, V_{D S}-0$		$f=1 \mathrm{MHz}$		10		10		10	pF	
$\mathrm{Cr}_{55} \quad$Common-Source Reverse Transfer Capacitance				40		40		4.0			
tdion) Turn ON Delay Time	$\begin{aligned} & V_{D D}-10 V, V_{G S(o n)}-0 \\ & V_{G S(O f f)}=10 V, R_{G}=502 \end{aligned}$	$\begin{aligned} & I_{\mathrm{D} \text { fon }}=12 \mathrm{~mA}, 2 \mathrm{~N} 5638 \\ & 1_{\mathrm{D} \text { tont }}=6 \mathrm{~mA}, 2 \mathrm{~N} 5639 \\ & \mathrm{I}_{\mathrm{D} \text { (on) }}=3 \mathrm{~mA}, 2 \mathrm{~N} 5640 \end{aligned}$			40		6.0		8.0	ns	
$\mathrm{tr}_{r} \quad$ Rise Time						50		80			10
$t_{\text {d }}$ Turn OFF Delay Time					50		10		15		
$\mathrm{tf}^{\text {Fall Time }}$					10		20		30		

Note 1: Pulse test PW $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

Scope Tektronix 567A or equivalent

2N5902-09 N-Channel Monolithic Dual JFETs

General Description

The 2N5902 thru 2N5909 N-channel monolithic dual JFETs is designed for ultra-low leakage ($\mathrm{I}_{\mathrm{G}}<1 \mathrm{pA}$) differential amplifier applications.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)
Gate-to-Gate Voltage
$\pm 40 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage $-40 \mathrm{~V}$
Gate Current
Device Dissipation (Each Side), ${ }^{\top} \mathrm{A}=25^{\circ} \mathrm{C}$ (Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 10 mA
Total Device Dissipation, $T_{A}=25^{\circ} \mathrm{C}$ (Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
500 mW
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16$ ' from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ uniess otherwise noted)

PARAMETER		CONDITIONS		2N5902-5		2N5906.9		UNITS		
		MIN	MAX	MIN	MAX					
IGSS	Gate Reverse Current			$\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$			-5		-2	pA
			$125^{\circ} \mathrm{C}$		-10		-5	nA		
$B V_{\text {GSS }}$	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$		-40		-40				
$V_{\text {GS (off) }}$	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, t_{D}=1 \mathrm{nA}$		06	-4 5	-0.6	-45	V		
VGS	Gate-Source Voltage				-4		-4			
IG	Gate Operating Current	$V_{D G}=10 \mathrm{~V}, \mathrm{t}_{\mathrm{D}}=30 \mu \mathrm{~A}$			-3		-1	pA		
			$125^{\circ} \mathrm{C}$		-3		-1	nA		
IOSS	Saturation Dran Current			30	500	30	500	$\mu \mathrm{A}$		
9fs	Common-Source Forward Transconductance			70	250	70	250			
gos	Common-Source Outpu: Conductance	$=10 \mathrm{~V}$	$f=1 \mathrm{kHz}$		5		5	umho		
$\mathrm{Ciss}^{\text {S }}$	Common Source Input Capacitance	,			3		3			
$C_{\text {rss }}$	Common Source Reverse Transfer Capacitance		$f=1 \mathrm{MHz}$		15		15	pF		
9ts	Common Source Forward Transconductance			50	150	50	150			
gos	Common Source Output Conductance	$V O G=10 V, 1 D=30 \mu \mathrm{~A}$	$\mathrm{f}=1 \mathrm{kHz}$		1		1	$\mu \mathrm{mho}$		
$\mathrm{en}^{\text {n }}$	Equivalent Short Circuit Input Noise Voltage	$V_{O S}=10 \mathrm{~V}, V_{G S}=0$			02		07	$\frac{\mu \mathrm{V}}{\sqrt{\mathrm{Hz}}}$		
NF	Spot Noise Figure		$t=100 \mathrm{~Hz}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{M}$		3		1	dB		

Matching Characteristics

2N5911, 2N5912 N-Channel Monolithic Dual JFETs

General Description

The 2N5911 thru 2N5912 series of N-channel monolithic dual JFETs is designed for wideband, low noise differen. tial amplifiers.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Gate-to-Gate Voltage
$\pm 25 \mathrm{~V}$
-25 V
50 mA
367 mW
500 mW
$65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Gate-Drain or Gate-Source Voltage
Gate Current
Device Dissipation (Each Side),
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)

(25^{a} unless otherwise noted)

	PARAMETER	CONDITIONS		MIN	MAX	UNITS
IGSS	Gate Reverse Current	$V_{G S}=-15 V, V_{\text {DS }}=0$			-100	pA
			150 C		-250	nA
$B V_{\text {GSS }}$	Gate Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}, V_{D S}=0$		-25		v
$V_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		1	-5	
V_{GS}	Gate Source Voltage	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$		-03	-4	
I_{G}	Gate Operating Current				-100	pA
			$125^{\circ} \mathrm{C}$		-100	กA
IDSS	Saturation Drain Current	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V},($ Note 1$)$		7	40	mA
9fs	Common-Source Forward Transconductance	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	5000	10,000	$\mu \mathrm{mbo}$
975	Common-Source Forward Transconductance		$\mathrm{f}=100 \mathrm{MHz}$	5000	10,000	
gos	Common Source Output Conductance		$\mathrm{f}=1 \mathrm{kHz}$		100	
goss	Common Source Output Conductance		$\mathrm{f}=100 \mathrm{MHz}$		150	
$\mathrm{C}_{\text {iss }}$	Common-Source Input Capacitance		$f=1 \mathrm{MHz}$		5	pF
Crgs	Common-Source Reverse Transfer Capacitance				1.2	
e_{n}	Equivalent Short-Circuit Input Noise Voltage		$\mathrm{f}=10 \mathrm{kHz}$		20	$\frac{n V}{\sqrt{H z}}$
NF	Spot Norse Figure		$\begin{aligned} & f=10 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{G}}=100 \mathrm{k} \end{aligned}$		1	dB

Matching Characteristics

PARAMETER		CONDITIONS		2N5911		2N5912		UNITS		
		MiN	MAX	MIN	MAX					
${ }_{1}{ }^{\text {G }} 1{ }^{-1} \mathrm{G} 21$	Differential Gate Current			$V_{\text {DG }}=10 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}$	$125^{\circ} \mathrm{C}$		20		20	nA
$\frac{\operatorname{IDSS} 1}{\operatorname{IDSS} 2}$	Saturation Drami Current Ratio	$V_{D S}=10 \mathrm{~V}, V_{G S}=0,($ Note 1)		0.95	1	0.95	1			
$\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\text {GS2 }}$	Differentlal Gate Source Voltage	$V_{D G}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$			10		15	mV		
$\frac{\Delta I V_{G S 1}-V_{G S 2}}{\Delta T}$	Gate-Source Voltage Differential Drift (Measured at End Points, T_{A} and T_{B}		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=125^{\circ} \mathrm{C} \\ & \hline \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{B}}=25^{\circ} \mathrm{C} \end{aligned}$		20 20		40 40	$\mu V^{\prime 0} \mathrm{C}$		
$\frac{\mathrm{g}_{\mathrm{f}} 1}{\mathrm{~g}_{\mathrm{f}} 2}$	Transconductance Ratıo		$\mathrm{f}=1 \mathrm{kHz}$	0.95	1	0.95	1			

Note 1: Pulse width $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

2N5949-53 N-Channel JFETs

General Description

The 2N5949 thru 2N5953 series of N-channel JFETs is characterized for low frequency to VHF amplifiers requiring tightly specified IDSS ranges.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)
Reverse Gate-Drain or Gate-Source Voltage 30 V
Gate Current
10 mA
Total Device Dissipation at $25^{\circ} \mathrm{C}$
Case Temperature (Derate $2.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$) 360 mW
Total Device Dissipation at $25^{\circ} \mathrm{C}$ Lead
Temperature (Derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
500 mW
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case
for 10 seconds)
$260^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		2N5949		2N5950		2N5951		2N5952		2N5953		UNITS		
		MIN	MAX													
IGSS	Gate Reverse Current						- 1		-1		1		-1		-1	nA
		$V_{G S}-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$	$T_{A}=100^{\circ} \mathrm{C}$		-200		-200		-200		-200		-200			
BVGSS	Gate-Source Breakdown Voltage	$\mathrm{G}^{-}-1 \mu \mathrm{~A}, V_{D S}-0$		-30		30		-30		30		-30		V		
$V_{\text {GSioff }}$	Gate-Source Cutoff Voltage	$V_{D S} 15 \mathrm{~V}, \mathrm{ID}=100 \mathrm{nA}$		3	-7	-25	-6	2	5	1.3	35	-08	-3	V		
$V_{G S}$	Gate Source Voltage	$V_{D S}=15 \mathrm{~V}$	$1 \mathrm{D}=12 \mathrm{~mA}$	225	-6									V		
			$D=1 \mathrm{~mA}$			-18	5									
			10-07mA					-1.3	-4 5							
			$\mathrm{D}=0.4 \mathrm{~mA}$							075	3					
			$10=025 \mathrm{~mA}$									${ }^{-0.5}$	-2.5			
IDSS	Saturation Drain Current	VOS ${ }^{-15 V} \mathrm{~V}_{\text {GS }}{ }^{-0,}$ (Note 1)		12	18	10	15	7	13	4	8	25	5	mA		
rds(on)	Dran Source ON Resistance	$V_{G S}-0,10=0$	f-1 kHz		200		210		250		300		375	Ω		
9 ts	Common Source Forward Transconductance	$V_{D S}=15 V, V_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$	3.5	7.5	35	75	35	55	2	6.5	2	6.5	mmho		
gos	Common Source Output Conductance				75		75		75		50		50	$\mu \mathrm{mho}$		
$\mathrm{Re}\left(\mathrm{Y}_{05}\right)$	Common Source Output Conductance	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}=100 \mathrm{MHz}$		75		75		75		75		50	umho		
${ }^{\mathrm{Re}}$ (Y_{fs})	Common Source Transconductance			30	75	3.0	7.5	3.0	6.5	10	6.5	10	6.5	mmho		
Re(Y $\mathrm{IS}^{\text {S }}$)	Common Source Input Conductance				250		250		250		250		250	$\mu \mathrm{mho}$		
C_{155}	Common-Source Input Capacitance	VDS $-15 \mathrm{~V} . \mathrm{V}_{\text {GS }}-0$	$\mathrm{f}=1 \mathrm{MHz}$		6		6		6		6		6	${ }^{\text {pF }}$		
Crss	Common Source Reverse Transfer Capacitance				2		2		2		2		2	pF		
NF	Noise Figure	$V_{\mathrm{DS}}-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\begin{aligned} & \mathrm{f}=100 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{kS}, \end{aligned}$		5		5		5		5		5	dB		
			$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{G}}=1 \mathrm{MS} \mathrm{l} \end{aligned}$		2		2		2		2		2			
$e_{\text {en }}$	Equivalent Input Norse Voltage	$\mathrm{V}_{\text {DS }}-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}-0$	$\mathrm{f}=1 \mathrm{kHz}$		100		100		100		100		100	$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$		

Note 1: Pulse width 300μ s, dutv cycle $\leq 3 \%$.

2N6483-85 N-Channel Monolithic Dual JFETs

General Description

The 2N6483 thru 2N6485 series of N-channel monolithic dual JFETs is designed for low to medium frequency low noise differential amplifier applications requiring tight match and high common-mode rejection.

Absolute Maximum R	gs $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage	-50V
Gate Current	50 mA
Device Dissipation (Each Side), TA (Derate $2.56 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	$5^{\circ} \mathrm{C} \quad 250 \mathrm{~mW}$
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ (Derate $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)	500 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Matching Characteristics

PARAMETER		CONDITIONS		2N6483		2N6484		2N6485		UNITS		
		MIN	MAX	MIN	MAX	MIN	MAX					
${ }_{1} \mathrm{IG} 1-1^{\text {G }}$ 21	Differential Gate Current			$\begin{aligned} & V_{D G}=20 V \\ & 1 \mathrm{D}-200 \mu \mathrm{~A} \end{aligned}$	$125^{\circ} \mathrm{C}$		10		10		10	nA
$\frac{\operatorname{lDSS} 1}{1 \text { IDSS2 }}$	Saturation Dran Current Ratio	$\begin{aligned} & \mathrm{V}_{\text {DS }}-20 \mathrm{~V} \mathrm{~V}_{\mathrm{GS}}-0, \\ & \text { Note } 1 \end{aligned}$		095	10	095	10	095	10			
$\frac{9 f s 1}{9 f s 2}$	Transconductance Ratio, (Note 1)	$\begin{aligned} & V_{D G}=20 \mathrm{~V} \\ & 1 \mathrm{D}-200 \mathrm{~mA} \end{aligned}$	$\mathrm{f}-1 \mathrm{kHz}$	095	10	095	10	0.95	10			
$\mathrm{V}_{\mathrm{GS} 1}$ - $\mathrm{V}_{\mathrm{GS} 21}$	Differential Gate Source Voltage				50		10		15	mV		
$\frac{\lambda_{1} V_{G S 1}-V_{G S 2}}{\Delta T}$	Gate Source Differential Voltage Change with Temperature, (Note 2)		$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} . \\ & T_{B}=125^{\circ} \mathrm{C} \\ & \hline T_{A}=-55^{\circ} \mathrm{C}, \\ & T_{B}=25^{\circ} \mathrm{C} \end{aligned}$		5 5		10 10		25 25	$\mu V \cdot \mathrm{C}$		
\|9os1-9os2		Differential Output Conductance		$\mathrm{f}-1 \mathrm{kHz}$		01		01		01	$\mu \mathrm{mho}$	
CMRR	Common. Mode Reject Ratı			100		100		100		dB		

[^10]Note 2: Measured at end points, T_{A} arid T_{B}.

J108-10 N-Channel JFETs

General Description

The J108 thru J110 series of N -channel JFETs is designed for analog switch applications requiring very low ON resistance.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage
$-25 \mathrm{~V}$
Gate Current
50 mA
Total Device Dissipation
($25^{\circ} \mathrm{C}$ Free-Air Temperature)
Power Derating (to $+125^{\circ} \mathrm{C}$)
Storage Temperature Range
Operating Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
350 mW $3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	CONDITIONS	$J 108$			J109			J110			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MiN	TYP	MAX	
IGSS Gate Reverse Current	$V_{D S}-0 . V_{G S}=15 \mathrm{~V}$, (Nate 1)			3			3			3	11 A
VGStoft Gate-Source Cutoff Voltage	$\mathrm{VOS}^{-5 V 1 D}=1 \mu \mathrm{~A}$	3		10	2		6	-05		4	
BVGSS Gate Sonte Breakdown Voltage	VDS - 0 /G - $1 \mu \mathrm{~A}$	25			-25			-25			
IDSS Saturation Dram Current	VDS $15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}-0.1$ Note 21	80			40			10			mA
IDfoff Dram Cutoft Curient	$V_{D S}=5 \mathrm{~V}, V_{G S}-10 \mathrm{~V}$, (Note 1)			3			3			3	пA
'DSIonl Didm Source ON Resrstance	$V_{D S}=0+V \cdot V_{G S}-0$			8			12			18	Ω
Cdgioff Didin Gate OFF Gapacitance				15			15			15	
Csgloff) Source Gate OFF Capaciance				15			15			15	
Cdgfon) Dram Gate Plus Source Gate 1 ON Caparitance $\mathrm{C}_{\text {sqfion }}$	$\mathrm{VDS}^{-} \mathrm{V}_{\mathrm{GS}}-0{ }^{\text {- }}$			85			85			85	pF
$\mathrm{t}_{\text {dfom }}$ Turn ON Delay Time	Swisching Time Test Conditions		4			4			4		ns
$\mathrm{t}_{1} \quad$ Rrse Time	1108 109 110 $V_{D D}$ 1.5 V 15 V 15 V $V_{G S}$ 12 V 7 V -5 V $\mathrm{~F}_{\mathrm{L}}$ $150 S ?$ 150Ω 150 V 2		1			1			1		
$\mathrm{t}_{\text {draft }}$ Tun OFF Delay Time			6			6			6		
tf_{5} Fatl Trme			30			30			30		

Note 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in TA.
Note 2: Pulse test duration $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.

J111－13 N－Channel JFETs

General Description

The J111 thru J113 series of N －channel JFETs is designed for analog switch applications requiring low ON resistance and moderate capacitance．

Absolute Maximum Ratings（ $25^{\circ} \mathrm{C}$ ）

Gate－Drain or Gate－Source Voltage
Gate Current
$-35 \mathrm{~V}$
Total Device Dissipation
$\left(25^{\circ} \mathrm{C}\right.$ Free－Air Temperature）
Power Derating（to $+125^{\circ} \mathrm{C}$ ）
Storage Temperature Range
Operating Temperature Range
Lead Temperature（1／16＂from case
for 10 seconds）

50 mA

350 mW $3.5 \mathrm{~mW} / \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

PIN	FET
1	G
2	S
3	D

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

PARAMETER	CONDITIONS	J111			J112			J113			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
IGSS Gate Reverse Current	$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$ ，（Note 11			－1			1			－1	nA
VGS（off）Gate－Source Cutoff Voltage	$V_{D S}=5 V, 1 D=1 \mu \mathrm{~A}$	－3		10	－1		－5	－05		－3	V
BVGSS Gate－Source Breakdown Voltage	$V_{D S}=0, I_{G}=-1 \mu \mathrm{~A}$	－35			-35			35			
IDSS Saturation Drain Current	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$, Note 21	20			5			2			$m A$
ID（off）Dram Cutoff Current	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$ ，（Note 11			1			1			1	$n \mathrm{~A}$
rDStont Drain Source ON Resistance	$\mathrm{V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$			30			50			100	！
$\mathrm{C}_{\text {dgioff }}$ Drain Gate OFF Capacitance C $_{\text {sgloff }}$ Source Gate OFF Capacitance	$V_{O S}=0 . V_{G S}=10 \mathrm{~V}$			5 5			5			5	${ }_{\mathrm{p}} \mathrm{F}$
Cdgion） + Dran Gate Plus Source Gate $\mathrm{C}_{\text {sgiton）}}$ ON Capacitance	$V_{O S}=V_{G S}=0$			28			28			28	
tdion Turn ON Delay Time	Switching Time Test Conditions		7			7			7		
t_{r} Rise Time			6			6			6		
${ }^{\text {t }}$（off）${ }^{\text {a }}$ Turn OFF Delay Time	$V_{G S}-12 V \quad-7 V \quad-5 V$		20			20			20		ns
tf Fall Time	RL 800．2 1000．：3200．2		15			15			15		

Note 1：Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A} ．
Note 2：Pulse test duration $=300 \mu \mathrm{~s}$ ，duty cycle $\leq 3 \%$ ．

J174-77 P-Channel JFETs

General Description

The J174 thru J177 series of P-channel JFETs is designed for low ON resistance analog switch applications.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage, (Note 1) 30V
Gate Current
50 mA
Total Device Dissipation
$\left(25^{\circ} \mathrm{C}\right.$ Free-Air Temperature)
Power Derating (to $+125^{\circ} \mathrm{C}$)
Storage Temperature Range
Operating Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

J201-03 N-Channel JFETs

General Description

The J 201 thru J 203 series of N -channel JFETs is designed for low to medium frequency amplifiers requiring low input current and input noise voltage.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage, (Note 1) -40 V
Gate Current
Total Device Dissipation
$\left(25^{\circ} \mathrm{C}\right.$ Free-Air Temperature)
Power Derating (to $+125^{\circ} \mathrm{C}$)
Storage Temperature Range
Operating Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)

350 mW $3.5 \mathrm{~mW} / \mathrm{C}^{\mathrm{C}}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		J201			J202			J203			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
'GSS	Gate Reverse Current			$V_{D S}-0, V_{G S}=-20 \mathrm{~V}$	(Note 2)			- 100			100			-100	pA
$V_{G S(0 f f)}$	Gate-Source Cutoff Voltage	$V_{D S}=20 \mathrm{~V}, I_{D}=10 \mathrm{nA}$		-03		-1.5	. 08		-4.0	2.0		10.0			
BVGSS	Gate-Source Breakdown Voltage	$V_{D S}=0, I_{G}-1 \mu \mathrm{~A}$		40			-40			40					
IDSS	Saturatron Dram Current	$V_{D S}=20 \mathrm{~V}, V_{G S}=0,1$ Note 31		02		10	09		45	40		20	mA		
${ }^{\prime} G$	Gate Current	$V_{\text {DG }}-20 \mathrm{~V}, \mathrm{ID}=\mathrm{I}$ DSSIMIN			-35			-35			35		pA		
9fs	Common-Source Forward Transconductance. (Note 3)	$V_{\text {DS }}-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$	$\mathrm{f}-1 \mathrm{kHz}$	500			1000			1500			umbo		
gos	Common-Source Output Conductance				1			35			10				
$\mathrm{C}_{\text {IS }}$	Common Source Input Capacitance		$f=1 \mathrm{MHz}$		5			5			5		pF		
$\mathrm{Crss}^{\text {r }}$	Common Source Reverse Transfer Capacitance				2			2			2				
e_{n}	Equivalent Short-Circuit Input Norse Voltage	$V_{\text {DS }}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}-0$	$f=1 \mathrm{kHz}$		10			10			10		$-\frac{n V}{\sqrt{\top} \mathrm{H}_{2}}$		

Note 1: Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
Note 2: Approximately doubles for every 10 C increase in T_{A}.
Note 3: Pulse test duration $=2 \mathrm{~ms}$.

J210-12 N-Channel JFETs

General Description

The J210 thru J212 series of N -channel JFETs is characterized for low to medium frequency amplifiers requiring high transconductance and low input capacitance.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)

Gate-Drain or Gate-Source Voltage $-25 \mathrm{~V}$
Gate Current 10 mA
Total Device Dissipation
($25^{\circ} \mathrm{C}$ Free-Air Temperature)
Power Derating (to $+125^{\circ} \mathrm{C}$)
Storage Temperature Range
Operating Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds) 350 mW $3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(22^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		J210			J271			J212			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
IGSS	Gate Reverse Current			$V_{\text {DS }}-0, V_{G S}=-15 \mathrm{~V}$, (Note 1)				-100			- 100			100	pA
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1		-3	-2.5		-4.5	-4		-6	V		
BVGSS	Gate Source Breakdown Voltage	$V_{D S}=0, I_{G}+1 \mu \mathrm{~A}$		-25			-25			-25					
I DSS	Saturation Diam Current	$V_{\text {DS }}=15 \mathrm{~V}, V_{\text {GS }}-0$. (Note 21		2		15	7		20	15		40	mA		
${ }^{\prime} \mathrm{G}$	Gate Current	$V_{D G}-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$			10			-10			-10		pA		
9fs	Common-Source Forward Transconductance, (Note 2)	$V_{D S}-15 V, V_{G S}=0$	$f=1 \mathrm{kHz}$	4000		12000	7000		12000	7000		12000	umho		
9 os	Common-Source Output Conductance					150			200			200			
C_{155}	Common Source Input Capacıtance		$\mathrm{f}-1 \mathrm{MHz}$		50			50			50		${ }_{\mathrm{p}} \mathrm{F}$		
$\mathrm{Cr}_{\text {ISS }}$	Common Source Reverse Transfer Capacitance				15			1.5			1.5				
e_{n}	Equivalent Short-Circuit Input Noise Voltage		$\mathrm{f}-1 \mathrm{kHz}$		10			10			10		$\frac{n \mathrm{~V}}{\sqrt{H z}}$		

Note 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in TA.
Note 2: Pulse test duration $=2 \mathrm{~ms}$

J270, J271 P-Channel JFETs

General Description

The J 270 thru J 271 series of P-channel JFETs is characterized for low to medium frequency small-signal amplifiers which require high transconductance and low input noise voltage.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Gate-Drain or Gate-Source Voltage) 30 V
Gate Current	$-50 \mathrm{~mA}$
Total Device Dissipation	
($25^{\circ} \mathrm{C}$ Free-Air Temperature)	350 mW
Power Derating (to $+125^{\circ} \mathrm{C}$)	$3.5 \mathrm{~mW}{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)	300

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		J270			J271			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX					
IGSS	Gate Reverse Current			$V_{D S}=0, V_{G S}=20 \mathrm{~V},($ Note 2)				200			200	pA
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}=-15 \mathrm{~V}, 1 \mathrm{D}=-1 \mathrm{nA}$		05		2.0	1.5		4.5	V		
BVGSS	Gate-Source Breakdown Voltage	$V_{D S}=0, I_{G}-1 \mu \mathrm{~A}$		30			30					
IDSS	Saturation Dram Current	$V_{D S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 3)		2		-15	-6		-50	mA		
${ }_{\mathrm{G}}^{\mathrm{G}}$	Gate Current	$V_{D G}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=\operatorname{IDSS}(\mathrm{MIN})$			15			60		pA		
9fs	Common-Source Forward Transconductance, (Note 3)	$V_{D S}=-15 \mathrm{~V}, V_{G S}=0$	$f=1 \mathrm{kHz}$	6000		15000	8000		18000	$\mu \mathrm{mho}$		
Gos	Common Source Output Conductance					200			500			
$\mathrm{C}_{\text {ISs }}$	Common-Source Input Capactance		$\mathrm{f}=1 \mathrm{MHz}$		20			20		pF		
$\mathrm{C}_{\text {rss }}$	Common-Source Reverse Transfer Capacitance				5			5				
e_{n}	Equivalent Short Circuit Input Noise Voltage	$\begin{aligned} & V_{D S}=10 \mathrm{~V}, \\ & I_{D}=I_{D S S}(\mathrm{M} \mid \mathrm{N}) \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$		10			10		$\frac{n V}{\sqrt{H z}}$		

Note 1: Geometry is symmetrical. Units may be operated with source and drain leads interchanged.
Note 2: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}
Note 3: Pulse test duration $=2 \mathrm{~ms}$.

J300 N-Channel JFET

General Description

The J300 N-channel JFET is designed for VHF/UHF common-source or common-gate amplifier, oscillator and mixer applications.

Absolute Maximum Ratings ($25^{\circ} \mathrm{C}$)
Gate-Drain or Gate-Source Voltage $-25 \mathrm{~V}$
Gate Current 10 mA
Total Device Dissipation
($25^{\circ} \mathrm{C}$ Free-Air Temperature)
Power Derating (to $+125^{\circ} \mathrm{C}$)
Storage Temperature Range
Operating Temperature Range
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)

350 mW $3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONDITIONS		J300			UNITS		
		MIN	TYP	MAX					
IGSS	Gate Reverse Current			$V_{G S}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}$ - 0 , (Note 1)				-500	pA
VGS(off)	Gate-Source Cutoff Voltage	$V_{D S}-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		-1		-6			
BVGSS	Gate-Source Breakdown Voltage	$V_{D S}-0, I_{G}=-1 \mu \mathrm{~A}$		-25			V		
IDSS	Saturation Dram Current	$V_{\text {DS }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 2)		6		30	mA		
$V_{\text {GS(f) }}$	Gate-Source Forward Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$				1	V		
$\mathrm{gfs}^{\text {f }}$	Common-Source Forward Transconductance, (Note 2)	$V_{D G}=10 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{kHz}$	4500		9000	umho		
905	Common-Source Output Transconductance					200			
$\mathrm{C}_{\text {ISS }}$	Common Source Input Capacitance	$V_{D G}=10 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$	$\mathrm{f}=1 \mathrm{MHz}$		3.5	55	pF		
$\mathrm{Cr}_{\text {rs }}$	Common Source Reverse Transfer Capacitance				08	17			
$\mathrm{C}_{\text {oss }}$	Common-Source Output Capacitance				1.5				
$\left\|V_{f s}\right\|$	Common-Source Forward Transadmittance	$V_{D G}=15 \mathrm{~V}, 1 \mathrm{D}=5 \mathrm{~mA}$	$t=100 \mathrm{MHz}$		6200		$\mu \mathrm{mho}$		
			$f=450 \mathrm{MHz}$		6000				
$\|\mathrm{Vfg}\|$	Common Gate Forward Transadmitance		$f=100 \mathrm{MHz}$		6000				
			$\mathrm{f}=450 \mathrm{MHz}$		5500				
G_{fg}	Common-Gate Power Gain		$\mathrm{f}-100 \mathrm{MHz}$, (Note 3)		17		dB		
NF	Noise Figure (Single Sideband)				2				

Note 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
Note 2: Pulse test duration $=2 \mathrm{~ms}$.
Note 3: Typical values for performance at 100 MHz in a common-gate circuit operating 3 dB bandwidth is 2 MHz .

J304, J305 N-Channel JFETs

General Description

The J 304 thru J 305 N -channe JFETs are designed for low input capacitance VHF amplifier, oscillator and mixer applications.

Absolute Maximum Ratings	$\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage	-30 V
Gate Current	
Total Deviece Dissipation	10 mA
$\quad 25^{\circ} \mathrm{C}$ Free-Air Temperature)	350 mW
Power Derating (to $\left.+125^{\circ} \mathrm{C}\right)$	$3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range Operating Temperature Range Lead Temperature $\left(1 / 16^{\prime}\right.$ from case for 10 seconds)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ uniess otherwise noted)

PARAMETER		CONDITIONS		J304			J305			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX					
IGSS	Gate Reverse Current			$\mathrm{V}_{\mathrm{DS}}=0, \mathrm{~V}_{\mathrm{GS}}=-20 \mathrm{~V}$, (Note 11				100			-100	pA
$V_{\text {GS(off) }}$	Gate Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}, 1_{\mathrm{D}}=1 \mathrm{nA}$		-2		-6	-0 5		-3	V		
$B V_{G S S}$	Gate Source Breakdown Voltage	$V_{D S}=0 . I_{G}=-1 \mu \mathrm{~A}$		-30			30					
IDSS	Saturation Drain Current	$V_{\text {DS }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0,($ Note 2$)$		5		15	1		8	mA		
gfs	Common-Source Forward Transconductance, (Note 2)	$V_{\text {DS }}-15 \mathrm{~V}, V_{G S}=0$	$\mathrm{f}-1 \mathrm{kHz}$	4500		7500	3000			$\mu \mathrm{mbo}$		
9 os	Common-Source Output Transconductance					50			50			
$\mathrm{C}_{\text {ISS }}$	Common-Source Input Capacitance		$f=1 \mathrm{MHz}$		3.0			30		pF		
$\mathrm{Crss}^{\text {r }}$	Common-Source Reverse Transfer Capacitance				0.8			0.8				
$\mathrm{C}_{\text {OSS }}$	Common-Source Output Capacitance				10			10				
gts_{5}	Common-Source Forward Transconductance	$V_{\text {DS }}=15 \mathrm{~V}, V_{\text {GS }}=0$	$\mathrm{f}=100 \mathrm{MHz}$					3000		μ mbo		
			$\mathrm{f}=400 \mathrm{MHz}$		4200							
goss	Common-Source Output Coriductance		$\mathrm{f}-100 \mathrm{MHz}$		60			60				
			$\mathrm{f}=400 \mathrm{MHz}$		80							
$\mathrm{b}_{\text {OSS }}$	Common-Source Output Susceptance		$f=100 \mathrm{MHz}$		800			800				
			$\mathrm{f}=400 \mathrm{MHz}$		3600							
grss	Common-Source Input Conductance		f 100 MHz		80	1		80				
			$\mathrm{f}=400 \mathrm{MHz}$		800							
b_{15} s	Common-Source Input Susceptance		$\mathrm{f}-100 \mathrm{MHz}$		2000			2000				
			$\mathrm{f}-400 \mathrm{MHz}$		1500							
$G_{p s}$	Common Source Power Gaın	$V_{D S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}$	$\mathrm{f}=100 \mathrm{MHz}$		20					dB		
			$\mathrm{f}=400 \mathrm{MHz}$		11							
NF	Norse Figure (Single Sideband)	$\begin{aligned} & V_{D S}-15 \mathrm{~V}, I_{D} 5 \mathrm{~mA}, \\ & R_{G}=1 \mathrm{kS} \end{aligned}$	$f=100 \mathrm{MHz}$		17							
			$\mathrm{f}=400 \mathrm{MHz}$		3.8							

Note 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
Note 2: Pulse test duration $=2 \mathrm{~ms}$.

J308-10 N-Channel JFETs

General Description

The J308 thru J310 series of N -channel JFETs is designed for VHF amplifier, oscillator and mixer applications.

Absolute Maximum Ratings

Drain-Gate Voltage
Source-Gate Voltage
Forward Gate Current
Total Device Dissipation @ $25^{\circ} \mathrm{C}$
(Derate above $25^{\circ} \mathrm{C}$)
Storage Temperature Range
Operating Junction Temperature
Range
Lead Temperature (1/16" from case for 10 seconds)
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
10 mA
350 mW
$3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics
$\left(25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER		CONOITIONS		J308			J309			J310			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
BVGSS	Gate Source Breakdown Voltage			$V_{\text {DS }}-0, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$		-25			-25			-25			V
IGSS	Gate Reverse Current	$\mathrm{VGS}^{-} \quad 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}-0$				1.0			-10			-1.0	11A		
			T-125 ${ }^{\prime \prime} \mathrm{C}$			-1.0			1.0			-10	$\mu \mathrm{A}$		
VGSloff	Gate Source Cutoff Voltage	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{nA}$		10		6.5	-1.0		40	20		-65	V		
IDSS	Saturation Dram Current	$V_{G S}=0, V_{\mathrm{DS}}=10 \mathrm{~V}$ (Note 1)		12		60	12		30	24		60	$m \mathrm{~A}$		
VGSIf)	Gati Souler Forward Voltage	$V_{D S}-0.1 \mathrm{G}-1 \mathrm{~mA}$				10			10			10	V		
9fs	Common Source Forward Transconductance	$V_{D S}-10 \mathrm{~V}, \mathrm{ID}^{-10 \mathrm{~mA}}$	f. 1 kHz	8000		20000	10000		20000	8000		18000	Mrnhos		
gos	Common Source Output Conductance					200			150			200			
9 fq	Common Gate Folward Transconductance				13000			13000			12000				
$9 \% 9$	Common Gate Output Conductance				150			100			150				
$\mathrm{C}_{\text {qd }}$	Gate Dian Copacitance	$V_{G S}-10 V, V_{D S}-0$	$f=1 \mathrm{MHz}$		18	25		18	25		1.8	2.5	pF		
C_{gs}	Gate Soulce Capacitance				4.3	50		43	50		43	50			
e_{11}	Equivalent Short-Circurt laput Norse Voltage	$V_{D S}-10 \mathrm{~V}, \mathrm{I}^{\text {D }}-10 \mathrm{~mA}$	f- 100 Hz		10			10			10		$\frac{n \mathrm{~V}}{\sqrt{H z}}$		
$\operatorname{Re}_{\left(\mathrm{Vf}_{5}\right)}$	Common Source Forward Tlansconductance	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}-10 \mathrm{~mA}$	$\mathrm{f}-100 \mathrm{MH}$		12			12			12		mmno		
$\mathrm{Re}_{\left(\mathrm{V}_{19}\right)}$	Common Gate Input Conducance				12			12			12				
$\mathrm{Re}\left(\mathrm{V}_{15}\right)$	Common Sollise Input Conductance				07			07			0.5				
$\mathrm{Re}\left(\mathrm{V}_{\mathrm{os}}\right)$	Common Source Output Conductance				025			025			0.25				
G_{ng}	Common Gate Powfr GaIn				16			16			16		dB		
NF	Noise Figlate				15			15			15				

Note 1: Puise test PW $300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$

NDF9401-10 N-Channel Monolithic Cascode Dual JFETs

General Description

The NDF9401 thru NDF94 10 series of N-channel monolithic cascode duals is designed for broadband low noise differential amplifier applications requiring tight match, low capacitance, and very high common-mode rejection.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
Gate-Drain or Gate-Source Voltage -50 V
Gate Current $\quad 10 \mathrm{~mA}$
Device Dissipation (Each Side), $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
250 mW
Total Device Dissipation, $\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
(Derate $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$)
375 mW
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)
$300^{\circ} \mathrm{C}$

Electrical Characteristics ($22^{\circ} \mathrm{C}$ unless othervise noted)

	PARAMETER	CONOITIONS		MIN	MAX	UNITS
IGSS	Gate Reverse Current	$V_{G S}-30 V V_{D S}-0$			10	0 A
			150 C		25	11 A
$B V_{G S S}$	Gate Source Breakdown Voltage	$I_{G}-1 \sim A V_{D S}-0$		50		V
VGS(off)	Gate Source Cutoff Voltage	$V_{D S}-20 \mathrm{~V} \mathrm{I}_{\mathrm{L}}-1 \mu \mathrm{~A}$		05	40	
${ }^{1} \mathrm{G}$	Gate Operating Current	$V_{D G}-35 v I_{D}-20 G \% \mathrm{~A}$			5	$p \mathrm{~A}$
			125 C		10	$\square \mathrm{A}$
IDSS	Saturation Dram Currant	$V_{D S}=20 V \cup_{G S}=0 .($ Note 1)		05	10	in ${ }^{\text {a }}$
975	Common-Source Forward Transconduetance	VDG $-20 V 10-200 \mu \mathrm{~A}$. (Note 11	- ${ }^{\text {r }}$ K Hz_{2}	900	2000	uimho
905	Common-Source Output Conductance	$V D G-20 V I_{D}-200 \mu \mathrm{~A}$			1	
C_{155}	Common Source Input Cupacrtance	$V_{\text {DS }}=20 \vee V_{G S}=0$	* $-1 \mathrm{MH}_{2}$		6	pF
$\mathrm{Cr}_{\text {rs }}$	Common Source Reverse Transfer Capacitance				01	
en	Equavalent input Noise Voltage	$V D G-20 \nu 10-200 \mu \mathrm{~A}$	$\cdots=10 \mathrm{~Hz}$		30	$\stackrel{\pi V}{\bar{H}_{2}}$

Matching Characteristics

PARAMETER		CONDITIONS		NDF9401, NDF9406		$\begin{aligned} & \text { NDF9402, } \\ & \text { NDF9407 } \\ & \hline \end{aligned}$		NDF9403. NDF9408		NDF9404. NDF9409		NDF9405, NDF9410		UNITS		
		MIN	MAX													
	Differential Gate Current			$\begin{aligned} & V_{D G}=20 \mathrm{~V} \\ & I_{D}=200 \mu \mathrm{~A} \end{aligned}$	$125^{\circ} \mathrm{C}$		1		1		1		1		1	nA
$\frac{\mathrm{IDSS} 1}{\mathrm{I}_{\mathrm{DSS} 2}}$	Saturatron Dialn Current Ratio	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}$ VGS -0.1 Note 11		095	1	095	1	095	:	095	1	090	1			
, VGS1-VGS21	Differential Gate Source Voltage	$\begin{aligned} & V_{D G}-20 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{D}}-200 \mu \mathrm{~A} \end{aligned}$			5		5		10		15		25	mV		
${ }^{+} V_{G S 1} V_{\text {GS } 21}$	Gate-Source Voltage Differential Drifr.		$\begin{aligned} & T_{A}-25 C \\ & T_{8}-125 C \\ & \hline \end{aligned}$		5		10		10		10		25	V C		
	(Note 1)		$\begin{aligned} & T_{A}=55 \mathrm{C} \\ & T_{B}=25 \mathrm{C} \end{aligned}$		5		10		10		10		25			
19051 9os21	Differential Output Conductance		f. 1 kHz		01		01		01		01		01	armio		
$\frac{9 f s}{9 f_{5} 2}$	Transconductance Ratio, Note 11			097	1	097	1	095	1	095	1	090	1			
CMRR	Common Made Rejection Ratio	$\begin{aligned} & V_{D O}-10-20 \mathrm{~V} . \\ & \left.I_{D}=200 \mu \mathrm{~A}, \text { (Note } 2\right) \end{aligned}$		120		120		110		110		100		dB		

Note 1: Pulse test required, pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 3 \%$.
Note 2: $C M R R=20 \log 10 \Delta V_{D D} / \Delta V_{G S} 1-V_{G S 2},\left(\Delta V_{D D}=10 V\right)$.

NF5101-03/PF5101-03 N-Channel JFETs

General Description

The NF5101-3 (TO-72) and PF5101-3 (TO-92) are N -channel silicon Junction Field-Effect Transistors designed for ultra-low noise preamplifier applications, particularly hydrophones, particle detectors, high quality $\mathrm{mic} / \mathrm{phono} / \mathrm{tape}$, video, vidicon and I-R sensor preamplifiers.

Absolute Maximum Ratings

Drain-Gate Voltage	40 V
Reverse Gate-Source Voltage	40 V
Forward Gate Current	10 mA
Device Dissipation @ $25^{\circ} \mathrm{C}$	310 mW
\quad Derate Above $25^{\circ} \mathrm{C}$	$2.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	-65 to $+150^{\circ} \mathrm{C}$
Lead Temperature $\left(1 / 16^{\prime \prime}\right.$ from case	
\quad for 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics

	PARAMETER	CONDITIONS		PF/NF5101			PF/NF5102			PF/NF5103			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
BVGss	Gate-Source Breakdown Voltage	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}$	Ss $=0 \mathrm{~V}$	40			40			40			V
$l_{\text {gss }}$	Gate Reverse Current	$V_{G S}=15 \mathrm{~V}$.	$T_{A}=25^{\circ} \mathrm{C}$			0.2			0.2			0.2	nA
		$V_{\text {os }}=0 \mathrm{~V}$	$\mathrm{T}_{4}=125^{\circ} \mathrm{C}$			0.5			0.5			0.5	$\mu \mathrm{A}$
$V_{\text {GS(OFF }}$	Gate Source Cutoff Voltage	$V_{D S}=15 \mathrm{~V}$,	$D=1 n A$	0.5		11	0.7		1.6	1.2		27	V
${ }^{\text {o }}$ DSS	Saturation Drain Current	$\begin{aligned} & V_{D S}=15 \mathrm{~V}, \\ & \text { Pulsed } 300 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & V_{G S}=O V, \\ & \leq 2 \% \end{aligned}$	10		12	4.0		20	10		40	mA
g_{fs}	Common Source Transconductance	$V_{D G}=15 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$	35	5		3.5	5		3.5	4.5		mmho
			$\mathrm{I}_{0}=2 \mathrm{~mA}$				7.5	9		75	9		mmho
g_{0}	Common Source Output Conductance	$V_{D G}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$			5	25		5	25		5	25	$\mu \mathrm{mho}$
C_{155}	Common-Source Input Capacitance	$V_{D G}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			12	16		12	16		12	16	pF
$\mathrm{C}_{\text {rss }}$	Common Source Reverse Transfer Capacitance	$V_{D G}=15 \mathrm{~V}, V_{G 5}=0 \mathrm{~V}$			4	6		4	6		4	6	pF
NF	Common-Source Spot Noise Figure	$\begin{aligned} & V_{O G}=15 \mathrm{~V}, \mathrm{I}_{D}=0.5 \mathrm{~mA}, \\ & R_{G}=20 \mathrm{k} \Omega, t=10 \mathrm{~Hz} \end{aligned}$			1.5			1.5			1.5		dB
e_{\square}	Equivalent Short Circuit Input Norse Voltage	$\begin{aligned} & V_{D G}=10 \mathrm{~V}, \\ & f=10 \mathrm{~Hz} \\ & \hline V_{D G}=10 \mathrm{~V}, \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{I}_{\mathrm{E}}=0.5 \mathrm{~mA}$		7	20		8	20		10	25	$\overline{n V} \sqrt{\mathrm{~Hz}}$
			$10=2 \mathrm{~mA}$						15			20	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
			$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$			3.5			3.5			3.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			$\mathrm{I}_{0}=2 \mathrm{~mA}$						3			3	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$

NPD8301-03 N-Channel Monolithic Dual JFETs

General Description

The NPD8301 thru NPD8303 series of N-channel monolithic dual JFETs is designed for low cost, high performance differential amplifiers requiring tightly matched gate-source voltage, low drift, high commonmode rejection, and low output conductance.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$

Gate-to-Gate Voltage	$\pm 40 \mathrm{~V}$
Gate-Drain or Gate-Source Voltage	-40V
Gate Current	50 mA
Total Package Dissipation ($25^{\circ} \mathrm{C}$ Free-Ai	Air) 350 mW
Power Derating (to $+125^{\circ} \mathrm{C}$)	$3.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range -	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range -	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature ($1 / 16^{\prime \prime}$ from case for 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONOITIONS		NP08301			NPO8302			NP08303			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
$\mathrm{IGSS}_{\text {S }}$	Gate Reverse Current			$V_{\text {OS }}=0, V_{G S}=-20 \mathrm{~V}$, (Note 11				-100			- 100			-100	pA
VGSloff	Gate Source Cutoft Voltage	$V_{D S}=20 \mathrm{~V} \cdot 1 D^{-1 \mathrm{nA}}$		-0 5		-35	-05		-35	-05		-35			
BVGSS	Gate Source Breakdown Voltage	$\mathrm{V}_{O S}=0, \mathrm{I}_{\mathrm{G}}{ }^{-1} \mu \mathrm{~A}$		-40			40			40					
IDSS	Saturation Drain Current	$\mathrm{V}_{\text {DS }}=20 \mathrm{~V}, \mathrm{VGS}^{-} 0 .($ Note 21		0.5		60	05		60	05		60	$m \mathrm{~m}$		
${ }_{\mathrm{G}}^{\mathrm{G}}$	Gate Current, (Note 1)	$V D G=20 \mathrm{~V}, 1 \mathrm{D}-200 \mu \mathrm{~A}$				100			100			100	$\rho \mathrm{A}$		
$V_{\text {GS }}$	Gate Source Votrage			-03		40	-03		40	-03		-40	V		
9ts	Common Source Forward	$V_{D S}=20 \mathrm{~V}, V_{G S}=0$	$\mathrm{f}=1 \mathrm{kHz}$	1000		4000	1000		4000	1000		4000			
	Transconductance	$V_{D G}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$		700		1200	700		1200	700		1200			
$g_{\text {os }}$	Common Source Output Conductance	$V_{D S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$				20			20			20			
		$V_{D S}=20 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$				5			5			5			
$\mathrm{C}_{\text {ISS }}$	Common.Source Input Capacitance	VDS - $20 \mathrm{~V}, \mathrm{VGS}^{-0}$	$t=1 \mathrm{MH}_{2}$		45			45			45		pF		
$\mathrm{C}_{\text {rss }}$	Common Source Reverse Franster Capacitance				12			12			12				
en_{n}	Equivalent Short Circuit Input Noise Voltage	$V_{D S}=20 V, 1 D-200 \mu A$	$f-100 \mathrm{~Hz}$		15			15			15		$\frac{\mathrm{nV}}{\sqrt{\bar{H}_{2}}}$		
$\left\|V_{G S 1}-V_{G S 2}\right\|$	Differential Gate Source Voltage	$V_{D G}-20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}$				5			10			15	mv		
$\frac{\Delta\left\|V_{G S} 1-V_{G S 2}\right\|}{\Delta T}$	Gate-Source Differential Drift	$\begin{aligned} & V_{D G}=20 V, I_{D}-200 \mu \mathrm{~A} . \\ & T_{A}=25^{\prime} \mathrm{C} \text { to } T_{\mathrm{B}} \quad 85^{\circ} \mathrm{C} \end{aligned}$				10			15			25	$\mu \mathrm{V}, \mathrm{C}$		
CMRR	Common Mode Rejection Ratio	$V_{D D}=10 V \text { to } V_{D D}-20 V, 1 D-200 \mu A$ (Note 3)		70	80			80			80		dB		

Note 1: Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
Note 2: Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
Note 3: CMRR $=20 \log _{10}\left\{\Delta V_{D D} / \Delta V_{G S 1}-V_{G S 2} \mid\right], \Delta V_{D D}=10 V$.

U308-10 N-Channel JFETs

General Description

The U308 thru U310 series of N -channel JFETs is designed for VHF amplifier, oscillator and mixer applications.

Absolute Maximum Ratings $\left(25^{\circ} \mathrm{C}\right)$
$\begin{array}{lr}\text { Gate-Drain or Gate-Source Voltage } & -25 \mathrm{~V} \\ \text { Gate Current } & 20 \mathrm{~mA} \\ \text { Total Power Dissipation } & 500 \mathrm{~mW} \\ \text { Power Derating } & 4 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+200^{\circ} \mathrm{C} \\ \text { Lead Temperature }\left(1 / 16^{\circ} \text { from case }\right. & \\ \quad \begin{array}{lr} \\ \text { for } 10 \text { seconds) }\end{array} & 300^{\circ} \mathrm{C}\end{array}$

Electrical Characteristics ($25^{\circ} \mathrm{C}$ unless otherwise noted)

PARAMETER		CONDITIONS		U308			U309			U310			UNITS		
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX					
'GSS	Gute Reverse Current			$\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{~V}$				-150			150			-150	pA
		$V_{G S}=0$	$\mathrm{T}=125^{\circ} \mathrm{C}$			-150			150			-150	nA		
BVGSS	Gate Source Breakdown Voltaqe	$\mathrm{I}_{\mathrm{G}}=1 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}+0$		-25			-25			-25					
VGS(off)	Gate Source Cutoff Voltage	$V_{D S}=10 \mathrm{~V}, \mathrm{t}_{\mathrm{D}}-1 \mathrm{nA}$		-10		-6.0	-1.0		40	-2.5		6.0			
IDSS	Saturatron Dram Current	$V_{D S}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}-0$ (Note 1)		12		60	12		30	24		60	$m A$		
VGS(f)	Gate-Source Forward Voltage	${ }^{1} \mathrm{G}-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=0$				10			10			10	V		
9 fg	Common Gate Forward Transconductance, (Note 1)	$V_{D S}-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}-10 \mathrm{~mA}$	$\mathrm{f}-1 \mathrm{kHz}$	10		20	10		20	10		18	mmho		
90 gs	Common Gate Output Conductance					150			150			150	$\mu \mathrm{mho}$		
C_{gc}	Diam Gate Capacitance	$V_{D S}-10 \mathrm{~V}, V_{G S}=-10 \mathrm{~V}$	$f-1 \mathrm{MHz}$	*		25			25			25			
$\mathrm{C}_{\text {प5 }}$	Gditu Source Capacitance					5.0			50			50	pr		
${ }^{\text {P }} \mathrm{n}$	Equivalent Short Circuit Input Norse Voltage:	$V_{\text {DS }}=10 \mathrm{~V}, 1 \mathrm{D}-10 \mathrm{~mA}$	$f=100 \mathrm{~Hz}$		10			10			10		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{H}} 2}$		
$9_{f g}$	Common Gate Forward Transconductance	$V_{D S}-10 \mathrm{~V}, I_{D}$ (10 mA	$f=700 \mathrm{MHz}$		12			12			12				
			f- -450 MHz		11			11			11				
9ogs	Common-Gdte Dutput Conductance		$f=100 \mathrm{MHz}$		018			018			018		mmo		
			$\mathrm{f}=450 \mathrm{MHz}$		07			07			07				
$G_{p g}$	Common Gate Power Gam		$t=100 \mathrm{MHz}$		15			15			15		dB		
			f - 450 MHz		10			10			10				
$N F$	Noise Figura		$\mathrm{f}-100 \mathrm{MHz}$		15			15			15				
			$\mathrm{f}-450 \mathrm{MH}_{2}$		3.2			3.2			3.2				

Note 1: Pulse test duration $=2 \mathrm{~ms}$.

Section 5
 Analog Switches

0

RON (Ω)	$\begin{aligned} & V_{A} / 1 \\ & \text { (V) } \end{aligned}$	PART NUMBER	LOGIC INPUT	$\begin{aligned} & V_{S} \\ & \text { (V) } \\ & T Y P \end{aligned}$	TDN/tOFF TYP	$\begin{aligned} & \text { RDN } \\ & (\Omega) \end{aligned}$	$\begin{aligned} & V_{A} / I \\ & (V) \end{aligned}$	PART NUMBER	LOGIC INPUT	$\begin{aligned} & \mathrm{V}_{\mathbf{S}} \\ & \text { (V) } \\ & \text { TYP } \end{aligned}$	${ }^{\text {O ON/TOFF }}$ TYP	RoN (Ω)	$\begin{aligned} & V_{A} / 1 \\ & (V) \end{aligned}$	PART NUMBER	LOGIC INPUT	$\begin{aligned} & V_{S} \\ & \text { (V) } \\ & \text { TYP } \end{aligned}$	ton/toff TYP
Dual SPST						SPDT						MULTIPLE	ERS				
10	± 10	AH0141/DG141	TTL	-18, 12	0.8/1.1 $\mu \mathrm{s}$	10	± 10	AH0146/DG146	TTL	-18, 12	0.8/1.1 s						
30	± 10	AH0133/DG133	TTL	-18, 12	0.5/0.9 ${ }^{\text {s }}$	30	± 10	AH0144/DG144	TTL	-18, 12	0.5/0.9 $\mu \mathrm{s}$	2. Channel	ferential				
80	± 10	AH0134/DG134	TTL	-18. 12	0.5/0.9 \%	80	± 10	AH0143/DG143	TTL	-18,12	0.5/0.9 $\mu \mathrm{s}$	200600	± 10	MM450/MM550	PMOS		
15	± 75	AH0151/DG151	TTL	± 15	0.8/1.1 $\mu \mathrm{s}$	15	± 75	AH0161/DG 161	TTL	± 15	$08 / 1.1$ /						
50	± 75	AH0152/DG152	TTL	± 15	0.5/0.9 $/ \mathrm{s}$	50	+75	AH0162/DG162	TTL	± 15	0.5/09 m	3 Channel					
$\cdot 30$	± 75	AM181/DG181	TTL	± 15, 5	$180 / 150 \mathrm{~ns}$	100	$+9$	AH2114 (Sw- 1)	15 V TTL	± 15	35/600 ns	* 100	15 mA	AH5013	15 V TYL		150/300 ns
$\cdot 75$	± 10	AM182/DG182	TTL	± 15.5	300/150 ns	$\cdot 30$	± 75	(Sw. 2) AM ${ }^{\text {a }}$ /DG187		$\pm 15,5$	$\begin{aligned} & 12 \mu \mathrm{~s} / 50 \mathrm{~ns} \\ & 180 / 150 \mathrm{~ns} \end{aligned}$	${ }^{150}$	5 mA	AH5014	TTL		150/300 ns
Triple SPST						$\cdot 75$	± 10	AM188/DG188	TTL	$\pm 15,5$	300/150 ns	4.Channel					
- 100	15 mA	AH5015	15 V TT		150/300 ns							-100	15 mA	AH5009/AM9709	15 V TTL		150/300 ns
-150	5 mA	AH5016	TTL		150/300 ns	Dual SPDT						$\cdot 100$	10 mA	AM97C09	CMOS		150/300 ns
200600	$\pm 10 \mathrm{~V}$	MM455/MM555	PMOS			$\cdot 30$	± 75	AM190/DG190	TTL	515,5	180/150 ns	-150	5 mA	AH5010/AM9710	TTL		150/300 ns
						$\cdot 75$	± 10	AM191/DG191	TL	± 15.5	300/150 ns	$\cdot 150$	3 mA	AM97C10	cmos		150/300 ns
Ouad SPST												200.600	± 10	MM451/MM551	PMOS		
200-600	± 10	AH0015	TTL	-20.10, 5	100/400 ns	Triple SPDT											
-200	± 10	LF11201	TTL	± 15	90/500 ns	280	± 75	CD4053	CMOS	± 75		4.Channel	ifferential				
-200	± 10	LF11202	TTL	± 15	90/500 ns							280	+75	CD4052	CMOS	± 75	
- 200	± 10	LF11331	TTL	± 15	90/500 ns	Dual DPST						200600	+10	MM454/MM554	PMOS	24. 12	
-200	± 10	LF11332	TTL	± 15	90/500 ns	10	+10	AH0140/DG140	TTL	-18.12	0.8/1 1 /	-350	12, 15	LF11509	TTL	± 15	1/0.2 $\mu \mathrm{s}$
- 200	± 10	LF11333	TTL	- 15	90/500 ns	30	$+10$	AH0129/DG129	THL	18.12	0 0/09 ${ }^{\text {\% }}$						
- 250	± 10	LF13201	TTL	$+15$	90/500 ns	80	110	AH0126/DG126	TTL	18.12	0.5/0 9\%	6.Channel					
- 250	± 10	LF13202	TTL	± 15	90/500 ns	15	± 75	AH0153/DG153	TTL	$+15$	$08 / 11 \mathrm{~ms}$	2501500	50 mA	AM2009/MM4504,	TTL		
- 250	± 10	LF13331	TTL	± 15	90/500 ns	50	± 75	AH0154/DG154	TTL	± 15	0 5/0.9 $\mu \mathrm{s}$			MM5504			
- 250	± 10	LF13332	TTL	± 15	90/500 ns	200600	± 10	AH0019	TTL	-20.10.5	100/400 ns						
- 250	± 10	LF13333	TTL	± 15	90/500 ns	$\cdot 30$	± 7.5	AM184/DG 184	TTL	± 155 +155	180/150 ns	$8 . C h a n n e 1$					
280	± 75	CD4066	CMOS	: 7.5		${ }^{7} 75$	± 10	AM185/DG185	TTL	± 15.5	$300 / 150 \mathrm{~ns}$	250.400	± 5	AM3705	TTL	-15. 5	
850	± 7.5	CD4016	CMOS	± 7.5								-350	12.-15	LF11508	TTL	± 15	$1 / 0.2 \mu \mathrm{~s}$
- 100	15 mA	AH5011/AM9711	15 V T		$150 / 300 \mathrm{~ns}$	DPDT											
$\cdot 100$	10 mA	AM97C11	CMOS		$150 / 300 \mathrm{~ns}$	10	± 10	AH0145/DG 145		$-18,12$.18 .12		8 Channel	ifferential				
$\cdot{ }^{-150}$	5 mA	AH5012/AM9712	TTL		$150 / 300 \mathrm{~ns}$ $150 / 300 \mathrm{~ns}$	30	± 10 +10	AH0139/DG139	TTL	-18.12 -18.12	0.5/0.9 $05 / 09 \mathrm{~s}$	-350	12. 15	LF11507	TrL	+15	$1 / 0.2 \mu \mathrm{~s}$
- 150	$\stackrel{3 \mathrm{~mA}}{+75}$	AM97C12	cmos	115. 5	$150 / 300 \mathrm{~ns}$ $180 / 150 \mathrm{~ns}$	80 15	+10 +75	AH0163/DG163	TTL	+15	0.8/1.1 $\mu \mathrm{s}$						
- 75	75 +10	AM193	TTL	+15.5	300/150 ns	50	$+7.5$	AH0164/DG164	TTL.	+15	05/09 ${ }^{\text {\% }}$	16-Channe					
200.600	± 10	MM452/MM552	PMOS		$150 / 300 \mathrm{~ns}$	200600	- 10	AH0014	TTL	-20.10.5	350/400 ns	- 350	12. 15	LF11506	TTL	± 15	$1 / 02 \mu \mathrm{~s}$

[^11]
Definition of Terms

Driver Leakage Current: The sum of the currents into the source and drain switch terminals, with both held at the same specified voltage.

Logic " 1 " Input Voltage: The voltage level which is guaranteed to be interpreted hy the device as a logical "true" signal.

Logic " 0 " Input Voltage: The voltage level which is guaranteed to be interpreted by the device as a logical "false" signal.

Logic Input Slew Rate: The voltage difference between the logic " 1 " and logic " 0 " states divided by the transition time.

Switch Leakage Current: The current seen when a specified voltage is applied between drain and source of a channel that is logically turned off.

Switch "ON" Resistance: The equivalent resistance from source to drain, tested by forcing a specified current and measuring the resultant voltage drop.

Switch Turn "OFF" Time: The interval between the time that the logic input passes through the threshold voltage and the time that the output goes to a specified voltage level in the test circuit.

Switch Turn "ON" Time: The interval between the time that the logic input passes through the threshold voltage and the time that the output goes to 90% of its final value in the specified test circuit.

General Description

This series of TTL/DTL compatible MOS analog switches feature high speed with internal level shifting and driving. The package contains two monolithic integrated circuit chips: the MOS ana\log chip is similar to the MM450 type which consists of four MOS analog switch transistors; the second chip is a bipolar I.C. gate and level shifter. The series is available in both hermetic dual-in-line package and flatpack.

Features

$\begin{array}{lr}\text { - Large analog voltage switching } & \pm 10 \mathrm{~V} \\ \text { - Fast switching speed } & 500 \mathrm{~ns} \\ \text { - Operation over wide range of power supplies } \\ \text { - Low ON resistance } & 200 \Omega \\ \text { - High OFF resistance } & 10^{11} \Omega\end{array}$

- Fully compatible with DTL or TTL logic
- Includes gating and level shifting

These switches are particularly suited for use in both military and industrial applications such as commutators in data acquisition systems, multiplexers, A / D and D / A converters, long time constant integrators, sample and hold circuits, modulators/demodulators, and other analog signal switching applications. For information on other National analog switches and analog interface elements, see listing on last page.

The AH0014, AH0015 and AH0019 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The $\mathrm{AH} 0014 \mathrm{C}, \mathrm{AH} 0015 \mathrm{C}$ and AH0019C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Block and Connection Diagrams

Order Number AH0014F or AH0014CF See Package 23 Quad SPST

Note All loge inputs shown at logic " 1 .
Order Number AH0015D or AH0015CD See Package 15

Typical Applications

*Previously called NH0014/NH0014C and NH0019/NH0019C

Order Number AH0014D or AH0014CD See Package 14 Dual DPST

Order Number AH0019F or AH0019CF See Package 23
Order Number AH0019D or AH0019CD See Package 14
Reset Stabilized Amplifier

Absolute Maximum Ratings

$V_{\text {CC }}$ Supply Voltage	7.0 V
V^{-}Supply Voltage	-30 V
$\mathrm{~V}^{+}$Supply Voltage	+30 V
$\mathrm{~V}^{+} \mathrm{V}^{-}$Voltage Differential	40 V
Logic Input Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
AH0014, AH0015, AH0019	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AH0014C, AH0015C, AH0019C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 1 and 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Logical ' 1' Input Voltage	$V_{\text {cc }}=4.5 \mathrm{~V}$	2.0			\checkmark
Logical " 0 " Input Voltage	$V_{\text {Cc }}=4.5 \mathrm{~V}$			0.8	\checkmark
Logical "1" Input Current	$V_{\text {cc }}=5.5 \mathrm{~V} \quad V_{\text {IN }}=2.4 \mathrm{~V}$			5	$\mu \mathrm{A}$
Logical "1" Input Current	$V_{C C}=5.5 \mathrm{~V} \quad V_{\text {IN }}=55 \mathrm{~V}$			1	mA
Logical '0' Input Current	$V_{\mathrm{CC}}=5.5 \mathrm{~V} \quad \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$		0.2	0.4	mA
Power Supply Current Logical "1" Input - each gate (Note 3)	$V_{c c}=5.5 \mathrm{~V} \quad V_{1 N}=4.5 \mathrm{~V}$		0.85	1.6	mA
Power Supply Current Logical ' 0 "	$V_{\text {cc }}=5.5 \mathrm{~V}$				
Input - each gate (Note 3)					
AH0014, AH0014C			1.5	3.0	mA
AH0015, AH0015C			0.22	0.41	mA
AH0019. AH0019C			0.22	041	mA
Analog Switch ON Resistance - each gate	$\begin{aligned} & V_{\text {IN }}(\text { Analog })=+10 \mathrm{~V} \\ & V_{\text {IN }}(\text { Analog })=-10 \mathrm{~V} \end{aligned}$		75	200	Ω
			150	600	Ω
Analog Switch OFF Resistance			10^{11}		Ω
Analog Switch Input Leakage Current each input (Note 4)	$V_{1 N}=-10 \mathrm{~V}$				
AH0014, AH0015, AH0019	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$		25	200	pA
			25	200	$n \mathrm{~A}$
AH0014C, AH0015C, AH0019C	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=70^{\circ} \mathrm{C} \end{aligned}$		0.1	10	nA
			30	100	nA
Analog Switch Output Leakage Current - each output (Note 4) AH0014, AH0015, AH0019	$V_{\text {OUT }}=-10 \mathrm{~V}$				
	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$		40	400	pA
			40	400	$n \mathrm{~A}$
AH0014C, AH0015C, AH0019C	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$		0.05	10	$n \mathrm{~A}$
			4	50	nA
Analog Input (Drain) Capacitance	1 MHz @ Zero Bias		8	10	pF
Output Source Capacitance	1 MHz @ Zero Bras		11	13	pF
Analog Turn OFF Time - $\mathrm{t}_{\text {OFF }}$	See test circuit; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ See test crrcuit; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		400	500	ns
Analog Turn ON Time - $\mathrm{t}_{\text {ON }}$					
AH0014, AH0014C			350	425	ns
AH0015, AH0015C			100	150	ns
AH0019, AH0019C			100	150	ns

[^12]
Analog Switch Characteristics (Note 2)

Schematic (Single Driver Gate and MOS Switch Shown)

Analog Switching Tıme Test Circuit

Selecting Power Supply Voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply V^{-}is shown on the X axis. It must be between - 25 V and -8 V . The allowable range for power supply V^{+}is governed by supply V^{-}. With a value chosen for $\mathrm{V}^{-}, \mathrm{V}^{+}$may be selected as any value along a vertical line passing through the V^{-}value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5 V should be maintained for adequate signal swing.

AH0120, AH0130, AH0140, AH0150, AH0160 Series Analog Switches

General Description

The AH0100 series represents a complete family of junction FET analog switches. The inherent flexibility of the family allows the designer to tailor the device selection to the particular application. Switch configurations available include dual DPST, dual SPST, DPDT, and SPDT. $\mathrm{r}_{\text {ds (ON }}$ ranges from 10 ohms through 100 ohms. The series is available in both 14 lead flat pack and 14 lead cavity DIP. Important design features include:

- TTL/DTL and RTL compatible logic inputs
- Up to 20 V p-p analog input signal
- ras(on) less than 10Ω (AH0140, AH0141, AH0145, AH0146)
- Analog signals in excess of 1 MHz
- "OFF" power less than 1 mW
- Gate to drain bleed resistors eliminated
- Fast switching, $t_{O N}$ is typically $4 \mu \mathrm{~s}$, $\mathrm{t}_{\text {OFF }}$ is $1.0 \mu \mathrm{~s}$
- Operation from standard op amp supply voltages, $\pm 15 \mathrm{~V}$, available (AH0150/AH0160 series)
- Pin compatible with the popular DG 100 series.

The AH0100 series is designed to fulfill a wide variety of analog switching applications including commutators, multiplexers, D/A converters, sample and hold circuits, and modulators/demodulators. The AH0100 series is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the AH0100C series is guaranteed over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Schematic Diagrams

Note Dotted lene poitions are not applicable to the dual SPST

DPDT (diff.) and SPDT (diff.)

Note Dotted hise poitions ale not applicable to the SPOT (differential)

Logic and Connection Diagrams

Drder any of the devices below using the part number with a D or F suffix. See Packages 14 and 23 DUAL DPST

DUAL SPST
DUAL DPDT (Diff)
SPDT (Diff)

HIGHLEVELI $\pm 10 \mathrm{VI}$
AH0145 Ilos? AHO139 (30:2)
AHOO142 (80R)
AH0163 $115 \Omega \mid$

HIGH LEVEL (+10 V)

MEDIUM LEVEL (47.5 V) AHO161 (15S2)
AHO162 (50S)

Absolute Maximum Ratings

Electrical Characteristics for "HIGH LEVEL" Switches (Note 1)

PARAMETER	SYMBOL	DEVICE TYPE				CONDITIONS	LIMITS		UNITS	
		DUAL DPST	DUAL SPST	DPDT DIFFI	$\begin{aligned} & \text { SPDT } \\ & \text { GDIFF) } \end{aligned}$	$V^{+}=120 \mathrm{~V} V^{-}=-18.0 \mathrm{~V}, V_{R}=0.0 \mathrm{~V}$	TYP	MAX		
Loge ${ }^{\prime \prime} 1$ '		All Cres,				Note $2 \quad T_{\text {a }}-25$	20	60	$\mu \mathrm{A}$	
Input Current	INION						120	μA		
Lagic $0^{\prime \prime}$		All Gireste					TA $25^{\circ} \mathrm{C}$	01	1	$\mu \mathrm{A}$
Input Current	IN DFF					Over Temp Range		20^{-}	$\mu \mathrm{A}$	
Positive Supply Current		As Coris's				Dut Drmer On Note? $\mathrm{I}_{\mathrm{A}} 25 \mathrm{C}$	22	3.0	$m A$	
Switch ON	(N)					Over Temp Range		33	mA	
Negative Supply		All Cirs. ${ }^{\text {ch }}$				One Driver ON Note 2 TA_25 C	-10	-18	$m A$	
Current Switch ON	0 N					Onp Oriver On Note 2 Over Temp Range		-20	$\overline{m A}$	
Reference Input		All Cucule				One Driver ON Nute $2 \quad \mathrm{TA}$ - $25^{\prime} \mathrm{C}$	-10	-14	mA	
(Enable) ON Current	R16N					Over Temp Range		-16	mA	
Positive Supply	*	All Circuis				$8 V \quad$ TA $25^{\circ} \mathrm{C}$	10	10	$\mu \mathrm{A}$	
Current Switch OFF	+ UFF					Vivi Vinz Over Temp Range		25	$\mu \mathrm{A}$	
Negative Supply		All Circuits				$V_{\text {INi }} V_{N 2} 08 V \mathrm{~T}_{\mathrm{A}}-25 \mathrm{C}$	-10	-10	$\mu \mathrm{A}$	
Current Switch OFF	(1.)FFI					Vini Vinz O8V Over Temp Range		-25	$\mu \mathrm{A}$	
Reterence lnput		All Circuts				-Vine $08 \mathrm{~V} \quad \mathrm{~T}_{\text {A }}-25^{\circ} \mathrm{C}$	-10	-10	$\mu \mathrm{A}$	
(Enable) OFF Current	1rioff					- Vin 2 O8V Over Temp Range		-25	$\mu \mathrm{A}$	
Switch ON Resistance	Is an	AHO126	AHO134	AHO:42	AH0143	Vo 10 V , $\mathrm{T}_{\text {A }} 25^{\circ} \mathrm{C}$	45	80	Ω	
Switch ON Resistance	Tos is	AHO129	AHOI33		AHO144	$V_{\square} 10 \mathrm{~V}$, TA 25 C -	25	30	Ω	
				4 HCO 139				60	Ω	
Switch ON Resistance	'asicni	AH0140	AHO141		AH0146	$\mathrm{I}_{\mathrm{f}} 1 \mathrm{~mA}$ Over Temp Range	8	10	Ω	
				AnO145				20	$\sqrt{2}$	
		All Circuits				$V_{0}=V_{S}=-10 \mathrm{~V}$	01	1	ПA	
Driver Leakage Current	$10_{0}+I_{3}$ IOn						100	nA		
Switch Leakage	ISIOFFIOR	AH0126	AHO134	AH0142	AH0143		$T_{\text {a }}-25^{\circ} \mathrm{C}$	08	1	TA
Current	losoff:	AH0129	AHO133	AH0139	AH0144	Over Temp Range		100	$\square \cdot$	
Switch Leakoge	$I_{\text {SIOFF, }}$ OR	AHO140	AHO141	AHD145	AH0146	$V_{0 S}+20 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	4	10	กA	
Current	Idioffi	AHOT40	AHOTA	AH0145	AHO146	DS - Over Temp Range		10	$\mu \mathrm{A}$	
Switch Turn ON Time	${ }^{\text {ton }}$	AHO129	AHO134AHO133	AM0142	AH0143	See Test Circuit	05	08		
				AH0139	AH0144	$V_{A} \pm 10 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	05	08	μs	
Switch Turn ON Time	Ion	AH0140	AH014 1	A 40145	AHO146	$V_{A}{ }^{-+10 V} \quad T_{A}=25^{\circ} \mathrm{C}$	08	10	$\mu \mathrm{s}$	
Switch Turn OFF Time	IOFF	$\begin{aligned} & \text { AH0126 } \\ & \text { AH0129 } \end{aligned}$	$\begin{aligned} & \text { AHO134 } \\ & \text { AHO } 33 \end{aligned}$	$\begin{aligned} & \text { AHO142 } \\ & \text { AHO139 } \end{aligned}$	$\begin{aligned} & \text { AHO } 143 \\ & \text { AHO144 } \end{aligned}$	See Test Circuit	09	16	$\mu 5$	
						$V_{A} \pm 10 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
Switch Turn OFF Time	torf	AH0140	AH0141	AHO145	AH0146	$V_{A}= \pm 10 \mathrm{~V} \quad T_{A}=25^{\circ} \mathrm{C}$	11	25	$\mu \mathrm{s}$	
Swich furn OfF time	torf								μ	

Note 1: Unless otherwise specified these limits apply for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the $\mathrm{AHO100}$ series and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the AHO100C series All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Note 2: For the OPST and Oual OPST, the ON condition is for $V_{I N}=2.5 \mathrm{~V}$, the OFF condition is for $V_{I N}=0.8 \mathrm{~V}$ For the differential switches and $S_{1} 1$ and $2 O N, V_{I N 2}=2.5 \mathrm{~V}, V_{I N}=3.0 \mathrm{~V}$. For SW 3 and $4 \mathrm{ON}, \mathrm{V}_{\mid N_{2}}=2.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N} \mid}=2.0 \mathrm{~V}$.

Electrical Characteristics for "MEDIUM LEVEL" Switches (Note 1)

Note 1: Unless otherwise specified, these limits apply for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the AH 0100 series and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the AH0100C series. All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: For the DPST and Dual DPST, the ON condition is for $V_{1 N}=25 \mathrm{~V}$; the OFF condition is for $V_{I N}=0.8 \mathrm{~V}$. For the differential switches and $S W 1$ and $2 O N, V_{I N 2}=2.5 \mathrm{~V}, V_{I N 1}=3.0 \mathrm{~V}$. For SW 3 and $4 \mathrm{ON}, \mathrm{V}_{1 \mathrm{~N} 2}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 1}=2.0 \mathrm{~V}$.

Typical Performance Characteristics

Switching Time Test Circuits

Single Ended Input

Differential Input

Applications Information

1. INPUT LOGIC COMPATIBILITY

A. Voltage Considerations

In general, the AH0100 series is compatible with most DTL, TTL, and RTL logic families. The ON. input threshold is determined by the V_{BE} of the input transistor plus the V_{f} of the diode in the emitter leg, plus $1 \times R_{1}$, plus V_{R}. At room temperature and $V_{R}=0 \mathrm{~V}$, the nominal ON threshold is. $0.7 \mathrm{~V}+0.7 \mathrm{~V}+0.2 \mathrm{~V}=1.6 \mathrm{~V}$. Over temperature and manufacturing tolerances, the threshold may be as high as 2.5 V and as low as 0.8 V . The rules for proper operation are:

$$
\begin{aligned}
& V_{I N}-V_{R} \geq 2.5 V \text { All switches ON } \\
& V_{I N}-V_{R} \leq 0.8 V \text { All switches OFF }
\end{aligned}
$$

B. Input Current Considerations

IINion, the current drawn by the driver with $V_{I N}=2.5 \mathrm{~V}$ is typically $20 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$ and is guaranteed less than $120 \mu \mathrm{~A}$ over temperature. DTL, such as the DM930 series can supply $180 \mu \mathrm{~A}$ at logic " 1 " voltages in excess of 2.5 V . TTL output levels are comparable at $400 \mu \mathrm{~A}$. The DTL and TTL can drive the AH0100 series directly. However, at low temperature, DC noise margin in the logic " 1 " state is eroded with DTL. A pull-up resistor of $10 \mathrm{k} \Omega$ is recommended when using DTL over military temperature range.

If more than one driver is to be driven by a DM930 series (6 K) gate, an external pull-up resistor should be added. The value is given by:

$$
R_{P}=\frac{11}{N-1} \text { for } N>2
$$

where:
$R_{P}=$ value of the pull-up resistor in $k \Omega$
$N=$ number of drivers.

C. Input Slew Rate

The slew rate of the logic input must be in excess of $0.3 \mathrm{~V} / \mu \mathrm{s}$ in order to assure proper operation of the analog switch. DTL, TTL, and RTL output rise times are far in excess of the minimum slew rate requirements. Discrete logic designs, however, should include consideration of input rise time.

2. ENABLE CONTROL

The application of a positive signal at the V_{R}
terminal will open all switches. The V_{R} (ENABLE) signal must be capable of rising to within 0.8 V of $V_{\text {IN(ON })}$ in the OFF state and of sinking $\left.\right|_{\mathrm{R}(O N)}$ milliamps in the ON state (at $V_{\text {iN(ON }}-V_{R}>$ 2.5 V). The V_{R} terminal can be driven from most TTL and DTL gates.

3. DIFFERENTIAL INPUT CONSIDERATIONS

The differential switch driver is essentially a differential amplifier. The input requirements for proper operation are:

$$
\begin{aligned}
& \left|V_{I N 1}-V_{1 N 2}\right| \geq 0.3 V \\
& 2.5 \leq\left(V_{I N 1} \text { or } V_{I N 2}\right)-V_{R} \leq 5 V
\end{aligned}
$$

The differential driver may be furnished by a DC level as shown below. The level may be derived from a voltage divider to V^{+}or the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ of the DTL logic. In order to assure proper operation, the divider should be "stiff" with respect to $\mathrm{I}_{\text {IN } 2}$. Bypassing R1 with a $0.1 \mu \mathrm{~F}$ disc capacitor will prevent degradation of $t_{O N}$ and $t_{\text {OFF }}$.

Alternatively, the differential driver may be driven from a TTL flip-flop or inverter.

Connection of a 1 mA current source between V_{A} and V^{-}will allow operation over a $\pm 10 \mathrm{~V}$ common mode range. Differential input voltage must be less than the 6 V breakdown, and input threshold of 2.5 V and 300 mV differential overdrive still prevail.

4. ANALOG VOLTAGE CONSIDERATIONS

The rules for operating the AH 0100 series at supply voltages other than those specified essentially breakdown into OFF and ON considerations The OFF considerations are dictated by the maxi mum negative swing of the analog signal and the pinch off of the JFET switch. In the OFF state, the gate of the FET is at $V^{-}+V_{B E}+V_{S A T}$ or about 1.0 V above the V^{-}potential. The maximum V_{p} of the FET switches is 7 V . The most negative analog voltage, V, swing which can be accomo dated tor any given supply voltage is

$$
\begin{aligned}
& V_{A} \mid \leq V^{--}-V_{P}-V_{B E}-V_{S A T} \text { or } \\
& V_{A} \leq\left|V^{-}\right|-8.0 \text { or }\left|V^{-}\right|>\left|V_{A}\right|+8 \text { oV }
\end{aligned}
$$

For the standard high level switches, $V_{A} \leq-\quad-18$ $+8=-10 \mathrm{~V}$ The value for V^{+}is dictated by the maximum positive swing of the andlog input voltage. Essentially the collector to base junction of the turnon PNP must remann reversed biased for all positive value of analog input voltage. The base of the PNP 15 at $V^{+}-V_{S A T}-V_{B E}$ or $V^{+}-10 V$. The PNP's collector base junction should have at least 1.0 V reverse bias. Hence, the most positive analog voltage swing which may be accommodated for a given value of V^{+}is:

$$
V_{A} \leq V^{+}-V_{S A T}-V_{B E}-1.0 V \text { or }
$$

$$
V_{A} \leq V^{+}-2.0 V \text { or } V^{+} \geq V_{A}+2.0 V
$$

For the standard high level switches, $V_{A}=12-$ $2.0 \mathrm{~V}=+10 \mathrm{~V}$.

5. SWITCHING TRANSIENTS

Due to charge stored in the gate-to-source and gate-to-drain capacitances of the FET switch, transients may appear in the output during switching. This is particularly true during the OFF to ON transition The magnitude and duration of the transient may be minimized by making source and load impedance levels as small as practical.

Furthermore, transients may be minımized by operating the switches in the differential mode; i.e., the charge delivered to the load during the ON to OFF transition is, to a large extent, cancelled by the OFF to ON transition.

Typical Applications

Pragrammable One Amp Power Supply

Four to Ten Bit D to A Converter (4 Bits Shown)

Typical Applications (Continued)
Four Channel Differential Transducer Commutator
ain 22
Commutation Rate 500 kHz

$\begin{array}{ll}130 & -11 \\ 135 & -121\end{array}$

Delta Measurement System for Automatic Linear Circuit Tester

Precision Long Time Constant Integrator with Reset

Four Channel Commutator

AH2114／AH2114C DPST Analog Switch

General Description

The AH2114 is a DPST analog switch circuit com． prised of two junction FET switches and their associated driver．The AH2114 is designed to fulfill a wide variety of high level analog switching appli－ cations including multiplexers，A to D Converters， integrators，and choppers．Design features include：
－Low ON resistance，typically 75Ω
－High OFF resistance，typically $10^{11} \Omega$
－Large output voltage swing، typically $\pm 10 \mathrm{~V}$
－Powered from standard op－amp supply voltages of $\pm 15 \mathrm{~V}$
－Input signals in excess of 1 MHz
－Turn－ON and turn－OFF times typically $1 \mu \mathrm{~s}$

The AH2114 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ whereas the AH 2114 C is guaranteed over the temperature range $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

Schematic and Connection Diagrams

top view
Order Number AH2114G or AH2114CG See Package 3

AC Test Circuit and Waveforms

FIGURE 1.

FIGURE 2.

Absolute Maximum Ratings

Vplus Supply Voltage	$+25 \mathrm{~V}$
Vminus Supply Voltage	-25V
Vplus Vminus Differential Voltage	40 V
Logic input Voltage	25 V
Power Dissipation (Note 3)	136 W
Operating Temperature Range	
AH2114	$55^{\circ} \mathrm{C}$ to $+125^{\prime \prime} \mathrm{C}$
AH 2114 C	$0^{\circ} \mathrm{C}$ to $+85^{\prime \prime} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperdure (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 1 and 2)

PARAMETER	CONDITIONS	AH2114			AH2114C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Static Dran-Source On" Resistance	$\left\lvert\, \begin{array}{lrlll} \mathrm{I}_{\mathrm{D}} & 10 \mathrm{~mA}, \mathrm{~V}_{G S} & O V & \mathrm{~T}_{A} & 25^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{D}} & -10 \mathrm{~mA}, \mathrm{~V}_{G S} & O V & & \end{array}\right.$		75	$\begin{aligned} & 100 \\ & 150 \end{aligned}$		75	$\begin{aligned} & 125 \\ & 160 \end{aligned}$	$\begin{aligned} & 5! \\ & \vdots \end{aligned}$
Dram Gate Leakage Current	Vos $20 \mathrm{~V} V_{\text {us }}-7 V \mathrm{~T}_{\text {A }}-25 \mathrm{C}$		02	10 60		$0 ?$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & n A \\ & n A \end{aligned}$
FET Gate Source Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{G}} \quad 10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V} \end{aligned}$	35			35			V
Drain-Gate Capacitance	$\begin{aligned} & V_{D O}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}-0 \\ & \mathrm{~F}-10 \mathrm{MHz} \mathrm{~T}_{\mathrm{A}} \quad 25 \mathrm{C} \end{aligned}$		40	50		40	50	pF
Source Gate Cupacitance	$\begin{aligned} & V_{0 G} 20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0 \\ & \mathrm{f} \quad 10 \mathrm{MHz}, \mathrm{~T}_{\Delta} \quad 25 \mathrm{C} \end{aligned}$		40	50		40	60	pF
Input 1 Tupn-ON Tıme	$V_{1 N 1}=10 \mathrm{~V}, T_{A} \quad 25 \mathrm{C}$ (See Figure 1)		35	60		35	60	\%
Input 2 Turn ON Time	$\begin{aligned} & V_{\text {IN. }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}-25 \mathrm{C} \\ & \text { (See Fiqure ; } \end{aligned}$		12	15		12	12	12s
Input 1 Turn-OFF Time	$V_{I N T}-10 V, T_{A}-25 C$ See Figure 1)		06	075		06	075	μs
Input 2 Turn OFF Time	VIN2 10 V . TA 25 C (See Figure is		50	80		50	80	ir
DC Voltage Range	$\begin{array}{ll} T_{A} & 25^{\prime \prime} C \\ \text { (See Figure } & \end{array}$	± 90	$+100$		-90	$+100$		V
$A C$ Volidge Range	$T_{\mathrm{A}} \quad 25 \mathrm{C}$ (See Figure 21	-90	± 100		$+90$	± 100		V

Note 1: Unless otherwise specified these specifications apply for pin 12 connected to +15 V , pin 2
connected to $-15 \mathrm{~V},-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the AH 2114 , and $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the AH 2114 C .
Note 2: All typical values are for $\mathrm{T}_{\mathrm{A}} \quad 25^{\circ} \mathrm{C}$
Note 3: Derate linearly at $100^{\circ} \mathrm{C} / \mathrm{W}$ above $25^{\circ} \mathrm{C}$

Monolithic N-Channel Junction FET Switches With High Speed Drivers

AM 181/AM281, AM 182/AM282 dual driver with SPST switches
AM184/AM284, AM 185/AM285 dual driver with DPST switches
AM187/AM287, AM 188/AM288 single driver with SPDT switches
AM190/AM290, AM 191/AM291 dual driver with SPDT switches

General Description

These devices combine N.channel junction FETs and bipolar transistors on a single chip for the first time in a new N -channel Bi -FET process.

This technology provides the industry's only low "ON" resistance, high speed, monotithic N-channel junction FET analog switch. Unique circuit techniques are emploved to achieve break-before-make switching action and constant "ON" resistance over the analog voltage range. The switch can block 20 V peak-to-peak signals, and because of the diver design, an "OFF" isolation greater than 60 dB is achieved at 10 MHz .

Features

- Interfaces with standard DTL, TTL and CMOS
- Constant "ON" resistance with signals to $\pm 10 \mathrm{~V}$
- "ON" resıstance match 2Ω typ
- "OFF" isolation and crosstalk less than -60 dB at 10 MHz (typ)
- t ON $/ \mathrm{t}$ OFF $=105 \mathrm{~ns} / 95 \mathrm{~ns}$ typ
- Break-before-make action

Applications

- A-to-D/D-to-A converters
- Data acquisition
- Signal multıplexers
- Sample and hold
- Video switch

Schematic Diagram (Typical Channe!)

Application Hints*

V_{CC} Positive Supply Voltage (V)	$V_{E E}$ Negative Supply Voltage (V)	V_{L} Logic Supply Voltage (V)	V_{R} Reference Supply Voltage (V)	$V_{\text {IN }}$ Logic Input Voltage $V_{\text {INH }}$ Min/ $V_{\text {INL }}$ Max- (V)		
+15**	-15	+5	Gnd	$2.0 / 0.8$	-7.5 to +15	10 to +15
+10	-20	+5	Gnd	2.0/0.8	-12.5 to +10	-15 to +10
+12	-12	+5	Gnd	$2.0 / 0.8$	-4.5 to +12	-7 to +12

[^13]
Absolute Maximum Ratings

$V_{C C}-V_{E E}$	36 V
$V_{C C}-V_{D}$	33 V
$V_{D}-V_{E E}$	33 V
$V_{D}-V_{S}$	$\pm 22 \mathrm{~V}$
$V_{L}-V_{E E}$	36 V
$V_{L}-V_{I N}$	8 V
$V_{L}-V_{R}$	8 V
$V_{I N}-V_{R}$	8 V
$V_{R}-V_{E E}$	27 V
$V_{R}-V_{I N}$	2 V
$C_{\text {INrent }}$ (Any Termınal)	30 mA

Storage Temperature
Operating Temperature
Power Dissipation*
Metal Can**
14-Pin DIP***
16-Pin DIP ****

* All leads soldered to PC board
** Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
*** Derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
**** Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$

Storage Temperature
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

450 mW
825 mW
900 mW

Connection Diagrams

AM181/AM281, AM182/AM282 ${ }^{\text { }}$ See Package 1 Order by Part Number Followed by H Suffix

TDP VIEW
TDP vifn

Dual-In-Line Package
See Package 16
Order by Part Number Followed by D Suffix

Switch states are for logical "1" input
AM184/AM284, AM185/AM285*

Switch states are for logical "O" input

TOP VIEW

Dual-In-Line Package
See Package 17
Order by Part Number
Followed by D Suffix

AM187/AM287, AM188/AM288 ${ }^{\text { }}$

Switch states are for logical " 1 " input
Swis

AM190/AM290, AM191/AM291*

TOP VIEW

Dual-In-Line Package
See Package 16
Order by Part Number Followed by D Suffix

Dual-In-Line Package
See Package 17 Order by Part Number Followed by D Suffix

[^14]
Electrical Characteristics AM181/AM281, AM182/AM282

dc parameters are 100% tested at $25^{\circ} \mathrm{C}$; ac parameters, high and low temperatures, and tON, toFF are sampled to ensure conformance with specifications.

PARAMETER		TEST CONOITIONS, UNLESS NOTEO:$V_{C C}=15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{\mathrm{L}}=5 \mathrm{~V}, V_{R}=0$		MAX LIMITS						UNITS		
		AM181	AM281									
		$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$					
$\mathrm{rOS}(\mathrm{ON})$	Drain-Source "ON" Resistance			$\mathrm{IS}^{\prime}=-10 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{~N}}=0.8 \mathrm{~V}$	$V_{D}=-75 \mathrm{~V}$	30	30	60	50	50	75	Ω
IS(OFF)	Source "OFF" Leakage Current			$V_{\text {IN }}=2 V$	$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V} \end{aligned}$		1	100		5	100	nA
		$V_{S}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-75 \mathrm{~V}$			1	100		5	100			
'0,OFF)	Drain "OFF" Leakage Current	$\begin{aligned} & V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V} \end{aligned}$			1	100		5	100			
		$V_{D}=75 \mathrm{~V}, V_{S}=-75 \mathrm{~V}$			1	100		5	100			
$\mathrm{I}(\mathrm{ON})+\mathrm{IS}(\mathrm{ON})$	Channel "ON" Leakage Current	$V_{\text {IN }}=0.8 \mathrm{~V}$	$V_{D}=V_{S}=-7.5 V$		-2	-200		-10	-200			
IINL	Input Current, Input Voltage Low	$V_{1 N}=0$		250	-250	-250	-250	-250	-250	$\mu \mathrm{A}$		
IINH	Input Current, Inpur Voltage Hıgh	$V_{1 N}=5 V$			10	20		10	20			
ton	Turn "ON" Time	See Switching Tiote Test Circuit			150			180		ns		
tOFF	Turn "OFF" Time				130			150				
PARAMETER		TEST CONOITIONS, UNLESS NOTEO:$V_{C C}=15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{L}=5 \mathrm{~V}, V_{R}=0$		MAX LIMITS						UNITS		
		AM182	AM282									
		-55 c	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{-1} \mathrm{C}$	$85^{\circ} \mathrm{C}$					
rDS(ON)	Drain Source "ON" Resistance			$I^{\prime}=-10 \mathrm{~mA}, V^{\prime} \mathrm{N}=08 \mathrm{~V}$	$V_{D}=-10 \mathrm{~V}$	75	75	100	100	100	150	Ω
IS(OFF)	Source "OFF" Leakage Current			$V_{1 N}=2 V$	$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V} \end{aligned}$		1	100		5	100	$n \mathrm{~A}$
		$V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V}$			1	100		5	100			
ID(OFF)	Drain "OFF" Leakage Current	$\begin{aligned} & V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V} \end{aligned}$			1	100		5	100			
		$V_{D}=10 \mathrm{~V}, \mathrm{~V}_{S}=-10 \mathrm{~V}$			1	100		5	100			
$\mathrm{ID}(\mathrm{ON})+\mathrm{IS}(O N)$	Channel "ON" Leakage Current	$V_{\text {IN }}=08 \mathrm{~V}$	$V_{D}=V_{S}=-10 \mathrm{~V}$		-2	--200		-10	-200			
${ }^{1} \mathrm{INL}$	Input Current, Input Voltage Low	$\mathrm{V}_{\text {IN }}=0$		-250	-250	-250	-250	-250	-250	$\mu \mathrm{A}$		
IINH	Input Current, Input Voltage High	$V_{\text {IN }}=5 \mathrm{~V}$			10	20		10	20			
ton	Turn "ON" Time	See Switching Time Test Circuit			250			300		ns		
${ }^{\text {tofF }}$	Turn "OFF" Time				130			150				
PARAMETER		TEST CONOITIONS, UNLESS NOTEO:$V_{C C}=15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{\mathrm{L}}=5 \mathrm{~V}, V_{R}=0$		MAX LIMITS						UNITS		
		AM181, AM182	AM281, AM282									
		$-55^{\prime} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$					
$\mathrm{C}_{\text {S(OFF }}$	Source "OFF" Capacitance			$\mathrm{f}=1 \mathrm{MHz}$	$V_{S}=-5 V, I_{D}=0$	9 Typical, (Note 1)						pF
CD(OFF)	Drain "OFF' Capacitance			$V_{D}=-5 V, I_{S}=0$	6 Typical, (Note 1)							
$\mathrm{CO}_{(O L O N}+\mathrm{CS}_{(O N)}$	Channel 'ON" Capacitance	$V_{D}=V_{S}=0$	14 Typical, (Note 1)									
	"OFF" Isolation	$\mathrm{R}_{\mathrm{L}}=75 \Omega$			$>60 \mathrm{~dB}$ at 10 MHz Typical, (Note 1)							
ICC	Positive Supply Current	8oth $\mathrm{V}_{\text {IN }}=0$. All Chameis "ON"				01			0.1		mA	
IEE	Negative Supply Current				5			-5				
I_{L}	Logic Supply Current				4.5			45				
I_{R}	Reference Supply Current				-2			-2				
${ }^{1} \mathrm{CC}$	Positive Supply Current	Both VIN $=5 \mathrm{~V}$, All Channets "OFF"			01			0.1				
IEE	Negative Supply Current				-5			-5				
IL	Logic Supply Current				45			45				
${ }^{1} \mathrm{R}$	Reference Supply Current				-2			-2				

Note 1: Typical values are for Design Aid on/y, not guaranteed and not subject to production testing.
Electrical Characteristics AM184/AM284, AM185/AM285
dc parameters are 100% tested at $25^{\circ} \mathrm{C}$; ac parameters, high and low temperatures, and tON , tOFF are sampled to ensure conformance with specifications.

PARAMETER		TEST CDNDITIONS, UNLESS NOTED:$V_{C C}=15 \mathrm{~V}, V_{E E}=15 \mathrm{~V}, V_{\mathrm{L}}=5 \mathrm{~V}, V_{\mathrm{R}}=0$		MAX LIMITS						UNITS		
		AM184	AM284									
		$55^{\circ} \mathrm{C}$	$25^{\prime \prime} \mathrm{C}$	125 C	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	85 C					
RDSION)	Drain Source ON Resistance			$\mathrm{IS}^{\prime}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=2 \mathrm{~V}$	$V_{D}-75 \mathrm{~V}$	30	30	60	50	50	75	Ω
'S(OFF)	Source OFF Leakage Current			$V_{\text {IN }}=08 \mathrm{~V}$	$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}--10 \mathrm{~V}, \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V} \end{aligned}$		1	100		5	100	$n \mathrm{~A}$
		$\mathrm{V}_{\mathrm{S}}=75 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=75 \mathrm{~V}$			1	100		5	100			
${ }^{1} \mathrm{D}(\mathrm{OFF})$	Drain OFF Leakage Current	$\begin{aligned} & V_{D}=10 \mathrm{~V}, V_{S}=10 \mathrm{~V} . \\ & V_{C C}=10 \mathrm{~V}, V_{E E}-20 \mathrm{~V} \end{aligned}$			1	100		5	100			
		$V_{D}=75 \mathrm{~V}, \mathrm{~V}_{S}=-75 \mathrm{~V}$			1	100		5	100			
ID(ONI + ${ }^{\text {S }}$ (ON)	Channel ON Leakage Current	$V_{1 N}=2 \mathrm{~V}$	$V_{D}=V_{S}-75 \mathrm{~V}$		-2	200		- 10	-200			
IINL	Input Current, Input Voltage Low	VIN -0		-250	-250	250	- 250	--250	250	$\mu \mathrm{A}$		
IINH	input Current, liput Voltage High	$V_{I N}=5 \mathrm{~V}$			10	20		10	20			
ton	Turn ON Time	See Switching Time Test Circuit			150			180		115		
10FF	Turn OFF Time				130			150				
PARAMETER		test conditions, unless noted.$V_{C C}=15 \mathrm{~V}, V_{E E}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$		MAX LIMITS						UNITS		
		AM185	AM285									
		55 C	$25^{\prime} \mathrm{C}$	125 C	20 C	$25^{\circ} \mathrm{C}$	85 C					
ros $(O N)$	Dran Source ON Resistance			$\mathrm{IS}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=2 \mathrm{~V}$	$V_{D}--10 V$	75	75	150	100	100	150	5
IS(OFF)	Source OFF Leakage Current			VIN-08V	$\begin{aligned} & v_{S} 10 \mathrm{~V}, V_{D}-10 \mathrm{~V}, \\ & v_{C C}=10 \mathrm{~V}, v_{E E}=-20 \mathrm{~V} \end{aligned}$		1	100		5	100	nA
		$V_{S}=10 \mathrm{~V}, V_{D}-10 \mathrm{~V}$			1	100		5	100			
IDIOFF)	Dra॥ OFF Leakage Curient	$\begin{aligned} & V_{D}=10 \mathrm{~V} . V_{S}=-10 \mathrm{~V}, \\ & V_{C C}-10 \mathrm{~V} . V_{E E}-20 \mathrm{~V} \end{aligned}$			1	100		5	100			
		$\mathrm{V}_{\mathrm{D}} 10 \mathrm{~V}, \mathrm{~V}^{-}{ }^{-10 \mathrm{~V}}$			1	100		5	100			
IDIONI + ISION)	Channel ON Leakage Current	$V_{\text {IN }}=2 V$	$V_{D}-V_{S}-10 \mathrm{~V}$		2	-200		10	200			
IINL	Input Cusient, Input Voltage Low	$\mathrm{V}_{\text {IN }}=0$		250	250	250	250	250	- 250	${ }^{\text {A }}$ A		
1 NH	mput Current, Input Voltage High	VIN 5 V			10	20		10	20			
ton	Turn ON Time	See Switchurg Time Test Circuit			250			300		ns		
tof	Turn OFF Time				130			150				
PARAMETER		TEST CONDITIONS, UNLESS NOTED:$V_{C C}=15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$		MAX LIMITS						UNITS		
		AM184, AM185	AM284, AM285									
		-55 C	25 C	125 C	20 C	25 C	$85^{\circ} \mathrm{C}$					
CS(OFF)	Source OFF Cdpacitance			$\mathrm{f}=1 \mathrm{MH} 7$	$\mathrm{V}^{-}-5 \mathrm{~V}, \mathrm{ID} 0$	9 Typical, (Note 1)						pF
CD(OFF)	Draın OFF Capacitance			$V_{D}=5 V_{\text {, }} \mathrm{IS} 0$	${ }^{6}$ Typisal, (Note 1)							
$\mathrm{C}_{\text {D }}(\mathrm{ON})+\mathrm{CSSON}^{(O L}$	Channel ON Capacitance	$V_{D}=V_{S}-0$	11 Typutal (Note 1)									
	"OFF" Isolation	$R_{L}-75 ?$			-60 de at $10 \mathrm{MH} / \mathrm{T}$ Typical, (Note 1)							
${ }^{\prime} \mathrm{CC}$	Positive Supply Current	Both $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$. All Chamaels "ON"				01			0.1		mA	
IEE	Negative Supply Current				4			-4				
${ }_{1}$	Logic Supply Current				45			45				
I_{R}	Reference Supply Current				2			-2				
${ }^{1} \mathrm{CC}$	Positive Supply Current	Both VIN-0. All Chatuls "OFF"			0.1			0.1				
IEE	Negative Supply Current				5.5			55				
I_{L}	Logic Supply Curremi				45			45				
I_{R}	Reference Supply Curtent				2			-2				

Note 1: Typical values are for Design Aid only, not guaranteed and not subject to production testing.

Electrical Characteristics AM187/AM287, AM188/AM288
dc parameters are 100% tested at $25^{\circ} \mathrm{C}$, ac parameters, high and low temperatures, and ton, toff are sampled to ensure conformance with specifications.

Note 1: Typical values are for Design Aid on/y, not guaranteed and not subject to production testing.

Electrical Characteristics AM190/AM290, AM191/AM291

dc parameters are 100% tested at $25^{\circ} \mathrm{C}$; ac parameters, high and low temperatures, and tON tOFF are sampled to ensure conformance with specifications.

PARAMETER		TEST CONDITIONS, UNLESS NOTEO:$V_{C C}=15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{L}=5 \mathrm{~V}, V_{R}=0$		MAX LIMITS						UNITS		
		AM190	AM290									
		$-55^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$					
r DSION:	Drain-Source ON Resistance			$\begin{aligned} & \text { IS }-10 \mathrm{~mA}, V_{I N}=2 \mathrm{~V}, \mathrm{Ch} 1 \text { and } 2 \\ & \text { "ON", } \mathrm{VIN}_{\mathrm{IN}}=08 \mathrm{~V}, \mathrm{Ch}, 3 \text { and } 4 \text { "ON" } \end{aligned}$	$V_{D}=-7.5 V$	30	30	60	50	50	75	Ω
IS(OFF)	Source OFF Leakage Current			$V_{I N}-2 V, C h 3$ and 4 "OFF $V_{I N}=0.8 \mathrm{~V}$, Ch 1 and $2{ }^{\circ} \mathrm{OFF}$ "	$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V} \end{aligned}$		1	100		5	100	nA
		$V_{S}=75 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-75 \mathrm{~V}$			1	100		5	100			
IOLOFF)	Dran OFF Leakage Current	$\begin{aligned} & V_{D}-10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}-20 \mathrm{~V} \end{aligned}$			1	100		5	100			
		$\mathrm{V}_{\mathrm{D}}-7.5 \mathrm{~V}, \mathrm{~V}_{S}=-7.5 \mathrm{~V}$			1	100		5	100			
IDION) + IS(ON)	Channel ON Leakage Current	$\begin{aligned} & V_{I N}=2 \mathrm{~V}, \mathrm{Ch} 1 \text { and } 2 \text { "ON" } \\ & V_{\text {IN }}=08 \mathrm{~V}, \text { Ch } 3 \text { and } 4 \text { "ON" } \end{aligned}$	$V_{D}=V_{S}=-75 \mathrm{~V}$		2	200		-10	-200			
IINL	Input Current, Input Vottage Low	$\mathrm{V}_{\text {IN }}-0$		250	250	250	250	-250	-250			
I INH	Input Current, Input Voltage High	$V_{\text {IN }}=5 \mathrm{~V}$			10	20		10	20			
ton	Turn ON Time	hing Time			150			180				
tOFF	Turn OFF Time	See Swiching Time Test Crant			130			150				
		TEST CONDITIONS, UN	ESS NOTED:			MAX	IMITS					
	AMETER				AM191			AM291		UNITS		
				$55^{2} \mathrm{C}$	$25^{\prime \prime} \mathrm{C}$	$125^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	25 C	$85^{\text {c }}$			
rDS ${ }^{\text {(ON }}$)	Drain Source ON Resistance	$\begin{aligned} & I S=10 \mathrm{~mA}, V_{I N}=0.8 \mathrm{~V}, \mathrm{Ch} 3 \text { and } \\ & 4^{\prime \prime} \mathrm{ON}{ }^{\prime} . V_{I N}=2 \mathrm{~V}, \mathrm{Ch} 1 \text { and } 2^{\prime \prime} \mathrm{ON}^{\prime} \end{aligned}$	$V_{D}=-10 \mathrm{~V}$	75	75	150	100	100	150	Ω		
IS (OFF)	Source OFF Leakage Current		$\begin{aligned} & V_{S}=10 \mathrm{~V}, V_{D}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=20 \mathrm{~V} \end{aligned}$		1	100		5	100			
		$\mathrm{V}_{\text {IN }}=-08 \mathrm{~V}$. Ch 1 and 2 "OFF"	$V_{S}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$		1	100		5	100			
ID(OFF)	Drain OFF Leakage Current	$V_{\text {IN }}=2 V$, Ch 3 and 4 "OFF"	$\begin{aligned} & V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V}, V_{E E}=-20 \mathrm{~V} \end{aligned}$		1	100		5	100	nA		
			$V_{D}=10 \mathrm{~V}, V_{S}=-10 \mathrm{~V}$		1	100		5	100			
$1 \mathrm{D}(\mathrm{ON})+\mathrm{I}$ S(ON)	Channel ON Leakage Current	$\mathrm{V}_{\text {IN }}=08 \mathrm{~V}, \mathrm{Ch} .3$ and $4{ }^{\prime} \mathrm{ON}$ ' $V_{I N}=2 V$, Ch 1 and 2 "ON"	$V_{D}=V_{S}=-10 \mathrm{~V}$		-2	200		-10	-200			
${ }^{1} \mathrm{INL}$	Input Current, Input Voltage Low	$V_{\text {IN }}-0$		-250	-250	250	-250	-250	-250			
IINH	Input Current, Input Voltage High	$V_{\text {IN }}=5 \mathrm{~V}$			10	20		10	20			
ton	Turn ON Time				250			300				
tOFF	Turn OFF Time	See Switching Time Test Gircuit			130			150		ns		
						MAX	M1TS					
	AMETER	$V_{C C}=15 \mathrm{~V}, V_{E E}=15 \mathrm{~V},$	$=5 V, V_{R}=0$	AM	190, AM		AM	90, AM		UNITS		
				$55^{\circ} \mathrm{C}$	25 C	$125^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$			
$\mathrm{C}_{S(O F F)}$	Source OFF Capacitance		$V_{S}=-5 \mathrm{~V}, \mathrm{t}_{\mathrm{O}}=0$			Typical,	(Note 1					
$C_{\text {d }}(\mathrm{OFF})$	Drain OFF Capacitance	$\mathrm{f}=1 \mathrm{MH2}$	$V_{D}=5 \mathrm{~V}, \mathrm{I}_{S}=0$			Typical,	(Note 1			ρF		
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})+\mathrm{CS}_{\text {S }}(\mathrm{ON})}$	Channel ON Capacitance		$V_{D}=V_{S}=0$			4 Typical	(Note 1)					
	"OFF' Isolation	$\mathrm{R}_{\mathrm{L}}=75!2$			60 dB	10 MHz	Typical	(Note 1				
ICC	Positive Supply Current				01			0.1				
IEE	Negative Supply Current				- 5			5				
I_{L}	Logic Supply Current	$\mathrm{V}_{\text {IN }}-0, \mathrm{Ch} 3$ and 4 "ON", Ch 7 and	$2^{\prime \prime} \mathrm{OFF}{ }^{\prime \prime}$		45			4.5				
I_{R}	Reference Supply Current				-2			2				
ICC	Positive Supply Current				01			01		mA		
IEE	Negative Supply Curtent				-5			-5				
IL	Logic Supply Current	$V_{\text {IN }}=5 \mathrm{~V}$. Ch 3 and 4 "OFF", Ch \% a	d 2 "ON"		45			4.5				
I_{8}	Reference Supply Current				-2			-2				

Note 1: Typical values are for Design Aid only, not guaranteed and not subject to production testing.

Typical Performance Characteristics $V_{C C}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0$ unless otherwise noted.
Typical delay, rise, fall, settling times, and switching transients in
rDS(ON) vs V_{D} and Temperature

Switching Time vs V_{D} and Temperature

"OFF" Isolation vs Frequency

f-fREOUENCY (Hz)

ID(OFF) vs Temperature

Equivalent "OFF" Circuit

If $R_{G E N}, R_{L}$ or C_{L} is increased there will be proportional in creases in rise and/or fall RC times.

Switching Time Test Circuit

Switch output waveform shown for $V_{S}=$ constant with logic input waveform as shown. Note that V_{S} may be + or - as per switching time test circuit. V_{O} is the steady
state output with switch "ON". Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

Typical Applications
Low Drift-Compensated Sample and Hold

- Input impedance 5 ks
- Slew rate limiting and 3 dB point: 20 V swing: $3.2 \mathrm{~K} \mathrm{C} ; 5 \mathrm{~V}$ swing: 12 K C ; small signal: 21 K C
- Droop rate @ $25^{\circ} \mathrm{C} 0.5 \mathrm{nV}$ per $\mu \mathrm{s}$
- Sample to hold offset adjustable to zero
- Acquisition time-98 $\mu \mathrm{s}$
- Aperture time-80 ns
- Aperture uncertainty-2 ns

Video Switch with Very High "OFF" Isolation ($f=d c$ to 10 MHz)

- 116 dB isolation at 10 MHz , "OFF" camera to "ON" camera
- 98 dB isolation at 10 MHz , load from each camera when both cameras are "OFF'
- < 1 dB on insertion loss

Typical Applications (Continued)

A 16-Channel Data Acquisition Unit with Second Level Multiplexing

- Maximum A./D ctock frequency: 4.5 MHz
- Maximum throughput rate: 31.25 k samples $/ \mathrm{sec}$
- Minımum switch "ON" time for the 2 channel MUX: ${ }^{\mathrm{I}} \mathrm{ON}(\mathrm{min}) \leq 1 / 4.5 \mathrm{MHz}$
- Maxımum input signal bandwidth 15.6 kHz
- Maximum input signal variation during conversion for 8 -bit accuracy and 10 V full scale: $\Delta V_{\mid N} / \Delta T=19.5 \mathrm{mV} / \mu \mathrm{s}$

Timing Diagram

AM2009/AM2009C, MM4504/MM5504 6-Channel MOS Multiplex Switches

General Description

The AM2009/AM2009C/MM4504/MM5504 are six channel multiplex switches constructed on a single silicon chip using low threshold P-channel MOS process. The gate of each MOS device is protected by a diode circuit.

Features

- Typical low "on" resistance 150Ω
- Typical low "off" leakage 100 pA
- Typical large analog voltage range $\pm 10 \mathrm{~V}$
- Zero inherent offset voltage
- Normally off with zero gate voltage

The AM2009/AM2009C/MM4504/MM5504 are designed for applications such as time division multiplexing of analog or digital signals. Switching speeds are primarly determined by conditions external to the device such as signal source impedance, capacitive loading and the total number of channels used in parallel.

The AM2009/MM4504 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The AM2009C/MM5504 are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Schematic Diagrams

Order Number
AM2009F or AM2009CF MM4504F or MM5540F See Package 23

Order Number AM2009D or AM2009CD MM4504D or MM5504D

See Package 14

Typical Applications

TTL Compatible 6 Channel MUX

32 Channel MUX

Absolute Maximum Ratings $\left.\mathrm{V}_{\text {BULK }}=\mathrm{oV}\right)$

Voltage on Any Source or Drain	-30 V
Voltage on Any Gate	-35 V
Positive Voltage on Any Pin	+0.3 V
Source or Drain Current	50 mA
Gate Current（forward direction of zener clamp）	01 mA

$-30 \mathrm{~V} \quad$ Total Power Dissipation（at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ）
Power Dissipation－each gate circuit
900 mW
150 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Electrical Characteristics（Note 1）

PARAMETER	CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Thieshold Voltage	$V_{G S}=V_{D S} I_{\text {DS }}=-1 \mu \mathrm{~A}$	－10		－30	V
DC ON Resistance	$\begin{aligned} & V_{G S}=-20 \mathrm{~V} \cdot \mathrm{t}_{D S}--100 \mu \mathrm{~A} . \\ & T_{A}-25 \mathrm{C} \end{aligned}$		150	250	\because
DC ON Ressatance	$\begin{aligned} & V_{G S}-10 \mathrm{~V} V_{S B}-20 \mathrm{~V} \\ & I_{D S}--100 \mu \mathrm{~A}, T_{A}-25^{\circ} \mathrm{C} \end{aligned}$		500	1250	Ω
DC ON Resistance	$\mathrm{V}_{\mathrm{GS}}-20 \mathrm{~V}, \mathrm{I}_{\mathrm{OS}}-100 \mu \mathrm{~A}$			325	3
DC ON Ressatance	$\begin{aligned} & V_{G S}-10 \mathrm{~V}, V_{\mathrm{LB}}=-20 \mathrm{~V} . \\ & \mathrm{I}_{\mathrm{OS}}--100 \mu \mathrm{~A} \end{aligned}$			1500	Ω
Gate Leakage	$\begin{aligned} & V_{G S}-20 \mathrm{~V} \text { Note } 2 \\ & V_{G S}--20 \mathrm{~V} \text { Note } 2, \mathrm{~T}_{\mathrm{A}} \quad 25^{\circ} \mathrm{C} \end{aligned}$		100	10	$\mu \mathrm{A}$ pA
Input Leakage	$\begin{aligned} & V_{\text {os }}--20 \mathrm{~V} \text {, Note } 2 \\ & V_{\mathrm{DS}}--20 \mathrm{~V} \text { Note } 2, \mathrm{~T}_{A}-25 \mathrm{C} \end{aligned}$		100	10	$\mu \mathrm{A}$ pA
Output Leakage	$\begin{aligned} & V_{5 D}-20 \mathrm{~V} \text { Note } 2 \\ & V_{S U}=-20 \mathrm{~V}, \text { Note } 2, T_{A}=25 \mathrm{C} \end{aligned}$		500	3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \rho \mathrm{~A} \end{aligned}$
Gate Bulk Bieakdown Voltage	$l_{68} \quad-10 \mu A$, Note 2	－35			\checkmark
Source Dran Breakdown Voltage	$\mathrm{I}_{\mathrm{SO}} \quad-10 \mu \mathrm{~A} \quad V_{\mathrm{GD}}=0$ Note 2	-30			V
Dratr Source Breakdown Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{US}}--10 \mu \mathrm{~A}, \mathrm{~V}_{6 S}-0 \\ & \text { Note } 2 \end{aligned}$	-30			V
Transconductance			4000		mhos
Gate Capacitance	Note 3．-1 MHz		47	8	pF
Input Capacitance	Note 3， 1 MHz		46	8	pF
Output Capacitance	Note 3，\％－ 1 MHz		16	20	pF

Note 1：Ratings apply ovel the specified temperature range and $V_{B U L K}=0$ ，unless otherwise specified．
Note 2：All other pins grounded．
Note 3：Capacitance measured on dual－m－line package between pin under measurement to all other pins．Capacitances are guaranteed by design．

Typical Performance Characteristics

＂ON＂Resistance vs T Temperature

Input Leakage Current vs Temperature

AM3705/AM3705C 8-Channel MOS Analog Multiplexer

General Description

The AM3705/AM3705C is an eight-channel MOS analog multiplex switch. TTL compatible logic inputs that require no level shifting or input pull up resistors and operation over a wide range of supply voltages is obtained by constructing the device with low threshold P channel enhancement MOS technology. To simplify external logic requirements, a one-of-eight decoder and an output enable are included in the device.

Important design features include:

- TTL/DTL compatible input logic levels
- Operation from standard +5 V and -15 V supplies
- Wide analog voltage range $- \pm 5 \mathrm{~V}$
- One-of eight decoder on chip
- Output enable control
- Low ON resistance - 150 2
- Input gate protection
- Low leakage currents -0.5 nA

The AM3705/AM3705C is designed as a low cost analog multiplex switch to fulfill a wide variety of data acquisition and data distribution applications including cross-point switching, MUX front ends for A/D converters, process controllers, automatic test gear, programmable power supplies and other military or industrial instrumentation applications.

The AM3705 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The AM3705C is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Schematic and Connection Diagrams

Dual In-Line Package

Order Number AM3705D or AM3705CD See Package 15 AM3705F or AM3705CF See Package 24

Block Diagram (MIL-STD-806B)

Truth Table

LOGIC INPUTS				CHANNEL
$7^{\text {b }}$)	${ }^{\prime}$	OF	1 v
L	1	L	${ }^{-1}$	1
11	L	L	H	3
1	H	L	H	${ }^{3}$
H	H	1	H	So
L	1	H	H	5
H	L	H	H	s_{1}
L	H	H	H	s
H	H	H	H	S_{μ}
\times	\times	X	L	OFF

Typical Application
Buffered 8.Channel Multiplex, Sample and Hold

Absolute Maximum Ratings

Positive Voltage on Any Pin iNote 1)
Negative Voltage on Any Pin (Note 1)
Source to Drain Current
Logic Input Current
Power Dissipation (Note 2)
Operating Temperature Range AM3705 AM3705C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
ead Temperature (Soldering, 10 sec) $-\quad$ (
+0.3 V
-35 V
$\pm 30 \mathrm{~mA}$
$\pm 01 \mathrm{~mA}$
500 mW
-55 C to $+125^{\circ} \mathrm{C}$
-25 C to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

PARAMETER	SYMBOL	CONDITIONS	LIMITS			UNITS
			MIN	TYP	MAX	
ON Resstance	Ron	$V^{\prime}=V_{S S}, I_{\text {OUT }}=100 \mu \mathrm{~A}$		80	250	Ω
ON Rershtance	Ron	V, -5V. Iout -100 A A		160	400	¢
ON Ressistancte	R_{ON}	$V:=-5 V$ Iout $=-100 \mu \mathrm{~A}$				
AM3705		$\mathrm{T}^{\text {a }}$. 125 C			400	Ω
AM3705C		T- $\cdot 70 \mathrm{C}$			400	Ω
ON Resistance	$\mathrm{R}_{0} \mathrm{~V}$	$V_{\text {: }}-+5 \mathrm{~V} V_{D 0}=-15 \mathrm{~V}$.				
		$1 ., 1{ }^{\text {a }}$, $100 \mu \mathrm{~A}$		100		s?
ON Rebistance	R_{0}	$\begin{array}{lll} V, O V, V_{00} & 15 V, \\ 1 . \ldots T & -100 \mu \mathrm{~A} \end{array}$		150		!
ON Rewstance	Rov	$\begin{aligned} & V_{\text {I }}-5 V, V_{D D} \\ & V_{\text {NT }}-15 \mathrm{~V} . \\ & \hline 100 \mu \mathrm{~A} \end{aligned}$		250		\because
OFF Resistance	$\mathrm{R}_{\text {OF }}$			1010		!
Output Leakage Curiers	1 Lo	$V_{\text {S }}$ - $-V_{\text {OUT }}=15 \mathrm{~V}$		05	10	11 A
AM3705	160	$V_{=c}-V_{\text {OLT }} 15 \mathrm{~V}, T_{\text {A }}-125 \mathrm{C}$		150	500	nA
AM3 705 C	110	$V_{s 5} V_{\text {nL }}=15 \mathrm{~V} T_{\text {A }} 70 \mathrm{C}$		35	500	nA
Data Input Leakagr Curent	$\mathrm{I}_{\text {LDI }}$	$V_{\text {-S }} V_{\text {IV }} 15 \mathrm{~V}$		01	30	nA
AM3705	$\mathrm{I}_{\text {LOI }}$	$V_{S}{ }^{-}-V_{N} 15 \mathrm{~V}, T_{A}-125 \mathrm{C}$		25	500	nA
AM3705C	1 LOI	$V_{S S}-V_{\text {IN }}-15 \mathrm{~V}, \mathrm{~T}_{\text {A }} 10 \mathrm{C}$		05	500	nA
Logic input Leakage Current	I_{L}	$V_{S S}-V_{\text {Logk }}=15 \mathrm{~V}$		001	1	$\mu \mathrm{A}$
AM3705	I_{LI}	$V_{\text {ss. }}-V_{\text {Logk }}$ in $-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}-125 \mathrm{C}$		05	10	$\mu \mathrm{A}$
AM3705C	$I_{\text {LI }}$	$V_{S S}-V_{1 \text { ugk. In }}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 70 \mathrm{C}$		05	10	$\mu \mathrm{A}$
Logic Input LOW Level	$V_{\text {IL }}$	$V_{55}=-50 \mathrm{~V}$		05	1.0	v
Logic lnpur LOW Levei	V_{12}		$V_{D O}$		$V_{\text {SS }}-40$	V
Logic Input HIGH Level	$V_{\text {IH }}$	$\mathrm{V}_{55} \cdot 50 \mathrm{~V}$	3.0	3.5		\checkmark
Logic Input HIGH Level	$V_{1 H}$		$v_{S S}-20$		$v_{\text {ss }}+0.3$	V
Channel Switching Time. Positive	$t^{\text {t }}$	S:-1tching Time		300		ns
Channel Swithing Time-Negative	$t^{\prime \prime}$	\| Test Circuit		600		ns
Channel Separation		$\mathrm{f}=1 \mathrm{kHz}$		62		dB
Output Capacitance	C_{dt}	$V_{\text {SS }}-V_{\text {OUT }}=0, t=1 \mathrm{MHz}$		35		pF
Data Input Capacitance	$c_{\text {d }}$	$V_{\text {SS }}-V_{\text {OIP }} 0, \dagger 1 \mathrm{MHz}$		6.0		${ }_{\mathrm{p}} \mathrm{F}$
Logic Input Capacitance	C_{cg}	$V_{S S}-V_{\text {Logtc in }}=0, f=1 \mathrm{MHz}$		60		pF
Power Dissipation	$P_{\text {D }}$	$V_{\text {OD }}=-31 \mathrm{~V}, V_{\text {SS }}=0 \mathrm{~V}$		125	175	mW

Note 1: All voltages referenced to V_{SS}.
Note 2: Ratıngs applies for ambient temperatures to $+25^{\circ} \mathrm{C}$, derate linearly at $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+25^{\circ} \mathrm{C}$
Note 3: Specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},-24 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq-20 \mathrm{~V}$, and $+5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SS}} \leq+7.0 \mathrm{~V}$, unless otherwise specified (all voltages are referenced to ground)
AM3705/AM3705C

Typical Performance Characteristics

ON Resistence vs Analog Input Voltage

Output Leakage Current vs Ambient Temperature

Typical Applications (Continued)

8-Channel Demultiplexer with Sample and Hold

16-Channel Commutator

Wide Input Range Analog Switch

AM9709, AM97C09, AH5009 Series Monolithic Analog Current Switches General Description

A versatile family of monolithic JFET analog switches designed to economically fulfill a wide variety of multi plexing and analog switching applications.

Even numbered switches may be driven directly from standard 5 V logic, whereas the odd numbered switches are intended for applications utilizıng 10 V or 15 V logic. The monolithic construction guarantees tight resistance match and track.

The AM97C09 series is specifically intended to be driven from CMOS providing the best performance at lowest cost.

Applications

- AD/DA converters
- Micropower converters
- Industrial controliers
- Position controllers
- Data acquisition
- Active filters
- Signal multıplexers/demultiplexers
- Multiple channel AGC
- Quad compressors/expanders
- Choppers/demodulators
- Programmable gain amplifiers
- High impedance voltage buffer
- Sample and hold

Features

- Interfaces with standard TTL and CMOS
- On-resistance match

2 ohms

- Low "ON" resistance 100 ohms
- Very low leakage

50 pA

- Large analog signal range $\pm 10 \mathrm{~V}$ peak
- High switching speed 150 ns
- Excellent isolation between 80 dB channels at 1 kHz

Connection Diagrams

Order Number AM9709CN, AM9710CN, AM97C09CN, AM97C10CN, AH5009CN, AH5010CN, AH5013CN or AH5014CN See Package 21

Order Number AM9711CN, AM9712CN, AM97C09CN AM97C10CN, AH5011CN, AH5012CN, AH5015CN or AH5016CN
See Package 22

Functional and Schematic Diagrams

MUX Switches	SPST Switches
(4-Channel Version Shown)	(Quad Version Shown)

[^15]
(4.Channel Version Sh

common drains

SPST Switches (Quad Version Shown)

uncommitted drains

Absolute Maximum Ratings

Input Voltage
AM9709-12CN, AH5009-24CN 30V
AM97C09-12CN 25 V
Positive Analog Signal Voltage
30 V
Negative Analog Signal Voltage
$-15 \mathrm{~V}$
Diode Current
10 mA
Drain Current
Power Dissipation
Operating Temperature Range
30 mA
500 mW
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics

AM9709, AM97C09, AH5009 (Notes 1 and 2)

	PARAMETER	CONOITIONS	5 V TTL		5 V TTL		$5 \mathrm{~V}-10 \mathrm{~V}$ CMOS		UNITS
			AM9710CN AM9712CN		AH5010-16 (EVEN SERIES)		AM97C10CN AM9712CN		
			TYP	MAX	TYP	MAX	TYP	MAX	
$\mathrm{IGSX}_{\text {G }}$	Input Current "OFF"	$\begin{aligned} & V_{G D} 11 \mathrm{~V}, V_{S D}-0.7 \mathrm{~V} \\ & T_{A}=85 \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 2 \\ & 100 \end{aligned}$	001	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$			$\begin{aligned} & \overline{n A} \\ & n A \end{aligned}$
lgsx	input Current "OFF'	$\begin{aligned} & V_{C D}=15 \mathrm{~V}, V_{S D}-07 \mathrm{~V} \\ & T_{A}-85 \mathrm{C} \end{aligned}$					001	$\begin{aligned} & 2 \\ & 100 \end{aligned}$	$n \mathrm{n}$ n
Iolofat	Leakage Current "OFF"	$\begin{aligned} & V_{S O}-07 \mathrm{~V}, V_{G S}=38 \mathrm{~V} \\ & T_{A}=85 \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	0.01	$\begin{gathered} 02 \\ 10 \end{gathered}$			$\begin{aligned} & n A \\ & n A \end{aligned}$
IDIOFFI	Leakage Current "OFF"	$\begin{aligned} & V_{S D}=07 \mathrm{~V}, V_{G S}=43 \mathrm{~V} \\ & T_{A}=85 \mathrm{C} \end{aligned}$					001	$\begin{aligned} & 2 \\ & 100 \end{aligned}$	$\begin{aligned} & n A \\ & n A \end{aligned}$
$\mathrm{I}_{\text {G(ON) }}$	Leakage Current "ON"	$\begin{aligned} & V_{G D} O V, I_{S}=1 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	008	$\begin{aligned} & 1 \\ & 200 \end{aligned}$	0.08	$\begin{aligned} & 1 \\ & 200 \end{aligned}$	0.08	1 200	nA $n A$
$I_{\text {G(ON) }}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, \mathrm{I}_{5}=2 \mathrm{~mA} \\ & T_{A}=85 \mathrm{C} \end{aligned}$	013	$\begin{aligned} & 5 \\ & 10 \end{aligned}$		$\begin{aligned} & 1000 \\ & 10 \end{aligned}$	0.13	$\begin{aligned} & 5 \\ & 10 \end{aligned}$	$\begin{aligned} & 17 \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\text {GION }}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=-0 V, I_{S}=-2 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	01	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	0.10	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & n A \\ & \mu A \end{aligned}$
$r_{\text {DSIONH }}$	Drain Source Resistance	$\begin{aligned} & V_{G 5}=0.35 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & T_{A}=+85^{\circ} \mathrm{C} \end{aligned}$	90	$\begin{aligned} & 150 \\ & 240 \end{aligned}$	90	$\begin{aligned} & 150 \\ & 240 \end{aligned}$			$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
r DSionl	Dran Source Resistance	$\begin{aligned} & V_{(x,)}-0 \mathrm{~V}, \mathrm{I}_{2}=2 \mathrm{~mA} \\ & T_{A}=85 \mathrm{C} \end{aligned}$					90	$\begin{aligned} & 150 \\ & 240 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Varode	Forwald Diode Drop	$\mathrm{f}_{1} 005 \mathrm{~mA}$		08				08	V
$\mathrm{r}_{\text {DSiON }}$	Match	$V_{C, 5}-0, I_{D}=1 \mathrm{~mA}$	4	20		50	4	20	Ω
Ton	Turn 'ON' Time	See de Test Circuit	150	500	150	500	150	500	ns
Toff	Turn "OFF" Tame	See ac Tost Circuit	300	500	300	500	300	500	ns
CT	Cross Talk	See ac Test Carcuit	120		120		120		dB

Note 1 Test conditions $25^{\circ} \mathrm{C}$ unless otherwise noted.
Note 2: "OFF" and "ON" notation refers to the conduction state of the FET switch

Electrical Characteristics (Continued)

	Parameter	CONDITIONS	$\begin{gathered} \hline 15 \mathrm{~V} \text { TTL } \\ \hline \text { AM9709CN } \\ \text { AM9711CN } \\ \hline \end{gathered}$		15 V TTLAH5009-15(DODO SERIES)		10-15V CMDS AM97C09CN AM97C11CN		UNITS
			TYP	MAX	TYP	MAX	TYP	MAX	
$\mathrm{I}_{\text {gsx }}$	Input Current "OFF"	$\begin{aligned} & V_{C D}=11 \mathrm{~V}, V_{S D}=07 \mathrm{~V} \\ & T_{A}=85{ }^{\circ} \mathrm{C} \end{aligned}$	001	$\begin{aligned} & 2 \\ & 100 \end{aligned}$	001	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$			$\begin{aligned} & \hline n A \\ & n A \end{aligned}$
$I_{\text {Gsx }}$	Input Current "OFF"	$\begin{aligned} & V_{G D}=15 \mathrm{~V}, V_{S D}=07 \mathrm{~V} \\ & T_{A}=85 \mathrm{C} \end{aligned}$					0.01	$\begin{aligned} & 2 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
I DIOFFI	Leakage Current "OFF"	$\begin{aligned} & V_{S D}=07 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=93 \mathrm{~V} \\ & T_{A}=85 \mathrm{C} \end{aligned}$					001	$\begin{aligned} & 2 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
I DIOFF	Leakage Current "OFF"	$\begin{aligned} & V_{S D}=07 \mathrm{~V}, \mathrm{~V}_{\mathrm{CS}}=103 \mathrm{~V} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 2 \\ & 10 \end{aligned}$	001	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$			$\begin{aligned} & n A \\ & n A \end{aligned}$
$\mathrm{I}_{\text {GION }}$	Leakage Curremı "ON"	$\begin{aligned} & V_{G D} \quad 0 V, I_{S}+m A \\ & T_{A}-85 \mathrm{C} \end{aligned}$	004	$\begin{aligned} & 05 \\ & 100 \end{aligned}$	004	$\begin{aligned} & 0.5 \\ & 100 \end{aligned}$	0.04	0.5	$\begin{aligned} & n A \\ & n A \end{aligned}$
$I_{\text {GIONI }}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, 1_{\mathrm{S}}=2 \mathrm{~mA} \\ & T_{A}=85 \mathrm{C} \end{aligned}$	0.07	2		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	0.07	2	nA $\mu \mathrm{A}$
IGION	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, 1_{S}=-2 \mathrm{~mA} \\ & T_{A}=85^{\prime} \mathrm{C} \end{aligned}$	005	$\begin{aligned} & 5 \\ & 2 \end{aligned}$		$\begin{aligned} & 100 \\ & 20 \end{aligned}$	005		$\begin{aligned} & n A \\ & \mu \mathrm{~A} \end{aligned}$
rosion	Dram Source Resistance	$\begin{aligned} & V_{G S}=O \mathrm{~V}, I_{S}=2 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$					60		Ω
'dSton,	Drain Source Resistance	$\begin{aligned} & V_{G S}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & T_{A}=85 \mathrm{C} \end{aligned}$	60	$\begin{aligned} & 100 \\ & 160 \end{aligned}$	60	$\begin{aligned} & 100 \\ & 160 \end{aligned}$			
$V_{\text {DICDE }}$	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=05 \mathrm{~mA}$		08				0.8	v
rosion)	Match	$V_{G S}=0.10-1 \mathrm{~mA}$	2	10		50	2	10	Ω
$\mathrm{T}_{\text {ON }}$	Turn "On" Time	See ac Test Circuit	150	500	150	500	150	500	ns
Toff	Turn "OFF" Tune	See ac Test Circuit	300	500	300	500	300	500	ns
CT	Cross Talk	See ac Test Cricurt	120		120		120		dB

Schematic Diagrams and Pin Connections

Test Circuits and Switching Time Waveforms

Typical Performance Characteristics

Applications Information

Theory of Operation

The $A M / A H$ series of analog switches are primarily intended for operation in current mode switch applica tions；$. e .$, the draıns of the FET switch are held dt or near ground by operating irto the summing junction of an operational amplifier．Limiting the dran voltage to under a few hundred millivolts eliminates the need for a special gate driver，allowing the switches to be driven directly by standard TTL（AM9710），5V－10V CMOS
（AM97C10），open collector 15 V TTL（AM9709），and $10-15 \mathrm{~V}$ CMOS（AM97CO9）．

Two basic switch configurations are available．multiple independent switches（ N by SPST）and multiple pole switches used for multiplexing（NPST．MUX）The MUX versions such as the AM9709 offer common drains and include a series FET operated at $V_{G S}=O V$ ．The addi－ tional FET is placed in feedback path in order to compensate for the＂ON＂resistance of the switch FET as shown in Figure 1.

The closed-Ioop gain of Figure 1 is:

$$
A_{V C L}=\frac{R 2+r_{\text {DSIONIO2 }}}{R 1+r_{\text {DSIONIO1 }}}
$$

For R1 = R2, gain accuracy is determined by the $r_{\text {DS'ON }}$ match between Q1 and Q2. Typical match between Q1 and Q 2 is 4 ohms resulting in a gain accuracy of 0.05% (for R1 $=$ R2 $=10 \mathrm{k} \Omega$).

Noise Immunity

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the "QFF" state. With $V_{I N}=15 \mathrm{~V}$ and the $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$, the source of Q 1 is clamped to about 0.7 V by the diode $\left(V_{G S}=14.3 \mathrm{~V}\right)$ ensuring that ac signals imposed on the 10 V will not gate the FET "ON."

Selection of Gain Setting Resistors

Since the AM/AH series of analog switches are operated current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in Figure 2, $I_{G(O N)}$ represents a finite error in the current reaching the summing junction of the op amp.

Secondly, the $r_{\text {DS(ON })}$ of the FET begins to "round" as I_{S} approaches $I_{\text {DSS }}$. A practical rule of thumb is to maintain I_{S} at less than $1 / 10$ of $I_{\text {DSS }}$.

Combining the criteria from the above discussion yields:

$$
\begin{equation*}
R 1_{\text {MIN }} \geq \frac{V_{A(M A X)} A_{D}}{I_{G(O N)}} \tag{2a}
\end{equation*}
$$

or-

$$
\begin{equation*}
\geq \frac{V_{\text {A(MAX })}}{I_{\text {DSS }} / 10} \tag{2b}
\end{equation*}
$$

whichever is worse.
Where $V_{A(M A X)}=$ Peak amplitude of the analog input signal
$A_{D} \quad=$ Desired accuracy
$\mathrm{I}_{\mathrm{G}(O N)}=$ Leakage at a given I_{S}
IDSS $=$ Saturation current of the FET switch
$\simeq 20 \mathrm{~mA}$

FIGURE 1. Use of Compensation FET

In a typical application, V_{A} might $= \pm 10 \mathrm{~V}, A_{D}=0.1 \%$, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. The criterion of equation (2b) predicts:

$$
R 1_{(\mathrm{MIN})} \geq \frac{10 \mathrm{~V}}{\frac{20 \mathrm{~mA}}{10}}=5 \mathrm{kS}
$$

For R1-5k, $\mathrm{I}_{\mathrm{S}} \cong 10 \mathrm{~V} / 5 \mathrm{k}$ or 2 mA . The electrical characteristics guarantee an $\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}$ at $85^{\circ} \mathrm{C}$ for the AM9710. Per the criterion of equation (2a):

$$
R 1_{(M \mid N)} \geq \frac{(10 \mathrm{~V})\left(10^{3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega
$$

Since equation (2a) predicts a higher value, the 10 k resistor should be used.

The "OFF" condition of the FET also affects gain accuracy. As shown in Figure 3, the leakage across Q2, $I_{D(O F F)}$ represents a finite error in the current arriving at the sumining junction of the op amp.

Accordingly:

$$
R 1_{(M A X)} \leq \frac{V_{A(M I N)} A_{D}}{(N) I_{D(O F F)}}
$$

$$
\text { Where: } \begin{aligned}
V_{A(M I N)}= & \text { Minimum value for the analog } \\
& \text { input signal } \\
& = \\
\mathrm{A}, & \text { Desired accuracy } \\
\mathrm{N} & =\text { Number of channels } \\
\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}= & \text { "QFF" leakage of a given FET } \\
& \text { switch }
\end{aligned}
$$

As als example, if $N=10 \quad A_{D}=0.1 \%$, and $I_{\text {D(OFF) }}$ $\leq 10 \mathrm{nA}$ at $85^{\circ} \mathrm{C}$ for the AM9709, $\mathrm{R} 1_{\text {(MAX) }}$ is.

$$
\mathrm{R} 1_{(\text {MAX })} \leq \frac{(1 \mathrm{~V})\left(10^{3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 \mathrm{k}
$$

Selection of R2, of course, depends on the gain desired and for unity gain R1 = R2.

Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op amp--all of which should be considered in setting the overall gain accuracy of the circuit.

FIGURE 2. On Leakage Current, $\mathrm{I}_{\mathrm{G}}(\mathrm{ON})$

Applications Information
 (Continued)

TTL Compatibility

Two input logic drive versions of $A M / A H$ series are available: the even numbered part types are specified to be driven from standard 5 V -TTL logic and the odd numbered types from 15 V open collector TTL.

Standard TTL gates pull-up to about 3.5 V (no loadi. In order to ensure turn-off of the even numbered switches such as AM9710, a pult-up resistor, $R_{E \times T}$, of at least $10 \mathrm{k} \Omega$ should be placed between the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and the gate output as shown in Figure 4.

Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5 in
both cases, $\mathrm{t}_{(\mathrm{OFF})}$ is improved for lower values of $\mathrm{R}_{E X T}$ and the expense of power dissipation in the low state.

CMOS Compatibility
The cost effective AM97C09 series of switches is optimized for CMOS drive without resistor pull.up. The AM97C10's and AM97C12's are specified for $5 \mathrm{~V}-10 \mathrm{~V}$ operation while the AM97C09's and AM97C11's are specified for $10 \mathrm{~V}-15 \mathrm{~V}$ operation.

Definition of Terms

The terms referred to in the electrical characteristics tables are as defined in Figure 6.

FIGURE 3.

FIGURE 5. Interfacing with +15 V Open Collector TTL

Applications Information (Continued)

FIGURE 6. Definition of Terms

Typical Applications

> Gain Programmable Amplifier

3-Channel Multiplexer with Sample and Hold

AM9709, AM97C09, AH5009 Series

Typical Applications (Continued)

8-Bit Binary (BCD) Multiplying D/A Converter

CD4007M/CD4007C Dual Complementary Pair Plus Inverter

General Description

The CD 4007M/CD4007C consists of three complement try pairs of N -channel and P -channel enhancement mode MOS transistors suitable for series/shunt applications All inputs are protected from static discharge by diode clamps to $V_{D D}$ and $V_{E S}$

For proper operation the voltages at all pins must be constrained to be between $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ and $\mathrm{V}_{00}+0.3 \mathrm{~V}$ at all times.

- Wide supply voltage range
3.0 V to 15 V
- High noise immunity

Connection Diagram

Top view

Note All Pemannel substrates are tonnecird to $V_{\text {go }}$

Order Number CD4007MD See Package 14 Order Number CD4007MF

See Package 23

Order Number CD4007CJ or CD 4007MJ See Package 18 Order Number CD4007CN See Package 21

AC Test Circuits

Absolute Maximum Ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range CD4007M
CD4007C
Storage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range
Lead Temperature (Soldering, 10 seconds)
$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
$V_{S S}+3.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+15 \mathrm{~V}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics cD4007M

PARAMETER	CONDITIONS	LIMITS									UNITS
		55 C			25 C			125 C			
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Ourescent Device	$V_{D D} 5 \mathrm{~V}$			005		0.001	0.05			3	$\mu \mathrm{A}$
Current (${ }_{L}$)	$V_{D D}-10 \mathrm{~V}$			0.1		0001	0.1			6	$\mu \mathrm{A}$
Oulescent Device Dissi	$V_{D D}=5 \mathrm{~V}$			025		0005	075			15	$\mu \mathrm{W}$
pation/Package (P_{D})	$V_{0 D}-10 \mathrm{~V}$			1		0.01				60	μW
Output Voltage Low	$V_{D D}=5 \mathrm{~V}$			0.01		0	001			005	V
Level (V)	$V_{00}-10 V$			0.01		0	0.01			005	v
Output Voltage High	$V_{O D}=5 \mathrm{~V}$	499			499	5		4.95			V
Level (V_{OH})	$V_{00} 10 \mathrm{~V}$	9.99			9.99	10		995			v
Noise Immunity	$V_{D D}-5 \mathrm{~V}, \mathrm{~V}_{0} 36 \mathrm{~V}$	15			15	225		1.4			V
$\left(V_{N L}\right)$ (All thputs)	$V_{D D}=10 \mathrm{~V}, V_{0}=7.2 \mathrm{~V}$	3			3	45		29			V
Norse Immunity	$V_{D O}=5 \mathrm{~V}, V_{O}-095 \mathrm{~V}$	14			15	225		15			V
(V_{NH}) (All lnputs)	$V_{D D}=10 \mathrm{~V}, V_{O} 29 \mathrm{~V}$	29			3	45		3			V
Output Dive Curient	$V_{D D}-5 \mathrm{~V}, V_{0} 04 \mathrm{~V}, V_{1}=V_{D O}$	075			06	1		0.4			mA
N Channel $\left\{\mathrm{I}_{\mathrm{D}} \mathrm{N}\right.$)	$V_{D D}=10 \mathrm{~V}, V_{0}=0.5 \mathrm{~V}, V_{1} V_{00}$	16			13	25		095			$m A$
Output Drive Current	$V_{D O D}=5 \mathrm{~V}, V_{0}=2.5 \mathrm{~V}, \mathrm{~V}_{1} \quad V_{\mathrm{cs}}$	175			14	4					mA
P-Channel ($I_{0} \mathrm{P}$)	$V_{\text {OD }}-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} 9.5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\text {SS }}$				11	25		075			mA
Input Current (t_{1})						10					pA

DC Electrical Characteristics CD4007C

PARAMETER	CONDITIONS	LIMITS									UNITS
		40 C			25 C			85 C			
		MIN	TYP	MAX	MiN	TYP	MAX	MiN	TYP	MAX	
Ounescent Device Current (1_{L})	$\begin{aligned} & V_{D O}=5 \mathrm{~V} \\ & V_{D D}-10 \mathrm{~V} \end{aligned}$			05 1		$\begin{aligned} & 0.005 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 05 \\ & 1 \end{aligned}$			$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Ourescent Device Disst pation/Package (P_{D})	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D O}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 25 \\ & 10 \end{aligned}$		0025 0.05	$\begin{aligned} & 25 \\ & 10 \end{aligned}$			75 300	$\begin{aligned} & \mu W \\ & \mu W \end{aligned}$
Output Voltage Low Level ($V_{O L}$)	$\begin{aligned} & V_{D D}-5 \mathrm{~V} \\ & V_{D D} \quad 10 \mathrm{~V} \end{aligned}$			001 001			001 001			005 005	V
Output Voltage High Level (V_{OH})	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 499 \\ & 9.99 \end{aligned}$			$\begin{aligned} & 499 \\ & 999 \end{aligned}$	5 10		495 995			V V V
Noise Immunity ($V_{N L}$) (All Inputs)	$\begin{aligned} & V_{D O}-5 \mathrm{~V}, V_{O}=36 \mathrm{~V} \\ & V_{D D}-10 \mathrm{~V}, V_{O}=7.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \\ & 3 \end{aligned}$			15 3	$\begin{aligned} & 225 \\ & 45 \end{aligned}$		1.4 29			V
Noise Immunity (V_{NH}) (All Inputs)	$\begin{aligned} & V_{O D}-5 \mathrm{~V}, \quad V_{O}=0.95 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=2.9 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 14 \\ & 29 \end{aligned}$			15 3	$\begin{aligned} & 225 \\ & 45 \end{aligned}$		1.5 3			V
Output Drive Current N-Channel ($\mathrm{I}_{\mathrm{D}} \mathrm{N}$)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=04 \mathrm{~V}, V_{1}=V_{D O} \\ & V_{D O}=10 \mathrm{~V}, V_{O}=05 \mathrm{~V}, V_{1}-V_{O D} \end{aligned}$	$\begin{aligned} & 035 \\ & 12 \end{aligned}$			$\begin{aligned} & 03 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 25 \end{aligned}$		$\begin{aligned} & 024 \\ & 0.8 \end{aligned}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Drive Current P-Channel ($I_{D} \mathbf{P}$)	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{O}=25 \mathrm{~V}, V_{1}=V_{S S} \\ & V_{D D}=10 \mathrm{~V}, V_{O}=95 \mathrm{~V}, V_{1}=V_{S S} \end{aligned}$	$\begin{aligned} & 13 \\ & 065 \end{aligned}$			$\begin{aligned} & 11 \\ & 055 \end{aligned}$	4 25		$\begin{gathered} 09 \\ -045 \end{gathered}$			$m A$
Input Current (1_{1})						10					pA

Note 1: This device should not be connected to circuits with the power on because high transient voltages may cause permanent damage.

AC Electrical Characteristics co4007M

$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall times $=20 \mathrm{~ns}$. Typical temperature coefficient for all values of $V_{D O}=0.3 \% /{ }^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay Time $\left(\mathrm{t}_{\mathrm{PLH}}=\mathrm{t}_{\mathrm{PHL}}\right)$	$V_{D D}=5 \mathrm{~V}$		35	60	ns
	$V_{D D}=10 \mathrm{~V}$		20	40	ns
Transition Time ($\left.\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}\right)$	$\mathrm{V}_{D D}=5 \mathrm{~V}$		50	75	ns
Input Capacitance $\left(C_{1}\right)$	$V_{D D}=10 \mathrm{~V}$		30	40	ns

AC Electrical Characteristics CD4007C

$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ and input rise and fall tımes $=20 \mathrm{~ns}$. Typical temperature coefficient for all values of $V_{D D}=0.3 \% 1^{\circ} \mathrm{C}$.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay $T_{I m e}\left(\mathrm{t}_{\mathrm{PLH}}=\mathrm{t}_{\mathrm{PHL}}\right)$	$V_{D D}=5 \mathrm{~V}$		35	75	ns
	$V_{D D}=10 \mathrm{~V}$		20	50	ns
Transition TIme $\left(\mathrm{t}_{\mathrm{TLH}}=\mathrm{t}_{\mathrm{THL}}\right)$	$V_{D D}=5 \mathrm{~V}$		50	100	ns
Input Capacitance $\left(\mathrm{C}_{\mathrm{I}}\right)$	$V_{D D}=10 \mathrm{~V}$		30	50	ns

Switching Time Waveforms

CD4016M/CD4016C Quad Bilateral Switch

General Description

The CD4016M/CD4016C is a quad bilateral switch which utilizes P.channel and N -channel complementary MOS (CMOS) circuits to provide an extremely high "OFF" resistance and low "ON" resistance switch. The switch will pass signals in either direction and is extremely useful in digital switching.

Features

- Wide supply voltage range

3 V to 15 V

- Hıgh noise immunity
- Wide range of digital and analog levels
- Low "ON" resistance
- Matched switch characteristics
- High "ON/OFF" output voltage ratio
- High degree of linearity
- Extremely low leakage

$$
\begin{array}{r}
V_{15}=5 V_{p-p} \\
V_{D D}-V_{S S}=10 V \\
R_{L}=10 \mathrm{kS}
\end{array}
$$

- Transmits frequencies up to 10 MHz

Applications

- Analog signal switching/multiplexing
- Signal gatıng
- Squelch control
- Chopper
- Modulator
- Demodulator
- Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog to digital/digital to analog conversion
- Digital control of frequency, impedance, phase, and analog-signal ga!n

Schematic and Connection Diagrams

Note 1 All switch P channel substiates ale internally connected to teiminal No. 14

Signal-level range $\quad V_{S S} \quad V_{1 s} \cdots V_{\text {oo }}$
Noimal opeation Control line biasing.
switch ON V_{C} "1" $=V_{\text {DOD }}$. switch DFF V_{C} " 0 " $=V_{S S}$
Dual-In-Line and Flat Package

Order Number CD4016MD See Package 14
Order Number CD4016MF See Package 23
Order Number CD4016CJ or CD4016MJ See Package 18
Order Number CD4016CN See Package 21

Electrical Characteristics CD4016M

[^16]Electrical Characteristics CD4016C

Note 1: The device should not be connected to circuits with the power on.
Note 2: $£ 10 \times 10^{-3}$.
Note 3: Symmetrical about OV .

Typical ON Resistance Characteristics

Characteristic＊	SUPPLY CONDIFIONS		LOAD CONDITIONS					
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ ？		$\mathrm{A}_{4}=100 \mathrm{k} \Omega$	
	Voo （V）	$V_{S S}$ （V）	value （0）	$\begin{aligned} & v_{5} \\ & (v) \end{aligned}$	VALUE （I）	$\begin{aligned} & V_{n} \\ & \mid V^{\prime} \end{aligned}$	VALUE （12）	v_{15} （V）
$\mathrm{FON}^{\text {O }}$	－ 15	0	200	＋15	200	－15	180	＋15
			200	0	200	0	200	0
ROM ITAX	＋ 15	0	300	＋11	300	． 93	320	＋92
$\mathrm{RON}_{\mathrm{ON}}$		0	290	＋10	250	＋10	240	－ 10
	－ 10		790	0	250	0	300	0
RON ITTA ：	＋10	0	500	＋74	560	－ 56	610	＋5． 5
Fov			860	＋5	470	＋5	450	$+5$
	－ 5	0	600	0	580	0	800	0
Ron 1 max 1	$\cdot 5$	0	17 k	＋4\％	7 k	＋29	33 k	＇2：
Rov	－75	16	200	－75	200	－ 5	180	－ 75
			200	75	200	15	180	75
Ron （midx	－ 5	－ 5	290	＋025	280	－ 25	400	－0 25
RoN	＋ 5	5	260	－5	250	－5	240	－ 5
			310	5	250	－5	240	5
Ron imax	－ 5	5	600	＋025	580	－0．25	760	－0 25
			590	＋25	450	． 25	490	－25
R, N	$\cdot 25$	25	720	－25	520	－25	520	25
Rocmitax	25	－25	232 k	＋025	300 k	：025	870k	± 0.25

[^17]
CD4051M/CD4051C Single 8-Channel Analog Multiplexer/Demultiplexer CD4052M/CD4052C Dual 4-Channel Analog Multiplexer/Demultiplexer CD4053M/CD4053C Triple 2-Channel Analog Multiplexer/Demultiplexer

General Description

These analog multiplexers/demultiplexers are digitally controlled analog switches having low "ON" impedance and very low "OFF" leakage currents. Control of analog signals up to $15 \mathrm{Vp}-\mathrm{p}$ can be achieved by digital signal amplitudes of $3-15 \mathrm{~V}$. For example, if $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $V_{S S}=0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$, analog signals from $-5 \mathrm{~V}-$ +5 V can be controlled by digital inputs of $0-5 \mathrm{~V}$. The multiplexer circuits dissipate, extremely low quiescent power over the full $V_{D D}-V_{S S}$ and $V_{D D}-V_{E E}$ supplyvoltage ranges, independent of the logic state of the control signals. When a logical " 1 " is present at the inhibit input terminal all channels are "OFF."
CD4051M/CD4051C is a single 8 -channel multiplexer having three binary control inputs, A, B and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned "ON" and connect the input to the output.

CD4052M/CD4052C is a differential 4 -channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

CD4053M/CD4053C is a triple 2 -channel multiplexer having three separate digital control inputs, A, B and C and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.

Features

- Wide range of digital and analog signal levels: digital $3-15 \mathrm{~V}$, analog to $15 \mathrm{Vp}-\mathrm{p}$
- Low "ON" resistance: $80 \Omega 2$ (typ) over entire $15 \mathrm{Vp}-\mathrm{p}$ signal-input range for $V_{D D}-V_{E E}=15 \mathrm{~V}$
- High "OFF" resistance: input leakage $\pm 10 \mathrm{pA}$ (typ) at $V_{D D}-V_{E E}=10 \mathrm{~V}$
- Logic level conversion for digital addressing signals of $3-15 \mathrm{~V}\left(V_{D D}-V_{S S}=3-15 \mathrm{~V}\right)$ to switch analog signals to $15 \mathrm{Vp}-\mathrm{p}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{E E}=15 \mathrm{~V}\right)$
- Matched switch characteristics: $\Delta R_{O N}=5 \Omega$ (typ) for $V_{D D}-V_{E E}=15 \mathrm{~V}$
- Very low quiescent powe dissipation under all digital-control input and supply conditions: $1 \mu \mathrm{~W}$ typ at $V_{D D}-V_{S S}=V_{D D}-V_{E E}=10 \mathrm{~V}$
- Binary address decoding on chip

Connection Diagrams (Dual-In-Line and Flat Packages)

Order Number CD4051MD See Package 15
Order Number CD4051MF See Package 24
Order Number CD4051CJ or CD4051MJ See Package 19 Order Number CD4051CN See Package 22

Order Number CD4052MD
See Package 15
Order Number CD4052MF
See Package 24
Order Number CD4052CJ or CD4052MJ
See Package 19
Order Number CD4052CN
See Package 22

Order Number CD4053MD
See Package 15
Order Number CD4053MF
See Package 24
Order Number CD4053CJ or CE4053MJ See Package 19
Order Number CD4053CN See Package 22

Absolute Maximum Ratings

Voltage at Any Control Input
Voltage at Any Switch Input or Output
Operating Temperature Range

CD40XXM
CD40XXC
Storage Temperature Range
Package Dissipation
Operating $V_{D D}$ Range
$V_{S S}-0.3 V$ to $V_{D D}+0.3 V$
$V_{E E}-0.3 V$ to $V_{D D}+0.3 V$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
$V_{E E}+3 V$ to $V_{E E}+15 V$
$V_{S S}+3 V$ to $V_{S S}+15 V$

Electrical Characteristics CD4051M, CD4052M, CD4053M

Electrical Characteristics (Continued) CD4051M, CD4052M, CD4053M

Electrical Characteristics cD4051c, CD4052C, CD4053C

Electrical Characteristics (Continued) CD4051C, CD4052C, CD4053C

Note 1: A, B are two arbitrary channels with A turned "ON" and B "OFF"
Note 2: Channel Overlap = Turn "ON" delay, where channel overlap is defined as the duration after control signal change during which two channels may be "ON" together.
Note 3: $V_{I S}=$ input signal voltage, $V_{O S}=$ output signal voltage, $f_{I S}=$ input signal frequency.

Special Considerations

In certain applications the external load-resistor current may include both $V_{D D}$ and signal-line components. To avoid drawing $V_{D O}$ current when switch current flows into "In/Out" pin, the voltage drop across the bidirec-
tional switch must not exceed 0.6 V at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$, or 0.4 V at $T_{A}>25^{\circ} \mathrm{C}$ (calculated from R_{ON} values shown). No $V_{D D}$ current will flow through R_{L} if the switch current flows into "Out/In" pin.

Truth Table

INPUT STATES			"ON" CHANNELS			
INHIBIT	C	B	A	CD4051A	CD4052A	CD4053A
0	0	0	0	0	$0 \times 0 y$	$\mathrm{cx}, \mathrm{bx}, \mathrm{ax}$
0	0	0	1	1	$1 \times 1 y$	$\mathrm{cx}, \mathrm{bx}, \mathrm{ay}$
0	0	1	0	2	$2 \times 2 Y$	$\mathrm{cx}, \mathrm{by} \mathrm{ax}$
0	0	1	1	3	$3 x 3 y$	$\mathrm{cx}, \mathrm{by}, \mathrm{ay}$
0	1	0	0	4		$\mathrm{cy}, \mathrm{bx}, \mathrm{ax}$
0	1	0	1	5		$\mathrm{cy}, \mathrm{bx} a \mathrm{ay}$
0	1	1	0	6		$\mathrm{cy}, \mathrm{by}, \mathrm{ax}$
0	1	1	1	7		$\mathrm{cy}, \mathrm{by}, \mathrm{ay}$
1	+	\cdot	\cdot	NONE	NONE	NONE

Typical Performance Characteristics

"ON" Resistance vs Signal
Voltage for $T_{A}=25^{\circ} \mathrm{C}$

"ON" Resistance as a
Function of Temperature for
$V_{D D}-V_{E E}=10 \mathrm{~V}$

"ON" Resistance as a
Function of Temperature for $V_{D D}-V_{E E}=15 v$

"ON" Resistance as a
Function of Temperature for
$V_{D D}-V_{E E}=5 V$

行

CD4066BM/CD4066BC Quad Bilateral Switch

General Description

The CD4066BM/CD4066BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4016BM/CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.

Features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
- Wide range of digital and analog switching
- "ON" resistance for 15 V operation
80Ω typ
- Matched 'ON" resistance over $\quad \triangle \mathrm{R}_{\mathrm{ON}}=5 \Omega$ typ 15 V signal input
- "ON" resistance flat over peak•to-peak signal range
- High "ON"/"OFF" output voltage ratio 65 dB typ $@ \mathrm{f}_{\mathrm{is}}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$
- High degree of linearity
$<0.4 \%$ distortion typ $@ f_{i s}=1 \mathrm{kHz}, V_{\text {is }}=5 \mathrm{Vp}-\mathrm{p}$, $V_{D D}-V_{S S}=10 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega$

Applications

- Analog signal switching/multiplexing
- Signal gating
- Squelch control
- Chopper
- Modulator/Demodulator
- Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

Schematic and Connection Diagrams

Dual-In-Line and Flat Package

Order Number CD4066BMD
See Package 14
Drder Number CD4066BMF
See Package 23
Order Number CD4066BCJ or CD4066BMJ
See Package 18
Order Number CD4066BCN
See Package 21

Absolute Maximum Ratings

(Notes 1 and 2)

V DD Supply Voltage	-0.5 V to +18 V
VIN Input Voltage	-0.5 V to $\mathrm{V}_{\text {DO }}+0.5 \mathrm{~V}$
TS Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$P_{\text {D }}$ Package Dissipation	500 mW
Lead Temperature	nds) $300^{\circ} \mathrm{C}$

Operating Conditions

(Note 2)
$V_{\text {OD }}$ Supply Voltage
ViN Input Voltage
T_{A} Operating Temperature Range CD4066BM
$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4066BC
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DC Electrical Characteristics CD4066BM (Note 2)

DC Electrical Characteristics CD4066BC (Note2)

	PARAMETER	CONDITIONS	-40 C		$25^{\circ} \mathrm{C}$			85 C		UNITS
			MIN	MAX	MIN	TYP	MAX	MIN	MAX	
100	Oulescent Device Curient	$V_{D D}-5 V$		10		001	10		75	$\mu \mathrm{A}$
		VOD - 10 V		20		001	20		15	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}$		40		001	40		30	$\mu \mathrm{A}$

DC Electrical Characteristics (Continued) CD40668C (Note 2)

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
tPHL, TPLH	Piopdqation Delay Time Signal Input to Signal Output	$\begin{aligned} & V_{C}-V_{D D}, C_{L} \cdot 50 \mathrm{pF}, \text { (Figure } 1 \text {) } \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \\ & 25 \end{aligned}$	ns ns ns
tPZH, tPZL	Propagation Delay Time Control Input to Signal Output High tmpedance to Logical Level	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, 1 \text { Figuires } 2$ and 3) $\begin{aligned} & V_{D D}-5 V \\ & V_{D D}=10 V \\ & V_{D D}-15 V \end{aligned}$		$\begin{aligned} & 90 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 180 \\ & 80 \\ & 60 \end{aligned}$	ns ns ns
tPHZ.tPLZ	Propagation Delay Time Control Input to Signal Output Logical Lovel to High Impedance	```R and 3) VDD = 5V VDD 10V VDD = 15V```		$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$	$\begin{aligned} & 180 \\ & 120 \\ & 110 \end{aligned}$	ns n5 ns
	Sine Wave Distortion	$\begin{aligned} & V_{C}=V_{D D}=5 \mathrm{~V}, V_{S S} \quad 5 \mathrm{~V}, \\ & R_{L}-10 \mathrm{kS}, V_{15}-5 V_{p p, 4}-1 \mathrm{kHz}, \end{aligned}$ (Figure 4)		04		\%
	Frequency Response Switch 'ON" (Frequency at - 3 dB)	$\begin{aligned} & V_{C} V_{D D}-5 V, V_{S S}-5 V, \\ & R_{L}-1 k \Omega, V_{i S}-5 V_{p p}, \\ & 20 \log _{10} V_{O S} / V_{\text {IS }}--3 d B \text { (Figure 4) } \end{aligned}$		40		MHz

AC Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Feedthrough - Swith "OFF (Frequency at -50 dB i	$\begin{aligned} & V_{D D} 5 V V_{C}=V_{S S}--5 V_{1} \\ & R_{L} \mid K_{-!} V_{15} 5 V_{p} p, 20 \log 10 \\ & V_{O S} V_{G}--50 \mathrm{~dB},(\text { Figure } 4) \end{aligned}$		125		MHz
	Crosstalk Between Any Two Switch (Frequency ar 50 dB)	$\begin{aligned} & V_{D D}-V_{C(1)}=5 V, V_{S S}=V_{C(2)}=-5 V \\ & R_{L} \quad 1 k_{S}, V_{1 S}(A)=5 V_{p p}, 20 L o g_{10} \\ & V_{\square \leq\{2,} V_{15(1)}-50 \mathrm{~dB} . \\ & \text { (Figure } 5 . \end{aligned}$		09		MHz
	Crosstalk Contral Input to Signal Output	$V_{D D}-10 V R_{L}-10 k!2$, RiN $1 k \therefore V_{C C}=10 \mathrm{~V}$ Square $W_{\text {die }}$ (Figure 6		400		$m V p p$
	Maximum Control Input	$R_{L}=1 \mathrm{k}: 2, C_{L} 50 \mathrm{pF}$, (Figure 7)				
	Fiequency (f at Vos^{-}	VOD 5 V		60		MHz
	$12 \mathrm{VOD} \rho \mathrm{p}^{\prime}$	$\text { VOD } 10 \mathrm{~V}$		80		MHz
		VOD 15 V		85		MHz
$\mathrm{C}_{\text {IS }}$	Signai Input Capdritance			8		$\rho \mathrm{F}$
GOS	Signal Output Capacitance			8		pF
$\mathrm{ClOs}^{\text {cos }}$	Feedthrough Capicitarace			05		pF
Cl / N	Contral Input Capacitance			5	75	pF

Note 1: "Absolute Maximum Ratıngs" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $V_{S S}=O V$ unless otherwise specified
Note 3: These devices should not be connected to circuits with the power "ON".
Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_{L} wherever it is specified.

AC Test Circuits and Switching Time Waveforms

FIGURE 1. tphl. tplH Propagation Delay Time Signal Input to Signal Output

FIGURE 3. tpZL. tplZ Propagation Delay Time Control to Signal Dutput

AC Test Circuits and Switching Time Waveforms (Continued)

$V_{C}=V_{D D}$ for distortion and frequency response tests $V_{C}=V_{S S}$ for feedthrough test

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

FIGURE 5. Crosstalk Between Any Two Switches

Figure 7. Maximum Control Input Frequency

Typical Performance Characteristics

＂ON＂Resistance as a Function of Temperature for
$V_{D D}-V_{S S}=10 V$

Special Considerations

In applications where separate power sources are used to drive $V_{D D}$ and the signal input，the $V_{D D}$ current capability should exceed $V_{D D} / R_{L} \quad\left(R_{L}=\right.$ effective external load of the 4 CD4066BM／CD4066BC bilateral switches）．This provision avoids any permanent current flow or clamp action on the $V_{D D}$ supply when power is applied or removed from CD4066BM／CD4066BC．

In certain applications，the external load－resistor current may include both $V D D$ and signal－line components．To
avoid drawing $V_{D D}$ current when switch current flows into terminals $1,4,8$ or 11 ，the voltage drop across the bidirectional switch must not exceed 0.6 V at $\mathrm{T} \mathrm{A} \leq 25^{\circ} \mathrm{C}$ ， or 0.4 V at $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$（calculated from R_{ON} values shown）．

No VDD current will flow through R_{L} if the switch current flows into terminals 2，3， 9 or 10.

Quad SPST JFET Analog Switches

LF11331/LF12331/LF13331
LF11332/LF12332/LF13332
LF11333/LF 12333/LF 13333
LF11201/LF 12201/LF13201
LF11202/LF12202/LF13202

General Description

These devices are a monolithic combination of bipolar and JFET technology producing the industry's first one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of $\pm 10 \mathrm{~V}$. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break before-make action.

Features

- Analog signals are not loaded
- Constant "ON" resistance for signals up to $\pm 10 \mathrm{~V}$ and 100 kHz
- Pin compatible with CMOS switches with the advan tage of blow out free handling
- Small signal analog signals to 50 MHz
- Break-before-make action

$$
\mathrm{t}_{\mathrm{OFF}}<\mathrm{t}_{\mathrm{ON}}
$$

- High open switch isolatıon at $1.0 \mathrm{MHz} \quad-50 \mathrm{~dB}$
- Low leakage in "OFF" state $<1.0 \mathrm{nA}$
- TTL, DTL, RTL compatibility
- Single disable pin opens all switches in vackage on LF11331, LF11332, LF11333
- LF11201 is pin compatible with DG201

These devices operate from $\pm 15 \mathrm{~V}$ supplies and swing a $\pm 10 \mathrm{~V}$ analog signal. The JFET switches are clesigned for applications where a dc to medium frequency analog signal needs to be controlled.

Connection Diagrams (Dual-In-Line Packages) (All Switches Shown are For Logical "0")

Test Circuit and Schematic Diagram

FIGURE 1. Typical Circuit for One Switch

FIGURE 2. Schematic Diagram (Normally Open)

Absolute Maximum Ratings

Positive Supply - Negative Supply $\left(\mathrm{V}_{\mathrm{CC}}{ }^{-\mathrm{V}_{E E}}\right)$
Reference Voltage Logic Input Voltage
Analog Voltage
Analog Current
Power Dissipation (Note 11
Molded DIP (N Suffix)
Cavity DIP (D Suffix)

36 V
$V_{E E}<V_{R}<V_{C C}$
$V_{R}-40 V \leq V_{1 N}<V_{R}+60 V$
$V_{E E} \leq V_{A}<V_{C C}+6 V, V_{A}<V_{E E}+36 V$
$\|_{A}$ K 20 mA
500 mW
900 mW

Operating Temperature Range
LF11201, 2 and LF11331, 2, 3
LF 12201, 2 and LF 12331, 2, 3
LF13201, 2 and LF13331, 2, 3
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2,7)

Note 1: For operating at high temperature the molded DIP products must be derated based on a $+100^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, devices in the cavity DIP are based on a $+150^{\circ} \mathrm{C}$ maximum function temperature and are derated at $+100^{\circ} \mathrm{C} / \mathrm{W}$. Note 2: Unless otherwise specified, $V_{C C}=+15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{R}=0 \mathrm{~V}$, and limits appiv for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LF11331,2,3 and the LF11201,2, $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LF12331,2,3 and the LF12201,2, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LF13331,2,3 and the LF 13201, 2.
Note 3: These parameters are limited by the pin to pin capacitance of the package.
Note 4: This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates.
Note 5: All switches in the device are turned "OFF" by saturating a transistor at the disable node as shown in Figure 5. The delay times will be approximately equal to the tON or tOFF plus the delay introduced by the external transistor
Note 6: This graph indicates the analog current at which 1% of the analog current is lost when the drain is positive with respect to the source.

200 nis div

$200 \mathrm{~ns} / \mathrm{du}$

200 ns/div

$200 \mathrm{~ns} / \mathrm{dv}$

Additional Test Circuits

FIGURE 3. ION, toff Test Circuit and Waveforms for a Normally Open Switch

OFF ISOLATION $=20 \log \frac{V_{C}}{V_{B}} \quad$ CROSSTALK $-20 \log \frac{V_{C}}{V_{A}}$

Typical Performance Characteristics

Maximum Accurate Analog
Current vs Temperature

Slew Rate of A nalog Voltage Above Which Signal Loading Occurs

Application Hints

GENERAL INFORMATION

These devices are monolithic quad JFET analog switches with "ON" resistances which are essentially independent of analog voltage or analog current. The leakage currents are typically less than 1 nA at $25^{\circ} \mathrm{C}$ in both the "OFF" and "ON" switch states and introduce negligible errors in most applications. Each switch is controlled by minimum TTL logic levels at its input and is designed to turn "OFF" faster than it will turn "ON." This prevents two analog sources from being transiently connected together during switching. The switches were designed for appli cations which require break-before-make action, no analog current loss, medium speed switching times and moderate analog currents.

Because these analog switches are JFET rather than CMOS, they do not require special handling

LOGIC INPUTS

The logic input (IN), of each switch, is referenced to two forward dode drops (1.4 V at $25^{\circ} \mathrm{C}$) fiom the reference supply (V_{R}) which makes it compatible with DTL, RTL, and TTL logic families. For normal operdtion, the logic " 0 " voltage can range from 0.8 V to -4.0 V with respect to V_{R} and the logic " 1 " voltage can range from 2.0 V to 6.0 V with respect to V_{F}, provided $V_{\text {IN }}$ is not greater than $\left(\mathrm{V}_{\mathrm{CC}}-25 \mathrm{~V}\right)$. If the input voltage is greater than $\left(\mathrm{V}_{\mathrm{Cc}}-2.5 \mathrm{~V}\right)$, the input current will increase. If the input voltage exceeds 6.0 V or 4.0 V with respect to V_{R}, a resistor in series with the input should be used to limit the input current to less than $100 \mu \mathrm{~A}$.

analog voltage and current Analog Voltage

Each switch has a constant "ON" resistance ($R_{\text {ON }}$) for analog voltages from $\left(V_{E E}+5 V\right)$ to $\left(V_{C C}-5 V\right)$. For analog voltages greater than $\left(V_{C C}-5 V\right)$, the switch will remain ON independent of the logic input voltage. For analog voltages less than $\left(V_{E E}+5 \mathrm{~V}\right)$, the ON resistance of the switch will increase. Although the switch will not operate normally when the analog voltage is out of the previously mentioned range, the source voltage can yo to either ($\left.V_{E E}+36 V\right)$ or ($\left.V_{C C}+6 V\right)$, whichever is more positive, and can go as negative as $V_{E E}$ without destruction. The dran (D) voltage can also go to either $\left(V_{E E}+36 V\right)$ or $\left(V_{C C}+6 V\right)$, whichever is more posi. tive, and can go as negative as $\left(\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}\right)$ without destruction.

Analog Current

With the source (S) positive with respect to the drain (D), the RON is constant for low analog currents, but will increase at higher currents (25 mA) when the FET enters the saturation region. However, if the dranl is positive with respect to the source and a small analog current loss at high analog currents (Note 6) is tolerable, a low $\mathrm{R}_{\text {ON }}$ can be mantaned for analog currents greater than 5 mA at $25^{\circ} \mathrm{C}$.

LEAKAGE CURRENTS

The drain and source leakage currents, in both the ON and the OFF states of each switch, are typically less than 1 nA at $25^{\circ} \mathrm{C}$ and less than 100 nA at $125^{\circ} \mathrm{C}$. As shown in the typical curves, these leakage currents are dependent on power supply voltages, allalog voltage, analog current and the source to drain voltage.

DELAY TIMES

The delay time OFF ($\mathrm{t}_{\mathrm{OFF}}$) is essentially irdependent of both the analog voltage and temperature. The delay time ON (t_{ON}) will decrease as eithei $\left(V_{C C}-V_{A}\right)$ decreases or the temperature decreases

POWER SUPPLIES

The voltage between the positive supply (V_{cc}) and either the negative supply (V_{EE}) or the reference supply $\left(V_{R}\right)$ can be as much as 36 V To accommodate variations in input logic reference voltages, V_{R} can range fiom $V_{E E}$ to ($V_{C C}-4.5 \mathrm{~V}$) Care should be taken to ensure that the power supply leads for the device never become reversed in polarity or that the cevice is never inadvertantly installed backwards in a test socket. If one of these conditions occurs, the supplies would zener an interal diode to an unlimited curient, and result in a destroyed device.

SWITCHING TRANSIENTS

When a switch is turned OFF or ON, tansients will appear at the load due to the internal transient voltage at the gate of the switch JFET being couplec to the drain and source by the function capacitances of the JFET. The magnitude of these transients is dependent on the load. A lower value R_{L} produces a lower iransient volt. age. A negative transient occurs during the delay time ON. while a positive transient occurs dur ng the delay time OFF. These transients are relatively small when compared to faster switch familes.

DISABLE NODE

This node can be used, as shown in Figure 5, to turn all the switches in the unit off independent of logic inputs. Normally, the node floats freely at an internal diode drop ($\approx 0.7 \mathrm{~V}$) above V_{R}. When the external transistor in Figure 5 is saturated, the node is pulled very close to V_{R} and the unit is disabled. Typically, the current from the node will be less than 1 mA . This feature is not available on the LF11201 or LF11202 seııs.

Typical Applications

Programmable Invertıng Non-Invertıng Operational Amplifier

Typical Applications (Continued)

8-Channel Analog Commutator with 6-Channel Select Logic

Typical Applications (Continued)

Chopper Channel Amplifier

Typical Applications (Continued)

Typical Applications (Continued)

LF11508/LF12508/LF13508 8-Channel Analog Multiplexer LF11509/LF12509/LF13509 4-Channel Differential Analog Multiplexer

General Description

The LF11508/LF12508/LF13508 is an 8-channel analog multiplexer which connects the output to 1 of the 8 analog inputs depending on the state of a 3 -bit binary address. An enable control allows disconnecting the output, thereby providing a package select function.

This device is fabricated with National's BI-FET technology which provides ion-implanted JFETs for the analog switch on the same chip as the bipolar decode and switch drive circuitry. This technology makes possible low constant "ON" resistance with analog input voltage variations. This device does not suffer from latch-up problems or static charge blow-out problems associated with similar CMOS parts. The digital inputs are designed to operate from both TTL and CMOS levels while always providing a definite break-before-make action.

The LF11509/LF12509/LF13509 is a 4-channel differential analog multiplexer. A 2 -bit binary address will
connect a pair of independent analog inputs to one of any 4 pairs of independent analog outputs. The device has all the features of the LF11508 series and should be used whenever differential analog inputs are required.

Features

- JFET switches rather than CMOS
- No static discharge blow-out problem
- No SCR latch-up problems
- Analog signal range $11 \mathrm{~V},-15 \mathrm{~V}$
- Constant "ON" resistance for analog signals between -11 V and 11 V
- "ON" resistance 380Ω typ
- Digital inputs compatible with TTL and CMOS
- Output enable control
- Break-before-make action: tOFF $=0.2 \mu \mathrm{~s} ; \operatorname{toN}=$ $2 \mu \mathrm{~s}$ typ

Functional Diagrams and Truth Tables

LF11508/LF12508/LF13508

EN	A2	A1	A0	SWITCH ON
H	L	L	L	S1
H	L	L.	H	S2
H	L	H	L	S3
H	L	H	H	S4
H	H	L.	L	S5
H	H	L	H	S6
H	H	H	L.	S7
H	H	H	H	S8
L	X	X	X	NONE

LF11509/LF12509/LF13509

EN	A1	AO	SWITCH
PAIR ON			
L	X	X	None
H	L	L	S1
H	L	H	S2
H	H	L	S3
H	H	H	S4

Absolute Maximum Ratings

Positive Supply - Negative Supply $\left(V_{C C}-V_{E E}\right)$
Positive Analog Input Voltage (Note 1)
Negative Analog Input Voltage (Note 1)
Positive Digital Input Voltage
Negative Digital Input Voltage
Analog Switch Current
Power Dissipation (P_{D} at $25^{\circ} \mathrm{C}$) and Thermal Resistance $\left(\theta_{j A}\right)$, (Note 2) Molded DIP (N) P_{D} P_{D}
Cavity DIP (D)

Maximum Junction Temperature (TjMAX)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 seconds)
LF1 1508,
LF1 1509

LF12508,
LF12509

36 V

$V_{C C}$
$-V_{E E}$
$V_{C C}$
$-5 V$
${ }^{\prime} \mathrm{S}^{\prime}<10 \mathrm{~mA}$
LF13508, LF13509

36 V
$V_{C C}$
$-V_{\text {EE }}$
$V_{C C}$
$\left|{ }_{S}\right|<10 \mathrm{~mA}$

500 mW

900 mW $100^{\circ} \mathrm{C} / \mathrm{W}$ $110^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C} \leq \top^{\top} \leq+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C} / \mathrm{W}$ 900 mW $100^{\circ} \mathrm{C} / \mathrm{W}$ $100^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

SYMBOL	PARAMETER	CONDITIONS		LF11508, LF11509			LF12508, LF12509, LF 13508, LF13509			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
RON	"ON" Resistance	VOUT - OV, IS $100 \mu \mathrm{~A}$	TA 25 C		380	500		380	650	!
					600	750		500	850	Ω
$\triangle \mathrm{AON}$	3 RON with Analog Vortage Swing	-10V - VOUT . 10 V Is $100 \mu \mathrm{~A}$	TA 25 C		001	1		001	1	"
RON Match	RON Match Between Suvithes	VOUT OV IS 100.A	TA 25 C		20	100		20	150	12
IS(OFF)	Source Current 11 "OFF"	Sw toh "OFF" V_{S} " $1 i V_{D}-11$, (Note 4)	$\mathrm{T}_{\mathrm{A}}-25 \mathrm{C}$			1			5	17 A
	Condition				10	50		009	50	11
IDIOFF)	Dram Current in 'OFF' Condition	Sw tch "OFF" $V_{S}-11, V_{D}--11$ Note 41	$\mathrm{T}_{\mathrm{A}}-25 \mathrm{C}$			10			20	$n \mathrm{~A}$
					25	500		06	500	$n \mathrm{~A}$
${ }^{\text {I DION }}$	Leakage Curren' ir ' ON' Condition	Su tch "ON" $V_{\text {D }}$ 11V Note 41	TA-25 C			10			20	nA
					35	500		1	500	$\square \mathrm{A}$
$V_{\text {INH }}$	Dryital "1"Input Voltaqe			20			20			V
$V_{\text {INL }}$	Digital " 0 " Inpur Voltage					07			07	V
IINL	Draital "0" Input Current	VIN 07 V	TA. 25 C		+ 5	20		15	30.	$\mu \mathrm{A}$
						40			40	$\mu \mathrm{A}$
IINL(EN)	Digital "O"Enable Current	VEN 07 V	TA 25 C		12	20		12	30	$\mu \mathrm{A}$
						40			40	$\mu \mathrm{A}$
tTRAN	Switching Time of Multiplexer	(Fiqure 7), (Note 5)	TA - 25 C		20	3		18		i
TOPEN	Break Before Makn	(Figure 3)	TA 25 C		16			16		$\mu \mathrm{s}$
ton(EN)	Enable Deldy ' ON"	(Figure 2)	TA 25 C		16			16		$\mu 5$
torf (EN)	Enable Delay "OFF"	(Figure 2)	TA - 25 C		02			02		$\mu \mathrm{s}$
ISO(OFF)	"OFF" Isolation	(Note 6)	TA 25 C		66			66		dB
CT	Crosstalk	LF11509 Serres (Note 6)	$\mathrm{T}_{\mathrm{A}} 25 \mathrm{C}$		-66			66		+ ${ }^{\text {d }}$
CSIOFF	Source Caparname - "OFF")	Switch "OFF", VOUT OV Vs OV	$\mathrm{T}_{\mathrm{A}}=25 \mathrm{C}$		22			22		pF
CDIOFF)	Dram Capacrance ("OFF")	Switch "OFF" VOUT OV. $V_{S} \quad 0 \mathrm{~V}$	$\mathrm{T}_{\text {A }}=25 \mathrm{C}$		114			114		pF
${ }^{1} \mathrm{CC}$	Positive Supply Current	All Diqital Inputs Grounded	TA 25 C		74	10		74	12	mA
					92	13		79	15	$m \mathrm{~A}$
${ }^{\text {IEE }}$	Neqatrve Supply Curren	All Digital Inputs Grounded	TA - 25 C		27	45		27	5	mA
					29	55		28	6	$m A$

Notes

Note 1: If the analog input voltage exceeds this limit, the input current should be limited to less than 10 mA .
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j} A$, and the
 ever is less.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \because T_{A} \leq \Gamma_{H}$) unless otherwise noted.
Note 4: Conditions applied to leakage tests insure worse case leakages. Exceeding 11 V on the analog input may cause an "OFF" channel to turn "ON"
Note 5: Lots are sample tested to this parameter. The measurement conditions of Figure 1 insure worse case transition time.
Note 6: "OFF" isolation is measured with all switches "OFF" and driving a source. Crosstalk is measured with a pair of switches "ON", driving channel A and measuring channel $B . R_{L}=200, C_{L}=7 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms}, f=500 \mathrm{kHz}$

Connection Diagrams

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Transition Time

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 3. Break-Before-Make

Transition Times and Transients

$1 \mu \mathrm{~S} / \mathrm{Div}$

3 μ S/DIV
$V_{A}=-10 V$

$\mu \mathrm{S} / \mathrm{DIV}$

$1 \mu \mathrm{~S} / \mathrm{DIV}$

1 SS/DIV

Typical Performance Characteristics

Application Hints

The LF 11508 series is an 8 -channel analog multiplexer which allows the connection of a single load to 1 of 8 different analog inputs. These multiplexers incorporate JFETs in a switch configuration which insures a constant "ON" resistance over the analog voltage range of the device. Four TTL compatible inputs are provided; a 3-bit binary decode to select a particular channel and an enable input used as a package select. The switches operate with a break-before-make action preventing the temporary connection of 2 analog inputs during switching. Because these multiplexers are fabricated with the BI-FET process rather than CMOS, they do not require special handling.

The LF11509 series is a 4 -channel differential multiplexer which allows two loads to be connected to 1 of 4 different pairs of analog inputs. The LF11509 series also has all the features of the LF11508.

ANALOG VOLTAGE AND CURRENT

The "ON" resistance, RON of the analog switches is constant over a wide input range from positive ($\mathrm{VCC}_{\mathrm{CC}}$) supply to negative ($-V_{E E}$) supply.

The analog input should not exceed either positive or negative supply without limiting the current to less than 10 mA ; otherwise the multiplexer may get damaged. For proper operation, however, the positive analog voltage should be kept equal to or less than $V_{C C}-4 V$ as this will increase the switch leakage in both "ON" and "OFF" state and it may also cause a false turn "ON" of a normally "OFF" switch. This limit applies over the full temperature range.

The maximum allowable switch "ON" voltage (the drop across the switch in the "ON" condition) is $\pm 0.4 \mathrm{~V}$ over temperature. If this number is to exceed the input current should be limited to 10 mA .

The "ON" resistance of the multiplexing switches varies slightly with analog current because they are JFETs running at $0 V$ gate to source. The JFET characteristics shown in Figure 4 indicates how RON tends to vary with current. A lower RON is possible when the source voltage is negative with respect to the drain voltage because the JFET becomes enhanced Caution should be used when operating in this mode as this may forward-bias an internal transistor and cause high currents to flow in the switches. Thus, the drain voltage should never be greater than 0.4 V positive with respect
to the source voltage without limiting the drain current to less than 10 mA .

LEAKAGE CURRENTS

Leakage currents will remain within the specified value as long as the drain and source remain within the specified analog voltage range. As the switch terminals exceed the positive analog voltage range "ON" and "OFF" leakage currents increase. The "ON" leakage increases due to an internal clamp required by the switch structure. The "OFF" leakage increases because the gate to source reverse bias has been decreased to the point where the switch becomes active. Leakage currents vary slightly with analog voltage and will approximately double for every $10^{\circ} \mathrm{C}$ rise in temperature.

SWITCHING TIMES AND TRANSIENTS

These multiplexers operate with a break before-make switch action. The turn off time is much faster than the turn on time to guarantee this feature over the full range of analog input voltage and temperature. Switching transients are introduced when a switch is turned "OFF". The amplitude of these transients may be reduced by increasing the load capacitance or decreasing the load resistance. The actual charge transfer in the transient may be reduced by operating on reduced power supplies. Examples of switching times and transients are shown in the typical characteristic curves. The enable function switching times are specified separately from switch to-switch transition times and may be thought of as package-to-package transition times.

LOGIC INPUTS AND ENABLE INPUT

Switch selection in the LF 11508 series is accomplished by using a 3 bit binary decode while the LF11509 series uses a 2 -bit decode. These binary logic inputs are compatible with both TTL and CMOS logic voltage levels. The maximum positive voltage applied to these inputs may exceed $V C C$ but should not exceed $-V_{E E}+36 V$. The maximum negative voltage should not be less than 4 V below ground as this will cause an internal device to zener and all the switches will turn "ON".

As shown in the schematic diagram, the logic low bias current will flow until the PNP input is raised above the 3 diode reference $(\approx 2.1 \mathrm{~V})$. Above this voltage the input device becomes reverse biased and the input current drops to the leakage of the reverse biased junction ($<0.1 \mu \mathrm{~A}$)

FIGURE 4. JFET Characteristics

Typical Applications

A SIMPLIFIED SYSTEM DISCUSSION

Analog multiplexers (MUX) are usually used for multichannel Data Acquisition Units (DAU). Figure 5 shows a system in which 8 different analog inputs are sampled and converted into digital words for further processing. The sample and hold circuit is optional, depending on input speed requirements and on A / D converter speed.

Parameters characterizing the system are:
System Channels: The number of multiplexer channels. Accuracy: The conversion accuracy of each individual sample with the system operating at the throughput rate.
Speed or Throughput Rate: Number of samples/second/ channel the system can handle.

For a discussion on system structure, addressing mode and processor interfacing, see application note AN-159.

A. ACCURACY CONSIDERATIONS

1. Multiplexer's Influence on System Accuracy (Figure 6).
a. The error, (E), caused by the finite "ON" resistance, R_{ON}, of the multiplexing switches is given by:
$E(\%)=\frac{100}{1+R_{1 N} /\left(R_{O N}+R_{S}+\Delta R_{O N}\right)}$ where:
$\mathrm{R}_{\text {IN }}=$ following stage input impedance $\Delta \mathrm{R}_{\mathrm{ON}}=$ "ON" resistance modulation which is negligible for JFET switches like the LF11508

Example: Let $\mathrm{R}_{\mathrm{ON}}=450 \Omega, \Delta \mathrm{R}_{\mathrm{ON}}=0, \mathrm{R}_{\mathrm{S}}=0$, $T_{A}=25^{\circ} \mathrm{C}$ and allowable $E=0.01 \%$ which is equivalent to $1 / 2 \mathrm{LSB}$ in a 12 -bit system:

$$
\left.\mathrm{R}_{\mathrm{IN}}\right|_{\min }=\frac{\mathrm{R}_{\mathrm{ON}}(100-E)}{E}=4.5 \mathrm{MS} 2
$$

Note that if temperature effects are included, some gain (or full scale) drift will occur; but effects on linearity are small.
b. Multiplexer settling time (t_{s}):
$\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$: is the time required for the MUX output to settle within a predetermined accuracy, as shown in Table I.
CS (Figure 6): MUX output capacitance + following stage input capacitance + any stray capacitance at this node.

FIGURE 5. Random-Addressed, Multiplexed DAU

TABLE I.

ERROR \%	BITS	$\begin{gathered} \mathrm{t}_{\mathrm{S}}(\mathrm{ON}) \\ \mathrm{TO} 1 / 2 \mathrm{LSB} \end{gathered}$
0.2	8	6.2 t
0.05	10	7.6 t
0.01	12	9 t
0.0008	16	11.8 t

$\mathrm{t}_{\mathrm{s}}($ OFF $)$: is the trme it takes to discharge CS_{S} within a tolerable error. The "OFF" settling time should be taken into account for bipolar inputs where its effects will appear as a worse case doubling of the $\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$.
2. Sample and Hold Influence on System Accuracy The sample and hold, if used, also introduces errors into the system accuracy due to:

- Offset voltage of sample and hold
- Droop rate in the Hold mode
- T_{A} : Aperture time or time delay between the time of a digital Hold command and the actual Hold occurance
- Taq: Acquisition time or time it takes to acquire an analog input and settle within a predetermined error band
- Hold step: Error created during the Sample to Hold mode caused by an undesirable charge injected into the Hold capacitor C_{h}.

For more details on sample and hold errors, see the LF 198/LF298/LF398 data sheet.
3. A/D Converter Influence on System Accuracy The "accuracy" of the A/D converter is the best possible system accuracy. In most data acquisition systems, the A/D converter is the most expensive single component, so its error will often dominate system error. Care should be taken that MUX, S/H and input source errors do not exceed system error requirements when added to A / D errors. For instance, if an 8 -bit accuracy system is desired and an 8 -bit A/D converter is used, the accuracy of the MUX and S / H should be far hetter than 8 bits.

For details on A / D converter specifications, see AN-156.

FIGURE 6. 8-Channel MUX

Typical Applications

(Continued)

B. SPEED CONSIDERATIONS

In the system of Figure 5 with the S / H omitted, if n -bit accuracy is desired, the change of the analog input voltage should be less than $\pm 1 / 2$ LS8 over the A/D conversion time $\mathrm{T}_{\mathrm{C}} \mathrm{C}$. In other words, the analog input slew rate, (rate of change of input voltage), will cause a slewinduced error and its magnitude, with respect to the total system error, will depend on the particular application.

$$
\left.\frac{\Delta V_{\mathrm{IN}}}{\Delta \mathrm{t}}\right|_{\max }<\frac{ \pm 1 / 2 \mathrm{LSB}}{\mathrm{~T}_{\mathrm{C}}}=\frac{V_{\mathrm{FS}}}{2^{\mathrm{n}} \times \mathrm{T}_{\mathrm{C}}}
$$

where $V_{F S}$ is the full scale voltage of the A / D. Note that slew induced errors are not affected by the MUX switch time since we can let the unit settle before starting conversion.

Example: Let $\mathrm{T}_{\mathrm{C}}=40 \mu \mathrm{~s}$ (MM4357), $\mathrm{V}_{\mathrm{FS}}=10 \mathrm{~V}$ and $n=8$.

$$
\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\max }<\frac{1 \mathrm{mV}}{\mu \mathrm{~s}}
$$

which is a very small number. A $10 \mathrm{Vp} \cdot \mathrm{p}$ sine wave of a frequency greater than 32 Hz will have higher slew rate than this. The maximum throughput rate of the above 8 -channel system would be calculated using both the A / D conversion time and the sum of MUX switch " ON " time and settling time, i.e.

$$
\begin{aligned}
& \text { Th. }\left.R\right|_{\max }=\frac{1}{8\left(T_{C}+T_{M U X}\right)}=\begin{array}{c}
\text { channel } \\
\text { ch samples } / \mathrm{sec} / \\
T_{M U X}=T_{O N}+T_{S}(O N)
\end{array}
\end{aligned}
$$

Also notice that Nyquist sampling criteria would allow each channel to have a signal bandwidth of 1.5 kHz max, while the slew limit dictates a maximum frequency of 32 Hz . If the input signal has a peak-to-peak voltage less than 10 V , the allowable maximum input frequency can be calculated by:

$$
\mathrm{f}_{\mathrm{MAX}}=\frac{(\text { Slew Rate })_{\max }}{\pi V p \cdot p}
$$

On the other hand, if the input voltage is not band limited a low pass filter with an attenuation of 30 dB or better at 1.5 kHz , should be connected in front of the MUX.

1. Improving System Speed with a Sample and Hold

The system speed can be improved by using the S/H shown in Figure 5. This allows a much greater rate of change of $V_{I N}$.

$$
\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\text {max }}<\frac{V_{F S}}{2^{n} \times T_{A}}
$$

where T_{A} is the aperture time of the S / H. This represents an input slew rate improvement by a factor: $\mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{A}}$. Here again, the slew rate error is not affected by the acquisition time of the Sample and Hold since conversion will start after the S / H has settled. An important thing to notice is that the sample and hold errors will add to the total system error budget; therefore, the inequality of the $\Delta V_{I N} / \Delta t$ expression should become more stringent.

Example: $T_{C}=40 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=0.5 \mu \mathrm{~s}, \mathrm{n}=8: \mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{A}}=80$

So the use of a S / H allows a speed improvement by nearly two orders of magnitude.

The maximum throughput rate can be calculated by:

$$
T h .\left.R\right|_{\max }=\frac{1}{8\left(T_{A}+T_{a q}+T_{C}\right)}
$$

Notice that $T_{M U X}$ does not affect the $\Delta V_{I N} / \Delta t$ expression nor the throughput rate of the system since it may be switched and settled while the Sample and Hold is in the Hold mode. This is true, provided that: $T_{\text {MUX }}<T_{A}+T_{C}$

C. SYSTEM EXAMPLE (Figure 7)

The LF398 S/H with a 1000 pF hold capacitor, has an acquisition time of $4 \mu \mathrm{~s}$ to 0.1% ($1 / 4$ LSB error for 8 bits) and an aperture time of less than $200 \mu \mathrm{~s}$. On the other hand, after the hold command, the output will settle to $\pm 0.05 \mathrm{mV}$ in $1 \mu \mathrm{~s}$. This, together with the acquisition time, introduces approximately a $\pm 1 / 4$ LSB error. Allowing another $1 / 4$ LS8 error for hold step and gain non-linearity, the maximum slew error $\left(\Delta V_{I N}\right)$ Δt) should not exceed $1 / 4$ LS8 or:

$$
\frac{\Delta V_{I N}}{\Delta t} \leq \frac{1}{4} \times \frac{1}{256} \times \frac{1}{T_{A}} \approx 5 \mathrm{mV} / \mu \mathrm{s}
$$

(which is the maximum slew rate of a 5 V peak sine wave. Also notice that, due to the above input slew restrictions, the analog delay caused by the finite BW of the S / H and the digital delay caused by the response time of the controller will be negligible. The maximum throughput rate of the system is:

Th. $\left.R\right|_{\max }=\frac{1}{8(5+40) 10^{-6}}=2800$ samples $/ \mathrm{sec} / \mathrm{ch}$.

If the system speed requirements are relaxed, but the A / D converter is still too slow, then an inexpensive S / H can be built by using just a capacitor and a low cost FET input op amp as shown in Figure 8.
LF11508/LF12508/LF13508, LF11509/LF12509/LF13509

Typical Applications (Continued)

${ }^{15 v} Q_{13} \varphi_{3}^{-15 v} \sqrt{14}$

Typical Applications (Contrued)

D. DOU8LING THE SYSTEM CHANNEL CAPABILITY

This is done in two different ways. First, we can use second level multiplexing with speed benefits, as shown in Figure 9. A fast 2 -channel multiplexer, made by the dual analog switch AM182, accepts the outputs of each 8 -channel MUX, LF13508, and then feeds them sequentially into an 8 -bit successive approximation A / D conver ter. With this technique, the throughput rate of the system can again be made independent of the the LF13508 speed. Lcoking at the timing diagram, when the A / D converter converts the analog value of an upper multiplexer channel, we switch channels in the lower multiplexer for the next conversion. This can be done provided that:

$$
T_{M U X} \leq T_{C}+1 C P
$$

The LF356 connected as unity gain buffers are used because of the low input impedance of the A / D; they are connected between multiplexers for speed optimization. With a maximum clock frequency of 4.5 MHz :

Th. $R=\frac{10^{6}}{16 \times 2}=31.25 \mathrm{k}$ samples $/ \mathrm{sec} /$ channe

An alternate way to increase the system channel is shown in Figure 10, where the enable pins are used to disable one MUX while the other is sampling. With this method, many 8 -channel multiplexers can be connected, but the parasitic capacitance at the common output node will keep increasing and will eventually degrade the settling time, $\mathrm{t}_{\mathrm{s}}(\mathrm{ON})$. Also, the MUX speed will now affect the system throughput. If, for instance, this method was used instead of second level multiplexing, the system of Figure 9 will lose half of its speed. If, however, speed is not the prime system requirement, the approach of Figure 10 is more cost effective.

E. DIFFERENTIAL INPUT SYSTEMS

Systems operating in industrial environments may require an instrumentation amplifier to separate the desired analog signal from any common-mode signal present. The LF11509 was designed to provide 4 pairs of differential input signals to the input of an instrumentation amplifier for further process. A 4 channel preconditioning circuit is shown in Figure 11 and a complete system is shown in Figure 12.
and
$\left.\frac{\Delta V_{\text {IN }}}{\Delta \mathrm{t}}\right|_{\max }<\frac{1 \mathrm{D}}{256} \times \frac{1}{2 \mu \mathrm{~s}}=19.5 \mathrm{mV} / \mu \mathrm{s}$ for $10 \mathrm{~V}_{\mathrm{FS}}$

- The acquisition time, T_{A}, of the Sample and Hold depends upon. $\mathrm{R}_{\mathrm{ON}}, I_{\text {DSS }}$ of switches, $Z_{O U T}$ of switches
- $I_{\mathrm{DSS}}=1.5 \mathrm{~mA}, Z_{\mathrm{OUT}}=40 \mathrm{k} \Omega$
- $V_{I N}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=20 \mu \mathrm{~s}$ to 0.1%
- Error created by charge injection during Hold mode: $\Delta V_{E} \simeq 10 \mathrm{pF}\left(14.5 \mathrm{~V}-\mathrm{V}_{\mathrm{IN}}\right) / \mathrm{C}_{\mathrm{h}}$

Typical Applications (Continued)

FIGURE 9a. A Fast 16-Channel DAU with Second Level Muttiplexing
«_ת

FIGURE 9b. Timing Diagram

Typical Applications (Continued)

FIGURE 10. A 16-Channel Multiplexer with Sequential Multiplexing

- Differential multiplexer disabled during auto zeroing
- Minimam zeroing pulse width will depend upon the integrator R1C
- This scheme provides input offset adjust especially useful with high gan connections. The device, LF352. provides pins for output offset adjust. For more details, see LF352 data sheet.

Typical Applications

- ${ }^{\ddagger}$ CLOCK max $=200 \mathrm{kHz}$
- The LF352 instrumentation amplifier is auto zeroed during offset correction cycle of the LF13300 A/D
- The system accuracy will mostly depend on the instrumentation amplifier gain linearity

FIGURE 12a. 4-Channel Differential Multiplexer with Auto Zeroed Instrumentation Amplifier and 12-Bit A/D Converter

PD: Polarity Detection
OC: Offset Correction
RR: Ramp Reference
For more detalls, see LF 13300 data sheet

FIGURE 12b. System Timing Diagram for Differential MUX

Schematic Diagrams

LF11508/LF12508/LF13508, LF11509/LF12509/LF13509
Schematic Diagrams (Continued)

MM450/MM550, MM451/MM551,
 MM452/MM552, MM455/MM555 MOS Analog Switches

General Description

The MM450, and MM550 series each contain four p channel MOS enhancement mode transistors built or a single monolithic chip. The four transistors are arranged as follows:

MM450, MM550	Dual Differential Switch MM451, MM551
Four Channel	
MM452, MM552	Switch Four MOS Transis tor Package
MM455, MM555	Three MOS Tran- sistor Package

These device's are useful in many airborne and ground suppiort systems requiring multiplexing, analog transmission, and numerous signal routing applications. The use of low threshold transistors $\mathrm{V}_{\mathrm{TH}}=2$ volts) permits operations with large analog input swings (± 10 volts) at low gate voltages (-20 volts). Significant features, then, include:

- Large Analog Input Swing ± 10 Volts
- Low Supply Voltage $\quad V_{B U L K}=+10$ Volts $V_{G G}=-20$ Volts
- Low ON Resistance $\mathrm{V}_{1 \mathrm{~N}}=-10 \mathrm{~V} \quad 150 \Omega 2$
$V_{\text {IN }}=+10 \mathrm{~V} \quad 75 \Omega$
- Low Leakage Current $200 \mathrm{pA} @ 25^{\circ} \mathrm{C}$
- Input Gate Protection
- Zero Offset Voltage

Each gate input is protected from static charge build-up by the incorporation of zener diode protective devices connected between the gate input and device bulk

The MM450, MM451, MM452 and MM455 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The MM550, MM551, MM552 and MM555 are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Schematic and Connection Diagrams

Note \uparrow Pirts 1 a ard 8 connected 10 case and
device bulk Dran and Sounce may be interchanged
MM452F. MM552F
Note 2 MM452D and MM552D (dial in ine packages)
have same pin counectons as MM452F and MM552F
shown above
Order Number MM452F or MM552F
See Package 23
Order Number MM452D or MM552D
See Package 14

Order Number MM450H or MM550H See Package 1

Note Pirt 5 connected tu case and device
bulk Brain and Source may be interchanged
Order Number MM455H or MM555H
See Package 1

Note Pirt 5 compected to case arrd device bulk
Order Number MM451H or MM551H See Package 1

Typical Applications

DPDT Analog Switch

Absolute Maximum Ratings MM450, MM451, MM452, MM455 MM550, MM555, MM552, MM555
 Gate Voltage ($V_{G G}$)
 Bulk Voltage ($V_{B U L K}$)
 Analog Input ($V_{\text {IN }}$)
 Power Dissipation
 Operating Temperature
 Storage Temperature
 +10 V to -30 V
 $+10 \mathrm{~V}$
 +10 V to -20 V
 200 mW
 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 +10 V to -30 V
 $+10 \mathrm{~V}$
 10 V to -20 V
 200 mW
 $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
 $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

STATIC CHARACTERISTICS (Note 1)

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Analog Input Voltage				± 10	\checkmark
Threshold Voltage ($\mathrm{V}_{\text {GSiT }}$)	$V_{D G}=0, I_{D}=1 \mu \mathrm{~A}$	1.0	2.2	3.0	V
ON Resistance	$V_{\text {IN }}=-10 \mathrm{~V}$		150	600	Ω
ON Resistance	$V_{\text {IN }}=V_{S S}$		75	200	Ω
OFF Resistance			10^{10}		Ω
Gate Leakage Current (IGsB)	$V_{G S}=-25 V, V_{B S}=0, T_{A}=25^{\circ} \mathrm{C}$		20		pA
Input (Drain) Leakage Current					
MM450, MM451, MM452, MM455	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 025	100	nA
	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$. 002	1.0	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}-125^{\circ} \mathrm{C}$		025	1.0	$\mu \mathrm{A}$
Input (Drain) Leakage Current					
MM550, MM551, MM552, MM555	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1	100	nA
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		030	1.0	$\mu \mathrm{A}$
Output (Source) Leakage Current MM450, MM451, MM452, MM455					
MM450, MM451, MM452, MM455	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		040	100	nA
Output (Source) Leakage Current					
	$\mathrm{T}_{\text {A }}-85^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM451	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM452, MM455	$\mathrm{T}_{\mathrm{A}} \quad 85^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM450, MM451, MM452, MM455	$\mathrm{T}_{\mathrm{A}}-125^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
Output (Source) Leakage Current					
MM550	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM551	$\mathrm{T}_{\mathrm{A}}-70^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
MM552, MM555	$T_{A}=70^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$

DYNAMIC CHARACTERISTICS

| Large Signal Transconductance | $V_{D S}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}$
 $\mathrm{f}=1 \mathrm{kHz}$ | 4000 | $\mu \mathrm{mhos}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

CAPACITANCE CHARACTERISTICS (Note 2)

PARAMETER	DEVICE TYPE	MIN	TYP	MAX	UNITS
Analog Input (Dram) Capacitance (C_{DB})	ALL		8	10	pF
Output (Source) Capacitance ($\mathrm{C}_{\text {SB }}$)	MM450, MM550		11	14	pF
	MM451, MM551		20	24	pF
	MM452, MM552		7.5	11	pF
	MM455, MM555		7.5	11	pF
Gate Input Capacitance (C_{GB})	MM450, MM550		10	13	pF
	MM451, MM551		5.5	8	pF
	MM452, MM552		5.5	9	pF
	MM455, MM555		5.5	9	pF
Gate to Output Capacitance (C_{GS})	ALL		3.0	5	pF

[^18]Note 2: All capacitance measurements are made at 0 volts bias at 1 MHz

Typical Dyınamic Input Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless otherwise Noted)

CONOITION 1
ANALOG INPUT VOLTAGE
AT + 10 VOLTS

CONOITION 2
ANALOG INPUT VOLTAGE
ATOVOLTS

CONOITION 3
ANALOG INPUT VOLTAGE
AT -10 VOLTS

Typical Input Capacitance Characteristics

MM450, MM550
$\mathrm{C}_{\text {IN }}$ vs $V_{\text {IN }}$

MM451, MM551

MM452, MM552, MM455, MM555 $C_{\text {IN }}$ vs $V_{\text {IN }}$

Typical Applications (Continued)

DPST High-Frequency Switch

*Expansion in the mumber af dota input lines is
expshble by wing minituple levit cflifs switches
allowermg the same decude gaters to be used for
oll lower tank decoding

MM454/MM554 4-Channel Commutator

General Description

The MM454/MM554 is a 4 -channel analog commutator capable of switching four analog input channels sequentially onto an output line. The device is constructed on a single sticon chip using MOS P Char nel enhancement transistors, it contains all the digital curcuitry necessary to sequenthally turn ON the four anaiog switch transistors permitting multiplexing of the analog input data. The device features.

- High Analog Voltage Handling $\cdot 10 \mathrm{~V}$
- High Commutating Rate 500 kHz
- Low Leakage Current ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right) \quad 200 \mathrm{pA}$
$\left(T_{A}=85 \mathrm{C}\right) \quad 50 n \mathrm{~A}$
- All Channel Blanking input provided
- Reset capability provided
- Low ON Resistance

200S2
In addıtıon, the MM454/MM554 can easily be applied where submultiplexing is required since a 4:1 clock countdown signal is provided which can drive the clock mput of subsequent MM454/MM554 units

The MM454 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The MM554 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Schematic and Connection Diagrams

Nite Pinl 7 connected to case and to device bulk Nominal Operating Voltages $V_{G G}-24 \mathrm{~V}$
V_{OD} OV, $\mathrm{V}_{\mathrm{SS}}=+12 \mathrm{~V}$. Reset Bras $=+12 \mathrm{~V}$ ($\mathbf{0 V}$ fol Reset) all channel thanking bras $=$
+12 V (0V for blanking)
Order Number MM454F or MM554F
See Package 23

Absolute Maximum Ratings (Note 1)
Gate Voltage ($V_{G G}$)
Bulk Voltage (V_{SS})

$$
\begin{array}{r}
+10 \mathrm{~V} \text { to }-30 \mathrm{~V} \\
+10 \mathrm{~V} \\
+10 \mathrm{~V} \text { to }-20 \mathrm{~V} \\
200 \mathrm{~mW}
\end{array}
$$

Analog Input ($V_{\text {IN }}$)
Power Dissipation
$\begin{aligned} \text { Operating Temperature } & \text { MM45 } \angle . \\ & \text { MM55 }\end{aligned}$
Storage Temperature
Static Characteristics (Note 2)

PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
Analog Input Voltage				± 10	V
ON Resistance	$V_{1 N}-10 V$		170	600	Ω
ON Resistance	$V_{\text {IN }}=V_{S S}$		90	200	§
OFF Resistance			10^{10}		≤ 2
Analog Input Leakage Curient MM454	$\mathrm{T}_{\mathrm{A}}=25^{\prime} \mathrm{C}$. 050	100	nA
MM454	$\mathrm{T}_{\text {A }}=85 \mathrm{C}$. 006	1.0	$\mu \mathrm{A}$
MM554	$\mathrm{T}_{\mathrm{A}}-25 \mathrm{C}$. 0001	100	$n \mathrm{~A}$
MM554	$\mathrm{T}_{\mathrm{A}}=70 \mathrm{C}$. 030	10	$\mu \mathrm{A}$
Analog Output Leakage Current MM454	$T_{A}=25 \mathrm{C}$		0100	100	$\square \mathrm{A}$
MM454	$\mathrm{T}_{\mathbf{A}}-85^{\circ} \mathrm{C}$		30	1.0	$\mu \mathrm{A}$
MM554	$T_{A}=25 \mathrm{C}$		0001	100	$n \mathrm{~A}$
MM554	$T_{A}-70 \mathrm{C}$. 030	10	$\mu \mathrm{A}$
$V_{\text {ss }}$ Supplv Current Drain	$V_{S S}=12 \mathrm{~V}$		3.8	55	$m \mathrm{~A}$
$V_{G G}$ Supply Current Drain	$V_{G G}=-24 \mathrm{~V}$		2.4	35	mA

Capacitance Characteristics

PARAMETES	CONDITION	MIN	TYP	MAX	UNIT
Analog Input Capacitance Channel OFF	$1 \mathrm{lv}=0$		4	6	pF
Analog Input Capacitance Channel ON	IIN 0		20	24	pF
Analog Output Capacitance	IN -0		20	24	pF
Ctock Input	$V_{C L}-+12 \mathrm{~V}$		20		pF
Reset Input	$V_{\text {RESET }}=+12 \mathrm{~V}$		20		pF
Blanking Input	$\mathrm{V}_{\text {BLANK }}-+12 \mathrm{~V}$		20		pF

Clock Characteristics

(Note 3)

PARAMETEF	CONDITION	MIN	TYP	MAX	UNIT
Clock Input (HIGH$)^{(4)}$		$V_{5, s}-2$		$V_{S S}$	V
Clock Input (LOW)		-5	0	+5	V
Clock Input Rise Time (POs GOING)			quurer		
Clock Input Fall Time (NEC; GOING)				20	$\mu \mathrm{sec}$
Countdown Output (POS) \} \mathrm { V } ^ { \prime } \mathrm { OH }		$V_{S c}-2$		$\mathrm{V}_{\text {s }}$	\checkmark
Countdown Output (NEG) $\mathrm{J}_{\text {OL }}$			0		\checkmark
Maximum Commutation Rate		05	2.0		MH_{2}
$V_{S S}$		$+100$	+12	+14	\checkmark

[^19]Note 4: Logic input voltage must not the more positive than V_{SS}.

Timing Diagram

徏

Section 6

Applications

,

FET Application Guide

APPLICATIONS AND THEIR PARAMETERS

 LISTED IN APPROXIMATE ORDER OF IMPORTANCE| LOW FREOUENCY AMPLIFIER | source FOLLOWER | ELECTROMETER AMPLIFIERS | LOW DRIFT AMPLIFIER | $\begin{gathered} \text { LOW } \\ \text { NOISE } \\ \text { AMPLIFIER } \end{gathered}$ | HIGH FREOUENCY AMPLIFIER | OSCILLATOR | OIFFERENTIAL AMPLIFIER | ANALOG ANO DIGITAL SWITCHING |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y_{f s}$ | $Y_{f s}$ | ${ }^{\text {IG }}$ | ${ }^{\text {I OZ }}$ | e_{n} | Re($\mathrm{Yfs}_{\text {f }}$) | $\gamma_{\text {fs }}$ | $V_{G S 1} V_{G S 21}$ | 'DS(ON) |
| 'oss | ${ }^{1} \mathrm{G}$ | $Y_{\text {fs }}$ | $Y_{f s} @ 1 \mathrm{Dz}$ | IG. ${ }^{\text {n }}$ | Rel IS $^{\text {I }}$ | loss | $\Delta\left\|V_{G S 1}-V_{G S 2}\right\|$ | 1D(OFF) |
| | | | | | | | ΔT | |
| $V_{\text {GS }}$ (OFF) | $\mathrm{Crss}^{\text {S }}$ | IDZ | $\mathrm{V}_{\mathrm{GS}}{ }^{@}{ }^{\text {I }} \mathrm{DZ}$ | $\gamma_{f s}$ | NF | $\mathrm{Crss}^{\text {r }}$ | | C_{155} |
| $\mathrm{C}_{\text {ISS }}$ | C_{15} | e_{n} | IG | I DSS | $\mathrm{Crss}^{\text {r }}$ | $\mathrm{C}_{\text {S } 5}$ | ${ }_{1} \mathrm{GI}_{1} \mathrm{I}_{\mathrm{G} 2}{ }^{\text {I }}$ | $\mathrm{C}_{\text {rss }}$ |
| $\mathrm{Crss}^{\text {r }}$ | IDSS | 905 | BVGSS | VGSIOFF | $\operatorname{Re}\left(Y_{\text {OS }}\right)$ | VGSIOFFI | ${ }^{\text {I G }}$ | $\mathrm{V}_{\mathrm{GS}(\mathrm{OFF}}$) |
| e_{n} | $V_{\text {GS (OFF) }}$ | | | | loss | $B \vee \mathrm{GSS}$ | $Y_{\text {fs }}$ | $8 V_{\text {GSS }}$ |
| $B V_{G S S}$ | BVGSS | | | | $\mathrm{V}_{\mathrm{GS}}(\mathrm{OFF})$ | | $Y_{f_{5} 1} Y_{f 52}$ | |
| | | | | | | | Yos1 Yos21 | |
| | | | | | | | CMRR | |
| | | | | | | | $V_{G S(O F F)}$ | |

JFET Parameter Relationships

$1_{0}=1 \operatorname{DSS}\left(1-\frac{V_{G S}}{V_{G S}(O F F)}\right)^{2}$
Variation of drain current with gate bias. Square low transfer characteristic.
$\left.V_{G S(O F F}\right)=\frac{2 I_{\text {DSS }}}{g_{f s o}}$
Gate-source cutoff voltage in terms of IDSS and $\mathrm{g}_{\mathrm{fso}}$.
$V_{G S}=V_{G S(O F F)}\left(1-\left(\frac{I_{D}}{I_{D S S}}\right)^{1 / 2}\right) \begin{aligned} & \text { Gate-source voltage in } \\ & \text { terms of operating cur- }\end{aligned}$ rent ID. IDSS, and $\mathrm{V}_{\mathrm{GS}}\{\mathrm{OFF}$).
$g_{f S O}=K \frac{I_{D S S}}{V_{G S(O F F)}}$
Transconductance at zero gate voltage in terms of IDSS and VGS(off). K = 1.1 to 2.5. Typically 2 for N channel JFETs.
$g_{f s}=g_{f s o}\left(1-\frac{V_{G S}}{V_{G S}^{\prime O F F}}\right)$
Variation in transcon. ductance with gate bias.

$$
\begin{aligned}
& g_{f s}=g_{f s o} \sqrt{I^{\prime} I_{D S S}} \\
& r_{D S} \approx \frac{1}{g_{f s}} \\
& r_{D S} \approx \frac{r_{D S(0)}}{1-\frac{V_{G S}}{V_{G S(O F F)}}} \\
& r_{D S} \approx \frac{K V_{G S(O F F)^{2}}^{\mid D S S}\left(V_{G S(O F F)}-V_{G S}\right)}{}
\end{aligned}
$$

$$
K=0.5-0.9
$$

$\mathrm{rDST} \approx \mathrm{rDS}$ @ $25 \mathrm{C}(1+$ $0.007(\Delta T))$

Variation in transconductance with drain current.

Relationship between rDS and $g_{f s}$ in the triode region (i.e., VDS < $V_{G S}(O F F)$.

Variation of drain resis tance with gate bias in terms zero bias resistance (rDSO) and VGS(OFF).

Variation of drain resistance in terms of $V_{G S}$, and $V_{G S}(O F F)$ IDSS.

Variation of ON resistance as a function of temperature.

Monolithic Dual FETs vs 2-Chip Dual FETs

National Semiconductor February 1977

INTRODUCTION

Recent development of a moriolithic dual field effect transistor offers distinct cost and design advantages to the dual FET user. In this arti:le, we have pointed out these advantages on the basis cf a comparison that was made between this monolithic structure and the 2-chip dual. Finally, a typical application for this FET is presented and evaluated.

gENERAL

Most dual junction field effect transistors that are available today are the 2 -chip va-iety. These devices are costly to manufacture since 2 =ET dice must be found whose electrical characteristics match under a certain set of bias conditions. Finding the matched pair is accomplished by collecting data on a large number of dice and, with the help of a computer, selecting 2 devices with identical characteristics. The result is a device that exhibits excellent end point temperature characteristics as long as the device is operated at the manufacturer specified bias conditions. If the device is operated at bias levels that deviate too much from the specified conditions, the user runs the risk of poor temperature performance. In addition, even if the device is biased at the specified drain current operating point, there still is no guarantee that the device will be well behaved between the temperature end points.

The dual FET manufacturer and user alike would like to have a device that exhibits none of the above shortcomings. They are:

1. High price because of the device selection process.
2. Poor temperature tracking characteristics at currents other than those specified by the manufacturer.
3. Non-linear temperature tracking performance between the manufacturer specified end point temperatures.

Recent development by National of a complete family of dual monolithic junction FETs has virtually eliminated these shortcomings. National's family of duals include general purpose dual process 83 (2N3954 family, etc.), ultra low leakage dual process 84 (2N5902 family), wideband RF dual process 93 (2N5911 family) instrumentation dual cascode process 94 (NDF9400 family), low noise dual process 95 (2N5515 family), and wide. band chopper switch dual process 96 (2N5564 family). While some other companies now manufacture a monolithic dual g.p. FET similar to process 83, National is the only "all monolithic" dual manufacturer. These devices (illustrated in Figures $1 a$ and 1b) consist of 2 diffused isolated junction FETs.

Since these devices are a monolithic structure, no dice matching is required. The FETs that make up the chip either match or they don't. Units that do not match are eliminated at the wafer sorting stage. Units that do match and exhibit good temperature tracking characteristics at a specified drain current also exhibit good temperature tracking characteristics at other current levels. These devices display a linear differential gatesource voltage relationship to temperature. This is very important to the operational amplifier manufacturer since it allows him to temperature compensate the dual FET, or his entire amplifier circuit for that matter, such that temperature coefficient approaching $0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ can be achieved. Since the 2 FETs that constitute the monolithic structure are isolated by a diffusion, they can be operated at different potentials without device interaction.

FIGURE 1a. Typical National Monolithic Dual FET Cross-Section (Processes 83, 84, 93, 94, 95 and 96)

FIGURE 1b. Process 83 Equivalent Schematic

FET TEMPERATURE CHARACTERISTICS

Figure 2 illustrates the gate-source voltage temperature dependence of the 2N3954 (process 83) monolithic FET for various values of drain current. All junction FETs, whether they are monolithic or single unit construction, display similar characteristics. It becomes evident, upon examiration of this curve, that a very slight change in drairs current results in a substantial change in the gate to source voltage (V_{GS}) temperature coefficient.

Figure 3 illustrates just exactly how dependent VGS is to an I_{D} change. For example, suppose a device is biased at a $200 \mu \mathrm{~A}$ drain current level. The curve in Figure 4 tells us that a drain current change of $1 \mu \mathrm{~A}$ will change the $V_{G S}$ temperature coefficient $4.8 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C}$. The fact the VGS temperature coefficient can be predictably changed by slight variation in the drain current implies that :he differential gate-source voltage temperature coefficient can be adjusted to $0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ by a change in drain current. A 2-chip dual FET can also be temperature compensated ir this same manner provided the differential $\vee_{\text {GS }}$ temperature coefficient is constant at all temperatures. The temperature coefficient of the 2-chip system, however, is generally not constant over the specified operating temperature range, therefore
making this type compensation difficult. To illustrate the difference in temperature tracking characteristics of the 2 -chip FET and the monolithic structure, a 2-chip $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ device was compared to a monolithic $10 \mu \mathrm{~V} /$ ${ }^{\circ} \mathrm{C}$ unit.

Figure 4 illustrates how the differential gate-source voltage of the monolithic 2 N 3954 varies as a function temperature. When both sides of the dual FET are biased at the specified $200 \mu \mathrm{~A} \pm 0.01 \%$ level, the temperature coefficient is constant and equal to $6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Also, note that the $\lambda V_{G S}$ temperature coefficient can be adjusted to about $0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ by increasing the drain current in Q2 to $201 \mu \mathrm{~A}$. The $\Delta V_{G S}$ temperature characteristics for the 2-chip 2N3954 dual FET are shown in Figure 5. Note that if one employs the definition of temperature coefficient set forth in Note 1 , the $\Delta V_{G S}$ temperature coefficient of the 2 -chip dual is about $8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. It would be impossible, however, to achieve a temperature coefficient much better than $8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (by adjusting the drain current), because the $\Delta V_{G S}$ temperature curve is non-linear.

The $\Delta V_{G S}$ temperature characteristics of the 2-chip dual and the monolithic dual were then measured at $500 \mu \mathrm{~A}$ of drain current. The results are illustrated in Figures 6 and 7.

FIGURE 2. Gate-Source Voltage Temperature Cogfficient vs Drain Current (Single Device)

FIGURE 5. Differential Gate Source Voltage vs Temperature for a Typical 2-Chip Dual JFET (10 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Unit)

FIGURE 3. Gate-Source Voltage Temperature Coefficient Sensitivity to Drain Current Change vs Drain Current (Single Device)

FIGURE 6. Differential Gate. Source Voltage vs Temperature for the Same Monolithic JFET in Figure 4, Dnly the Drain Current has been Changed to $500 . \mu \mathrm{A}$.

FIGURE 4.Differential Gate-Source Voltage vs Temperature for a Typical Monolithic Dual JFET

FIGURE 7. Differential Gate-Source Voltage vs Temperature for the Same 2-Chip Dual FET in Figure 5, Dnly the Drain Current is $500 \mu \mathrm{~A}$

Note that the monolith c dual exhibits good $\Delta V_{G S}$ temperature characteristics ($\mathrm{TC} \simeq 15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$) while the 2-chip dual has a temperature coefficient greater than $50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The data disp ayed in Figures 4-7 is for 2 specific devices; however, it is representative of the data accumulated on a number of process 83 and 2 -chip dual FETs.

Another point that warrants discussion is the fast thermal transient responss of the monolithic dual FET. This type device is generally employed as the input stage for an operational amplifier; therefore, it may be subjected to electrical overload such as input voltage transients. This condition zauses 1 side of the dual FET to dissipate more power than the other, which in turn results in a temperature differential between the 2 sides
of the device. The ΔV_{GS} error will disappear once the devices are again in thermal equilibrium. The time for the 2 -chip dual FET to reach thermal equilibrium, after a thermal transient, is considerable since the FET chips making up the 2-chip dual are located some distance apart. On the other hand, the monolithic structure recovers from thermal transients very rapidly because the 2 FETs, constituting the chip, are in intimate contact.

APPLICATIONS

A typical operational amplifier application is illustrated in Figure 8. This circuit employs the 2N3954 monolithic dual FET as the input device. The drain current level is set by FET Q2 and resistor RX. FET Q2 is a 2 N 5457 . This device exhibits a 0 TC drain current operating point

Note 1: The temperature coefficient can typically be adjusted (by R3 and R4) to less than $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Note 2: The common-mode rejection ratio is typically greater than 100 dB for input voltage swings of 5 V .

FIGURE 8. Low Temperature Coefficient Operational Amplifier

FIGURE 9
at about $400 \mu \mathrm{~A}$. In addition, the $\mathrm{Q} 2-\mathrm{RX}$ combination exhibits an output impedance typically greater than $10 \mathrm{M} \Omega$. This characteristic, coupled with the high output impedance of the IMF3954, contribute to a CMRR of greater than 100 dB for this amplifier. Input offset voltage can be adjusted to 0 with R4. This control exhibits sensitivity of $2 \mathrm{mV} / \mathrm{turn}$. The temperature coefficient can be compensated by R3 with an approximate sensitivity of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} /$ turn. The temperature performance of a typical amplifier of this type is illustrated in Figure 10.

FIGURE 10. Input Offset Voltage ws Temperature

CONCLUSION

The junction isolated dual monolithic junction FET does exhibit a more linear $\Delta V_{G S}$ temperature relationship than does the 2 -chip dual FET. In addition, the monolithic structure exhibits good temperature tracking
characteristics at drain currents other than the specified ID. This is generally not the case for the 2 -chip system. Since all National duals are monolithic structures, the cumbersome process of matching individual dice is not required.

This, of course, makes the monolithic dual less expensive then its 2 -chip counterpart. And finally, the monolithic dual FET maintains excellent tracking characteristics when the device is subjected to thermal transients or momentary voltage overloads. This is not the case with the 2-chip dual since these devices are thermally isolated from one another.

Note 1:

Oefinition of temperature coefficient:
$\left(T_{C}\right)_{L}=\frac{\Delta V_{G S}\left(T_{O}\right)-\Delta V_{G S}\left(T_{L}\right) \prime}{T_{O}-T_{L}} \times 10^{6} \mu V / \mathrm{C}$
$(T C)_{H}=\frac{\cdot \Delta V_{G S}\left(T_{H}\right)-\Delta V_{G S}\left(T_{O}\right) \prime}{T_{H}-T_{O}} \times 10^{6} \mu V \rho^{\circ} \mathrm{C}$

Where $\mathrm{T}_{\mathrm{O}}=25^{\circ} \mathrm{C}$
$T_{H}-$ High temperature limit $\left(T_{H}=85\right.$ or $\left.125^{\circ} \mathrm{C}\right)$
T_{L} - Low temperature limit
$\Delta V_{G S}\left(T_{O}\right)$ in the differential gate-source off set voltage at T_{0} (volts)
$\Delta V_{G S}\left(T_{H}\right)$ - Differential gate-source offset voltage at T_{H}
$\Delta V_{G S}\left(T_{L}\right)$ - Differential gate-source offset voltage at T_{L}

Why Use Cascode Dual FETs?

National Semiconductor's cass:ode dual JFET is a unique structure in which each half of a monolithic dual is actually 2 FETs connected in cascode. Figure 1a and $1 b$ show the comparison. The advantages of a cascode structure are low dynamic leakage (I_{G}) and greatly improved common-mode rejestion ratio. National's processes 84 and 94 use the cascode configuration.

FIGURE 1a. Cascode Configuration

FIGURE 1b. Triode Configuration

The cascode FET device offers a significant improvement in gain/input current ratio when compared to standard FET triodes. Specificaly, the NDF9406 series devices are specified at $\mathrm{I}_{\mathrm{G}}<5 \mathrm{pA}$ under operating conditions, and they exhibit operating g_{fs} of $1200 \mu \mathrm{mho}$ typical. This compares favorably with non-cascode duals exhibiting 3-10 times the ${ }^{\mathrm{G}} \mathrm{G}$.

Furthermore, the NDF9406 series will maintain this low input current over a common-mode input range of up to $\pm 15 \mathrm{~V}$, while triode devices are limited to approximately $\pm 5 \mathrm{~V}$ for the same performance.

National Semiconductor
FET Brief 2
Mike Turner
March 1977

Table I compares popular juriction dual devices available in the marketplace.

It is important to remember that I_{G} is a dynamic characteristic. The data supplied by major FET suppliers clearly shows the effect of operating voltage and current on I_{G} and the considerable difference between I_{G} and the static parameter $\mathrm{I}_{\mathrm{GSS}}$.

Figure 2 explores the differences between cascode devices such as NDF9406-NDF9409 and a triode configured 2N5196. It is easily seen that severe gate current modulation will result in triode devices with even relatively small change in VDG. Gate current variations will cause variations in offset bias currents, offset voltage and common-mode rejection. This is especially true in high impedance circuits where gate impedances are not matched.

FIGURE 2. Typical Gate Current vs Drain-Gate Voltage $@ I_{D}=200 \mu \mathrm{~A}$

The second major advantage of the cascode configuration is improved common-rnode rejection ratio. The input FETs are effectively shielded from large changes in operating point by the drain load FETs.

TABLE I

DEVICE SERIES	$\mathbf{B V}$	$\mathbf{I}_{\mathbf{G}} \mathbf{V}_{\mathbf{D G}} / \mathbf{I}_{\mathrm{D}}$	$\mathbf{9}_{\mathbf{f}} \mathbf{I}_{\mathbf{D}}$
2 N3954-2N13958	$>50 \mathrm{~V}$	$<50 \mathrm{pA} @ 20 \mathrm{~V} / 200 \mu \mathrm{~A}$	$1000 @ 200 \mu \mathrm{~A}$
2N5196-2N5199	$>50 \mathrm{~V}$	$<15 \mathrm{pA} @ 20 \mathrm{~V} / 200 \mu \mathrm{~A}$	$>700 @ 200 \mu \mathrm{~A}$
NDF9406-VDF9409	$>50 \mathrm{~V}$	$<5 \mathrm{pA} @ 35 \mathrm{~V} / 200 \mu \mathrm{~A}$	$-950 @ 200 \mu \mathrm{~A}$

[^20]The inherent matching of all devices because of monolithic construction further reduces the effects of common-mode signals.

Figure 3 compares CMRR of a monolithic triode dual FET (National P83) with a cascode structure (National P94).

Simple VHF Analog Switches

Simple JFET switches like those in Figure 1 will toggle at rates to about 10 MHz and svitch analog signals with frequencies to above 100 MHz . They accomplish this by resolving in the gate-driver design the contradictory performance goals that even the best switching transistors cannot meet.

FIGURE 1. High-Frequency JFET Switching Circuits
To switch high frequency signals, the JFET should have low ON impedance, $\mathrm{rds}(\mathrm{on})$ or RON, and low input capacitance, $\mathrm{C}_{\text {iss }}$. The switch's RC time constant is established by these 2 parameters, and they also indicate the bandwidth capability. JFETs have been developed that come close to being ideal, but unfortunately the real-world nature of semiconductor devices makes it impossible to achieve optimum values of both parameters in the same device. Low R ON calls for a physically large JFET. On the other hand, the very low capacitance needed for fast toggle rates implies small size.

At a casual glance, gate drive impedance does not appear very important. However, the JFET device conflict between RON and $\mathrm{C}_{\text {iss }}$ may be overcome by using the

National Semiconductor
FET Brief 1
Mike Turner
February 1977

proper gate driver. The drive circuit should have a low impedance when the JFET is turned OFF and a high impedance when the JFET is turned ON. The lowimpedance path is needed to prevent analog-signal feedthrough and the high impedance to minimize signal attenuation through the driver while the JFET is conducting. A well-designed driver can do both.

The relationships among JFE^{--}and driver characteristics can be sorted out with the help of Figure 2, which shows a typical series-pass switch and the equivalent circuits of the JFET in its ON and OFF conditions. A JFET operates best as a series-pass switch when the ON condition allows RON and shunt capacitance to be low, and series-pass capacitance to be high. But in the OFF condition, it should exhibit low series-pass capacitance and high series-pass resistance (ROFF). The JFET will have these characteristics whien properly matched to the driver.

FIGURE 2. Series-Pass Switch ancl JFET Equivalent Circuits

Getting down tol a low RON when the gate is turned ON is no problem. A JFET such as the 2 N 4391 has a maximum RON of 30Ω (see $r_{d s}(o n)$ in Table 1). However, the parallel capacitance in the signal path can become fairly
 same potential ($V_{D S}=V_{G S}=0$). The simple answer to this dilemma is to drive the gate with a high $A C$ impedance when the switch is closed. The shunt capacitance will be in series with a high impedance. Virtually all of the signal will then go through the JFET, the path of least resistance, rather than through the gate-to-ground connection.

Next problem. When the switch is OFF, high-frequency attenuation is the name of the game. It is depended upon to prevent the signal at the input from reaching the output. The JFET channel is, for all practical purposes, an open circuit because ROFF of a quality JFET is over $10^{12 \Omega}$ althougn this decreases as frequency goes up. However, capacitive feedthrough is the most significant route across the switch. From Figure 2c,

$$
\text { CFEEDTHROUGH }=\mathrm{C}_{\mathrm{ds}}+\frac{\mathrm{C}_{\mathrm{sg}} \mathrm{C}_{\mathrm{dg}}}{\mathrm{C}_{\mathrm{sg}}}+\mathrm{C}_{\mathrm{dg}}
$$

Feedthrough cepacitance can be significant if the gate is not operated at AC ground. Minimizing the right-hand term by operating the gate at $A C$ ground allows $C_{d s}$ to become the pacing factor. If the gate is grounded, C_{d} will be approximately 0.2 pF . In other words, the effective ROFF of the switch depends directly on circuit design, root the JFET.

Now to put these principles to work. The best highfrequency switch is an N-channel JFET. Its gate should be biased positive from a high-impedance source for turn-on and biased negative through a low-impedance path for turn-off. Driving the switch ON through an RF choke sounds tempting, but it would be difficult to avoid resonances and oscillation bursts during some switching conditions. DC: resistances could be increased to equal
or exceed R_{S} in parallel with R_{L}, but then the toggle rate would be kept down by the very high drive impedance.

We prefer the circuits in Figure 1, which are fairly fast and not tricky. When NPN transistor O 2 is in saturation, 01 is biased OFF through a low-impedance path. The diode is slightly forward-biased and exhibits high capacitance. When O2 turns OFF, D1's cathode is driven positive by R1. Now the diode is reverse-biased and exhibits high impedance and low capacitance. The charge that was stored on D1 discharges into the gate of O1, allowing the JFET to be turned ON. Because there is no good discharge path available to the charge stored on O1's gate, the gate will 'follow" any signal swing in the analog input voltage. Adding R2 will ensure that the gate follows the signal even during $D C$ conditions. Remember, however, that the R2/C $\mathrm{C}_{\text {sg }}$ time constant will effect switching time and gate-source signal tracking.

Don't expect just any diode to work well; D1's capacitance is critical and should match that of the JFET $\left(C_{D 1}=C_{O 1}\right)$. One good way of making sure that the JFET and the diode are well mated is to use the same type of JFET for both. The gate lead is 1 electrode of the diode and the drain and source leads are simply tied together to form the other electrode. The circuit in Figure $1 b$ was optimized in this way.

Excellent high-frequency series switches can be made with 2N4091, 2N4092 and 2N4093 JFETs. RC time constants are short because of their low $\mathrm{r}_{\mathrm{ds}}(\mathrm{on})$ and capacitance, and leakage is low. The 2N4391, 2N4392 and 2N4393 series is even better, having only 100 pA leakage and lower $\mathrm{C}_{\text {iss }}$. Even though the 2 N 4416 is classed as an RF amplifier, it is also listed in Table I to illustrate that many of our other JFETs can solve special switching problems. This one does well in circuits requiring very low capacitance and leakage. Although the RON of an RF transistor is not specified, it can be estimated as $r_{d s}(o n) \cong 0.85 / Y_{\mathrm{fs}}$, which is typically 170Ω for the 2N44 16 .

TABLE I. JFETs for High-Frequency Analog Signal Switching

TYPE NO.	$\begin{gathered} B V_{G S S} \\ \text { OR } \\ \text { BVDGO } \\ (\mathrm{MAX}) \end{gathered}$	$\begin{aligned} & \text { IGSS } \\ & \text { (MAX) } \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & (\text { MAX }) \end{aligned}$	$\begin{gathered} C_{\text {rss }} \\ \text { OR } \\ \text { CDDGO }_{\text {(MAX) }} \end{gathered}$	rdsion) (MAX)	$\stackrel{\text { ton }}{(\text { MAX })}$	$\begin{aligned} & \mathbf{t}_{\text {off }} \\ & (\mathrm{MAX}) \end{aligned}$
2N4091	40 V	0.2 nA	16 pF	5 pF	30Ω	25 ns	40 ns
2N4092	40 V	0.2 nA	16 pF	5 pF	50Ω	35 ns	60 ns
2N4093	40 V	0.2 nA	16 pF	5 pF	80Ω	60 ns	80 ns
2N4391	40 V	0.1 nA	14 pF	3.5 pF	30Ω	15 ns	20 ns
2N4392	40 V	0.1 nA	14 pF	3.5 pF	60Ω	15 ns	35 ns
2N4393	40 V	0.1 nA	14 pF	3.5 pF	100Ω	15 ns	50 ns
2N4416	30 V	0.1 nA	4 pF	0.8 pF	170 ${ }^{*}$		
2N4416A	35 V	0.1 nA	4 pF	0.8 pF	170 ${ }^{*}$		

[^21]
Noise of Sources

INTRODUCTION

The elimination or minimization of noise is one of the most perplexing problems facing engineers today. Many preamplifiers and components come with outstanding noise specifications, only to disappoint the user. The problem is the difference between specification and application, as the anplifiers are specified under ideal conditions not the real conditions, (i.e., a transducer connected to the input). Many times the transducer noise is as large or even greater than the amplifier noise, degrading the signal to noise ratio. Before amplifier or component noise can be considered, familiarity with the source noise is essential.

REVIEW OF NOISE BASICS

There are 3 types of transducers: resistive, capacitive and inductive. The noise of a passive network is thermal noise, generated by the real par1 of the complex impedance, as given by Nyquist's relation:
$\overline{V_{n}^{2}}=4 k \operatorname{Te}(Z) \Delta f$
$\mathrm{V}_{\mathrm{n}}^{2}=$ Mean square noise voltzge $\left(\mathrm{V}^{2}\right)$
$k=$ Boltzmann's constant ($1.38 \times 10^{-23} \mathrm{VAS} /{ }^{\circ} \mathrm{K}$)
$\mathrm{T}=$ Absolute temperature (${ }^{\mathrm{K}} \mathrm{K}$)
$\operatorname{Re}(Z)=$ Real part of complex inipedance (Ω)
$\Delta f=$ Noise bandwidth (Hz)
The noise may be represented as a spectral density ($\mathrm{V}^{2} / \mathrm{Hz}$) or more commonly in $\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$ or $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ and is given by:

$$
\begin{equation*}
e_{n}^{2}=\frac{\overline{v_{n}^{2}}}{\Delta f} \tag{2}
\end{equation*}
$$

FIGURE 1. Thermal Noise Voltage vs Resistance
The total noise voltage in a frequency band can be readily calculated if it is white noise (i.e., $\operatorname{Re}(Z)$ is frequency independent). This is not the case for capacitive or inductive sources or most real world noise problems.

National Semiconductor

 John MaxwellFebruary 1977

Rapidly changing network impedance and amplifier gain equalization combine to complicate the issue. The total source noise in a non-ideal case can be calculated by breaking the noise spectrum into several small bands where the noise $(\operatorname{Re}(Z))$ is nearly white and calculating the noise of each band. The total source noise is the RMS sum of the noise in each of the bands $\mathrm{N}_{1}-\mathrm{N}_{\mathrm{n}}$.

$$
\begin{equation*}
V_{\text {NOISE }}=\left(v_{N_{1}}^{2}+v_{N_{2}}^{2}+---+v_{N_{n}}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

The expression does not take amplifier gain equalization (like RIAA) into account, which will change the character of the noise at the amplifies output. By reflecting the gain equalization to the amplifier input and normalizing the gain to 0 dB at 1 kHz , the equalized source noise may then be calculated.
$V_{E Q}=\left(\left|A_{1}\right|^{2} v_{N_{1}}^{2}+\left|A_{2}\right|^{2} V_{N_{2}}^{2}+\cdots+\left|A_{n}\right|^{2} v_{N_{n}}^{2}\right\}^{1 / 2}$
Where $V_{E Q}=$ equalized source noise (μV) and
$\left|A_{n}\right|=$ magnitude of the equalized gain at the center of each noise band (V/V).

SOURCE NOISE

Models are needed for capacitive and inductive systems such that noise calculations can be made. Namely, the real part of the impedance needs to be determined.

A lumped model of a capacitive source, such as condenser or electret microphone, consists of the microphone and stray capacitance shunted by a load resistance.

FIGURE 2. Lumped Model of a Capacitive Microphone
It should be noted that for any particular microphone, the noise of the network $\left(\left\{C_{r n}+C_{s}\right\} / / R_{L}\right)$ is reduced by increasing R_{L} because $\operatorname{Re}(Z)$ (the real part of the impedance) is inversely proportional to R_{L} (see equation 5).

The inductive source (phono cartridges and tape heads) is more complex to analyze because it has a much more complex model. The simplified lumped model of a phono cartridge or tape head consists of a series inductance and resistance shunted by a small capacitor. Each phono cartridge or tape head has a recommended load con-
sisting of a specified shunt resistance and capacitance. A model for the inductive source and preamp input network is shown in. "igure 3.

FIGURE .3. Phono Cartridge or Tape Head and Preamp Input Network

This circuit is quite formidable to analyze and needs further simplication. Through the use of Q equations, a series L-R is transformed to a parallel L.R.

Simplifying the input network to:

FIGURE 4. Simplified Inductive Source Network

$$
\begin{aligned}
& \operatorname{Re}(Z)=\frac{R X_{L}^{2} X_{C}^{2}}{\left(R X_{L}-R X_{C}\right)^{2}+X_{L}^{2} X_{C}^{2}} \\
& Z=\frac{R X_{L} X_{C}}{\left(\left(R X_{L}-R X_{C}\right)^{2}+X_{L}^{2} X_{C}^{2}\right)^{1 / 2}} \\
& X_{L}=\omega L \\
& X_{C}=1 / \omega C
\end{aligned}
$$

The tools are now avallable to calculate the noise of a variety of transducers and see how this unspecified noise affects amplifier (S / N) performance.

EXAMPLES

Calculations of electret microphone noise with various loads and RIAA equalized phono cartridge noise is done using equations (1)-(7). Center frequencies and frequency bands must be chosen first. Values of the lumped circuit components calculated and noise calculated for each band, then summed for the total noise. Octave bandwidths starting at 25 Hz will be adequate for approximating the noise.

In this example, the microphone capacitance is 10 pF loaded with 5 pF of amplifier and stray capacitance. Two resistive loads will be used to illustrate the effect R_{L} has on the microphone noise. $R_{L 1}=1 \mathrm{G} \Omega\left(10^{9}\right)$, $R_{L 2}=10 G \Omega(1010)$. It is assumed that there is no gain equalization in the amplifiers that follow. The noise calculations are summarized in Table I.

The electret or condenser microphone noise ($\operatorname{Re}(Z)$) is reduced when the load resistance is increased. This is one of the cases when a larger resistance means lower noise, not more noise.

The second example is the calculation of the RIAA equalized noise of an $A D C 27$ phono cartridge loaded with $C_{A}=250 \mathrm{pF}$ and $R_{A}=47 \mathrm{k}$. The cartridge constants are $R_{S}=1.13 \mathrm{k}$ and $L_{s}=0.75 \mathrm{H}\left(\mathrm{C}_{\mathrm{c}}\right.$ may be neglected). The noise calculations are summarized in Table Il for this example.

The RIAA equalized noise of the $A D C 27$ phono cartridge and preamp input network was $0.73 \mu \mathrm{~V}$ for the audio band. Typical high quality preamps have noise voltages less than $1 \mu \mathrm{~V}$, resulting in a 3 dB or more loss in system S / N ratio when the cartridge noise is added to the preamp noise (in an RMS fashion).

CONCLUSIONS

Zero noise sources and amplifiers do not exist. Specifying amplifier noise under ideal conditions will only lead to ideal specifications, not a measure of actual performance. Methods of S/N ratio measurement should be used that reflect the true performance instead of hollow specifications.

REFERENCES

1. Fraim, F. and Murphy, P., "Miniature Electret Microphones", J. Audio Eng. So., Vol. 18, pp. 511-517. (Oct. 1970)
2. Hallgren, B. I., "On the Noise Performance of a Magnetic Phonograph Pickup". J. Audio Eng. Soc., Vol. 23, pp. 546-552. (Sep. 1975)
3. Fristoe, H.T., "The Use of Q Equations to Solve Complex Electrical Networks". Engineering Research Bulletin, Oklahoma State University, 1964.
4. Korn, G.A. and T.M., "Basic Tables in Electrical Engineering". McGraw.Hill, New York, New York, 1965.
5. Maxwell, J., "Hold Noise Down with JFETs". Electronic Design, Vol. 24, pp. 146-152. (Feb. 16, 1976).

[^22]
The Noise Figure Fallacy

Noise Figure (NF) can be one of the most misleading specifications confronting the engineer today. Noise Figure is defined as the ratio of total output noise power to the output noise power of the source.

$$
\begin{equation*}
\text { NF }=10 \log \frac{\text { Total output noise power }}{\text { Output noise power of the source }} \tag{1}
\end{equation*}
$$

A minimum NF: exists for any amplifier, but is usually far removed from the actual operating conditions. This is where the problem begins. Lowering the NF doesn't always lower the noise which is what the engineer is really interested in. NF only gives the designer insight into the ratio of the amplifier noise to the source noise, not the input noise of the amplifier or the signal to noise ratio.

Amplifier noise performance is adequately described by modeling the noise sources as a series voltage generator and a shunt current generator with a series voltage generator for the source resistance noise.

FIGURE 1. Simiplified Amplifier Noise Model
The amplifier noise data is found on vendor data sheets in the form of e_{n} and $i_{n} v s$ frequency for bipolar transistors and e_{n} vs frequency for FETs and FET amplifiers.

Current noise depends on amplifier input bias current which is only a few picoamps for FETs and is therefore negligible. However, bipolar transistor amplifiers have bias currents into the microamp range where current noise is significent.

The thermal noise of the source resistance is given by Nyquist's relation.

$$
\begin{aligned}
\overline{V_{R}^{2}}= & 4 \mathrm{kTR} \Delta f \\
\overline{V_{R}^{2}}= & \text { mean square noise voltage }\left(\mathrm{V}^{2}\right) \\
\mathrm{k} & =\text { Boltzmann constant } \\
& \left(1.38 \times 10^{-23} \mathrm{VAS} / \mathrm{K}\right) \\
T= & \text { absolute temperature }(-\mathrm{K}) \\
\mathrm{R}= & \text { resistance }(\Omega 2) \\
\Delta f= & \text { noise bandwidth }(\mathrm{Hz})
\end{aligned}
$$

National Semiconductor
John Maxwel!
February 1977
with the spectral density given by $\mathrm{e}_{\mathrm{n}}^{2}$

$$
\begin{equation*}
e_{n R}=\left(\overline{V_{R}^{2}} / \Delta f\right)^{1 / 2} \tag{3}
\end{equation*}
$$

FIGURE 2. Thermal Noise vs Resistance

Using the model of Figure 1, an expression of noise figure in terms of the noise generators can be developed.

The noise power of the source can be found by using Nyquist's relation.

$$
\begin{equation*}
\text { Source Noise Power }=\frac{\overline{V_{R}^{2}}}{R^{2}}=\frac{e_{n R}^{2} \Delta f}{R^{2}} \tag{4}
\end{equation*}
$$

with the total output noise power at the input of the amplifier of:
Total noise power $=\frac{e_{n R}^{2} \Delta f}{R^{2}}+\frac{e_{n A}^{2} \Delta f}{R^{2}}+i_{n A}^{2} R^{2} \Delta f$

Yielding

$$
\begin{equation*}
N F=10 \log \left[1+\frac{e_{n A}^{2}+i_{n R}^{2} R^{2}}{e_{n R}^{2}}\right] \tag{6}
\end{equation*}
$$

Noise figure has a minimum that occurs at an optimum source resistance $\mathrm{R}_{\text {opt }}$.

$$
\begin{equation*}
R_{o p t}=\frac{e_{n A}}{i_{n A}} \tag{7}
\end{equation*}
$$

Artifically changing the source resistance for minimum NF will generally increase the circuit noise as demonstrated by the following example.

Example:
An amplifier is needed to buost the signal from a resistive transducer.

Amplifier requirements
$A v=100$
$\mathrm{f}=10 \mathrm{~Hz}$ to 10 kHz
Transducer $=10 \mathrm{k} \Omega$

Amplifier-LF356
Noise data, $\mathrm{e}_{\mathrm{n}}=12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1 kHz

$$
\mathrm{i}_{\mathrm{n}}=0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}
$$

The optimum source resistance for the amplifier is found to be 12 M (using equation (7)). Using Figure 2, the noise of the transducer is $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ and the noise of the optimum source resistance is $140 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.

Using the non-inverting amplifier configuration, we'll view the effect of Ropt. In one case, resistance will be added to the source to equal the amplifier optimum
a. Minimum IJF

source resistance (not affecting gain). The other case will only have the transducer connected to the inout.

We will neglect the noise of the feedback resistors and determine the input noise and NF for both configurations using equations (1)-(6).

Case A, minimum NF

Case B, minimum noise

$$
\begin{aligned}
& V_{n}=1.7 \mu \mathrm{~V} \\
& \mathrm{NF}=3 \mathrm{~dB}
\end{aligned}
$$

Noise figure is only a measurement of the amplifier noise relative to the source noise. The example used was radical, but it illustrated a very important point. Resistance should never be added in series with the source to improve the NF. The NF will improve but the input noise will suffer, degrading performance. Total input noise should always be considered allowing problem sources to be identif ed and minimized to meet the system's specific noise requirements.

b. Minimum Noise

FIGURE 3. 2 Amplifier Solutions

Low Noise FET Amplifiers

INTRODUCTION

Discrete JFETs reign supreme as low noise amplifiers. JFETs are virtually free from the problems of current noise, popcorn noise and limited bandwidth which plague bipolar transistors and bipolar input op amps

Unfortunately, JFETs are cumbersome to use because of low gain and the need of extensive biasing networks. However, monolithic op amps are cheap and easy to use but suffer from poor noise performance. By combining JFETs with an op amp vields single and differential input amplitiers that have the best of both worlds: low noise, high gain and ease of use,

FIGURE 1. Bipolar and JFET Transistor Noise Comparison

FIGURE 2. Dis:crete JFET and Op Amp Noise Comparison

The main problem with JFETs is that the voltage gain is limited by the size of the load resistance which is limited by the power supply voltage and the FET operating current. The voltage gain can be increased by combining the JFET (a transconductance amplifier) with an op amp

National Semiconductor John Maxwell
March 1977
current to voltage (I/V) amplifier, circumventing the limited load resistor.

FIGURE 3. FET Gain Stages

In the FET/op amp configuration, the FET AC drain current is shunted to the op amp virtual ground and through its feedback resistor, bypassing the FET drain resistor, R_{d}. The drain resistor is used to bias the FET in a linear region with the feedback resistor, R_{f}, used to set the garn.

Biasing problems associated with lot and device to device parameter variations are minimized by biasing the source through a large resistor to the negative supply of the op amp A portion of the source resistor should be unbypassed to minimize gain variations between FETs.

From a design standpoint, the maximum $A C$ drain current should be $1 / 10$ of the FET quiescent current for low distortion. The unbypassed portion of the source resistor should be limited oo 220Ω for minimum noise and to increase the op amp feedback resistor (decreased AC current).

Expressions for the single and differential amplifier configurations are needed for optimizing the noise to meet system noise requirements.

Amplifier noise performance is adequately described by modeling the noise sources as a series voltage generator
and a shunt current generator with a series voltage generator for the source resistance thermal noise. The thermal noise of a resistor is given by Nyquist's relation and has a spectral density given by $e_{n R}^{2}$.

$$
\begin{align*}
& \mathrm{e}_{\mathrm{n}}^{2} \mathrm{R}=4 \mathrm{kTR} \tag{1}\\
& \mathrm{e}_{\mathrm{nR}}^{2}=\begin{array}{l}
\text { mean square noise voltage per unit band- } \\
\text { width }\left(\mathrm{n} \mathrm{~V}^{2} / \mathrm{Hz}\right)
\end{array} \\
& \mathrm{k}=\begin{array}{l}
\text { Boltzmann constant }\left(1.38 \times 10^{-23} \mathrm{VAS} /\right. \\
\mathrm{O} \\
\mathrm{O}
\end{array} \\
&\left.{ }^{\circ} \mathrm{K}\right) \\
& \mathrm{R}=\text { absolute temperature }\left({ }^{\circ} \mathrm{K}\right) \\
& \text { resistance }(\Omega)
\end{align*}
$$

a. Single-Ended

b. Differential Input

FIGURE 4. High Gain FET/Op Amp AC Amplifiers

The single ended and differential input amplifier input noise (FET noise current is negligible) is given by the RMS sum of the noisa generators.

Single-Ended:
$e_{n t}^{2}=e_{n f}^{2}+e_{n s}^{2}+\left(\frac{1+g_{m} R_{s}}{g_{m} R_{d}}\right)^{2}\left(e_{n A}^{2}+e_{n R}^{2}+i_{n A}^{2} R^{2}\right)$
Differential Input:
$e_{n t}^{2}=2\left(e_{n f}^{2}+e_{n s}^{2}\right)+4\left(\frac{1+g_{m} R_{S}}{g_{m} R_{d}}\right)^{2}\left(e_{n A}^{2}+e_{n R}^{2}+i_{n A}^{2} R^{2}\right)$
with
$e_{n t}=$ total inpu": noise voltage $(\mathrm{nV} / \sqrt{\mathrm{Hz}})$
$\mathrm{e}_{\mathrm{nf}}=\mathrm{FET}$ noise voltage $(\mathrm{nV} / \sqrt{\mathrm{Hz}})$
$e_{n A}=o p$ amp noise voltage $(n V / \sqrt{\mathrm{Hz}})$
$i_{n A}=o p$ amp noise current $(\mathrm{pA} / \sqrt{\mathrm{HZ}})$
$e_{n s}=$ source res stor thermal noise ($n \mathrm{VV} / \sqrt{\mathrm{Hz}_{z}}$)
$e_{n} R=$ drain and feedback ($\left.R_{d} / / R_{f}\right)$ resistor thermal noise ($n \mathrm{~V}, \sqrt{\mathrm{~Hz}}$)
$g_{m}=$ FET transconductance at the FET operating current (nımho)
$R=$ parallel resistance of R_{d} and $R_{f}(\Omega)$
The differential configuration has higher noise and lower gain than the single-ended version, but is useful when
low distortion or balanced inputs are of paramount importance.

The noise of the op amp and the FET drain resistor is reduced by the gain of the FET portion of the amplifier $\frac{g_{m} R_{d}}{1+g_{m} R_{s}}$. The noise of the feedback resistor has little effect on the noise but in conjunction with the drain resistor, it can have a dramatic effect on the total circuit noise. The drain resistor is the input leg of an inverting amplifier with the op amp and the feedback resistor. This amplifier has a gain of $-R_{f} / R_{d}$ which boosts the op amp noise, limiting the size of R_{f} to about 390 k .

Practical low noise, high gain AC amplifiers can be built using a low noise JFET and just about any op amp. The op amp needs to meet the slew rate and bandwidth requirements of the circuit, eliminating selected low noise op amps or complex discrete amplifiers.

A note of caution is in order for the op amp noise. Virtually any JFET input or bipolar input op amp can be used without trouble, but MOSFET input op amps should be avoided. MOSFET $1 / \mathrm{f}$ noise is one or more orders of magnitude greater than discrete JFETs, JFET op amps or bipolar input op amps. MOSFETs have $1 / \mathrm{f}$ corner frequencies (where the noise power rises as $1 / \mathrm{f}$) starting as high as 100 kHz . The other forms of amplifiers have $1 / \mathrm{f}$ corner frequencies of 1 kHz and less. Quite a difference.

FIGURE 5. Thermal Noise vs Resistance

Figure 6. Single-Ended Noise Model

The Low Noise JFETThe Noise Problem Solver

The most versatile low noise active device available to the designer today is the Junction Field-Effect Transistor (JFET). JFETs are virtually free of the problems which have plagued bipolar transistors-limited bandwidth, popcorn noise, a complex design procedure to optimize noise performance. In addition, JFETs offer low distortion and very high dynamic range.

Most designers think of JFETs for very high source impedances. However, modern devices offer the designer performance improvements over bipolar transistors in NF for all but lowest impedance $(<500 \Omega)$ sources and even then may provide improved performance if popcorn noise, bandwidth or circuit component noise is a consideration (see Figure 1).

Therefore, the purpose of this article is to review low noise design procedures and indicate the simplicity of designing high performance low noise amplifiers with low cost JFETs.

FIGURE 1. Bipolar and JFET Transistor Noise Comparison

REVIEW OF BASICS

Before guidelines are established for designing low noise JFET amplifiers, a method of noise characterization must be chosen. Designers are confronted with a multitude of different noise parameters such as Noise Figure (NF), noise voltage and current densities, noise temperature, noise resistance, etc. Designers are primarily concerned with signal to noise (S / N) ratios preferring noise voltage, $\left(e_{n}\right)$ and current (i_{n}) density.

Noise generally manifests itself in three forms: thermal noise, shot noise and flicker or " $1 / \mathrm{f}^{\prime}$ " noise. Thermal noise arises from thermal agitation of electrons in a conductor and is given by Nyquist's relation:

$$
\begin{aligned}
\overline{V_{R}^{2}=}= & 4 \mathrm{kTR} \Delta \mathrm{f} \\
\overline{\mathrm{~V}_{\mathrm{R}}^{2}}= & \text { mean square noise voltage } \\
\mathrm{k}= & \text { Boltzmann constant } \\
& \left(1.38 \times 10^{-23} \mathrm{VAS} / /^{\circ} \mathrm{K}\right) \\
\mathrm{T} & =\text { Absolute temperature }\left({ }^{\circ} \mathrm{K}\right) \\
\mathrm{R}= & \text { Resistance in ohms } \\
\Delta \mathrm{f}= & \text { Noise bandwidth }(\mathrm{Hz})
\end{aligned}
$$

National Semiconductor Application Note 151 John Maxwell
January 1976

The noise of a resistor may be represented as a spectral density $\left(\mathrm{V}^{2} / \mathrm{Hz}\right)$ or more commonly in $\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$ or $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ and is given by:

$$
\begin{equation*}
e_{n R}=\left(\overline{V_{R}^{2}} / \Delta f\right)^{\dagger / 2} \tag{2}
\end{equation*}
$$

it is sometimes more convenient to represent thermal noise as noise current instead of a noise voltage. One needs only to consider the Norton equivalent yielding a noise current density.

$$
\begin{equation*}
i_{n R}=\frac{e_{n R}}{R}=\left(\frac{4 k T}{R}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

FIGURE 2. Thermal Noise Voltage and Current Densities vs Resistance.

The second basic form of noise, shot noise, is due to the randomness of current flow (discrete charge particles) in semiconductor $\mathrm{P}-\mathrm{N}$ junctions.

$$
\begin{align*}
& \overline{\mathrm{i}^{2}}=2 \mathrm{qIDC} \Delta f \tag{4}\\
& \overline{\mathrm{i}^{2}}=\text { Mean square noise current } \\
& \mathrm{q}=\text { Charge of an electron }\left(1.6 \times 10^{-19} \mathrm{AS}\right) \\
& \mathrm{I}_{\mathrm{DC}}=\text { dc current flowing through the junction (A) } \\
& \Delta f=\text { Noise bandwidth }(\mathrm{Hz})
\end{align*}
$$

As with thermal noise, shot noise may be represented as a current density ($\mathrm{A}^{2} / \mathrm{Hz}$) or $\mathrm{pA} / \sqrt{\mathrm{Hz}}$.

$$
\begin{equation*}
i_{n}=\left(\overline{i^{2}} / \Delta f\right)^{1 / 2} \tag{5}
\end{equation*}
$$

It should be noted that both thermal noise and shot noise are "white" noise sources, i.e., frequency independent.

FIGURE 3. Current Noise vs Gate Leakage Current

The third basic noise source confronting designers is flicker or "1/f" noise whose density is roughly inversely proportional to frequency starting at about 1 kHz in both JFETs and bipolar transistors and increasing as frequency is decreased. Through careful processing, flicker noise in JFETs has been reduced to levels nearly insignificant to the designer. Flicker noise in JFETs is primarily a noise voltage and is source independent. Flicker noise in bipolar transistors is a function of base and leakage currents increasing with increased source impedance or operating currents.

A simple noise model of a JFET or any amplifying device may be constructed using a thermal and shot noise source which would adequately describe its noise performance allowing signal to noise ratios to be calculated directly.

FIGURE 4. Simple JFET Noise Model
The input noise per unit bandwidth at some frequency may be calculated from the mean square sum of the noise sources lassuining the JFET noise sources are uncorrelated or independent of one another).

$$
\begin{equation*}
e_{n t}^{2}=e_{n R}^{2}+e_{n f}^{2}+i_{n f}^{2} R_{s}^{2} \tag{6}
\end{equation*}
$$

The total noise in the same bandwidth Δf, where the noise sources are independent of frequency, is simply:

$$
V_{\text {NOISE }}=\left(\begin{array}{ll}
e_{n t}^{2} & \Delta f \tag{7}
\end{array}\right)^{1 / 2}
$$

Practically, noise sources are not frequency independent except resistor noise with no dc bias. The total input noise for the nonideal case may be calculated by breaking the spectrum up into several small bands and calculating the noise in each band where the noise sources are nearly frequency independent. The total input noise would then be the RMS sum of the noise in each of the bands $\mathrm{N} 1 \ldots \mathrm{~N}$.

$$
\begin{equation*}
V_{\text {NOISE }}=\left(V_{N 1}^{2}+V_{N 2}^{2}+\ldots V_{N n}^{2}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

THE DESIGN PRCICESS

The final circuit configuration and suitable JFET will be determined by the external circuit constraints.

1) Minimum signal to noise ratio (maximum amplifier noise)
2) Type and magnitude of source impedance (resistive or reactive)
3) Amplifier input impedance requirements
4) Bandwidth and maximum frequency of interest
5) Maximum operating temperature
6) Stage gain
7) Power supply voltage and current limitations
8) Circuit configuration, single or dual device

The design procedure is dependent on the type of source and each case must be considered separately. Resistive sources will be considered first because they are the least restrictive for the preamplifier.

Resistive Sources

Preamplifiers for resistive sources are typically voltage amplifiers requiring a fixed input resistance and capacitance consistent with the maximum frequency of interest and source resistance. In most cases a resistor of the desired value connected between the gate and ground will satisfy the input resistance requirement leaving the maximum input capacitance as the major concern.

The maximum amplifier input capacitance is a function of the JFET source resistor, input resistance, source capacitance and maximum frequency. The maximum allowable input capacitance will be used in etiminating unsuitable JFET geometrics and optimizing the circuit configuration. Sometimes the JFET geometry (or type) with the lowest noise may also have an input capacitance that makes it unsuitable. The JFET input capacitance should be considered before noise in high source resistance, wideband amplifier designs.

$$
\begin{align*}
& C_{i n} \cong C_{r s}\left(1+\frac{g m R_{D}}{1+g m R_{s}}\right)+\frac{C_{g s}^{*}}{1+g m R_{s}} \tag{9}\\
& { }^{*} C_{g s}=C_{1 s}-C_{r s}
\end{align*}
$$

FIGURE 5. A Typical Resistive Source JFET Amplifier

If low input capacitance is required, a cascode configuration minimizes input capacitance and still allows high gain within a device type. The cascode configuration can also be used to reduce the voltage across a device, reducing device heating (for high current operation) and gate leakage currents when source impedances are very high.

Once the basic circuit configuration has been decided upon or dictated by gain, bandwidth and power supply limitations, the final JFET selection will be on noise. Redrawing the amplifier in Figure 4 with all of the noise sources, the total amplifier noise per unit bandwidth can be found.

FIGURE 6. A Typical Resistive Source JFET Amplifier with Noise Sources

$$
e_{n t}=\left[e_{n i g}^{2}+e_{n f}^{2}+e_{n s}^{2}+\frac{e_{n D}^{2}}{A_{V}^{2}}+i_{n}^{2}\left(R_{j} / / R_{g}\right)^{2}\right]^{1 / 2}(10)
$$

where: $e_{\text {nig }}^{2}=$ The noise of the parallel connection of R_{i} and R_{g}
$e_{n f}^{2}=$ The noise voltage of the JFET
$e_{n s}^{2}=$ The noise of the source resistor R_{s}
$\frac{e_{n D}^{2}}{A_{V}{ }^{2}}$
$=$ The noise at the drain (thermal noise of the load plus the second stage noise)
$i_{n}^{2}\left(R_{i} / / R_{g}\right)^{2}=$ The current noise contribution of the JFET

When the amplifier is operated at room temperature and moderate drain voltages, the current noise term is usually negligible with source resistances as high as $10 \mathrm{M} \Omega$. Depending on the voltage gain of the stage, the drain circuit noise may be negligible, simplifying the input noise expression.

$$
\begin{equation*}
e_{n t}=\left(e_{n i g}^{2}+e_{n f}^{2}+e_{n s}^{2}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

The final JFET selection will be based on the noise requirements from the maximum allowable noise $V_{M A X}$.

$$
\begin{equation*}
V_{M A X}=\left(e_{n f}^{2}+e_{n s}^{2}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Depending on $V_{\text {MAX }}$ and $e_{n f}^{2}$ the source resistor may have to be bypassed to ground to eliminate noise of the bias resistor.

Capacitive Sources

Preamplifiers for capacitive sources are primarily current amplifiers requiring very high input resistance and controlled input capacitance to match the source capacitance.

The source capacitance should equal the sum of the preamplifier input capacitance and the stray capacitance for maximum frequency response and power transfer
from the signal source. Assuming the gate resistor, R_{g}, is so large as to not load the capacitive source, the input noise voltage is:
$e_{n t} \cong\left[e_{n f}^{2}+\left(i_{n f}^{2}+i^{2}{ }_{n g}\right)\left(\frac{R_{g}{ }^{2}}{\left(1+\omega^{2} R_{g}{ }^{2} C^{2}\right)}\right)\right] 1 / 2$
where $\mathrm{C}=\mathrm{C}_{\mathrm{S}}+\mathrm{C}_{\text {in }}$
with an input signal of

$$
\begin{equation*}
e_{5} \cong i_{s}\left(\frac{R_{g}^{2}}{1+\omega^{2} R_{g}^{2} C^{2}}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

When the source and input capacitance are matched, the final JFET geometry will be selected on two criteria: the noise voltage, e_{n}, and the current noise from the gate leakage, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$, to optimize the signal to noise ratio. As in the resistive source case, the circuit configuration and JFET selection is an iterative process using all of the external circuit constraints and device parameters and limitations.

Inductive Sources

Amplifiers designed for inductive sources (including transformers) require fiked input resistances (as in the resistive source case) and controlled input capacitance (as in the capacitive source case). The input noise per unit bandwidth will rise with increasing frequency to a maximum value at resonance of the inductive source and the input capacitance or when the shunt resistance of the inductor is larger than the input resistance of the amplifier.

The inductive source amplifier is the most difficult to analyze due to the complex input impedance. The input noise per unit bandwidth is given by:

$$
\begin{align*}
& e_{n t}^{2}=e_{n f}^{2}+\left(i_{n f}^{2}\right)\left(\left.Z_{i n}\right|^{2}\right)+4 k T\left(\operatorname{Re}\left(Z_{i n}\right)\right) \tag{15}\\
& \text { where } \quad Z=X_{\text {CIN }} / / R_{g} \\
& \text { and } Z_{i n}=Z / /\left(Z_{L}+R_{L}\right)
\end{align*}
$$

Usually the current nose of the JFET is negligible, simplifying the expression a little, but not much. The optimization process for inductive sources is very complex and it will require the spectrum to be broken up into several small bands to arrive at a final design. Generally, a JFET with a minimum noise voltage will be the proper choice.

Transformers may be used with JFET amplifiers to minimize noise with very low source impedances. Transformers have both drawbacks and advantages and both must be examined before a transformer design is chosen. Poor frequency response, susceptibility to mechanical and magnetic pickup and thermal noise head the list of disadvantages to be weighed against two very important advantages. First, the noise voltage is transformed by the turns ratio N; second, the resistance is transformed by N^{2}. These can be used to advantage by matching very low values of source resistance to a relatively noisy amplifier and still maintaining a good signal to noise ratio, i.e., the total noise at the source assuming an ideal transformer is

$$
\begin{equation*}
e_{n t}^{2}=e_{n R s}^{2}+\frac{e_{n A m p}^{2}}{N^{2}} \tag{16}
\end{equation*}
$$

SOME PRACTICAL LOW NOISE JFET INPUT CIRCUITS

Useble Bandwidth 1 MHz
a) Wide Band, Low Input Capacitance, Very Low Noise Preamplifier

b) Low Noise, Very Low Input Capacitance Video Amplifier
The Low Noise JFET-The Noise Problem Solver

Important National JFET Process Parameter Guide

Test Conditions $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)^{*}$

PROCESS	$\begin{aligned} & \mathrm{e}_{\mathrm{n}} @ 10 \mathrm{~Hz} \\ & (\mathrm{nV} / \sqrt{\mathrm{Hz}}) \end{aligned}$	$\begin{gathered} \mathbf{e}_{\mathrm{n}} @ \uparrow \mathrm{kHz} \\ (\mathrm{nV} / \sqrt{\mathrm{Hz}}) \end{gathered}$	$\begin{gathered} \mathrm{e}_{\mathrm{n}} @ 100 \mathrm{kHz} \\ (\mathrm{nV} / \sqrt{\mathrm{Hz}}) \end{gathered}$	$\begin{gathered} \mathrm{g}_{\mathrm{fs}} \\ (\mathrm{mmho}) \end{gathered}$	$I_{G(O N)}$ (pA)	$\begin{aligned} & \mathrm{C}_{\mathrm{GO}} \\ & (\mathrm{pF}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{GS}} \\ & (\mathrm{pF}) \end{aligned}$
50	15	5	2.5	3	5 V 2 pA	0.7	2.5
					10 V 10 pA		
					15 V 1 nA		
51	5	3	1.3	7	30	3	9
55	10	4	2.5	2.4	5	2	4
92	10	4	1.5	4.5	10 V 20 mA	2	4
					15 V 1 nA		
83	10	5	2.5	2	5	1	2.5
$84 *$	50	15	9	02	0.1	0.01	2
94	10	5	2.5	2	1--2	0.01	4
95	10	4	2.5	1.5	15	35	15
96	5	3	1.3	7	30	3	9
93	15	7	2	35	10 V 20 pA	1	32
					15 V 1 nA		

National JFET Process Low Noise Amplifier Guide

PROCESS	50	51	55	92	83	84	93	94	95	96
Low Noise Application	Single JFET				Dual JFET					
Resistive Ultra. Low $\begin{aligned} & \mathrm{e}_{\mathrm{n}}<5 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ \\ & 10 \mathrm{~Hz} \end{aligned}$		\times								X
Resistive Low Fred $<20 \mathrm{kHz}$		x	x		X			X	X	X
Resistive Wideband $<10 \mathrm{MHz}$	x	\times		X	X		X	\%	x	X
Resustive Mide Band $>10 \mathrm{MHz}$	x			\times			X			
Resistive Very High $R_{S}>10 \mathrm{Ms}$	X					X		λ.		
$\begin{aligned} & \text { Capacitive Low C } \\ & <10 \mathrm{pF} \end{aligned}$	X		\times	X	x	X	X	x		
$\begin{aligned} & \text { Capacitive High C } \\ & >20 \mathrm{pF} \end{aligned}$		X	\times						X	X
Inductive	x	x	\times	x	X	X	X	\times	X	X

APPENDIX B

NOISE PARAMETER CONVERSION

Noise Figure (NF) to an Effective \mathbf{e}_{n}

It is more conven ent to present noise data for bipolar transistors in the form of contours of corlstant noise figure at a fixed frequency or plots of noise figure versus frequency at a fixed source resistance due to large values of noise current (i_{n}). Noise figure must be converted to an effective noise voltage ($e_{n E}$) for comparisions to be made between a BJT and a JFET or for signal to raise ratio calculations.

By definition:
$N F=10 \log \frac{\text { Total Output Noise Power }}{\text { Output Noise Power of the Source }}$

From equations 1 and 2, one finds the source noise power to be

Source Noise Power $=\frac{e_{n R}^{2} \Delta f}{R_{S}}$
for some source resistance R_{S}.

Referring to Figure 4, the total output noise power at the input of the amplifier would be:

Total Output Noise Power $=\frac{e_{n R}^{2} \Delta f}{R_{S}}+\frac{e_{n f}^{2} \Delta f}{R_{S}}+$

$$
\begin{equation*}
\mathrm{i}_{\mathrm{nf}}^{2} \mathrm{R}_{\mathrm{S}}^{2} \Delta f \tag{B3}
\end{equation*}
$$

The noise figure (NF) can now be expressed in terms of the noise source generators, $e_{n R}, e_{n f}$ and $i_{n f}$ allowing an expression to convert noise figure (NF) to an effective noise voltage (e_{nE}).
$N F=10 \log \left(1+\frac{e_{n f}^{2}+i_{n f}^{2} R_{S}^{2}}{e_{n R}^{2}}\right)$
yielding
$e_{n f}^{2}+i_{n f}^{2} R_{S}^{2}=e_{n E}^{2}=\left(10^{N F / 10}-1\right) e_{n R}^{2}$

FIGURE B1. Effective Noise Voltage (e_{n}) vs Noise Figure and Source Resistance (RS)

Noise Resistance

The effective noise voltage density (e_{n}) and noise current density (i_{n}) are found directly by referring to Figure 1 , and reading the vatues for the corresponding resistances,

$$
\begin{align*}
& \mathrm{e}_{\mathrm{nR}}=(4 K T R)^{1 / 2} \tag{1}\\
& \mathrm{i}_{\mathrm{nR}}=\left(\frac{4 K T}{R}\right)^{1 / 2} \tag{3}
\end{align*}
$$

APPENDIX C

JFET Current Noise

At low frequencies the current noise and voltage noise sources are uncorrelated in JFETs with the current noise being pure shot noise due to gate leakage currents. As frequency is increased, the current noise also increases starting at frequencies as low as 50 kHz in some high capacitance device types.

It has been suggested and experimentally verified that the noise current at high frequencies is due to increased gate input conductance.

$$
\begin{equation*}
i_{n}^{2}=4 K T\left[\operatorname{Re}\left(Y_{11}\right)\right]^{-1} \tag{C1}
\end{equation*}
$$

Re $\left(Y_{11}\right)$ is available on high frequency JFET data sheet as the real portion of the common source input admittance parameters. In effect the channel noise is coupling to the gate circuit through the source-gate and drain gate capacitances. Hence low capacitance devices exhibit lower values of noise current at high frequencies than do high capacitance devices.

FET Circuit Applications

Sample and Hold With Offset Adjustment

The 2 N 4393 JFET was selected because of its low $\mathrm{I}_{\mathrm{GSS}}(<100 \mathrm{pA})$, very low $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}(<100 \mathrm{pA})$ and low pinchoff voltage. Leakages of this level put the burden of circuit performance on clean, solder-resin free, low leakage circuit layout.

Low Power Regulator Reference

This simple reference circuit provides a stable voltage reference almost totally free of supply voltage hash. Typical power supply rejection exceeds 100 dB .

National Semiconductor
Application Note 32
April 1977

JFET AC Coupled Integrator

This circuit utilizes the " μ-amp" technique to achieve very high voltage gain. Usinģ C1 in the circuit as a Miller integrator, or capacitance rultiplier, allows this simple circuit to handle very long time constants.

Ultra-High $Z_{I N} A C$ Unity Gain Amplifier

Nothing is left to chance in reducing input capacitance. The 2N5485, which has low capacitance in the first place, is operated as a source follower with bootstrapped gate bias resistor and drain.

FET Cascode Video Amplifier

JFET Pierce Crystal Oscillator

The FET cascode video amplifier features very low input loading and reduction of feedback to almost zero．The $2 N 5485$ is used beca sse of its low capacitance and high $Y_{f s}$ ．Bandwidth of this amplifier is limited by R_{L} and load capacitance．

The JFET Pierce crystal oscillator allows a wide fre－ quency range of crystals to be used without circuit modification．Since the JFET gate does not load the crystal，good Q is maintained，thus insuring good fre－ quency stability．

FETVM－FET Voltmeter

This FETVM replaces the function of the VTVM while at the same time ridding the instrument of the usual line cord．In addition，drift rates are far superior to vacuum tube circuits allowing a 0.5 V full－scale range
which is impractical with most vacuum tubes．The low leakage，low noise NPD8303 is an ideal device for this application．

HI-FI Tone Control Circuit (High Z Input)
The 2 N5458 JFET provides the function of a high input impedance and low noise characteristics to buffer an op amp-operated feedback type tone control circuit.

100 MHz Converter

The 2 N 4416 JFET will provide noise figures of less than 3 dB and power gain of greater than 20 dB . The JFET's outstanding low crossmodulation and low intermodulation distortion provides an ideal characteristic for an
input stage. The output feeds into an LM171 used as a balanced mixer. This configuration greatly reduces L.O. radiation both into the antenna and into the IF strip and also reduces RF signal feedthrough.

The NPD5566 monolithic dual is used in a differential multiplexer application where RDSION) should be closely matched. Since RDS\{ON) for the monolithic dual tracks at better than $\pm 1 \%$ over wide temperature
ranges $\left\{-25^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right\}$, this makes it an unusual but ideal choice for an accurate multiplexer. This close tracking greatly reduces errors due to common-mode signals.

Magnetic Pickup Phono Preamplifier

This preamplifier provides proper loading to a reluctance phono cartridge. It provides approximately 35 dB of gain at $1 \mathrm{kHz}(2.2 \mathrm{mV}$ input for 100 mV output), it features $S+N / N$ ratio of better than -70 dB (referenced
to 10 mV input at 1 kHzt and has a dynamic range of 84 dB (referenced to 1 kHz). The feedback provides for RIAA equalization.

Valtage Cantrolled Variable Gain Amplifier
The $2 N 5457$ acts as a voltage variable resistor with an $\mathrm{P}_{\mathrm{DS}}(\mathrm{ON})$ of 800Ω max. Since the differential voltage on the LM101 is in the low mV range, the 2 N 5457 JFET will have linear resistance over several decades of resistance providing an excellent electronic gain control.

Variable Attenuatar
The PN4391 provides a low $\operatorname{RDS}(O N)$ (less than 30Ω). The tee attenuator provides for optimum dynamic linear range for attenuation and if complete turn-off is desired, attenuation of greater than 100 dB can be obtained at 10 MHz providing proper RF construction techniques are employed.

Negative to Positive Supply Logic Level Shifter
This simple circuit provides for level shifting from any logic function (such as MOS) operating from minus to ground supply to any logic level (such as TTL) operating from a plus to ground supply. The 2 N 5639 provides a low $r_{d s}(\mathrm{ON})$ and fast switching times.

Ultra-High Gain Audio Amplifier
Sometimes called the "JFET μ-amp", this circuit provides a very low power, high gain amplifying function. Since μ of a JFET increases as drain current decreases, the lower drain current is, the more gain you get. You do sacrifice input dynamic range with increasing gain, however.

High Frequency Switch

The 2 N4391 provides a low ON resistance of 30Ω and a high OFF impedance $(<0.2 \mathrm{pF})$ when OFF. With proper
layout and an "ideal" switch, the performance stated above can be readily achieved.

Precision Current Source

The 2N5457 and PN2222 bipolar serve as voltage isolation devices between the output and the current sensing resistor, R1. The LM101 provides a large amount of loop gain to assure that the circuit acts as a current source. For small values of current $(<1 \mathrm{~mA})$, the PN2222 and 10k resistor may be eliminated with the output appearing at the source of the 2 N 5457 .

JFET-Bipolar Cascode Circuit

The JFET-bipolar cascode circuit will provide full video output for the CRT cathode drive. Gain is about 90. The cascode configuration eliminates Miller capacitance problems with the 2 N4091 JFET, thus allowing direct drive from the video detector. An m derived filter using stray capacitance and a variable inductor prevents 4.5 MHz sound frequency from being amplified by the video amplifier.

Precision Current Sink

The 2N5457 JFET and PN2222 bipolar have inherently high output impedance. Using R1 as a current sensing resistor to provide feedback to the LM101 op amp provides a large amount of loop gain for negative feedback to enhance the true current sink nature of this circuit. For small current values, the 10 k resistor and PN2222 may be eliminated if the source of the JFET is connected to R1.

*Polycarbonate dielectric capacitor

Low Drift Sample and Hold

The JFETs, O 1 and Q 2 , provide complete buffering to C 1 , the sample and hold capacitor. During sample, O1 is turned ON and provides a path, $\mathrm{r} \mathrm{ds}(\mathrm{ON})$, for charging C1. During hold, O1 is turned OFF, thus leaving O1 $\mathrm{ID}(\mathrm{OFF})(<100 \mathrm{pA})$ and $02 \mathrm{IGSS}(<100 \mathrm{pA})$ as the only discharge paths. O2 serves a buffering function so feedback to the LM101 and output current are supplied from its source.

Peak output voltage
$V_{p} \cong V_{z}+1 V$

Wien Bridge Sine Wave Oscillator

The major problem in producing a low distortion, constant amplitude sine wave is getting the amplifier loop gain just right. By using the 2 N 5457 JFET as a voltage variable resistor in the amplifier feedback loop, this can be easily achieved. The LM103 zener diode provides the voltage reference for the peak sine wave amplitude; this is rectified and fed to the gate of the

High Impedance Low Capacitance Wideband Buffer

The 2N5485 features low input capacitance which makes this compound series-feedback buffer a wide-band unity gain amplifier.

JFET Sample and Hold Circuit

2N5457, thus varying its channel resistance and, hence, loop gain.

The logic voltage is applied simultaneously to the sample and hold JFETs. By matching input impedance and feedback resistance and capacitance, errors due to $\mathrm{r}_{\mathrm{ds}}(\mathrm{ON})$ of the JFETs is minimized.

High Impedance Low Capacitance Amplifier

This compound series-feedback circuit provides high input impedance and stable, wide-band gain for general purpose video amplifier applications.

Stable Low Frequency Crystal Oscillator

0 to 360° Phase Shifter

Each stage provides 0° to 180° phase shift. By ganging the 2 stages, 0° to 360° phase shift is achieved. The J202 JFETs are ideal since they do not load the phase shift networks.

DTL-TTL Controlled Buffered Analog Switch

This analog switch uses the 2 N 4860 JFET for its 25Ω ron and low leakage. The LM102 serves as a voltage buffer. This circuit can be adapted to a dual trace oscil-
loscope chopper. The DS7800 monolithic IC provides adequate switch drive controlled by DTL.TTL levels.

20 MHz oscillator values

$C 1=700 \mathrm{pF}$	$\mathrm{L} 1=1.3 \mu \mathrm{H}$
$\mathrm{C} 2=75 \mathrm{pF}$	$\mathrm{L} 2=10 \mathrm{~T} 3 / 8^{\prime \prime}$ dia $3 / 4^{\prime \prime}$ long
$\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$

20 MHz oscillator performance
Low distortion 20 MHz asc
2nd harmonic - 60 dB
3rd harmonic - -70 dB

Low Distortion Oscillator

The 2 N5485 JFET is capable of oscillating in a circuit where harmonic distortion is very low. The JFET
local oscillator is excellent when a low harmonic content is required for a good mixer circuit.

This Colpitts-Crystal oscillator is ideal for low frequency crystal oscillator circuits. Excellent stability is assured because the 2N5484 JFET circuit loading does not vary with temperature.

200 MHz Cascode Amplifier

This 200 MHz JFET cascode circuit features low crossmodulation, large signal handling ability, no neutralization, and AGC controlled by biasing the upper cascode

JFET. The only special requirement of this circuit is that IDSS of the upper unit must be greater than that of the lower unit.

FET Op Amp

The NPD8301 monolithic-dual provides an ideal low offset, low drift buffer function for the LM101A op amp. The excellent matching characteristics of the

NPD8301 track well over its bias current range, thus improving common-mode rejection.

This commutator circuit provides low impedance gate drive to the PN4091 analog switch for both ON and OFF drive conditions. This circuit also approaches the ideal gate drive conditions for high frequency signal
handling by providing a low AC impedance for OFF drive and high $A C$ impedance for $O N$ drive to the PN4091.

This 4 -channel commutator uses the 2 N 4091 to achieve low channel ON resistance ($<30 \Omega$) and low OFF current leakage. The DS7800 voltage translator is a monolithic
device which provides from 10 V to -20 V gate drive to the JFETs while at the same time providing DTL/TTL logic compatability.

Wide Band Differential Multiplexer
This design allows high frequency signal handling and high toggle rates simultaneously. Toggle rates up to 1 MHz and MHz signals are possible with this circuit.

Current Monitor

R1 senses current flow of a power supply. The JFET is used as a buffer because $I_{D}=I_{S}$, therefore the output
monitor voltage accurately reflects the power supply current flow.

Low Cost High Level Preamp and Tone Control Circuit

This preamp and tone control uses the JFET to its best advantage; as a low noise high input impedance device. All device parameters are non-critical, yet the circuit achieves harmonic distortion levels of less than
0.05% with an S / N ratio of over 85 dB . The tone controls allow 18 dB of cut and boost; the amplifier has a 1 V output for 100 mV input at maximum level.

A Novel FET Micropower Voltage Regulator

Many systems require a stable voltage supply to maintain constant performance. When these systems are batteryoperated, a regulator is needed to stabilize the system voltage as the battery decays with time. Unfortunately, IC voltage regulators require several milliamps of quiescent current, making them impractical for micropower applications. Zener diodes may also be impractical because of short term peak current requirements of the system. This could require additional buffering or high standby currents, but both increase the battery drain. An inexpensive micropower voltage regulator is needed to fill the gap between IC regulators (high quiescent current) and zener diodes (high standby current).

Instead of the tranditional bipolar approach, the regulator shown in Figure 1 uses a JFET as the series pass element. This offers several advantages: first, no pre-regulation is needed for the pass element as with an NPN because the drive comes from the regulated output. Next, the gate-source is isolated from the line via the drain, thus offering excellent line regulation. This is not the case with PNP pass elements, where the emitter is the input. Finally, and possibly the most important feature for micropower regulators, is FETs require no current drive.

Output Voltage
$V_{\text {OUT }}=V_{B E}\left(2+\frac{R 1}{R 2}\right)+B V_{E B}\left(1+\frac{R 1}{R 2}\right)$
Drift
$\frac{\partial V_{\text {OUT }}}{\partial T}=\frac{\partial V_{B E}}{\partial T}\left(2+\frac{R 1}{R 2}\right)+\frac{\partial B V_{E B}}{\partial T}\left(1+\frac{R 1}{R 2}\right)$
Quiescent Current $\simeq 4 \mu \mathrm{~A}$
FIGURE 1. Micropower Regulator

National Semiconductor John Maxwell
February 1977

The emitter-base breakdown voltage of Q 3 is used as a reference $(\sim 7.2 \mathrm{~V})$ in conjunction with Q 2 to form a shunt regulator. The shunt current drives a current mirror, $\mathrm{O} 4-05$, which creates the gate drive voltage of the pass FET. The value of the shunt current is determined by $R 3$ and the $V_{G S}$ of the pass $F E T\left(I_{R 3} \simeq\right.$ ISHUNT). High load currents will reduce the shunt current because the FET V_{GS} is lower. Temperature stability is achieved by cancelling the drift of Q 2 and Q3's $V_{B E}\left(\sim-2 \mathrm{mV} / \mathrm{C} /\right.$ /tansistor) with the $\mathrm{B} V_{E B}$ drift of $\mathrm{Q} 3\left(-3 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$ resulting in a negative drift at the base of Q 2 , and the output, of $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Selection of the FET requires some care. Ideally, the FET IDSS needs to be greater than the load current at all temperatures (IDSS has a temperature coefficient of $\sim-0.7 \% /{ }^{\circ} \mathrm{C}$) and the breakdown voltage should be greater than the maximum input voltage. Practically, the FET IDSS needs to be much larger than the maximum load current. Linear operation requires the FET's drain to gate voltage ($V_{D G}$) to be greater than the pinchoff voltage V_{P}. By operating the FET at currents much less than ${ }^{\text {I }} \mathrm{DSS}$, the gate to source voltage ($V_{G S}$) will be close to $V_{P}\left(V_{G S}=V_{P}\left(1-\left(I_{D} / I_{D S S}\right)^{1 / 2}\right)\right)$ allowing small drain to source voltages (VDS). For linear operation:

$$
\begin{aligned}
& \left|V_{D G}\right|>\left|V_{P}\right| \\
& V_{D G}=V_{D S}-V_{G S}
\end{aligned}
$$

It should be noted that N FET's can be paralleled for higher load current requirements without matching the devices.

Actual performance of the regulator is quite good. With a 10 V typical output, the line regulation is within $\pm 0.05 \%$ for a range of $V_{I N}-V_{\mathrm{QUT}}$ of 0.3 V to 10 V . The load regulation is 0.2% with a load range of $10 \mu \mathrm{~A}$ to $10 \mathrm{~mA}\left(Z_{0} \simeq 10 \Omega\right)$ and the temperature stability is $-0.01 \% /{ }^{\circ} \mathrm{C}\left(-1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$. The output voltage can be easily trimmed by adding a pot at the R1R2Q2BASE junction to eliminate $B V_{E B}$ variations or to make the output adjustable over a limited range. Also, the temperature stability can be improved by replacing Q 3 with an 8.2 V zener diode, because its temperature drift ($\sim 4 \mathrm{mV}$ / ${ }^{\circ} \mathrm{C}$) would nearly match the combined $V_{B E}$ drift of Q 2 and Q 4 . The regulator is good enough to be used as a reference in low accuracy ($6-7$-bit) or limited temperature range applications if current drain is important.

REFERENCES

1. "Voltage Regulator Handbook", National Semiconductor Corporation, May 1975.
2. "Zener Diode Handbook", Motorola, Inc., May 1967.
3. Williams, P., "D.C. Voltage-Reference Circuits with Minimum Input-Qutput Differentials", Proc. IEEE pp. 1280-1281, December, 1969.

FIGURE 2. Line Regulation vs Input-Output Differential

FIGURE 3. Load Regulation

FIGURE 4. Temperature Stability

A Linear Multiple Gain Controlled Amplifier

INTRODUCTION

A linear control function over three decades of gain can be achieved with a FET in the feedback path of a noninverting amplifier. Besides the ultimate simplicity of the circuit, multiple tracking gain control circuits can be constructed with dual op amps and monolithic dual FET's or quad op amps and monolithic quad FET's. Such circuits could even be integrated with ion-implanted FET's on single or multiple monolithic op amp chips. The gain control range may be designed for less than 2 to 1 or higher than 1000:1, but input voltage levels are limited by acceptable levels of distortion. Bandwidth is dependent on maximum gain and unity gain bandwidth of the op amp used. The gain control circuit is especially suitable for volume expansion applications.

GAIN CONTROL WITH FETS

The FET has long been used as a voltage controlled resistor (VCR), often as the shunt arm in the series-shunt attenuator of Figure 1. Advantages of the FET as a VCR are that:

1. The control signal is almost perfectly isolated from the controlled signal path, and
2. The resistance can be made to vary over an almost infinite max/min ratio.

FIGURE 1. Voltage Controlled FET Attenuator

Disadvantages are that:

1. The FET behaves as a linear resistance only for small values of source-drain voltage $V_{D S}$,
2. Non-linearity (of resistance) increases as the control voltage $V_{G S}$ approaches cut-off voltage V_{p} when the resistance is maximum,
3. The relationship of resistance r_{d} to $V_{G S}$ is reciprocal rather than direct linear,
4. VCR multiples with matched resistance characteristics over their full control range have been extremely difficult to obtain at any kind of reasonable price, and
5. Production spread in V_{P} requires separate bias set and gain set on each circuit.

National Semiconductor Application Note 129 Jim Sherwin
August 1975

Examination of the FET drain characteristics in Figure 2 will reveal the essential non-linearity of r_{d} at high signal levels, especially as $V_{G S}$ approaches V_{P}. This nonlinear region must be avoided in order to achieve tolerable distortion levels. One obvious way is to limit $V_{D S}$ to small values when r_{d} is high as suggested by Figures $2 c$ and $2 d$, another is to utilize FET's with high V_{P} as suggested by reference to Figures $2 b$ and $2 d$.

The reciprocal relationship of r_{d} and $V_{G S}$ is an advantage, as it is precisely that which allows the linear control of gain in the circuit to be described. The availability of matched monolithic dual FET's such as the NSC 2N3958 (watch out for the matched pairs as their resistance match close to V_{P} may not be as good as that of the monolithic versions) make available low cost duals with very closely matched resistance characteristics over the full control range. There are even some monolithic quads available (such as the AM9709 series). The final problem of the production range of V_{p} can be much improved with ion-implant diffusion techniques whereby lot variation in V_{p} may be held to within a few tenths of one volt.

The gain control circuit is that of an ordinary noninverting op amp with feedback. The usual circuit is modified in Figure 3a to include a FET as controlled resistor. The gain function is normal except that r_{d} replaces R2 in the usual form.

$$
\begin{equation*}
A_{V}=1+\frac{R 1}{r_{d}} \tag{1}
\end{equation*}
$$

Now r_{d} can be equated to a control voltage V_{C} as follows:

$$
\begin{equation*}
r_{d}=r_{0} \frac{V_{P}}{V_{P}-V_{G S}} \tag{2}
\end{equation*}
$$

Where:

$$
\begin{align*}
& r_{0}=\left.r_{d}\right|_{V_{G S}}=0 \\
& r_{d}=r_{0} \frac{V_{P}}{V_{C}} \tag{3}
\end{align*}
$$

Where:

$$
V_{C}=V_{P}-V_{G S}
$$

The gain function is thus seen to be linear with V_{C}.

$$
\begin{equation*}
A_{V}=1+\frac{R 1}{r_{0}} \frac{V_{C}}{V_{P}} \tag{4}
\end{equation*}
$$

FIGURE 2. AC Output Characteristics of FET

FIGURE 3. FET/Op Amp Gain Control Circuit

FIGURE 4. Gain vs Control Voltage For Short Channel FET

FIGURE 5. Gain vs Control
Voltage For Long Channel FET

FIGURE 6. Control-Gain Match For Dual FET

(a) $\frac{V_{\text {ds }}}{2}$ feedback to gate

FIGURE 7. Monolithic Quad Gain Control Tracking

FIGURE 8. Circuit to Reduce Distortion

At $V_{C}=0$, the gain reduces to unity; and at $V_{C}=V_{P}$, the gain increases to $1+R 1 / r_{0}$ which may be as high as 1000 or so. If it is desired to limit the minimum gain to some value greater than unity, another resistor R2 may be added as in Figure $3 b$. Then the gain equation becomes:

$$
\begin{aligned}
A_{V} & =1+\frac{R 1}{\frac{R 2 r_{0}\left(V_{p} / V_{c}\right)}{R 2+r_{o}\left(V_{P} / V_{c}\right)}} \\
& =1+\frac{R 1\left[R 2+r_{o}\left(V_{p} / V_{c}\right)\right]}{R 2 r_{o}\left(V_{p} / V_{c}\right)}
\end{aligned}
$$

$$
\begin{equation*}
A_{V}=1+\frac{R 1}{R 2}+\frac{R 1 V_{C}}{r_{o} V_{P}} \tag{5}
\end{equation*}
$$

In either case, the gain function is linear with V_{C}.
The circuits of Figure 3 do indeed show a linear gain versus control voltage as plotted in Figure 4 for several values of minimum gain. There is some non-linearity near minimum gain which appears in all curves. This is certainly due to a non-ideal characteristic of the FET caused by finite contact and bulk resistance at source and drain. Figure 5 shows a similar control curve for a FET with longer channel in which the controlled channel resistance is a greater part of the total resistance than that of the short channel device of Figure 4. For those applications requiring a more precisely linear control of gain, the long channel devices will be preferable.

Several variable-gain circuits can be made to track when monolithic multiple FET's are used as the control elements with matched feedback resistors. A monolithic FET dual (NSC 2N3958) used in two identical control circuits shows remarkable tracking over the entire control range, even when $V_{G S}$ is near V_{P} where variations would be expected to be most apparent. The plots appear in Figure 6. Similar performance for a quad gain control using a monolithic P-channel quad FET (AM97C09 or AM9709) is shown in Figure 7.

DISTORTION

Reference to Figure 2 will show that the FET acts as a linear resistance only for relatively small values of drainsource voltage, in either polarity. This is particularly apparent for positive $V_{D S}$ (for N -channel FET) and $\mathrm{V}_{G S}$ approaching V_{p}. The difference between Figures $2 c$ and $2 d$ indicates that the maximum allowed applied signal will be greater for high V_{p} as compared with low V_{p}.

It is possible to improve the linearity characteristics somewhat by applying a part of the $V_{D S}$ in series with the control voltage applied as $\mathrm{V}_{\text {GS }}$. The circuit to accomplish this is that shown in Figure 8. It happens that about half of $V_{D S}$ applied to the gate provides the greatest improvement for small signals. The addition of two resistors and one capacitor as in Figure 8a is all that is required. The capacitor simply blocks the control voltage from the FET drain and the op amp input. Figure $8 b$ shows the addition of an emitter follower to

FIGURE 9. AC Output Characteristics of FET with Feedback Linearization

FIGURE 10. Distortion With $V_{P}=2.8 V$

FIGURE 12. Distortion With $V_{P}=2.8 V$, With Linearization

FIGURE 11. Distortion With $V_{P}=8.2 V$

FIGURE 13. Distortion With
$V_{P}=8.2 \mathrm{~V}$, Linearized
prevent abrupt changes in V_{c} from coupling to the op amp. Figure 9 shows the improved linearity of the drain characteristics as compared to Figure 2. The improvement is also seen in the distortion versus input signal plots of Figures 10-13. Note particularly that the distortion at any value of V_{C} is primarily a function of input signal (which equals the feedback signal applied to the FET drain at the inverting input). Some modification is made to this direct relationship if an R2 is shunted across the FET as in Figure 3b. Measured distortion at low signal level is the result of noise rather than of signal distortion. Maximum gain is limited to about 100 in these plots so as to avoid the region of lower S / N. The noise is that of the op amp input stage and the signal source resistance plus the contribution of the FET which is essentially the thermal noise of r_{d}.

BANDWIDTH AND CONTROL TIME CONSTANT

The circuit bandwidth is the closed loop bandwidth of the op amp used at the (instantaneous) set gain. The gain control time constant is that of the input circuit to the FET (dependent on the value of R in Figure 8) limited by the slew rate of the op amp. The FET itself reacts practically instantly, producing a step change in feedback ratio. Control time constant is thus a few microseconds at most.

APPLICATIONS

Three obvious applications present themselves; they are:

1. Remote or multichannel gain control
2. Volume expansion

3. Volume compression/limiting

To this short list might be added a number of others, including applications in noise reduction and quad sound techniques.

The gain-controlled amplifier of Figure 14 has a gain range of $1-1000$, a maximum output level of 8.5 Vrms , and a bandwidth of better than 20 kHz at maximum gain. The FET used has high V_{P} for maximum freedom from distortion. Figures 15 and 16 show the gain function and constant distortion contour lines. Note that the gain control curve is non-linear near unity gain because the PN4091 is a short channel FET. Distortion
is quite low except as limited by maximum output voltage. Note that the maximum e_{in} is restricted by output saturation. The LM318 is used in the example only to achieve wideband response at maximum gain. The amplifier input voltage must be restricted to about 8 mVrms at maximum gain when the S / N will be about 60 dB over a 10 kHz bandwidth.

FIGURE 14. Amplifier with Gain Range $=1-1000$

A more practical circuit might employ a gain range of $1-100$. Then the amplifier could be a LM301A and still achieve a 10 kHz bandpass at maximum gain. The input signal could, accordingly, be increased to 80 mVrms for a S / N of 80 dB . This performance can be extended to dual and quad control circuits with tracking gain functions, but watch the bandwidth as required at maximum gain. Any of the several dual op amps could be used with the 2 N 3958 (monolithic dual from NSC), or the LM324 quad op amp can be used in limited gain times bandwidth applications with a quad monolithic FET. Figure 17 shows all details of an ac coupled tracking quad gain control with 40 dB range. Gain varies over $1-100$ range, bandwidth is 10 kHz minimum, S / N is better than 70 dB with 4.3 Vrms maximum output. Figure 7 shows the gain curve and matching characteristics.

Noise considerations could be important in this method of gain control, as the signal is amplified rather than attenuated. To realize the function of a 40 dB variable attenuator, it is necessary to install a fixed attenuator at the amplifier input and perhaps also at the output. This will reduce the minimum signal level to millivolts, thus a low noise amplifier is desirable. The LM381 dual lownoise ac coupled amplifier could be used in a 40 dB

FIGURE 15. Gain For Circuit of Figure 14

FIGURE 16. Distortion For Circuit of Figure 14
A Linear Multiple Gain Controlled Amplifier

$\begin{aligned} & =1 \mathrm{M} \\ 1 & =20 \mathrm{k} \\ 2 & =5 \mathrm{k} \\ R 3 & =2 \\ R 4 & =1 \\ R 5 & =1 \\ C 1 & =0\end{aligned}$ R1 $=5 \mathrm{k}$
$3=240 \mathrm{k}$
$4=10 \mathrm{k}$
$5=10 \mathrm{k}$
$1=001 \mu \mathrm{~F}$
$2=1 \mu \mathrm{~F}$

FIGURE 17. Quad Gain Control

FIGURE 18. Volume Expander/Compressor Block Diagram

FIGURE 19. Full Wave Linear Precision Peak Detector
audio attenuator to realize S / N about 100 dB or in a 60 dB attenuator to realize $\mathrm{BO} \mathrm{dB} \mathrm{S} / \mathrm{N}$. Improvements in S / N can be made by reducing system bandwidth in fixed or low frequency operation. Minimum noise is also achieved by using the minimum practical amplifier source resistance. Values as low as $1 \mathrm{k} \Omega$ are advantageous.

The effect of temperature will be to change the gain according to the temperature sensitivity of the FET. This effect can be reduced by using a silicon resistor for the feedback resistor, R1. If the FET were to be integrated onto the op amp chip, an attempt should be made to include R1 on the chip as well.

The application to a volume expander circuit is of interest as the control is linear, the required control range is only about 1:4, and the input signal is small for the low gain condition when distortion would otherwise be most apparent. The elements of a volume expander are indicated in Figure 18. The gain controlled amplifier need only exhibit a 12 dB variation in gain, being lowest for small signals. The slope of gain versus control should be linear, more specifically the slope of (\log) gain in dB versus (\log) signal in dB should be linear. A practical range is 12 dB gain change over a 30 dB input signal range. The peak detector should be linear down to very small signals, exhibit a fast attack or charge time of a millisecond or less, a discharge time constant of about 2 seconds, and operate on the first
half cycle (full-wave detector). The detector should, therefore, be a full-wave precision linear peak detector with low internal impedance; the requirements can be met with the circuit of Figure 19.

The expander circuit shown in Figure 20 will perform as desired. The gain control function is plotted in Figure 21; distortion is below 0.1% at all levels. Resistors R3 and R4 are added in order to modify the linear control curve to the desired log curve. Note that the input signal is attenuated prior to amplification in order to reduce distortion and maintain an overall gain of approximately 0 dB at midrange of expansion. The noise with the LM124 over a 20 kHz bandwidth is, of course, a function of signal; but the maximum signal to noise ratio is BO dB . The circuit could be adapted to stereo or quad sound as in Figures 22-23. Questions for individual design concern the method of control. Whether to expand all channels together, and whether to derive the control signals individually from each channel, a summation from 2 to 4 channels, or from a single channel (assuming that high level from any channel indicates high levels from all channels). Note that the FET is biased OFF (minimum gain) for low signals, and increasing signals progressively bias the FET ON (maximum gain).

The volume compression circuit is a logical mate to the expander. The only difference would be that the FET is initially biased ON (maximum gain) for low signals, and

FIGURE 20. Volume Expander Circuit

FIGURE 21. Expander Gain Characteristic

FIGURE 22. Stereo Expander Block
increasing signals progressively bias the FET OFF (minimum gain). A disadvantage is that the circuit produces greatest distortion in the low gain condition when signals are highest. Maximum S / N is degraded by 24 dB over that of the expander, minimum S / N is the same.

CONCLUSION

The combination of FET and op amp provides a linear dc (voltage) control of gain over a range to 60 dB . As the circuit realizes positive gain, rather than being a controlled attenuator, the input signal is limited. Input

FIGURE 23. Four-Channel Expander Block
signal is further limited to several hundred miliivolts by the non-linearity of the FET (which sees the full input signal). Because input sigrals will generally be in the $10-300 \mathrm{mV}$ range, noise performance of the selected op amp will be important. Even so, S / N of $60-100 \mathrm{~dB}$ is obtainable with standard amplifiers. Tracking pair or quad gain-control amplifiers are realizable with existing monolithic dual or quad FET's, and the combination of FET and op amp lends itself to simple integration. The circuit is well-suited to remote and multiple linear gain control and to volume expander/compressors. The volume expander is especially interesting as the signal level and gain conditions result in extremely low distortion and more than adequate signal-to-noise ratio.

Binary/BCD Gain Programmed Amplifiers

A logic " 0 " turns the switch ON with a logic " 1 " shutting the switch OFF by pinching the FET OFF. The diode is used to clamp the source to drain voltage to about 0.7 V in the switch OFF state. The series FET in the feedback path is used to compensate for the ON resistance of the switch FET.

Current through the switch is determined by the input resistor, R1, the switch ON resistance and the input voltage, $V_{I N}$. Scaling of the output voltage is accomplished with the feedback resistor, setting the gain of the amplifier.

$$
\begin{equation*}
A V=-\frac{R 2+R_{O N 2}}{R 1+R_{O N 1}} \tag{1}
\end{equation*}
$$

A 4-bit multiplying D/A converter can be built using a quad current mode switch, 4 binary weighted resistors ($R, 2 R, 4 R, 8 R$) and an op amp. The output voltage will be a function of the feedback resistor, input resistors and the logic state of the FET gates, G_{N}.

The number of bits is expanded by cascading another quad current switch and resistor array to the first. Instead of continuing the binary progression of the input resistors, (16R, 32R, etc), current splitting resistors are used such that the same resistor array ($R, 2 R, 4 R, 8 R$) is used for the additional bits, minimizing the number of resistor values required for higher order converters.

$$
v_{O}=-v_{1 N} \frac{R_{F}}{R}\left(\bar{G} 12^{0}+\bar{G} 22^{-1}+\bar{G} 32^{-2}+\bar{G} 42^{-3}\right)
$$

Binary/BCD Gain Programmed Amplifiers

FIGURE 3. 8-Bit Multiplying D/A Using Cascaded 4-Bit Sections

Binary weighting requires a $1 / 16$ current split for the second switch quad while BCD weighting requires a $1 / 10$ split.

There are 2 basic switch configurations available that are optimized for a variety of logic drives: TTL or CMOS Multiple independent switches (4 by SPST) and a 4 channel multiplex version with a series compensation FET.

Practical limitations in using monolithic current mode analog switches need consideration. Resistor values and tolerance impacted by switch resistance is minimized by increasing resistor values without regard, but limits bandwidth and creates leakage errors at elevated temperatures. Using resistors that are too small, increase switch resistance errors. Current saturation (increased switch resistance) occurs when the switch current approaches the FET saturation current, IDSS. High currents also
cause $\operatorname{IG}(O N)$, current lost through the gate, as the diode and FET source to gate diode become forward biased. An input resistor value of 10 k limits the switch current to less than 2 mA minimizing both leakage and switch resistance problems. For example, the gain accuracy at unity gain using the compensation $F E T$ is less than 0.05% with $R=R_{F}=10 k$.

The current shunt resistor used in cascading switches should be kept small to minimize the voltage drop, keeping the FET drains near ground. Values of R_{S} should be less than 100Ω (20 typ).

Resistor tolerance will be determined by converter resolution, i.e., the number if bits (N). For example, an 8 -bit binary D/A converter will have $2^{N}-1$ or 255 steps (99 for BCD) or different gains. The resolution or smallest step is (least significant bit) $1 / 2^{\mathrm{N}}$ of the fullscale value (0.0039). Typical accuracy specifications for D / A converters are stated as 1 LSB or $\pm 1 / 2$ LSB.

This works out to be $\pm 0.2 \%$ for the 8 -bit binary unit. Errors in the feedback resistor directly affect the output of the converter. The most significant resistor, R, contributes $1 / 2$ full-scale, reducing its error contribution by a factor of 2 . The same is true for the rest of the resistors with contributions of $1 / 4,1 / 8$, etc. Using a resistor tolerance of 0.1% for the feedback resistor, 0.2% for the 2 most significant resistors ($R, 2 R$), 0.5% for the 3 rd and 1% for the 4 th and 5 th switches allows 5% resistors to be used in the 6 th, 7 th and 8 th switch positions.

Using the above information, 4-bit or more binary/BCD gain programmable amplifiers can be built with large signal handling capability, few parts and easily adjustable gain or attenuation. Figure 3 shows a practical 8 -bit binary/BCD GPA with gains of 0.996 (binary) with $R_{F}=5 k$ and 0.99 ($B C D$) with $R_{F}=8 k$. For other gains, only the feedback resistor need be changed.
$\%$ error $=\left[(0.1)^{2}+\left(\frac{0.2}{2}\right)^{2}+\left(\frac{0.2}{4}\right)^{2}+\cdots+\left(\frac{5}{256}\right)^{2}\right]^{1 / 2}= \pm 0.198 \%$
$\epsilon_{f}=$ tolerance of feedback resistor
$\epsilon_{R}=$ tolerance of most significant resistor
$\epsilon_{\mathrm{n}} \mathrm{R}=$ tolerance of N th resistor

FET Curve Tracer

Junction field-effect transistors (JFETs), unlike bipolar transistors, do not easily lend themselves to analytic solutions of bias networks. By their very nature, JFETs are voltage controlled devices. Gate to source voltage (control voltage V_{GS}) variations of several volts can exist within a given part type at the same operating conditions, causing the problem. Multiple suppliers and inadequate or non-existent data sheet curves compound the problem further, requiring data from the suppliers or the use of a curve tracer.

A simple curve tracer, used with any oscilloscope, can be built using a quad op amp and a handful of parts. The circuit displays drain current versus gate voltage for both P and N-channel JFETs at a constant drain voltage.

National Semiconductor
John Maxwell
February 1977

FIGURE 1. Typical N-Channel FET Transfer Curve
The circuit consists of an op amp current to voltage (I/V) amplifier with a positive or negative gate sweep

FIGURE 2. FET Curve Tracer
voltage．The I／N amplifier uses $1 / 4$ of the quad op amp and 3 switchable feedback resistors for drain current scaling： 1 k for $1 \mathrm{~mA} / \mathrm{V}, 200 \Omega$ for $5 \mathrm{~mA} / \mathrm{V}$ and 100Ω for $10 \mathrm{~mA} / \mathrm{V}$ ．An NPN．PNP emitter－follower buffer is used with the I／V amplifier to handle high FET currents （to 100 mA ）．A unity gain inverting amplifier is used for proper drain current polarity．

The gate sweep generator consists of 2 parts，a linear ramp generator with a reset and a window comparator． The ramp generator is an op amp with a capacitor in its feedback loop．The sweep rate is set by a constant current supplied to the capacitor through a resistor tied to either the plus or minus voltage supply．

The positive（ P －channel）ramp mode uses the positive reference on the plus input of the comparator with the ramp connected to the minus input．The comparator output stays high（ 15 V ）pinching the FET OFF until the input exceeds the reference（ 10 V ）．At that point，the output snaps to the negative supply，turning the FET switch $O N$ ，discharging the capacitor．The reference voltage at the plus input is set near ground using the 51 k input resistor，D2 and 68 k feedback resistor when the comparator output is in the low state．When the capacitor is discharged，the comparator resets，restarting the ramp．

A negative sweep is more difficult to generate using the same comparator．The reference $(-10 \mathrm{~V})$ is on the minus input with the ramp connected to the plus input． As with the positive sweep，the comparator output is high until the negative sweep exceeds the reference． The difference is that the reference cannot be set to ground for the reset sweep but to a negative voltage such that when the ramp is at $O V$ the comparator resets． The function of O 2 is to short R 1 ，changing the refer－ ence voltage from -10 V to -6 V ．

In both cases，the sweep time is 10 ms ．The resistor attenuator on the FET gate terminal divides the voltage in half，yielding a sweep rate of $0.5 \mathrm{~V} / \mathrm{ms}$ with a maxi－ mum gate voltage of $\pm 5 \mathrm{~V}$ ．This should be adequate for most FETs used as amplifiers but if additional gate voltage is required，the attenuator can be switched out．

The circuit is limited to displaying only the FET transfer characteristic $I D$ vs $V_{G S}$ ，but this is the curve most needed by designers．It gives insight into parameter variations of bias circuits and it can be used to observe temperature effects on the FET．The oscilloscope vertical input is used for the drain current and the
horizontal input is used for the gate voltage．The hori－ zontal sweep can be used if no horizontal input is available where a sweep rate of $0.5 \mathrm{~ms} / \mathrm{cm}$ corresponds to $0.5 \mathrm{~V} / \mathrm{ms}$ ，allowing the curve tracer to be used with any oscilloscope．

FIGURE 3．Linear Ramp Generator

FIGURE 4．Positive Sweep

FIGURE 5．Negative Sweep

JFET Glossary of Symbols

DC PARAMETERS		
$\begin{gathered} \mathrm{BV}_{\mathrm{DGO}}(\mathrm{~V}) \\ \operatorname{or~BV}_{\text {GDO }} \end{gathered}$	Drain-Gate Breakdown Voltage with Source OpenCircuited The breakdown voltage of the drain-gate junction, measured at a specified current with the source open-circuited.	
$\begin{aligned} & \mathrm{BV}_{\mathrm{SGO}}(\mathrm{~V}) \\ & \text { or BVGSO} \end{aligned}$	Source-Gate Breakdown Voltage with Drain Open-Circuited The breakdown voltage of the source-gate junction, measured at a specified current, with the drain open-circuited.	
$\begin{aligned} & \mathrm{BV}_{\mathrm{GSS}}(\mathrm{~V}) \\ & \quad \text { or } \mathrm{BV}, \mathrm{~V}_{(\mathrm{BR}) \mathrm{GSS}} \end{aligned}$	Source-Gate Breakdown Voltage with DrainSource Shorted The breakdown voltage of the source-gate and drain-gate junctions, measured at a specified current with the drain-source shorted.	
$\begin{aligned} & \text { IDGO (pA) } \\ & \text { or IGDO } \end{aligned}$	Drain-Gate Leakage Current, Source OpenCircuited The leakage current of the drain-gate junction, measured at a specified voltage, with the source open-circuited.	
ID ($\mu \mathrm{A})$ or IDION)	Drain ON Current The drain current, measured at a specified drainsource voltage and gate-source voltage.	
ID (OFF) (PA)	Drain Cutoff Current The drain cutoff current, measured at a specified drain-source voltage and gate-source voltage.	
IDSs (mA)	Drain Saturation Current The drain current, measured at a specified drainsource voltage with the source shorted to the gate ($V_{G S}=0$)	
$\begin{aligned} & \mathrm{IG}(\mathrm{pA}) \\ & \text { or } \mathrm{I}_{\mathrm{G}}(\mathrm{ON}) \end{aligned}$	Gate Leakage Current with Drain Current Flowing The gate leakage current, measured at a specified drain current and drain-gate voltage.	
Igss (pA)	Gate-Source Reverse Leakage Current with DrainSource shorted	
	The gate-source reverse leakage current measured at a specified gate-source voltage.	

$\begin{aligned} & \operatorname{ISGO}(p A) \\ & \quad \text { or IGSO } \end{aligned}$	Source－Gate Reverse Leakage Current with Drain Open－Circuited The leakage current of the source－gate junction， measured at a specified voltage，with the drain open－circuited．	
rDS (Ω) or rds，RDs． rDS（ON）	Drain－Source ON Resistance The drain－source ON resistance，measured at a specified gate－source voltage and drain current．	$r_{D S}=\frac{V_{D S}}{I_{D}}$
$\mathrm{V}_{\text {DS }(\mathrm{ON})}(\mathrm{mV})$	Drain－Source ON Voltage The drain－source $O N$ voltage，measured at a speci－ fied gate－source voltage and drain current．	
$\begin{aligned} & V_{G S}(V) \\ & \text { or } V_{G S}(O N) . \\ & V_{G} \end{aligned}$	Operating Gate－Source Voltage The gate－source voltage，measured at a specified drain current and drain－source voltage．	
$V_{G S}(F)(V)$	Forward Gate－Source Voltage The forward gate－source voltage，measured at specified current．	
$\begin{aligned} & \mathrm{V}_{\mathrm{GS}(O F F)}^{\text {or } \mathrm{V}_{\mathrm{P}}}(\mathrm{~V}) \end{aligned}$	Gate－Source Cutoff（Pinch－Off）Voltage The gate－source cutoff voltage，measured at a specified drain current and drain－source voltage．	
SMALL SIGNAL PARAMETERS		
$\begin{aligned} & \mathrm{C}_{\mathrm{iss}}(\mathrm{pF}) \\ & \quad \text { or } \mathrm{C}_{\mathrm{iss} .} \mathrm{C}_{\text {gss }} \end{aligned}$	Common－Source Input Capacitance The common－source input capacitance measured between the gate and source with the drain $A-C$ shorted to the source at specified drain－source and gate－source voltages．	
$\begin{aligned} & \mathrm{C}_{\mathrm{oss}}(\mathrm{pF}) \\ & \quad \text { or } \mathrm{C}_{\mathrm{os}}, \mathrm{C}_{\mathrm{dss}} \end{aligned}$	Common－Source Output Capacitance The common－source output capacitance，measured between the drain and source with the source A－C shorted to the gate at specified drain－source and gate－source voltages．	$\frac{I A}{T^{+}}=\left\{\begin{array}{c} \left\{_{\mathrm{RFC}}\right. \\ \frac{\mathrm{F}_{\mathrm{OSS}}}{\frac{7}{T}} \mathrm{v}_{\mathrm{OS}} \end{array}\right.$

$\begin{aligned} & \mathrm{C}_{\mathrm{rss}}(\mathrm{pF}) \\ & \quad \text { or } \mathrm{C}_{\mathrm{rs}}, \mathrm{C}_{\mathrm{dg}} \end{aligned}$	Common-Source Reverse Transfer Capacitance The common-source reverse transfer capacitance, measured between the drain and gate at specified drain-source and gate source voltages.	
$\begin{aligned} & e_{n}(n V / \sqrt{H z}) \\ & \quad \text { or } e_{n}, V_{n}, E_{n} \end{aligned}$	Equivalent Input Noise Voltage The equivalent input noise voltage per unit bandwidth, measured with the input $A-C$ shorted to the source at a specified operating condition.	
$\begin{aligned} & \mathrm{g}_{\mathrm{fg}}(\mathrm{mV}) \\ & \text { or } \mathrm{yfg}_{\mathrm{fg}} \end{aligned}$	Common- Gate Forward Transconductance The common-gate forward transconductance with the output $\mathrm{A}-\mathrm{C}$ shorted. This is a complex quantity ($\mathrm{gfg}+\mathrm{jbfg}$).	
$\begin{aligned} & \begin{array}{c} g_{f s}(m V) \\ \text { or } g_{m}, Y_{f s}, \\ \operatorname{Re}\left\|Y_{f s}\right\| \end{array} \\ & \hline \begin{array}{c} g_{\text {iss }}(\mu V) \\ \text { or } Y_{i s} \end{array} \end{aligned}$	Common-Source Forward Transconductance The common source forward transconductance with the output A-C shorted. This is a complex quantity ($\mathrm{gfs}_{\mathrm{s}}+\mathrm{ibfs}_{\mathrm{s}}$). Common-Source Input Conductance The common-source input conductance with the output $\mathrm{A}-\mathrm{C}$ shorted. This is a complex quantity ($g_{\text {is }}+j_{\text {bis }}$).	$Y_{f s}=\left.\frac{I_{D}}{V_{G S}}\right\|_{V_{D S}=0}$ $Y_{\text {is }}=\left.\frac{\mathrm{I}_{\mathrm{G}}}{\mathrm{~V}_{G S}}\right\|_{V_{D S}=0}$
$\begin{array}{r} g_{\mathrm{oss}}(\mu \mathrm{~V}) \\ \text { or } Y_{\text {os }} \end{array}$	Common-Source Output Conductance The common source output conductance with the input $A-C$ shorted. This is a complex quantity $\left(g_{o s}+j_{b o s}\right)$.	$Y_{O S}=\left.\frac{I_{D}}{V_{D S}}\right\|_{V_{G S}=0}$
G_{pg} (dB)	Common-Gate Power Gain The common-gate power gain is the ratio of output power to input power.	P_{0}
GPS (dB)	Common-Səurce Power Gain The common-source power gain is the ratio of output power to input power.	
$\mathrm{in}_{\mathrm{n}}(\mathrm{pA} / \sqrt{\mathrm{Hz}})$	Equivalent Input Noise Current The equivalent input noise current measured with the input open-circuited under specified operating conditions.	

DUAL FET PARAMETERS

BVG1, G2 (V) or $\mathbf{B V} V_{G 1-2}$	Gate to Gate Breakdown Voltage The breakdown voltage of the gate to gate junc. tions, measured at a specified current.

Common-Mode Rejection Ratio

The common-mode rejection ratio is the ratio of the change in differential gate voltage with a change in the drain to gate voltage.
$C M R R=20 \log 10 \frac{\Delta V_{D G}}{\Delta V_{O S}}$

The time interval during turn-off in which the drain current pulse decreases from 90% to 10% of its maximum amplitude. its maximum amplitude.

Turn-Off Delay Time

The time interval during turn-off from the point when the turn-off pulse at the gate changes from 100% to 90% of its full amplitude to the time when the drain current has changed from 100% to 90% of its maximum amplitude.

Fall Time

$F=\frac{\text { Total Output Noise Power }}{\text { Source Output Noise Power }}$ to the output noise power of the source. Measured at specified operating conditions and source resistance.

COMMON-SOURCE SWITCHING PARAMETERS

In the following, drive circuit conditions and drain circuit conditions must be specified. The transition times of the input must be negligible compared to the measured times.

Turn-On Delay Time

The time interval during turn-on from the point when the input pulse at the gate reaches 10% of its ful amplitude to the point when the drain pulse changes from 0 to 10% of its maximum amplitude.

Rise Time

The time interval during turn-on in which the drain current pulse changes from 10% to 90% of

$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}=\frac{V_{D D}-V_{D S}(\mathrm{ON})}{R_{\mathrm{L}}}$

$\begin{aligned} & \mathrm{gfs} 1-2(\%) \\ & \text { or } \mathrm{g}_{\mathrm{fs}} 1 / \mathrm{g}_{\mathrm{fs} 2} \end{aligned}$	Common-Source Forward Transconductance Ratio (Match) The transconductance ratio $=g_{f_{s}} 1 / g_{f} 2 \times 100(\%)$ measured at specified drain-gate voltage and drain current.	
$\begin{aligned} & \text { goss } 1-2(\mu \mathrm{~V}) \\ & \quad \text { or } \mathrm{g}_{\text {os }} 1-2 \end{aligned}$	Common-Source Output Conductance (Match) Output conductance match $=\left\|g_{o s} 1-g_{o s} 2\right\|$ measured at specified drain-gate voltage and drain current.	
$\begin{aligned} & \text { IDss1-2 (\%) } \\ & \text { or IDS1-2, } \\ & \text { IDSS1/IDSS2 } \end{aligned}$	Drain Saturation Current Ratio (Match) The drain saturation current ratio $=$ IDSS1/ IDSS2 $\times 100 \%$ measured at specified drain-source voltages.	
$\mathrm{I}_{\mathrm{G1-2}}(\mathrm{pA})$	Differential Gate Leakage Current Differential gate leakage current $=\left\|\mathrm{I}_{\mathrm{G} 1}-\mathrm{I}_{\mathrm{G} 2}\right\|$ measured at specified drain-gate voltage and drain current.	
$\mathrm{I}_{\mathrm{G} 1, \mathrm{G} 2}(\mathrm{pA})$	Gate to Gate Reverse Leakage Current The gate to gate reverse leakage measured at a specified voltage monolithic dual with diode isolation shown.	
$\mathrm{V}_{\mathrm{GS} 1-2}(\mathrm{mV})$ or $\Delta V_{G S}, V_{\text {os }}$, $\mathrm{V}_{\mathrm{GS}} \mathbf{1 - V}_{\mathrm{GS}}{ }^{\mid}$	Differential Gate-Source Voltage The differential gate-source voltage, measured at a specified drain-gate voltage and drain current.	
$\begin{gathered} \Delta \mathrm{V}_{\mathrm{GS} 1-2}\left(\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right) \\ \text { or } \Delta \mid \mathrm{V}_{\mathrm{GS} 1-} \\ \mathrm{V}_{\mathrm{GSS}} \mid / \Delta \mathrm{T} \\ \Delta \mathrm{~V}_{\mathrm{oS}} / \Delta \mathrm{T} \end{gathered}$	Differential Gate-Source Voltage Drift The differential gate-source voltage drift is the change in the differential gate-source voltage with a change in device temperature at a specified operating condition. $\frac{\Delta V_{\mathrm{OS}}}{\Delta T}=\left\|\frac{\left(V_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}\right)\left\|T_{1}-\left(V_{\mathrm{GS} 1}-V_{\mathrm{GS} 2}\right)\right\| T 2}{T_{1}-T_{2}}\right\|$	

Section 7
Physical Dimensions

Physical Dimensions All dimensions expresed as $\frac{\text { inchess }}{\text { (milimeters) }}$

Packaye's
3-Lead TO-39 (09) Metal Can Package (H) (High Profile) NS Package Number H03G

PIN	FET
1	S1
2	D1
3	G1
5	S2
6	D2
7	G2

6-Lead TO-71 (12) Metal Can Package NS Package Number H06A

Package 6
3-Lead TO-52 (07) Metal Can Package NS Package Number H03J

PIN	FET P(23)	FET N(25)
1	S	S
2	G	D
3	D	G

Package 8

4-Lead TO-72 (23, 25) Metal Can Package (H) NS Package Number H04C

Package 13
8-Lead TO-99 (24 Alternate) Metal Can Package (H) NS Package Number H08B

Package 14
14-Lead Cavity DIP (D)
NS Package Number D14A

Package 19
16-Lead Cavity DIP (J) NS Package Number J16A

NS Package Number N08A

Package 21
14-Lead Molded DIP (N)
NS Package Number N14A

Package 23
14. Lead Flat Package (F)

NS Package Number F14A

Package 24
16-Lead Flat Package (F)
NS Package Number F16A

EUROPEAN SALES OFFICES
Benciux
National Semiconductor
789 Ave. Houba de Strooper, 1020 Bruxelles
Tel. (02) 4783400 , Telex 61007

Britain
National Semiconductor Lid.
19 Goldington Rd., Bedford, MK 403 LF
Tel. (02s4) 21 1262, Telex 826209

Denmark
National Semiconductor Lid.
Vodroffsvej 44, 1900 Copenhagen V
Tel. (01) 356533 , Telex 15179
France
National Semiconductor
Expansion 10000
28. Rue de la Redoule, 92260 Fonlenay-aux-Roses

Tel. (01) 6608140 , Telex 25956

taly

National Semiconductor SRE Via Alberto Mario 26, 20149 Milano
Tel. (02) 4692864 , Telex 36540

Sweden

National Semiconductor AB
Algrytevagen 23, 12732 Skarholmen Tel. (08) 970835 , Telex 10731

West Germany
Nationat Semiconductor GmbH
Cosimastr. 4/I, 8000 München 81
Tel. (089) 915027 , Telex 522772
National Semiconductor GmbH
Ferdinandsplatz t1, 6380 Bad Homburg
Tel. (06172) 23011, Telex 415887
National Semiconductor GmbH
Hohenhaimer Sir. 11, 7022 Leinfelden-Sluttgart
Tel. (0711) 751057 , Telex 7255746

Nationat Semiconductor GmbH

Dockenhudener Sir. 29, 2000 Hamburg 55

Tel. (040) 868457 , Teiex 211039
WORLD HEADOUARTERS
National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, Calilomia 95051
Tel. (408) 7375000, Telex 9103399240
EUROPEAN HEADOUARTERS
National Semiconductor GmbH
Industriestr, 10, D-8080 Fürstenfeldbruch
Tel. (08141) 108-1, Telex 527649

[^0]: +Process in development

[^1]: - Denotes JAN qualified type

[^2]: - Denotes JAN qualified type

[^3]: * JAN qualification pending Consult factory.
 tProcess in development

[^4]: \dagger Process in development

[^5]: tProcess in development

[^6]: tProcess n development

[^7]: Note. JAN qualified per applicable MIL-S-19500 specification

[^8]: This process is available in the following device types.
 *Denotes preferred parts.
 TO. 72 (CASE 25)
 2N4117
 *2N4117A
 2N4118
 *2N4118A
 2N4119
 *2N4119A

[^9]: Note 1: Not JEOEC registered data.
 Note 2: Due to symmetrical geometry, these units may be operated with source and drain leads interchanged.
 Note 3: Pulse test duration 2 ms .

[^10]: Note 1: Pulse test required, pulse width 300μ s, duty cycle $\leq 3 \%$.

[^11]: Notes:
 $R_{\text {ON }} \max @ T_{A}=25^{\circ} \mathrm{C}$
 $\mathrm{V}_{\mathrm{A}} / I=$ maximum voltage or current to be safely switched
 Part number = basic number/alternate number (i.e., AM181/DG181). May be ordered by either number *Preferred devices

[^12]: Note 1 Min max limits apply across the guaranteed temperature range of -55 C to +125 C for AHOO14, AHOO15. AH0019 and $-25 \mathrm{C} 10+85 \mathrm{C}$ for AH 0014 C . AH 0015 C . $\mathrm{AH} 0019 \mathrm{C} \mathrm{V}^{-}-20 \mathrm{~V}$ $V^{*}=-10 \mathrm{~V}$ and an analog test current of 1 mA unless otherwise specified
 Note 2. Ali typical values are measured at $T_{A}=25^{\circ} \mathrm{C}$ with $V_{C C}=5.0 \mathrm{~V} V^{+}=+10 \mathrm{~V}, V^{-}=-22 \mathrm{~V}$.
 Note 3: Current measured is drawn from VCC supply
 Note 4 All analog switch pins except measurement pin are tied to V^{+}

[^13]: * Applicatıons Hints are for design aid only, not guaranteed and not subject to produc tion testing
 ** Electrical Parameter Chart based on $\mathrm{V}_{\mathrm{CC}}{ }^{+}$ $15 \mathrm{~V}, V_{E E}=-15 \mathrm{~V}, V_{L}=5 \mathrm{~V}, V_{R}=G \mathrm{nd}$

[^14]: ${ }^{4}$ Consult local sales representative or factory for information concerning the 14 -pin flat package

[^15]: *Note: All diode cathodes are internally connected to the substrate.

[^16]: Note 1: The device should not be connected to circults with the power on.
 Note 2: 10×10^{3}
 Note 3: Symmetrical about OV

[^17]: ＊Variation from a perfect switch \cdot RON $=0 \Omega$ ．

[^18]: Note 1: The resistance specifications apply for $-55^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}, V_{G G}=-20 \mathrm{~V}, V_{B U L K}$
 +10 V , and a test current of 1 mA Leakage current is measured with all pins held at ground except the pin being measured which is biased at -25 V

[^19]: Note 1: Maximum ratings are limiting values above which the device may be damaged All voltages referenced to $V_{D D}=0$
 Note 2: These specifications apply over the indicated operating temperature range for $V_{G G}-24 V$. $V_{D D}=0 V, V_{S S}=+12 V, V_{\text {RESET }}=+12 \mathrm{~V}, V_{B L A N K}+12 \mathrm{~V}$. ON resistance measured at 1 mA , OFF resistance and leakage measured with all analog inputs and output common Capacitance measured at 1 MHz .
 Note 3: Operating conditions in Note 2 apply. $V_{S S}$ to $V_{D D}(O V)$ voltage is applied to counting and gating circuits. $V_{G G}$ is required only for analog switch biasing. All logic inpuis are high resistance and are essentially capacitive.

[^20]: *Limits not specified on the published data sheet.

[^21]: *This value is not specified in RF amplifier JFETs: 170Ω is typical

[^22]: $\left(\Sigma V_{n}^{2}\right)^{1 / 2}=3 \mu V$ unequalized noise
 $\left(\operatorname{LiAn} 1^{2} V_{n}^{2}\right)^{1 / 2}=0.73 \mu V$ RIAA equalized noise

