PRINGIPLES aND CIRCUITS

Field-Effect Transistors

by Ray Marston

Field-Effect Transistors (FETs) are unipolar devices, and have two big advantages over bipolar transistors: one is that they have a near-infinite input resistance and thus offer nearinfinite current and power gain; the other is that their switching action is not marred
by charge-storage problems, and they thus outperform most bipolars in terms of digital switching speeds.

Several different basic types of FETs are available, and this opening episode looks at their basic operating principles. Parts 2 to 4 of the series will show practical ways

(a) npn transistor

(c) n-channel JFET

(b) pnp transistor

(d) p-channel JFET

Figure 1. Comparison of transistor and JFET symbols, notations, and supply polarities.

EASILY ADD TEXT TO VIDEO WITH TO

- Auto-switching genlock overlay module
- Generates complete video signal on-board
- Up to 308 characters in 11 rows, 28 cols
- Fast 'RS-232' serial control (2400-19.2kbps)
- Small footprint; only $\mathbf{3 . 5 0 "}$ by 1.05 "
- Developer board now available (BNAB)
- Compatible with Parallax ${ }^{\text {tm }}$ BASIC Stamp ${ }^{\text {tm }}$

Only ${ }^{5} 79.95$ ea. (NTSC qty. 1-9)

Decade Engineering
Tel: 503.743.3194~Fax: 503.743.2095 www.decadenet.com

QUICK TURN AROUND COMPLETE IN-HOUSE CAPABILITY CIRCUIT ETCHING TECHNICS 700 Lee Street Elk Grove Village illinois 60007 Phone: 847 since 1969 Fax: $847-228-1816$ Modem: 847-228-6549 Toll Free: 888-657-3827

E-MAIL - CET@MET-NET.COM
WEB ADDRESS -
WWW.MET-NET.COM/USERS/CET

Part 1

Ray Marston explains FET (Field-Effect Transistor) basics in this opening episode of this new four-part series.

of using FETs.

FET BASICS

An FET is a three-terminal amplifying device. Its terminals are known as the source, gate, and drain, and correspond respectively to the emitter, base, and collector of a normal

Figure 2. Basic structure of a simple n -channel JFET, showing how channel width is controlled via the gate bias.
transistor. Two distinct families of FETs are in general use. The first of these is known as 'junction-gate' types of FETs; this term generally being abbreviated to either JUGFET or (more usually) JFET.

The second family is known as either 'insulated-gate' FETs or Metal Oxide Semiconductor FETs, and these terms are generally abbreviated to IGFET or MOSFET, respectively. ' N -channel' and 'p-channel' versions of both types of FET are available, just as normal transistors are available in npn and pnp versions. Figure 1 shows the symbols and supply polarities of both types of bipolar transistor, and compares them with both JFET versions.

Figure 2 illustrates the basic construction and operating principles of a simple n-channel JFET. It consists of a bar of n-type semiconductor material with a drain terminal at one end and a source terminal at the other. A p-type control electrode or gate surrounds (and is joined to the surface of) the middle section of the n-type bar, thus forming a p-n junction.

In normal use, the drain terminal is connected to a positive supply and the gate is biased at a value that is negative (or equal) to the source voltage, thus reverse-biasing the JFET's internal p-n junction, and accounting for its very high input impedance.

With zero gate bias applied, a current flow from drain to source via a conductive 'channel' in the n-type bar is formed. When negative gate bias is applied, a high resistance region is formed within the junction, and reduces the width of the n-type conduction channel and thus reduces the magnitude of the drain-to-source current. As the gate bias is increased, the 'depletion' region spreads deeper into the n-type channel, until eventually, at some 'pinchoff' voltage value, the depletion layer becomes so deep that conduction ceases.

Thus, the basic JFET of Figure 2 passes maximum current when its gate bias is zero, and its current is reduced or 'depleted' when the gate bias is increased. It is thus known as a 'depletion-type' n-channel JFET. A p-channel version of the device can (in principle) be made by simply transposing the p and n materials.

Figure 6. An n-channel JFET can be used as a voltage-controlled switch.

JFET DETAILS

Figure 3 shows the basic form of construction of a practical n-channel JFET; a p-channel JFET can be made by transposing the p and n materials. All JFETs operate in the depletion mode, as already described. Figure 4 shows the typical transfer characteristics of a low-power n-channel JFET, and illustrates some important features of this type of device. The most important characteristics of the JFET are as follows:
(1). When a JFET is connected to a supply with the polarity shown in Figure 1 (drain +ve for an n-channel FET, -ve for a p-channel FET), a drain current (l_{D}) flows and can be controlled via a gate-to-source bias voltage $V_{G S}$.
(2). I_{D} is greatest when $V_{G S}=0$, and is reduced by applying a reverse bias to the gate (negative bias in an n-channel device, positive bias in a p -type). The magnitude of $\mathrm{V}_{G S}$ needed to reduce I_{D} to zero is called the 'pinch-off' voltage, V_{p}, and typically has a value between 2 and 10 volts. The magnitude of I_{D} when $V_{G S}=0$ is denoted $\mathrm{l}_{\text {DSs }}$, and typically has a value in the range 2 to 20 mA .
(3). The JFET's gate-to-source junction has the characteristics of a silicon diode. When reverse-biased, gate leakage currents (lGss) are only a couple of $n \mathrm{~A}(1 \mathrm{nA}=.001 \mu \mathrm{~A})$ at room temperature. Actual gate signal currents are only a fraction of an nA , and the input impedance of the gate is typically thousands of megohms at low frequencies. The gate junction is shunted by a few pF , so the input impedance falls as frequency rises.

If the JFET's gate-to-source junction is forward-biased, it conducts like a normal silicon diode. If it is excessively reverse-biased, it avalanches like a zener diode. In either case, the JFET suffers no damage if gate currents are limited to a few mA.
(4). Note in Figure 4 that, for each $V_{G S}$ value, drain current I_{D} rises linearly from zero as the drain-tosource voltage ($V_{D S}$) is increased from zero up to some value at which

a 'knee' occurs on each curve, and that I_{D} then remains virtually constant as $V_{D S}$ is increased beyond the knee value. Thus, when $V_{D S}$ is below the JFET's knee value, the drain-to-source terminals act as a resistor, R_{DS}, with a value dictated by $\mathrm{V}_{G S}$, and can thus be used as a volt-age-variable resistor, as in Figure 5.

Typically, Ros can be varied from a few hundred ohms (at $V_{G S}=0$) to thousands of megohms (at $\mathrm{V}_{G S}=\mathrm{V}_{P}$), enabling the JFET to be used as a voltage-controlled switch (Figure 6) or as an efficient 'chopper' (Figure 7) that does not suffer from offset-voltage or saturation-voltage problems.

Also note in Figure 4 that when $V_{D S}$ is above the knee value, the I_{D} value is controlled by the VGs value and is almost independent of $V_{D S}$, i.e., the JFET acts as a voltage-controlled current generator. The JFET can be used as a fixed-value current generator by either tying the gate to the source as in Figure 8(a), or by applying a fixed negative bias to the gate as in Figure 8(b). Alternatively, it can (when suitably biased) be used as a voltage-to-current signal amplifier.
(5). FET 'gain' is specified as
transconductance, g_{m}, and denotes the magnitude of change of drain current with gate voltage, i.e., a g_{m} of $5 \mathrm{~mA} / \mathrm{V}$ signifies that a $V_{G S}$ variation of one volt produces a 5 mA change in I_{D}. Note that the form I/V is the inverse of the ohms formula, so g_{m} measurements are often expressed in 'mho' units. Usually, g_{m} is specified in FET data sheets in terms of mmhos (milli-mhos) or μ mhos (micro-mhos). Thus, a g_{m} of $5 \mathrm{~mA} / \mathrm{V}=5-\mathrm{mmho}$ or $5000-\mu \mathrm{mho}$.

In most practical applications, the JFET is biased into the linear region and used as a voltage amplifier. Looking at the n-channel JFET, it

Figure 7. An n-channel JFET can be used as an electronic chopper.
can be used as a common source amplifier (corresponding to the bipoamplifier (corresponding to the bipo-
lar npn common emitter amplifier) by using the basic connections in Figure 9.

Alternatively, the common drain or source follower (similar to the bipolar emitter follower) configuration can be obtained by using the connections in Figure 10, or the common gate (similar to common base) configuration can be obtained by using the basic Figure 11 circuit. In

Figure 8. An n-channel JFET can be used as a constant-current generator.

(a)

AST GLOBAL ELECTRONICS

24529 STATE HWY. 408, CAMBRIDGE SPRINGS, PA 16403 VOICE 814-398-8080 • 1-888-216-7159 • FAX 814-398-1176

VIEW COMPLETE LISTING AT: IF WE DON'T CARRYIT ... WE'LL FIND IT http://www.astglobal.com QUICKLY ... AT REASONABLE PRICES.

Advantest R5372P, Microwave Counter \$1,700	
Boonton 4200, Power Meter wbE, 14E-S21, Sensor and Manual.	550
Fuke 51008, Multiunction Calicrato, Opt. 03105.	\$2,800
Fuke 51008, Mutitinction Caibrator.	\$2,400
Fuke 515A, Portable Calbrator	\$750
Fuke 5200A, Programmable AC Calibrator	\$1,000
Fluke 5215A Precision Power Amp	5880
Fluke 54408, DC Calbrator, 0-1100V, 3ppm	\$2,900
Fuke 5790A AC Measurement Standard.	9,500
Fuke 6060NAN, Synihesized Signal Generator, $100 \mathrm{KHz}-1050 \mathrm{MHz}$.	
Fluke 6070A. Synthesized RF Signal Generator 200 KHz 520 MHz	\$1,400
Fuke 8050A, DMM 4-1/2 Digit wBattery Pack	\$145
Fuke 8050A DMM 4-1/2 Digt wo Batlery Pack	\$145
Fluke 8840A DMM 5-1/ Digt wGP1E	\$375
Gigatronics 600 , Frequency Synthesizer, 6-12GHz	\$950
Gigatronics 600 , Frequency Synthesizer, 10-18GHz	\$950
Gigatrorics 6061A Synthesized Sigral Generator	
10KHz-1050 M	\$2,200
Gigatronics 8541, Power Meter	51,400
HP 1058, Quartz Oscillator.	\$525
HP 141T, Spectrum Anayzer Mainframe	\$375
HP 141T, Spectum Anayzer wB5528185538, 1K-1	\$1,100

TURN IDLE TEST EQUIPMENT - INTO CASH -
 CALL OR FAX FOR QUOTATION

HP 141T, Spectrum Analyzer wB6552日/8556A, 20Hz-300KHz. . . $\$ 1,000$	
HP 141T, Spectum Analjzer w85528/85548, $1 \mathrm{KHz} \mathbf{z}$-1.2GHz	\$1,600
HP 141T, Spectrum Analyzer w/8552888555A, 10MHz-18GH	\$1,800
HP 1630G, Logic Analyzer wpods	\$575
HP 1633A, Logic Anayzer.	52,000
HP 1651A, Logic Analyer	5875
HP 214B, Puise Generatox, 200W Pulsa/50 otms, 10MHz	5625
HP 3312A, Function Generator, $1 \mathrm{~Hz} \mathbf{-}$-13 MHz	8125
HP 3325A, Symthesized Function Generato, 21 MHz	5650
HP 3325A Sminesized Function Generato, HPAB, 21MHZ, Opt. 002	
HP 33e6A. DC-13MHz Synthesized Function Generator	
40 V P.P, Opt 002	3,400
HP 3336C, Synthesizer Level Gene	5950
HP 334A, Distorion Anayzer	75
HP 3400A Twe RMS Volmeter, 10Hz-10MHz,	\$125
HP 3406A. RF Volmeter, 50WV-3V, 1.2GHz	5200
HP 3455A, DMM 5-1/2 Digit	5250
HP 3456A, DMM 6-1/2 Digt	475
HP 3468A DMM 4-1/2 Digh, ACBatter, 5 Funcion	\$175
HP 3488A Swich Control.	\$325
HP 3575A. Dighal Phase Gain Meter 1Hz-13MHz	\$500
HP 3580A. Spectrum Analyzer, 5 Hz 250 KHz , LED Readout	5650
HP 37308, Down Conveter Maintrane.	5625
HP 400EL, AC Volmeter, 10Hz-10M	\$150
HP 400FL, RMS Votmeter, 20Hz-4MHz, 100uV-300	\$175
HP 415E, SWR Meler.	\$100
HP 432A, Power Meler w/Cable/B478, 01-18GHz Senso	\$350
HP 436A, Power Meter wOpL 022 HPIB	\$650
HP 438A, Power Meter	S450
HP 4972A LaN Prolocol Analyer	\$750
HP 4972A, LAN Prolocol Analyzer w/sotware, Opt 002.005.	. 7750
HP 53158, Counter, 100MHz, OpL C01, wManuel, NICEI	\$275
HP 5315B, Counter, 1GHz, Opt, 001/003, wManual	\$125
HP 5316A, Counter, 100NHz, HPIB	5350
HP 5328A Counter, 100NH2 WDVMOPTL 021	5200
HP 5328A Counter, 500 MHz	\$250
HP 5334A Counter, 100MHz, OpL 0	$\$ 500$
HP 5345A Counter, 500 MHz	\$450
HP 5345A Counter, 500MHz, HP.JB	\$650
HP 59303A, D/A Converter	\$125
HP 6002A, Power Supply, 0-50V e0-10A Metered.	\$450
HP 6034A System Power Supply, 060V\%-10A-200W	\$525
HP 6101A, Power Supply, 0-20V 0 1A.	5125
HP 6104A, Power Supply, 0-20, 20-40V a 2A, 1A	\$150
HP6112A, Power Supply 40V © 5 SA (metered).	\$150
HP6177C, DC Current Source to toove 500 MA	\$275
HP 62028, Power Supply, 40V e .75A (metered)	\$150
HP 6203B, Power Supply, 7.5V © 3 A (metered)	$\$ 150$
HP 6205B, Power Supply (dua). 0-40V © .3A, 0-20V	
-8A (metered).	5175
HP 6206B, Power Supply, 060 V -1A (metered)	$\$ 200$
HP 62278, Dual Tracing PS 0-25V © 2A	\$375
HP 62648, Power Supply 0-20V © 20A.	5225
HP 6255B, Power Supply, 40V a 3 A (melered)	5200
HP 6286A Power Supply, 40V e 6 A (melered)	$\$ 200$
HP 62668, Power Supply, O-40V © 5A.	2275
269, Power Supply, O-40V 0 0.50A M	\$750

VISA

HP 6289 A , Power Suppt, $0-40 \mathrm{~V}$ \& 1.5 A (metered) HP 6294A, Power Supply, 0.60V © 1 A (metered) New in box whanual.
HP 6299 A , Power Suppy, $0-100 \mathrm{~V}$ Q .75 A Metered. HP 64288, Power Supply, $0-20$ V $00-45 A$ Metered. HP 651B, Test Oscillator, $10 \mathrm{~Hz}-10 \mathrm{MHz}$ HP 652B, Test Oscilator, $10 \mathrm{~Hz}-10 \mathrm{MHz}$
HP 654A, Oscilator, 10Hz-10MHz, 9088 Allenuator HP 6826A, Bipolar Power Supply/Anp $\pm 50 \mathrm{~V} A \pm 1 \mathrm{~A}$. HP P116A Progarmable Pussef unction Generator, 50 M Izz . . 52,400 HP 8165A, Programmable Sig Source, 1mililizz-50MHz HP 8165A, Programmable Puse Generalo, 50MHz, Opt. 002 . . $\$ 1,100$ HP 8350 A , Spectrum Anayzer Mainframe.
HP 8350B, Specirum Anayzer Mainfrane .
HP 853A, Spectrum Anayzer Mantrame. .
HP 853A, Spectium Analyzer, w/85588. 1-1500MHz
HP 853A, Spectrum Anayzer, w8559A, 01-21GHz. . HP 86222 A , RF Plug-h, 01-2.4GHz, NICE HP 88408, Signal Generator, 5 -512MHz, Opt 001 or 003 5700 HP 8656A, Synthesized Sigral Generator, $100 \mathrm{~K} \mathrm{~Hz}-990 \mathrm{MHz}$. . . $\$ 1,400$ HP 8657A, Synthesized Signal Generato, Opt. 002
$100 \mathrm{KHz}-1040 \mathrm{MHz}$, Readout
$. \$ 2,500$
HP 8672 A , Frequency Synhesizer, 2-18GHz . $\$ 3,500$
HP 8730A, Opt IC2, IF7, 8ZE, Tuner Analyzer, 300KHz-1300MHz w870 HP 8901A, Moduation Analyzer, OpL 004 SPECIAL $\$ 650$ HP 8901A, Moditition Analyzer, Opt. 001003010 . HP 8901A, Moduation Analyzer, Opt. 0010020031010. . HP 89018, Modulation Anayzer, $150 \mathrm{KHz}-1300 \mathrm{MHz}$, Opt 004 . . 51,800 Kikusul COS6100m, (100 MHz) 5 Channel 12 Trace Scope . . . Lambda LLS5040, Digital Power Supply, 0-40Ve20AA.
Marconi 2018, Signal Generator, 80 KHz -520MHz NiCEI.
Racal Dana 1991, CounterTlimer, 2 Chamel.
Racal Dana 1991, Counterfimer, 2 Cham
Racal Dana 1992, Counter/Timer, 1 GHz ..
hace
Sencore CM2000, Computer Analyzer. SPECIAL $\$ 1,400$
Sencore LC102, Capacitox inductor Anayzer.
.......... 8950
Sorenson DCR10-1208, Power Supply, 0-10V 120A SPECIAL $\$ 650$ Sorenson DCP40-125A. Power Supply, $0-40 \mathrm{~V}$-125A SPECIAL $\$ 950$ Sorenson DCR-80-5A, Power Supply, 8OV e 5A

(metered)

Sorenson SR
Sorenson Shil 10 , Power Supply, 0-10V 100A. . . SPECLAL $\$ 500$
Torenson SRL20-40, Power Supply, 0-20V Q 40A. SPECIAL $\$ 500$ Togan M1OTIA-11, Ratio Standard, UNUSED.................... $\$ 857$
Tek TM504, Power Module, 4 Stol.
$\$ 150$
Tek TM506, Power Module, 6 Slot
.5200
Tek TR503, Pug-in Tracking Generator, $100 \mathrm{KHz-1.18GHz}$........ $\$ 575$
Tek 11201A, Digitizing Touch Screen Scope (400M-Hz)
w/ek LC 100 Printer. . .
... 51,299
Tek 2235, Scope (100MHz) Dual Trace.
Tek 2236, Scope (100 MHz) wCounter/TmerDMM
.8650
Tek 2236, Scope (100MHz) wCounter/ImerDMM 5850
Tek 2247A, Scope (100 MHz) Dual Trace WI
Connter/TmerNotmeter
MOHI-2) Dual Trace .. SPECIAL $\$ 1,400$ Tek 2336, Scope (100MHzz) Dual Trace SPECIAL. $\$ 525$ Tek 2430A, Digtal Scope (150 MHz) wimanuals \& probe, NiCEE $\$ 2,200$ Tek 2445, Scope ($150 \mathrm{M}-\mathrm{z}$), 4 Channel Cursor Reecout. $\$ 1,100$ Tek 2445A, Scope (150 MHz), 4 Channel Cursor Readout $\$ 1,400$ Tek 2465, Scope (300 MHz), 4 Channel Cursor Readout. $\$ 1,400$
Tek 453, Scope (60MHzz), Dual Trace .
Tek 465, Scope (100MHz), Dual Trace
Tek 4658, Scope (100 MHz), Dual Trace
...... 5475
Tek 466, Scope (100 MHz storage), Dual Trace
Tek 475, Scope (zooMHz), Dual Trace
Tek 475A, Soope (2s0MHzz), Dual Trace
Tek 485, Scope (350MHzz), Dual Trace .

Tek 520A, NTSC Vectorscope.
….... $\$ 400$
Tek 576, Curve Tracer. SPECIAL $\$ 1,400$
Tek 7104, Scope (1GHz), Dual Trace $\$ 1,200$
Tek 7104, Scope (1GHz) w/AR29, 7A29, 7810 8 7815 $\$ 2,200$
Tek 7844, Scope (dual beam) w7A24, 7A 26,7830 \& $7887 \ldots . . . \$ 50$
Untion CRO543, Power Frequency Conventer, $5060 \mathrm{~Hz}-400 \mathrm{~Hz}$,
5KV, LESS THAN 100 HOURS, LIKE NEW.
5KV, LESS THAN 100 HOURS, UKE NEW. $\$ 1,200$
Wavetek 145, Pusse/Function Generator, $0001-20 \mathrm{MHz}$. $\$ 300$
Wavetek 270, Function Generaloc, $01 \mathrm{~Hz}-12 \mathrm{MHz}$
.5675
Wavetek 288, Synthesized function Generator, $20 \mathrm{~Hz}-20 \mathrm{MHz}$ (unused)
Wavetek 442, Dual HML Filter, $1 \mathrm{~Hz}-10 \mathrm{kHz} \quad \$ 400$
Wilton 54107A, Scaler Measurement System, 1MH-z-1500MHzz. $\$ 3,500$ Wilton 6637A. Progarmable Sweep Generator, $2-18.6 \mathrm{GHz}$. . $\$ 1,900$

Figure 9. Basic n-channel common-source amplifier JFET circuit.

Figure 10. Basic \boldsymbol{n}-channel common-drain (source-follower) JFET circuit.

practice, fairly accurate biasing techniques (discussed in Part 2 of this series) must be used in these circuits.

THE IGFET/MOSFET

The second (and most important) family of FETs are those known under the general title of IGFET or MOSFET. In these FETs, the gate terminal is insulated from the semiconductor body by a very thin layer of silicon dioxide, hence the title 'Insulated Gate Field Effect Transistor,' or IGFET. Also, the devices generally use a 'Metal-Oxide Silicon' semiconductor material in their construction, hence the alternative title of MOSFET.

Figure 12 shows the basic construction and the standard symbol of the n-channel depletion-mode FET. It resembles the JFET, except that its gate is fully insulated from the body of the FET (as indicated by the Figure 12(b) symbol) but, in fact, operates on a slightly different principle to the JFET.

It has a normally-open n-type channel between drain and source, but the channel width is controlled by the electrostatic field of the gate bias. The channel can be closed by applying

Figure 11. Basic n -channel common-gate JFET circuit.

Figure 12. Construction (a) and symbol (b)
of n -channel
depletion-mode IGFET/MOSFET.

Figure 13.
Construction (a)
and symbol (b)
of n-channel enhancement-mode IGFET/MOSFET.

Figure 16. Internallyprotected n-channel depletion-mode IGFET/MOSFET.
and Figure 15 shows the $\mathrm{V}_{G S} / I_{D}$ curves of the same device when powered from a 15 V supply. Note that no lo current flows until the gate voltage reaches a 'threshold' $\left(\mathrm{V}_{\mathrm{TH}}\right)$ value of a few volts, but that beyond this value, the drain current rises in a non-linear fashion.

Also note that the transfer graph is divided into two characteristic regions, as indicated (in Figure 14) by the dotted line, these being the 'triode' region and the 'saturated' region. In the triode region, the device acts like a voltage-controlled resistor; in the saturated region, it acts like a voltage-controlled con-stant-current generator.

The basic n-channel MOSFETs of Figures 12 and 13 can - in principle - be converted to p-channel devices by simply transposing their p and n materials, in which case their symbols must be changed by reversing the directions of their substrate arrows.

A number of sub-variants of the MOSFET are in common use. The type known as 'DMOS' uses a dou-ble-diffused manufacturing technique to provide it with a very short conduction channel and a conse quent ability to operate at very high switching speeds. Several other MOSFET variants are described in the remainder of this opening episode.

Note that the very high gate
impedance of MOSFET devices makes them liable to damage from electrostatic discharges and, for this reason, they are often provided with internal protection via integral diodes or zeners, as shown in the example in Figure 16.

VFET DEVICES

In a normal small-signal JFET or MOSFET, the main signal current flows 'laterally' (see Figures 3, 12, and 13) through the device's conductive channel. This channel is very thin, and maximum operating currents are consequently very limited (typically to maximum values in the range 2 to 40 mA).

In post-1970 times, many manufacturers have tried to produce viable high-power/high-current versions of the FET, and the most successful of these have relied on the use of a 'vertical' (rather than lateral) flow of current through the conductive channel of the device. One of the best known of these devices is the 'VFET,' an enhancement-mode power MOSFET which was first introduced by Siliconix way back in 1976.

Figure 17 shows the basic structure of the original Siliconix VFET. It has an essentially four-layer structure, with an n-type source layer at the top, followed by a p-type 'body' layer, an epitaxial n-type layer, and (at the bottom) an n-type drain layer. Note that a ' V ' groove (hence the 'VFET' title) passes through the first two layers and into the third layer of the device, and is electrostatically connected (via an insulating silicon dioxide film) to the gate terminal.

If the gate is shorted to the source, and the drain is made posi-

$F R E E$ to all Electronics Addicts

\$199 To All Others!

For the first time ever we've decided to offer a proprietary software package titled, "Basic Electronics Concepts" to the general public. (Until now, the software hasn't been available to the public, at any price!).
Over 1500 Electronics teachers nationwide use this exact software package to teach Junior High through (iraduate Students the basics of electronics, teaching them step by step. The total course of instruction is over 10 full hours and teaches all about resistors, potentiometers, photocells, capacitors, speakers, silicon diocles, SCRs, NPN transistors, PNP transistors, transistor oscillators, and IC timers!

We sell this package day in and day out for $\$ 199$ to teachers, parents, and hobbyists that want a detailed, complete method of teaching electronics to themselves, friends or children.
when you mention this special offer =NV200)

Here's our offer: As part of our "Grand Opening", for a limited time every first time order on the web) will receive a copy of this incredible softiware absolutely free!

We have a limited guantity of the software program in stock, at last check, approximately 1136 units, so place your order todiay!
1 lere's a few of the 117 different kits that you can build that we offer ONLINE:
Color Organs • FM Transmitter Kits Amplifier Kits • Strobe Light Kits Alarm Kits • Radios Kits • Meter Kits Keypad Lock Kits • Infrared Kits and more!

We carry nattional brands and guarantee that your order will arrive promptly and be exactly what you expected! ORDER NOW!

Build a kit today! , Phone 877-606-8766

tron

Write In 128 on Reader Service Card.

RF Data Modules

-Small size: $17.78 \times 11.43 \mathrm{~mm}$ -CMOS/TTL input

- No adjustable components - Low Current. 4 mA typical. 418 MHz or 433.92 MHz OOK -Simple to integrate -simply add antenna, data and power Range up to 250 ft .
-Wide supply range, $2-14 \mathrm{Vdc}$ -SAW controlled - stability - SAW controlled - stability
-Also available in DIL package

AM-RT5 \$12.10

Compact size: $38.1 \times 13.7 \mathrm{~mm}$ - On-board data recovery. CMOS -Low current. 2.4 mA typical - 2 kHz data rate. CMOS/TTL output 5 Vdc operation
-On 418 MHz or 433.92 MHz (4 xx) No adjustable components \bullet Patented Laser Trimmed component -Figh stability
Sensitivity: -105 dBm
-Sensitivity:- 105 dBm
-Available also in 0.8 mA version
AM-HRR3-4xx \qquad BIM-4xx-F \qquad $\$ 87.36$

RS232 TRANSCETVER MODULES

Transceiver... Transmitter... Receiver.......
-Up to 19,200 bps half duplex - 3 wire RS232 interface - Range up to 500 ft -Transparent data packetizing Supports 8 or 9 bit protocols -Self test function \bullet Reset Switch \& Staus LED's - 1/4 wave wire antenna on board - Available in a Simplex $T x / R x$ pair.(RTcomTX \& RTcomRx) -7.5V-15V dc operation RTcom-4xx... \qquad . $\$ 247.90$
$\$ 87.15$ RTcom $\mathrm{Tx}-4 \mathrm{xx}$ $\$ 87.15$ RTcomRx-4xx

ABACOM
TECHNOLOGIES

Tel: (416)236-3858
Fax: (416)236-8866 www.abacom-tech.com
abacomtech@compuserve.com

Figure 17. Basic structure of the VFET power device.

Figure 20. Normal circuit symbol of the IGBT (Insulated Gate Bipolar Transistor).

tive, no drain-to-source current flows, because the diode formed by the p and n materials is reverse-biased. But if the gate is made positive to the source, the resulting electrostatic field converts the area of p-type material adjacent to the gate into n type material, thus creating a conduction channel in the position shown in Figure 17 and enabling current to flow vertically from the drain to the source.

As the gate becomes more positive, the channel width increases, enabling the drain-to-source current to increase as the drain-to-source resistance decreases. This basic VFET can thus pass reasonably high currents (typically up to 2A) without creating excessive current density within the channel regions.

The original Siliconix VFET design of Figure 17 was successful, but imperfect. The sharp bottom of its V groove caused an excessive electric field at this point and restricted the device's operating voltage. Subsequent to the original VFET introduction, Intersil introduced their own
version of the 'VMOS' technique, with a U-shaped groove (plus other modifications) that improved device reliability and gave higher maximum operating currents and voltages. In 1980, Siliconix added these and other modifications to their own VFET devices, resulting in further improvements in performance.

OTHER POWER FETs

Several manufacturers have produced viable power FETs without using ' V '- or ' U '-groove techniques, but still relying on the vertical flow of current between drain and source. In the 1980s, Hitachi produced both pchannel and n -channel power MOSFET devices with ratings up to 8A and 200 V ; these devices were intended for use mainly in audio and low-RF applications.

Supertex of California and Farranti of England pioneered the development of a range of power MOSFETS with the general title of 'vertical DMOS.' These featured high operating voltages (up to 650 V), high
current rating (up to 16A), low on resistance (down to 50 milliohms), and very fast operating speeds (up to 2 GHz at $1 \mathrm{~A}, 500 \mathrm{MHz}$ at 10 A).

Siemens of West Germany used a modified version of DMOS, known as SIPMOS, to produce a range of n channel devices with voltage ratings as high as 1 kV and with current ratings as high as 30A.

One International Rectifier solution to the power MOSFET problem is a device which, in effect, houses a vast array of parallel-connected lowpower vertical MOSFETs or 'cells' which share the total current equally between them, and thus act like a single high-power MOSFET, as indicated in Figure 18. These devices are named HEXFET, after the hexagonal structure of these cells, which have a density of about 100,000 per square centimeter of semiconductor material.

Several manufacturers produce power MOSFETs that each comprise a large array of parallel-connected lowpower lateral (rather than horizontal) MOSFET cells that share the total
operating current equally between them; the device thus acts like a single high-power MOSFET. These highpower devices are known as lateral MOSFETS or L-MOSFETS, and give a performance that is particularly useful in super-fi audio power amplifier applications.

Note that, in parallel-connected MOSFETs (as used in the internal structure of the HEXFET and L-MOSFET devices described above), equal current sharing is ensured by the conduction channel's positive temperature coefficient; if the current in one MOSFET becomes excessive, the resultant heating of its channel raises its resistance, thus reducing its current flow and tending to equalize it with that of other parallel-connected MOSFETs. This feature makes such power MOSFETs almost immune to thermal runaway problems.

Today, a vast range of power MOSFET types are manufactured. 'Low voltage' n-channel types are readily available with voltage/current ratings as high as 100V/75A, and 'high voltage' ones with ratings as

Telulex Inc. model SG-100A $\checkmark 21.5 \mathrm{MHz}$ New $\quad \checkmark .01 \mathrm{~Hz}$ steps Features: \downarrow multi-unit phaselock
Telulex Inc.

Any waveform you want!

- Synthesized Signal Generator

Clean sinewaves DC-21.5 MHz with $.001 \%$ accuracy! .01 Hz steps. DC Offset. RS232 remote control. - Arbitrary Waveform Generator 40 Megasamples/Second. 32,768 points. 12 bit DAC

- Function Generator

Ramps, Triangles, Exponentials, Noise \& more. 0 to 2 MHz in 1 Hz steps. Continuous or Triggered. - Pulse Generator

Digital waveforms with adjustable duty cycle

DC to 21.5 MHz linear and log sweeps

Pulse Generator

Int/Ext AM, SSB, Dualtone Gen.

Noise

Int/Ext FM, PM, BPSK, Burst

Arbitrary Waveforms

Ramps, Triangles,

Unlimited Possibilities!

(a)

(b)

(c)

Figure 21. Basic CMOS circuit (a), and its equivalent with (b) a logic-0 input and (c) a logic-1 input.
high as $500 \mathrm{~V} / 25 \mathrm{~A}$.
One of the most important recent developments in the powerMOSFET field has been the introduction of a variety of so-called 'intelligent' or 'smart' MOSFETs with builtin overload protection circuitry; these MOSFETs usually carry a distinctive registered trade name. Philips devices of this type are known as TOPFETs (Temperature and Overload Protected MOSFETs); Figure 19 shows (in simplified form) the basic internal circuitry and the circuit symbol of the TOPFET.

The Siemens version of the smart MOSFET is known as the PROFET. PROFET devices incorporate protection against damage from short circuits, over temperature, overload, and electrostatic discharge (ESD). International Rectifier produce a range of smart n-channel MOSFET known as SMARTFETs; these incorporate protection against damage from short circuits, over temperature, overvoltage, and ESD.

Finally, yet another recent and important development in the n channel power MOSFET field, has been the production - by various manufacturers - of a range of high power devices known as IGBTs (Insulated Gate Bipolar Transistors), which have a MOSFET-type input and an internally protected high-voltage high-current bipolar transistor output. Figure 20 shows the normal circuit symbol of the IGBT. Devices of this type usually have voltage/current/power ratings ranging from as low as $600 \mathrm{~V} / 6 \mathrm{~A} / 33 \mathrm{~W}$ (in the device known as the HGTD3N603), to as
high as $1200 \mathrm{~V} / 520 \mathrm{~A} / 3000 \mathrm{~W}$ (in the device known as the MG400Q1US51).

CMOS BASICS

One major FET application is in digital ICs. The best known range of such devices use the technology known as CMOS, and rely on the use of complementary pairs of MOSFETs. Figure 21 illustrates basic CMOS principles. The basic CMOS device comprises a p-type and n-type pair of enhancement-mode MOSFETs, wired in series, with their gates shorted together at the input and their drains tied together at the output, as shown in Figure 21(a). The pair are meant to use logic-0 or logic-1 digital input signals, and Figures 21(b) and 21(c), respectively, show the device's equivalent circuit under these conditions.

When the input is at logic-0, the upper (p-type) MOSFET is biased fully on and acts like a closed switch, and the lower (n-type) MOSFET is biased off and acts like an open switch; the output is thus effectively connected to the positive supply line (logic-1) via a series resistance of about 100R.

When the input is at logic-1, the MOSFET states are reversed, with Q1 acting like an open switch and Q2 acting like a closed switch, so the output is effectively connected to ground (logic-0) via 100R. Note in both cases that the entire signal current is fed to the load, and none is shunted off by the CMOS circuitry; this is a major feature of CMOS technology. NV

M.E.M. ELECTRDNICS CD. DISTRIBUTOR FOR THE NEW

 SIMS SVR-S825 8 HOUR DIGITAL VOICE RECORDER 8 HOUR RECORDING/PLAYBACK or 396 MESSAGES ON FLASH EPROM MINIATURE SIZE AND LIGHTWEIGHT, VOX, BACKLIT LCD DISPLAY GREAT-4- JOURNALISTS, DOCTORS, LAWYERS, ENGINEERS, STUDENTS DOWNLOADING WIN '95 \& '98 SOFTWARE ON CD INCLUDED ALSO EXT. MIC., EARPHONE, "AAA" BATTERIES, DUBBING CORD INCLUDED

**** GREAT I THE SVR-S825 IMAGES AND		

NEW - LOW COST, 2.5", 4" AND 6.8" COLOR TFT-LCD VIDEO MODULES WITH NTSC DRIVER CARDS *** CALL 4 INFO! FOR PRICING AND LITERATURE ON THESE AND OTHER GREAT PRODUCTS CALL: 215-657-3119 E-MAIL: mocenter@erols.com http://www.memelectronics.com

Digital Storage Oscilloscopes From \$99.00
ATC modules turn your PC into a full-function DSC, spectrum analyzer, logger, \& DVM. Units DC to 50 MHz . O-Scope II now in Windows $3.1,95 / 98$, NT and DOS.

O-Scope Ip
O-Scope II Specialty probes
\$189.
$\$ 349$. call.

ATC is a stocking distributor for Pico Technology LTD which offers scope modules to 100 MSPS , resolutions from 8 to 16 bit. Pico offers PC based data loggers from 1 to 22 channels, 8 to 16 bit and the Enviromon environmental monitoring system.

Pico products - call
The DFA-5, low cost differential amplifier, cuts through common mode noise problems to reveal low voltage signals. With NEW gains from 1X to 1000 X and band widths from 20 KHz to 1.2 MHz , DFA-5 is the test accessory to help you work with signals from DFA5 5 Volts to 5 microVoltes. Only $\$ 129.00$.
Serial Port Problems ? ? ? Check out Serial ! ! Our lowcost serial channel analyzer only $\$ 99.00$.

Allison Technology Corporation

2006 Finney Vallet Rd., TX. 77471 U.S.A.
800-980-9806 or 281-239-8500
http://www.atcweb.com atc@accesscomm.net

ALLTECH ELECTRONICS		
WWW. COMPUTERCHOPPER.COM		
	486 Mini System 486SX25 • Great for Linux DX266 Upgradable - 2 ISA Slots - VGA, LPT, 2 COMs - FD	
PC Game Accessores Steering Wheels • Flight Sticks • Joysticks Have a ball! Starting at:	7SCSICD's in a Tower 7 CR-504-L Drives in a SCSI Tower case - 250 Pin Connectors	
24 Bit Flat Bed Scanner Win95/98-ImageWave by Storm Technology. Parallel Port Interface Software Induded! 5 Minute Installation \$39	Flat Bed Photo Scanner Win98/98 - Scan Photos, Slides, Negatives. Small footprint. Great scanner! isA Slot Req.	Refurbished Network Hardware-For PC and Mac. Why pay more? Get Networked Now! \$24
\$89 \& up.	Great for Servers: ISA Controller Included!! All screens are 640×480. The ntroller supports 256 Colors. $5^{\prime \prime}$ Mono Passive..... $\$ 89.00$ Color Passive....... $\$ 199.00$ $4^{\prime \prime}$ Color Active...... $\$ 319.00$ 00 Motherboard with inteated 24 bit color available. See our web site for more details.	Industrial Surplus PC Parts • Mac Parts For more information on these products and hundreds of other products check out: www. ComputerChopper . Com

760/724-2404

 Fax 760/724-8808Computer Circulation Center, Inc. 2618 Temple Heights Drive
Oceanside. CA 92056 Write in 135 on Reader Service Card

Mon-Fri 9AM -5:30PM - Or see us on the internet. VISA - Mastercard - Discover - American Express Prices \& Availability subject to change without notice * Government \& Educational PO's AccepterL. * Not Resporsible for Typographical Errors

Field-Effect Transistors

Part 2

Ray Marston looks at practical JFET circuits in this second episode of this four-part series.

Last month's opening episode explained (among other things) the basic operating principles of JFETs. JFETs are low-power devices with a very high input resistance and invariably operate in the depletion mode, i.e., they pass maximum current when the gate bias is zero, and the current is reduced ('depleted') by reverse-biasing the gate terminal.

Most JFETs are n-channel (rather than p-channel) devices. Two of the oldest and best known n-channel JFETs are the 2N3819 and the MPF102, which are usually housed in TO92 plastic packages with the connections shown in Figure 1; Figure 2 lists the basic characteristics of these two devices.

This month's article looks at basic usage information and applications of JFETs. All practical circuits shown here are sperifically designed around the 2N3819, but will operate equally well when using the MPF102.

JFET BIASING

The JFET can be used as a linear amplifier by reverse-biasing its gate relative to its source terminal, thus driving it into the linear region. Three basic JFET biasing techniques are in common use. The simplest of these is the 'self-biasing' system shown in Figure 3, in which the gate is grounded via Rg, and any current flowing in Rs drives the source positive relative to the gate, thus generating reverse bias.

Suppose that an Id of 1 mA is wanted, and that a VGs bias of -2 V 2 is needed to set this condition; the correct bias can obviously be obtained by giving Rs a value of 2 k 2 ; if ID tends to fall for some reason, Vgs naturally falls as well, and thus makes lo increase and counter the original change; the bias is thus self-regulating via negative feedback.

Figure 1. Outline and connections of the 2N3819 and MPF102 JFETs.

2N3819
(bottom view)

Parameter

$\mathrm{V}_{\mathrm{DS}} \max$ (= max. drain-to-source voltage)
$V_{D G} \max$ (= max. drain-to-gate voltage) $V_{G S} \max$ (= max. gate-to-source voltage) IDSS (= drain-to-source current with $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$) I GSS max (= gate leakage current at $25^{\circ} \mathrm{C}$)
$\mathrm{P}_{\mathrm{T}} \max$ (= max. power dissipation, in free air)

2N3918

MPF102

25 V	25 V
25 V	25 V
-25 V	-25 V
$2-20 \mathrm{~mA}$	$2-20 \mathrm{~mA}$
$2 n \mathrm{~A}$	$2 n \mathrm{~A}$
200 mW	310 mW

Figure 2. Basic characteristics of the 2N3819 and MPF102 n-channel JFETs.

PGB LAYOUT Software For Windows - FREE

(1) Download our board layout software (2) Design your 2 sided plated-through PCB (3) Send us your layout over the Internet © In 2-3 business days, UPS delivers your boards, often under $\$ 100$

In practice, the VGs value needed to set a given lo varies widely between individual JFETS, and the only sure way of getting a precise lo value in this system is to make Rs a variable resistor; the system is, however, accurate enough for many

Figure 3. Basic JFET 'self-biasing' system.
applications, and is the most widely used of the three biasing methods.

A more accurate way of biasing the JFET is via the 'offset' system of Figure 4(a), in which divider R1-R2 applies a fixed positive bias to the gate via Rg , and the source voltage equals this voltage minus VGs. If the gate voltage is large relative to VGS , Io is set mainly by Rs and is not greatly influenced by VGS variations. This system thus enables lo values to be set with good accuracy and without need for individual component selection. Similar results can be obtained by grounding the gate and taking the bottom of Rs to a large negative voltage, as in Figure 4(b).

The third type of biasing system is shown in Figure 5, in which con-stant-current generator Q2 sets the lo, irrespective of the JFET characteristics. This system gives excellent biasing stability, but at the expense of increased circuit complexity
and cost.
In the three biasing systems described, Rg can have any value up to 10 M , the top limit being imposed by the volt drop across Rg caused by gate leakage currents, which may upset the gate bias.

SOURCE FOLLOWER CIRCUITS

When used as linear amplifiers, JFETs are usually used in either the source follower (common drain) or common-source modes. The source follower gives a very high input impedance and near-unity voltage gain (hence the alternative title of 'voltage follower').

Figure 6 shows a simple selfbiasing (via RV1) source follower; RV1 is used to set a quiescent R2 volt-drop of 5V6. The circuit's actual input-to-output voltage gain is 0.95 . A degree of bootstrapping is applied to R3 and increases its effective impedance; the circuit's actual input impedance is 10 M shunted by 10 pF , i.e., it is 10 M at very low frequencies, falling to 1 MO at about 16 kHz and 100 k at 160 kHz , etc.

Figure 7 shows a source follower with offset gate biasing. Overall voltage gain is about 0.95 . C2 is a bootstrapping capacitor and raises the input impedance to 44 M , shunted by 10 pF .

Figure 8 shows a hybrid (JFET plus bipolar) source follower. Offset biasing is applied via R1-R2, and constant-current generator Q2 acts as a very high-impedance source load, giving the circuit an overall voltage gain of 0.99 . C2 bootstraps R3's effective impedance up to 1000 M , which is shunted by the JFET's gate impedance; the input impedance of the complete circuit is 500 M , shunted by 10 pF .

Note then if the high effective value of input impedance of this circuit is to be maintained, the output must either be taken to external loads via an additional emitter follower stage (as shown dotted in the diagram) or must be taken only to fairly high impedance loads.

COMMON SOURCE AMPLIFIERS

Figure 9 shows a simple selfbiasing common source amplifier; RV1 is used to set a quiescent 5V6 across R3. The RV1-R2 biasing network is AC-decoupled via C2, and the circuit gives a voltage gain of $21 \mathrm{~dB}(=x 12)$, and has a $\pm 3 \mathrm{~dB}$ frequency response that spans 15 Hz to 250 kHz and an input impedance of 2 M 2 shunted by 50 pF . (This high shunt value is due to Miller feedback, which multiplies the JFET's effective gate-to-drain capacitance by the circuit's $\times 12$ Av value.)

Figure 10 shows a simple selfbiasing headphone amplifier that can be used with headphone impedances of 1 kO or greater. It has a built-in volume control (RV1), has
an input impedance of 2 M 2 , and can use any supply in the 9 V to 18 V range.

Figure 11 shows a self-biasing add-on pre-amplifier that gives a voltage gain in excess of 20 dB , has a bandwidth that extends beyond 100 kHz , and has an input impedance of 2 M 2 . It can be used with any amplifier that can provide a 9 V to 18 V power source.

JFET common source amplifiers can - when very high biasing accuracy is needed - be designed using either the 'offset' or 'constant-current' biasing technique. Figures 12 and 13 show circuits of these types. Note that the 'offset' circuit of Figure 12 can be used with supplies in the range 16 V to 20 V only, while the hybrid circuit of Figure 13 can be used with any supply in the 12 V to 20 V range. Both circuits give a voltage gain of $21 \mathrm{~dB}, \mathrm{a} \pm 3 \mathrm{~dB}$ bandwidth of 15 Hz to 250 kHz , and an input impedance of 2 M 2 .

DC VOLTMETERS
Figure 4. Basic JFET 'offset-biasing' system.

(a)

(b)

Figure 6. Self-biasing source-follower. $\mathrm{Zin}=10 \mathrm{M}$.

Figure 5. Basic JFET 'constant-current' biasing system.

Figure 14 shows a JFET used to make a very simple and basic threerange DC voltmeter with a maximum FSD sensitivity of 0.5 V and an input impedance of 11 M 1 . Here, R6-RV2 and R7 form a potential divider across the 12 V supply and - if the R7-RV2 junction \mid point - sets the top of R6 at +8 V is used as the circuit's zero-voltage

Figure 8. Hybrid source follower. $\mathrm{Zin}=500 \mathrm{M}$.

Figure 7. Source follower with offset biasing. $\mathrm{Zin}=44 \mathrm{M}$.
used as a source follower, with its gate grourided via the R1 to R4 net-

Figure 9. Simple self-biasing common-source amplifier.

Figure 10. Simple headphone amplifier.

Figure 11. General-purpose add-on pre-amplifier.

Figure 12. Common-source amplifier with offset gate biasing.

Figure 13. 'Hybrid' common-source amplifier.
work and is offset biased by taking its source to -4 V via R5; it consumes about 1 mA of drain current.

In Figure 14, R6-RV2 and Q1R5 act as a Wheatstone bridge network, and RV2 is adjusted so that the bridge is balanced and zero current flows in the meter in the absence of an input voltage at Q1 gate. Any voltage applied to Q1 gate then drives the bridge out of balance by a proportional amount, which can be read direct-
0.5 V DC to the input and trim RV1 to give a precise full-scale meter reading. Repeat these adjustments until consistent zero and full-scale readings are obtained; the unit is then ready for use.

In practice, this very simple circuit tends to drift with variations in supply voltage and temperature, and fairly frequent trimming of the zero control is needed. Drift can be greatly reduced by using a zenerstabilized 12 V supply.

Figure 15 shows an improved

Use your PC as a scope and datalogger!

osziFOX 20MS/s handheld scope

Stocked in NY by Saelig Company: Virtual Instruments, I2C and embedded controllers, BITlink 2-wire networks, RS232/422/485, frame grabbers, etc. See www.saelig.com for Product of the Month!

June 2000/Nuts \& Volts Magazine

3 mV to 300 mV RMS).
The circuit can accept input signal levels up to a maximum of 500 mV RMS Q1 and R4 are wired in series to form a voltage-controlled attenuator that controls the input signal level to common emitter amplifier Q2, which has its output buffered via emitter follower Q3.

Figure 16. VLF astable multivibrator.

Q3's output is used to generate (via C5-R9-D1-D2-C4-R5) a DC control voltage that is fed back to Q1's gate, thus forming a DC negative-feedback loop that automatically adjusts the overall voltage gain so that the output signal level tends to remain constant as the input signal level is varied, as follows.

When a very small input signal is applied to the circuit, Q3's output signal is also small, so negligible DC control voltage is fed to Q1's gate; Q1 thus acts as a low resistance under this condition, so almost the full input signal is applied to Q2 base, and the circuit gives high overall gain.

When a large input signal is applied to the circuit, Q3's output signal tends to be large, so a large DC negative control voltage is fed to Q1's gate; Q1 thus acts as a high resistance under this condition, so only a small part of the input signal is fed to Q2's base, and the circuit gives low overall gain.

Thus, the output level stays fairly constant over a wide range of input signal levels; this characteristic is useful in cassette recorders, intercoms, and telephone amplifiers, etc.

Finally, Figure 19 shows a JFET used to make a DC-to-AC converter or 'chopper' that produces a square-

wave output with a peak amplitude equal to that of the DC input voltage.

In this case, Q1 acts like an electronic switch that is wired in series with R1 and is gated on and off at a 1 kHz rate via the Q2-Q3 astable circuit, thus giving the DC-toAC conversion. Note that Q1's gatedrive signal amplitude can be varied via RV1; if too large a drive is used, Q1's gate-to-source junction starts to avalanche, causing a small spike voltage to break through the drain and give an output even when no DC input is present.

To prevent this, connect a DC input and then trim RV1 until the output is just on the verge of decreasing; once set up in this way, the circuit can be reliably used to chop voltages as small as a fraction of a millivolt. NV

Figure 18. Constant-volume amplifier.

Figure 19. DC-to-AC converter or 'chopper' circuit.

Telulex model SG-100A $\checkmark 21.5 \mathrm{MHz}$ New $\quad \checkmark .01 \mathrm{~Hz}$ steps Features: \checkmark multi-unit phaselock

BNC/Telulex Div.

Any waveform you want!

Int/Ext AM, SSB, Dualtone Gen.

Noise

- Synthesized Signal Generator

Clean sinewaves DC-21.5 MHz with $.001 \%$ accuracy! .01 Hz steps. DC Offset. RS232 remote control.

- Arbitrary Waveform Generator

40 Megasamples/Second. 32,768 points. 12 bit DAC

DC to 21.5 MHz linear and log sweeps

Pulse Generator

Fax (415) 453-9956
San Rafael, CA 94901

Function Generator

Ramps, Triangles, Exponentials, Noise \& more. 0 to 2 MHz in 1 Hz steps. Continuous or Triggered.

- Pulse Generator

Digital waveforms with adjustable duty cycle

Int/Ext FM, PM, BPSK, Burst

Arbitrary Waveforms

Ramps, Triangles,

Unlimited Possibilities!

PRINCIPLES AND CIRCUITS

Ray Marston looks at practical MOSFET and CMOS circuits in this penultimate episode of this four-part series.

Part 1 of this series explained (among other things) the basic operating principles of the MOSFET (or IGFET), and pointed out that complementary enhance-ment-mode pairs of these devices form the basis of the digital technology known as CMOS.

The present episode of the series looks at practical applications of MOSFETs and CMOS-based MOSFET devices.

A MOSFET INTRODUCTION

MOSFETs are available in both depletion-mode and enhancementmode versions. Depletion-mode types give a performance similar to a JFET, but with a far higher input resistance (i.e., with a far higher low-frequency input impedance).

Some depletion-mode MOSFETs are equipped with two independent gates, enabling the drain-to-source currents to be controlled via either one or both of

Figure 1. Symbol of the dual-gate or tetrode MOSFET.

(a)

(b)

Figure 2. Standard symbols of (a) three-pin and (b) four-pin n-channel enhancement-mode MOSFETs.
the gates; these devices (which are often used as signal mixers in VHF tuners) are known as dual-gate or tetrode MOSFETs, and use the symbol shown in Figure 1.

Most modern MOSFETs are enhancement-mode devices, in which the drain-to-source conduction channel is closed when the gate bias is zero, but can be opened by applying a forward gate bias. This 'normally open-circuit' action is implied by the gaps between source and drain in the device's standard symbol, shown in Figure 2(a), which depicts an n channel MOSFET (the arrow head
is reversed in a p-
channel device). In some devices, the semiconductor substrate is made externally available, creating a 'four-terminal' MOSFET, as shown in Figure 2(b).

Figure 3 shows typical transfer characteristics of an n channel enhancement-mode MOSFET, and Figure 4 shows the $\mathrm{V}_{G S} / \mathrm{I}_{\mathrm{D}}$ curves of the same device when powered from a 15 V supply. Note that no significant I_{D} current flows

TELEPHONE LISTENING DEVICE WITH 12 HR. RECORDER

Record telephone conversations in your office or home. Starts automatically when phone is answered, records both sides of phone conversation. Recorder stops when phone is hung up. $\$ 99.95+\$ 7$ shipping. For telehone listening device separately $\$ 19.95+\$ 2$ ship.
For comprehensive 50 page catalog of Micro Video, VHF transmitters,Surveillance, and Counter-surveillance and much more! Send $\$ 3.00$ Call 321-725-1000

USI CORP
 P.O. Box N2052 Melbourne,FL. 32902 COD'S OK

Figure 3. Typical transfer characteristics of 4007UB n-channel enhancement-mode MOSFETS.
until the gate voltage rises to a threshold $\left(\mathrm{V}_{T H}\right)$ value of a few volts but that, beyond this value, the drain current rises in a non-linear fashion.

Also note that the Figure 3 graph is divided into two characteristic regions, as indicated by the dotted line; these being the 'triode' region, in which the MOSFET acts like a voltage-controlled resistor, and the 'saturated' region,' in which it acts like a voltage-controlled constant-current generator.

Because of their very high input resistances, MOSFETs are vulnerable to damage via electrostatic discharges; for this reason,
MOSFETs are sometimes provided with integral protection via diodes or zeners.

THE 4007UB

The easiest and cheapest practical way of learning about enhancement-mode MOSFETs is via a 4007UB IC, which is the simplest member of the popular CMOS '4000-series' digital IC range, and actually houses six useful MOSFETs in a single 14 -pin DIL package.

Figure 5 shows the functional diagram and pin numbers of the 4007UB, which houses two complementary pairs of independentlyaccessible MOSFETs and a third complementary MOSFET pair that

Figure 6. Internalprotection network (within dotted lines) on each input of the 4007UB.
is connected as a standard CMOS inverter stage.

Each of the IC's three independent input terminals is internally connected to the standard CMOS protection network shown in Figure 6.

Within the IC, Q1, Q3, and Q5 are p-channel MOSFETs, and Q2, Q 4 , and Q 6 are n-channel types. Note that the performance graphs of Figures 3 and 4 actually apply to the individual n-channel devices within this CMOS IC.

The 4007UB usage rules are simple. In any given application, all unused IC elements must be disabled. Complementary pairs of MOSFETs can be disabled by connecting them as standard CMOS inverters (i.e., gate-to-gate and source-to-source) and tying their inputs to ground, as shown in Figure 7.

Individual MOSFETs can be disabled by tying their source to their substrate and leaving the drain open circuit. In use, the IC's input terminal must not be allowed to rise above $\mathrm{V}_{D D}$ (the supply voltage) or fall below $\mathrm{V}_{\text {SS }}$ (zero volts).

To use an n-channel MOSFET, the source must be tied to V_{SS}, either directly or via a current-limiting resistor. To use a p-channel MOSFET, the source must be tied to V_{DD}, either directly or via a cur-rent-limiting resistor.

LINEAR OPERATION

To fully understand the operation and vagaries of CMOS circuitry, it is necessary to understand the linear characteristics of basic MOSFETs, as shown in the graph of Figure 4.

Note that negligible drain current flows until the gate rises to a 'threshold' value of about 1.5 to 2.5 volts, but that the drain current then increases almost linearly with further increases in gate voltage.

Figure 8 shows how to use an n-channel 4007UB MOSFET as a linear inverting amplifier. R1 acts as Q2's drain load, and R2-Rx bias the gate so that Q2 operates in the linear mode.

The $R x$ value is selected to give the desired quiescent drain voltage, and is normally in the 18 k to

Figure 7. Individual 4007UB complementary pairs can be disabled by connecting them as CMOS inverters and grounding their inputs.

100k range.

The amplifier can be made to give a very high input impedance by wiring a 10 M isolating resistor between the R2-Rx junction and Q2 gate, as shown in Figure 9.

Figure 10 shows how to use an n-channel MOSFET as a unitygain non-inverting common-drain amplifier or source follower.

The MOSFET gate is biased at half-supply volts by the R2-R3 divider, and the source terminal automatically takes up a quiescent value that is slightly more than $V_{T H}$ below the gate value.

The basic circuit has an input impedance equal to the paralleled
values of R2 and R3 ($=50 \mathrm{k}$), but can be increased to greater than 10 M by wiring R4 as shown.

Alternatively, the input impedance can be raised to several hundred megohms by bootstrapping R4 via C1 as shown in Figure 11.

Note from the above description that the enhancement-mode MOSFET performs like a conventional bipolar transistor, except that it has an ultra-high input impedance and has a substantially larger input-offset voltage (the base-to-

Figure 4. Typical $\mathrm{V}_{\mathrm{GS}} / \mathrm{I}_{\mathrm{D}}$ characteristics of $4007 U B \mathrm{BS}$-channel enhancement-mode MOSFET.

LOW COST
Dominos are rugged, miniature encapsulated controllers that com-bine lots of analog and digital I/O with a fast controloriented floating-point BASIC to provide a one-stop computation and control solution for costsensitive control tasks. Used stand alone or connected via RS-232/RS-485, Dominos are true plug-and-go control.

Domino 1 features:

- Full floating-point ROMed BASIC - 32 -KB SRAM and 32 -KB EEPROM
- 12 bits of parallel I/O
- 2 PWM outputs
- R2C bus
- 2-channel 12 -bit ADC
- Serial port 19.2-kbps RS-232A.

RS-422, or RS-485

- +5V@15 mA

Domino 2 has:

- everything in Domino 1 plus
- 16 more bits of hight-aurrent parallell/O
- Hardware dock/calendar
- Wide-range power operation
- Hardware PWM output

\$99 to \$139

emitter offset of a bipolar is typically 600 mV , while the gate-tosource offset voltage of a MOSFET is typically two volts).

Allowing for these differences, the enhancement-mode MOSFET can thus be used as a direct replacement in many small-signal bipolar transistor circuits.

PIC'
 n Books

LEARN ABOUT PIC MICROCONTROLLERS

See Table OI Contents: http://www.sq-1.com Secure Online Ordering is Avallable

PIC is a trademark of Microchip Technology Inc.

Voice (707) 279-8881 Fax (707) 279-8883
http://www.sq-l.com

$F R E E$ to all
 \$199 To All Others!
 For the first time ever we've decided to offer a proprietary software package titled, "Basic Electronics Concepts" to the general public. (Until now, the software hasn't been available to the public, at any price!).
 Over 1500 Electronics teachers nationwide use this exact software package to teach Junior High through Graduate Students the basics of electronics, teaching them step by step. The total course of instruction is over 10 full hours and teaches all about resistors, potentiometers, photocells, capacitors, speakers, silicon dioxles, SCRs, NPN transistors, PNP transistors, transistor oscillators, and IC timers!
 We sell this package clay in and day out for $\$ 194$ (t) teachers, parents, and hobbyists that want a detailed, complete method of teaching electronics to themselves, friends or children.

 Electronics Addicts

Here's our offer: As part of our "Grand Opening", for a limited time every first time order on the wel) will receive a copy of this incredible software absolutely free!
We have a limited quantity of the soltware program in stock, at last check, approximately 1136 units, so place your order today!

Heres a few of the 117 different kits that you can build that we offer ONLINE:
Color Organs • FM Transmitter Kits Amplifier Kits • Strobe Light Kits Alarm Kits • Radios Kits • Meter Kits Keypad Lock Kits • Infrared Kits and more!
We carry national brands and guarantee that your order will arrive promptly and be exactly what you expected! ORDER NOW!

Build a kit today!

\square

Turn Your Multimedia PC into a Powerful Real-Time Audio Spectrum Analyzer

Features

- 20 kHz real-time bandwith
- Fast 32 bit executable
- Dual channel analysis
- High Resolution FFT
- Octave Analysis
- THD , THD +N, SNR measurements
- Signal Generation
- Triggering, Decimation
- Transfer Functions, Coherence
- Time Series, Spectrum Phase, and 3-D Surface plots
- Real-Time Recording and Post-Processing modes

Applications

- Distortion Analysis
- Frequency Response Testing
- Vibration Measurements
- Acoustic Research

System Requirements

- 486 CPU or greater
- 8 MB RAM minimum
- Win. 95, NT, or Win. $3.1+$ Win.32s
- Mouse and Math coprocessor
- 16 bit sound card

Priced from \$299
(U.S. sales only - not for export/resale)

DOWNLOAD FREE 30 DAY TRIAL!
www.spectraplus.com
-

Pioneer Hill Software 24460 Mason Rd. Poulsbo, WA 98370 a subsidiary of Sound Technology, Inc.

Figure 9. High impedance version of the inverting amplifier.

THE CMOS INVERTER

A major application of enhancement-mode MOSFETs is in the basic CMOS inverting stage of Figure 12(a), in which an n-channel and a p-channel pair of MOSFETs are wired in series but share common input and output terminals.

This basic CMOS circuit is primarily meant for use in digital applications (as described towards the end of Part 1 of this series), in which it consumes negligible quiescent current but can source or sink substantial output currents.

Figures 12(b) and 12(c) show the inverter's digital truth table and its circuit symbol. Note that Q5 and Q6 of the 4007UB IC are fixed-wired in the CMOS inverter

Figure 10. Methods of biasing n-channel 4007UB MOSFET as a unity-gain non-inverting amplifier or source follower.

Figure 11. Bootstrapped source follower has ultra-high input impedance.

configuration.

Although intended primarily for digital use, the basic CMOS inverter can be used as a linear

Electro Mavin

Great Buys - Great Products - Great Gadgets Check Out Our Great WebSite at

http://mavin.com

For Computer Items, Hobbiest Projects, Microwave Goodies and Some of the Greatest Prices on the Web. 800-421-2442 or FAX 310-632-3557 E-Mail
john@mavin.com or mark@mavin.com

amplifier by biasing its input to a value between the logic-0 and logic-1 levels; under this condition Q1 and Q2 are both biased partly on, and the inverter thus passes significant quiescent current.

Figure 13 shows the typical drain-current (I_{D}) transfer characteristics of the circuit under this condition; I_{D} is zero when the input is at zero or full supply volts, but rises to a maximum value (typically 0.5 mA at 5 V , or 10.5 mA at 15 V) when the input is at roughly half-supply volts, under which condition both MOSFETs of the inverter are biased equally.

Figure 14 shows the typical input-to-output voltage-transfer characteristics of the simple CMOS inverter at different supply voltage values. Note that the output voltage changes by only a small amount when the input voltage is shifted around the $V_{D D}$ and $O V$ levels, but that when $V_{\text {in }}$ is biased at roughly half-supply volts, a small change of input voltage causes a large change of output voltage.

Typically, the inverter gives a voltage gain of about 30 dB when used with a 15 V supply, or 40 dB at 5 V .

Figure 15 shows a practical linear CMOS inverting amplifier

Figure 16.
Typical A_{V} and frequency characteristics of the linear-mode basic CMOS amplifier.

stage. It is biased by wiring 10 M resistor R1 between the input and output terminals, so that the output self-biases at approximately half-supply volts.

Figure 16 shows the typical voltage gain and frequency characteristics of this circuit when operated at three alternative supply rail values; this graph assumes that the amplifier output is feeding into the high impedance of a $10 \mathrm{M} / 15 \mathrm{pF}$ oscilloscope probe and, under this condition, the circuit has a bandwidth of 2.5 MHz when operating from a 15 V supply.

As would be expected from the voltage transfer graph of Figure 14, the distortion characteristics of the CMOS linear amplifier are quite good with small-ampli-
tude signals (output amplitudes up to 3 V peak-to-peak with a 15 V supply), but the distortion then increases as the output approaches the upper and lower supply limits.

HOT NEW PRODUCTS!!!

Phone Manager - Reverse Caller ID. Now you can keep track of outgoing numbers. Records length, time and date of call. Keep track of the children, the wife, or the phone company. Easy hookup via phone jack.

New low price $\$ 79.95$

Phone and Internet Voice Changer - This device is new to the market and provides realistic sounding voices. It allows you to interface directly to your phone jack, or computer via patch cord and mic. Intro price $\$ 129.95$

Order directly from our website at www.electronickits.com We also have over 200 Electronic Plans, Kits and Spy Products Carl's Electronics Inc. sales@electronickits.com

Figure 15. Method of biasing the simple CMOS inverter for linear operation.

Unlike a bipolar transistor circuit, the CMOS amplifier does not 'clip' excessive sinewave signals, but progressively rounds off their peaks.

Figure 17 shows the typical drain-current versus supply-voltage

Digital Storage Oscilloscopes From \$99.00

ATC modules turn your PC into a full-function DSC, spectrum analyzer, logger, \& DVM. Units DC to 50 MHz . O-Scope II now in Windows $3.1,95 / 98, \mathrm{NT}$ and DOS.

O-Scope Ip
 O-Scope II

 Specialty probes\$349.
call.

ATC is a stocking distributor for Pico Technology LTD which offers scope modules to 100 MSPS , resolutions from 8 to 16 bit.
Pico offers PC based data loggers from 1 to 22 channels, 8 to 16 bit and the Enviromon environmental monitoring system.

Pico products - call

The DFA-5, low cost differential amplifier, cuts through common mode noise problems to reveal low voltage signals. With NEW gains from 1X to 1000 X and band widths from 20 KHz to 1.2 MHz , DFA-5 is the test accessory to help you work with signals from DFA5 5 Volts to 5 microVoltes. Only $\$ 129.00$.
Serial Port Problems ? ? ? Check out Serial ! ! Our lowcost serial channel analyzer only $\$ 99.00$.

Allison Technology Corporation
2006 Finney Vallet Rd., TX. 77471 U.S.A.
800-980-9806 or 281-239-8500
http://www.atcweb.com atc@accesscomm.net

RF Data Modules

AMTRANSMITTER
-Small size: $17.78 \times 11.43 \mathrm{~mm}$ -CMOS/TTL input

- No adjustable components -Low Current. 4 mA typical. $\bullet 418 \mathrm{MHz}$ or 433.92 MHz OOK - Simple to integrate -simply add antenna, data and power - Range up to 250 ft .
-Wide supply range, $2-14 \mathrm{Vdc}$ -SAW controlled - stability -Also available in DIL package

AM-RT5 \qquad .. \$12.10

AM RECEIVER
-Compact size: $38.1 \times 13.7 \mathrm{~mm}$ -On-board data recovery. CMOS -Low current. 2.4mA typical -2 kHz data rate. CMOS/TTL output -5Vdc operation

- On 418 MHz or 433.92 MHz (4 xx) - No adjustable components
-Patented Laser Trimmed component -High stability
-Sensitivity:-105dBm
- Available also in 0.8 mA version

AM-HRR3-4xx \$10.95
\qquad
EM TRANSCEIVER
\bullet Only $23 \times 33 \times 11 \mathrm{~mm}$ Up to 40 k bps data rate 19200 baud with ASCII Up to 500ft. range
5 v operation
0.25 mW into 50

- 418 or 433 MHz FM
-Fast Ims enable
Direct interface to 5 V CMOS -Auto TX/RX changeover

RS232 TRANSCEIVER MODULES

4,800 to $38,400 \mathrm{bps}$ half duplex
-3-wire RS232 interface

- μ Controller with user EEPROM -RS232 interface protected to $\pm 15 \mathrm{kV}$ -Data packetizing performed by user - Auto TX/RX changeover - 418 MHz and 433 MHz versions - Range up to 500 ft (0.25 mW ver.) 0.25 mW \& 10 mW versions - Reset switch and status LED's $\bullet 7.5-15 \mathrm{~V}$ de via DB9 connector, 20 mA BIM-4xx-RS232 \$139.30

Up to 19,200 bps haif duplex 3 wire RS232 interface -Range up to 500 ft -Transparent data packetizing Supports 8 or 9 bit protocols - Self test function - Reset Switch \& Staus LED's -1/4 wave wire antenna on board - Available in a Simplex Tx/Rx pair.(RTcomTX \& RTcomRx) $\bullet 7.5 \mathrm{~V}-15 \mathrm{Vdc}$ operation $\cdot 7.5 \mathrm{~V}-15 \mathrm{Vdc}$ operation Transceiver... Transmitter. Receiver \qquad TTcom 1

Tel: (416)236-3858 Fax: (416)236-8866

ABACOM
TECHNOLOGIES

Metric
 Equipment Sales, Inc.

Fax: 510-264-0886 www.metricsales.com

Scopes, Meters, Analyzers, Power Supplies, Signal Generators, Counters, Recorders and more

Hewlett-Packard, Tektronix, Fluke, Dranetz, TTC, Anritsu, Wavetek, Keithley, and more

Test \& Measurement Instruments
Over 7000 Models • 6-Month Warranty Save $\mathbf{3 0 - 9 0} \%$ • 5-Day Free Trial

The basic (unbiased) CMOS inverter stage has an input capacitance of about 5pF and an input resistance of near-infinity. Thus, if the output of the Figure 18 circuit is fed directly to such a load, it shows a voltage gain of $x 30$ and a bandwidth of 3 kHz when R1 has a value of 1 MO ; it even gives a useful gain and bandwidth when R1 has a value of 10 M , but consumes a quiescent current of only $0.4 \mu \mathrm{~A}$.

PRACTICAL CMOS

The CMOS linear amplifier can easily be used in either its standard or micropower forms to make a variety of fixed-gain amplifiers, mixers, integrators, active filters, and oscillators, etc. A selection of such circuits is shown in Figures 19 to 23.

Figure 19 shows the practical circuit of an $\times 10$ inverting amplifier. The CMOS stage is biased by feedback resistor R2, and the voltage gain is set at $\times 10$ by the R1/R2 ratio. The input impedance of the circuit is 1 MO , and equals the R1 value.

Figure 20 shows the above circuit modified for use as an audio 'mixer' or analog voltage adder. The circuit has four input terminals, and the voltage gain between each input and the output is fixed at unity by the relative values of the 1 MO input resistor and the 1 MO feedback resistor.

Figure 21 shows the basic CMOS amplifier used as a simple integrator.

Figure 22 shows the linear CMOS amplifier used as a crystal oscillator. The amplifier is linearly biased via R1 and provides 180° of phase shift at the crystal resonant frequency, thus enabling the circuit to oscillate. If the user wants the crystal to provide a frequency accuracy within 0.1% or so, Rx can be replaced by a short and C1-C2 can be omitted. For ultra-high accuracy, the correct values of Rx-C1-C2 must be individually determined (the diagram shows the typical range of values).

Finally, Figure 23 shows a 'micropower' version of the CMOS crystal oscillator. In this case, Rx is actually incorporated in the amplifier. If desired, the output of this oscillator can be fed directly to the input of an additional CMOS inverter stage, for improved waveform shape/amplitude. NV

