# SILICON RECTIFIER HANDBOOK

ENGINEERS' GUIDE TO SILICON RECTIFIER APPLICATIONS

R

\$1.50

## TEST DEPARTMENT.

## SILICON RECTIFIER HANDBOOK

#### Technical Editor

Bob Dale Applications Engineering

#### Associate Editor

William Max Ivey Technical Information Center

#### Contributors

Bob Dale Applications Engineering Rex Ivins Applications Engineering

**Technical Editorial Assistance** 

Ralph Greenburg Applications Engineering

#### Art Supervisor

Stan Bennett Technical Information Center

## Copyright 1966 by MOTOROLA, INC.

The following terms used in Motorola Semiconductor Handbooks are trademarks of Motorola Inc.: (M), MOTOROLA, Band-Guard, Compatible, Designers (Data Sheets), Elf, Epic, Epicaps, Handylab, MECL, Meg-A-Life, Meg-A-Life II, MIDA, 0-pf, Star, Surmetic, Twins.

Motorola Multi-cell rectifier fabrication process - patents pending.

Circuit diagrams are included as a means of illustrating typical semiconductor applications, and the complete information necessary for constructional purposes is not necessarily given. The information in this handbook has been carefully checked, and is believed to be entirely reliable, but no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola, Inc. or others.

#### INTRODUCTION

The rapid progress of semiconductor technology in the last decade has made it increasingly difficult for electronic workers to remain well informed. Motorola's series of semiconductor device handbooks, each dealing with a unique field of fundamental importance, places within the grasp of every engineer and technician up-to-date knowhow in his field of interest.

This rectifier handbook satisfies a growing need to have conveniently assembled in one handy reference volume, design information on recently expanded silicon rectifier capabilities. Silicon rectifiers may now be used in many applications, impossible only a few years ago — yet, a comprehensive rectifier handbook has not been published in recent years.

Also, there exists an ever-present need to inform the uninitiated engineer or technician. True, the rectifier is not an "exotic" device, requiring daily study to keep up-to-date. Nevertheless, new engineers enter the power-control field constantly without the practical experience useful for designing circuits. This rectifier handbook has been compiled by engineers with years of industrial experience. New technical men, by reading the Motorola Silicon Rectifier Handbook, may "cash-in" on this practical knowledge.

Finally, Motorola's rectifier line represents the most complete range of capabilities in the industry. The Motorola Silicon Rectifier Handbook attempts to introduce these capabilities—pointing out where each may be used to the greatest advantage.

#### ACKNOWLEDGEMENT

The editors would like to thank the many people at Motorola and elsewhere who made this rectifier handbook possible. In particular, we would like to thank Tom Ruggles and Bill Yee for their help in preparing the sections on rectifier fabrication and paralleling. We would also like to thank Toni McKeown for her excellent job on manuscript typing.

Bob Dale

William Max Ivey



#### TABLE OF CONTENTS

| CHAPTER 1 SEMICONDUCTOR THEORY                                     | Page |
|--------------------------------------------------------------------|------|
| Introduction                                                       | 1-1  |
| Electrical Properties of Semiconductor Material                    | 1-2  |
| Impurities in Semiconductors                                       | 1-5  |
| The P-N Junction                                                   | 1-8  |
| Diode Capacitance                                                  | 1-9  |
| Diode Voltage-Current Relationship                                 | 1-11 |
| P-N Junction Turn-Off Theory                                       | 1-12 |
| CHAPTER 2 RECTIFIER PRODUCTION TECHNIQUES                          |      |
| Introduction                                                       | 2-1  |
| P-N Junction Fabrication                                           | 2-1  |
|                                                                    |      |
| CHAPTER 3 SILICON RECTIFIER RATINGS AND CHARACTERIST               | ICS  |
| Introduction                                                       | 3-1  |
| Maximum Ratings                                                    | 3-1  |
| Electrical Characteristics                                         | 3-4  |
| Thermal Characteristics                                            | 3-5  |
| Data Sheet Curves                                                  | 3-5  |
| CHAPTER 4 SINGLE-PHASE RECTIFIER CIRCUIT                           |      |
| Introduction                                                       | 4-1  |
| Rectifier Circuit Performance Characteristics                      | 4-1  |
| Single-Phase Half-Wave Rectifier Circuit with Resistive            |      |
| Load                                                               | 4-2  |
| Single-Phase Half-Wave Rectifier Circuit with Capacitive           |      |
| Filter                                                             | 4-4  |
| Single-Phase Half-Wave Rectifier Circuit with Inductive<br>Filter  | 4-8  |
| Single-Phase Full-Wave Rectifier Circuits (Resistive               |      |
| Load)                                                              | 4-10 |
| Single-Phase Full-Wave Rectifier Filters                           | 4-14 |
| Single-Phase Full-Wave Rectifier Circuit with Capacitive<br>Filter | 4-15 |
| Single-Phase Full-Wave Rectifier Circuit with Inductive            |      |
| Filter                                                             | 4-17 |
| Single-Phase Full-Wave Rectifier Circuit with L-Section            |      |
| Filter                                                             | 4-17 |

|                                                                         | Page |
|-------------------------------------------------------------------------|------|
| CHAPTER 5 MULTIPHASE RECTIFIER CIRCUITS                                 |      |
| Introduction                                                            | 5-1  |
| General Voltage and Current Relationships in Polyphase                  |      |
| Rectifiers                                                              | 5-1  |
| Three-Phase Star Rectifier Circuit                                      | 5-5  |
| Three-Phase Star Rectifier Circuit with<br>Resistance-Inductance Load   | 5-7  |
| Three-Phase Inter-Star Rectifier Circuit                                | 5-8  |
| Three-Phase Full-Wave Bridge Circuit                                    | 5-9  |
| Three-Phase Double-Wye Rectifier Circuit with<br>Interphase Transformer | 5-11 |
| Six-Phase Star Rectifier Circuit                                        | 5-13 |
| Six-Phase Full-Wave Bridge Circuit                                      | 5-14 |
| CHAPTER 6 RECTIFIER VOLTAGE MULTIPLIER CIRCUITS                         |      |
| Introduction                                                            | 6-1  |
| Voltage Doubling Circuits                                               | 6-1  |
| Voltage Tripling Circuits                                               | 6-5  |
| Voltage Quadrupling Circuits                                            | 6-7  |
| CHAPTER 7 MISCELLANEOUS DIODE CIRCUITS                                  |      |
| Introduction                                                            | 7-1  |
| Arc Suppression                                                         | 7-1  |
| AC and DC Switches                                                      | 7-4  |
| Waveform Selector                                                       | 7-5  |
| Diode Regulators                                                        | 7-6  |
| Diodes as Nonlinear Resistors                                           | 7-7  |
| Other Diode Circuits                                                    | 7-7  |
| CHAPTER 8 SERIES CONNECTION OF SILICON RECTIFIERS                       |      |
| Introduction                                                            | 8-1  |
| Equivalent Circuit of Series Diodes                                     | 8-1  |
| Device Consideration for Series Rectifiers                              | 8-2  |
| Achieving Equal Voltage Distribution with Resistors                     | 8-3  |
| Achieving Equal Voltage Distribution by Device Matching                 | 8-4  |
| Proper Usage of Shunting Capacitors                                     | 8-5  |

|                                                                                                                                                                                                                              | Page                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| CHAPTER 9 PARALLEL OPERATION OF SILICON RECTIFIERS                                                                                                                                                                           | 8-                                                                    |
| Introduction                                                                                                                                                                                                                 | 9-1<br>9-2<br>9-2                                                     |
| Current Balancing Reactors                                                                                                                                                                                                   | 9-3<br>9-6                                                            |
| CHAPTER 10 OVERCURRENT PROTECTION OF SILICON RECTIF                                                                                                                                                                          | IERS                                                                  |
| Introduction       Failure Mechanism in Silicon Diodes         Current-Limiting Fuses and Their Applications       Placement of Fuses                                                                                        | 10-1<br>10-1<br>10-2<br>10-3                                          |
| CHAPTER 11 PROTECTION OF SILICON RECTIFIERS AGAINST<br>VOLTAGE TRANSIENTS                                                                                                                                                    |                                                                       |
| Introduction       Causes of Voltage Transients         Detection of Transients       Detection of Transients         Suppression of Voltage Transients       CHAPTER 12         THERMAL DESIGN OF SILICON RECTIFIERS        | 11-1<br>11-1<br>11-1<br>11-2                                          |
| IntroductionMounting and Cooling of Silicon RectifiersLead Mounted RectifiersPress-Fit RectifiersStud-Mounted RectifiersCommercial Heat SinksNatural Convection Heat SinksForced Air CoolingHeat Sink Emperical Verification | 12-1<br>12-2<br>12-4<br>12-4<br>12-7<br>12-8<br>12-8<br>12-8<br>12-11 |
| CHAPTER 13 RECTIFIER TEST CIRCUITS Introduction Basic Test Circuits Recovery Time Test Circuit Rectifier Assembly Tests Bridge Output Voltage.                                                                               | 13-1<br>13-1<br>13-2<br>13-4<br>13-5                                  |
|                                                                                                                                                                                                                              |                                                                       |

T

 $\int$ 

Π

Π

1

Π

T

| CHAPTER 14 RELIABILITY OF MOTOROLA MULTICELL<br>POWER RECTIFIERS |     |
|------------------------------------------------------------------|-----|
| Life Test                                                        | -1  |
| Equipment Usage Life Test                                        | -2  |
| Conclusion                                                       | -2  |
| CHAPTER 15                                                       |     |
| Introduction                                                     | -1  |
| Rectifier Selection Guide                                        | -2  |
| Rectifier Case Outlines                                          | -4  |
| Rectifier Replacement Chart                                      | -8  |
| Rectifier Data Sheets                                            | -14 |
| Thermal Derating Graphs                                          | -37 |
| Assembly Selection Guide                                         | -42 |
| Assembly Case Outlines                                           | -44 |
| High-Voltage Assembly Data Sheets                                | -46 |
| Silicon Rectifier Stacks                                         | -48 |
| Custom Assemblies                                                | -54 |
| BIBLIOGRAPHY                                                     | -1  |
| APPENDIX I                                                       | -3  |
| ABBREVIATIONS AND SYMBOLS 16                                     | -6  |
| INDEX                                                            | -8  |

Page

#### CHAPTER 1

#### Semiconductor Theory

#### Introduction

The phenomenon of rectification in a two-terminal device, i.e., greater conductance in one direction than in the other, occurs at the junction of two dissimilar conductors. This rectification effect was first noticed in the junction of copper sulfide and magnesium and later in the junctions of copper/cuprous oxide, selenium/iron, and selenium/aluminum. Rectifiers using these junctions have all been quite popular as a result of their relative high efficiency and their low cost when compared to tube-type devices. As a group, they are known as polycrystalline devices since they are actually formed of millions of individual crystal junctions in parallel. More recently, junctions in single-crystal semiconductor materials, such as germanium and silicon (monocrystalline devices) have replaced the polycrystalline junctions in most rectifier applications.

The polycrystalline devices as a group are characterized by moderate forward voltage drops per cell (100 millivolts for copper oxide to about 1 volt for selenium types), fairly low reverse breakdown voltages (63 volts for the best selenium) and a forward-to-reverse current ratio of about 10. In order to obtain higher reverse voltage capability, cells commonly are connected in series. This also increases the forward voltage drop of the rectifier system and reduces rectification efficiency. These rectifiers are limited, in general, to cell temperatures of  $85^{\circ}$ C to obtain a reasonable device life.

Forward voltage drops in monocrystalline devices are about the same as for polycrystalline junctions, but the reverse voltages are more than an order of magnitude higher. In addition, the forward-to-reverse current ratios reach 10,000 in germanium and approach 1 million in some silicon cells. It can readily be seen that the monocrystalline rectifier offers far greater rectification efficiency and, as a result of the reduction of heat generated in the rectification process, the rectifier system size may be considerably reduced compared with an equivalent polycrystalline system.

Within the monocrystalline group, the two most common types of cells are silicon and germanium. The low forward drop of germanium is at times a decided advantage; however, the relatively low temperature limit of  $100^{\circ}$ C and the inherent sensitivity to transient voltage and current peaks seriously limit the usability of this material. All these limitations make the silicon rectifier the most practical of the presently manufactured rectifiers for most circuits. Its high reverse-voltage capability (up to 1500 volts in a single junction), its low reverse current, and its high operating temperature (175° to 200°C) more than compensate for its slightly higher forward-voltage drop compared with germanium. This handbook, there-

fore, will be devoted primarily to the discussion of silicon rectifiers in theory and practice.

To understand the operation of silicon rectifiers, some knowledge of basic semiconductor theory is necessary. In the following sections, the most important properties of this semiconductor material are discussed. A qualitative discussion of the p-n junction follows, with emphasis on factors which affect various rectifier parameters.

#### **Electrical Properties of Semiconductor Materials**

The crystal structure of silicon and germanium consists of a regular repetition in three dimensions of a unit cell in the form of a tetrahedron with an atom at each corner. This configuration is shown for two dimensions in Figure 1-1.



#### Figure 1-1. Two-Dimensional Representation of Silicon Lattice

The atomic structure of germanium (atomic number, 32) and silicon (atomic number, 14) is such that both of these elements have four valence electrons in the outer shells; that is, the atoms are tetravalent. These elements are found in Group IV of the periodic table. From basic chemistry, we know that the number of electrons in the outer shell of the atom determine its chemical and electrical properties, and that an atom with eight electrons in its outermost shell is relatively stable. This stability is attained in a pure germanium or silicon crystal by sharing electrons; that is, each electron in the valence shell of one atom is shared by a neighboring atom in the tetrahedral structure. As a result, each atom claims not only its own valence electrons, but an additional electron from each of four neighboring atoms. This electron sharing stabilizes each atom and imparts to the pure semiconductor crystal a low conductivity despite the fact that there are only four electrons in the valence shell of each individual atom. Moreover, the covalent bond serves to keep each atom tightly bound within a crystal lattice structure, as shown in Figure 1-1. Ideally, at very low temperatures, this crystal structure contains very few free electrons and behaves as an insulator.

The electrons within the crystal lattice possess energy, since they are constantly in motion. From solid-state physics and quantum mechanics, we know that each electron exhibits a definite and discrete energy level.

This energy level is dependent upon the momentum of the electron and the radius of the electron from the nucleus of the atom. This concept leads to the energy-band theory of solids. Although the concept of energy bands is complex, a brief explanation can be given with the aid of the simplified diagram of Figure 1-2.



Figure 1-2. Simplified Energy Bands in Solids

Here the innermost energy bands are neglected because electrons in these bands are tightly bound to the nucleus of the atom and contribute nothing to the electrical conductivity of the solid. It is the valence band and those bands directly above the valence band which determine the electrical properties of the materials. In Figure 1-2, the valence band is separated from the conduction band by an energy-band gap. This gap is called the forbidden-energy band because electrons do not exist in the crystal at these energy levels. This is because of the discrete energy levels associated with electrons in solids. The conduction band receives its name from the fact that the energies associated with electrons in this band permit electrical conduction through the solid. In intrinsic semiconductors and insulators, the valence band is completely filled and the conduction band is empty at the temperature of absolute zero. At room temperature, some electrons in the valence band will acquire enough energy to break their covalent bonds and move into the unfilled energy states in the upper (conduction) energy band. The primary difference between an intrinsic semiconductor, an insulator, and a good conductor is the size of the energyband gap. This difference is illustrated in Figure 1-3. In the case of the





insulator, the forbidden band is so large that, at room temperature, very few electrons acquire sufficient energy to raise them into the energy levels of the empty conduction band. In semiconductors, the forbidden band is much narrower, so that, at room temperature, a large number of electrons may be excited into the conduction band. In conductors, such as metals, the energy bands overlap, leaving many unfilled energy states in or very near the valence band. Thus, metals have very high conductivities even at very low temperatures.

As previously stated, when the temperature of the semiconductor is increased, some of the electrons within the crystal will acquire enough energy to break their covalent bonds. This phenomenon is called electronhole generation. It is responsible for the presence of current carriers in the intrinsic semiconductor. When the covalent bond is broken, the electron is excited to the conduction state, and can move about within the semiconductor. The absence of the electron in a covalent bond is called a hole. The importance of the hole is that it may serve as a current carrier, just as an electron serves as a current carrier. The existence of the incomplete covalent bond, or hole, makes it relatively easy for a neighboring electron to leave its covalent bond to fill this hole. An electron moving from a bond to fill a hole leaves a hole in its initial position. Thus, the hole appears to move in a direction opposite to that of the electron. This is illustrated in Figure 1-4, where [in 4(a)] the hole exists in the sixth position. The electron moves from position 7(a) to fill the hole at position 6(a). The hole now appears in position 7(b) and has effectively moved to the right.

## 

#### Figure 1-4. Mechanism by which a Hole Contributes to Conductivity

The concept of conduction by holes in semiconductors does not involve the free electron since hole flow takes place within the valence band, while the electron flow occurs within the conduction band. Thus, we can see that a hole can move through the semiconductor crystal and act as a current carrier just as the electron does, and that both electrons and holes contribute to current flow in a semiconductor. Holes, however, have the character of positive charges, the magnitude of which are equal to that of an electron. In the pure semiconductor, the number of holes is equal to the number of free electrons. Thermal agitation continues to produce new electron-hole pairs while other electron-hole pairs disappear as a result of recombination. The average time either charge exists as a carrier is known as the lifetime. The lifetime of the current carriers has many important effects on the switching characteristics in rectifiers.

With each electron-hole pair generated, two current carriers are created – the electron and the hole. These carriers move in opposite di-

rections when under the influence of an electric field, however, since the charges they carry are opposite in sign, the net current contributed by each is in the same direction. With increasing temperature, the density of the electron-hole pairs increases and, correspondingly, the conductivity increases. The intrinsic concentration of current carriers in the semiconductor is given by the following expression:<sup>1</sup>

$$n_i^2 = np = A_0 T^3 e^{-(E_g/kT)}$$
 (1-1)

where n<sub>i</sub> = intrinsic carrier concentration

 $n = number of free electrons/cm^3$ 

 $p = number of holes/cm^3$ 

k = Boltzman's constant

- $E_{g}$  = forbidden-band energy
- $A_0 =$ proportionality constant
- T = temperature in<sup>°</sup>K

From Equation (1-1), it can be seen that the number of free carriers increases quite rapidly with increases in temperature. It will be shown later in this paper that this is not desirable with most semiconductor devices, since it drastically limits the uses of these devices.

#### Impurities in Semiconductors

Semiconductor materials have no practical application in their intrinsic form. To obtain useful semiconductor devices, controlled amounts of impurities are introduced into a crystal. Precise control of these impurities is the most important requirement of fabricating semiconductor materials. The process of adding impurities to silicon or germanium is called doping. Doping may be accomplished by several different methods. Alloying and diffusion are two common methods currently in use. In doping a semiconductor crystal, elements from Group III or Group V of the periodic table are introduced into a silicon or germanium crystal. The electrical conductivity that results from impurity doping is referred to as extrinsic conduction.

If pentavalent elements such as antimony, phosphorus, or arsenic are introduced into the intrinsic semiconductor crystal, some of the silicon or germanium atoms will be displaced by the impurity atoms. This is illustrated in Figure 1-5(a). The ratio of impurity atoms to parent atoms can be as small as one impurity atom to  $10^{18}$  parent atoms. Thus, it is most probable that the impurity atoms will be completely surrounded by parent atoms. Four electrons of the impurity atom will form covalent

<sup>1</sup> Phillips, Transistor Engineering, p. 51, McGraw-Hill, 1962.

Millman, Vacuum Tube and Semiconductor Electronics, p. 82, McGraw-Hill, 1958.

bonds with the four surrounding atoms and the fifth electron will be free to act as a current carrier [Figure 1-5(a)]. The pentavalent impurity is called a "donor", because it gives up electrons, and the material is said to be n type because it has free electrons (negative charges).



Figure 1-5. Impurity Atoms in the Semiconductor Crystal

If a trivalent impurity atom, such as boron or indium, is added to the semiconductor crystal, parent atoms will again be displaced. Now, however, the electrons surrounding the impurity atom cannot form a stable set of covalent bonds. There will be one incomplete bond due to the 3electron structure of the impurity atom, and this incomplete bond constitutes a hole. This condition is shown in Figure 1-5(b). The hole formed by the trivalent atom easily accepts neighboring electrons (as described previously). This type of impurity is called an acceptor impurity and forms a p-type semiconductor material. The p-type refers to the fact that the current carriers act as positive charges. Although the impurity atoms exist in the extrinsic materials as positive and negative ions, the material is still electrically neutral.

Electron-hole generation due to thermal excitation occurs whether the semiconductor is intrinsic or extrinsic. However, the doping of silicon

or germanium with n-type impurities decreases the number of holes available in the extrinsic semiconductor. The decrease is brought about because the large number of electrons present increases the rate of recombination of holes with electrons. By a similar argument, the number of electrons in the semiconductor is reduced by doping with p-type impurities. The doping of semiconductors has two important effects. It increases the conductivity of the intrinsic material while, at the same time, producing current carriers which are predominantly holes or electrons. In the n-type semiconductor, the electrons are the majority carriers and the holes are minority carriers. In p-type materials, the holes are majority carriers and the electrons are minority carriers.

Figure 1-6 shows the simplified energy diagrams for extrinsic semiconductors. For an n-type material, Figure 1-6(a), the positive impurity ion is less than 0.05 electron volt below the conduction band. At this energy level, the free electron is readily excited into the conduction band. It requires less than 1.1 electron volts to raise an electron from the valence band to the conduction band. For the p-type material, Figure 1-6(b), the negative impurity ions are less than 0.02 electron volt above the valence band of energies. Thus, electrons from the valence band will become bound to the acceptor atoms leaving holes in the conduction band available for conduction. Therefore, conduction by holes occurs in the valence band for p-type material and conduction by electrons occurs in the conduction band.



Figure 1-6. Energy Diagrams for Extrinsic Semiconductors

At this point it is best to introduce a term known as the Fermi level. The Fermi level is a reference energy level above and below which all energies may be conveniently measured. The Fermi level is defined as that energy level at which the probability of finding an electron N energy units above the level is equal to the probability of finding an absence of an electron N energy units below the level. The Fermi level for intrinsic crystals is midway between the valence band and the conduction band. The importance of the Fermi level becomes apparent in the discussion of the basic p-n junction.

#### **The P-N Junction**

When a p-n junction is formed, an equilibrium condition results; the Fermi levels of the two materials have aligned. This then may be stated as a fundamental law; the Fermi levels align when the junction is formed in a single crystal. A simple analogy of this could be considered with two volumes of water, one being higher than the other. Upon joining of the two volumes, the level of both reaches the same height. A p-n junction energy level diagram is shown in Figure 1-7. A p-n junction can be formed only by a chemical process within a single crystal. If separate pand n-type crystals were joined mechanically, a polycrystalline semiconductor would be the subsequent result. This type device will not give rectification.



Figure 1-7. Energy Diagram for an n-p Junction: (a) Energy Diagram for n- and p-type Semiconductors; (b) Equilibrium Energy Diagram for an n-p Junction

Accompanying the formation of the p-n junction is a region known as the depletion zone. This zone is so called because within it there is an absence of holes and excess electrons. This depletion zone is also referred to as the space charge zone because the acceptor and donor ions are fixed and charged electrically. This space charge forms a barrier to current flow.

When an external battery is applied with the positive output attached to the p layer, the junction is in the forward-biased state. The external voltage source causes the holes in the p region to move from the positive source potential to the negative potential. An opposite action occurs in the n material. These two actions cause the depletion zone to shrink, thereby causing less resistance to majority carrier current flow.

When the applied battery or source potential is placed with the negative potential attached to the p layer, the junction is in the reverse-biased state. The holes in the p region are drawn toward the negative terminal while the electrons in the n region are drawn to the positive terminal. This resultant action causes the depletion zone to increase in thickness, subsequently creating a large resistance for majority carrier flow.

The reverse current tends to maintain a relatively constant value at all voltages up to a voltage called the junction breakdown voltage. In this voltage region, current conduction across the junction interface increases rapidly and the diode is often destroyed by heating. There are two causes of voltage breakdown in semiconductor diodes. One is called avalanche breakdown, and the other zener breakdown.

Avalanche voltage breakdown can be thought of as an electrical multiplication process. A schematic representation of this process is shown in Figure 1-8.



Figure 1-8. Avalanche Breakdown in the p-n Junction

In the avalanche process, a free electron acquires enough energy from the applied voltage (which exists across the very narrow junction interface) to accelerate it sufficiently such that when it collides with a fixed electron, it knocks it free. These electrons are again accelerated until each suffers a second collision, resulting in further electron multiplication. The higher the applied voltage the more rapid the electron multiplication. The voltage across the junction does not increase substantially, since the energy of the avalanche electron is limited by the critical impact velocity.

Under zener breakdown, the actual breakdown of the semiconductor is initiated through the direct rupture of the covalent bonds due to an exceptionally strong electric field which is developed across the junction. Zener breakdown is more prevalent in very narrow junctions where the field intensity becomes very high. In wider junctions, avalanche breakdown is more prevalent, since the impressed voltage is not confined to such a narrow region. In junction diodes, the junction will recover when the magnitude of the reverse voltage is reduced below the breakdown voltage provided the diode junction has not been damaged by excessive temperatures while operating in the breakdown region.

#### **Diode Capacitance**

The uncovered ions in the depletion region of the p-n junction create a capacitive effect within the diode. This capacitance is called the transition or space-charge capacitance. The boundaries of the depletion

region may be thought of as the parallel plates of a capacitor and the value of this capacitance is given by the following expression:

$$C_{\rm T} = \frac{\epsilon A}{W_{\rm D}} \tag{1-2}$$

where  $\epsilon$  = dielectric constant of the material

A = area of the junction

 $W_{D}$  = width of the depletion region

The width of the depletion region is proportional to the reverse bias voltage, that is, the number of uncovered charges in the depletion region increases with increases in reverse bias voltage. Thus, the magnitude of the transition capacitance is directly proportional to the junction area and inversely proportional to the magnitude of the applied reverse bias voltage.

When the p-n junction is forward-biased, another capacitance is established which effectively swamps out the transition capacitance. For the normal p-n junction, one region is heavily doped whereas the other is lightly doped. If the p region is heavily doped, holes are injected into the n region when the junction is forward-biased. This process is called minority carrier injection. When holes from the p region are injected into the n region, they become minority carriers and will diffuse away from the junction and recombine with electrons. As a result of this recombination, the hole density falls off exponentially with distance from the junction. The rate of change of charge with applied voltage is the diffusion capacitance or the storage capacitance. The diffusion capacitance is directly proportional to the mean lifetime of the holes in the n region and inversely proportional to the forward dynamic resistance of the diode. This relationship is given by the equation:

$$C_{D} = \frac{\tau_{P}}{\gamma}$$
(1-3)

where  $C_{D}$  = diffusion capacitance

 $\tau_{\mathbf{p}}$  = mean lifetime of holes

 $\gamma$  = dynamic resistance of the diode

The time constant  $\gamma C_D$  limits the usefulness of the diode at high frequencies. When a reverse bias is applied to the diode (after conducting in the forward direction) a large current flows in the rectifier. The reverse bias voltage is in the direction which forces the stored charge carriers across the junction. Thus, the large reverse current flows until the minority carriers stored in the n region are either swept across the junction or recombined with electrons. The time required to remove the stored charge and to raise the back resistance to a high value is called the reverse or back recovery time. The back recovery time of the diode is not only a function of the time constant,  $\gamma C_D$ , but is also a function of the external circuit.

#### **Diode Voltage-Current Relationship**

The ideal p-n junction follows the voltage-current relationship as predicted by the simple first-order theory as developed by Shockley. This relationship is expressed by the following equations:

 $V = \frac{kT}{q} \ln \left(1 + \frac{I_F}{I_R}\right)$ 

$$I_{F} = I_{R} (e^{qV/kT} - 1)$$
 (1-4)

(1-5)

where  $I_F =$  forward junction current

 $I_{\mathbf{R}}$  = reverse junction current

- k = Boltzman's constant
- T = absolute temperature
- q = electronic charge
- V = voltage across the junction

A plot of the ideal diode characteristics is shown in Figure 1-9. This shows that for any reverse voltage, in excess of a few tenths of a volt, a small reverse current is produced which remains essentially constant. When a forward voltage is applied, the forward current increases exponentially.



#### Figure 1-9. Ideal Diode Characteristics

An ideal rectifier diode has very low forward resistance and a very high reverse resistance. To create a diode with a low forward drop and a high reverse voltage capability, it is necessary for the semiconductor layer on one side of the junction to be highly doped with impurities (low resistiv-

ity) and the opposite layer to have a low doping level (high resistivity). If the p region is more heavily doped with impurities than the n region, it will have a greater number of current carriers and becomes the emitter.

#### P-N Junction Turn-Off Theory

The characteristics of a diode under turn-off conditions may be explained by using a turn-off test circuit such as the one shown in Figure 1-10. Figure 1-10 consists of a diode in series with a resistor placed across some fixed power supply. The polarity of the power supply may be reversed with the aid of a double-pole double-throw switch. Assume initially that the switch is connected so that the diode is biased in the forward direction. The induced voltage causes a steady-state current flow I<sub>F</sub> in the diode and load as shown in Figure 1-10. The I<sub>F</sub> =  $(V - V_D)/R_L$ .



Figure 1-10. Diode Turn-Off Time Test Circuit

When the p-n junction is biased in the reverse direction for the majority carriers, it is biased in the forward direction for the minority carriers. The application of forward bias will, due to carrier action, increase the minority carrier density in both the anode and cathode sides of the junction. The minority carrier density in the highly doped p layer will be greater than in the n layer. In order to stop the  $I_F$  by reversing the external source voltage, it is necessary for the minority carriers to return to the junction. This travel of minority carriers takes a finite time. The diode will remain forward-biased until the minority carrier density at the junction becomes less than the equilibrium value. The finite time that it takes to return to equilibrium is known as storage time  $t_c$ .

#### CHAPTER 2

#### **Rectifier Production Techniques**

#### Introduction

A brief familiarity with the techniques used in rectifier fabrication and testing can provide the engineer additional insight when he is faced with rectifier application problems. By better understanding the rectifier's capabilities and limitations he can more effectively utilize the device. This chapter discusses the various stages of the rectifier fabrication and testing process without belaboring the reader with unnecessary details concerning each specific step. The process described here is actually employed by Motorola in the construction of high-voltage power rectifiers, and differs only slightly for other types.

#### **P-N Junction Fabrication**

#### CRYSTAL GROWING

Crystals for Motorola rectifiers are grown by the Czochralski technique, a widely used process which begins with ultra-pure polycrystalline silicon. The polycrystalline silicon is melted down, and then allowed to slowly solidify into a single large crystal of silicon (monocrystalline). This large crystal is then sliced into many thin silver-dollar shaped sections, called wafers. After further processing, these wafers will become the rectifier die.

The crystal growing process begins by loading chunks of polycrystalline silicon, along with carefully controlled quantities of certain impurities, into a quartz crucible. Although the impurities amount to only several parts per billion of silicon, they can greatly change the electrical characteristics of the semiconductor crystal. Consequently, their concentration must be carefully controlled. The crucible, supported by a carbon holder, is placed in an induction heating furnace. Next, a monocrystalline seed of silicon, possessing the same lattice structure and impurity concentration as the desired crystal, is lowered into the molten misture. Only a minute quantity of the seed crystal is allowed to melt, before the mixture temperature is lowered sufficiently for recrystallization to begin. The seed crystal is now withdrawn from the molten mixture at such a rate that the crystal grows uniformly. When the crystal is completely grown it undergoes testing for net impurity polarity, resistivity, and minority carrier lifetime, as well as several mechanical parameters. It is then sliced into wafers for further processing.

#### THE PROCESSING OF THE WAFER

After the basic intrinsic wafers have been prepared they are sent to the wafer preparation station (see Figure 2-1). At this station the wafers are coated on one side with a boron dopant and on the other side with a phosphorus dopant. The wafer is then placed in a furnace, the elevated **Rectifier Production Techniques** 

temperature diffusing the dopants into the silicon wafer in precisely controlled amounts. Thus, this diffusion process produces a p-n junction within each wafer.



Figure 2-1. Flow Chart Illustrating the Major Steps of Wafer Preparation and Cell Assembly

An important step immediately follows the diffusion. When the wafers have adequately cooled, they are immersed in etchants. The etchants perform a number of important functions such as the separation of the wafers and removal of surface stresses. After the wafer separation is complete, they are rinsed and dried prior to a controlled sand blast pattern. Once again, the wafers are subjected to a cleaning solution for surface preparation. Gold makes an excellent soldering media, however, unfortunately, gold will not electrolytically deposit on silicon. Consequently, a nickel plate deposit is first deposited on the silicon, in order to provide a gold interface. The nickel is deposited on both faces of the silicon wafer.

The next process takes place at the dicing etch-cut station. At this station the nickeled wafer is masked and sprayed with an acid resistant

#### **Rectifier Production Techniques**

material. The mask is so patterned so that the etch will produce a contoured edge around the periphery of the die. This contour helps create high-voltage devices, by producing a longer voltage path and, consequently, reducing surface breakdown. If no surface breakdown is possible, then the rectifier voltage maximum rating will be limited by bulk breakdown only. The masked wafer is now placed in an etch-out which removes all the uncovered silicon, leaving only the required die size. Consequently, from one large wafer, many individual p-n junctions are obtained. The die are then thoroughly cleaned and made ready for actual rectifier assembly. Between each of these stations a quality control department performs many tests to insure that the die has the desired electrical and mechanical characteristics.



#### Figure 2-2. Cut-Away View of Basic Rectifier Cell Illustrating Mechanical Assembly Details

A new phase of rectifier assembly now begins, the semiconductor die having been properly formed must now be integrated into the proper mechanical assembly to produce the finished rectifier. The die first goes to the solder assembly station. This phase of rectifier assembly may be more easily explained by referring to the mechanical cut-away view (Figure 2-2). The first step is the insertion of the molecular sieve into the steel housing. This sieve serves two purposes. One, it centers the components inside the case. This centering is very important in the prevention

#### **Rectifier Production Techniques**

of high-voltage arc-over, electrical shorts, and thermal fatigue failures. The molecular sieve also serves the function of collecting contaminates which sometimes cause surface malfunction. This contaminate reduction is especially effective in reducing low-voltage rectifier failure, since the low-voltage type cell never reaches surface breakdown in ordinary use. The lower voltage cells do not receive any elaborate surface coatings, such as those that the higher voltage rectifiers receive at a later state. (Due to this highly effective surface preparation, the molecular sieve is removed from the higher voltage rectifiers after component alignment is complete.) After the molecular sieve is placed in the case, a solder preform is ininserted with it. This solder preform is simply a thin leaf of solder with a very high melting point (sometimes known as hard solder). A disk of copper is placed on top of this solder preform to improve the thermal resistance characteristics of the rectifier. At this point in the fabrication process the rectifiers are divided into two subgroups, those with anodeto-case polarity and those with cathode-to-case polarity. The standard polarity rectifier being the cathode-to-case version, with anode-to-case configurations available on request. A second solder preform is then placed on top of the semiconductor die and a copper disk is placed on top of the solder. The top of the die may seem to be a strange place to place this copper disk, however, it has been found that considerable improvement may be obtained in thermal resistance ratings.

Actually this copper disk improves the surge current capabilities considerably. A third solder preform is placed on top of the copper disk for lead bonding. The lead is not joined to the header or cap at this time, however, the cap is placed on the assembly for alignment of the S bend lead. The entire assembly is now placed in a belt-type oven which melts the solder, fusing the diode into nearly finished form. Now the cap and molecular sieve are removed, and the assembly is placed in an etchant for a short period. Next, the diode assembly is washed with a cleaning solvent and rinsed in water. The assembly is dried at an elevated temperature. At the next station, the surface of the diodes is coated to protect the assembly from contaminating environmental conditions. After the surface protective coating is applied, the diode is covered and baked at an elevated temperature under controlled conditions. This completes the final device surface treatment.

Now the header is replaced on the case assembly with a small solder ring on top of it. The solder is melted in a high temperature oven creating a solid bond between the header and the lead. Next, the outside of the header is welded to the case and the device has been completely sealed. A final bake-out process is used to stabilize the device.

The diode is given a copper plating prior to final test.

Each rectifier has its dynamic forward voltage drop measured at about five times its rated current. During this phase of the testing, the devices are grouped according to forward voltage drop characteristics. All other tests are conducted with one group of matched devices: the reverse voltage is measured at a maximum leakage, both at room temperature and at 150°C case temperature.

From this point in the production many varieties may be designed from the one basic rectifier. Figure 2-3 shows the construction of the 1N249B, 1N250B, 1N2135A, and the 1N1198A. The higher current diodes are then constructed by paralleling as many as 48 diodes (1,000 amps).

**Rectifier** Production Techniques





#### CHAPTER 3

#### Silicon Rectifier Ratings and Characteristics

#### Introduction

A thorough understanding of rectifier ratings and characteristics is one of the absolutely essential ingredients in the preparation of the design engineer. A fair question might be: What are ratings and characteristics. Well, a rating is a value assigned under specified test conditions to the device by its manufacturer which the manufacturer assets will enable the device to operate safely and satisfactorily. Operation of a device beyond its rating may cause immediate failure or gradual degradation of the device. A characteristic may be defined as a measurable value obtained under specified test conditions which is inherent on any given device.

This chapter attempts to explain those ratings and characteristics which are found on manufacturers data sheets. Each term will be fully defined. A short explanation will follow each definition.

#### Maximum Ratings

#### V<sub>RM(rep)</sub>: MAXIMUM REPETITIVE PEAK-REVERSE VOLTAGE

The maximum repetitive peak-reverse voltage is defined as the maximum allowable instantaneous value of the reverse voltage, including all repetitive transient voltages, but excluding all nonrepetitive transient voltages which occur across a rectifier or rectifier stack (Figure 3-1).



Figure 3-1. Reverse Voltage Waveform

The maximum reverse voltage rating is limited by the amount of reverse power being dissipated. Therefore,  $V_{RM(rep)}$  is primarily dependent on two rectifier properties: one is the p-n junction itself, and the other is the case design. The reverse heating is proportional to the reverse power which is given by the product of the reverse voltage and the reverse leakage current [Equation (3-1)]. As the reverse voltage is increased, reverse leakage current will increase according to the V-I characteristics of each device. Unless the heat can be dissipated by the case, the junction temperature will rise rapidly. Increased junction temperature will cause a further increase in the reverse leakage current, which will further increase the junction temperature, etc. The mutual effects of the junction temperature and the reverse leakage current can lead to a condition called thermal runaway, in which the temperature increase is too high, causing device destruction.

The  $V_{\rm RM(rep)}$  rating is obtained at the worst-case conditions for each registration-number rectifier, thus assuring that the device will not suffer thermal runaway as long as  $V_{\rm RM(rep)}$  is not exceeded. The diode is rated in the following manner: It is placed in a controlled elevated-temperature environment, precisely set to the maximum hot junction operating temperature, and then subjected to either a reverse dc voltage or a half sine-wave of voltage. Its reverse leakage current is simultaneously recorded. If this leakage current is below the rated leakage for this typenumber device, the voltage is increased until the maximum rated leakage current is actually obtained. In this manner, each device is actually tested at its maximum rated leakage current. Many manufacturers will test for  $V_{\rm RM(rep)}$  under dc conditions, since that test procedure can be easily reproduced by the user. The  $V_{\rm RM(rep)}$  value should never be exceeded under steady-state conditions. For most applications a rectifier with a  $V_{\rm RM(rep)}$  of about 2.5 times the maximum expected peak repetitive voltage should be used.

$$P_{rev} = V_{RM(rep)} \times I_{RM} \text{ or } \overline{P} = V_{DC} \times I_{DC}$$
 (3-1)

## V<sub>RM(wkg)</sub>: MAXIMUM WORKING PEAK-REVERSE VOLTAGE

The maximum working peak-reverse voltage is defined as the maximum allowable instantaneous value of the reverse voltage, excluding all repetitive and nonrepetitive transient voltages, which occurs across a rectifier diode or rectifier stack. This is the normal peak line voltage. The  $V_{RM(wk\sigma)}$  would be the minimum voltage rating of the diode.

#### V<sub>r</sub>: MAXIMUM DC REVERSE BLOCKING VOLTAGE

The maximum dc reverse blocking voltage is defined as the maximum allowable value of the reverse voltage, excluding all repetitive and nonrepetitive transient voltages, across a rectifier or rectifier stack.

#### V<sub>RM(nonrep</sub>): MAXIMUM NONREPETITIVE PEAK-REVERSE VOLTAGE

The maximum nonrepetitive peak-reverse voltage is the maximum allowable instantaneous value of the reverse voltage including all nonrepetitive transient voltages, but excluding all repetitive transient voltages, across a rectifier stack. Most Motorola rectifiers **are** tested under reverse voltage conditions of half-wave, single-phase, 60-cycle peak.

(3-2)

3-2

#### Io: MAXIMUM AVERAGE FORWARD CURRENT

The maximum average forward current is defined as the maximum allowable value of the average forward current (averaged over full cycles under stated conditions). The test conditions used for most Motorola rectifiers are 60 Hz, single phase, with a resistive load, and case temperature at some elevated value. I<sub>0</sub> is measured by a dc ammeter which integrates the current over a full cycle. Note that most rectifier data sheets have a thermal derating curve. It is a plot of the allowable average forward current based on the RMS rating of the device.

Any semiconductor rectifier contains a certain amount of inherent resistance. Although these resistance values are usually quite small at high currents they can produce significant heating. For this reason, RMS current rating is the limiting power dissipation factor. The maximum RMS current is independent of the case temperature. Ohmic heating is thermal effect completely distinct from average power junction heating, consequently, in most cases, due to cooling techniques (especially when the diode has natural convection cooling) its RMS limit is not reached. In some exceptional cases where excellent diode cooling exists, the RMS current limit can be reached and this is the reason for the sharp cutoff of the average current in the derating curves.

## I<sub>FM(rep)</sub>: MAXIMUM REPETITIVE PEAK-FORWARD CURRENT

The maximum repetitive peak-forward current is defined as the maximum allowable repetitive instantaneous peak-forward current permitted under static conditions of case temperature and  $V_{\rm RM(rep)}$  following each peak current. It is important to note that the RMS device limit may still not be exceeded. This type of rating is especially effective in applications possessing large capacitive loads where the peak-to-average ratios can be quite high.

## I<sub>FM(surge)</sub>: MAXIMUM NONREPETITIVE SURGE CURRENT

The maximum nonrepetitive peak surge current is defined as the maximum allowable nonrepetitive peak-forward current under the prescribed conditions of  $V_{RM(rep)}$  (following surge), forward load current, peak surge current, case temperature (prior to surge current), and the frequency.

The rectifier must be capable of blocking  $V_{RM(rep)}$  immediately after the surge current for at least 100 surges without degradation. The surge rating implies that the rectifier is operating at its rated  $V_{RM(rep)}$ , maximum average current  $I_0$ , and at its corresponding case temperature. Successive surges may not be applied until the rectifier has returned to its normal operating conditions. This normally requires 5 to 10 seconds. The surge current is a single-phase 60 Hz sinusoidal. The total waveform is composed of the normal load current and the superimposed surge current. Surge rating for test conditions other than those specified would, naturally, vary. It is evident upon examining the surge specifications for a given device, that the RMS rating and the maximum junction temperature have both, in all likelihood, been exceeded. Consequently, these conditions should be avoided in applications whenever possible. In an ideal circuit design, the circuit's short-circuit capabilities should be equal to or less than  $I_{FM(rep)}$ . This, of course, is not always economical and should not limit the designer from using  $I_{FM(surge)}$  when necessary.

## I<sup>2</sup>t: (MAXIMUM RMS CURRENT)<sup>2</sup> SECONDS

The (maximum current)<sup>2</sup> seconds is defined as that maximum value of the forward nonrecurring overcurrent capability for 8.3 milliseconds or less. This value should never be exceeded – the protective fusing element should have an  $I^2t$  value less than the rectifier, so that the circuit "opens" before the rectifier can be damaged. It is important to note that this value is dependent on the number of surges. Calculations may be made using Equation (3-3). For further information, see the overcurrent protection chapter.

 $I^2 t = (RMS)^2 t$ 

(3-3)

## = (Peak one cycle surge $\times$ 0.707)<sup>2</sup> 8.3 ms for one cycle

## T<sub>J</sub>: MAXIMUM AND MINIMUM INSTANTANEOUS OR CONTINUOUS JUNCTION OPERATION TEMPERATURE

The maximum and minimum instantaneous or continuous junction operating temperature is defined as the allowable value of temperature that exists at any instant of time without causing failure. The maximum value cannot exceed the temperature at which the device was classified for  $V_{\rm RM(rep)}$ . In general, the cooler any semiconductor is operated the better it will function, but cracking of the crystal structure may occur below the rated minimum temperature. For further information, see the thermal characteristics chapter.

#### T<sub>stg</sub>: MAXIMUM AND MINIMUM STORAGE JUNCTION TEMPERATURE

The maximum and minimum storage junction temperature is defined as the allowable value of temperature that exists during device storage. Note that either excessively hot or excessively cold temperatures can damage the device even though the device is not operating. Temperatures below  $-65^{\circ}C$  can cause cracking of the crystal lattice with subsequent voltage degradation or catastrophic failure.

#### **Electrical Characteristics**

### V<sub>F(av)</sub>: AVERAGE FORWARD VOLTAGE DROP

The average forward voltage drop is defined as the average voltage which appears across the device over one complete cycle under the stated conditions of frequency, average forward current, single-phase operation, resistive load, case temperature, and rated reverse voltage.

#### VE: DC FORWARD VOLTAGE DROP

The dc forward voltage drop is defined as that voltage which appears across the rectifier under the stated conditions of dc current and case temperature. This specification has gained widespread popularity since it is not difficult to accurately measure these small voltages.

#### IR(av): AVERAGE REVERSE LEAKAGE CURRENT

The average reverse leakage current is defined as the average value of the reverse leakage current over one complete cycle under the stated conditions of forward current, reverse voltage, 60 Hz sinusoidal, singlephase operation, resistive load, and case temperature. This specification serves as a comparison of the rectifier and an ideal switch of zero leakage in open position.

#### I<sub>D</sub>: DC REVERSE LEAKAGE CURRENT

The dc reverse leakage current is defined as that leakage current through the rectifier in the reverse direction under the stated conditions of reverse voltage and case temperature. This value is often used in practice since it is easy to measure.

#### **Thermal Characteristics**

### $\theta_{ic}$ : STEADY-STATE DC THERMAL RESISTANCE JUNCTION-TO-CASE

The steady-state dc thermal resistance junction-to-case is defined as the effective thermal resistance from junction-to-case. The effective thermal resistance is responsible for the temperature rise per unit power dissipation above the temperature of the external reference point. Since there are no transient temperature excursions, the equation  $\Delta T = P\theta_{jc}$  may be used. For further information, refer to the next section.

#### Data Sheet Curves

#### FORWARD DROP CHARACTERISTICS

The forward drop characteristics curve is a plot of the instantaneous forward voltage in volts versus the instantaneous forward current in amperes at a constant junction temperature. From this one curve, nearly all of the important rectifier operating curves may be generated. There are usually at least two curves on the graph – which illustrate the effect of temperature on the forward voltage drop. These two curves will intersect at some elevated temperature, the point of intersection approximately equal to or greater than the peak surge current rating of the device. The curves are maximized so that all devices with this specification would have less power dissipation than would be given by  $V_F$  and  $I_F$  using this curve to estimate the values. Since rectifiers usually operate at a junction temperature above the room temperature, it is desirable to use the maximum allowable operating junction temperature to calculate the average power dissipation.

#### FORWARD POWER DISSIPATION

The forward power dissipation curve is a plot of the average forward power dissipation in watts versus the average forward current in amperes at a constant junction temperature. There are many different methods used to calculate the power dissipation in a rectifier. The easiest method makes the assumption that the power dissipation curve is sinusoidal as used in Equations (3-4) and (3-5).

$$\overline{\mathbf{P}} = \frac{1}{2\pi} \int_0^{\pi} \mathbf{P}_{\text{peak}} \sin \theta d\theta \qquad (3-4)$$

where  $P_{peak} = I_{peak} \times V_{peak}$ .

$$I_{av} = \frac{1}{2\pi} \int_{0}^{\pi} I_{peak} \sin \theta d\theta$$
 (3-5)

A power dissipation example: Find  $\overline{P}$  dissipated when 12 amperes is flowing through an MR1120 (refer to MR1120 data sheet)

$$I_{av} = \frac{I_p}{2\pi} \int_0^{\pi} \sin \theta d\theta = \frac{I_{peak}}{\pi}$$

Therefore, 12 amperes  $\times \pi = I_{\text{peak}} = 37.8$  amperes

$$V_F$$
 at 37.8 amperes peak = 0.99 volts when  $T_j = 150^{\circ}C$   
 $P_{peak} = I_{peak} \times V_{peak} = 37.8 \times 0.99 = 37.4$  watts

Assuming power waveform is sinusoidal

$$\frac{P_{av}}{P_{peak}} = 0.318 \qquad P_{av} = 37.4 \times 0.318 = 11.9 \text{ watts}$$

Note that at 12 amperes average current (single phase), the forward power dissipation is 12 watts. This method does not yield an exact solution since the power waveform is not sinusoidal, however, it is extremely rare for any device to exceed the values calculated by this method. Values for other devices may be obtained by using the same procedure as illustrated here—only changing the limits of integration.

Two other power estimation methods might be mentioned. One uses graphical integration to average the power waveform over the  $2\pi$  time interval. The second method makes the assumption that the V<sub>F</sub> versus I<sub>F</sub> square plot is linear out to four times the RMS rating of the device, and then uses Equation (3-6).

$$\overline{P} = \left(\frac{I_{av}}{S}\right)^{3/2} A + I_{av} V_0$$

(3-6)

where  $V_0$  = the voltage intercept

#### A = constant 1.55

S = the square function slope

A useful method of measuring the power dissipation is the following. First the rectifier is mounted on a heat sink, capable of holding the junction temperature below its maximum rated value when its rectifier is carrying full average current. A thermocouple is used to measure the heat sink temperature. The terminals of the rectifier are connected to an appropriate low-voltage high-current dc supply. The rectifier current, forward voltage, ambient temperature, and the heat sink temperature are all recorded. Using this data, a plot of the curve  $\Delta$ T-versus-power, where  $\Delta$ T = Theat sink - Tambient and power = VI. Next, the circuit is connected as shown in Figure 3-2(b).



Figure 3-2. Empirical P Schematic

R or  $V_{cc}$  is varied such that the average current is caused to vary from a low value to its maximum average current rating. As R or  $V_{cc}$  is varied, the data is recorded as indicated before. The set of such readings forms a graph as shown in Figure 3-3.

From Figure 3-3 it can be seen that the curve of the actual power versus  $I_{av}$  can be obtained by interconnecting the dotted lines.



Figure 3-3. Actual Power vs. Iav

From the average power curves, all power data necessary to calculate the needed thermal cooling media may be obtained. Also, note that no additional calculations have been performed to account for such losses as blocking-loss and switching-loss. This is because the relative powerloss in these modes is insignificant when compared to the current-produced losses. Should these effects become significant for any particular application, then the manufacturer will always provide this information.

#### MAXIMUM ALLOWABLE SURGE CURRENT

The maximum allowable surge current is a plot of  $I_{FM(surge)}$  versus the number of cycles at a 60 cps rate. This is a non-recurrent condition, and shows the allowable surge rating is dependent on the number of cycles. This is strictly an empirical test, consequently, many devices should be tested in order to insure a statistically significant result. After this failure data has been obtained, a safety-factor derating is added to enable the manufacturer to guarantee all devices under these conditions.

#### EFFECTIVE TRANSIENT THERMAL IMPEDANCE

The effective transient thermal impedance curve is a plot of the junction-to-case thermal impedance versus time. This data is rather difficult to obtain – the procedures being quite complex. In the interest of standardization, NEMA-EIA has created the following test conditions (reproduced from NEMA-EIA Standards for Silicon Rectifier Diodes and Stacks).

#### THERMAL RESISTANCE TESTS

The effective thermal resistance of a diode may be measured utilizing the temperature dependence of either the forward voltage drop or reverse current. However, the forward voltage drop has been demonstrated to have a more linear dependence on temperature and is, in general, more readily reproducible as shown in Figure 3-4 if a low-level metering current is used.

An effective thermal resistance measurement utilizing the temperature dependence of the forward voltage drop should be performed as follows:

- 1. Obtain a curve similar to Figure 3-4 by measuring the forward voltage drop as a function of junction temperature with the diode conducting a low-level metering current. This metering current should be chosen to produce negligible heating of the junction.
- 2. Heat the diode with a forward current,  $I_{F1}$ , allowing the case temperature to stabilize and carefully controlling the case temperature at the stabilized value. Interrupt this heating current for short periodic intervals and measure the forward voltage drop,  $V_{F2}$ , at a low-level metering current,  $I_{F2}$ , equal to the metering current used in par. 1. Record the case temperature,  $T_{C1}$ , the forward voltage drop at the end of the conduction period,  $V_{F2}$ , and the power dissipated,  $P_{F1}(P_{F1} \approx V_{F1} \times I_{F1})$ .

Silicon Rectifier Ratings and Characteristics



Figure 3-4. Linear Dependence of V<sub>F</sub> on T<sub>J</sub>

3. From the curve obtained in par. 1 a value of junction temperature at the end of the conduction period,  $T_{J2}$ , may be obtained for the forward voltage drop,  $V_{F2}$ , recorded in par. 2. The effective thermal resistance is then calculated from:

$$P_{jc} = \frac{T_{J2} - T_{C1}}{P_{F1}}$$

4. If it is not practical or convenient to obtain individual calibration curves, and it has been shown that the slope (M) of Figure 3-4 is uniform for a given group of devices, the value of  $T_{J2}$  may be obtained from:

$$\Gamma_{J2} = \frac{V_{F2} - V_{F3}}{M} + T_{J3}$$

where  ${\tt V}_{F3}$  is measured at a convenient value of  ${\tt T}_{J3}$  with the low-level metering current. Then,

$$c = \frac{(V_{F2} - V_{F3})/M + T_{J3} - T_{C1}}{P_{F1}}$$

θ

Then, because junction temperature even at steady-state conditions oscillates above and below the average junction temperature (due to pulsating current), an additional thermal impedance must be added to the dc thermal impedance. This additional term is known as the transient thermal impedance. This resultant additional thermal impedance is obtained by the same
method as above, except that the data is obtained for short periods of time. The time sampling method is used. These tests should be based upon hundreds of devices so that a statistically significant result can be obtained. A safety-derating factor is added to the performance curves to insure reliable operation.

#### MAXIMUM CURRENT RATINGS

The maximum current rating curve is a plot of the allowable average forward current versus the allowable case temperature. This curve is commonly called the current derating curve. For any given average current one may obtain, using this curve, the maximum allowable case temperature for reliable operation. The basis for such a set of curves must be an adequate set of life test data. Note that each current waveform has its own cutoff point. This is ude to the RMS current cutoff. For example, the MR1126 has a maximum average current of eight amperes per device in a six-phase star arrangement. This corresponds to 19 RMS. The corresponding case temperature curve must be calculated from Equation (3-7). This curve is used in all thermal calculations discussed in later chapters.

$$T_{J} - T_{C} = \theta_{jc} \overline{P}$$

$$T_{C} = T_{J} - \theta_{jc} \overline{P}$$
(3-7)

where  $T_{T}$  is the maximum operating temperature

 $\boldsymbol{\theta}_{jc}$  is the steady-state value for the specified current waveform

 $\overline{P}$  is at the average power of the given current waveform.

There are other techniques of calculating the case temperature. Many are quite complex and require access to a large-scale computing machine. Also, devices which may employ forced air or water cooling may require an improvement factor in order to accurately estimate the case temperature.

#### MAXIMUM STUD TORQUE

The maximum stud torque limit is defined as the allowable torque which may be applied to the threaded portion of the stud in a dry-friction condition without damage to either the p-n junction or the case. By using this torque, the rectifier can be seated adequately for thermal impedance. This parameter will be discussed more fully in the section on heat sink applications.

# CHAPTER 4

# Single-Phase Rectifier Circuits

### Introduction

Silicon rectifiers are often used in applications converting ac power to dc power. This function is usually accomplished by rectifying the ac waveform and removing the undesirable ripple with filters.

In the design and fabrication of practical ac-to-dc converters, it is necessary to employ considerable auxiliary equipment in addition to the basic rectifiers. Transformers, protective devices, and cooling apparatus are typical of the auxiliary equipment commonly used in such applications.

The transformer is usually used to change the supply voltage to the required dc output voltage. The rated current-handling capabilities of these power circuit transformers may usually be up-graded somewhat, for the following reason: transformers are usually rated for current-handling capabilities under sinusoidal test conditions. However, for many power circuits, the transformers carry nonsinusoidal currents – with the winding not carrying current continuously, but only intermittently, with lower transformer power dissipation being the result. Consequently, transformer current-handling ratings may be considered to be conservative estimates of their actual capabilities in most applications.

## **Rectifier Circuit Performance Characteristics**

Listed below are the terms frequently used in rectifier circuit design. Brief definitions are provided.

I<sub>ac</sub> = Effective value of all alternating components of the load current (ac meter current)

 $I_0$  = Average value of load current (dc meter current)

I<sub>RMS</sub> = Effective value of the total load current

$$I_{RMS} = \left(I_{ac}^2 + I_0^2\right)^{1/2}$$

 $F = Form factor = (I_{RMS}/I_0)$ 

 $\gamma$  = Ripple factor

$$\gamma = \left[ \left( \frac{I_{ac}}{I_0} \right)^2 - 1 \right]^{1/2} = \left[ F^2 - 1 \right]^{1/2}$$

 $\eta_{\rm R}$  = Rectification efficiency =  $(P_0/P_{\rm ac})(100)$ 

\*\*\*

#### PIV = Peak inverse voltage of rectifier

- $R_s = Total equivalent series resistance$ (source resistance plus diode resistance)
- $\omega = 2\pi f$  where f is the supply line frequency
- $R_{I} = Load resistance$
- $V_0 = dc$  output voltage
- V<sub>m</sub> = Peak voltage
- $P_0 = Average power$
- $I_s = Secondary RMS$  line current
- $V_s =$  Secondary RMS line voltage
- I<sub>p</sub> = Primary RMS line current
- $V_p$  = Primary RMS line voltage

Single-Phase Half-Wave Rectifier Circuit With Resistive Load



Figure 4-1. Half-Wave Rectifier.

The single-phase half-wave rectifier circuit with resistive load is shown in Figure 4-1. The waveform of the load voltage is illustrated in Figure 4-2. The current waveform, illustrated in Figure 4-2, is in phase with the load voltage.



Figure 4-2. Half-Wave Rectified Sine Wave.

The characteristics of the half-wave rectifier circuit may be obtained by analyzing the waveform of Figure 4-2. These characteristics may be calculated from the following expressions:

(1) Peak current through rectifier and load

$$I_{\rm m} = \frac{V_{\rm m}}{R_{\rm s} + R_{\rm L}}$$

(2) Peak inverse voltage

$$PIV = V_m = \sqrt{2} V_s$$

(3) Average load current

$$I_{0} = \frac{1}{2\pi} \left[ \int_{0}^{\pi} I_{m} \sin \theta d\theta + \int_{\pi}^{2\pi} \theta d\theta \right]$$
$$I_{0} = \frac{I_{m}}{\pi} = \frac{1}{\pi} \frac{V_{m}}{R_{s} + R_{L}}$$

$$I_{RMS} = \sqrt{\frac{1}{2\pi}} \left[ \int_{0}^{\pi} (I_{m} \sin \theta)^{2} d\theta + \int_{\pi}^{2\pi} \theta d\theta \right]$$

$$V_{RMS} = \frac{V_{m}}{2}$$

(6) Average load voltage

$$\mathbf{V}_{0} = \mathbf{I}_{0}\mathbf{R}_{\mathbf{L}} = \frac{\mathbf{I}_{m}\mathbf{R}_{\mathbf{L}}}{\pi} = \frac{\mathbf{V}_{m}}{\pi} \left( \frac{\mathbf{R}_{\mathbf{L}}}{\mathbf{R}_{s} + \mathbf{R}_{\mathbf{L}}} \right)$$

(7) Average power

(4)

(5)

$$P_{0} = I_{0}V_{0} = \left[\frac{V_{m}}{\pi(R_{s} + R_{L})}\right] \left[\frac{V_{m}R_{L}}{\pi(R_{s} + R_{L})}\right] = \frac{V_{m}^{2}R_{L}}{\pi^{2}(R_{s} + R_{L})^{2}}$$

(8) Efficiency

$$\eta_{\rm R} = \frac{P_0}{P_{\rm ac}}(100) = \frac{V_0 I_0}{V_{\rm RMS} I_{\rm RMS}}(100) = \frac{\left[V_{\rm m}^2 R_{\rm L} / \pi^2 (R_{\rm s} + R_{\rm L})^2\right]}{\left[V_{\rm m}^2 / 4(R_{\rm s} + R_{\rm L})\right]}(100) = \frac{40.6\%}{(1 + R_{\rm s} / R_{\rm L})}$$

(9) Ripple factor

$$\gamma = \left[ \left( \frac{I_{RMS}}{I_0} \right)^2 - 1 \right]^{1/2} = \left[ \frac{\pi^2}{4} - 1 \right]^{1/2} = 1.21 \text{ or } 121\%$$

Transformer construction characteristics:

(1) Secondary RMS voltage

$$V_{s} = \frac{V_{m}}{\sqrt{2}} = \frac{\pi V_{0}}{\sqrt{2} \sin \pi/2} = 2.22 V_{0}$$

(2) Secondary RMS line current

$$I_{s} = \frac{\pi \sqrt{(1/2\pi)(\pi/2 + \sin \pi/2)}}{\sin (\pi/2)} I_{0} = \frac{\pi I_{0}}{2} = 1.57 I_{0}$$

(3) Maximum transformer current (secondary)

$$I_{m} = \pi I_{0} = 3.14 I_{0}$$

$$I_m = 2I_s$$

(4) Primary RMS current

$$I_{0(RMS)} = \sqrt{I_{s}^{2} - I_{0}^{2}} = \sqrt{(1.57 I_{0})^{2} - I_{0}^{2}} = 1.21 I_{0}$$

Therefore,  $I_p = 1.21 (N_s/N_p)I_0$ 

(5) Secondary rating

$$V_{\rm s}I_{\rm s} = (2.22 V_0)(1.57 I_0) = 3.49 V_0I_0$$

(6) Primary rating

$$V_{p}I_{p} = (N_{p}/N_{s})V_{s}(1.21)(N_{s}/N_{p})I_{0} = (2.22V_{0})(1.21I_{0}) = 2.7V_{0}I_{0}$$

The above equations apply to a half-wave rectifier with a resistive load only. Although the dc resistance of the transformer is included in  $R_S$ , the reactance of the transformer has been neglected. The maximum theoretical rectification efficiency of the circuit is 40.6 per cent.

The ripple factor of the half-wave rectifier is 121 per cent - a rather large ripple. For this reason, filters are usually employed to reduce the ripple voltage. Reactive elements may also be used to filter the undesired ac sources.

# Single-Phase Half-Wave Rectifier Circuit With Capacitive Filter

Capacitive load filtering (as shown in Figure 4-3) is frequently used to reduce ripple current. The filtering action of this circuit depends on the basic fact that a capacitor stores energy. Therefore, we have a two energy-source system: the "charging" current through the diode, and the

capacitor discharge current. Figure 4-4 shows the voltage and current waveforms for the half-wave rectifier.



Figure 4-3. Half-Wave Rectifier Circuit with Capacitive Filter.

The change in voltage is given by the expressions, where  ${\rm T}_1$  is the capacitor discharge time.

$$E_{R} = \frac{10^{1}1}{C}$$

$$E_{R} = \frac{I_{0}V_{0}}{2fCV_{m}}$$

The output voltage is given by the expression

$$V_0 = \frac{V_m - I_0 / 4fC}{1 + I_0 / 4fCV_m}$$
(4-1)

The output ripple is calculated from

$$\gamma = \frac{I_0}{4fC\sqrt{3}} \left( \frac{1}{V_m} + \frac{1}{V_0} \right)$$
(4-2)

The diode peak voltage is

$$PIV \cong 2 V_{m} \tag{4-3}$$





forward current is large, the PIV may drop slightly below the value 2  $\rm V_m,$  but never below the value 1.75  $\rm V_m.$ 

It can be seen that the ripple associated with the output voltage can be greatly reduced. The ripple is quite dependent on the load resistance  $R_L$ , the capacitor C, and the frequency. Figure 4-5 is a plot of the ripple factor as a function of the parameter  $\omega R_T C$ .





By using capacitive filtering, highly repetitive peak current may be passed through the rectifier. The conduction angle is changed by capacitor charge and discharge, and rectifier conduction at different voltage levels. Figure 4-6 shows a plot of  $\rm I_m/\rm I_0$  as a function of  $\omega \rm R_LC$  with  $\rm R_S/\rm R_L$  as a parameter.

A plot of  $I_{RMS}/I_0$  versus  $\omega R_L C$  with  $R_S/R_L$  as a parameter is given by Figure 4-7.  $I_{RMS}$  is the effective value of the current in the rectifier.

When the ripple factor, the load resistance, and  $\omega$  are known, the required capacitance value may be determined. Additional series resistance may be required to limit the turn-on surge current to a safe value when the circuit is turned on. Occasionally, the initial surge current will be the primary determining factor in the selection of a rectifier for a given application. However, in general, the surge current, the peak repetitive current, and the RMS current must be known for proper device selection.







The charging rate of a capacitor is controlled by the  $R_sC$  time constant. If this value is small compared to the half-cycle period of the ac supply, the capacitor will charge in the first cycle of the line voltage. If not, the charging current will consist of several successive surges, the peak value of each surge decreasing exponentially in amplitude. Thus, the time constant of the charging current must be considered when selecting the rectifier element, if the initial surge current is the controlling factor.

It can be seen that the ratio of  $V_0/V_m$  approaches unity when  $\omega R_L C$  is large and  $R_s$  is small. For good regulation with varying load, the capa-





Figure 4-8.  $V_O/V_m$  as a Function of  $\omega R_L C$  with  $R_S/R_L$  as a Parameter.

citance should be as large as possible. Due to the high  $\omega R_L C$  required for low ripple and good regulation, the half-wave rectifier with a capacitive filter should be used where high voltage is required at low dc currents.

# Single-Phase Half-Wave Rectifier Circuit With Inductive Filter

The inductive filter circuit (shown in Figure 4-9) is frequently used to reduce ripple and inrush current. The filtering of the circuit depends on the basic property to oppose changes of current. This system has two energy sources, much like the capacitively filtered system with the series inductor replacing the discharging capacitor. The simple inductive filter is seldom used with a half-wave circuit, since it is a current operated filter. Figure 4-10 shows the effect of the inductance on the waveform of the output current.



Figure 4-9. Half-Wave Rectifier with Series Inductor.





The inductor acts as a high impedance to the harmonic components of the load current. When the current is above its average value, energy is stored in the inductor; when the current is below the average value, the stored energy is released. Figure 4-11 is a plot of the ripple factor as a function of  $\omega L/R_L$ .



Figure 4-11. Ripple Factor versus  $\omega L/R_L$ .



Figure 4-12. V<sub>O</sub>/V<sub>m</sub> versus  $\omega L/R_L$ .

When the inductive reactance is high, the peak currents through the rectifiers are limited to values slightly above the average current. From Figure 4-12, the value of the required inductance can be determined when the ripple factor, the load resistance, and the supply frequency are known.

The series inductor circuit has the advantages of lower peak currents through the rectifier and better voltage regulation. The maximum peak inverse voltage is  $V_{\rm m}$ , the peak value of the input voltage.

Since the effect of adding inductance to the circuit is an increase in the lag between voltage and current, it also results in a decrease in average load voltage. When the load resistance is large, the output voltage is the highest. When the output of a half-wave rectifier with series inductor is heavily loaded (low  $R_L$ ), the voltage will decrease. The curves (Figures 4-11 and 4-12) for designing inductive filters are used in the same way as those for capacitive filters.

# Single-Phase Full-Wave Rectifier Circuits (Resistive Load)

The single-phase push-pull full-wave rectifier is essentially the same as the half-wave circuit (Figure 4-2) except for the additional rectifier and transformer windings. Figure 4-13(b) shows the familiar bridge configuration. Both circuits have similar output characteristics, but the transformer ratings and rectifier peak inverse voltage are different.





The output voltage waveforms of the push-pull rectifier and the fullwave bridge rectifier are shown in Figure 4-14. If the transformer reactance is neglected, the current and voltage curves will be in phase and have the same waveform characteristics.



Figure 4-14. Full-Wave Rectified Sine Wave.

The full-wave push-pull rectifier with resistive load will have characteristics given by the following equations:

(1) Peak current through the load and rectifier

$$I_{m} = \frac{V_{m}}{R_{s} + R_{L}}$$

(2) Average load current

$$I_0 = \frac{1}{2\pi} \left[ \int_0^{\pi} I_{\rm m} \sin \theta d\theta + \int_{\pi}^{2\pi} (I_{\rm m} \sin \theta)^2 d\theta \right]$$

$$I_0 = \frac{2I_0}{\pi} = \frac{2V_m}{\pi(R_s + R_L)}$$

(3) Effective load current

$$I_{RMS} = \sqrt{\frac{1}{2\pi} \left[ \int_{0}^{\pi} (I_{m} \sin \theta)^{2} d\theta + \int_{\pi}^{2\pi} (I_{m} \sin \theta)^{2} d\theta \right]}$$

$$I_{RMS} = \frac{I_m}{\sqrt{2}} = \frac{V_m}{\sqrt{2} (R_s + R_L)}$$

(4) Effective transformer voltage

$$V_{\rm RMS} = \frac{V_{\rm m}}{\sqrt{2}}$$

(5) Average load voltage

$$\mathbf{V}_0 = \mathbf{I}_0 \mathbf{R}_{\mathbf{L}} = \frac{2 \mathbf{V}_m \mathbf{R}_{\mathbf{L}}}{\pi (\mathbf{R}_s + \mathbf{R}_{\mathbf{L}})}$$

(6) Average power to load

$$\mathbf{P}_{0} = \mathbf{V}_{0}\mathbf{I}_{0} = \left[\frac{2\,\mathbf{V}_{m}}{\pi(\mathbf{R}_{s} + \mathbf{R}_{L})}\right] \left[\frac{2\,\mathbf{V}_{m}\mathbf{R}_{L}}{\pi(\mathbf{R}_{s} + \mathbf{R}_{L})}\right] = \left(\frac{2}{\pi}\right)^{2} \frac{\mathbf{V}_{m}^{2}\mathbf{R}_{L}}{\left(\mathbf{R}_{s} + \mathbf{R}_{L}\right)^{2}}$$

(7) Efficiency

$$\eta = \frac{P_0}{P_{ac}} (100) = \frac{(2/\pi)^2 V_m^2 R_L / (R_s + R_L)^2}{(V_m / \sqrt{2}) (V_m / \sqrt{2} (R_s + R_L)} (100) = \frac{8}{\pi^2} \left( \frac{100}{1 + R_s / R_L} \right) \%$$

(8) Ripple factor

$$\gamma = \left[ \left( \frac{I_{RMS}}{I_0} \right)^2 - 1 \right]^{1/2} = \left[ \left( \frac{\pi}{2\sqrt{2}} \right)^2 - 1 \right]^{1/2} = 0.48 \text{ or } 48\%$$

Transformer characteristics:

Push-pull rectifier circuits

(1) Secondary RMS voltage

$$V_{\rm s} = \frac{V_{\rm m}}{\sqrt{2}} = \frac{\pi V_0}{2\sqrt{2}} = 1.11 \, {\rm E}_0$$

(2) Secondary RMS current per winding

$$I_{s} = \frac{I_{m}}{2} = \frac{\pi I_{0}}{4} = 0.785 I_{0}$$

(3) Maximum secondary current

$$I_{ms} = \frac{\pi I_0}{2} = 1.57 I_0 = 0.23 I_s$$

(4) Primary RMS current

$$I_{p} = \sqrt{2} \left( 0.785 I_{0} \right) \left( \frac{N_{s}}{N_{p}} \right) = 1.11 \left( \frac{N_{s}}{N_{p}} \right) I_{0}$$

(5) Secondary rating

$$2 V_{S}I_{S} = 2(1.11 E_{0})(0.785 I_{0}) = 1.74 E_{0}I_{0}$$

(6) Primary rating

$$V_{pp}I = (N_p/N_s)(V_s)(1.11)(N_s/N_p)I_0 = 1.23E_0I_0$$

Note that the secondary winding is utilized for one-half the cycle. Also, the RMS current is the same as for the half-wave circuit.

From an analysis of the circuit, it can be seen that the peak inverse voltage of the rectifier is twice the maximum value of the applied voltage per winding.

Bridge rectifier circuit characteristics

(1) Secondary RMS voltage

$$V_{\rm s} = \frac{V_{\rm m}}{\sqrt{2}} = \frac{\pi V_0}{2\sqrt{2}} = 1.11 \, {\rm E}_0$$

(2) Secondary RMS current

$$I_{s} = \frac{I_{m}}{\sqrt{2}} = \frac{\pi I_{0}}{2\sqrt{2}} = 1.11 E_{0} I_{0}$$

(3) Maximum secondary current

$$I_{\rm ms} = \frac{\pi I_0}{2} = 1.57 I_0$$

(4) Primary RMS current

$$I_{p} = \left(\frac{N_{s}}{N_{p}}\right)I_{s} = 1.11\left(\frac{N_{s}}{N_{p}}\right)I_{0}$$

(5) Secondary rating

$$V_{s}I_{s} = (1.11E_{0})(1.11I_{0}) = 1.23E_{0}I_{0}$$

(6) Primary rating

$$V_{SI_{S}} = (1.11 E_{0})(1.11 I_{0}) = 1.23 E_{0} I_{0}$$

The peak inverse voltage across the rectifier is equal to the peak value of the transformer secondary voltage.

Both of the circuits have the weak and strong points. In push-pull full-wave rectifiers, two windings are required, and each of these conducts for only half-time. Also, the peak inverse voltage across the rectifier is high. The full-wave bridge circuit requires two additional rectifiers increasing cost and power loss, but reducing the peak inverse voltage across each rectifier by 50 per cent (compared to push-pull rectifier). Also, the full-wave bridge circuit does not require transformers with high ratings.

Both full-wave rectifier circuits are considerably more efficient than half-wave rectifier circuits. The maximum full-wave efficiency is approximately twice the half-wave efficiency, and the ripple factor is reduced from 121 per cent to 48.7 per cent.

Even in view of this significant ripple factor reduction, the ripple associated with full-wave rectifiers is usually too great for most applications without filters.

### **Single-Phase Full-Wave Rectifier Filters**

Either capacitive or inductive filtering may be used in full-wave rectifier circuits. These filters are used in nearly the same manner for full-wave rectifier circuits as for half-wave circuits, but smaller values of L and C are usually sufficient to obtain the same ripple factor. Figure 4-15 shows the ripple factor for both inductive and capacitive filtering. This curve will be accurate only for  $R_c << R_T$ .





# Single-Phase Full-Wave Rectifier Circuit With Capacitive Filter

Using a capacitive filter, the designer can expect high peak currents in the half-wave rectifier circuit. Figure 4-16 illustrates this problem. I<sub>m</sub> is the repetitive peak current through the rectifier. Figure 4-17 shows the relationship of the RMS current of the rectifier and the average rectifier current as a function of  $\omega R_{\rm L}C$ .











The average value of the peak currents must be kept within the rated average half-wave rectifier current. Since the waveform is nonsinusoidal, a graphical method of determining the average current may be used.

Figure 4-18.  $V_O/V_M$  versus  $_{\it W}R_LC.$  The Output Voltage may be found if  $R_L$  is Varied.

The dc output voltage may be found from the equations

$$V_0 = \frac{V_m}{1 + I_0 / 4fCV_m}$$

and

$$V_0 = V_m - \frac{V_R}{2}$$

where  $V_R = I_0 T_1 / C$ .

The ripple factor  $\gamma$  is given by

$$\gamma = \frac{I_0}{4\sqrt{3} fCV_m}$$
(4-5)

(4 - 4)

### Single-Phase Full-Wave Rectifier Circuit With Inductive Filter

Several factors contribute to the lack of design equations for the single-phase full-wave rectifier circuit with inductive filter. One, the load current never reaches zero in the inductive load and this makes exact equations impractical for most applications. Second, since L sections and  $\pi$  filters produce better filtering characteristics, little work has been done in this area.

The dc output voltage is given by

$$V_0 = I_0 R_L = \frac{2 V_m}{\pi} = 0.90 V_s$$
 (4-6)

From the following equation it may be seen that  $\boldsymbol{V}_0$  decreases as  $\boldsymbol{I}_0$  increases

$$V_0 = \frac{2 V_m}{\pi} - I_0 I_0$$

where R is the resistance of the load circuit, excluding the load.

The ripple factor  $\gamma$  is given by

$$v = \frac{R_L}{3\sqrt{2}\omega L}$$
(4-7)

## Single-Phase Full-Wave Rectifier Circuit With L-Section Filter

The L-section filter (Figure 4-19) combines the decreasing ripple and increasing load of the series inductor with increasing ripple with increasing load of the shunt capacitor. The inductor appears as a high series impedance and the capacitor as a low shunt impedance to the harmonic terms.



Figure 4-19. The L-Section Filter

The filter circuit operates in the following manner: when  $R_L \rightarrow \infty$ , that is, under unloaded conditions ( $I_0 = 0$ ), the filter capacitor will charge to  $V_m$ , the peak voltage. The output voltage will therefore be equal to the peak value of the input voltage. As the load resistance decreases and the load current increases, the capacitors will charge and discharge at some rate of time. The average value of the output voltage will be less than  $V_m$ .

When the load current is small, the energy stored in the inductor will also be small and the inductor essentially out of the circuit. This accounts for the low current region as shown in Figure 4-20.



Figure 4-20. Regulation Curve for Full-Wave Rectifier with L-Section Filter.

Region 1 (Figure 4-20) is a discontinuous current operating mode. Region 2 is a continuous operating mode. As the load current is increased, the conduction angle increases until all diodes are operating in Region 2. As more current flows, the energy stored in the series inductor becomes a greater influencing factor.

The ripple components, clearly, are the even harmonics. Therefore, to minimize these terms, L should have a high reactance and C a low reactance at the second frequency. Since C is to have negligible reactance,

$$R_{L} \gg \frac{1}{2\omega C}$$

$$C = \frac{0.0562}{f\gamma R_{K}}$$
(4-8)

where  $R_{\kappa}$  is the bleeder shunt resistance.

Since the L-section filter is operated in Region 2 where the current flow is uninterrupted, and from the equation showing the amplitude of the fundamental component of the series inductor, it can be seen that the primary current is given by

$$i_{p} = \frac{V_{0}}{3\omega L} = \frac{I_{0}R_{L}}{3\omega L}$$
(4-9)

If the peak negative excursion of current does not exceed  $I_0$ , then the coil current will not be interrupted and the operation in Region 2 will be accomplished. Therefore,

$$L = \frac{0.471 + \gamma}{4\omega^2 C\gamma} = \frac{R_K}{3\omega} \left(1 + \frac{\pi}{0.471}\right)$$
(4-10)

The critical inductance is

$$L_{C} = \frac{R_{L}}{3\omega}$$
(4-11)

where  $R_{L}$  is the total resistive load.

The ripple factor is

$$\gamma = \frac{0.471}{4\omega^2 LC - 1}$$

$$\gamma = \frac{0.83}{\text{LC}} \quad \text{at 60 cps} \tag{4-12}$$

where L = henrys





The value of the bleeder resistor placed in shunt with the capacitor becomes obvious when the inductor is not a swinging choke type.  $R_K$  may be calculated from the following equation.  $I_K$  is assumed to be one-tenth the minimum load current.

$$R_{K} = \frac{V_{0}}{I_{K}}$$
(4-13)

Multiple L-sections have as ripple factor

$$\gamma = \frac{0.471}{(4\omega^2 L_1 C_1 - 1)(4\omega^2 L_2 C_2 - 1) \cdots (4\omega^2 L_N C_N - 1)}$$

$$LC = 1.76 \left(\frac{0.471}{\gamma}\right)^{1/N}$$
(4-14)

and

# CHAPTER 5

# Multiphase Rectifier Circuits

# Introduction

In applications involving very high power control, polyphase rectifier circuits are nearly always used. The basic reason for the selection of polyphase circuits is twofold: One, all large power sources, distributed by the power companies, are three-phase systems; second, semiconductor diodes approach optimum utilization in high polyphase operations. Polyphase circuits have many other desirable features, such as low ripple and high rectification efficiency.

In modern multiphase power systems, transformer design is of fundamental importance. In such applications the primary of the transformers is often connected in a delta configuration with the secondary windings connected as either a wye or delta configuration, or both. While the primary source of power is distributed as a three-phase system, phase transformation (with transformers) can yield six phases, 12 phases, or many other polyphases.

The silicon rectifier has made the use of polyphase circuits much more practical than earlier elements, such as tubes and selenium or copper oxide rectifiers. The reasons for the superiority of the silicon rectifier over all other types will become apparent in later sections of this chapter. The conversion of old systems to compact and efficient silicon rectifiers is a straightforward, uncomplicated procedure. Motorola's Semiconductor Applications Engineering department is always ready to provide assistance on your specific rectifier applications problem.

### General Voltage and Current Relationships in Polyphase Rectifiers

The analysis of polyphase rectifier circuits may be greatly simplified, if the transformers and rectifiers are idealized; that is, they are assumed to possess no resistance or leakage reactance. Naturally, in actual practice this is not the case. Losses are incurred due to resistances and reactances in the transformers and rectifiers which affect the output characteristics. However, allowances can be made for these losses, and highly accurate value obtained from such an analysis.

General expressions can be derived for polyphase rectifiers which greatly reduce the computations required in circuit design. Figure 5-1 shows the rectified voltage waveform for the general case of a multiphase rectifier circuit.

Conduction takes place through the rectifier with the highest voltage across it. It should be apparent from Figure 5-1 that neither the voltage nor the current is ever zero in the load, and that the current is relatively constant. The instantaneous load voltage of Figure 5-1 is equal to the voltage of the conducting phase, and is given by

$$V = V_m \sin \theta$$

where  $V_m$  = the peak-to-neutral voltage

m = the number of output pulses per cycle.





The dc load voltage is given by

$$V_{0} = \frac{V_{m}}{2\pi/m} \int_{(\pi/2) - (\pi/m)}^{(\pi/2) + (\pi/m)} \sin \theta d\theta$$
$$V_{0} = V_{m} \left(\frac{m}{\pi} \sin \frac{\pi}{m}\right)$$
(5-2)

The necessary line-to-neutral or line-to-line voltage,

$$V_{s} = \frac{\pi V_{0}}{\sqrt{2} \text{ m sin } (\pi/m)}$$
 (5-3)

The average current per phase is given by

$$I_{av} = \frac{I_m}{2\pi} \int_{(\pi/2) - (\pi/m)}^{(\pi/2) + (\pi/m)} \sin \theta d\theta$$

 $I_{av} = \frac{I_m}{\pi} \left[ \sin\left(\frac{\pi}{m}\right) \right]$ (5-4)

(5-1)

The RMS value of the secondary phase current is

$$I_{s} = \left[\frac{1}{2\pi} \int_{(\pi/2) - (\pi/m)}^{(\pi/2) + (\pi/m)} I_{m}^{2} \sin^{2} \theta d\theta \right]^{1/2}$$
$$I_{s} = I_{m} \left[\frac{1}{2\pi} \left(\frac{\pi}{m} + \frac{1}{2} \sin \frac{2\pi}{m}\right)\right]^{1/2}$$
(5-6)

From Equation (5-5)

$$I_{\rm m} = \frac{\pi I_0}{\rm m \sin (\pi/m)}$$

Therefore

$$I_{s} = \frac{I_{0}\pi \sqrt{(1/2\pi)[\pi/m + (1/2) \sin 2\pi/m]}}{m \sin (\pi/m)}$$
(5-7)

For m greater than or equal to 3, Equation (5-7) may be approximated by

$$I_{s} = \frac{I_{0}}{\sqrt{m}}$$
(5-8)

The utility factor, defined as the ratio of the dc power output to the load to the volt-ampere rating of the transformer bank, is commonly used to compare the quality of rectifier circuits. Thus, the utility factor may be expressed as

$$UF = \frac{V_0 I_0}{m V_s I_s}$$

$$UF = \frac{\sqrt{2}}{\pi} \sin \frac{\pi}{m}$$
(5-9)

Equation (5-7) is obtained by direct substitution of Equation (5-1) into Equation (5-5), and using the approximating relationship given in Equation (5-8). It has been found that the maximum utility factor is obtained with a three-phase system; beyond this point the utility factor decreases with increasing phases.

This indicates that a higher secondary kilovolt-ampere rating is required for a given dc power output as the number of phases increases. This is one of the principal disadvantages of high polyphase rectifier circuits. However, there are special six anode secondary winding connections which attain the reduced ripple factor of higher polyphase systems and still have the secondary utilization factor of the three-phase system.

The utility factor is also commonly referred to the primary side of the transformer. In this case,  $\rm V_{s}$  and  $\rm I_{s}$  are replaced by  $\rm V_{p}$  and  $\rm I_{p}$  in Equation (5-9).

A simple expression for the ripple factor can be obtained for the general polyphase rectifier system by applying Fourier analysis to the waveform. The resulting expression is given by

$$V_{\rm n} = \frac{V_{\rm mn}({\rm max})}{\sqrt{2} V_0} = \frac{\sqrt{2}}{\left[({\rm nm})^2 - 1\right]}$$
 (5-10)

where

m = the number of output pulses per cycle (number of rectifier anodes)

n = the order of the harmonic

 $\gamma_n$  = the ripple factor due to the n<sup>th</sup> harmonic

 $V_{max}$  = the peak voltage of the n<sup>th</sup> harmonic.

In Equation (5-10), the only harmonics involved are multiples of m. Thus, for m = 3, only the third, sixth, ninth, etc., harmonics contribute to the ripple voltage. The third harmonic is the fundamental frequency component.

The general expression given above describes any polyphase system with a common neutral where current flows in only one phase at a time. However, the expression is also valid if line-to-line voltages are used, and the current expressions are modified.

Leakage reactance in a transformer causes overlap, a period where current flows in two rectifiers of different branches at one time. Leakage inductance will not allow current in the individual phases to change instantaneously. The overall effects of overlap are to reduce the output of the rectifier circuits. This reduction, along with the voltage drop in the rectifier and transformer, may be used to correct from the idealized case. The expression is given by the following equation:

$$V = V_0 - \left(\frac{mX}{2\pi}I_0 + RI_0 + V_R\right)$$
 (5-11)

where V = actual output voltage

 $V_0$  = idealized output voltage

m = number of phases or elements

 $X = \omega L$ , the transformer leakage reactance

 $I_0 = output current$ 

**R** = transformer resistance per phase relative to secondary

 $V_{R}$  = voltage drop of the rectifier elements at  $I_{0}$ .

In order to determine the current direction one must construct a vector plot of each voltage phase against a vector projection plane. Figure 5-2 is such a plot.



Figure 5-2. Plot of Voltage Phase Versus Vector Projection Plane

The current path is determined by perpendicular lines projected from the vector projection plane to the vector plot. Referring to Figure 5-2, current will flow from A to N when there is a neutral connection, or from A to B when there is no neutral connection. This is a plot of ABC rotation. Studying this type of plot makes natural line commutation readily understood.

# **Three-Phase Star Rectifier Circuit**

The three-phase star rectifier circuit, often referred to as the three-phase half-wave rectifier, is illustrated in Figure 5-3. The load is resistive. The associated voltage and current waveforms are shown in Figure 5-4.



Figure 5-3. Three-Phase Star Rectifier Circuit

The circuit of Figure 5-3 is the simplest three-phase rectifier circuit; it employs only one rectifier per phase. It can be seen from Figure 5-4 that each phase lasts for  $2\pi/3$  radians, or  $120^{\circ}$  of each cycle, and that the load current is relatively steady.



Figure 5-4. Waveform for Three-Phase Star Circuit

General equations have been developed to explain the behavior of this type of circuit. From Equation (5-2),

$$V_0 = \frac{3}{\pi} V_m \sin \frac{\pi}{3} = 0.827 V_m = 0.827 \sqrt{2} V_s = 1.17 V_s$$
 (5-12)

From Equation (5-12),

$$V_{s} = 0.855 V_{0}$$

(5-13)

From Equation (5-5),

$$I_0 = \frac{3I_m}{\pi} \sin \frac{\pi}{3} = 0.827I_m$$
(5-14)

From Equation (5-7),

$$I_{s} = I_{m} \sqrt{\frac{1}{2\pi} \left(\frac{\pi}{3} + \frac{1}{2} \sin \frac{2\pi}{3}\right)} = 0.486 I_{m}$$
(5-15)

From Equation (5-8)

$$I_s = 0.586 I_0$$
 (5-16)

From Equation (5-14), 
$$I_m = 1.21 I_O$$
 (5-17)

The peak inverse voltage is given by

PIV = 
$$\sqrt{3} V_{\rm m} = \sqrt{3} V_0 / 0.827 = 2.09 V_0$$
 (5-18)

The fundamental ripple factor is

$$\gamma = \frac{\sqrt{2}}{\left[(3)^2 - 1\right]} = \frac{\sqrt{2}}{8} = 0.177$$
 (5-19)

The efficiency of the rectifier can be obtained by finding the ratio of the ac power output to the dc power output. This is given by the following expressions:

$$I_{\text{RMS(load)}} = \sqrt{3} I_{\text{s}} = \sqrt{3} (0.586) I_{0} = 1.015 I_{0}$$

$$\eta = \frac{P_0}{P_{ac}} (100) = \frac{I_0^2 R_L}{(1.015 I_0)^2 R_L} (100) = 97\%$$
(5-20)

This efficiency value represents the maximum conversion efficiency of the rectifier system, and should not be thought of as an overall efficiency.

The transformer ratings are obtained in a similar manner; the mean value of the secondary phase current is one-third of the dc output current. The RMS value of the ac component of the secondary is

$$\sqrt{I_{s}^{2} + I_{av}^{2}} = \sqrt{(0.586 I_{0})^{2} - (\frac{I_{0}}{3})^{2}} = 0.484 I_{0}$$

Therefore, the primary current is

$$I_{p} = 0.484 I_{0} \left( \frac{N_{s}}{N_{p}} \right)$$
(5-21)

The secondary rating is

$$3 V_{s}I_{s} = (3)(0.855) V_{0}(0.586) I_{0} = 1.50 V_{0}I_{0}$$
 (5-22)

and the primary rating is

$$3V_{p}I_{p} = 3\left(\frac{N_{p}}{N_{s}}\right)V_{s}(0.484)\left(\frac{N_{s}}{N_{p}}\right)I_{0} = 3(0.850)V_{0}(0.484)I_{0} = 1.24V_{0}I_{0}$$
(5-23)

It can be seen that the three-phase star rectifier system has a much lower ripple factor than the single-phase systems. The conversion efficiency is also much higher. The principal limitation of the three-phase star rectifier circuit is only one secondary phase conducts at a time, and, consequently, the transformer primary must be delta connected.

## Three-Phase Star Rectifier Circuit with Resistance-Inductance Load

The use of an inductive load in the star rectifier circuit smooths the current waveform through the resistive load. The analysis of this circuit is very similar to the preceding one, both the voltage waveform and the average voltage are the same as with the resistive load circuit. The inductor in series with the load resistance decreases the ac component of the load voltage. The smoothing factor is given by

$$\delta = \sqrt{1 + Q^2} \tag{5-24}$$

where Q is the ratio of the reactance  $X_L$  to the load resistance  $R_L$ . The ripple factor of the load is reduced by

$$\gamma_{\rm R} = \frac{0.177}{\sqrt{1 + Q^2}} \tag{5-25}$$

If the load is highly reactive, the load current becomes nearly constant.

#### Three-Phase Inter-Star Rectifier Circuit

The three-phase inter-star rectifier circuit does not suffer from many of the limitations of the three-phase star circuit. This circuit is shown in Figure 5-5.



Figure 5-5. The Three-Phase Inter-Star Circuit

The secondary windings consist of identical coils, with any pair of coils forming a phase, located on different branches of the transformer. Thus, two primary phases are carrying equal currents at the same time. Either a delta or a star-connected transformer may be used in this circuit.

The primary rating is reduced, since each primary phase passes current twice per cycle, but the secondary rating is increased due to the inter-star connection. The voltage across two coils of each phase is  $\sqrt{3/2}$  as great as that which exists in the three-phase star circuit. The secondary rating is  $2/\sqrt{3}$  times as great as the regular star circuit.

For the three-phase inter-star rectifier circuit m is equal to 3, and the same voltage-current values hold as with the three-phase star circuit. The transformer ratings are as follows:

$$V_{s} = \sqrt{3} V_{s1}$$
$$V_{s1} = \frac{V_{s}}{\sqrt{3}} = \frac{E_{0}}{2}$$

The primary phase carries current twice per cycle and is given by

$$I_{p} = \sqrt{2} \left( \frac{N_{s}}{N_{p}} \right) I_{s} = 0.825 \left( \frac{N_{s}1}{N_{p}} \right) I_{0}$$
(5-26)

The secondary rating is

$$5V_{s1}I_s = 6\left(\frac{E_0}{2}\right)(0.586I_0) = 1.75E_0I_0$$
 (5-27)

The primary rating is then

F

$$3 V_{p p} I_{p} = 3 \left(\frac{N_{p}}{N_{s1}}\right) V_{s}(0.825) \left(\frac{N_{s1}}{N_{p}}\right) I_{0} = 3 \left(\frac{E_{0}}{2}\right) (0.825 I_{0}) = 1.24 E_{0} I_{0}$$
(5-28)

# **Three-Phase Full-Wave Bridge Circuit**

The three-phase full-wave bridge circuit has a low ripple factor, and a high utility factor. Because of this, it is one of the most common rectifier circuits. A schematic of the circuit is shown in Figure 5-6. The voltage waveforms are shown in Figure 5-7.

Each conduction path through the transformer and load passes through two rectifiers in series; a total of six rectifier elements are required. Commutation in the circuit takes place every  $60^{\circ}$ , or six times



Figure 5-6. Three-Phase Full-Wave Bridge Circuit





per cycle. This reduces the ripple factor and increases the frequency of the fundamental harmonic voltage. Thus, with this circuit the low ripple factor of a six-phase system is achieved while still obtaining the high utility factor of a three-phase system.

For an analysis of this circuit, m is equal to six and  $\rm V_{g}$  is the line-to-line voltage. Using the general expressions

$$V_0 = V_m \frac{6}{\pi} \sin \frac{\pi}{6} = 0.956 V_m = 0.956 \sqrt{2} V_s = 1.35 V_s$$
 (5-29)

$$V_{s} = \sqrt{3} V_{s1}$$
 (5-30)

$$V_0 = 1.35 \sqrt{3} V_{s1} = 2.34 V_{s1}$$
 (5-31)

$$I_0 = 0.956 I_m \text{ or } I_m = 1.05 I_0$$
 (5-32)

Each rectifier carries current two times per cycle. Each secondary phase carries current four times per cycle. Thus, the RMS value of the rectifier current is given by:

$$I_{\text{RMS(element)}} = \frac{\sqrt{2} \pi I_0 \sqrt{(1/2\pi)[\pi/6 + (1/2)\sin 2\pi/6]}}{6 \sin \pi/6} = 0.580 I_0 \tag{5-33}$$

The secondary phase current is given by

T

$$I_{s} = \sqrt{2} I_{RMS(element)} = 0.820 I_{0}$$
 (5-34)

The peak inverse voltage is

PIV = 
$$\sqrt{3} V_{s1m} = \frac{\sqrt{3} \times \sqrt{2}}{2.34} V_0 = 1.04 V_0$$
 (5-35)

The transformer ratings are also easily computed

$$I_{p} = \left(\frac{N_{s}}{N_{p}}\right)I_{s} = 0.820\left(\frac{N_{s}}{N_{p}}\right)I_{0}$$

 $3\left(\frac{V_{s}}{\sqrt{3}}\right)I_{s} = 3\left(\frac{0.740 E_{0}}{\sqrt{3}}\right)(0.820 I_{0}) = 1.05 E_{0}I_{0} \text{ (star-connected secondary)}$ 

## Primary rating = secondary rating

A star or a delta-connected primary may be used, since current flows in two phases at one time.

The ripple factor for the fundamental frequency [Equation (5-10)] is equal to 4.2 per cent. The utility factor is 1/1.05, or 0.955, making the three-phase full-wave bridge circuit one of the most desirable rectifying circuits.

The addition of an inductor in series with the load will smooth the load current as it does in the three-phase half-wave rectifier circuit. However, since the load current is already relatively smooth, the load current will not change appreciably.

### Three-Phase Double-Wye Rectifier with Interphase Transformer

The three-phase double-wye rectifier circuit is frequently used due to its high utility factor (comparable to the three-phase star circuit) and its low ripple factor (comparable to the six-phase systems). It has advantages over the three-phase full-wave bridge circuit due to more efficient utilization of the rectifier elements.

The circuit (Figure 5-8) consists essentially of two three-phase star circuits with their neutral points interconnected through an interphase transformer or reactor. The purpose of the reactor is to equalize the phase-to-neutral voltages of the two sections. The voltage impressed across the reactor is the difference of the phase groups. One-half of this difference is either added to or subtracted from a group. This permits two phases to carry current at the same time.

The three-phase double-wye rectifier circuit has many characteristics of the three-phase star circuit. The output voltage is the same as the three-phase star system.

 $V_0 = 1.17 V_s$ 

$$V_{g} = 0.855 V_{0}$$

Each group supplies one-half the dc output current. Therefore,

Ι

$$I_{s} = 0.293 I_{0}$$
  
m = 1.05 $\left(\frac{I_{0}}{2}\right) = 0.525 I_{0}$ 

The transformer ratings are

$$I_{p} = \sqrt{2} \left( \frac{N_{s}}{N_{p}} \right) I_{s} = 0.414 \left( \frac{N_{s}}{N_{p}} \right) I_{0}$$
(5-36)

$$6 V_{\rm S} I_{\rm S} = 6(0.855 V_{\rm 0})(0.293 I_{\rm 0}) = 1.50 E_{\rm 0} I_{\rm 0}$$

$$3 V_{p} I_{p} = 3(0.855) \left( \frac{N_{p}}{N_{s}} \right) (V_{0})(0.41) \left( \frac{N_{s}}{N_{p}} \right) I_{0} = 1.05 E_{0} I_{0}$$

The peak inverse voltage for this circuit is higher than the threephase star system due to the interphase reactor. It is approximately

$$PIV = 2.42 E_0$$
 (5-37)

The interphase transformer must withstand the voltage between the two neutral points of the individual groups. To maintain this voltage gradient, some current must flow at all times. If the current becomes small, the circuit will revert to that of a six-phase star. Thus, minimum reactor





inductance is required to assure current flow. The current from groups one and two may be expressed as a Fourier series. The difference between the two series is the magnetizing current of the reactor. This magnetizing current circulates between the two groups. Its major component is the third harmonic. The direct current carried by the reactor (one-half the load current) must be greater than the maximum value of the excitation current. This may be expressed

$$\frac{I_0}{2} \geq I_{3m} = \frac{V_{3m}}{3\omega L}$$
(5-38)

The maximum value of the third harmonic voltage is given by

$$V_{\rm 3m} = \frac{3\sqrt{3}\,V_{\rm s(max)}}{4\pi} \tag{5-39}$$

and the minimum inductance by

$$\mathbf{L}_{\min} \geq \frac{\sqrt{3} \, \mathbf{V}_{\mathrm{s}(\max)}}{2\pi \omega \mathbf{I}_{0}} = \frac{0.390 \, \mathbf{V}_{\mathrm{s}}}{\omega \mathbf{I}_{0}} \tag{5-40}$$

A series inductor, usually employed in the load circuit, decreases the ripple factor by  $\sqrt{1+Q^2}\,.$ 

# **Six-Phase Star Rectifier Circuit**

The six-phase star rectifier circuit is often referred to as the three-phase diametric rectifying circuit because it has a center-tapped transformer. The six-phase star circuit is shown in Figure 5-9.





The six-phase star circuit is used in applications which require a low ripple factor and a common cathode or anode connection. It should be noted that current flows in only one rectifying element at a time. The primary winding, therefore, must be delta connected.

The following circuit characteristics can be easily obtained from the general rectifier equations where m is equal to six. These are as follows:

$$V_{s} = 0.741 E_{0}$$
  
 $I_{s} = 0.410 I_{0}$   
 $I_{m} = 1.05 I_{0}$   
= 0.042 (fundamenta)  
 $\eta = 99.5\%$ 

$$I_{p} = 0.580 \left(\frac{I_{s}}{N_{p}}\right) I_{0}$$
$$6 V_{s}I_{s} = 1.82 E_{0}I_{0}$$
$$3 V_{p}I_{p} = 1.28 E_{0}I_{0}$$

The peak inverse voltage on the rectifier, twice the peak phase voltage, is given by

$$PIV = 2V_{m} = 2.09V_{0}$$
(5-41)

One additional advantage of the six-phase star is that the dc currents cancel in the secondary, and therefore, the tendency toward core saturation is eliminated.

## **Six-Phase Full-Wave Bridge Circuits**

The six-phase full-wave bridge using delta and star secondaries to increase ripple frequency are shown in Figure 5-10.

In this circuit, the transformer has two secondary windings. These windings are designed to have the same voltage  $V_s$ , but will have different phase. The bridge-connected rectifiers of the secondary windings may be connected in series Figure 5-10(a) or in parallel Figure 5-10(b).

For the series connection, the output voltage is the sum of the instantaneous voltages developed in the two sections. The phase voltages of the two sections are displaced 30° (electrical), and the resulting load ripple



Figure 5-10. Six-Phase Full-Wave Bridge Circuit

frequency will be 12 times the supply ripple frequency. The characteristics of the series circuit may be obtained by considering each bridge section separately for transformer considerations. The load should also be considered separately. For each section

$$V_{s} = \frac{0.740 V_{0}}{2} = 0.370 V_{0}$$
 (5-42)
Multiphase Rectifier Circuits

The load current flows in each section. For both the star and secondary lines,

$$I_a = 0.580 I_0$$
 (5-43)  
 $I_s = 0.820 I_0$ 

For the star connection

$$I_{a} = \frac{0.580}{2I_{0}} = 0.290I_{0}$$
(5-44)

$$I_{s} = 0.8201_{o}$$

For the delta connection

$$I_{s} = \frac{0.820}{\sqrt{3}} I_{0} = 0.474 I_{0}$$
(5-45)

The peak inverse voltage is given by

 $PIV = 2.09V_0$ 

The transformer ratings are identical. For the star connection

$$3\left(\frac{V_{s}}{\sqrt{3}}\right)I_{s} = \sqrt{3} (0.370 V_{0})(0.820 I_{0}) = 0.525 V_{0}I_{0}$$

The total secondary rating is  $2(0.525) V_0 I_0$  or  $1.05 V_0 I_0$ .

For the parallel connection, the output voltages may be found from the general equations taking m as 12. Thus,

$$V_{s} = 0.715 V_{0}$$

The rectifier elements carry current two times per cycle. Its RMS value is given by the expression

$$I_{RMS(element)} = \sqrt{2} I_a = 0.410 I_0$$

and

$$I_{s} = \sqrt{2} (0.410 I_{0}) = 0.577 I_{0}$$

The transformer ratings are

....

$$3\left(\frac{V_{s}}{\sqrt{3}}\right)I_{s} = 3\left(\frac{0.715V_{0}}{\sqrt{3}}\right)(0.577I_{0}) = 0.715V_{0}I_{0}$$

Multiphase Rectifier Circuits

The total rating of the two sections is twice the transformer rating or

# $1.43 V_0 I_0$

A comparison of the series and shunt connections will show the following:

- (1) The transformer ratings are greater for the parallel connection than for the series connection.
- (2) The current passes through four rectifiers (in series) in the series connection, as compared with only two for the parallel connection.
- (3) The output ripple voltage is slightly higher for the parallel circuit.

If an equalizing reactor is used to couple the two bridge sections of Figure 5-10(b), the system reverts to two parallel three-phase bridge circuits, with each section supplying one-half the load current. The ripple frequency is 12 times the supply frequency, since the phase voltages are displaced  $30^{\circ}$ . The reactor design is the same as for the three-phase double-wye rectifier.



# CHAPTER 6

### **Rectifier Voltage Multiplier Circuits**

# Introduction

Voltage multiplying power supply circuits are employed when high voltage sources are required, and the current demand is small.

The principle of operation for all multiplying circuits is essentially the same. Capacitors are charged and discharged on alternative cycles of the ac supply voltage. The voltage at the output terminals is the sum of these voltages, plus the supply voltage, in series. Thus, the rectifier loading is necessarily capacitive, and high peak currents flow through the rectifier, much like half-wave rectifier circuits with capacitor input filters.

Although high output voltages can be obtained, voltage multiplying circuits often have poor regulation. Since circuit operation depends on capacitor charge and discharge, large value capacitors with high voltage ratings must be used.

### Voltage Doubling Circuits

**Conventional Voltage Doubler** 

The conventional voltage doubler circuit is shown in Figure 6-1. This is the most commonly used voltage doubling circuit.



Figure 6-1. Conventional Voltage Doubling Circuit

The circuit operates as follows:  $C_2$  is charged to  $V_m$  through  $D_2$  during the negative half-cycle of the supply voltage. During the positive half-cycle, the capacitor  $C_2$  and the supply voltage charge  $C_1$ . A voltage of  $2 V_m$  will appear across the output terminals. The capacitors,  $C_1$  and  $C_2$ , must be rated greater than  $V_m$ , and the peak inverse voltage and voltage rating of the rectifiers must be greater than  $2 V_m$ . The ripple frequency will be twice that of the supply.

The conventional voltage doubler circuits can be designed from curves similar to those used for capacitor input filters. These curves are presented in the following pages.





The voltage doubler will have the high inrush and peak repetitive currents often encountered with capacitive input filters. In Figure 6-3,  $I_m$  is the peak repetitive current, not the initial inrush current.

The RMS current through the rectifier may be obtained from Figure 6-4 which shows the ratio  $\rm I_{RMS}/\rm I_0$  plotted against  $\omega CR_L$ . Figure 6-5 is a plot of the ripple factor versus  $\omega CR_L$ .



The curves given in Figures 6-2 through 6-5 provide sufficient information to design a voltage doubling circuit as shown in Figure 6-1, provided the output characteristics have been established.

**Rectifier Voltage Multiplier Circuits** 



Figure 6-5. y Versus wCRL (Conventional Voltage Doubler)

### OTHER VOLTAGE DOUBLING CIRCUITS

The cascade and bridge voltage-doubling circuits are shown in Figure 6-6(a) and (b).



The cascade voltage doubler and the bridge voltage doubler operate on the same principle as the conventional voltage doubler. In the former circuit,  $C_1$  is charged (through  $D_2$ ) in the negative half-cycle. In the positive half-cycle,  $C_1$  discharges in series with the supply voltage charging  $C_2$ . Across the open output terminals a voltage of  $2 V_m$  can be obtained. The capacitor  $C_1$  should be rated at  $V_m$ ,  $C_2$  at  $2 V_m$ , and the rectifiers should have a peak inverse and voltage rating of  $2 V_m$ .

In the bridge circuit of Figure 6-6(b), the capacitor  $C_2$  is charged to  $V_m$  and current flows through the load, on the negative half-cycle. On the positive half-cycle, the voltage of  $C_2$  and the source will appear at the output. The capacitor and rectifier ratings are the same as those required in normal bridge circuits. The ripple frequency will be two times the frequency of the supply.

The cascade voltage doubler is difficult to regulate accurately, because the charge on  $C_1$  must supply the charge to  $C_2$ . This circuit has the advantage of a common connection between the output and the input; consequently, additional sections may be added. The bridge circuit has better regulation than the conventional voltage doubler; however, it requires additional rectifiers.

To compare the particular features of the three voltage doubling circuits, the circuits may be evaluated using similar components. The resulting characteristics are given in Table 6-1.

| Circuit<br>Configuration | V <sub>s</sub><br>Volts | R <sub>s</sub><br>Ohms | R <sub>L</sub><br>Ohms | С<br>µ F | V <sub>0</sub><br>Volts | I <sub>0</sub><br>mA | 2<br>% |
|--------------------------|-------------------------|------------------------|------------------------|----------|-------------------------|----------------------|--------|
| Conventional             | 117                     | 20                     | 1K                     | 20       | 205                     | 205                  | 12.0   |
| Cascade                  | 117                     | 20                     | 1K                     | 20       | 160                     | 160                  | 16.6   |
| Bridge                   | 117                     | 20                     | 1K                     | 20       | 225                     | 225                  | 12.5   |

Table 6-1. Voltage Doubling Circuit Characteristics

# **Voltage Tripling Circuits**

The full-wave voltage tripler operates as follows: On the negative half-cycle of the supply voltage,  $C_1$  and  $C_3$  (in parallel) charge to  $V_m$ . On the positive half-cycle  $C_1$  and  $C_3$  (in series with the supply voltage) charge  $C_2$ . A voltage of  $3 V_m$  will appear at the output terminals of the circuit. The voltage rating of  $C_1$  and  $C_3$  must be greater than  $V_m$ , and the rating of



Figure 6-7. Full-Wave Voltage Tripler Circuit

 $\rm C_2$  must be greater than 2  $\rm V_m$ . The diodes should be able to withstand twice the maximum value of the supply voltage when blocking. The ripple frequency of the output will be twice that of the input.

500 400 OUTPUT VOLTAGE VOLTAGE (V<sub>O</sub>) VOLTAGE (RMS) 24 300 20 OUTPUT 200 16 RIPPLE 12 RIPPLE 100 8 4 0 0 40 80 120 160 200 LOAD CURRENT (mA)





As noted previously, the cascade voltage doubler may be extended to obtain a voltage tripler. This circuit is shown in Figure 6-9.



Figure 6-9. Cascade Voltage Tripler

The operation of the cascade voltage tripler is quite similar to the voltage doubler (cascade) circuit. The voltage ratings of  $C_1$  should be greater than  $V_m$ , the voltage ratings of  $C_2$  and  $C_3$  should be greater than  $2 V_m$ , and the peak inverse voltage ratings of the diodes should exceed  $2 V_m$ . The ripple frequency of the output voltage will be the same as the frequency of the applied voltage. This is true of all half-wave circuits.

The regulation of the cascade voltage tripler is inferior to that of the full-wave voltage tripler. For comparison of the two circuits, refer to Table 6-2.

| Circuit<br>Configuration | R <sub>L</sub><br>Ohms | V <sub>0</sub><br>Volts | I <sub>0</sub><br>mA | 2<br>% | R <sub>L</sub><br>Ohms | V <sub>0</sub><br>Volts | I <sub>0</sub><br>mA | γ<br>% |
|--------------------------|------------------------|-------------------------|----------------------|--------|------------------------|-------------------------|----------------------|--------|
| Full Wave                | 5.0K                   | 385                     | 77                   | 2.4    | 1.5K                   | 255                     | 170                  | 8.0    |
| Half Wave                | 5.0K                   | 328                     | 66                   | 28.0   | 1.5K                   | 170                     | 112                  | 37.0   |

| Tal | ble | 6-2. |  |
|-----|-----|------|--|
|     |     |      |  |

Note that the full-wave voltage tripler has much better regulation than the half-wave voltage tripler.

### Voltage Quadrupling Circuit



#### Figure 6-10. Full-Wave Voltage Quadrupler

In the full-wave circuit of Figure 6-10, capacitors  $C_1$  and  $C_2$  charge to  $V_m$  on the negative half-cycle of the supply voltage. On the positive half-cycle, these capacitors discharge in series with the supply to charge  $C_3$  and  $C_4$  to  $2 V_m$ . Thus, an output voltage approaching  $4 V_m$  can be obtained at the output terminals. The capacitors should be rated at  $2 V_m$ , and the peak inverse rating of the diodes should be greater than  $2 V_m$ .

The half-wave voltage quadrupling circuit is shown in Figure 6-12. This is a further extension of the cascade network of Figure 6-6(a).

The operation of this circuit is basically the same as the other cascade networks. The capacitor  $C_1$  should be rated at  $V_m$  while the remaining capacitors should be rated at  $2V_m$ . The peak inverse voltage rating of

**Rectifier Voltage Multiplier Circuits** 







Figure 6-12. Half-Wave Voltage Quadrupler Circuit

the rectifiers must be greater than  $2V_{\rm m}$ . The ripple frequency of the output will be the same as that of the supply.

The regulation of the half-wave voltage quadrupler is inferior to the other circuits.

To improve regulation, it is often necessary to increase the value of capacitors  $C_1$  and  $C_2$ . To illustrate this improvement, the output characteristics of the circuit (Figure 6-12) were obtained (using component values listed in Figure 6-12). The same procedure was then repeated using values of 40  $\mu$ F for  $C_1$  and  $C_2$ . The results are shown in Figure 6-13.

As noted in Figure 6-13, considerable improvement is obtained by increasing the value of the capacitors  $C_1$  and  $C_2$ . Even better regulation and lower ripple voltage is attained if all the capacitors are increased in size.

**Rectifier Voltage Multiplier Circuits** 





### HIGH ORDER CASCADE VOLTAGE MULTIPLIERS

In theory, the number of sections which can be added to basic cascade voltage doubler circuits is unlimited. In practice, the number of sections is limited by the peak inverse voltage ratings of the rectifiers, the voltage ratings of the capacitors, and the required output characteristics. The regulation of such circuits becomes progressively more difficult as additional sections are added.

The basic cascade voltage multiplier can be extended to include nsections as illustrated in Figure 6-14.



Figure 6-14. n-Section Voltage Multiplier Circuit

It should be noted that both even and odd multiples of  $V_m$  can be obtained with the circuit of Figure 6-14. The capacitor connected to the supply charges to  $V_m$ . The remaining capacitors on that side of the circuit charge to  $2 V_m$ . Thus, odd multiples of  $V_m$  can be obtained from the upper branch and even multiples from the lower branch.

In all the circuits discussed in this chapter, the polarity of the output can be reversed by reversing the polarity of the rectifiers and capacitors.



# CHAPTER 7

# Miscellaneous Diode Circuits

### Introduction

The capabilities of the rectifier have expanded from a low-current, low-power device to a high-power, 1000-ampere, current-handling device. Within the power-current range there are hundreds of applications. This chapter attempts to present only a few of the more interesting ones.

### **Arc Suppression**

The silicon diode can be used quite effectively as an arc suppressor for switches and relays. By suitable methods of arc suppression, switching contacts will have longer mechanical life and require less maintenance.

A simple switching circuit containing a highly inductive load, such as a relay coil, is shown in Figure 7-1.  $R_L$  in the circuit represents the coil resistance. When the switch is opened, the magnetic field will collapse, and high voltage will appear across the switch. Arcing across the switch can result in damage to the switch and possible insulation breakdown of the inductor.



Figure 7-1. Simple Switching Circuit With Highly Inductive Load

Silicon rectifiers can be used to suppress any arcing across the switch (Figure 7-2). These methods are effective in dc circuits.

When the switch is opened, the voltage induced in the inductor will decrease exponentially. The decay time is controlled by the L/R time constant. The controlling equations can be obtained by applying Kirchoff's Law to the above circuit, and solving the resulting differential equation. Using this method, the current flow in the closed loop is given by:

$$= Ie^{-(tR/L)}$$
(7-1)

where  $I = V/R_{I}$  (the steady-state current)

L = Coil inductance

 $R = R_{L} + R_{s} + R_{d}$  (diode resistance).



Figure 7-2. Rectifiers Used as Arc Suppressors

The maximum current is clearly the steady-state current, flowing when the switch is opened. The diode resistance  $R_d$  is 1 ohm or less. It is usually insignificant when compared to the coil resistance  $R_L$ . The induced voltage of the coil is given by

$$v = L\left(\frac{di}{dt}\right) = IR e^{-(tR/L)}$$
 (7-2)

$$v = \frac{V}{R_{L}} (R_{s} + R_{L}) e^{-(tR/L)}$$
 (7-3)

The maximum value of this voltage, when t = 0, is given by

$$v_{max} = \frac{V}{R_{L}} (R_{s} + R_{L})$$
$$v_{max} = V \left( 1 + \frac{R_{s}}{R_{L}} \right)$$
(7-4)

Applying Kirchoff's Law to the supply circuit, it can be seen that the voltage given by Equation (7-4) will also appear across the switch.

From the above equations, two important effects can be seen: First, the resistance in the arc suppressor increases the maximum induced voltage and, thus, the voltage across the switch; secondly, the added resistance decreases the time constant L/R, and the induced voltage decays faster. These effects are illustrated in Figure 7-3.

For applications where decay time is not important, the value of  $\rm R_S$  should be small. If the decay time is critical, the correct value of  $\rm R_S$  must be found by a trial and error method applied to the following equation, provided the drop-out voltage is known.

$$V_{(drop-out)} = IR e^{-(tR/L)}$$

The solution to such problems may be aided considerably by the use of Figure 7-4 where the exponential term may be solved graphically for different ratios of L/R and the decay time t.





Figure 7-4. L/R Ratio Versus Delay Time

The selection of the rectifier for a given application will depend primarily on the peak value of the current through the device. Since this peak current is equal to the steady-state current through the relay coil, device selection is relatively easy. For example, if the inductive load

carries 10 amperes at steady state, and operation of the switch is such that the current and the voltage decay to zero after each switching operation, the rectifier selected for arc suppression should have a peak repetitive current rating of 10 amperes. The peak inverse rating of the device would necessarily be greater than the supply voltage.

For ac operation, the use of back-to-back zener diodes provides the best method of arc suppression. This is shown in Figure 7-5.



Figure 7-5. Zener Diodes for ARC Suppression

Back-to-back zener diodes may also be used for dc operation to provide a fast decay time. In either case, the minimum voltage of the zeners should be 2 or 3 volts higher than the supply voltage (maximum voltage for ac operation), and the power rating  $P_Z$  of the device should not be less than that given by the following expression.

$$P_{Z} = 0.316 V_{Z} I_{Z}$$
(7-6)

where  $V_Z$  is the zener voltage of the reverse-biased diode and  $I_Z$  is the maximum value of the current through the inductor. Equation (7-6) is good only if the voltage and current decay are allowed to decay to zero.

### AC and DC Switches

The rectifier may be used as an ac or dc selector switch as shown in the following circuits, of Figures 7-6 and 7-7.



Figure 7-6. Rectifier as an AC or DC Selector Switch

The first circuit would be useful in any application where two loads operate on pulsating direct current, such as two model trains or two light bulbs where separate control is required from a single-source voltage.



Figure 7-7. Rectifier as an AC or DC Selector Switch

### Waveform Selector

Often it is necessary to remove the peak of an input voltage waveform when low-current outputs are required. The circuit illustrated in Figure 7-8 is designed for this function. The diode-cathode is held at positive potential by the battery. As the input voltage increases, the voltage on the rectifier and battery will increase also. The rectifier does not carry current until the anode potential is greater than the cathode potential.



Figure 7-8. Waveform Clipper (Positive Peaks)

Negative peaks may also be clipped by using the circuit shown in Figure 7-9.



Figure 7-9. Waveform Clipper (Negative Peaks)

It is also possible to clip-off the "bottom" of the waveform rather than its top, as in the preceding circuits. Figure 7-10 provides two circuits designed to perform this function. One circuit, Figure 7-10(a), is



designed for low-current applications, and the other circuit, Figure 7-10(b), is for high current.

### **Diode Regulators**

Many low-voltage applications require regulated outputs. Many inexpensive regulator circuits employ rectifiers to obtain excellent performance. Since diodes are temperature sensitive, this property may be used to advantage in many regulator circuits. Figure 7-11 illustrates a typical diode regulator.



Figure 7-11. Typical Diode Regulator

Rectifiers also provide an excellent means of providing reverse bias on the gate-to-cathode of silicon controlled rectifiers. This not only improves silicon controlled rectifier characteristics, but insures that no greater reverse voltage will be applied gate-to-cathode, than the forward drop of the diode.



#### Figure 7-12. Rectifier Provides Reverse Bias for SCR

# **Diodes as Nonlinear Resistors**

Nonlinear resistors can be useful in a number of applications. The resistor offers an ideal device for use as a nonlinear resistor, especially with the addition of a series resistor. One application, for example, would be low-level noise suppression on a telephone receiver.



Figure 7-13. Rectifier as a Non-Linear Resistor

### **Other Diode Circuits**

It is often desirable to lower the reverse voltage impressed upon a silicon controlled rectifier. The rectifier circuits shown in Figure 7-14 are designed to accomplish this purpose. The diode in Figure 7-14(a) carries the same amount of current as the silicon controlled rectifier. The circuit of Figure 7-14(b) has approximately the same reverse voltage reduction properties as the circuit of Figure 7-14(a), but the rectifier may have much lower current-handling ratings. This shunt diode should be a high-voltage low-current type. The circuit of Figure 7-14(b) is often used in high-reliability systems.



Figure 7-14. Rectifier Used to Lower Impressed Voltage on SCR

Rectifiers find many useful applications in measurement circuits. An example is Figure 7-15, the peak reading voltmeter. This circuit may





be used to measure the peak voltage of any waveform (with sufficient frequency to keep the shunt capacitor charged).

Protection circuits are also widely used in measurement applications. Figure 7-16 shows a dc meter protection circuit designed to limit the reverse voltage across the meter to a value not exceeding the forward voltage drop of the diode.



Figure 7-16. DC Meter Protection Circuit

Figure 7-17 presents an interesting example of circuit isolation. Circuit 1 has a low-impedance path to circuit 2, whereas circuit 2 has a high-impedance path to circuit 1. This coupling method is widely used in transistor circuits.



Figure 7-17. Circuit Isolation

The last circuit illustrates a simple, but highly effective means of providing "automatic feedback". The voltage drop across the diodes is such that the collector junction can never become forward-biased. Any excess base current is bypassed by the upper diode, as shown in Figure 7-18.





Figure 7-18. "Automatic Feedback" Circuit



# CHAPTER 8

# Series Connection Silicon Rectifiers

### Introduction

In high-voltage rectifier applications where single cell rectifiers cannot meet the necessary reverse voltage required of the circuit, it becomes necessary to "stack", or connect several rectifiers in series. In this manner the total reverse voltage is divided equally among the individual rectifiers in the string.

Series connection of rectifiers requires established design techniques if the circuit is to be used successfully, due to normal variations in rectifier characteristics. A number of devices connected in series will behave as a single circuit element with a higher forward voltage drop and a higher reverse voltage rating than any individual device. In the forward direction, each rectifier passes the forward current of the stack and a stable voltage drop is established across each device. Thus, the forward current rating of each individual device establishes the forward current capability of the stack. In a properly designed stack, if a device fails in the reverse direction, its forward and reverse performance will not be affected provided the rectifier does not create an open circuit.

When a reverse voltage is applied to a rectifier stack, the voltage may not be distributed equally between the individual rectifiers. In such cases, one unit may see a voltage which exceeds its reverse voltage rating while another unit may see only a fraction of its rating. Thus, in applications which require series connecting of rectifiers, the reverse voltage characteristics of the individual rectifiers become the prime considerations.

### Equivalent Circuit of Series Diodes

Two rectifiers in series may be characterized by an equivalent circuit (shown in Figure 8-1).

The rectifiers in the equivalent circuit are idealized: That is, a short circuit to forward current flow, and open-circuit to reverse current flow.  $R_F$  and  $R_R$  are the respective nonlinear forward and reverse resistances offered to the circuit by a real rectifier.  $C_S$  is the nonlinear junction capacitance which is associated with and is one of the shunting elements. Four typical  $C_S$  curves for a silicon rectifier are shown as a function of reverse voltage in Figure 8-2. Since  $R_F$  is small, it can usually be ignored in circuit design work. The reverse resistance ( $R_R$ ) is large, and varies nonlinearly in magnitude with temperature and voltage.  $R_R$  can also vary considerably between different individual rectifiers selected from the same device family. The parameters of the equivalent circuit that affect reverse voltage diversion will be discussed in the following sections. It should be remembered throughout the following discussions that the equivalent circuit parameters are nonlinear. Also, they have different values at various voltages and temperatures.



Figure 8-1 Equivalent Circuit for Two Rectifiers in Series



Figure 8-2 Parallel Capacitance (Cs Typical) As a Function of Reverse Voltage

# **Device Consideration for Series Rectifiers**

There are three major effects that contribute to an unequal distribution of voltage between series rectifiers. One effect is due to the finite differences between the reverse resistances associated with all semiconductor rectifiers. Another cause of unequal voltage division is unequal storage times within units. This effect is associated with short rise time voltages on circuit transients. A third cause is variations in the capacitance of each unit to ground.

Figure 8-3 is used to demonstrate an unequal distribution of a steadystate reverse voltage, due to different reverse current characteristics. The curves show different characteristics which are possible within units of the same type and meeting the same specifications.





Connecting the three devices in series and applying a reverse bias voltage will yield uneven voltage division between the devices. For example, if 600 volts is applied to the stack and the reverse current which flows corresponds to line A of Figure 8-3, then the voltage that device 3 blocks will be approximately 530 volts, device 2 will block 50 volts and device 1 will block only 20 volts. If the reverse current was such as to correspond to the level indicated by line B, then the voltage division of the rectifiers will be as follows: Device 1 - 35 volts, device 2 - 350 volts and device 3 - 590 volts. This shows the dc static voltage division which may be encountered when rectifiers are randomly selected and stacked. It is interesting to note that the "best" unit, the one which has the larger reverse resistance, receives the greatest blocking voltage and would most likely be the first to fail.

### Achieving Equal Voltage Division with Resistors

The most practical solution to the above problem is to shunt each rectifier with a resistance which forces each of the reverse resistances to be nearly equal in value and, therefore, divides the voltages accordingly. The shunting resistances should be as small as possible, yet still afford a high resistance to reverse current. A conservative method of determining the value of the shunting resistance is to use one-half the minimum reverse resistance. The minimum reverse resistance is calculated from the maximum reverse current at maximum dc reverse voltage (at maximum operating temperature). This information is available on rectifier data sheets. As an example, the resistance needed to shunt the Motorola fast recovery diode (1N3883) when used in a series stack is 1/2 (400 V/4 mA) or 50.0 kohms. The additional amount of leakage current is slight when using this method, since the minimum reverse resistance of silicon rectifiers is in the 0.5 to 2 megohm range.

The shunting resistance R is given by the following expression:

$$R \leq 1/2 \left( \frac{V_R}{I_R} \right)$$

where  $V_{\mathbf{R}}$  = the dc reverse rating

 $I_{R}$  = the dc leakage current at  $T_{I}$ .

It is recommended that the power dissipation rating of the resistors be the limiting factor when selecting a value of R calculated from the above approximation, since it is only a ball-park estimate to aid the circuit designer. For example, if the power dissipation of R (from the equation above) requires a 1/2-watt resistor, then lower the resistance of R just to the point where a 1-watt resistor is required instead.

The power rating of the shunting resistor is given by the blocking voltage of the individual device and the value of the shunting resistor. For single-phase operation, the power dissipation is given by  $(V_R)^2/R$  or  $(V_{RM})^2/4R$ . This is the fundamental  $V^2/R$  method of computing power dissipation. If the power losses of the shunting resistors are too great, the value of the shunting resistance may be increased to a value equaling the minimum rectifier resistance. However, the percentage of voltage unbalance would be much greater.

#### Achieving Equal Voltage Division by Device Matching

Careful matching of reverse rectifier characteristics provides a means of assuring equal voltage division without using shunting resistors.

Matching reverse currents at a fixed voltage will not be satisfactory because operating voltages are not fixed. Transients and line voltage fluctuations can shift operating points considerably. Thus, matching reverse characteristics at one point will not assure equal voltage division for all conditions.

To satisfactorily match reverse characteristics, the devices must have identical current-voltage characteristics throughout the range of operation. For the reason it is desirable to select units with equal characteristics.

Another important characteristic which must be considered when matching reverse-voltage characteristics is the temperature coefficients of the devices. In silicon rectifiers, the reverse saturation current and the voltage avalanche breakdown increase with increasing temperature. For purposes of matching, the current and voltage increase must be the same over the operating temperature range. Other parameters which must also be matched are the reverse capacitance and the reverse recovery time of the junctions. Thus, adequate matching of rectifier characteristics is not often a practical approach to series operation of rectifiers.

The junction capacitance associated with silicon rectifiers is a negative exponential curve as shown in Figure 8-2. This capacitance is voltage dependent, and varies with junction area, as well as with different methods of junction construction. Typical values range from 1 and 2 pF in smallarea junction devices to 100 and 200 pF in large-area devices. A complete description of junction capacitance involves many variables and complexities which directly affect the dynamic performance and characteristics of silicon rectifiers. The different junction capacitance of rectifiers in a series string can present problems in achieving voltage balance under dynamic conditions; therefore, a practical solution to this problem lies in providing an external shunting capacitor for voltage balancing under dynamic conditions.

### **Proper Usage of Shunting Capacitors**

A shunting capacitor is usually used to equalize the different values of junction capacitance, and is chosen large enough to swamp out all values encountered over the operating range. When selecting shunting capacitors, the storage and reverse recovery time of the rectifiers dictate the size of the capacitors. The capacitors selected on this basis will also swamp out the effects of junction capacitance.

The reverse recovery time becomes important in stacking rectifiers. This time consists of the storage time and a recovery phase. After a rectifier has been conducting on the forward portion of a cycle, the minority charges injected into the high resistivity region of the rectifier have built up to some constant value, and must be cleared out on the reverse cycle before the blocking characteristic of the device is again achieved. The amount of time required for this clearing out is called the recovery time of the device. The action of this charge storage causes the rectifier to exhibit a small resistance for a finite time (a few microseconds) even though a reverse voltage is applied to the circuit.

This charge storage phenomenon can become a problem when one device in a series string has a shorter storage time than the rest of the units. When a reverse voltage is applied to a string of devices and only one device has recovered, the total applied voltage then appears across the device until the other devices recover. This recovery time is quite small compared with one-half a normal cycle, but it is important since this voltage across one unit could greatly exceed its reverse voltage rating.

Figure 8-4 demonstrates storage time effects. Curves A and B show the voltage wave found across devices 2, 3, and 1, respectively, when

they are placed individually in series with a series load  $R_L$ . It can be seen that the voltage across each device is essentially zero for a time, even after the square wave has reached a negative value. This is the storage time (time required to remove the minority carriers). It should also be noted that the storage times for devices 2 and 3 are longer than for device 1. In Figure 8-4 the storage times are exaggerated for a normal wave cycle. This is necessary to demonstrate the entire waveform.



When the three devices are placed in series and an input wave is applied, the storage time will remain the same for individual devices. With this part in mind, it can be seen from curves A and B that at a time  $t_1$ , the input device will drop the entire magnitude of the negative square wave (which could be any applied short-rise-time waveform including transients) across the junction of device 1. This occurs because at this time devices 2 and 3 are still in their storage time region. This entire voltage across device 1 could result in a unit breakdown. To correct this situation each device is shunted with a capacitor. The curves A' and B' now represent the resulting voltage waveforms across the respective devices. At time  $t_1$ , device 1 is seen starting to oppose the reverse voltage although the capacitor is absorbing a protective voltage. During the time interval  $t_2$  to  $t_3$ , all devices share the reverse voltage.

It should be remembered, the vertical voltage scales on curves A, A', B, and B' are relative, since each device will not share at time  $t_3$  a voltage equal to the magnitude of the input wave. The curves are primarily to show the waveform of a single device in series with the load  $R_{L}$ .

To determine the capacitance necessary to offset storage time effects, the circuit of Figure 8-5 may be used. The input of the circuit will

be a square wave with a peak of V volts and a period of 2t seconds. The parallel R and C networks represent n number of rectifiers in series with a load and source resistance  $R_L$ . To simplify the calculations,  $C_g$  and the nonlinear  $C_s$  are omitted. This is possible since C in Figure 8-5 will be large enough to swamp out  $C_s$ . C in the figure is the added external shunting capacity for each device, and R represents the nonlinear reverse and forward rectifier resistance of each device [depending on which cycle (negative or positive] the wave is operating). It is further assumed that the resistance R and the capacitances are equal.



Figure 8-5 Equivalent Circuit for n Rectifiers in Series with Load RL, Square-Wave Input

It can be shown that the voltage across each rectifier for one cycle is given by:

$$V(t) = \frac{V}{(R_{L}/R) + n} \left[ 1 - e^{-(1/RC + n/R_{L}C)t} \right]_{0}^{t'}$$
  
+ 
$$\left\{ -\frac{V}{(R_{L}/R) + n} \left[ 1 - e^{-(1/RC + n/R_{L}C)(t - t')} \right] \right\}_{t'}^{2T}$$
(8-1)

On the forward cycle, R (being the forward resistance) is much smaller than  $R_L$ , or in other words,  $V/(R_L/R + n)$  is essentially zero. Therefore, the waveform can be represented (approximately) by Equation (8-2).

$$V(t) = -\frac{V}{(R_{L}/R) + n} \left[ 1 - e^{-(1/RC + n/R_{L}C)(t - t')} \right]_{t'}^{2T}$$
(8-2)

It should be remembered from Figure 8-4 that the voltage of the device is still zero until the storage time has elapsed, even though the input voltage is in the negative cycle. This restricts the terms with t - t' to be nonexistent until  $t \ge t'$ , where t' = T +storage time; here T is the time when the input wave goes negative, or the time for one-half cycle.

To summarize, the voltage due to the small forward resistance across each rectifier is essentially zero for the duration of the positive cycle and the storage time. After the storage time has elapsed, R shifts very quickly to high reverse resistance. The corrective fall time (used to equalize the reverse voltage across each unit as pointed out in Figure 8-4) is the predominant fall time constant  $R_LC/n$ . The fall time constant  $R_LC/n$  clearly shows that the added capacitance C depends on the number of series rectifiers as well as the load resistance.

To give ample protection for each device in a series string, the time constant  $R_LC/n$  should be equal to five times the longest storage time of any unit used in the string. This requirement gives a design equa-

tion for the value of C. That is,  $R_LC/n$  equals five times  $t_s$  of the slowest unit, where  $R_L$  is the source and load resistance, C is the capacitance which will shunt each individual unit, and n is the number of series rectifiers. If, for example, the storage time for one unit of three rectifiers (n = 3) to be placed in series is 5 microseconds, and if the source and load resistances are 700 ohms, C from  $R_LC/n = 25 \times 10^{-6}$  can be found to be 0.10 F. The preceding rise time formula is conservative and the value of C may be reduced to optimize a particular circuit (depending on the rise time of the individual circuit voltage inputs).

The above procedure requires knowing an average storage time for rectifiers. Figure 8-6 illustrates how to find the storage time for one unit in series with any load  $R_L$ . A negative square wave is placed in series with a forward dc supply. With the aid of an oscilloscope, the square wave generator is adjusted until the forward current through the load is equal to the peak reverse storage current. The storage time ( $t_s$  in Figure 8-6) can be read directly at the 90 per cent point. Figure 8-6 shows the resulting current waveform through the rectifier and load with the proper capacitance shunting the unit.



Figure 8-6 Rectifier Current Wave Forms

The value of the shunting capacitor needed is directly proportional to the storage time, which is the total recovery time of the diode. Highvoltage, high-capacitance capacitors are expensive and set limitations on the high-voltage stack. To lower the capacitor value needed, a rectifier with faster recovery times is very desirable.

Reverse voltages are also upset due to the capacitance-to-ground  $C_g$  associates with each device. This is especially true in a string containing a large number of devices. The voltage across each unit is relatively small compared with voltage that is present across individual units to ground. Displacement currents can upset high-frequency voltage division. Displacement currents-to-ground are proportional to the rate of rise of the voltage-to-ground and the stray capacitance-to-ground. Therefore, in most applications, transients and voltage waves with fast rise fronts

are responsible for unequal voltage distribution in the rectifier string. Careful placement of high-voltage stack components will virtually eliminate  $C_g$ . The value of the shunting capacitor C is given by the following equation:

$$C = \frac{5t_s^n}{R_L}$$

where  $t_s = storage time$ 

n = number of series devices

 $R_{I_{e}}$  = total resistors of R source and R load.

As was the case with the shunting resistor R, this calculation also varies depending on the source information. Other methods use the approximation of three times the junction capacitance at zero bias. The choice and placement of the resistors and capacitors must be such as to keep the inductance to a minimum. and the standing as in the State of the

are comparates for taxend willings distribution on the mothing block, Coveral placement of bios-relative stars charge-scale with preside share. area C. The relate of the arceting consisting of a given by the set wing equalion:

aparepaging is usummered

R. = 1001 provide of R secures and F land. - R

An war the lase with the statement reducted by the selection of the selection in the selection into walks depending to the states informations. Silver a state of a specific mailed of three limits are placed and when it simplifies. The states the platement of the set three and reductions state for and, as it is not dependent of the set three and reductions state for and, as it is not dependent of the set three and reductions in the set of the

# CHAPTER 9

# Parallel Operation of Silicon Rectifiers

### Introduction

Many power applications require current-carrying capabilities which cannot be achieved with present day single-cell rectifiers. To overcome these current limitations, rectifiers have been designed employing many diodes in parallel. The design and operation of such units require some method of insuring current-carrying balance through the parallel units when the device is conducting in the forward direction.

The primary concern when operating silicon rectifiers is the forward resistance of the individual units. Unequal forward resistance between parallel units will cause one or more rectifiers to pass more than its share of current. This effect may be illustrated by the use of Figure 9-1 which shows the voltage-current characteristics of two unmatched rectifiers operating in parallel.





### Parallel Operation of Silicon Rectifiers

As with any silicon rectifier, the current increases rapidly with small changes in voltage. Units placed in parallel have the same voltage drop. Because of the steepness of the characteristic curve, a large current unbalance will exist between the two cells.

The condition of unbalanced current in rectifiers is further aggravated by the negative temperature coefficient associated with the forward voltage characteristics of silicon rectifiers. As the rectifier carrying the greatest current heats up, its forward resistance will decrease allowing more current to flow through the device. The rectifier then begins to "hog" the current and an eventual failure may result due to junction heating known as thermal runaway.

When a high-current rectifier consisting of many parallel units is subjected to a reverse bias voltage, each rectifier unit will be required to sustain the reverse voltage. Thus, if breakdown occurs, it will occur in the rectifier unit having the lowest breakdown voltage. The breakdown of such a cell is not influenced by the action of any other cell. Thus, such factors as reverse resistance, junction capacitance, and storage time do not acquire the importance they have when diodes are placed in series.

Several methods of obtaining current balance in paralleling rectifiers are possible, and each must be weighed on its own merits. These methods include the use of ballast resistors, matching of characteristics, thermal balancing, derating, and the use of current balancing reactors which force current sharing between parallel units.

### **Ballast Resistors**

The use of ballast resistors involves placing a resistor in series with each rectifier unit. The use of resistors in this manner can be effective only when the added resistance drop is a significant part of the total voltage drop. A rule of thumb gives conservative values for the series resistance; use the resistance value obtained when the maximum voltage drop of the rectifier is divided by the maximum current. The equalizing effects are shown in Figure 9-1, the forward current characteristics of rectifiers. When these units are connected in parallel with 1 volt across the terminals, device 1 will carry 25 amperes and device 2 will carry 15 amperes. These currents are indicated as  $i_1$  and  $i_2$ , respectively. Placing a 0.04 ohm resistor in series with each device will change the slope of the curves as shown. If 25 amperes still flow through device 1, a voltage drop of 2 volts will develop across the parallel assembly. For this 2-volt drop, the current of device 2 ( $i_2$ ) is now 22 amperes, and the current unbalance is now only 3 amperes.

Ballast resistors reduce the efficiency of the rectifier system, since they create undesired power losses. This is the chief disadvantage of using ballast resistors as a method of forcing current balance. However, when individual devices are to be fused in a rectifier system consisting of parallel units, the resistance drop of the fuses may be sufficient to provide current balance, if the forward resistance mismatch is not too great.

### Matching Forward Characteristics

Balanced current sharing may be attained by matching the forward voltage characteristics of the individual devices. This procedure requires accurate measurements, careful coding, and numbering systems. For replacement purposes, rectifiers from the same code group must be used. Due to the nature of matching rectifiers, selection must be made from a large volume, and factory-matched devices add to the cost of the rectifier.

In parallel operation, the forward characteristics of the individual devices are the prime consideration. Current unbalance between rectifiers is due to the difference in effective resistance between individual devices. Therefore, the volt-ampere characteristics must be matched over the complete operating range. The degree to which such devices are matched establishes the amount of unbalance which will exist in the final assembled unit. Characteristics of devices matched at one load may vary at other loads. However, most devices which are matched at high currents will not deviate appreciably at lower currents. Temperature coefficients of different units must also be considered. Variation between cells of the same type from the same production line usually will not vary by more than 10 per cent. The use of a common heat sink is extremely important; this assures that all devices operate at or very close to the same temperature, and that temperature effects will be more nearly uniform in all cells.

Due to the extremely low resistance of the forward conducting rectifier, extreme care must be taken in mounting and connecting rectifiers in parallel. Unequal resistances incurred in mechanically mounting and connecting rectifiers will cause further unbalance in the rectifier assembly.

Motorola high-current rectifiers are constructed using the technique of matching forward current characteristics. These techniques are possible due to Motorola's high rectifier volume and careful production control. The basic cells used in these rectifiers are fabricated from small silicon junctions mounted in a steel can. The fabrication process parallels the same techniques used for other single-cell rectifiers.

The basic cells are matched to within 20 millivolts at 100 amperes. This assures closer matching at 25 amperes. The basic cells are then connected in parallel to form a single device. The paralleling includes mounting the individual cells on a common copper-plated base which couples each cell thermally for optimum heat transfer and uniform heating. A molded, void free external case completes the assembly, furnishing mechanical strength, electrical isolation, and protection from corrosive elements. These devices are then thoroughly tested to insure good electrical and mechanical characteristics.

Some manufacturers employ derating factors for reducing the percentage of failures caused by overloading cells. The use of derating factors also adds to the cost of paralleling rectifiers, since these factors reduce the rating of each cell, and additional rectifier cells must be added to meet the requirements of specific applications. Derating factors are sometimes applied when paralleling rectifiers which have matched forward characteristics or where ballast resistors are used.
### **Current Balancing Reactors**

Current balancing reactors have been employed for some time in paralleling mercury-arc rectifiers. The operation of such reactors makes them equally applicable to the parallel operation of silicon rectifiers. The use of balancing reactors, when properly designed, will provide equal current sharing in parallel rectifiers, and may be less expensive than using ballast resistors, matching forward characteristics, or derating.

A balancing reactor for paralleling two rectifiers is shown by the simple schematic in Figure 9-2.

The balancing reactor shown in Figure 9-2 forces current sharing between the two rectifiers. When the currents through the two rectifiers are equal, the magnetic flux resulting from each of these currents cancels the other. When the currents are unequal, a magnetizing current (which is the difference in the two currents) will produce a resulting net flux which tends to reduce this current unbalance. Thus, the unbalance between the rectifiers is due to the magnetizing current of the reactor core. Since the currents in the rectifiers tend to be equal, a difference in voltage drops across the rectifiers will be present, and this difference plotted against a time scale will yield an energy difference (measured in volt-seconds). The volt-second difference between the rectifiers must be absorbed by the reactor. This volt-second difference in terms of flux linkages fixes the minimum cross section of the core, and the number of turns of the reactor.



#### Figure 9-2 Paralleling Operation of Silicon Rectifiers Using Balancing Reactors

The cores for balancing reactors should have a high saturation flux density and a low residual flux density. This will insure a maximum change in total flux. In this category, oriented magnetic-steel cores, rolled or punched, have the smallest magnetizing current, and the highest maximum flux density. However, these cores also have the highest residual flux densities. Cores with small air gaps have residual flux densities. Consequently, these may be used to a limited extent.

The reactor system of Figure 9-2 may be extended to one containing  $2^n$  diodes. This is shown in Figure 9-3.

For an uneven number of diodes, certain variations of this arrangement can be used. The reactors of Figure 9-3 must necessarily be of dif-

### Parallel Operation of Silicon Rectifiers

erent design. Since each rectifier carries the same current, reactors  ${\rm R}_1$  and  ${\rm R}_2$  must be designed to carry twice the current of one diode. Reactor  ${\rm R}_3$  must be designed for four times this current, and so on for the remaining reactors.



Figure 9-3 Balancing Reactors Used with 2n Diodes

Figure 9-4 illustrates another method of balancing reactors. This method has the advantage of each winding carrying only the current of one diode. This is commonly called the closed-chain reactor circuit.





It is evident that any form of balancing other than a highly controlled matching system is expensive.

#### **Very-High-Current-Rectifiers**

For years, high-current rectifier manufacturers have been searching for a universal rectifier cell which would be adaptable for use in numerous configurations and capable of filling virtually any rectification application. Motorola has perfected such a universal cell and is using it in a new highcurrent rectifier design. These new high-current silicon rectifiers will: (1) increase the current-handling capability of a single device from its present maximum limit of approximately 400 amperes to 1,000 or more amperes, and increase surge capacities up to six times that of present devices; (2) appreciably cut the present cost of such devices; (3) provide an extra margin of equipment reliability due to reserve capacity and builtin redundance; and (4) increase equipment design flexibility.

#### HOW THE BREAKTHROUGH WAS ACCOMPLISHED

There are two basic methods of making high-current rectifiers. One method uses large single-rectifier junctions to carry the required current (as the current requirements are increased, these single junctions must become larger and larger); the second method is to parallel a number of lower current rectifiers.

There are a number of problems associated with large single-junction rectifiers. Large-area rectifier junctions cannot be made without some imperfections, and the larger the area (higher current capability) the greater the number of imperfections.

When current is passed through such a device, the current is not necessarily distributed equally over the entire area. Some areas will assume more than their normal share of current, and these high-current areas may ultimately result in high heat density areas ("hot spots") which can cause thermal fatigue and deterioration. During abnormally high current surges, such thermally stressed or deteriorated areas can assume excessive current and destroy the entire rectifier.

Instead of using a large-junction rectifier, Motorola employs a number of perfect (for all practical purposes) small-junction, medium-current units connected in parallel to provide practically any desired total current rating. Breaking up the large rectifier junction into many small rectifier junctions permits the selection of "perfect" devices which then are paralleled to form a total junction with more nearly ideal characteristics and greater capabilities.

To overcome the basic problem inherent in the use of multiple paralleled rectifier cells (i.e., achieving equal current distribution), Motorola matches and guarantees the forward-voltage characteristics of each cell to within 20 millivolts at 100 amperes. These closely matched rectifier cells are then mounted on a common copper base in a manner which intimately couples each cell thermally. A 50-ampere rectifier uses two cells; a 650-ampere device uses 28 cells. Under normal operating conditions, the thermal difference between cells is so low that any current unbalance is negligible. Parallel Operation of Silicon Rectifiers





### ADDITIONAL ADVANTAGES

Other advantages of the parallel-cell concept are: (1) the entire rectifier assembly can be factory tested prior to final assembly and any substandard cells can be replaced; (2) a number of reserve cells can be "built in" to provide an extra current margin; (3) current-handling potential is virtually unlimited (a 2,000-ampere unit is now performing satisfactorily in an on-the-job customer test program); and (4) higher current devices mean a sharp reduction in the number of expensive "accessories" (balanc-ing transformers, paralleling reactors, etc.) previously required on many applications.

In addition, because there is no fragile insulator-to-metal hermetic seal between external leads and case (an inherent characteristic of singlejunction devices), the user can bolt the unit to bussing without a torque wrench — there is virtually no possibility of damaging the individual cells by overtightening either the stud bolt or the lead connection.

### PRACTICE MAKES PERFECT

Implementation of the parallel-cell concept was never before practical because the only economical way of achieving the close tolerances necessary is to start with a manufacturing output so large and so closely controlled that the selection of matched devices becomes almost automatic. Over the past five years, Motorola has developed the required volume and is now manufacturing medium-current rectifiers at a rate of more than 20 million per year. These devices have been so thoroughly engineered that their reliability and uniformity insure an extremely high yield to even the most stringent specifications. And — due to high-volume production — the cost per device is far below the most optimistic predictions of a few years

## Parallel Operation of Silicon Rectifiers

ago. It is only through such a capability that the advantages of parallel-cell operation for high-current devices have become a reality.

### UNIQUE TESTS AUTHENTICATE SURGE CAPABILITY

Recently a university laboratory, interested in using these devices, conducted a surge-current test on a 400-ampererectifier assembly to verify its capabilities. The following test conditions were used:

Surge - 40,000 amperes

#### Frequency - 1 kilocycle

## Surge duration - 500 microseconds

The test was repeated six times without incident, verifying that the cells conduct individually and recover fast enough to withstand large surges.

To determine exactly what happens if one cell fails, a 400-ampere rectifier was surged while operating at 400 amperes, 150°C temperature (V<sub>R</sub> applied after surge), with 10 consecutive half-cycles of 8,000 amperes. One cell began to fail after this test was performed 12 times. Within an additional three half-cycles, the internal connecting lead of that cell opened and removed the cell from the circuit. Despite this open cell, the rectifier continued to function normally as a 400-ampere device. These test conditions were many times more severe than the device rating.

These tests supplemented the innumerable tests and experiments which were conducted at Motorola prior to the decision to adopt the new process into production. They provide practical proof that this is a truly revolutionary breakthrough in the high-current rectifier field.

## CHAPTER 10

## **Overcurrent Protection of Silicon Rectifiers**

### Introduction

The fusing of silicon rectifiers is, perhaps, the area of rectifier fabrication furthest behind in technical advancement. Until the state-ofthe-art is such that better fusing techniques are available, manufacturers must rely on design experience. Rectifier circuits must be designed with the provisions for overcurrent protection. The use of silicon diodes has been widely acclaimed in the rectifying industry because of silicon's electrical characteristics. It is, however, very susceptible to overcurrent. In this chapter, the circuit designer's approach to the overcurrent protection of silicon rectifiers will be discussed.

#### **Failure Mechanism in Silicon Diodes**

An understanding of the failure mechanism associated with silicon rectifiers will greatly aid the design engineer in providing adequate protection from overcurrent surges. When rated power is dissipated in a silicon rectifier, the average temperature of the p-n junction rises. Within a few cycles of operation the temperature stabilizes in accordance with the thermal time constant of the device. If the device is subjected to current overloads, the junction temperature will rise rapidly to a value destructive to the rectifier. This fact is reflected in the short thermal time constant associated with silicon rectifiers. However, the thermal capacity of the rectifier is sufficient for very short overloads. Consequently, surge ratings for silicon rectifiers are well in excess of continuous ratings.

Cell failures usually occur due to fracture, melting of the junction, or melting of the solders and wires used in fabricating the device. Fracture of the silicon die is due to the mechanical and thermal stresses which result from faulty construction and large temperature excursions. Good fabrication and testing techniques can reduce cell failure by fracture to insignificance. Most rectifier failures result from the melting of the silicon junction, or from the materials used in joining chip to the rectifier case. For high-current surges of less than one millisecond duration, melting of the silicon die is more likely to occur, whereas, for longer current surges, melting of the joining solders and wires may also occur.

When a rectifier cell fails due to excessive junction temperature, the failure results in a shorted device since the rectifier looses its reverse blocking capability. In most power systems, a shorted cell will present a direct short to the supply voltage. If there is no series-limiting impedance or fuse, the magnitude and duration of the surge current becomes great enough to cause vaporization of the joining solders and wires, consequently causing the unit to open. If is important to try to prevent this condition since this type of overcurrent is dangerous to associated components.

## **Current-Limiting Fuses and Their Application**

There are available two basic types of fuses. One is the standard "one-time" fuse or the conventional fuse. The other is the silver sand or fast-acting fuse. Both have uses in silicon diode overcurrent protection. It is imperative to know not only the properties of the diode but also of the fuses.

Fuse manufacturers will give typical ratings which characterize the fuse approximately. But, there are relatively wide tolerances within which a given fuse number will vary, even when the current rating is held constant. One item which design engineers often overlook is that a fuse changes characteristics at elevated temperatures. It is not uncommon for a fuse to carry 75 per cent less current at  $125^{\circ}C$  ambient than at  $50^{\circ}C$ ambient. It is also not uncommon to find the arcing time much in excess of the melting time.

A good recommendation for fusing procedures is as follows. Determine first, if there is any current-limiting resistance. This can be accomplished by the use of an oscilloscope and a piece of nichrome wire (which is calibrated for one-tenth of an ohm). Insert 0.1 ohm (nichrome wire) in series with the diode. (Use a large diode for this test.) During the short circuit condition, monitor both the applied peak voltage and peak current. From this, calculate the current-limiting impedance. (In cases of very large systems, it is advisable to insert a high resistance to prevent damage to associated components.) Subtract this value from the total series resistance. If this series resistance is sufficiently large to limit the peak let-through current to a value within the surge current rating of the device, now that the necessary value of the current-limiting series resistance is known, the engineer can see that the appropriate fuse should be the least expensive conventional one-time fuse with this resistance value. This fuse would then have a current rating of something slightly higher than the maximum average current which will flow under the range of operation. The purpose of the fuse, then, is only to prevent large time overloads of about three cycles or greater, because the diode can withstand the single cycle overload without damage.

Assuming that this peak let-through current is greater than the data sheet allows for the originally chosen diode, perhaps the next higher current device will withstand the surge. It behooves the design engineer to weigh the economics of the more expensive diode for reliability against the cheaper fuse.

Perhaps even the next higher diode is not sufficient, it then becomes mandatory to use the fast-acting fuse which clears in a matter of milliseconds.

Figure 10-1 shows the limiting action of a current-limiting fuse. The solid line shows the actual fault current due to the limiting action of the fuse. The dashed line shows the available fault current which would flow with no current-limiting action. As shown, melting of the fuse occurs at point A. The time of this occurrence is called the melting time. Depending on fuse design and the circuit, the current may rise to a peak let-





through current as shown at point B. Beyond point B, the impedance of the arcing fuse will force the fault current to zero at some point C. The time from point A to point C is the arcing time of the fuse. The melting time and the arcing time together make up the total clearing time of the fuse. A good current-limiting fuse will have an arcing time, approximately equal to the melting time of the cell. In no case should the arcing time exceed twice the melting time.

The first step in the fuse selection procedure is to select a fuse with a current rating higher than the current which the diode will carry at the maximum condition and which also has a lower  $1^{2}t$  rating than the diode. Then, with at least 20 fuses and 10 diodes, under actual operating conditions, create the overload condition. Use an oscilloscope to determine the peak let-through current, melting time, and arcing time. Make sure that peak let-through current is below the maximum peak surge current rating of the device. If this is not the case, then a higher current is necessary. The fuse should always open the circuit before the diode is damaged, under the complete operating range. Note the arcing time and melting time to insure that there is an adequate tolerance within the fuse.

#### **Placement of Fuses**

In low-cost circuits, where fusing with current-limiting is too expensive, the diode may be considered expendable and the only fuse used is a standard-line fuse. In most industrial applications, the use of currentlimiting fuses, standard fuses, and circuit breakers is commonly associated with diode protection. The placement of fuses will depend upon the type of circuit, the wiring, the location for good transient reduction, and ambient temperature. The following schematics are useful for overcurrent protection. **Overcurrent Protection of Silicon Rectifiers** 



Figure 10-2 Conventional Circuit Breaker



Figure 10-3. Fast-Acting Fuses



Figure 10-4. Various Fuse Placements

#### **Overcurrent Protection of Silicon Rectifiers**

Figure 10-2 illustrates the use of a conventional circuit breaker, useful when there is a current-limiting resistor and the peak let-through current is below the rating of the diodes. The breaker could be replaced with a standard fuse.

Figure 10-3 shows the placement of either standard or fast-acting fuses in the input and output of the assembly.

Figure 10-4 illustrates various fuse placements. The A set of fuses provides protection for the individual input lines. The B set of fuses is not only for protection of a diode but to keep the system operating even though a diode could have failed. The fuses of set C are diode protectors and are only used when B is not used for economy purposes. D and E fuses are output protection fuses. E separates various loads from the single-source dc potential.

Figure 10-5 illustrates an example of auxiliary circuits which could be used for long-term overcurrents where the diodes in the bridge circuit could support the load for about three or four cycles.





Figure 10-5. Auxiliary Circuit for Long-Term Overcurrent Protection

#### state of the property of the second state of t

Figure 10-1 Ibiemates the last of a constant correct breaker, method when there is a correct - indicate reaction and the reak ist-income correct to builds the relation of the distance. The breaker could be replaced with a standard free

. Figure 19-8 shows the pheathers as attact effects in factor and the figure figure for the figure and the structure.

Figure 10 4 bilaritation variate mos ployenismies fine in an and at such provides previoution for the half-real input liquet. The history function and only for provoction of a divisit for the light we service pointing even insurant shoth would then this to be a solution of an electron and and are only und often this to be add for economy gampings. Don't if there are taken producted light and a spectrum of the state of the state are taken for the the solution. If a operation on fact would for a state are taken by the state and a state of the state of the state of a state of the state of a state of the state of

Theore the situation is an element of norther arready which tout be used for inter-own secretaries where the duality is the integer strend. could surger the four-for screet three or leap control



and a start and the second s

## CHAPTER 11

### Protection of Silicon Rectifiers Against Voltage Transients

### Introduction

High peak inverse voltage transients in rectifier circuits are the major cause of diode failures. Silicon rectifiers, as with any semiconductor device, are quite sensitive to excess reverse voltages. In the early history of silicon diodes, the reverse voltage ratings were primarily dependent on surface breakdown since surface preparation technology was in its infancy. Now, however, surface preparation has improved and the reverse characteristics are based on bulk breakdown. This technology has brought the device to the state of art whereby the reverse power rating is as significant a rating as the forward power rating. This excessive power causes hot spot conditions which actually melt the silicon material, thereby destroying the p-n junction.

The transient voltage must therefore be prevented from destroying the diode by means of external circuitry. Only rarely will the transient be a calculated item since many transient conditions (regardless of the basic circuit) are highly dependent on the wiring layout. Often a breadboard layout is relatively free from transients because wiring is usually spread out and the design engineer falls into transient laxity only to be awakened when the final wired assembly starts destroying diodes. For this very reason, the following chapter is devoted to transient causes, detection, and protection.

### **Causes of Voltage Transients**

Transient voltages are generated in circuits when a rapid change of current exists with an inductance. It is extremely difficult to have any circuit which is free of wiring inductance and, even if this is possible, the supply voltage remains a primary source of transients.

One major transient problem occurs when the diodes are located on the secondary side of the transformer and the switching is accomplished in the primary. The type of switch used will have an effect on the amplitude and pulse width of the transient generated during its opening and closing. Due to the leakage reactance and wiring capacitance of the transformer, an oscillation with long-time transients may result. Transients are relatively easy to handle provided their on-time is short, consequently transformers should be designed with low-leakage reactance and low capacitance.

Another source of transients is the diodes themselves. For this very reason transient voltages can be detected in diode circuitry even when both the input and output are transient-protected. This, however, is a minor source of transients.

#### **Detection of Transients**

The only acceptable means of learning the nature of the voltage transients is by the use of a very high-frequency oscilloscope and an attached camera. (The oscilloscope should be capable of 15 megacycles or

#### Protection of Silicon Rectifiers Against Voltage Transients

greater.) Commercial transient indicators are excellent for troubleshooting in the field.

Assuming that an oscilloscope is used for detection, the first step is to apply maximum voltage to the input. Then with the oscilloscope placed directly across the diode (as short a lead as possible and all scope leads kept away from the circuit wiring), proceed with the normal cycle of operation for the equipment. During this process, note the point of operation which generates the greatest observable transient. Be sure that all the transient voltage is on the scope viewing area. Record this transient on a picture. Then, turn the brightness intensity on the scope up to a point where this dot has a ring around it and then proceed with the above procedure. This guarantees that the smallest transient has been seen. This procedure should be repeated at different times of the day for a period of about 15 minutes each. Then, repeat the above procedure with the line voltage at the lowest required of the circuit. Sometimes the greatest transient generation is with low line voltage. While this procedure is conducted, note the highest transient and its pulse width and also the widest transient including oscillation and its total on-time. Then place suppression circuits required to reduce the transients to an acceptable level. Another important procedure is to move the wiring of the final assembly to various places during the transient detection stage.

### Suppression of Voltage Transients

Suppression of voltage transients has many aspects; first, always use diodes in the prototype circuit which have a very high voltage capability. While the procedure for detection of transients is being conducted, always deal with the circuit components themselves before the addition of suppression circuits. Dealing with the circuit components means the placement of wiring and the changing or rearranging of switching and static elements such as transformers. Note also that transients are conducted not only by wiring capacitance but also through the air. After all means of suppression with the circuit components themselves has been exhausted, proceed with an examination of additional suppression circuits. Always note the before and after conditions of the transient voltage. All capacitors used for suppression circuits should have a good high-frequency response.

The first set of schematics deals with transient suppression on the ac input to a diode circuit using various components. Figures 11-1, 11-2, 11-3, and 11-4 are for transient or short-term excessive voltages. Figure 11-5 is for a long-term overvoltage where the silicon controlled rectifier is turned on by virtue of the zener current, subsequently opening the circuit breaker. Figure 11-6 is a method for three-phase supplies.

The second set of schematics deals with transient suppression circuits applied directly across components such as diodes, switches, etc. Primarily the diode protection suppression circuits are to remove the transients before they change the device, while the switch or contacts are to remove the transient which they have generated before they reach other circuit components. Protection of Silicon Rectifiers Against Voltage Transients



(a) Full-Wave Center Tapped Rectifier Circuit



(b) Full-Wave Bridge Circuit

Figure 11-1 Transient Suppression with Non-Polarizing Capacitors





The third set of schematics deals with the transient voltage suppression on the output from the diode assembly. Oftentimes it becomes necessary to remove transients which are generated from the load itself or from external conditions near the load.

Quite often it becomes necessary to use one or more of these systems to adequately protect silicon diodes. The voltage and current capability of each protective device should be determined for each case by Protection of Silicon Rectifiers Against Voltage Transients



Figure 11-3. Transient Suppression with Polarizing Capacitors



Figure 11-4. Transient Suppression with Selenium Non-Polarizing Diodes

laboratory tests, since mathematical calculations are sometimes overswamped by unpredictable circumstances.

In cases where series RC circuits are used, the typical values for R are 11 to 47 ohms, and for C are over 0.01 to 0.5  $\mu$ F. R should be a carbon-deposit type and C a high-frequency capacitor.

In cases where the capacitor is used as a dc capacitor, values up to 5  $\mu$ F are possible. The high-frequency type capacitor is often expensive when high capacitance is required. There are cases when disc capacitors are used in parallel with the larger capacitors for good high-frequency short pulse-width capability.

Protection of Silicon Rectifiers Against Voltage Transients



Figure 11-7

Protection of Silicon Rectifiers Against Voltage Transients









# CHAPTER 12

#### Thermal Design for Silicon Rectifiers

#### Introduction

One of the least discussed, but most important subjects concerned with the application of silicon rectifiers is effective cooling techniques. Since most rectifier device failures are ultimately temperature failures, it is imperative that good cooling techniques be employed. Any semiconductor will operate more reliably at 25°C below its maximum rated operating temperature. In most applications where natural convection cooling is employed, a rectifier cannot carry its rated current.

#### Mounting and Cooling of Silicon Rectifiers

Since junction heating is the limiting factor in the rating of rectifiers, particular attention must be paid to the controlling equations.

$$\Gamma_{\rm J} = P_{\rm D} \theta_{\rm J} A^{+} T_{\rm A} \tag{12-1}$$

where  $T_{I}$  = junction temperature

 $T_{A}$  = ambient temperature

 $P_{D}$  = total power dissipated in the device

 $\theta_{IA}$  = thermal resistance junction-to-ambient.

The thermal resistance  $\theta_{\rm JA}$  consists of several series resistances and may be written as

$$\theta_{\mathbf{I}\mathbf{A}} = \theta_{\mathbf{I}\mathbf{C}} + \theta_{\mathbf{C}\mathbf{S}} + \theta_{\mathbf{S}\mathbf{A}} \tag{12-2}$$

where  $\theta_{\rm IC}$  = thermal resistance junction-to-case

 $\theta_{CS}$  = thermal resistance case-to-sink

 $\theta_{SA}$  = thermal resistance sink-to-ambient.

Thus, Equation (12-1) may be rewritten as

$$T_{J} = P_{D}(\theta_{JC} + \theta_{CS} + \theta_{SA}) + T_{A}$$
(12-3)

Equation (12-3) may be used to calculate all thermal designs referring to the junction temperature. For all calculations involving junction temperature, the term  $\theta_{\rm JC}$  should include transient thermal conditions. Since many data sheets do not include this transient thermal data, as a general rule, it is easier to work with case temperature. All data sheets give a case temperature versus current derating curve. This curve always incorporates the transient thermal characteristics of the device.

Due to the very long time constant of the heat sink, the "dc" Equations (12-1), (12-2), and (12-3) may be used with high accuracy. A heat sink of  $5" \times 5" \times 0.125"$  will take about fifteen minutes or more to reach its final stabilization temperature. Useful design equations incorporating the case temperature are

$$T_{C} = P_{D}\theta_{CS} + P_{D}\theta_{SA} + T_{A}$$
(12-4)

$$T_{A} = -P_{D}(\theta_{CS} + \theta_{SA}) + T_{C}$$
(12-5)

$$\theta_{SA} = \frac{T_C - T_A - P_D \theta_{CS}}{P_D}$$
(12-6)

Note that for Motorola's large multicell devices the  $\theta_{\rm CS}$  is approximately zero for nearly all applications in which the device is bolted to a heat sink and lubricated. Consequently, Equations (12-4), (12-5), and (12-6) are simplified somewhat for high-current Motorola devices.

$$T_{C} = P_{D} \theta_{SA} + T_{A}$$
(12-7)

$$T_{A} = T_{C} - P_{D} \theta_{SA}$$
(12-8)

$$\theta_{SA} = \frac{T_C - T_A}{P_D}$$
(12-9)

#### Lead Mounted Rectifiers

Lead mounted silicon rectifiers, designed for low-current applications, require relatively small heat dissipating area. Heat developed in these devices is transmitted to the contact area. For applications using lead mounted rectifiers, some practical considerations will aid in keeping the junction within its limit of operating temperature range. The first rule of mounting is to keep the lead lengths as small as possible. Figure 12-1 shows the effect of increasing the lead length versus the  $\theta_{\rm JA}$  Clearly, the longer the lead length the greater the  $\theta_{\rm JA}$ . Figure 12-2 shows the effect of different mountings on  $\theta_{\rm JA}$  when the lead length is held constant. Figure 12-2(a) shows the effect of ambient air temperature. The diodes should be mounted above the board to permit ambient air convection. Figure 12-2(b) proves out Figure 12-2(a) since the thermal impedance went up as convection effects were cut down. Figure 12-2(c) shows the effect of larger area clips. These  $\theta_{\rm JA}$  values for the MR1036A diodes.

Other considerations are shielding from high temperature generating by components such as resistors, tubes, transformers, etc. These components will increase the  $\rm T_A$  and reduce the radiating capability of the diode.

Thermal Design for Silicon Rectifiers









(c) LARGE AREA STANDOFF



Figure 12-2. Clip Area Versus  $\theta_{JA}$ 

## **Press Fit Rectifiers**

Press fit devices, properly inserted, will have a  $\theta_{CS}$  of 0.8°C/W to 1°C/W. In press fit applications, the  $\theta_{CS}$  needs to be known only when the diode is to be inserted into a correctional heat sink. Conventional heat sinks have data on  $\theta_{SA}$ . The resultant sums will yield the necessary  $\theta_{CA}$ . In applications where the heat sink is some odd shape or where the heat sink capability is not known, laboratory work should be conducted on the case-to-ambient condition.

There are required standards for press fit devices which should be adhered to in all cases. The heat sink assembly should have a minimum of 0.125" thickness at the diode location, but, preferably as thick as the knurl length of the press fit case, especially if the  $\theta_{\rm CS}$  is to approach 0.8°C/W. The recommended hole diameter is 0.499"  $\pm$  0.001". The pressing force necessary will vary from 250 to 1,000 pounds, depending on the heat sink material. The recommended heat sink hardnesses are as follows: copper — less than 50 on the Rockwell F scale; aluminum — less than 65 on the Brinell scale.

All care must be given not to distort the case which would cause thermal problems or cracking of the silicon die.

#### **Stud Mounted Rectifiers**

Rectifier circuits which have high-current capacity should have devices which can carry this current and still have reasonable junction temperatures. One of the ways to accomplish this is by the mounting of the p-n junction to a threaded stud. This enables intimate contact to the heat dissipating media.

The mounting of these devices is extremely important. First the heat sink itself should have a flat noncoated surface. The hole should be only slightly larger than the stud without chamber. In other words, the sides should be straight from top to bottom and have no burrs on the edges. Wherever possible, there should be no insulation between the diode and the heat sink. Regardless of the method of contact, all surfaces should be coated with good silicon grease. The grease fills in the areas of no contact. Keep all grease away from the threaded portion of the diode. Lubricated threads cause inconsistency in torqueing requirements. Then the device should be tightened with a torque wrench to its maximum torque rating. This point is important because low torque will cause the  $\theta_{CS}$  to increase greatly while excessive torque will destroy the device. The diode should be mounted into a nonthreaded heat sink and a nut used to tighten the assembly.

Table 12-1 shows the thermal impedance under various conditions.

Copper and aluminum are the most common materials used for heat sinks. Copper heat sinks have the higher thermal conductivity, but are more expensive. Aluminum has a lower conductivity, is less expensive and weighs considerably less. Where cost is a critical factor, steel may be used. The use of aluminum heat sinks adds an additional problem: Galvanic

| Tal | ble | 12- | 1 |
|-----|-----|-----|---|
|     |     |     |   |

|           |              |        |                | Thermal I<br>(case-t | Resista<br>o-sink | unce<br>)   |
|-----------|--------------|--------|----------------|----------------------|-------------------|-------------|
| Hex Size  |              | Torque | Metal-to-Metal |                      | Mica Insulation   |             |
| Stud Size | across flats | (1b)   | Dry            | Lubrication          | Dry               | Lubrication |
| 10-32     | 7/16         | 15     | 0.41           | 0.22                 | 1.24              | 1.06        |
| 1/4-28    | 11/16        | 25     | 0.38           | 0.20                 | 0.89              | 0.70        |

action may occur between rectifier and sink, if the assembly is placed in a corrosive atmosphere. To counteract this undesired action, Motorola rectifiers are normally nickel plated. Consequently, precautions must be taken not to mar this nickel-plated finish on the rectifiers.

Heat sinks for rectifiers are often rectangular sheets of aluminum or copper. Such heat sinks are quite effective and afford ease in mounting and isolation. The relationship between heat sink area and thermal resistance can be obtained and plotted as shown in Figure 12-3.



Figure 12-3 Heat Sink Area versus Thermal Resistance

A nomograph which relates allowable power dissipation, temperature, and required heat sink area is given in Figure 12-4 for square plates of aluminum 1/8'' thick.

Thermal Design for Silicon Rectifiers



Figure 12-4 General Heat Sink Nomograph

Thermal Design for Silicon Rectifiers

An example of the general nomograph is as follows:

$$F_{J(max)} = 175^{\circ}C$$

$$T_{A} = 75^{\circ}C$$

$$P_{av} = 6 \text{ watts}$$

$$\theta_{JC} = 2.4^{\circ}C/W$$

$$\theta_{CS} = 0.4^{\circ}C/W$$

Solution: (refer to Figure 12-4)

(1) 
$$\theta_{1S} = \theta_{1C} + \theta_{CS} = 2.8^{\circ}C/W$$

(2)  $T_{I} - T_{A} = 100^{\circ}C$ ; enter scale A at 100°C

(3) Enter scale D at 6 watts

(4) Join 100°C and 6 watts with a straight line intersecting line B

(5) Obtain  $\theta_{IA}$  from nomograph line B = 15°C/W

(6) Obtain  $\theta_{SA}$  (heat sink thermal resistance) mathematically;

 $\theta_{SA} = \theta_{JA} - \theta_{JS} = 15 - 2.8 = 12.2 \text{°C/W}$ 

- (7) Enter line B at 12.2°C/W, and construct a line from this point through the construction point C extending to E
- (8) Read 8 sq. in. This would be 4 sq. in. per side or a flat square sheet 1/8" × 2" × 2".

Nomographs could be constructed for sheets of copper in the same manner as for aluminum sheets. However, copper plates are more expensive and less likely to be used where aluminum sheets are sufficient. The relative advantages of copper over aluminum sheets can be seen from Figure 12-3.

#### **Commercial Heat Sinks**

A wide variety of commercial heat sinks is available for rectifier applications. These range from small-area devices which clamp onto the rectifier case (axial leaded or single ended diodes) to large heat sinks which employ forced air cooling. When selecting commercial heat sinks, such factors as power dissipation, shape, weight, material, finish, and volume, as well as sink-to-ambient thermal resistance should be considered.

Commercial heat sinks are of two general classifications, natural convection coolers and forced air coolers. In natural convection systems, air is moved past the metal surfaces by the local heating of the air next to the plate. Forced air coolers use fans to increase the air flow over the heat sink.

## **Natural Convection Heat Sinks**

The natural convection heat sinks are rated according to the temperature rise (of the sink) above the ambient temperature. Thus, natural convection coolers require a curve of temperature rise versus applied power. Figures 12-5 through 12-8 show four typical medium-power natural convection heat sinks.

A short example of the calculations required for a typical heat sinking application will illustrate the use of the design equations.

| $P_{D} = 30$ watts                                                     | $P_{D} = 30$ watts                                             |  |  |
|------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| $T_J = 175^{\circ}C$                                                   | $T_C = 103^{\circ}C$                                           |  |  |
| $T_A = 50^{\circ}C$                                                    | $T_A = 50^{\circ}C$                                            |  |  |
| $\theta_{\rm JC}$ = 2.4°C/W                                            | $\theta_{\rm CS} = 0.4^{\circ}{\rm C/W}$                       |  |  |
| $\theta_{\rm CS} = 0.4^{\circ}{\rm C/W}$                               |                                                                |  |  |
| $\theta_{JS} = \theta_{JC} + \theta_{CS} = 2.8 \text{°C/W}$            |                                                                |  |  |
| $\theta_{SA} = \frac{T_J - T_A - P_D(\theta_{CS} + \theta_{JC})}{P_D}$ | $\theta_{SA} = \frac{T_{C} - T_{A} - P_{D}\theta_{CS}}{P_{D}}$ |  |  |
| $=\frac{175-50-30(0.4+2.4)}{30}$                                       | $= \frac{103 - 50 - 30(0.4)}{30}$                              |  |  |
| $=\frac{41}{30}=1.37^{\circ}C/W$                                       | $=\frac{41}{30}=1.37^{\circ}C/W$                               |  |  |

This example (which uses the junction temperature) is correct only if the value of  $\theta_{JC}$  is known for the appropriate current waveform (which includes the transient thermal impedance). The example referencing the temperature-to-case does not include transient thermal impedance.

## **Forced Air Cooling**

At one time engineers preferred not to use forced air cooling, and justifiably so. The available forced air fans were not reliable for continuous duty for long periods of time. This is no longer true. There are simple thermal contact switches available from such firms as Therm-O-Disc, which are mounted on heat sinks for thermal interlocks as an additional safety feature. Forced air correction enables the design to utilize the diode at its maximum current rating. It also enables the heat sink assembly to be manufactured cheaper. The forced air, after it leaves the diodes, can also be used as a cooling medium for other circuit components.

Thermal Design for Silicon Rectifiers









Thermal Design for Silicon Rectifiers



Figure 12-7. Astro Dynamics Model 2507 Thermal Characteristics





#### Heat Sink Emperical Verification

After the mathematical calculations have dictated the choice of the heat sink, and the assembly is inserted in its actual operating condition, it is desirable to conduct a series of thermal tests. These tests insure the satisfactory operation of the diodes. It is often not possible to know the ambient air temperature during the initial calculations. For example, all natural heat sink curves as shown by the manufacturer are for a vertical unobstructed air flow rating. If the heat sink is tested in an enclosed chamber, the heat sink will have an increase in  $\theta$ SA. Therefore, the placement of the heat sink will have a bearing on the end result.

Tests on about six diodes will give an excellent relative confidence level. The test should follow the procedure as outlined. Attach a thermocouple to the case by means of direct metal contact. If an inexpensive temperature indicator is to be used, the Simpson portable indicator is excellent. Never use a thermometer. Mount the diode in the heat sink in final assembly position. With the equipment operating under the worst-case condition, measure the case temperature. Allow at least one hour operating time before recording the case temperature. After the case temperature is measured and the average current through the diode is known, refer to the appropriate diode data sheet. The empirical point must fall below the maximum operating point on the T<sub>C</sub> versus I<sub>av</sub> derating curve. For reliable operation, it is good to have this point about 25°C below the published curves. Where possible, cycle the equipment through all operating conditions, and record the temperatures for future reference which may be needed in cases of troubleshooting.

#### HORALINAN LINESING SINE SINES

After the section allow a bound is the section of the sector of the sect

Total an above an dialas will comme another relative contraction have. There at places in the processing is initiated, which a territobeamerante induction is to be near the simple operating. If an initiation or allow, there are a the monitories in the simple operating the dials in the simple of the hardware is a the second of the second of the simple of the second or allows. There are a the monitories is the the dials in the dials in the or allows. There are a the monitories is the the dials in the second or the assessment monitories in the second of the second of the bare is assessed and the strate dials (the second of the second term of the appropriate field are also the second of the second of the the statement of the strate dials the second of the second term of the appropriate field are also the second of the second of the the statement of the strate dials the second of the second term of the appropriate field are also the strate the second term of the appropriate field are also the strate of the second in the second of the second and the strate the strate the second term of the appropriate of the second of the strate of the second term of the appropriate of the second of the second strate of the second term of the appropriate of the second of the second strate of the second term of the second strate is a strate of the second strate of the second term of the second strate is a strate of the second strate of the second term of the second strate is a strate of the second strate of the second term of the second strate is a strate of the second term of the second term of the second strate is a strate of the second strate of the second term of the second strate is a strate of the second term of the second term.

# CHAPTER 13

## Rectifier Test Circuits

## Introduction

The following test circuits are presented to aid the users of rectifier components in testing, comparing, and troubleshooting rectifier circuits.

The test circuits used by Motorola to establish rectifier ratings and characteristics conform to NEMA-EIA standards. Although automated equipment is used at Motorola, the same basic techniques may be applied without this equipment.

When testing rectifiers against specifications, it is essential that the meaning of ratings and characteristics is well understood. "Characteristics" are rectifier parameters which are measured under specified conditions. Characteristics are given as typical data or as maximum or minimum limits. Ratings give absolute maximum conditions not to be exceeded if long life and high reliability are expected. Ratings are not measured directly, but are established by the judgment of the manufacturer. Such ratings are usually quite conservative.

## Basic Test Circuits

#### DC FORWARD VOLTAGE DROP

The dc forward voltage drop of a rectifier may be measured with the circuit shown in Figure 13-1.



Figure 13-1. DC Forward Voltage Drop Test Circuit

The test procedure is as follows: V and R are adjusted such that the specified test current (as measured by  $M_1$ ) flows through the diode in the forward direction. The forward voltage is read on the voltmeter  $M_2$ , which can be almost any accurate multimeter since the forward diode impedance is very low.

Example: Test Motorola MR1032

- (1) The steady-state current is set to 3 amperes (on  $M_1$ ).
- (2)  $V_F$  is read (on M<sub>2</sub>). ( $V_F$  will be less than 0.9 volt.)

Note: Ambient temperature is 25°C.

**Rectifier Test Circuits** 

#### DC REVERSE CURRENT

The dc static reverse current can be obtained using the circuit of Figure 13-2.



Figure 13-2. DC Reverse Current Test Circuit

The test procedure is as follows: V is adjusted until the reverse voltage of the diode (as read on  $M_2$ ) is at its rated value. The dc reverse current is read on  $M_1$ . The meter  $M_1$  must have sufficient sensitivity to read the reverse leakage current.

Example: Test Motorola MR1032

- (1) V is set to 200 volts (on  $M_2$ ).
- (2)  $I_{\rm R}$  is recorded (on  $M_1$ ). ( $I_{\rm R}$  will be less than 0.5 mA.)

Note: Ambient temperature is 25°C.

### **Recovery Time Test Circuit**

The recovery time of a diode can be measured using the test circuit shown in Figure 13-3.

A current of one ampere flows in the forward direction through the diode from a constant voltage source. A reverse voltage of 30 volts is applied to the rectifiers by the Clare HGP1002 relay (a make-before-break type). The time during which the relay is shorted is approximately 200 microseconds.  $R_1$  is a wire-wound potentiometer with an inductance of approximately 3 microhenrys. This inductance swamps out the inductance of the circuit and shows the fall time of the device so it can be observed. The primary function of  $R_1$  is to limit the overshoot current of the rectifier when the voltage goes negative.  $R_2$  is a sensing resistor which provides voltage deflection for the oscilloscope.

The test procedure is as follows: The constant voltage supply is adjusted until one ampere of ac current flows through the rectifier. The switching relay is energized and the overshoot current is adjusted to some predetermined level. The recovery time (the time required for the current to pass through zero) is read, and the time the rectifier requires to recover to 90 per cent of its rated reverse leakage current is also read.

Example: Test Motorola 1N3879

(1) The forward dc current is set to one ampere.



- (2) The relay and resistor  $R_1$  are set so that the overshoot current is limited to two amperes.
- (3) The reverse recovery time on the oscilloscope is read as illustrated in Figure 13-4.



Figure 13-4. Typical Reverse Recovery Pattern

### **Rectifier Assembly Tests**

The individual cells in rectifiers, stacks, and assemblies may be tested using the circuits described above. However, when individual units cannot be isolated or when it is desired to measure overall assembly characteristics, the following circuits can be used. These circuits are described in NEMA-EIA Standards for Silicon Rectifier Diodes and Stacks, and are only representative of the type of test circuits used for different assemblies.

DC FORWARD VOLTAGE DROP TEST ON A SINGLE-PHASE BRIDGE





The test procedure is as follows: V and R are adjusted until the rated average current through the bridge can be read on meter  $M_2$ . The forward voltage drop is recorded from  $M_1$ . Note that the ac terminals of the bridge are open and the power supply is connected to terminals of opposite polarity on the rectifier bridge.

DC REVERSE CURRENT TEST ON A SINGLE-PHASE BRIDGE



Figure 13-6. DC Reverse Current Test on a Single-Phase Bridge.

The test procedure is as follows: V and R are adjusted until the rated dc blocking voltage is impressed across the bridge (as read on  $M_1$ ). The dc reverse leakage current is read on  $M_2$ . Note that the ac terminals of the bridge are open.

**Rectifier Test Circuits** 

# **Bridge Output Voltage**

Figure 13-7 shows a test schematic useful in checking the operating condition of diodes in a bridge circuit.



Figure 13-7. Bridge Assembly Test Circuit

The test procedure is as follows: The input voltage is set at the rated bridge-operating voltage ( $R_{\rm L}$  is large). An oscilloscope is used to insure that full-wave rectification is taking place.

#### A REAL PROPERTY AND A REAL

stra flati h mateir rechards

States they arrive a loss of the loss of short of the char the first of the context of



Provide and the second se

"Dia vent presentare in an follower The input village to be all the second of the seco

# CHAPTER 14

## Reliability Of Motorola Multicell Power Rectifiers

# **Life Tests**

As part of an in-plant testing and evaluation program, operating and storage life tests have been performed on the basic rectifier cells used in all Motorola medium and high-current power rectifiers.

Storage life tests were performed at a minimum of 175°C ambient temperature for 1,000 hours with initial parameter specifications used for test end points. Steady-state operating life tests have also been performed at a minimum case temperature of 150°C with maximum rated current of 20 amperes average per cell; 600 volts applied for 1,000 hours. Initial specifications were also used as test end points. Results of the operational life tests have demonstrated a device failure rate at a 90 per cent confidence level of less than 1.4 per cent per 1,000 hours under these maximum rated conditions. At a 60 per cent confidence level this provides a 0.75 per cent per 1,000 hour value. These results are consistent with the requirements of general Military specifications. In over 270,000 device-hours of testing at maximum stress, only one failure (noncatastrophic) has been recorded. In addition, reliability studies have shown that when silicon devices of this type are operated at lower, more typical temperatures and under less stress, substantially lower failure rates result. Present data shows that the basic cells, when operated at normal case temperatures in the 100°C range and under normal current and voltage requirements, will easily achieve low failure rates of less than 0.01 per cent per 1,000 hours of operation. This inherent reliability that is designed into every Motorola basic rectifier cell is, in turn, reflected in every multicell power rectifier through built-in redundancy and conservative design and device rating. These facts have been verified through operational life testing of multicell rectifiers at maximum ratings for over 14,000 hours continuously in which a failure rate of less than 0.5 per cent per 1,000 hours was achieved. This testing represented over 1,400,000 device-hours of basic cell operation and indicates a maximum expected failure rate as low as 0.005 per cent per 1,000 hours for the total multicell device under normal derated conditions.

In addition, Motorola power rectifiers have been subjected to and passed such stringent Military environmental tests in accordance with MIL-STD-750 requirements as:

Temperature cycling Thermal shock Moisture resistance Mechanical shock Vibration fatigue Vibration (variable frequency) Constant acceleration Salt spray Barometric pressure (reduced) Hermetic seal
#### **Equipment Usage Life Tests**

In another test program, 80-ampere and 240-ampere multicell rectifiers were tested in an actual equipment application under normal industrial service requirements. Forty of these rectifiers have provided over 12,000 hours of continuous service without a single failure or any equipment down-time. This test amounted to over 450,000 device-hours of reliable operation in a typical industrial electro-chemical plating application. In one customer evaluation program, sixty 240-ampere multicell rectifiers have provided over 16,000 hours of trouble-free service from 15 welding machines under maximum field conditions. This outstanding record of over one million device-hours of reliable operation had never been achieved in this equipment by any other rectifier manufacturer until Motorola. These results have prompted this customer to consider using only multicell rectifiers in his equipment.

In an industrial fork-lift truck application, 240, 400, and 650-ampere multicell rectifiers are required to sustain the full armature current of large dc motors and also to withstand extremely high surge currents under a stalled motor condition. In these equipments where no other rectifier had ever been completely successful, Motorola has supplied over 4,000 devices which have operated many thousands of hours without a single rejection or electrical failure recorded.

In another industrial power supply application, 60 Motorola 400ampere rectifiers are required to deliver 15,000 amperes continuous output from a polyphase rectifier circuit for chemical processing. This number of multicell power rectifiers represents over 1,000 basic cells operating in the same circuit. In over one year of continuous service, no failures or equipment down-time have been experienced. This record amounts to over 480,000 device-hours of reliable service from these 60 power rectifiers and over 8,500,000 device-hours when considering the number of basic rectifier cells being used.

#### Conclusion

These have been just a few brief examples of the testing and field experience of Motorola multicell power rectifiers. These devices have achieved an excellent record in the past few years since their development, and are successfully serving in a wide variety of equipment applications such as:

Industrial power supplies Mining equipment Automotive alternators Battery chargers Plating equipment Welders Steel mill power supplies Electronic computer power supplies Telephone equipment Magnetic testing equipment Military defense equipment Traction equipment

#### CHAPTER 15

**Rectifier and Assembly Specifications** 

#### SILICON RECTIFIERS

The trend in rectifiers, today, is toward silicon. Technically, there are many reasons why this is so. In comparison with thermionic tubes, silicon rectifiers offer a new era of reliability and performance, and no other solidstate rectifier has the inherant advantages of silicon. Silicon shrugs at operating temperatures that would quickly wilt other solid-state devices. The high forward conductance and low-reverse-leakage current of silicon outclasses selenium, and no other type of rectifier packs as much currentcarrying capacity into as small a package. Moreover, these advantages of silicon rectifiers are now available at costs that are more than competitive with other types.

Motorola manufactures a complete line of silicon rectifiers for current requirements ranging from milliamperes to kiloamperes. These are housed in a variety of package types, making them suitable for every electrical and electronic application.

In addition, rectifier assemblies for higher voltage and current devices and for applications such as bridges and other circuit configurations are available as standard devices and can easily be made to order for custom applications.

#### MULTI-CELL RECTIFIERS

For high-current rectifiers, Motorola employs the multi-cell concept. This approach not only permits the fabrication of higher-current rectifiers, but also eliminates many of the problems associated with large single-junction devices. The construction of a typical multi-cell rectifier is shown below.



Complete seal strength is afforded by the outer case, thus preventing any excessive stress on the glass-to-metal hermetic inner seal of indi-

> Internal, hermetically sealed. welded metal case rectifier cells. All individual cells are specially processed, tested and matched for similarity of forward voltage characteristics to assure balanced current sharing and reliable parallel operation. Each cell is rated to operate at only 75 per cent of maximum current capability, providing a built-in safety margin.

Resistance to thermal fatigue of each cell is assured through the use of double back-up discs and high temperature solder construction to protect the silicon die against stresses. In addition. the small junction areas of the individual paralleled cells result in a total rectifier which can better resist thermal fatigue because of the smaller excursion of dissimilar bonded materials (as opposed to a large single-junction rectifier)

### MOTOROLA PREFERRED SILICON RECTIFIER SELECTION GUIDE

### ...a digest of the broadest line

of quality rectifiers available

|              | 1                   | A                          | 1.5 A  | 3                   | A                   | 6 A                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A                          | 15 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 A   |
|--------------|---------------------|----------------------------|--------|---------------------|---------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|              |                     | 9                          | E      | 4                   | J.                  | - And                      | and the second s | - Per                      | and the second s | -      |
| VRM<br>(REP) | Surmetic‡<br>CASE A | FAST<br>RECOVERY<br>CASE B | CASE C | CASE D              | CASE E              | FAST<br>RECOVERY<br>CASE F | CASE G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FAST<br>RECOVERY<br>CASE F | CASE H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CASE H |
| 50 V         | 1N4001              | MR1337-1                   |        | 1N4719<br>(MR1030A) | 1N4997<br>(MR1030B) | 1N3879                     | MR1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N3889                     | 1N3208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N248B |
| 100 V        | 1N4002              | MR1337-2                   | 1N1563 | 1N4720<br>(MR1031A) | 1N4998<br>(MR1031B) | 1N3880                     | MR1121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N3890                     | 1N3209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N249B |
| 150 V        |                     |                            |        | LEISIR              |                     | 32.0                       | 9159d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1N1193 |
| 200 V        | 1N4003<br>*1N3611   | MR1337-3                   | 1N1564 | 1N4721<br>(MR1032A) | 1N4999<br>(MR1032B) | 1N3881                     | MR1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N3891                     | 1N3210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N250B |
| 250 V        |                     |                            |        | 1-2-0               |                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | patou la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| 300 V        |                     | MR1337-4                   | 1N1565 | MR1033A             | MR1033B             | 1N3882                     | MR1123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N3892                     | 1N3211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N1195 |
| 350 V        |                     |                            |        |                     |                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 400 V        | 1N4004<br>*1N3612   | MR1337-5                   | 1N1566 | 1N4722<br>(MR1034A) | 1N5000<br>(MR1034B) | 1N3883                     | MR1124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N3893                     | 1N3212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N1196 |
| 500 V        |                     | MR1337-6                   | 1N1567 | MR1035A             | MR1035B             |                            | MR1125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 1N3213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N1197 |
| 600 V        | 1N4005<br>*1N3613   | MR1337-7                   | 1N1568 | 1N4723<br>(MR1036A) | 1N5001<br>(MR1036B) |                            | MR1126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 1N3214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1N1198 |
| 800 V        | 1N4006              |                            |        | 1N4724<br>(MR1038A) | 1N5002<br>(MR1038B) |                            | MR1128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 1000 V       | 1N4007              |                            |        | 1N4725<br>(MR1040A) | 1N5003<br>(MR1040B) |                            | MR1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

| †This lis<br>from st<br>informa<br>as well | t covers o<br>tock or cur<br>ation on cu<br>as comple | nly the mo<br>rently unde<br>rrent and v<br>te specific | st popular<br>r developm<br>oltage ratin<br>ations for a | Motorola r<br>ent. The u<br>Igs not sho<br>III devices | ectifiers an<br>ser is urgeo<br>wn or for a<br>listed. | nd by no m<br>d to contac<br>ny special | neans represent<br>t the near<br>electrical a | esents all f<br>est Motoro<br>nd/or mec | the devices<br>la regional<br>hanical req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | available<br>office for<br>uirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 A                                       | 30 A                                                  | 35 A                                                    | 50 A                                                     | 80 A                                                   | 160 A                                                  | 240 A                                   | 400 A                                         | 650 A                                   | 1000 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            |                                                       | -                                                       |                                                          | 80 A                                                   | 80A                                                    | 160                                     |                                               |                                         | in the second se | en de la companya de |
| CASE J                                     | CASE J                                                | CASE H                                                  | 50 A<br>CASE K                                           | 240 A<br>400 A<br>CASE L                               | 240 A<br>400 A<br>CASE M                               | 400<br>650<br>M CASE                    | A 1<br>A 2<br>A 4<br>C N CA                   | 40 A<br>200 A<br>SE P                   | (WATER<br>COOLED)<br>CASE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VRM<br>(REP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1N3491<br>(MR322)                          | 1N3659                                                | 1N1183                                                  | MR1200                                                   | MR1210                                                 | MR1220                                                 | MR1230                                  | MR1240                                        | MR1260                                  | MR1290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1N3492<br>(MR323)                          | 1N3660                                                | 1N1184                                                  | MR1201                                                   | MR1211                                                 | MR1221                                                 | MR1231                                  | MR1241                                        | MR1261                                  | MR1291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            |                                                       | 1N1185                                                  | MR1202                                                   | MR1212                                                 | MR1222                                                 | MR1232                                  | MR1242                                        | MR1262                                  | MR1292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1N3493<br>(MR324)                          | 1N3661                                                | 1N1186                                                  | MR1203                                                   | MR1213                                                 | MR1223                                                 | MR1233                                  | MR1243                                        | MR1263                                  | MR1293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 101.0                                      |                                                       |                                                         | MR1204                                                   | MR1214                                                 | MR1224                                                 | MR1234                                  | MR1244                                        | MR1264                                  | MR1294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1N3494<br>(MR325)                          | 1N3662                                                | 1N1187                                                  | MR1205                                                   | MR1215                                                 | MR1225                                                 | MR1235                                  | MR1245                                        | MR1265                                  | MR1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            |                                                       |                                                         | MR1206                                                   | MR1216                                                 | MR1226                                                 | MR1236                                  | MR1246                                        | MR1266                                  | MR1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1N3495<br>(MR326)                          | 1N3663                                                | 1N1188                                                  | MR1207                                                   | MR1217                                                 | MR1227                                                 | MR1237                                  | MR1247                                        | MR1267                                  | MR1297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MR327                                      |                                                       | 1N1189                                                  |                                                          |                                                        |                                                        |                                         |                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MR328                                      |                                                       | 1N1190                                                  |                                                          | 192 20.                                                |                                                        | TR                                      |                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MR330                                      |                                                       |                                                         |                                                          |                                                        |                                                        |                                         |                                               | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 800 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MR331                                      |                                                       |                                                         |                                                          |                                                        |                                                        |                                         |                                               |                                         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F                                          | REVER                                                 | SE POL                                                  | ARITIE                                                   | S AVA                                                  | ILABLE                                                 | IN AL                                   | L 3A T                                        | O 1000                                  | ΟΑ ΤΥΡ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





Rectifier and Assembly Specifications



|                                     |                       |                       | DIMENSIO              | NS-INCHES       | 3                     |                       |                       |
|-------------------------------------|-----------------------|-----------------------|-----------------------|-----------------|-----------------------|-----------------------|-----------------------|
| l <sub>o</sub><br>Output<br>Current | A<br>HEX              | B <sub>1</sub><br>MAX | B2<br>MAX             | C<br>MAX<br>DIA | D <sub>1</sub><br>MAX | D <sub>2</sub><br>MAX | E <sub>1</sub><br>DIA |
| 80                                  | 1.250                 | 0.135                 | 0.113                 | 1.20            | 0.525                 | 0.590                 | 0.250                 |
| 160                                 | 1.75                  | 0.260                 | 0.155                 | 1.72            | 0.760                 | 0.64                  | 0.375                 |
| 240                                 | 2.00                  | 0.260                 | 0.200                 | 1.94            | 1.10                  | 1.00                  | 0.562                 |
| 400                                 | 2.250                 | 0.320                 | 0.260                 | 2.20            | 1.10                  | 1.155                 | 0.562                 |
|                                     | E <sub>2</sub><br>DIA | F <sub>1</sub><br>MAX | F <sub>2</sub><br>MAX | G               | H<br>THREAD           | J<br>MAX              | K<br>MAX              |
| 80                                  | 0.281                 | 2.25                  | 6.25                  | 0.125           | 10-32                 | 0.500                 | 0.570                 |
| 160                                 | 0.343                 | 3.0                   | 8.10                  | 0.375           | 3/4-16 UNF            | 1.00                  | 1.10                  |
| 240                                 | 0.531                 | 3.50                  | 8.10                  | 0.375           | 3/4-16 UNF            | 1.00                  | 1,10                  |
| 400                                 | 0.562                 | 3.72                  | 8.10                  | 0.375           | 3/4-16 UNF            | 1.00                  | 1.10                  |



CASE L



CASE M

| 1033                                |           |                       | DIMENSION | S-INCHES              |                       |           |                       |
|-------------------------------------|-----------|-----------------------|-----------|-----------------------|-----------------------|-----------|-----------------------|
| l <sub>o</sub><br>Output<br>Current | A         | B<br>DIA              | C<br>MAX  | D<br>MAX<br>DIA       | Е <sub>1</sub><br>MAX | E2<br>MAX | F <sub>1</sub><br>MAX |
| 160                                 | 2.25      | 0.203                 | 0.880     | 1.720                 | 0.260                 | 0.155     | 0.760                 |
| 240                                 | 3.00      | 0.281                 | 1.255     | 2.100                 | 0.260                 | 0.200     | 1.100                 |
| 400                                 | 3.00      | 0.281                 | 1.255     | 2.200                 | 0.320                 | 0.260     | 1.100                 |
| 650                                 | 3.25      | 0.281                 | 1.380     | 2.885                 | 0.500                 | -         | 1.30                  |
|                                     | F2<br>MAX | G <sub>1</sub><br>MAX | G2<br>MAX | H <sub>1</sub><br>DIA | H <sub>2</sub><br>DIA | J<br>MAX  | K<br>MAX              |
| 160                                 | 0.64      | 1.9                   | 7.10      | 0.375                 | 0.343                 | 0.260     | 1.00                  |
| 240                                 | 1.00      | 2.50                  | 6.90      | 0.562                 | 0.531                 | 2.260     | 1.00                  |
| 400                                 | 1.155     | 2.70                  | 6.90      | 0.562                 | 0.562                 | 0.260     | 1.00                  |
| 650                                 | -         | 2.50                  | -         | 0.562                 |                       | 0.260     | 1.00                  |







In most cases, the performance ratings of Motorola types will exceed those of the competitive devices they replace, consequently, they may be considered electrically superior. It should not be inferred, however, that the Motorola devices are physically identical to the devices they replace; detailed specifications should be consulted for any minor differences that might exist.

| TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>TO BE<br>REPLACED | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>TO BE<br>REPLACED | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. |
|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|
| 1N248                         | 1N248A                                  | 1N412B                        | MD19119D                                | 1N610                         | 1N4003                                  |
| 1N2484                        | 1N248B                                  | 1N413B                        | MD1919CD                                | 1N6104                        | 1N4003                                  |
| 1N248B                        | 1N248B                                  | 1N440                         | MR12135D                                | 1N611                         | 1N4004                                  |
| 1N240D                        | 1N2480                                  | 1N440B                        | 1N4002                                  | 1N6114                        | 1N4004                                  |
| 1N2400                        | 1N2404                                  | 1N441                         | 1N4002                                  | 1N612                         | 1N4004                                  |
| 1N2404                        | 112400                                  | 1NAA1D                        | 1N4003                                  | 111012                        | 1114004                                 |
| 111245A                       | 1N240B                                  | 1N441D                        | 1N4003                                  | INOI2A<br>INCIS               | 1114004                                 |
| 1112490                       | 1112490                                 | 111442                        | 1N4004                                  | 1N013                         | 1N4005                                  |
| 1112490                       | 11/2490                                 | 1N446D                        | 1N4004                                  | INOISA                        | 1N4005                                  |
| 111230                        | INZSOA                                  | 111440                        | 1N4004                                  | 1N014                         | 1N4005                                  |
| 1N250A                        | 112508                                  | 1114430                       | 1N4004                                  | IN614A                        | 1N4005                                  |
| 1N250B                        | 1N250B                                  | 1N444                         | 1N4005                                  | 1N645                         | IN4004                                  |
| 1N250C                        | 1N250C                                  | 1N444B                        | 1N4005                                  | 1N645A                        | IN4004                                  |
| 1N253                         | IN4002                                  | 1N445                         | 1N4005                                  | 1N646                         | IN4004                                  |
| IN254                         | 1N4003                                  | IN445B                        | 1N4005                                  | 1N647                         | IN4004                                  |
| 1N255                         | IN4004                                  | 1N530                         | 1N4002                                  | 1N648                         | 1N4005                                  |
| 1N256                         | IN4005                                  | 1N531                         | 1N4003                                  | 1N649                         | 1N4005                                  |
| 1N316                         | 1N4001                                  | 1N532                         | 1N4004                                  | 1N676                         | 1N4002                                  |
| 1N316A                        | 1N4001                                  | 1N533                         | 1N4004                                  | 1N677                         | 1N4002                                  |
| 1N317                         | 1N4002                                  | 1N534                         | 1N4005                                  | 1N678                         | 1N4003                                  |
| 1N317A                        | 1N4002                                  | 1N535                         | 1N4005                                  | 1N679                         | 1N4003                                  |
| 1N318                         | 1N4003                                  | 1N536                         | 1N4001                                  | 1N681                         | 1N4004                                  |
| 1N318A                        | 1N4003                                  | 1N537                         | 1N4002                                  | 1N682                         | 1N4004                                  |
| 1N319                         | 1N4004                                  | 1N538                         | 1N4003                                  | 1N683                         | 1N4004                                  |
| 1N319A                        | 1N4004                                  | 1N539                         | 1N4004                                  | 1N684                         | 1N4004                                  |
| 1N320                         | 1N4005                                  | 1N540                         | 1N4004                                  | 1N685                         | 1N4005                                  |
| 1N320A                        | 1N4005                                  | 1N547                         | 1N4005                                  | 1N686                         | 1N4005                                  |
| 1N321A                        | 1N4007                                  | 1N550                         | 1N4002                                  | 1N687                         | 1N4005                                  |
| 1N322A                        | 1N4007                                  | 1N551                         | 1N4003                                  | 1N689                         | 1N4005                                  |
| 1N323A                        | 1N4001                                  | 1N552                         | 1N4004                                  | 1N846                         | 1N4001                                  |
| 1N324A                        | 1N4002                                  | 1N553                         | 1N4004                                  | 1N847                         | 1N4002                                  |
| 1N325A                        | 1N4003                                  | 1N554                         | 1N4005                                  | 1N848                         | 1N4003                                  |
| 1N326A                        | 1N4004                                  | 1N555                         | 1N4005                                  | 1N849                         | 1N4004                                  |
| 1N327A                        | 1N4005                                  | 1N560                         | 1N4006                                  | 1N850                         | 1N4004                                  |
| 1N328A                        | 1N4007                                  | 1N561                         | 1N4007                                  | 1N851                         | 1N4005                                  |
| 1N329A                        | 1N4007                                  | 1N562                         | 1N4006                                  | 1N852                         | 1N4005                                  |
| 1N332                         | 1N4004                                  | 1N563                         | 1N4007                                  | 1N853                         | 1N4006                                  |
| 1N333                         | 1N4004                                  | 1N596                         | 1N4005                                  | 1N854                         | 1N4006                                  |
| 1N334                         | 1N4004                                  | 1N597                         | 1N4006                                  | 1N855                         | 1N4007                                  |
| 1N335                         | 1N4004                                  | 1N598                         | 1N4007                                  | 1N856                         | 1N4007                                  |
| 1N336                         | 1N4003                                  | 1N599                         | 1N4001                                  | 1N857                         | 1N4001                                  |
| 1N337                         | 1N4003                                  | 1N599A                        | 1N4001                                  | 1N858                         | 1N4002                                  |
| 1N338                         | 1N4002                                  | 1N600                         | 1N4002                                  | 1N859                         | 1N4003                                  |
| 1N339                         | 1N4002                                  | 1N600A                        | 1N4002                                  | 1N860                         | 1N4004                                  |
| 1N340                         | 1N4002                                  | 1N601                         | 1N4003                                  | 1N861                         | 1N4004                                  |
| 1N341                         | 1N4004                                  | 1N601A                        | 1N4003                                  | 1N862                         | 1N4005                                  |
| 1N342                         | 1N4004                                  | 1N602                         | 1N4003                                  | 1N863                         | 1N4005                                  |
| 1N343                         | 1N4004                                  | 1N602A                        | 1N4003                                  | 1N864                         | 1N4006                                  |
| 1N344                         | 1N4004                                  | 1N603                         | 1N4004                                  | 1N865                         | 1N4006                                  |
| 1N345                         | 1N4003                                  | 1N603A                        | 1N4004                                  | 1N866                         | 1N4007                                  |
| 1N346                         | 1N4003                                  | 1N604                         | 1N4004                                  | 1N867                         | 1N4007                                  |
| 1N347                         | 1N4002                                  | 1N604A                        | 1N4004                                  | 1N868                         | 1N4001                                  |
| 1N348                         | 1N4002                                  | 1N605                         | 1N4005                                  | 1N869                         | 1N4002                                  |
| 1N349                         | 1N4002                                  | 1N605A                        | 1N4005                                  | 1N870                         | 1N4003                                  |
| 1N359A                        | 1N4002                                  | 1N606                         | 1N4005                                  | 1N871                         | 1N4004                                  |
| 1N360A                        | 1N4002                                  | 1N606A                        | 1114005                                 | 1N979                         | 1N4004                                  |
| 1N361A                        | 1N4003                                  | 1N607                         | 1N4001                                  | 1N873                         | 1N4005                                  |
| 1112624                       | 1N4004                                  | 1N607A                        | 1111001                                 | 121074                        | 1114005                                 |
| 1112624                       | 1N4005                                  | 111609                        | 11/4001                                 | 111075                        | 1114000                                 |
| 1112644                       | 1114007                                 | 1N6094                        | 1N4002                                  | 11073                         | 1114000                                 |
| 113654                        | 1N4007                                  | 1N609                         | 1114002                                 | 1N070                         | 1N4000                                  |
| 1NJ00A                        | MD1910SD                                | 111009                        | 1N4003                                  | 1N877                         | 1N4007                                  |
| IN411B                        | WIR12105D                               | INOUSA                        | 11/4003                                 | 11878                         | 1N4007                                  |

| TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>TO BE<br>REPLACED | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. |
|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|
| 1N879                         | 1N4001                                  | 1N1191R                       | 1N1191R                                 | 1N1254                        | 1N4004                                  |
| 1N880                         | 1N4002                                  | 1N1192                        | 1N1192                                  | 1N1255                        | 1N4004                                  |
| 1N881                         | 1N4003                                  | 1N1192R                       | 1N1192R                                 | 1N1341                        | MR1120                                  |
| 1N882                         | 1N4004                                  | 1N1193                        | 1N1193                                  | 1N1341A                       | MR1120                                  |
| 1N883                         | 1N4004                                  | 1N1193R                       | 1N1193R                                 | 1N1342                        | MR1121                                  |
| 1N884                         | 1N4005                                  | 1N1194                        | 1N1194                                  | 1N1342A                       | MR1121                                  |
| 1N885                         | 1N4005                                  | 1N1104P                       | 1N1194R                                 | 1N1343                        | MR1122                                  |
| 1N886                         | 1N4006                                  | 1N1105                        | 1N1195                                  | 1N1343A                       | MR1122                                  |
| 111000                        | 1N4006                                  | 1N1105A                       | 1N1195A                                 | 1N1344                        | MR1122                                  |
| 111000                        | 1114000                                 | 1N1105D                       | 1N1105P                                 | 1N1344A                       | MD1122                                  |
| 111000                        | 1114007                                 | 1N1105AD                      | 1N1105AD                                | 1N1345                        | MD1122                                  |
| 111003                        | 1N4002                                  | 1N1195AR                      | 111106                                  | 1N1345A                       | MR1123                                  |
| 111001                        | 1114002                                 | 1111064                       | 1N1106A                                 | 111346                        | MR1124                                  |
| 111002                        | 1114003                                 | INII JOGD                     | 1N1106D                                 | 1N1246A                       | MD1124                                  |
| 1N1003                        | 1114004                                 | INII JOEAD                    | 1N1106AD                                | 1N1340A                       | MD1125                                  |
| 1N1004                        | 1N4004                                  | 1N1190AR                      | 1N1107                                  | 1N1347A                       | MR1125                                  |
| 111000                        | 1114005                                 | 1111074                       | 1111074                                 | 1N1240                        | MD1125                                  |
| 1111090                       | 1114003                                 | 1N1197A                       | 1N1197A                                 | 1112404                       | MD1126                                  |
| 111100                        | 1114002                                 | INII97R                       | INIIGAD                                 | 1N1340A                       | MD1910CD                                |
| 1N1101                        | 1N4003                                  | INII97AR                      | INII97AR                                | 1N1390                        | MR12105D                                |
| 1N1102                        | 1N4004                                  | 1N1198                        | 1N1198                                  | 1N1397                        | MD1212DD                                |
| 1N1103                        | 1N4004                                  | 1N1198A                       | 1N1198A                                 | 1N1398                        | MRIZIZSB                                |
| 1N1104                        | 1N4005                                  | 1N1198R                       | 1N1198R                                 | 1N1399                        | MRIZISSB                                |
| 1N1105                        | 1N4005                                  | 1N1198AR                      | 1N1198AR                                | 1N1400                        | MRI2155B                                |
| 1N1115                        | 1N4720                                  | 1N1199                        | MR1120                                  | 1N1401                        | MRI217SB                                |
| 1N1116                        | 1N4721                                  | 1N1199A                       | MR1120                                  | 1N1443                        | 1N4007                                  |
| 1N1117                        | MR1033A                                 | 1N1200                        | MR1121                                  | 1N1444                        | 1N4725                                  |
| 1N1118                        | 1N4722                                  | 1N1200A                       | MR1121                                  | 1N1466                        | MR1221FB                                |
| 1N1119                        | MR1035A                                 | 1N1201                        | MR1122                                  | 1N1467                        | MR1223FB                                |
| 1N1120                        | 1N4723                                  | 1N1201A                       | MR1122                                  | 1N1468                        | MR1225FB                                |
| 1N1122A                       | 1N4004                                  | 1N1202                        | MR1122                                  | 1N1469                        | MR1227FB                                |
| 1N1124                        | 1N4721                                  | 1N1202A                       | MR1122                                  | 1N1478                        | MR1241SB                                |
| 1N1124A                       | 1N4721                                  | 1N1203                        | MR1123                                  | 1N1479                        | MR1243SB                                |
| 1N1125                        | MR1033A                                 | 1N1203A                       | MR1123                                  | 1N1480                        | MR1245SB                                |
| 1N1125A                       | MR1033A                                 | 1N1204                        | MR1124                                  | 1N1481                        | MR1247SB                                |
| 1N1126                        | 1N4722                                  | 1N1204A                       | MR1124                                  | 1N1486                        | 1N4005                                  |
| 1N1126A                       | 1N4722                                  | 1N1205                        | MR1125                                  | 1N1487                        | 1N4002                                  |
| 1N1127                        | MR1035A                                 | 1N1205A                       | MR1125                                  | 1N1488                        | 1N4003                                  |
| 1N1127A                       | MR1035A                                 | 1N1206                        | MR1126                                  | 1N1489                        | 1N4004                                  |
| 1N1128                        | 1N4723                                  | 1N1206A                       | MR1126                                  | 1N1490                        | 1N4004                                  |
| 1N1128A                       | 1N4723                                  | 1N1217                        | 1N4001                                  | 1N1491                        | 1N4005                                  |
| 1N1169                        | 1N4004                                  | 1N1217A                       | 1N4001                                  | 1N1492                        | 1N4005                                  |
| 1N1183                        | 1N1183                                  | 1N1218                        | 1N4002                                  | 1N1538                        | 1N4002                                  |
| 1N1183R                       | 1N1183R                                 | 1N1218A                       | 1N4002                                  | 1N1539                        | 1N4003                                  |
| 1N1183A                       | MR1200FL                                | 1N1219                        | 1N4003                                  | 1N1540                        | 1N4003                                  |
| 1N1183RA                      | MR1200FLR                               | 1N1219A                       | 1N4003                                  | 1N1541                        | 1N4004                                  |
| 1N1184                        | 1N1184                                  | 1N1220                        | 1N4003                                  | 1N1542                        | 1N4004                                  |
| 1N1184R                       | 1N1184R                                 | 1N1220A                       | 1N4003                                  | 1N1543                        | 1N4005                                  |
| 1N1184A                       | MR1201FL                                | 1N1221                        | 1N4004                                  | 1N1544                        | 1N4005                                  |
| 1N1184RA                      | MR1201FLR                               | 1N1221A                       | 1N4004                                  | 1N1581                        | MR1120                                  |
| 1N1185                        | 1N1185                                  | 1N1222                        | 1N4004                                  | 1N1582                        | MR1121                                  |
| 1N1185R                       | 1N1185R                                 | 1N1223                        | 1N4005                                  | 1N1583                        | MR1122                                  |
| 1N1185A                       | MR1202FL                                | 1N1224                        | 1N4005                                  | 1N1584                        | MR1123                                  |
| 1N1185RA                      | MR1202FLR                               | 1N1224A                       | 1N4005                                  | 1N1585                        | MR1124                                  |
| 1N1186                        | 1N1186                                  | 1N1225                        | 1N4006                                  | 1N1586                        | MR1125                                  |
| 1N1186R                       | 1N1186R                                 | 1N1225A                       | 1N4006                                  | 1N1587                        | MR1126                                  |
| 1N1186A                       | MR1203FL                                | 1N1226                        | 1N4006                                  | 1N1612                        | MR1120                                  |
| 1N1186RA                      | MR1203FLR                               | 1N1226A                       | 1N4006                                  | 1N1613                        | MR1121                                  |
| 1N1187                        | 1N1187                                  | 1N1227                        | 1N4719                                  | 1N1614                        | MR1122                                  |
| 1N1187P                       | 1N1187P                                 | 1N1221                        | 1N4720                                  | 1N1615                        | MR1124                                  |
| 1N1187A                       | MR1205FL                                | 1N1220                        | 1N4721                                  | 1N1616                        | MR1126                                  |
| 1N1187DA                      | MR1205FLP                               | 1N1230                        | 1N4721                                  | 1N1617                        | 1N4002                                  |
| 1N1107RA                      | 1N112037 LR                             | 1N1221                        | MD10334                                 | 1N1610                        | 1114002                                 |
| 1N1100D                       | 111100                                  | 1N1231                        | 1NA799                                  | 1N1610                        | 1N4004                                  |
| 1N1100R                       | MD1907ET                                | 1N1222                        | MR10354                                 | 1N1620                        | 1N4004                                  |
| 1N1100A                       | MD1207FL                                | 1N1200                        | 1NI4792                                 | 1N1620                        | MD19106D                                |
| 1N1188RA                      | MRIZU/FLR                               | 1N1234                        | 1114723                                 | 1N1000                        | MR1210SB                                |
| 1N1189                        | IN1189                                  | 1N1235                        | 1N4724                                  | 1N1661                        | MR1211SB                                |
| IN1189R                       | 1N1189R                                 | IN1236                        | 1N4724                                  | IN1662                        | MRIZIZSB                                |
| 1N1190                        | 1N1190                                  | 1N1251                        | 1N4002                                  | 1N1663                        | MR1213SB                                |
| 1N1190R                       | 1N1190R                                 | 1N1252                        | 1N4002                                  | 1N1664                        | MR1215SB                                |
| 1N1191                        | 1N1191                                  | 1N1253                        | 1N4003                                  | 1N1665                        | MR1217SB                                |

|   | TYPE NO.<br>TO BE<br>REPLACED | REPLACE<br>WITH<br>Motorola<br>Type No. | TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. |
|---|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|
|   | 1N1692                        | 1N4002                                  | 1N2134                        | MR1206FL                                | 1N2882                        | 1N4007                                  |
|   | 1N1693                        | 1N4003                                  | 1N2134A                       | MR1206FL                                | 1N2883                        | 1N4007                                  |
|   | 1N1694                        | 1N4004                                  | 1N2135                        | MR1207FL                                | 1N2884                        | MR991                                   |
|   | 1N1695                        | 1N4004                                  | 1N2135A                       | MR1207FL                                | 1N2885                        | MR991                                   |
|   | 1N1696                        | 1N4005                                  | 1N2154                        | 1N1183                                  | 1N2886                        | MR991                                   |
|   | 1N1697                        | 1N4005                                  | 1N2155                        | 1N1184                                  | 1N2887                        | MR991                                   |
|   | 1N1701                        | 1N4001                                  | 1N2156                        | 1N1186                                  | 1N2889                        | MR992                                   |
|   | 1N1702                        | 1N4002                                  | 1N2157                        | 1N1187                                  | 1N2890                        | MR992                                   |
|   | 1N1703                        | 1N4003                                  | 1N2158                        | 1N1188                                  | 1N2891                        | MR992                                   |
|   | 1N1704                        | 1N4004                                  | 1N2159                        | 1N1189                                  | 1N2892                        | MR993                                   |
|   | 1N1705                        | 1N4004                                  | 1N2160                        | 1N1190                                  | 1N2893                        | MR993                                   |
|   | 1N1706                        | 1N4005                                  | 1N2373                        | 1N4005                                  | 1N2894                        | MR994                                   |
|   | 1N1707                        | 1N4001                                  | 1N2374                        | 1N4007                                  | 1N2895                        | MR994                                   |
|   | 1N1708                        | 1N4002                                  | 1N2375                        | MR991                                   | 1N2896                        | MR994                                   |
|   | 1N1709                        | 1N4003                                  | 1N2376                        | MR992                                   | 1N2897                        | MR994                                   |
|   | 1N1710                        | 1N4004                                  | 1N2377                        | MR993                                   | 1N2898                        | MR995                                   |
|   | 1N1711                        | 1N4004                                  | 1N2378                        | MR994                                   | 1N2899                        | MR995                                   |
|   | 1N1712                        | 1N4005                                  | 1N2379                        | 1N2382                                  | 1N2900                        | MR995                                   |
|   | 1N1730                        | 1N4007                                  | 1N2380                        | 1N2383                                  | 1N2901                        | MR995                                   |
|   | 1N1763                        | 1N4004                                  | 1N2381                        | 1N2385                                  | 1N3085                        | MR1221SB                                |
|   | 1N1764                        | 1N4005                                  | 1N2426                        | MR1210SB                                | 1N3086                        | MR1223SB                                |
|   | IN1907                        | 1N4001                                  | 1N2427                        | MR1211SB                                | 1N3087                        | MR1225SB                                |
|   | 1N1908                        | 1N4002                                  | 1N2428                        | MR1212SB                                | 1N3088                        | MR1227SB                                |
|   | IN1909                        | 1N4003                                  | 1N2429                        | MR1213SB                                | 1N3111                        | MR1220SB                                |
|   | 1N1911                        | IN4004                                  | 1N2430                        | MR1214SB                                | 1N3161                        | MR1230SB                                |
| 1 | 1N1912                        | 1N4005                                  | 1N2431                        | MR1215SB                                | 1N3161R                       | MR1230SBR                               |
|   | 1N1913                        | 1N4005                                  | 1N2432                        | MR1216SB                                | 1N3162                        | MR1231SB                                |
|   | 1N1015                        | 1114006                                 | 1N2433                        | MRI217SB                                | IN3162R                       | MRI231SBR                               |
|   | 1N1016                        | 1114000                                 | 1N2482                        | 1N4003                                  | 1N3163                        | MR12325B                                |
|   | 1N2054                        | MD1230SB                                | 1N2483                        | 1N4004                                  | 1N3163R                       | MR1232SBR                               |
|   | 1N2055                        | MD1231SB                                | 1N2484                        | 1N4005                                  | 1N3164                        | MRIZ335B                                |
|   | 1N2056                        | MR1232SB                                | 1N2485                        | 1N4003                                  | 1N3104R                       | MR12335BR                               |
|   | 1N2057                        | MR123255                                | 1N2486                        | 1N4004                                  | 1N3103                        | MR12345B                                |
|   | 1N2058                        | MR1234SB                                | 1N2487                        | 1N4004<br>1N4005                        | 1N3166                        | MD12355D                                |
|   | 1N2059                        | MR1235SB                                | 1N2488                        | 1N4005                                  | 1N3166P                       | MD12355DD                               |
|   | 1N2060                        | MR1236SB                                | 1112409                       | 1N4003                                  | 1N3167                        | MD1236SD                                |
| 1 | 1N2061                        | MR1237SB                                | 1N2610                        | 1N4002                                  | 1N3167P                       | MR1236SBR                               |
|   | 1N2069                        | 1N4003                                  | 1N2611                        | 1N4003                                  | 1N3168                        | MR1237SB                                |
| 1 | 1N2069A                       | 1N4003                                  | 1N2612                        | 1N4004                                  | 1N3168R                       | MR1237SBR                               |
|   | 1N2070                        | 1N4004                                  | 1N2613                        | 1N4004                                  | 1N3189                        | 1N4003                                  |
| 1 | 1N2070A                       | 1N4004                                  | 1N2614                        | 1N4005                                  | 1N3190                        | 1N4004                                  |
| 1 | 1N2071                        | 1N4005                                  | 1N2615                        | 1N4005                                  | 1N3191                        | 1N4005                                  |
| 1 | 1N2071A                       | 1N4005                                  | 1N2616                        | 1N4006                                  | 1N3193                        | 1N4003                                  |
| 1 | 1N2072                        | 1N4001                                  | 1N2617                        | 1N4007                                  | 1N3194                        | 1N4004                                  |
|   | 1N2073                        | 1N4002                                  | 1N2725                        | 1N4720                                  | 1N3195                        | 1N4005                                  |
| 1 | 1N2074                        | 1N4003                                  | 1N2728                        | 1N4721                                  | 1N3196                        | 1N4006                                  |
|   | 1N2075                        | 1N4003                                  | 1N2731                        | MR1033A                                 | 1N3208                        | 1N3208                                  |
| 1 | 1N2076                        | 1N4004                                  | 1N2734                        | 1N4722                                  | 1N3208 R                      | 1N3208R                                 |
|   | 1N2077                        | 1N4004                                  | 1N2737                        | 1N4723                                  | 1N3209                        | 1N3209                                  |
|   | 1N2078                        | 1N4004                                  | 1N2738                        | 1N4724                                  | 1N3209R                       | 1N3209R                                 |
|   | 1N2079                        | 1N4005                                  | 1N2793                        | 1N1183                                  | 1N3210                        | 1N3210                                  |
|   | 1N2103                        | 1N4001                                  | 1N2794                        | 1N1184                                  | 1N3210R                       | 1N3210R                                 |
|   | 1N2104                        | 1N4002                                  | 1N2795                        | 1N1185                                  | 1N3211                        | 1N3211                                  |
| 1 | 1N2105                        | 1N4003                                  | 1N2796                        | 1N1186                                  | 1N3211R                       | 1N3211R                                 |
|   | 1N2106                        | 1N4004                                  | 1N2797                        | 1N1187                                  | 1N3212                        | 1N3212                                  |
|   | 1N2107                        | 1114004                                 | 1N2798                        | 1N1187                                  | 1N3212R                       | 1N3212R                                 |
| 1 | 1112108                       | 1194000<br>MD1900EI                     | 1N2799                        | 1N1188                                  | 1N3213                        | 1N3213                                  |
|   | 1112128                       | MR1200FL                                | 1N2800                        | IN1188                                  | 1N3214                        | 1N3214                                  |
| 1 | 1N2120A                       | MR1200FL                                | 1N2858                        | 1N4001<br>1N4002                        | 1N3253                        | 1N4003                                  |
| 1 | 1N21204                       | MR1201FL                                | 1N2809                        | 1N4002                                  | 1N3234                        | 1N4004                                  |
| 1 | 1N2130                        | MR1202FL                                | 1N2800                        | 1N4003                                  | 1N3233                        | 1N4005                                  |
|   | 1N21304                       | MR1202FL                                | 1N2801                        | 1N4004                                  | 1N3250                        | MR1220SB                                |
|   | 1N2131                        | MR1203FL                                | 1N2863                        | 1N4005                                  | 1N3260P                       | MR1220SBR                               |
|   | 1N2131A                       | MR1203FL                                | 1N2864                        | 1N4005                                  | 1N3261                        | MR1221SB                                |
|   | 1N2132                        | MR1204FL                                | 1N2878                        | 1N4006                                  | 1N3261P                       | MR1221SBR                               |
|   | 1N2132A                       | MR1204FL                                | 1N2879                        | 1N4006                                  | 1N3262                        | MR1222SB                                |
|   | 1N2133                        | MR1205FL                                | 1N2880                        | 1N4007                                  | 1N3262B                       | MR1222SBR                               |
| 1 | 1101004                       | MR1205FL                                | 1N2881                        | 1N4007                                  | 1N3263                        | MR1223SB                                |

| TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>Motorola<br>Type No. | TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>Motorola<br>Type No. |
|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|
| 1N3263R                       | MR1223SBR                               | 1N3881                        | 1N3881                                  | 5A6                           | 1N4005                                  |
| 1N3264                        | MR1224SB                                | 1N3882                        | 1N3882                                  | 5A8                           | 1N4006                                  |
| 1N3264R                       | MR1224SBR                               | 1N3883                        | 1N3883                                  | 5A10                          | 1N4007                                  |
| 1N3265                        | MR1225SB                                | 1N3889                        | 1N3889                                  | 5E4                           | 1N4004                                  |
| 1N3265R                       | MR1225SBR                               | 1N3890                        | 1N3890                                  | 5E5                           | 1N4005                                  |
| 1N3266                        | MR1226SB                                | 1N3891                        | 1N3891                                  | 5E6                           | 1N4006                                  |
| 1N3266R                       | MR1226SBR                               | 1N3892                        | 1N3892                                  | 5MA2                          | 1N4003                                  |
| 1N3267                        | MR1227SB                                | 1N3893                        | 1N3893                                  | 5MA4                          | 1N4004                                  |
| 1N3267R                       | MR1227SBR                               | 1N3988                        | MR1128                                  | 5MA5                          | 1N4005                                  |
| 1N3288                        | MR1211SB                                | 1N3989                        | MR1130                                  | 5MA6                          | 1N4005                                  |
| 1N3288R                       | MR1211SBR                               | 1N3990                        | MR1130                                  | 5MA8                          | 1N4006                                  |
| 1N3289                        | MR1213SB                                | 1N4044                        | MR1230SB                                | 5MA10                         | 1N4007                                  |
| 1N3289R                       | MR1213SBR                               | 1N4044R                       | MR1230SBR                               | 5MS5                          | 1N4001                                  |
| 1N3290                        | MR1215SB                                | 1N4045                        | MR1231SB                                | 5MS10                         | 1N4002                                  |
| 1N3290R                       | MR1215SBR                               | 1N4045R                       | MR1231SBR                               | 5MS20                         | 1N4003                                  |
| 1N3291                        | MR1217SB                                | 1N4046                        | MR1232SB                                | 5MS30                         | 1N4004                                  |
| 1N3291R                       | MR1217SBR                               | 1N4046R                       | MR1232SBR                               | 5MS40                         | 1N4004                                  |
| 1N3544                        | 1N4002                                  | 1N4047                        | MR1233SB                                | SMISSU                        | 1114005                                 |
| 1N3545                        | 1N4003                                  | 1N4047R                       | MR1233SBR                               | 6F100A                        | MR1126<br>MD1120                        |
| 1N3546                        | 1N4004                                  | 1N4048                        | MR1234SB                                | 10D1                          | 1514002                                 |
| 1N3547                        | 1N4004                                  | 1N4048R                       | MR1234SBR                               | 1081                          | 1N4002                                  |
| 1N3548                        | 1N4005                                  | 1N4049                        | MR12355B                                | 1082                          | 1N4003                                  |
| 1N3549                        | 1N4000                                  | 1N4049R                       | MR12335BR                               | 1003                          | 1N4004                                  |
| 1N3509                        | 1114721                                 | 1N4050                        | MR12375B                                | 1004                          | 1N4005                                  |
| 1N3570                        | MR10334                                 | 1N4050R                       | MRIZ375BR                               | 1086                          | 1N4005                                  |
| 1N3571                        | 1NA799                                  | IN4136                        | MRIZIJSL<br>MD1917SI                    | 1088                          | 1N4006                                  |
| 1113572                       | MD10354                                 | 1N4137                        | MR121 (SL                               | 10810                         | 1N4007                                  |
| 1N3574                        | 1N4723                                  | 1N4138                        | MR12195L                                | 10D2                          | 1N4003                                  |
| 1N3585                        | MR1240SB                                | 1N4139                        | 1N4720                                  | 10D3                          | 1N4004                                  |
| 1N3586                        | MR1241SB                                | 1N4140                        | 1N4720                                  | 10D4                          | 1N4004                                  |
| 1N3587                        | MR1243SB                                | 1N4141<br>1N4142              | 1N4722                                  | 10D5                          | 1N4005                                  |
| 1N3588                        | MR1245SB                                | 1N4143                        | 1N4723                                  | 10D6                          | 1N4005                                  |
| 1N3589                        | MR1247SB                                | 1N4144                        | 1N4724                                  | 10D7                          | 1N4006                                  |
| 1N3611                        | 1N4003                                  | 1N4145                        | 1N4725                                  | 10D8                          | 1N4006                                  |
| 1N3612                        | 1N4004                                  | 1N4245                        | 1N4003                                  | 10D10                         | 1N4007                                  |
| 1N3613                        | 1N4005                                  | 1N4246                        | 1N4004                                  | 12F80A                        | MR1128                                  |
| 1N3614                        | 1N4006                                  | 1N4247                        | 1N4005                                  | 12F100A                       | MR1130                                  |
| 1N3615                        | MR1120                                  | 1N4248                        | 1N4006                                  | 16F5                          | MR1120                                  |
| 1N3616                        | MR1121                                  | 1N4249                        | 1N4007                                  | 16F10                         | MR1121                                  |
| 1N3617                        | MR1122                                  | 1N4250                        | 1N4006                                  | 16F15                         | MR1122                                  |
| 1N3618                        | MR1122                                  | 1N4251                        | 1N4007                                  | 16F20                         | MR1122                                  |
| 1N3619                        | MR1123                                  | 1N4361                        | 1N4007                                  | 16F30                         | MR1123                                  |
| 1N3620                        | MR1124                                  | 1N4364                        | 1N4002                                  | 16F40                         | MR1124                                  |
| 1N3621                        | MR1125                                  | 1N4365                        | 1N4003                                  | 16F50                         | MR1125                                  |
| 1N3622                        | MR1126                                  | 1N4366                        | 1N4004                                  | 16F60                         | MR1126                                  |
| 1N3623                        | MR1128                                  | 1N4367                        | 1N4004                                  | 16F80                         | MR1128                                  |
| 1N3624                        | MR1130                                  | 1N4368                        | 1N4005                                  | 16F100                        | MR1130                                  |
| 1N3639                        | 1N4003                                  | 1N4369                        | 1N4005                                  | 20C1                          | 1N4720                                  |
| 1N3640                        | 1N4004                                  | 1N4383                        | 1N4003                                  | 20C2                          | 1N4721                                  |
| 1N3641                        | 1N4005                                  | 1N4384                        | 1N4004                                  | 2003                          | MR1033A                                 |
| 1N3642                        | IN4006                                  | 1N4385                        | 1N4005                                  | 2004                          | 1N4/22                                  |
| 1N3649                        | MR1128                                  | 2E4                           | 1N4004                                  | 2005                          | MRIU35A                                 |
| 1N3050                        | MR1130                                  | 3F10                          | 1114720                                 | 2000                          | 1N4724                                  |
| 1N2670A                       | MD1120                                  | 3F20                          | MD10334                                 | 2000                          | 1514725                                 |
| 1N3070A                       | MD1120                                  | 3530                          | 1N/799                                  | 20010                         | 1N4125                                  |
| 1N3671A                       | MD1128                                  | 3150                          | MD10354                                 | 25110                         | MR1200FL                                |
| 1N3672                        | MB1130                                  | 3F60                          | 1N4723                                  | 25H15                         | MR1202 FL                               |
| 1N3672A                       | MR1130                                  | 3F80                          | 1N4724                                  | 25H20                         | MR1203FL                                |
| 1N3673                        | MR1130                                  | 3F100                         | 1N4725                                  | 25H25                         | MR1204FL                                |
| 1N3673A                       | MR1130                                  | 3MS5                          | 1N4001                                  | 25H30                         | MR1205FL                                |
| 1N3736                        | MR1233SB                                | 3MS10                         | 1N4002                                  | 25H35                         | MR1206FL                                |
| 1N3736R                       | MR1233SBR                               | 3MS20                         | 1N4003                                  | 25H40                         | MR1207FL                                |
| 1N3737                        | MR1235SB                                | 3MS30                         | 1N4004                                  | 25HB5                         | MR1200FL                                |
| 1N3737R                       | MR1235SBR                               | 3MS40                         | 1N4004                                  | 25HB10                        | MR1201FL                                |
| 1N3738                        | MR1237SB                                | 3MS50                         | 1N4005                                  | 25HB15                        | MR1202FL                                |
| 1N3738R                       | MR1237SBR                               | 5A2                           | 1N4003                                  | 25HB20                        | MR1203FL                                |
| 1N3879                        | 1N3879                                  | 5A4                           | 1N4004                                  | 25HB25                        | MR1204FL                                |
| 1N3880                        | 1N3880                                  | 5A5                           | 1N4005                                  | 25HB30                        | MR1205FL                                |

|   | TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>Motorola<br>Type No. | TYPE NO.<br>To be<br>Replaced | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>To be<br>Replaced           | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. |
|---|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| ſ | 25HB35                        | MR1206FL                                | 3055                          | 1N4724                                  | 366C                                    | MR1122                                  |
| 1 | 25HB40                        | MR1207FL                                | 305Z                          | 1N4725                                  | 366D                                    | MR1122                                  |
|   | 45L5                          | MR1220SB                                | 320A                          | 1N4001                                  | 366F                                    | MR1123                                  |
|   | 45L10                         | MR1221SB                                | 320B                          | 1N4002                                  | 366H                                    | MR1124                                  |
| 1 | 45L15                         | MR1222SB                                | 320C                          | 1N4003                                  | 366K                                    | MR1125                                  |
| 1 | 45L20                         | MR1223SB                                | 320D                          | 1N4003                                  | 366M                                    | MR1126                                  |
|   | 45L25                         | MR1224SB                                | 320F                          | 1N4004                                  | 367A                                    | MR1120                                  |
|   | 45L30                         | MR1225SB                                | 320H                          | 1N4004                                  | 367B                                    | MR1121                                  |
|   | 45L35                         | MR1226SB                                | 320M                          | 1N4005                                  | 3670                                    | MR1122                                  |
|   | 40140                         | MR1227SB                                | 320K                          | 1N4005                                  | 3070                                    | MR1122<br>MD1192                        |
| 1 | 45M10                         | MR1220SB<br>MR1221SB                    | 320P                          | 1N4006                                  | 367H                                    | MR1123<br>MD1194                        |
|   | 45M15                         | MR1222SB                                | 3203                          | 1N4007                                  | 367K                                    | MR1125                                  |
| 1 | 45M20                         | MR1223SB                                | 335A                          | 1N1183R                                 | 367M                                    | MR1126                                  |
|   | 45M25                         | MR1224SB                                | 335B                          | 1N1184R                                 | 368A                                    | MR1120                                  |
| 1 | 45M30                         | MR1225SB                                | 335C                          | 1N1185R                                 | 368B                                    | MR1121                                  |
|   | 45M35                         | MR1226SB                                | 335D                          | 1N1186R                                 | 368C                                    | MR1122                                  |
|   | 45M40                         | MR1227SB                                | 335F                          | 1N1187R                                 | 368D                                    | MR1122                                  |
| 1 | 70U5                          | MR1230SB                                | 335G                          | 1N1188R                                 | 368F                                    | MR1123                                  |
|   | 70U10                         | MR1231SB                                | 335H                          | 1N1188R                                 | 368H                                    | MR1124                                  |
|   | 70015                         | MR1232SB                                | 335K                          | 1N1189R                                 | 368K                                    | MR1125                                  |
|   | 70020                         | MR1233SB                                | 335M                          | 1N1190R                                 | 368M                                    | MR1126                                  |
| 1 | 70025                         | MR12345B<br>MD1235SD                    | 336A                          | INII9IR<br>INII09D                      | 371A                                    | 1N1183                                  |
| 1 | 701135                        | MR12355B<br>MR12365B                    | 336B                          | 1N1192R                                 | 371B                                    | 1N1104                                  |
| 1 | 701140                        | MR1237SB                                | 330C                          | 1N1193R                                 | 3710                                    | 1N1100                                  |
| 1 | 300A                          | MR1210SB                                | 336F                          | 1N1195R                                 | 3715                                    | 1N1187                                  |
| 1 | 300B                          | MR1211SB                                | 336G                          | 1N1196B                                 | 371H                                    | 1N1188                                  |
| 1 | 300C                          | MR1212SB                                | 336H                          | 1N1196R                                 | 371K                                    | 1N1189                                  |
| 1 | 300D                          | MR1213SB                                | 336K                          | 1N1197R                                 | 371M                                    | 1N1190                                  |
|   | 300E                          | MR1214SB                                | 336M                          | 1N1198R                                 | 374A                                    | MR1210SL                                |
|   | 300F                          | MR1215SB                                | 337A                          | MR1120R                                 | 374B                                    | MR1211SL                                |
|   | 300G                          | MR1216SB                                | 337B                          | MR1121R                                 | 374C                                    | MR1212SL                                |
| 1 | 300H                          | MR1217SB                                | 337C                          | MR1122R                                 | 374D                                    | MR1213SL                                |
|   | 302A                          | 1N1183                                  | 337D                          | MR1122R                                 | 374F                                    | MR1215SL                                |
|   | 302B                          | 1N1184                                  | 337F                          | MR1123R                                 | 374H                                    | MR1217SL                                |
|   | 3020                          | 1N1100                                  | 337H                          | MR1124R                                 | 376A                                    | MR1220SL                                |
|   | 302E                          | 1N1187                                  | 337K                          | MR1125R<br>MD1196D                      | 3768                                    | MR12215L                                |
|   | 302G                          | 1N1188                                  | 3414                          | MR1120R<br>MR1120                       | 376D                                    | MR12225L<br>MR1223SL                    |
|   | 302H                          | 1N1188                                  | 341B                          | MR1121                                  | 376F                                    | MR12255L                                |
|   | 302K                          | 1N1189                                  | 341C                          | MR1122                                  | 376H                                    | MR1227SL                                |
|   | 302M                          | 1N1190                                  | 341D                          | MR1122                                  | 377A                                    | MR1230SL                                |
|   | 303A                          | 1N1191                                  | 341F                          | MR1123                                  | 377B                                    | MR1231SL                                |
|   | 303B                          | 1N1192                                  | 341H                          | MR1124                                  | 377C                                    | MR1232SL                                |
| 1 | 303C                          | 1N1193                                  | 341K                          | MR1125                                  | 377D                                    | MR1233SL                                |
|   | 303D                          | 1N1194                                  | 341M                          | MR1126                                  | 377F                                    | MR1235SL                                |
| 1 | 303F                          | 1N1195                                  | 341P                          | MR1128                                  | 377H                                    | MR1237SL                                |
| 1 | 303H                          | IN1196                                  | 341S                          | MR1128                                  | 400A                                    | MR1210SB                                |
|   | 303K                          | 1N1197<br>1N1109                        | 346A                          | MRI120R                                 | 400B                                    | MR1211SB                                |
|   | 3044                          | MR1190                                  | 346B                          | MRI121R<br>MD1122D                      | 4000                                    | MRI212SB                                |
| 1 | 304B                          | MR1120                                  | 346D                          | MR1122R                                 | 400D                                    | MR12135D                                |
| 1 | 304C                          | MR1122                                  | 346F                          | MR1123R                                 | 400F                                    | MR12135B<br>MR1217SB                    |
| 1 | 304D                          | MR1122                                  | 346H                          | MR1124R                                 | 400VB5                                  | MR1240SB                                |
| 1 | 304F                          | MR1123                                  | 346K                          | MR1125R                                 | 400VB10                                 | MR1241SB                                |
|   | 304H                          | MR1124                                  | 346M                          | MR1126R                                 | 400VB15                                 | MR1242SB                                |
|   | 304K                          | MR1125                                  | 346P                          | MR1128R                                 | 400VB20                                 | MR1243SB                                |
| 1 | 304M                          | MR1126                                  | 346S                          | MR1128R                                 | 400VB25                                 | MR1244SB                                |
|   | 304P                          | MR1128                                  | 359B                          | 1N4002                                  | 400VB30                                 | MR1245SB                                |
|   | 304S                          | MR1128<br>1N4710                        | 359D                          | 1N4003                                  | 400VB40                                 | MR1247SB                                |
| 1 | 305A                          | 1N4719                                  | 359F                          | 1N4004                                  | 400VBR5                                 | MR1240SBR                               |
|   | 305B                          | 1N4721                                  | 359H                          | 1N4004<br>1N4005                        | 400VBR10                                | MR1241SBR                               |
| 1 | 3050                          | 1N4721                                  | 359K                          | 1N4005                                  | 400VBR15                                | MR1242SBR                               |
|   | 3055                          | MR1033A                                 | 359M                          | 1N4005                                  | 400VBR20                                | MR12435BR                               |
| 1 | 3031                          | 111100011                               | 3091                          | 1114006                                 | 400VBR25                                | MD1945SDD                               |
|   | 3054                          | 1N4(22                                  | 3500                          |                                         | 54 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                         |
|   | 305H<br>305K                  | 1N4722<br>MR1035A                       | 359S<br>359Z                  | 1N4000<br>1N4007                        | 400VBR30<br>400VBR40                    | MR12455BR                               |
|   | 305H<br>305K<br>305M          | 1N4722<br>MR1035A<br>1N4723             | 359S<br>359Z<br>366A          | 1N4000<br>1N4007<br>MR1120              | 400VBR30<br>400VBR40<br>401A            | MR1247SBR<br>MR1210SBR                  |

| TYPE NO.<br>TO BE<br>REPLACED | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. | TYPE NO.<br>TO BE<br>REPLACED | REPLACE<br>WITH<br>Motorola<br>Type No. | TYPE NO.<br>TO BE<br>REPLACED | REPLACE<br>WITH<br>MOTOROLA<br>TYPE NO. |
|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------|
| 401C                          | MR1212SBR                               | 446B                          | MR1121R                                 | A90C                          | MR1235SB                                |
| 401D                          | MR1213SBR                               | 446C                          | MR1122R                                 | A90D                          | MR1237SB                                |
| 401F                          | MR1215SBR                               | 446D                          | MR1122R                                 | A91B                          | MR1233SBR                               |
| 401H                          | MR1217SBR                               | 446F                          | MR1123R                                 | A91C                          | MR1235SBR                               |
| 404A                          | MR1120                                  | 446H                          | MR1124R                                 | A91D                          | MR1237SBR                               |
| 404B                          | MR1121                                  | 446K                          | MR1125R                                 | A295PB                        | MR1243SBR                               |
| 404C                          | MR1122                                  | 446M                          | MR1126R                                 | A295PC                        | MR1245SBR                               |
| 404D                          | MR1122                                  | 446P                          | MR1128R                                 | AZ95PD                        | 1N4006                                  |
| 404F                          | MR1123                                  | 4405                          | MR1120R                                 | AH910                         | 1N4006                                  |
| 4041                          | MP1124                                  | 4467                          | MR1130R                                 | AH815                         | 1N4006                                  |
| 404R                          | MR1120                                  | 4780                          | 1N3881                                  | AH1005                        | 1N4007                                  |
| 4045                          | MR1128                                  | 478E                          | 1N3882                                  | AH1010                        | 1N4007                                  |
| 404V                          | MR1128                                  | 479C                          | 1N3891                                  | AH1015                        | 1N4007                                  |
| 404Z                          | MR1130                                  | 479E                          | 1N3892                                  | AM3                           | 1N4001                                  |
| 405A                          | 1N3208                                  | 703A                          | 1N3491                                  | AM13                          | 1N4002                                  |
| 405B                          | 1N3209                                  | 703RA                         | 1N3492R                                 | AM23                          | 1N4003                                  |
| 405C                          | 1N3210                                  | 703B                          | 1N3492                                  | AM33                          | 1N4004                                  |
| 405D                          | 1N3210                                  | 703RB                         | 1N3492R                                 | AM43                          | 1N4004                                  |
| 405E                          | 1N3211                                  | 703C                          | 1N3493                                  | AM53                          | 1N4005                                  |
| 405F                          | 1N3211                                  | 703RC                         | 1N3493R                                 | AM63                          | 1N4005                                  |
| 405H                          | 1N3212                                  | 703D                          | 1N3493                                  | GIUOK                         | 1N4000                                  |
| 405AR                         | 1N3208R                                 | 703RD                         | 1N3493R                                 | GIUUM<br>DA2                  | 1N4007                                  |
| 405BR                         | 1N3209R                                 | 703F                          | 1N3494                                  | PA3<br>DA060                  | 1N4003                                  |
| 405CR                         | 1N2210R                                 | 7034                          | 1N3494R                                 | PA070                         | 1N4004                                  |
| 405DR                         | 1N3211R                                 | 703RH                         | 1N3495R                                 | PA071                         | 1N4005                                  |
| 405ER                         | 1N3211R                                 | A10A                          | 1N4002                                  | PA305                         | 1N4001                                  |
| 405HR                         | 1N3212R                                 | A10B                          | 1N4003                                  | PA310                         | 1N4002                                  |
| 429A                          | MR1220SB                                | A10C                          | 1N4004                                  | PA315                         | 1N4003                                  |
| 429B                          | MR1221SB                                | A10D                          | 1N4004                                  | PA320                         | 1N4003                                  |
| 429C                          | MR1222SB                                | A10E                          | 1N4005                                  | PA325                         | 1N4004                                  |
| 429D                          | MR1223SB                                | A10M                          | 1N4005                                  | PA330                         | 1N4004                                  |
| 429E                          | MR1224SB                                | A10N                          | 1N4006                                  | PA340                         | 1N4004                                  |
| 429F                          | MR1225SB                                | A10P                          | 1N4007                                  | PA350                         | 1N4005                                  |
| 429G                          | MR1226SB                                | A13A2                         | 1N4002                                  | PA360                         | 1N4005                                  |
| 429H                          | MR1227SB                                | A13B2                         | 1N4003                                  | PA380                         | 1N4006                                  |
| 437A                          | MR1120R                                 | A13C2                         | 1N4004                                  | PT3                           | 1N4004                                  |
| 4370                          | MR1121R<br>MD1199D                      | A13D2                         | 1N4005                                  | P15<br>DTED                   | 1N4004                                  |
| 4370                          | MR1122R                                 | A13F2                         | 1N4001                                  | PT505                         | 1N4001                                  |
| 437F                          | MR1123R                                 | A13M2                         | 1N4005                                  | PT510                         | 1N4002                                  |
| 437H                          | MR1124R                                 | A40A                          | 1N1192                                  | PT515                         | 1N4003                                  |
| 437K                          | MR1125R                                 | A40B                          | 1N1194                                  | PT520                         | 1N4003                                  |
| 437M                          | MR1126R                                 | A40C                          | 1N1195                                  | PT525                         | 1N4004                                  |
| 437P                          | MR1128R                                 | A40D                          | 1N1196                                  | PT530                         | 1N4004                                  |
| 437S                          | MR1128R                                 | A40E                          | 1N1197                                  | PT540                         | 1N4004                                  |
| 437V                          | MR1128R                                 | A40F                          | 1N1191                                  | PT550                         | 1N4005                                  |
| 4372                          | MR1130R                                 | A40M                          | 1N1198                                  | PT560                         | 1N4005                                  |
| 439A                          | MR12305B                                | A4IA<br>A41D                  | 1N1192R                                 | S91                           | 1N4002                                  |
| 439B                          | MR12315B                                | A41B<br>A41C                  | 1N1195R                                 | S91H                          | 1N4002                                  |
| 4390                          | MR1233SB                                | A41D                          | 1N1196R                                 | 592<br>502H                   | 1N4003                                  |
| 439E                          | MR1234SB                                | A41E                          | 1N1197R                                 | S92 H                         | 1N4003                                  |
| 439F                          | MR1235SB                                | A41F                          | 1N1191R                                 | 593H                          | 1N4004                                  |
| 439G                          | MR1236SB                                | A41M                          | 1N1197R                                 | S94                           | 1N4004                                  |
| 439H                          | MR1237SB                                | A45A                          | 1N3492R                                 |                               |                                         |
| 441A                          | MR1120                                  | A45B                          | 1N3493R                                 |                               |                                         |
| 441B                          | MR1121                                  | A 45C                         | 1N3494R                                 |                               |                                         |
| 441C                          | MR1122                                  | A45D                          | 1N3495R                                 | TO MONTO T                    |                                         |
| 441D                          | MR1122                                  | A45E                          | MR327R                                  |                               |                                         |
| 441F                          | MR1123                                  | A45F                          | 1N3491R                                 |                               |                                         |
| 441H                          | MR1124                                  | A45M                          | MR328R<br>MD1212SD                      |                               |                                         |
| 441K                          | MR1125                                  | ATOB                          | MR12135D<br>MD1215SB                    |                               |                                         |
| 441M<br>441D                  | MR1120<br>MR1128                        | ATOC                          | MR1217SB                                | and the second                |                                         |
| 4419                          | MD1128                                  | A71D                          | MR1213SBP                               |                               |                                         |
| 4415<br>441V                  | MR1120                                  | ATIC                          | MR1215SBR                               | A DAY A RANK                  |                                         |
| 4417                          | MR1130                                  | A71D                          | MR1217SBR                               |                               |                                         |
|                               |                                         | 11141                         |                                         |                               |                                         |

#### **RECTIFIER SELECTION DATA**

# 1N248B, C thru 1N250B, C

1N1191 thru 1N1198 1N1195A thru 1N1198A 1N3213 thru 1N3214

MAXIMUM RATINGS (See Thermal Derating Graph 1)

| Characteristics                                                      | Symbol                                  | Rating                | Unit                                     |
|----------------------------------------------------------------------|-----------------------------------------|-----------------------|------------------------------------------|
| Peak Repetitive Reverse Voltage                                      | VRM (rep)                               | Mirida J              | Volts                                    |
| and                                                                  |                                         | and the second second |                                          |
| DC Blocking Voltage                                                  | VR                                      |                       | 19-00                                    |
| 1N248B, 1N1191                                                       | Contract States                         | 50                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
| 1N248C                                                               |                                         | 55                    | 1.1.1                                    |
| 1N249B, 1N1192                                                       |                                         | 100                   |                                          |
| 1N249C                                                               |                                         | 110                   |                                          |
| 1N1193                                                               | 1. 1997 1. 1                            | 150                   | 1.100                                    |
| 1N250B, 1N1194                                                       | 200                                     | 200                   | ALC: ALC: N                              |
| 1N250C                                                               |                                         | 220                   |                                          |
| 1N1195, 1N1195A                                                      |                                         | 300                   | 1 1 22 23                                |
| 1N1196, 1N1196A                                                      | sectory and the                         | 400                   | In Calore                                |
| 1N1197, 1N1197A, 1N3213                                              | 1.2007                                  | 500                   | and the state                            |
| 1N1198, 1N1198A, 1N3214                                              |                                         | 600                   |                                          |
| RMS Reverse Voltage                                                  | Vr                                      | anti al a             | Volts                                    |
| 1N248B, 1N1191                                                       | -                                       | 35                    | 12.0                                     |
| 1N248C                                                               |                                         | 38.5                  | 1000                                     |
| 1N249B, 1N1192                                                       |                                         | 70                    | CO.                                      |
| 1N249C                                                               | And | 77                    | 1010                                     |
| 1N1193                                                               | S. Kapler M. Paula                      | 105                   | 100                                      |
| 1N250B, 1N1194                                                       |                                         | 140                   | 110                                      |
| 1N250C                                                               |                                         | 154                   |                                          |
| 1N1195, 1N1195A                                                      | dire in the second                      | 210                   | 0110                                     |
| 1N1196, 1N1196A                                                      | 1980                                    | 280                   | 1.7.5                                    |
| 1N1197, 1N1197A, 1N3213                                              | 1212 4                                  | 350                   | 12574                                    |
| 1N1198, 1N1198A, 1N3214                                              |                                         | 420                   |                                          |
| Average 1/2-Wave Rectified Forward Current                           | LO                                      | 20                    | Amps                                     |
| (Resistive Load, 60 cps, $T_C = 150^{\circ}C$ )                      |                                         | 20                    |                                          |
| Peak Repetitive Forward Current                                      | IFM (non)                               |                       | Amps                                     |
| $(T_{C} = 150^{\circ}C)$                                             | r wi (rep)                              | 90                    |                                          |
| Peak Surge Current<br>( $T_C = 150^{\circ}C$ , superimposed on Rated | I <sub>FM</sub> (surge)                 | 350                   | Amps                                     |
| Current at Rated Voltage, 1/2-Cycle,<br>1/120 sec)                   |                                         | 330                   |                                          |

#### ELECTRICAL CHARACTERISTICS

| Characteristics                                                                                      | Symbol             | Max | Unit  |
|------------------------------------------------------------------------------------------------------|--------------------|-----|-------|
| Full Cycle Average Forward Voltage Drop ( $I_O (max)$ , rated $V_r$ , 60 cps, $T_C = 150^{\circ}C$ ) | V <sub>F(AV)</sub> | 0.6 | Volts |
| Instantaneous Forward Voltage Drop<br>( $i_F = 100 \text{ Amps}, T_J = 25^{\circ}C$ )                | VF                 | 1.5 | Volts |

#### 1N248B,C thru 1N250B,C (continued)

#### ELECTRICAL CHARACTERISTICS (continued)

| Characteristics                                            | Symbol                         | Max             | Unit |
|------------------------------------------------------------|--------------------------------|-----------------|------|
| Full Cycle Average Reverse Current                         | I <sub>R(AV)</sub>             | 0.00            | mA   |
| $(I_{O (max)}, rated V_{r}, 60 cps, T_{C} = 150^{\circ}C)$ | II(IIV)                        | CHINA SCORE SHA |      |
| 1N248B thru 1N250B, 1N1191 thru 1N1198                     |                                | 5.0             |      |
| 1N248C                                                     |                                | 3.8             |      |
| 1N249C                                                     |                                | 3.6             |      |
| 1N250C                                                     | and and a second second second | 3.4             |      |
| 1N1195A                                                    |                                | 3.2             |      |
| 1N1196A                                                    |                                | 2.5             |      |
| 1N1197A                                                    |                                | 2.2             |      |
| 1N1198A                                                    |                                | 1.5             |      |
| 1N3213 and 1N3214                                          | an Dansari a                   | 10.0            |      |
| DC Reverse Current                                         | Ip                             |                 | mA   |
| (Rated $V_R$ , $T_C = 25^{\circ}C$ )                       | I.                             | 1.0             |      |

### 1N1124, A thru 1N1128, A

Obsolete, discontinued types, replace with devices from the MR1030 series.

# 1N1183thru 1N1190

MAXIMUM RATINGS (See Thermal Derating Graph 2)

| Characteristic                                    | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rating                | Unit                        |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|
| Peak Repetitive Reverse Voltage<br>and            | V <sub>RM</sub> (rep)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Volts                       |
| DC Blocking Voltage                               | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PERSONAL PROPERTY.    |                             |
| 1N1183                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                    | and the second second       |
| 1N1184                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                   |                             |
| 1N1185                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150                   | The second second           |
| 1N1186                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                   |                             |
| 1N1187                                            | distant in the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 300                   |                             |
| 1N1188                                            | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400                   |                             |
| 1N1189                                            | The state of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500                   | TAS BUILDE                  |
| 1N1190                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                   |                             |
| RMS Reverse Voltage                               | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Volts                       |
| 1N1183                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                    |                             |
| 1N1184                                            | Carl manual and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70                    | Web and the start           |
| 1N1185                                            | Contract Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105                   | and the second second       |
| 1N1186                                            | and the second se | 140                   |                             |
| 1N1187                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 210                   | and the print of            |
| 1N1188                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 280                   | a i i gall a la fé El       |
| 1N1189                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350                   | and the state of the second |
| 1N1190                                            | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 420                   | a service have              |
| Average 1/2-Wave Rectified Forward                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second second | Amperes                     |
| Current                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                             |
| (Resistive Load, 60 cps, $T_{C} = 140^{\circ}C$ ) | C. C. Constanting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                    |                             |
| Peak Repetitive Forward Current                   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a shutathan a         | Amperes                     |
| $(T_C = 140^{\circ}C)$                            | FM (rep)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150                   |                             |

#### 1N1183 thru 1N1190 (continued)

#### MAXIMUM RATINGS (continued)

| Characteristic                                                                                    | Symbol                            | Rating      | Unit                     |
|---------------------------------------------------------------------------------------------------|-----------------------------------|-------------|--------------------------|
| Peak Surge Current<br>(T <sub>C</sub> = 140°C, superimposed on Rated<br>Current at Rated Voltage) | I <sub>FM</sub> (surge)           | 400         | Amperes                  |
| Operating and Storage Temperature                                                                 | T <sub>J</sub> , T <sub>stg</sub> | -65 to +190 | °C                       |
| Thermal Impedance                                                                                 | θJC                               | 1.0         | °C/W,<br>DC steady state |

#### ELECTRICAL CHARACTERISTICS

| Characteristics                                                                                           | Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rating | Unit  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
| Max. Full Cycle Average Forward Voltage Drop ( $I_O (max)$ , rated $V_r$ , 60 cps, $T_C = 140^{\circ}C$ ) | V <sub>F(AV)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6    | Volts |
| Max Instantaneous Forward Voltage Drop<br>( $i_F = 100$ Amps, $T_J = 25^{\circ}C$ )                       | v <sub>F</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3    | Volts |
| Max Full Cycle Average Reverse Current ( $I_O (max)$ , rated $V_r$ , 60 cps, $T_C = 140^{\circ}C$ )       | <sup>I</sup> R(AV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0   | mA    |
| Max DC Reverse Current<br>(Rated $V_R$ , $T_C = 25^\circ$ )                                               | <sup>L</sup> R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0    | mA    |
|                                                                                                           | and the second sec |        |       |

# 1N1191thru 1N1198

For Specifications, See IN248B Data Sheet

### 1N1563, A thru 1N1568, A

| MAXIMUM RATINGS | (See Thermal | Derating ( | Graph | 3) |
|-----------------|--------------|------------|-------|----|
|-----------------|--------------|------------|-------|----|

| Rating                                                                           | Symbol                                 | 1N1563A<br>1N1563 | 1N1564A<br>1N1564 | 1N1565A<br>1N1565 | 1N1566A<br>1N1566 | 1N1567A<br>1N1567 | 1N1568A<br>1N1568 | Unit     |
|----------------------------------------------------------------------------------|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------|
| Peak Repetitive Reverse Voltage<br>DC Blocking Voltage                           | V <sub>RM(rep)</sub><br>V <sub>R</sub> | 100               | 200               | 300               | 400               | 500               | 600               | Volts    |
| RMS Reverse Voltage                                                              | v <sub>r</sub>                         | 70                | 140               | 210               | 280               | 350               | 420               | Volts    |
| Average Half-Wave Rectified<br>Forward Current (55°C Ambient)<br>(150°C Ambient) | IO                                     | 1500<br>300       | 1500<br>300       | 1500<br>300       | 1500<br>300       | 1500<br>300       | 1500<br>300       | mA<br>mA |
| Peak Surge Current<br>(1/2 Cycle Surge, 60 cps)                                  | IFM(surge)                             | 70                | 70                | 70                | 70                | 70                | 70                | Amps     |
| Peak Repetitive Forward Current                                                  | I <sub>FM(rep)</sub>                   | 10                | 10                | 10                | 10                | 10                | 10                | Amps     |
| Operating and Storage Temperature<br>Range                                       | T <sub>J</sub> + T <sub>stg</sub>      | -65 to +175       |                   |                   |                   |                   |                   | °C       |

#### 1N1563,A thru 1N1568,A (continued)

#### ELECTRICAL CHARACTERISTICS

| Characteristic                                                                                                                                                |        | 1N1563A<br>1N1568A<br>Rating | 1N1563<br>1N1568<br>Rating | Unit  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------|----------------------------|-------|
| Maximum Forward Voltage Drop @ 500 mA, (25 <sup>o</sup> C)<br>Continuous DC (150 <sup>o</sup> C)                                                              | VF     | 1.2<br>0.9                   | 1.2<br>1.0                 | Volts |
| Maximum Reverse Current @ Rated DC Voltage (25 <sup>0</sup> C)                                                                                                | IR     | 1.5                          | The states                 | μA    |
| Maximum Full-Cycle Average Reverse Current (25 <sup>o</sup> C)<br>@ Max Rated PIV and Current (as Half-Wave (150 <sup>o</sup> C)<br>Rectifier, Resistive Load | IR(AV) | 3.0<br>150                   | 5.0<br>500                 | μA    |

### 1N2609 thru 1N2617

Obsolete, discontinued types, replace with devices from the 1N4001 series.

### 1N3189 thru 1N3191

Obsolete, discontinued types, replace with devices from the 1N4001 series.

### 1N3208thru 1N3212

MAXIMUM RATINGS (See Thermal Derating Graph 4)

| Rating                                                                  | Symbol          | 1N3208<br>1N3208R | 1N3209<br>IN3209R | 1N3210<br>1N3210R | 1N3211<br>1N3211R | 1N3212<br>1N3212R | Unit  |
|-------------------------------------------------------------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| D-C Blocking Voltage                                                    | v <sub>R</sub>  | 50                | 100               | 200               | 300               | 400               | Volts |
| RMS Reverse Voltage                                                     | V <sub>r</sub>  | 35                | 70                | 140               | 210               | 280               | Volts |
| Average Half-Wave Rectified<br>Forward Current With Re-<br>sistive Load | <sup>I</sup> 0* | 15                | 15                | 15                | 15                | 15                | Amps  |
| Peak One Cycle Surge Current<br>(60 cps & 25°C Case Temp)               | IFM(surge)      | 250               | 250               | 250               | 250               | 250               | Amps  |
| Operating Junction Tempera-<br>ture                                     | T <sub>J</sub>  | -65 to + 175      |                   |                   |                   |                   |       |
| Storage Temperature                                                     | Tstg            | -65 to + 175      |                   |                   |                   |                   | °C    |

#### ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temp.

| Characteristic                                           | Symbol         | or water out |       |
|----------------------------------------------------------|----------------|--------------|-------|
| Maximum Forward Voltage at 40 Amp D-C Forward<br>Current | VF             | 1.5          | Volts |
| Maximum Reverse Current at Rated D-C Reverse<br>Voltage  | I <sub>R</sub> | 1.0          | mAdc  |
| Typical Thermal Resistance, Junction To Case             | θJC            | 1.7          | C/W   |

### 1N3213, 1N3214

For Specifications, See IN248B Data Sheet

## 1N3282thru 1N3286

MAXIMUM RATINGS (See Thermal Derating Graph 5)

| Rating                                                                              | Symbol                            | 1N3282       | 1N3283    | 1N3284    | 1N3285    | 1N3286    | Unit     |
|-------------------------------------------------------------------------------------|-----------------------------------|--------------|-----------|-----------|-----------|-----------|----------|
| Peak Repetitive Reverse<br>Voltage                                                  | V <sub>RM(rep)</sub>              | 1000         | 1500      | 2000      | 2500      | 3000      | Volts    |
| DC Blocking Voltage                                                                 | VR                                |              |           |           |           |           |          |
| RMS Reverse Voltage                                                                 | v <sub>r</sub>                    | 700          | 1050      | 1400      | 1750      | 2100      | Volts    |
| Average Half-Wave Rectified<br>Forward Current<br>(25°C Ambient)<br>(100°C Ambient) | Io                                | 100<br>50    | 100<br>50 | 100<br>50 | 100<br>50 | 100<br>50 | mA<br>mA |
| Peak Surge Current<br>(1/2-cycle, 60 cps)                                           | IFM(surge)                        | 2. 5         | 2.5       | 2. 5      | 2.5       | 2.5       | Amps     |
| Peak Repetitive Forward<br>Current                                                  | I <sub>FM(rep)</sub>              | 0.50         | 0. 50     | 0.50      | 0.50      | 0. 50     | Amps     |
| Operating and Storage<br>Temperature Range                                          | T <sub>j</sub> , T <sub>stg</sub> | -65 to + 150 |           |           |           |           | °C       |

#### ELECTRICAL CHARACTERISTICS

| Characteristic                                                                                                               | Symbol             | Rating        | Unit  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|-------|
| Maximum Forward Voltage Drop @ 100 mA,<br>Continuous DC (25°C)                                                               | v <sub>F</sub>     | 2.5           | Volts |
| Maximum Full-Cycle Average Forward Voltage<br>Drop @ Rated Current (100°C)                                                   | V <sub>F(AV)</sub> | 1. 2          | Volts |
| Maximum Reverse Current @ Rated DC Voltage<br>(25°C)<br>(100°C)                                                              | I <sub>R</sub>     | 1. 0<br>10. 0 | μA    |
| Maximum Full-Cycle Average Reverse Current<br>@ Max Rated PIV and Current (as Half-Wave<br>Rectifier, Resistive Load, 100°C) | I <sub>R(AV)</sub> | 10. 0         | μΑ    |
| Typical Thermal Resistance, Junction to Air Ambient                                                                          | $\theta_{JA}$      | 400°          | C/W   |

### IN3491thru IN3495 FORMERLY

#### MR 322 thru MR 326

MAXIMUM RATINGS (See Thermal Derating Graph 6)

| Rating                                                 | Symbol                                 | 1N3491<br>MR322 | 1N3492<br>MR323 | 1N3493<br>MR324 | 1N3494<br>MR325 | 1N3495<br>MR326 | Unit  |
|--------------------------------------------------------|----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|
| Peak Repetitive Reverse Voltage<br>DC Blocking Voltage | V <sub>RM(rep)</sub><br>V <sub>R</sub> | 50              | 100             | 200             | 300             | 400             | Volts |
| RMS Reverse Voltage                                    | v <sub>r</sub>                         | 35              | 70              | 140             | 210             | 280             | Volts |

#### 1N3491 thru 1N3495 (continued)

#### MAXIMUM RATINGS (continued)

| Rating                                                                                 | Symbol               | 1N3491<br>MR322 | 1N3492<br>MR323 | 1N3493<br>MR324 | 1N3494<br>MR325 | 1N3495<br>MR326 | Unit |
|----------------------------------------------------------------------------------------|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------|
| Average Half-Wave Rectified For-<br>ward Current With Resistive Load<br>100°C<br>150°C | Io*                  | 25<br>18        | 25<br>18        | 25<br>18        | 25<br>18        | 25<br>18        | Amps |
| Peak Repetitive Forward Current<br>(60 cps & 25°C Case Temp.)                          | I <sub>FM(rep)</sub> | 75              | 75              | 75              | 75              | 75              | Amps |
| Peak One Cycle Surge Current<br>(60 cps & 25°C Case Temp.)                             | IFM(surge)           | 300             | 300             | 300             | 300             | 300             | Amps |
| Operating Junction Temperature                                                         | Т <sub>Ј</sub>       |                 | -65 to +175     |                 |                 |                 | °C   |
| Storage Temperature                                                                    | Tstg                 |                 | -65 to +175     |                 |                 |                 | °C   |

#### ELECTRICAL CHARACTERISTICS (At 25°C case temperature unless otherwise specified)

| Characteristic                                                                                                                           | Symbol             | 1N3491<br>MR322 | 1N3492<br>MR323 | 1N3493<br>MR324 | 1N3494<br>MR325 | 1N3495<br>MR326 | Unit  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|
| Maximum Forward Voltage at 100 Amp DC Forward                                                                                            | V <sub>F</sub>     | 1.5             | 1.5             | 1.5             | 1.5             | 1.5             | Volts |
| Maximum Full-Cycle Average<br>Forward Voltage Drop @ Rated<br>Current and Voltage                                                        | V <sub>F(AV)</sub> | 0.7             | 0.7             | 0.7             | 0.7             | 0.7             | Volts |
| Maximum Reverse Current at<br>Rated DC Reverse Voltage                                                                                   | IR                 | 1.0             | 1.0             | 1.0             | 1.0             | 1.0             | mAdc  |
| Maximum Full-Cycle Average<br>Reverse Current at Rated<br>Current and Voltage<br>(as Half-Wave Rectifier,<br>Resistive Load, 150°C Case) | I <sub>R(AV)</sub> | 10              | 10              | 8               | 6               | 4               | mAdc  |
| Thermal Resistance                                                                                                                       | θJC                |                 |                 | 1               |                 |                 | °C/W  |

### USN1N3611thru USN1N3613

#### MAXIMUM RATINGS

| CHARACTERISTIC                                                              | SYMBOL                                  | USN1N3611 | USN 1N3612  | USN 1N3613 | UNITS |
|-----------------------------------------------------------------------------|-----------------------------------------|-----------|-------------|------------|-------|
| Working Peak Reverse Voltage<br>DC Blocking Voltage                         | V <sub>RM (wkg)</sub><br>V <sub>R</sub> | 200       | 400         | 600        | Volts |
| Peak Repetitive Reverse Voltage                                             | V <sub>RM (rep)</sub>                   | 240       | 480         | 720        | Volts |
| Average Rectified Forward Current $T_A = 100^{\circ}C$ $T_A = 150^{\circ}C$ | ľo                                      |           | 1.0<br>0.3  |            | Adc   |
| Non-Repetitive Peak Surge Current<br>(1/2 cycle, 60 cps)                    | I <sub>FM</sub> (surge)                 | +         | 10          | Ar         |       |
| Operating and Storage<br>Temperature Range                                  | T <sub>A</sub> , T <sub>stg</sub>       |           | -65 to +175 | arie draga | °C    |

#### USN1N3611 thru USN1N3613 (continued)

**ELECTRICAL CHARACTERISTICS** 

| Characteristics and Conditions                                                                                                                                                                                                                  | Symbol         | Minimum | Maximum           | Unit  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-------------------|-------|
| Forward Voltage $(I_F = 1.0 \text{ Adc}, T_A = 100^{\circ}\text{C})$                                                                                                                                                                            | v <sub>F</sub> | 0.6     | 1.2               | Vdc   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                            | IR             | Ξ       | 5<br>5<br>5       | µAdc  |
| Reverse Current at Rated V <sub>RM</sub> (rep)<br>(V <sub>RM</sub> (rep) = 240 Vdc) USN 1N3611<br>(V <sub>RM</sub> (rep) = 480 Vdc) USN 1N3612<br>(V <sub>RM</sub> (rep) = 720 Vdc) USN 1N3613                                                  | IR             | Ξ       | 100<br>100<br>100 | µ Adc |
| $\begin{array}{l} \mbox{High Temperature Operation:} \\ \mbox{Reverse Current ()]} $T_A = 150^{\circ}C$ \\ (V_R = 200 \mbox{ Vdc}) $USN 1N3611$ \\ (V_R = 400 \mbox{ Vdc}) $USN 1N3612$ \\ (V_R = 600 \mbox{ Vdc}) $USN 1N3613$ \\ \end{array}$ | IR             | Ξ       | 300<br>300<br>300 | μAdc  |

### 1N3649thru 1N3650

Obsolete, discontinued types, replace with devices from the MR1030 series.

# 1N3659thru 1N3663

MAXIMUM RATINGS (See Thermal Derating Graph 7)

| Rating                                                                                               | Symbol                                 | 1N3659<br>1N3659R | 1N3660<br>1N3660R | 1N3661<br>1N3661R | 1N3662<br>1N3662R | 1N3663<br>1N3663R | Units        |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|--|
| Peak Repetitive Reverse Voltage<br>DC Blocking Voltage                                               | V <sub>RM(rep)</sub><br>V <sub>R</sub> | 50                | 100               | 200               | 300               | 400               | Volts        |  |
| RMS Reverse Voltage                                                                                  | v <sub>r</sub>                         | 35                | 70                | 140               | 210               | 280               | Volts        |  |
| Average Half-Wave Rectified For-<br>ward Current with Resistive Load<br>@ 100°C case<br>@ 150°C case | IO                                     | 30<br>25          | 30<br>25          | 30<br>25          | 30<br>25          | 30<br>25          | Amps<br>Amps |  |
| Peak One Cycle Surge Current<br>(150°C case temp, 60 cps)                                            | I <sub>FM(surge)</sub>                 | 400               | 400               | 400               | 400               | 400               | Amps         |  |
| Operating Junction Temperature                                                                       | Тј                                     |                   |                   | °C                |                   |                   |              |  |
| Storage Temperature                                                                                  | T <sub>stg</sub>                       |                   | -65 to +200       |                   |                   |                   |              |  |

#### 1N3659 thru 1N3663 (continued)

#### ELECTRICAL CHARACTERISTICS

| Characteristic                                                                                                              | Symbol             | 1N3659<br>1N3659R | 1N3660<br>1N3660R | 1N3661<br>1N3661R | 1N3662<br>1N3662R | 1N3663<br>1N3663R | Unit  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|
| Maximum Forward Voltage<br>at 25 Amp DC Forward Current                                                                     | v <sub>F</sub>     | 1.2               | 1.2               | 1.2               | 1.2               | 1.2               | Volts |
| Maximum Full Cycle Average<br>Forward Voltage Drop @ Rated<br>PIV and Current                                               | V <sub>F(AV)</sub> | 0.7               | 0.7               | 0.7               | 0.7               | 0.7               | Volts |
| Maximum Full Cycle Average<br>Reverse Current @ Rated PIV and<br>Current (as half-wave rectifier,<br>resistive load, 150°C) | I <sub>R(AV)</sub> | 5.0               | 4. 5              | 4.0               | 3.5               | 3.0               | mA    |
| Thermal Resistance                                                                                                          | θJC                |                   |                   | 1                 | . St.             |                   | °c/w  |

#### 1N3879thru 1N3883 6 AMPERES 1N3889thru 1N3893 12 AMPERES

#### MAXIMUM RATINGS (See Thermal Derating Graph 8)

| Rating                                                                                                           | Symbol                                                         | 1N3879<br>1N3889 | 1N3880<br>1N3890    | 1N3881<br>1N3891 | 1N3882<br>1N3892     | 1N3883<br>1N3893                         | Unit                                |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|---------------------|------------------|----------------------|------------------------------------------|-------------------------------------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                           | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50               | 100                 | 200              | 300                  | 400                                      | Volts                               |
| Non-Repetitive Peak Reverse Voltage<br>(half-wave, single phase,<br>60 cycle peak)                               | V <sub>RM(non-rep)</sub>                                       | 100              | 200                 | 300              | 400                  | 500                                      | Volts                               |
| RMS Reverse Voltage                                                                                              | V <sub>r</sub>                                                 | 35               | 70                  | 140              | 210                  | 280                                      | Volts                               |
| Rating                                                                                                           | Symbol                                                         | 1N<br>t<br>1N    | 3879<br>hru<br>3883 |                  | 1N38<br>thru<br>1N38 | 89<br>1<br>93                            | Unit                                |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, T <sub>C</sub> = 100°C)           | го                                                             |                  | 6                   |                  | 12                   |                                          | Amperes                             |
| Non-Repetitive Peak Surge Current<br>(superimposed on rated current at<br>rated voltage, T <sub>C</sub> = 100°C) | I <sub>FM(surge)</sub>                                         |                  | 75                  |                  | 150                  | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | Amperes                             |
| I <sup>2</sup> t Rating (non-repetitive, for t<br>greater than 1 msec and less<br>than 8.3 msec)                 | I <sup>2</sup> t                                               |                  | 15                  |                  | 50                   |                                          | A <sub>(rms)</sub> <sup>2</sup> sec |

#### 1N3879 thru 1N3883 (continued)

#### ELECTRICAL CHARACTERISTICS

1N3879 thru 1N3883

| Characteristic                                                                                                                              | Symbol             | Max Limit | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|------|
| DC Forward Voltage Drop<br>$(I_F = 6.0 \text{ Adc}, T_C = 25^{\circ}\text{C})$                                                              | v <sub>F</sub>     | 1.4       | Vdc  |
| Full Cycle Average Reverse Current<br>(I <sub>O</sub> = 6.0 Amps and Rated V <sub>r</sub> , 60 cps<br>T <sub>C</sub> = 100°C, single phase) | I <sub>R(AV)</sub> | 3.0       | mA   |
| DC Reverse Current<br>(Rated V <sub>R</sub> , T <sub>C</sub> = 100°C)                                                                       | $^{I}_{ m R}$      | 1.0       | mA   |

#### 1N3889 thru 1N3893

| Characteristic                                                                                                                       | Symbol             | Max Limit | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|------|
| DC Forward Voltage Drop<br>(I <sub>F</sub> = 12.0 Adc, T <sub>C</sub> = 25°C)                                                        | v <sub>F</sub>     | 1.4       | Vdc  |
| Full Cycle Average Reverse Current<br>( $I_O = 12.0$ Amps and Rated V <sub>r</sub> , 60 cps<br>T <sub>C</sub> = 100°C, single phase) | <sup>I</sup> r(AV) | 5.0       | mA   |
| DC Reverse Current<br>(Rated $V_R$ , $T_C = 100^{\circ}$ C)                                                                          | I <sub>R</sub>     | 3.0       | mA   |

# 1N4001thru 1N4007

MAXIMUM RATINGS (See Thermal Derating Graph 9)

| Rating                                                                           | Symbol                                 | 1N4001      | 1N4002      | 1N4003      | 1N4004      | 1N4005      | 1N4006      | 1N4007      | Unit     |
|----------------------------------------------------------------------------------|----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|
| Peak Repetitive Reverse Voltage<br>DC Blocking Voltage                           | V <sub>RM(rep)</sub><br>V <sub>R</sub> | 50          | 100         | 200         | 400         | 600         | 800         | 1000        | Volts    |
| RMS Reverse Voltage                                                              | V <sub>r</sub>                         | 35          | 70          | 140         | 280         | 420         | 560         | 700         | Volts    |
| Average Half-Wave Rectified<br>Forward Current (75°C Ambient)<br>(100°C Ambient) | Io                                     | 1000<br>750 | mA<br>mA |
| Peak Surge Current @ 25°C<br>(1/2 Cycle Surge, 60 cps)                           | I <sub>FM(surge)</sub>                 | 30          | 30          | 30          | 30          | 30          | 30          | 30          | Amps     |
| Peak Repetitive Forward Current                                                  | I <sub>FM(rep)</sub>                   | 10          | 10          | 10          | 10          | 10          | 10          | 10          | Amps     |
| Operating and Storage<br>Temperature Range                                       | T <sub>J</sub> , T <sub>stg</sub>      |             |             |             | 65 to +1    | 175         |             |             | °C       |

#### 1N4001 thru 1N4007 (continued)

#### ELECTRICAL CHARACTERISTICS

1

| Characteristic                                                                                                              | Symbol             | Rating         | Unit  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------|
| Maximum Forward Voltage Drop<br>(1 Amp Continuous DC, 25°C)                                                                 | v <sub>F</sub>     | 1.1            | Volts |
| Maximum Full-Cycle Average Forward Voltage Drop<br>(Rated Current @ 25°C)                                                   | V <sub>F(AV)</sub> | 0.8            | Volts |
| Maximum Reverse Current @ Rated DC Voltage $(25^{\circ}C)$ $(100^{\circ}C)$                                                 | IR                 | 0. 01<br>0. 05 | mA    |
| Maximum Full-Cycle Average Reverse Current<br>(Max Rated PIV and Current, as Half-Wave<br>Rectifier, Resistive Load, 100°C) | I <sub>R(AV)</sub> | 0. 03          | mA    |

### 1N4719 thru 1N4725 MR1030 thru MR1036, MR1038, MR1040

#### MAXIMUM RATINGS (See Thermal Derating Graph 10)

| Rating                                                                                                                                                                   | Symbol                                                         | 1N<br>4719<br>MR<br>1030 | 1N<br>4720<br>MR<br>1031 | 1N<br>4721<br>MR<br>1032 | MR<br>1033 | 1N<br>4722<br>MR<br>1034 | MR<br>1035 | 1N<br>4723<br>MR<br>1036 | 1N<br>4724<br>MR<br>1038 | 1N<br>4725<br>MR<br>1040 | Unit  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------|--------------------------|--------------------------|------------|--------------------------|------------|--------------------------|--------------------------|--------------------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                                                                   | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50                       | 100                      | 200                      | 300        | 400                      | 500        | 600                      | 800                      | 1000                     | Volts |
| Non-Repetitive Peak Reverse<br>Voltage<br>(one half-wave, single phase,<br>60 cycle peak)                                                                                | V <sub>RM</sub><br>(non-rep)                                   | 100                      | 200                      | 300                      | 400        | 500                      | 600        | 720                      | 1000                     | 1200                     | Volts |
| RMS Reverse Voltage                                                                                                                                                      | V <sub>r</sub>                                                 | 35                       | 70                       | 140                      | 210        | 280                      | 350        | 420                      | 560                      | 700                      | Volts |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, $T_A = 75^{\circ}$ C) see figure 4                                                        | IO                                                             | 3.0                      |                          |                          |            |                          |            |                          | Amps                     |                          |       |
| Peak Repetitive Forward Current $(T_A = 75^{\circ} C)$                                                                                                                   | I <sub>FM(rep)</sub>                                           |                          |                          |                          |            | 25                       | -21        |                          |                          | 10.50                    | Amps  |
| Non-Repetitive Peak Surge Current<br>(superimposed on rated current<br>at rated voltage, $T_A = 75^{\circ}$ C)<br>see figure 1                                           | IFM(surge)                                                     |                          | 300 (for 1/2 cycle)      |                          |            |                          |            |                          |                          | Amps                     |       |
| I <sup>2</sup> t Rating (non-repetitive,<br>1 msec <t<8.3 msec)<="" td=""><td>1<sup>2</sup>t</td><td></td><td colspan="7">185</td><td>A(rms)<sup>2</sup>sec</td></t<8.3> | 1 <sup>2</sup> t                                               |                          | 185                      |                          |            |                          |            |                          |                          | A(rms) <sup>2</sup> sec  |       |
| Operating and Case Temperature                                                                                                                                           | T <sub>J</sub> , T <sub>stg</sub>                              |                          | -65 + 175                |                          |            |                          |            |                          |                          | °C                       |       |
| Thermal Resistance                                                                                                                                                       | θ <sub>JA</sub>                                                |                          | 30                       |                          |            |                          |            |                          |                          | <sup>o</sup> C/Watt      |       |

#### 1N4719 thru 1N4725 (Continued)

#### ELECTRICAL CHARACTERISTICS

| Characteristic                                                                                                                    | Symbol              | Max Limit | Unit  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-------|
| Full Cycle Average Forward Voltage Drop $(I_O = 3.0 \text{ Amps and Rated V}_r, T_A = 75^{\circ} \text{C}$ , Half Wave Rectifier) | V <sub>F</sub> (AV) | 0.45      | Volts |
| DC Forward Voltage Drop $(I_F = 3.0 \text{ Adc}, T_A = 25^{\circ} \text{ C})$                                                     | VF                  | 0.9       | Volts |
| Full Cycle Average Reverse Current ( $I_O = 3.0$ Amps and Rated $V_r$ , $T_A = 75^{\circ}C$ , Half Wave Rectifier)                | I <sub>R(AV)</sub>  | 1.5       | mA    |
| DC Reverse Current<br>(Rated $V_R$ , $T_A = 25^{\circ}C$ )                                                                        | $I_{R}$             | 0.5       | mA    |

### MR322 thru MR326

For Specifications, See IN3491 Data Sheet

### MR990 thru MR994

MAXIMUM RATINGS (See Thermal Derating Graph 11)

| Rating                                                                                                   | Symbol                                                         | MR990 | MR991       | MR992 | MR993 | MR994 | Unit  |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------|-------------|-------|-------|-------|-------|--|--|--|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                   | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 1000  | 1500        | 2000  | 2500  | 3000  | Volts |  |  |  |
| RMS Reverse Voltage                                                                                      | Vr                                                             | 700   | 1050        | 1400  | 1750  | 2100  | Volts |  |  |  |
| Average Rectified Forward Current (single phase, resistive load, 60 cps, $T_A = 75^{\circ}C$ )           | <sup>I</sup> о                                                 | 250   |             |       |       |       |       |  |  |  |
| Peak Repetitive Forward Current $(T_A = 75^{\circ}C)$                                                    | IFM(rep)                                                       | 2.0   |             |       |       |       |       |  |  |  |
| Non-Repetitive Peak Surge Current (superimposed on rated current at rated voltage, $T_A = 75^{\circ}C$ ) | I <sub>FM(surge)</sub>                                         |       |             |       |       |       |       |  |  |  |
| Junction Operating and Storage<br>Temperature Range                                                      | T <sub>J</sub> , T <sub>stg</sub>                              | -     | -65 to +150 |       |       |       |       |  |  |  |

#### MR990 thru MR994 (continued)

Í

ELECTRICAL CHARACTERISTICS (At 60 cps Sinusoidal, Resistive or Inductive)

| Characteristics                                                                                                                | Symbol             | Max | Unit  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|
| Full Cycle Average Forward Voltage Drop<br>( $I_O = 0.25$ Amps and Rated $V_r$ ,<br>$T_A = 75^{\circ}C$ , Half Wave Rectifier) | V <sub>F(AV)</sub> | 1.7 | Volts |
| DC Forward Voltage Drop ( $I_{\rm F}$ = 0.25 Adc, $T_{\rm A}$ = 25°C)                                                          | v <sub>F</sub>     | 3.5 | Volts |
| Full Cycle Average Reverse Current<br>( $I_O = 0.25$ Amps and Rated $V_r$ ,<br>$T_A = 75^{\circ}C$ , Half Wave Rectifier)      | I <sub>R(AV)</sub> | 100 | μA    |
| DC Reverse Current<br>(Rated V <sub>R</sub> , $T_A = 25^{\circ}C$ )                                                            | IR                 | 10  | μA    |

# MR1030 thru MR1036

mr1038, mr1040 For Specifications, See 1N4719 Data Sheet.

#### MR1120 thru MR1126 **MR1128** MR1130

MAXIMUM RATINGS (See Thermal Derating Graph 12)

| Rating                                                                                                                                                   | Symbol                                                           | MR<br>1120          | MR<br>1121 | MR<br>1122 | MR<br>1123 | MR<br>1124 | MR<br>1125 | MR<br>1126 | MR<br>1128 | MR<br>1130 | Unit  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                                                   | V <sub>RM</sub> (rep)<br>V <sub>RM</sub> (wkg)<br>V <sub>R</sub> | 50                  | 100        | 200        | 300        | 400        | 500        | 600        | 800        | 1000       | Volts |
| Non-Repetitive Peak Reverse<br>Voltage<br>(one half-wave, single phase,<br>60 cycle peak)                                                                | V <sub>RM</sub><br>(non-rep)                                     | 100                 | 200        | 300        | 400        | 500        | 600        | 720        | 1000       | 1200       | Volts |
| RMS Reverse Voltage                                                                                                                                      | V <sub>r</sub>                                                   | 35                  | 70         | 140        | 210        | 280        | 350        | 420        | 560        | 700        | Volts |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, $T_C = 150^{\circ}C$ ) see figure 4                                       | ľo                                                               | 12.0                |            |            |            |            |            |            |            | -          | Amps  |
| Peak Repetitive Forward Current $(T_{C} = 150^{\circ}C)$                                                                                                 | IFM(rep)                                                         | -                   |            |            |            | 75         |            |            |            |            | Amps  |
| Non-Repetitive Peak Surge Current<br>(superimposed on rated current<br>at rated voltage, $T_C = 150^{\circ}C$ )<br>see figure 3.                         | I <sub>FM</sub> (surge)                                          | 300 (for 1/2 cycle) |            |            |            |            |            |            |            | Amps       |       |
| I <sup>2</sup> t Rating (non-repetitive,<br>1 msec <t 8.3="" <="" msec)<="" td=""><td>I<sup>2</sup>t</td><td colspan="8">375</td><td>A(rms)2sec</td></t> | I <sup>2</sup> t                                                 | 375                 |            |            |            |            |            |            |            | A(rms)2sec |       |
| Maximum Junction Operating and<br>Storage Temperature Range                                                                                              | T <sub>J</sub> , T <sub>stg</sub>                                | -65 to +190         |            |            |            |            |            |            |            |            | °C    |

#### MR1120 thru MR1126, MR1128, MR1130 (continued)

#### ELECTRICAL CHARACTERISTICS

| Characteristic                                                                                                               | Symbol             | Max Limit | Unit  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|-------|--|
| Full Cycle Average Forward Voltage Drop $(I_O = 12.0 \text{ Amps and Rated } V_r, T_C = 150^{\circ}C$ , Half Wave Rectifier) | V <sub>F(AV)</sub> | 0.55      | Volts |  |
| DC Forward Voltage Drop<br>$(I_F = 12.0 \text{ Adc}, T_C = 25^{\circ}\text{C})$                                              | v <sub>F</sub>     | 1.0       | Volts |  |
| Full Cycle Average Reverse Current $(I_O = 12.0 \text{ Amps and Rated } V_r, T_C = 150^{\circ}C$ , Half Wave Rectifier)      | I <sub>R(AV)</sub> | 1.5       | mA    |  |
| DC Reverse Current<br>(Rated $V_R$ , $T_C = 25^{\circ}C$ )                                                                   | IR                 | 0.5       | mA    |  |

# MR 1200 thru MR 1207

#### MAXIMUM RATINGS (See Thermal Derating Graph 13)

| Rating                                                                                                                       | Symbol                                                         | MR<br>1200                                                      | MR<br>1201 | MR<br>1202 | MR<br>1203 | MR<br>1204 | MR<br>1205 | MR<br>1206 | MR<br>1207 | Units                   |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|-------------------------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                       | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50                                                              | 100        | 150        | 200        | 250        | 300        | 350        | 400        | Volts                   |
| Non-Repetitive Peak Reverse Voltage<br>(one half-wave, single phase,<br>60 cycle peak)                                       | V <sub>RM (non-rep)</sub>                                      | 100                                                             | 200        | 250        | 300        | 350        | 400        | 450        | 500        | Volts                   |
| RMS Reverse Voltage                                                                                                          | v <sub>r</sub>                                                 | 35                                                              | 70         | 105        | 140        | 175        | 210        | 245        | 280        | Volts                   |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, see Figure 3) T <sub>C</sub> = 150°C          | IO                                                             | 50                                                              |            |            |            |            |            |            |            | Amperes                 |
| Non-Repetitive Peak Surge Current (surge applied at rated load conditions, see Figure 5) $T_{\rm C}^{} = 150^{\circ}{\rm C}$ | <sup>I</sup> FM (surge)                                        | ← 800 (for 1/2 cycle) →<br>← 500 (for six consecutive cycles) → |            |            |            |            |            |            |            | Amperes                 |
| I <sup>2</sup> t Rating (non-repetitive, for t<br>greater than 1 ms and less<br>than 8.3 ms)                                 | 1 <sup>2</sup> t                                               | 1,300                                                           |            |            |            |            |            |            |            | $A_{\rm (rms)}^{2}$ sec |
| Operating and Storage Junction<br>Temperature Range (see Figure 4<br>for other conditions)                                   | T <sub>J</sub> , T <sub>stg</sub>                              | +                                                               |            | °C         |            |            |            |            |            |                         |

### MR1200 thru MR1207 (continued)

#### ELECTRICAL CHARACTERISTICS

| Characteristic and Conditions                                                                                    | Symbol             | Max | Units |
|------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|
| Full Cycle Average Forward Voltage Drop<br>(rated $I_O$ and $V_r$ , single phase, 60 cps, $T_C = 150^{\circ}C$ ) | V <sub>F(AV)</sub> | 0.4 | Volts |
| Full Cycle Average Reverse Current (rated $I_O$ and $V_r$ , single phase, 60 cps, $T_C = 150^{\circ}$ C)         | I <sub>R(AV)</sub> | 10  | mA    |

# MR 1210thru MR 1217

| Rating                                                                                                                                        | Symbol                                                         | MR<br>1210                                                          | MR<br>1211                          | MR<br>1212 | MR<br>1213 | MR<br>1214 | MR<br>1215 | MR<br>1216 | MR<br>1217 | Units   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|------------|------------|------------|------------|------------|------------|---------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                                        | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50                                                                  | 100                                 | 150        | 200        | 250        | 300        | 350        | 400        | Volts   |
| Non-Repetitive Peak Reverse Voltage<br>(one halfwave, single phase,<br>60 cycle peak)                                                         | V <sub>RM (non-rep)</sub>                                      | 100                                                                 | 200                                 | 250        | 300        | 350        | 400        | 450        | 500        | Volts   |
| RMS Reverse Voltage                                                                                                                           | v <sub>r</sub>                                                 | 35                                                                  | 70                                  | 105        | 140        | 175        | 210        | 245        | 280        | Volts   |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, see Figure 3) T <sub>C</sub> = 135°C<br>T <sub>C</sub> = 150°C | Io                                                             | +                                                                   | Amperes                             |            |            |            |            |            |            |         |
| Non-Repetitive Peak Surge Currents<br>(surge applied at rated load<br>conditions, see Figure 5)<br>T <sub>C</sub> = 150°C                     | <sup>I</sup> FM (surge)                                        | ← 2,000 (for 1/2 cycle) →<br>← 1,200 (for six consecutive cycles) → |                                     |            |            |            |            |            |            | Amperes |
| 1 <sup>2</sup> t Rating (non-repetitive, for t<br>greater than 1 ms and less<br>than 8.3 ms)                                                  | 1 <sup>2</sup> t                                               | -                                                                   | A <sub>(rms)</sub> <sup>2</sup> sec |            |            |            |            |            |            |         |
| Operating and Storage Junction<br>Temperature Range (see Figure 4<br>for other conditions)                                                    | T <sub>J</sub> , T <sub>stg</sub>                              | -65 to +190                                                         |                                     |            |            |            |            |            |            | °C      |

MAXIMUM RATINGS (See Thermal Derating Graph 14)

#### ELECTRICAL CHARACTERISTICS

| Characteristic and Conditions                                                                                                  | Symbol             | Max | Units |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|
| Full Cycle Average Forward Voltage Drop (rated $I_O$ and $V_r$ , single phase, 60 cps, $T_C = 150$ °C)                         | V <sub>F(AV)</sub> | 0.4 | Volts |
| Full Cycle Average Reverse Current<br>(rated I <sub>O</sub> and V <sub>r</sub> , single phase, 60 cps, T <sub>C</sub> = 150°C) | I <sub>R(AV)</sub> | 15  | mA    |

### MR1220thru MR1227

#### MAXIMUM RATINGS (See Thermal Derating Graph 15)

| Rating                                                                                                                        | Symbol                                                         | MR<br>1220                                                     | MR<br>1221 | MR<br>1222 | MR<br>1223 | MR<br>1224 | MR<br>1225 | MR<br>1226 | MR<br>1227 | Units                   |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|-------------------------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                        | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50                                                             | 100        | 150        | 200        | 250        | 300        | 350        | 400        | Volts                   |
| Non-Repetitive Peak Reverse Voltage<br>(one halfwave, single phase,<br>60 cycle peak)                                         | V <sub>RM (non-rep)</sub>                                      | 100                                                            | 200        | 250        | 300        | 350        | 400        | 450        | 500        | Volts                   |
| RMS Reverse Voltage                                                                                                           | v <sub>r</sub>                                                 | 35                                                             | 70         | 105        | 140        | 175        | 210        | 245        | 280        | Volts                   |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, see Figure 3) $T_C = 135$ °C<br>$T_C = 150$ °C | I <sub>O</sub>                                                 | 200 <u>200</u>                                                 |            |            |            |            |            |            |            | Amperes                 |
| Non-Repetitive Peak Surge Currents (surge applied at rated load conditions, see Figure 5) $T_{\rm C}^{}$ = 150°C              | <sup>I</sup> FM (surge)                                        | 3,600 (for 1/2 cycle)       2,000 (for six consecutive cycles) |            |            |            |            |            |            |            | Amperes                 |
| 1 <sup>2</sup> t Rating (non-repetitive, for t<br>greater than 1 ms and less<br>than 8.3 ms)                                  | I <sup>2</sup> t                                               | 27,000                                                         |            |            |            |            |            |            |            | A(rms) <sup>2</sup> sec |
| Operating and Storage Junction<br>Temperature Range (see Figure 4<br>for other conditions)                                    | T <sub>J</sub> , T <sub>stg</sub>                              | -65 to +190                                                    |            |            |            |            |            |            |            | °C                      |

#### ELECTRICAL CHARACTERISTICS

| Characteristic and Conditions                                                                                 | Characteristic and Conditions Symbol |     |       |  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------|-----|-------|--|
| Full Cycle Average Forward Voltage Drop (rated $I_O$ and $V_r$ , single phase, 60 cps, $T_C = 150^{\circ}$ C) | V <sub>F(AV)</sub>                   | 0.4 | Volts |  |
| Full Cycle Average Reverse Current (rated $I_O$ and $V_r$ , single phase, 60 cps, $T_C = 150^{\circ}C$ )      | I <sub>R(AV)</sub>                   | 20  | mA    |  |

# MR1230thru MR1237

MAXIMUM RATINGS (See Thermal Derating Graph 16)

| Rating                                                                                 | Symbol                                                         | MR<br>1230 | MR<br>1231 | MR<br>1232 | MR<br>1233 | MR<br>1234 | MR<br>1235 | MR<br>1236 | MR<br>1237 | Units |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50         | 100        | 150        | 200        | 250        | 300        | 350        | 400        | Volts |
| Non-Repetitive Peak Reverse Voltage<br>(one halfwave, single phase,<br>60 cycle peak)  | V <sub>RM</sub> (non-rep)                                      | 100        | 200        | 250        | 300        | 350        | 400        | 450        | 500        | Volts |

#### MR1230 thru MR1237 (continued)

MAXIMUM RATINGS (continued)

| Rating                                                                                                                    | Symbol                  | MR<br>1230                                                                                    | MR<br>1231 | MR<br>1232 | MR<br>1233 | MR<br>1234 | MR<br>1235 | MR<br>1236 | MR<br>1237 | Units                               |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|------------|-------------------------------------|
| RMS Reverse Voltage                                                                                                       | v <sub>r</sub>          | 35                                                                                            | 70         | 105        | 140        | 175        | 210        | 245        | 280        | Volts                               |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, T <sub>C</sub> = 150°C) see figure 3       | I <sub>o</sub>          | 240                                                                                           |            |            |            |            |            |            | Amperes    |                                     |
| Non-Repetitive Peak Surge Currents<br>(superimposed on rated current at<br>rated voltage, $T_C = 150$ °C) see<br>figure 5 | I <sub>FM</sub> (surge) | <ul> <li>✓ 5,000 (for 1/2 cycle)</li> <li>✓ 3,000 (for six consecutive 1/2 cycles)</li> </ul> |            |            |            |            |            |            | s) +       | Amperes                             |
| I <sup>2</sup> t Rating (non-repetitive, for t<br>greater than 1 msec and less<br>than 8.3 msec)                          | 1 <sup>2</sup> t        | 4                                                                                             |            |            | - 52,      | 000 ·      |            |            | +          | A <sub>(rms)</sub> <sup>2</sup> sec |

#### ELECTRICAL CHARACTERISTICS

| Characteristic and Conditions                                                                                               | Symbol             | Maximum<br>Limit | Units |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|-------|
| Full Cycle Average Forward Voltage Drop (rated $I_{0}$ and $V_{r}^{,}$ single phase, 60 cps, $T_{C}^{}$ = 150 $^{\circ}$ C) | V <sub>F(AV)</sub> | 0.4              | Volts |
| Full Cycle Average Reverse Current (rated $I_0$ and $V_T$ , single phase, 60 cps, $T_C$ = 150° C)                           | <sup>I</sup> R(AV) | 35               | mA    |

# MR1240thru MR1247

MAXIMUM RATINGS (See Thermal Derating Graph 17)

| Rating                                                                                                             | Symbol                                                         | MR<br>1240 | MR<br>1241 | MR<br>1242        | MR<br>1243       | MR<br>1244 | MR<br>1245       | MR<br>1246 | MR<br>1247 | Units   |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------|------------|-------------------|------------------|------------|------------------|------------|------------|---------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                             | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50         | 100        | 150               | 200              | 250        | 300              | 350        | 400        | Volts   |
| Non-Repetitive Peak Reverse Voltage<br>(one halfwave, single phase,<br>60 cycle peak)                              | V <sub>RM (non-rep)</sub>                                      | 150        | 200        | 250               | 300              | 350        | 400              | 450        | 500        | Volts   |
| RMS Reverse Voltage                                                                                                | v <sub>r</sub>                                                 | 35         | 70         | 105               | 140              | 175        | 210              | 245        | 280        | Volts   |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, $T_{C} = 150$ °C) see figure 3      | I <sub>o</sub>                                                 | *          |            |                   | 4                | .00 —      |                  |            |            | Amperes |
| Non-Repetitive Peak Surge Currents (superimposed on rated current at rated voltage, $T_{C} = 150$ °C) see figure 5 | I <sub>FM</sub> (surge)                                        |            | 4, 500     | - 8,00<br>(for si | 0 (for<br>x cons | 1/2 c      | ycle)-<br>ve 1/2 | cycle      | s) →       | Amperes |

#### MR1240 thru MR1247 (continued)

MAXIMUM RATINGS (continued)

| Rating                                                                             | Symbol                            | MR<br>1240 | MR<br>1241 | MR<br>1242 | MR<br>1243 | MR<br>1244 | MR<br>1245                          | MR<br>1246 | MR<br>1247 | Units |
|------------------------------------------------------------------------------------|-----------------------------------|------------|------------|------------|------------|------------|-------------------------------------|------------|------------|-------|
| $I^{2}t$ Rating (non-repetitive, for t greater than 1 msec and less than 8.3 msec) | 1 <sup>2</sup> t                  | 133, 000   |            |            |            |            | A <sub>(rms)</sub> <sup>2</sup> sec |            |            |       |
| Thermal Resistance                                                                 | θ <sub>J-C</sub>                  | 0.075      |            |            |            |            |                                     | °C/Watt    |            |       |
| Operating and Storage Temperature                                                  | T <sub>J</sub> , T <sub>stg</sub> | -          |            |            | -65 to     | +190       |                                     |            |            | °C    |

#### ELECTRICAL CHARACTERISTICS

| Characteristic and Conditions                                                                                          | Symbol             | Maximum<br>Limit | Units |
|------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|-------|
| Full Cycle Average Forward Voltage Drop (rated I $_o$ and $V_r$ , single phase, 60 cps, $\rm T_{C}^{=}~150^{\circ}$ C) | V <sub>F(AV)</sub> | 0.4              | Volts |
| Full Cycle Average Reverse Current<br>( rated I o and V , single phase, 60 cps, T $_{\rm C}$ = 150° C)                 | I <sub>R(AV)</sub> | 50               | .mA   |

# MR1260thru MR1267

#### MAXIMUM RATINGS (See Thermal Derating Graph 18)

| Rating                                                                                                              | Symbol                                                         | MR<br>1260                                                          | MR<br>1261 | MR<br>1262 | MR<br>1263 | MR<br>1264 | MR<br>1265 | MR<br>1266 | MR<br>1267                          | Units   |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|------------|------------|------------|------------|------------|------------|-------------------------------------|---------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                              | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50                                                                  | 100        | 150        | 200        | 250        | 300        | 350        | 400                                 | Volts   |
| Non-Repetitive Peak Reverse Voltage<br>(one half-wave, single phase,<br>60 cycle peak)                              | V <sub>RM (non-rep)</sub>                                      | 150                                                                 | 200        | 250        | 300        | 350        | 400        | 450        | 500                                 | Volts   |
| RMS Reverse Voltage                                                                                                 | v <sub>r</sub>                                                 | 35                                                                  | 70         | 105        | 140        | 175        | 210        | 245        | 280                                 | Volts   |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, T <sub>C</sub> = 150°C) see figure 3 | I <sub>o</sub>                                                 | 650                                                                 |            |            |            |            |            | ļ          | Amperes                             |         |
| Non-Repetitive Peak Surge Currents (superimposed on rated current at rated voltage, $T_{C} = 150$ °C) see figure 5  | IFM (surge)                                                    | → 12,000 (for 1/2 cycle) → 8,000 (for six consecutive 1/2 cycles) → |            |            |            |            |            |            | 5)                                  | Amperes |
| I <sup>2</sup> t Rating (non-repetitive, for t<br>greater than 1 msec and less<br>than 8.3 msec)                    | I <sup>2</sup> t                                               | 300,000                                                             |            |            |            |            |            | -          | A <sub>(rms)</sub> <sup>2</sup> sec |         |
| Thermal Resistance                                                                                                  | 0 <sub>J-C</sub>                                               |                                                                     |            |            | 0.         | 045 —      |            |            |                                     | °C/Watt |
| Operating and Storage Temperature                                                                                   | T <sub>J</sub> , T <sub>stg</sub>                              | -                                                                   |            |            | -65 t      | o +190     |            |            |                                     | °C      |

#### MR1260 thru MR1267 (continued) ELECTRICAL CHARACTERISTICS

| Characteristic and Conditions                                                                                                                 | Symbol             | Maximum<br>Limit | Units |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|-------|
| Full Cycle Average Forward Voltage Drop (rated I $_{\rm o}$ and V $_{\rm r}$ , single phase, 60 cps, T $_{\rm C}{=}150^{\circ}{\rm C}{\rm J}$ | V <sub>F(AV)</sub> | 0.4              | Volts |
| Full Cycle Average Reverse Current (rated I o and V $_r$ , single phase, 60 cps, T $_C {=} 150^\circ {\rm C})$                                | I <sub>R(AV)</sub> | 100              | mA    |

# MR1290 thru MR1297

MAXIMUM RATINGS (See Thermal Derating Graph 19)

| Rating                                                                                                                             | Symbol                                                         | MR<br>1290              | MR<br>1291 | MR<br>1292 | MR<br>1293 | MR<br>1294 | MR<br>1295 | MR<br>1296 | MR<br>1297          | Units |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|------------|------------|------------|------------|------------|------------|---------------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                             | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50                      | 100        | 150        | 200        | 250        | 300        | 350        | 400                 | Volts |
| Non-Repetitive Peak Reverse Voltage<br>(one half-wave, single phase,<br>60 cycle peak)                                             | VRM(non-rep)                                                   | 100                     | 200        | 250        | 300        | 350        | 400        | 450        | 500                 | Volts |
| RMS Reverse Voltage                                                                                                                | vr                                                             | 35                      | 70         | 105        | 140        | 175        | 210        | 245        | 280                 | Volts |
| Continuous Average Rectified<br>Forward Current<br>(single phase, resistive load,<br>60 cps, $T_C = 150^{\circ}C$ ) see figure 5   | I <sub>o</sub>                                                 |                         |            |            |            |            |            |            | Amps                |       |
| Non-Repetitive Peak Surge Currents<br>'(suiperimposed on rated current at<br>rated voltage, $T_C = 150^{\circ}C$ ) see<br>figure 7 | I <sub>FM</sub> (surge)                                        | -18,000 (for 1/2 cycle) |            |            |            |            |            | Amps       |                     |       |
| Thermal Resistance DC<br>1 and 3 phase<br>6 phase                                                                                  | θJC                                                            | 0.035<br>0.045<br>0.060 |            |            |            |            |            |            | <sup>o</sup> C/Watt |       |
| Operating and Storage Temperature                                                                                                  | T <sub>J</sub> , T <sub>stg</sub>                              | -                       |            |            | -65 to     | +190       | A 14-1     |            |                     | °C    |

#### ELECTRICAL CHARACTERISTICS

| Characteristic and Conditions                                                                                 | Symbol             | Maximum<br>Limit | Units |
|---------------------------------------------------------------------------------------------------------------|--------------------|------------------|-------|
| Full Cycle Average Forward Voltage Drop (rated $I_0$ and $V_r$ , single phase, 60 cps, $T_C = 150^{\circ}C$ ) | V <sub>F(AV)</sub> | 0.4              | Volts |
| Full Cycle Average Reverse Current<br>(rated $I_0$ and $V_r$ , single phase, 60 cps, $T_C = 150^{\circ}C$ )   | <sup>I</sup> R(AV) | 0.2              | Amps  |

# MR1337-1thru MR1337-5

| MAXIMUM RATINGS | (See Thermal | Derating | Graph 20) |
|-----------------|--------------|----------|-----------|
|-----------------|--------------|----------|-----------|

| Rating                                                                                                                    | Symbol                                                         | MR<br>1337-1 | MR<br>1337-2            | MR<br>1337-3 | MR<br>1337-4 | MR<br>1337-5      | Unit    |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------|-------------------------|--------------|--------------|-------------------|---------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                    | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 50           | 100                     | 200          | 300          | 400               | Volts   |
| Non-Repetitive Peak Reverse Voltage<br>(half-wave, single phase,<br>60 cycle peak)                                        | V <sub>RM(non-rep)</sub>                                       | 100          | 200                     | 300          | 400          | 500               | Volts   |
| RMS Reverse Voltage                                                                                                       | v <sub>r</sub>                                                 | 35           | 70                      | 140          | 210          | 280               | Volts   |
|                                                                                                                           |                                                                |              |                         |              |              |                   |         |
| Average Rectified Forward Current<br>(single-phase resistive load)T <sub>A</sub> =25°C<br>Figure 2 T <sub>A</sub> =75°C   | чо                                                             |              | and l                   | Amperes      |              |                   |         |
| Non-Repetitive Peak Surge Current<br>Figure 3 (superimposed on rated<br>current at rated voltage, T <sub>A</sub> = 75 °C) | I <sub>FM(surge)</sub>                                         | 1 1141       | A.S. 1                  | Amperes      |              |                   |         |
| Peak Repetitive Forward Current $(T_A = 75^{\circ}C)$                                                                     | I <sub>FM(rep)</sub>                                           |              |                         | 4.0          |              | and the           | Amperes |
| I <sup>2</sup> t Rating<br>(non-repetitive, for t greater than<br>1 msec and less than 8.3 msec)                          | 1 <sup>2</sup> t                                               |              | A(rms) <sup>2</sup> sec |              |              |                   |         |
| Maximum Junction Operating<br>Temperature Range                                                                           | т <sub>ј</sub>                                                 | -65 to +150  |                         |              |              |                   |         |
| Maximum Case Storage<br>Temperature Range                                                                                 | Tstg                                                           |              | -6                      | 5 to +1'     | 75           |                   | C       |
| Maximum Steady State DC<br>Thermal Resistance                                                                             | 0 <sub>JA</sub>                                                |              |                         | 100          | inde la      | Carrier<br>Second | °C/Watt |

#### ELECTRICAL CHARACTERISTICS

| Characteristic                                                                                                                             | Symbol             | Max Limit | Unit  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|-------|
| DC Forward Voltage Drop<br>( $I_F = 1.0 \text{ Adc}, T_A = 25^{\circ}\text{C}$ )                                                           | v <sub>F</sub>     | 1.1       | Vdc   |
| Full Cycle Average Forward Voltage Drop<br>( $I_0^{=}$ 0.75 Amps and Rated V <sub>r</sub> , T <sub>A</sub> = 75°C,<br>Half Wave Rectifier) | V <sub>F(AV)</sub> | 0.55      | Volts |
| Full Cycle Average Reverse Current $(I_0 = 0.75 \text{ Amp} \text{ and Rated V}_r, T_A = 75^{\circ}\text{C}, \text{ single phase})$        | I <sub>R(AV)</sub> | 0.75      | mA    |
| DC Reverse Current<br>(Rated $V_R$ , $T_A = 25^{\circ}C$ )                                                                                 | I <sub>R</sub>     | 0.25      | mA    |
| Maximum Reverse Recovery Time<br>(I <sub>F</sub> = 1 Amp min)                                                                              | t <sub>rr</sub>    | 200       | nsec  |
| Maximum Overshoot Current                                                                                                                  | Ios                | 2.0       | Amps  |

### MR2261 thru MR2265

MAXIMUM RATINGS (See Thermal Derating Graph 21)

| Rating                                                                                                 | Symbol                                                         | MR<br>2261 | MR<br>2262 | MR<br>2263 | MR<br>2264 | MR<br>2265 | Unit  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------|------------|------------|------------|------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                 | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 10         | 20         | 30         | 40         | 50         | Volts |
| RMS Reverse Voltage                                                                                    | v <sub>r</sub>                                                 | 7          | 14         | 21         | 28         | 35         | Volts |
| Average Rectified Forward Current<br>(single phase, resistive load,<br>60 cps, T <sub>C</sub> = 100°C) | IO                                                             | -          |            | - 25       |            |            | Amps  |
| Peak Repetitive Forward Current<br>(T <sub>A</sub> = 75°C)                                             | I <sub>FM(rep)</sub>                                           | +          |            | <u> </u>   |            |            | Amps  |
| Non-Repetitive Peak Surge Current (superimposed on rated current at rated voltage, $T_C = 100$ °C)     | IFM(surge)                                                     | -          | 300 (f     | or 1/2 cy  | vcle)      |            | Amps  |
| Operating and Storage<br>Temperature Range                                                             | T <sub>J</sub> , T <sub>stg</sub>                              | -          |            | 65 to +17  | 5          | →          | °C    |

ELECTRICAL CHARACTERISTICS all types (TA = 25°C unless otherwise noted)

| Characteristics                                                                                                                                 | Symbol             | Max<br>Limit | Unit  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-------|
| Full Cycle Average Forward Voltage Drop<br>(I <sub>O</sub> = 25 Amps and Rated V <sub>r</sub> ,<br>T <sub>C</sub> = 100°C, Half Wave Rectifier) | V <sub>F(AV)</sub> | 0.70         | Volts |
| DC Forward Voltage Drop<br>( $I_F = 25 \text{ Adc}, T_A = 25^{\circ}\text{C}$ )                                                                 | v <sub>F</sub>     | 1.5          | Volts |
| Full Cycle Average Reverse Current<br>(I <sub>O</sub> = 25 Amps and Rated V <sub>r</sub> ,<br>T <sub>C</sub> = 100°C, Half Wave Rectifier)      | I <sub>R(AV)</sub> | 10.0         | mA    |
| DC Reverse Current<br>(Rated V <sub>R</sub> , T <sub>A</sub> = 25°C)                                                                            | I <sub>R</sub>     | 1.0          | mA    |

### MR2266 MR2273

MAXIMUM RATINGS

| Rating                                                                                                        | Symbol                                                         | MR2273      | MR2266      | Unit  |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                        | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 200         | 800         | Volts |
| RMS Reverse Voltage (Sine wave operation)                                                                     | V <sub>r</sub>                                                 | 140         | 560         | Volts |
| Average Rectified Forward Current<br>(single-phase, resistive (75°C Ambient)<br>load, 60 cps) (100°C Ambient) | IO                                                             | 1.0<br>0.75 | 1.0<br>0.75 | Amps  |

#### MR2266, MR2273 (continued)

#### MAXIMUM RATINGS (continued)

| Rating                                                                                                         | Symbol                            | MR2273     | MR2266             | Unit |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|--------------------|------|
| Peak Repetitive Forward Current $(T_A = 25^{\circ}C)$                                                          | IFM(rep)                          | 1          | 0                  | Amps |
| Non-Repetitive Peak Surge Current<br>(superimposed on rated current<br>at rated voltage, $T_A = 25^{\circ}$ C) | <sup>I</sup> FM(surge)            | 30 (for 1, | 30 (for 1/2 cycle) |      |
| Operating and Storage Temperature Range                                                                        | T <sub>J</sub> , T <sub>stg</sub> | -65 to     | +175               | °C   |

#### ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

| Characteristics                                                                        |                                       | Symbol             | Value        | Unit  |
|----------------------------------------------------------------------------------------|---------------------------------------|--------------------|--------------|-------|
| Full-Cycle Average Forward Voltage Drop<br>(Rated Current @ 25°C, sine wave operation) |                                       | V <sub>F(AV)</sub> | 0.8          | Volts |
| DC Forward Voltage Drop<br>(1 Amp Continuous DC, 25°C)                                 | NOTIN PORTER                          | v <sub>F</sub>     | 1.1          | Volts |
| DC Reverse Current @ Rated $V_r$                                                       | ated V <sub>r</sub> (25°C)<br>(100°C) |                    | 0,01<br>0,05 | mA    |
| Turning) Forward Deals Vallage Oversheet                                               | MR2266, $I_{\rm F} = 2$ A             | V <sub>fp</sub>    | 10           | Volts |
| (Figure 1, Figure 2)                                                                   | MR2273, $I_{\rm F} = 5$ A             | V <sub>fp</sub>    | 28           | Volts |

# mr2271

| MAXIMUM RATINGS | (See ] | Thermal | Derating | Graph 22) |  |
|-----------------|--------|---------|----------|-----------|--|
|-----------------|--------|---------|----------|-----------|--|

| Rating                                                                                                                             | Symbol                                                         | Rating                            | Unit  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                                             | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 300                               | Volts |
| Non-Repetitive Peak Reverse Voltage<br>(half-wave, single phase,<br>60 cycle peak)                                                 | V <sub>RM(non-rep)</sub>                                       | 400                               | Volts |
| RMS Reverse Voltage (Sine wave operation)                                                                                          | V <sub>r</sub>                                                 | 210                               | Volts |
| Average Rectified Forward Current (Sine wave operation) (single-phase resistive load) $T_A = 25^{\circ}C$<br>$T_A^A = 75^{\circ}C$ | IO                                                             | 1.0<br>0.75                       | Amps  |
| Non-Repetitive Peak Surge Current<br>(superimposed on rated<br>current at rated voltage, T <sub>A</sub> = 75°C)                    | <sup>I</sup> FM(surge)                                         | 30<br>(for 1/2 cycle)<br>@ 60 cps | Amps  |
| Peak Repetitive Forward Current $(T_A = 75^{\circ}C)$                                                                              | I <sub>FM(rep)</sub>                                           | 4.0                               | Amps  |
| Junction Operating and Storage Temperature Range                                                                                   | T <sub>J</sub> , T <sub>stg</sub>                              | -65 to +150                       | °C    |

#### MR2271 (continued)

#### ELECTRICAL CHARACTERISTICS

| Characteristics                                                                                                                                                       | Symbol              | Value | Unit  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-------|
| Maximum DC Forward Voltage Drop<br>( $I_F = 1.0 \text{ Adc}, T_A = 25^{\circ}\text{C}$ )                                                                              | v <sub>F</sub>      | 1.1   | Vdc   |
| Maximum Full Cycle Average Forward Voltage Drop (I <sub>O</sub> = 0.75 Amps and Rated V <sub>r</sub> , T <sub>A</sub> = 75 $^{\circ}$ C, Half Wave Rectifier, 60 cps) | V <sub>F(AV)</sub>  | 0.55  | Volts |
| Maximum Full Cycle Average Reverse Current ( $I_O = 0.75$ Amp and Rated $V_r$ , $T_A = 75$ °C, single phase, 60 cps)                                                  | I <sub>R</sub> (AV) | 0.75  | mA    |
| Maximum DC Reverse Current<br>(Rated $V_{R}$ , $T_{A} = 25^{\circ}$ C)                                                                                                | IR                  | 0.25  | mA    |
| Maximum Reverse Recovery Time<br>(I <sub>RR</sub> = 50 mA)<br>Test Circuit Figure 3 - Typical Waveform Figure 5                                                       | t <sub>rr</sub>     | 200   | nsec  |
| Rectification Efficiency (Typical)<br>Test Circuit Figure 6 - Typical Waveform Figure 4                                                                               | RE                  | 90    | %     |

### mr2272

MAXIMUM RATINGS (See Thermal Derating Graph 23)

| Rating                                                                                                         | Symbol                                                         | Rating                         | Unit  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|-------|
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                         | V <sub>RM(rep)</sub><br>V <sub>RM(wkg)</sub><br>V <sub>R</sub> | 400                            | Volts |
| RMS Reverse Voltage (Sine wave operation)                                                                      | v <sub>r</sub>                                                 | 280                            | Volts |
| Average Rectified Forward Current (Sine wave operation)<br>(75°C Ambient)<br>(100°C Ambient)                   | IO                                                             | 1.0<br>0.75                    | Amps  |
| Peak Repetitive Forward Current $(T_A = 75^{\circ}C)$                                                          | I <sub>FM(rep)</sub>                                           | 10                             | Amps  |
| Non-Repetitive Peak Surge Current<br>(superimposed on rated current<br>at rated voltage, $T_A = 75^{\circ}$ C) | <sup>I</sup> FM(surge)                                         | 30 (for 1 2 cycle)<br>@ 60 cps | Amps  |
| Juction Operating and Storage Temperature Range                                                                | T <sub>J</sub> , T <sub>stg</sub>                              | -65 to +175                    | С     |
### MR2272 (continued)

### ELECTRICAL CHARACTERISTICS

| Characteristics                                                                                                                        | Symbol             | Value | Unit        |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|-------------|
| Maximum Forward Voltage Drop<br>(1 Amp Continuous DC, 25°C)                                                                            | V <sub>F</sub>     | 1.1   | Volts       |
| Maximum Full Cycle Average Forward Voltage Drop ( $I_O = 0.75$ Amps and Rated $V_r$ , $T_A = 75^\circ$ C, Half Wave Rectifier, 60 cps) | V <sub>F(AV)</sub> | 0.5   | Volts       |
| Maximum Reverse Current @ Rated DC Voltage ( $25^{\circ}$ C)                                                                           | IR                 | 0.01  | mA          |
| Maximum Reverse Recovery Time<br>(I <sub>RR</sub> = 0.5 Amp)                                                                           | t <sub>rr</sub>    | 1.5   | μsec        |
| Test Circuit Figure 4 - Typical Waveform Figure 6                                                                                      |                    |       | A standards |
| Rectification Efficiency (Typical)<br>Test Circuit Figure 7 - Typical Waveform Figure 5                                                | RE                 | 55    | %           |









#### SILICON RECTIFIER ASSEMBLIES

Silicon rectifiers are available as individual cells with a wide variety of current and voltage ratings, as described in the rectifier section of this manual. In addition, these devices are available in standard and custom assemblies, which greatly increase the range of applications that can be satisfied with singleunit preassembled devices.

Included in these standard assemblies are:

High and low current rectifier circuit configurations



Series-connected high-voltage rectifier assemblies.



Custom assemblies, including both zener diode and rectifier assemblies, can be obtained inexpensively in quantity by specifying the type of devices needed (from a large selection of individual diodes and rectifiers) and the desired circuit configuration.

## **MOTOROLA ASSEMBLY**

| l <sub>or</sub><br>Am     | it<br>ps                 | 1 A                 | mp                  | 1.5 A       | mps       |  |
|---------------------------|--------------------------|---------------------|---------------------|-------------|-----------|--|
| I <sub>FM</sub> (Su<br>An | urge)<br>1ps             | 32 A                | mps                 | 25 Amps     |           |  |
|                           | naritari                 | Sin                 | gle Phase Ful       | l Wave Brid | ges       |  |
|                           |                          |                     |                     |             |           |  |
| V <sub>RM</sub><br>Volts  | V <sub>IN</sub><br>Volts | CASE A <sup>†</sup> | CASE B <sup>†</sup> | CASE C      | CASE D    |  |
| 25                        | 18                       | MDA920-1            | MDA920-1A           | MDA942-1    | MDA942-1A |  |
| 50                        | 35                       | MDA920-2            | MDA920-2A           | MDA942-2    | MDA942-2A |  |
| 100                       | 70                       | MDA920-3            | MDA920-3A           | MDA942-3    | MDA942-3A |  |
| 200                       | 140                      | MDA920-4            | MDA920-4A           | MDA942-4    | MDA942-4A |  |
| 300                       | 210                      | MDA920-5            | MDA920-5A           | MDA942-5    | MDA942-5A |  |
| 400                       | 280                      | MDA920-6            | MDA920-6A           | MDA942-6    | MDA942-6A |  |
| 600                       | 420                      | MDA920-7            | MDA920-7A           | MDA942-7    | MDA942-7A |  |

# **SELECTION GUIDE**

 $\square$ 

1

1

|           | 4 Amps    | 6 Amps       | 8 Amps*       | 10 Amps  | 16 Amps  |
|-----------|-----------|--------------|---------------|----------|----------|
| 25 Amps   | 200 Amps  | 150 Amps     | 200 Amps      | 250 Amps | 250 Amps |
|           | Sin       | gle Phase Fu | ll Wave Bride | ges      |          |
| CASE E    | CASE E    | CASE F       | CASE G        | CASE H   | CASE J   |
| MDA1491-1 | MDA1591-1 | MDA952-1     | MDA1505-1     | MDA962-1 | MDA972-1 |
| MDA1491-2 | MDA1591-2 | MDA952-2     | MDA1505-2     | MDA962-2 | MDA972-2 |
| MDA1491-3 | MDA1591-3 | MDA952-3     | MDA1505-3     | MDA962-3 | MDA972-3 |
| MDA1491-4 | MDA1591-4 | MDA952-4     | MDA1505-4     | MDA962-4 | MDA972-4 |
| MDA1491-5 | MDA1591-5 | MDA952-5     | MDA1505-5     | MDA962-5 | MDA972-5 |
|           |           |              |               |          |          |

Rectifier and Assembly Specifications



ASSEMBLY CASE OUTLINES













## Series 1300 High-Voltage Silicon Rectifier Assemblies

... basic rectifier legs or simple, single-phase half-wave rectifiers consisting of resistor-capacitor compensated rectifier strings, securely mounted on component boards and molded into complete packages.



#### **ABSOLUTE MAXIMUM RATINGS**

-----

| Rating                                                                                                                                                                                               | Symbol    | MDA1330H   | MDA1331H    | MDA1332H           | MDA1333H   | Units |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|--------------------|------------|-------|
| Peak Repetitive Reverse Voltage (Rated Current, Over Operating Temperature Range)                                                                                                                    | VRM(rep)  | 5,000      | 10,000      | 5,000              | 10,000     | Volts |
| RMS Reverse Voltage<br>(Rated Current Over the Complete Operating<br>Temperature Range)                                                                                                              | Vr        | 3,500      | 7,000       | 3,500              | 7,000      | Volts |
| DC Blocking Voltage<br>(Over Operating Temperature Range)                                                                                                                                            | Vr        | 3,000      | 6,000       | 3,000              | 6,000      | Volts |
| $\begin{array}{l} \mbox{Average Half Wave Rectified Forward Current} \\ (Resistive Load, 180° Conduction Angle, \\ 60 \mbox{ cps, Free Convection Cooling)} & T_A = 40°C \\ T_A = 100°C \end{array}$ | lo        | 1.0<br>0.3 | 1.0<br>0.3  | 2.5<br>0.5         | 2.5<br>0.5 | Amps  |
| Peak 1 Cycle Surge Current $(T_A = 40^{\circ}C, Superimposed on Rated Current at Rated Voltage)$                                                                                                     | FM(surge) | 25         | 25          | 250                | 250        | Amps  |
| Operating Frequency Range                                                                                                                                                                            |           |            | DC to 400   | 1                  | >          | cps   |
| Operating and Storage Temperature Range                                                                                                                                                              |           |            | -55 to +100 | 10 <u>10 10 10</u> | >          | °C    |

**O**Motorola "Series 1300" Stacks have  $V_{RM(rep)}$  ratings of 5,000 or 10,000 volts peak which are both the maximum repetitive and non-repetitive ratings. The Design Voltage to Rated Voltage safety factor to be used is left at the discretion of the designer. Where voltage transient suppression is employed, these assemblies can be reliably operated at the maximum ratings. The DC Blocking Voltage rating  $(V_B)$ , is established by the continuous power dissipation ratings of the shunting resistors and is not a function of the series rectifiers.

#### **ELECTRICAL CHARACTERISTICS**

| Rating                                                                                                                       | Symbol | MDA1330H | MDA1331H | MDA1332H | MDA1333H | Units |
|------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|----------|----------|-------|
| Maximum Full-Cycle Average Forward Voltage Drop (Half-Wave, Resistive Load, Rated Current and Voltage, $T_A = 40^{\circ}$ C) | Vf(av) | 5.0      | 10.0     | 5.0      | 10.0     | Volts |
| Maximum Full-Cycle Average Reverse Current (Half-Wave, Resistive Load, Rated Current and Voltage, $T_A = 40^{\circ}$ C)      | IR(AV) | 0.2      | 0.2      | 3.0      | 3.0      | mA    |

NOTE: Ambient temperatures are measured at the cold air source point i.e. immediately below the rectifier legs under convection cooling and on the cool air side with forced air cooling.

#### Series 300 Silicon Rectifier Stacks

Motorola rectifier stacks offer a new concept in compact, thermal-efficient circuit packages. Stacks utilize medium current rectifier cells interconnected in any of six common rectifier circuits and securely mounted in extruded-fin aluminum coolers to provide optimum heat sink surface contact.



 $\overline{\checkmark}$ 

| OUTPUT                          |             |       |            | VER      | TICAL — Fre   | e Conv   | vection Cooling   |       | 2.15        |      |  |
|---------------------------------|-------------|-------|------------|----------|---------------|----------|-------------------|-------|-------------|------|--|
| Cur                             | rent +55°C  | 12.0A | 16.0A      | 121      | 22.0A         |          | 32.0A             | -     | 48.0A       | -    |  |
| 1                               | +100°C      | 5.0A  | 7.0A       |          | 10.0A         |          | 14.0A             |       | 19.0A       |      |  |
| VRM(rep)<br>(DIODE)             | Outline No. |       | Outline No | -        | Outline No. • | -        | Outline No        | -     | Outline No. | No.7 |  |
| 50                              | 3V1B1A1A2   | 2     | 3V2B1A1A2  | 6        | 3V3B1A1A2     | 6        | 3V2B1A1A4         | 8     | 3V3B1A1A4   | 8    |  |
| 100                             | В           | 2     | В          | 6        | В             | 6        | В                 | 8     | В           | 8    |  |
| 200                             | C           | 2     | C          | 6        | C             | 6        | D                 | 8     | С           | 8    |  |
| 300                             | D           | 2     | D          | 6        | D             | 6        | C                 | 8     | D           | 8    |  |
| 400                             | E           | 2     | E          | 6        | E             | 6        | E                 | 8     | E           | 8    |  |
| 300                             | D2A4        | 4     | D2A4       | 8        | D2A4          | 8        |                   |       |             | Γ    |  |
| 400                             | E           | 4     | E          | 8        | E             | 8        | 23.5              |       |             |      |  |
|                                 |             | 3     | 11 14      | HOR      | IZONTAL -     | Force    | ed Air Cooling (1 | 000 L | FM)         |      |  |
| Curr                            | ent +55°C   | 37.0A | 44.0A      | 1        | 59.0A         |          | 68.0A             |       | 70.0A       | -    |  |
| 1                               | +100°C      | 15.0A | 19.0A      |          | 26.0A         |          | 34.0A             | -     | 39.0A       |      |  |
| V <sub>RM(rep)</sub><br>(DIODE) | Outline No. |       | Outline No | +        | Outline No. – | -        | Outline No. —     | -     | Outline No  | 7    |  |
| 50                              | 3H1B1A1A2   | 9     | 3H2B1A1A2  | 10       | 3H3B1A1A2     | 11       | 3H2B1A1A4         | 12    | 3H3B1A1A4   | 12   |  |
| 100                             | В           | 9     | B          | 10       | В             | 11       | В                 | 12    | В           | 12   |  |
| 200                             | C           | 9     | C          | 10       | C             | 11       | C                 | 12    | С           | 12   |  |
|                                 |             | 0     | D          | 10       | D             | 11       | D                 | 12    | D           | 12   |  |
| 300                             | D           | 9     | -          |          |               |          |                   |       |             |      |  |
| 300<br>400                      | E           | 9     | E          | 10       | E             | 11       | E                 | 12    | E           | 12   |  |
| 300<br>400<br>300               | E           | 9     | E<br>D2A4  | 10<br>12 | E<br>D2A4     | 11<br>12 | E                 | 12    | E           | 12   |  |

### **General Specifications**

Rectifier Stacks

Storage and Operating Temperature Range — -65 to +125 °C Individual Rectifier Cells (at 25 °C) DC Forward Voltage Drop at 100 Adc —  $V_{T} = 1.5$  Vdc max

DC Forward Voltage Drop at 100 Adc —  $V_F = 1.5$  Vdc max Reverse Current at rated DC Reverse Voltage —  $I_R = 1.0$  mAdc max Peak Recurrent Forward Current at 60 cps —  $I_F = 115$  A max





#### F - THREE PHASE FULL WAVE BRIDGE

| MAX. DC<br>OUTPUT               |                 | VI  | ERTIC | CAL — Free C  | onvect | ion Cooling  |    |
|---------------------------------|-----------------|-----|-------|---------------|--------|--------------|----|
| Curr                            | ent +55°C       | 18  | 8.0A  | 24.0A         | 1      | 33.0A        |    |
|                                 | +100°C          | 7   | .5A   | 10.5A         |        | 15.0A        |    |
| V <sub>RM(rep)</sub><br>(DIODE) | DDE) Outline No |     | -     | Outline No. – | -      | Outline No   | •  |
| 50                              | 3V1F1A1A3       | 3   | 3     | 3V2F1A1A3     | 7      | 3V3F1A1A3    | 7  |
| 100                             | В               |     | 3     | В             | 7      | В            | 7  |
| 200                             | С               | 201 | 3     | С             | 7      | C            | 7  |
| 300                             | D               |     | 3     | D             | 7      | D            | 7  |
| 400                             | E               |     | 3     | E             | 7      | E            | 7  |
|                                 | HORIZ           | 10  | IATA  | — Forced Air  | Coolin | g (1000 LFM) |    |
| Curre                           | ent +55°C       | 55  | 5.0A  | 66.0A         |        | 88.5A        |    |
| ~                               | +100°C          | 22  | 2.5A  | 28.5A         |        | 39.0A        |    |
| (DIODE)                         | Outline No      |     | -     | Outline No.   |        | Outline No   | +  |
| 50                              | 3H1F1A1A3       |     | 9     | 3H2F1A1A3     | 10     | 3H3F1A1A3    | 11 |
| 100                             | В               |     | 9     | В             | 10     | В            | 11 |
| 200                             | С               |     | 9     | C             | 10     | C            | 11 |
| 300                             | D               |     | 9     | D             | 10     | D            | 11 |
| 400                             | E               |     | 9     | E             | 10     | E            | 11 |

| - SIN                           | IGLE PHAS         | E CE   | NTER TAP, C  | OM     | NON CATH     | ODE     | YELLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0      | *             | R |
|---------------------------------|-------------------|--------|--------------|--------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---|
| / - SIP                         | IGLE PHAS         | SE CEI | NIER TAP, C  | .OMI   | MON ANOL     | DE      | YELLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0      |               |   |
| MAX. DC                         |                   |        |              | VER    | TICAL - Fre  | e Conv  | vection Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.3   | entile, Selfy |   |
| Curr                            | ent +55°C 1       | 12.0A  | 16.0A        | 100    | 22.0A        | 111     | 1 32.0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 199    | 48.0A         | - |
| 1                               | +100°C            | 5.0A   | 7.0A         |        | 10.0A        |         | 14.0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -      | 19.0A         |   |
| VRM(rep)<br>(DIODE)             | Outline No        | -      | Outline No.— | -      | Outline No.— | -       | Outline No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | Outline No.   |   |
| 50                              | 3V1C1A1A1         | 1      | 3V2C1A1A1    | 5      | 3V3C1A1A1    | 5       | 3V2C1A1A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6      | 3V3C1A1A2     | Γ |
| 100                             | В                 | 1      | В            | 5      | В            | 5       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | В             | Γ |
| 200                             | С                 | 1      | C            | 5      | С            | 5       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | C             |   |
| 300                             | D                 | 1      | D            | 5      | D            | 5       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | D             |   |
| 400                             | E                 | 1      | E            | 5      | E            | 5       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | E             | Ļ |
| 300                             | D2A2              | 2      | D2A2         | 6      | D2A2         | 6       | D2A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8      | D2A4          | Ļ |
| 400                             | E                 | 2      | E            | 6      | E            | 6       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8      | E             | Ļ |
| 300                             | D4A4              | 4      | D4A4         | 8      | D4A4         | 8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               | Ļ |
| 400                             | E                 | 4      | E            | 8      | E            | 8       | and the second s |        |               | L |
|                                 |                   |        |              | HOR    | IZONTAL -    | - Force | d Air Cooling (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .000 L | FM)           |   |
| Curre                           | nt +55°C          | 37.0A  | 44.0A        |        | 59.0A        |         | 68.0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 70.0A         |   |
|                                 | +100°C            | 15.0A  | 19.0A        | 11.211 | 26.0A        |         | 34.0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 39.0A         |   |
| VRM(rep)<br>(DIODE)             | Outline No        | +      | Outline No   | -      | Outline No   | -       | Outline No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | Outline No.   | 1 |
| 50                              | 3H1C1A1A1         | 9      | 3H2C1A1A1    | 10     | 3H3C1A1A1    | 11      | 3H2C1A1A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10     | 3H3C1A1A2     | 1 |
| 100                             | В                 | 9      | В            | 10     | В            | 11      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     | В             | 1 |
| 200                             | С                 | 9      | C            | 10     | С            | 11      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     | С             | 1 |
| 300                             | D                 | 9      | D            | 10     | D            | 11      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     | D             | 1 |
| 400                             | E                 | 9      | E            | 10     | E            | 11      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10     | E             | 1 |
| 300                             | D2A2              | 9      | D2A2         | 10     | D2A2         | 11      | D2A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12     | D2A4          | 1 |
| 400                             | E                 | 9      | E            | 10     | E            | 11      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12     | E             | 1 |
| 300                             |                   |        | D4A4         | 12     | D4A4         | 12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |   |
| 400                             |                   |        | E            | 12     | E            | 12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |   |
| ) — SIN                         | IGLE PHAS         | E DO   | UBLER        |        | - 1          |         | YELLOW O-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |               |   |
| OUTPUT                          |                   |        |              | VER    | TICAL — Fre  | e Conv  | vection Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |   |
| Curr                            | ent +55°C         | 4.5A   | 6.0A         |        | 8.0A         |         | 12.0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 18.0A         |   |
| 1                               | +100°C            | 1.8A   | 2.6A         | -      | 3.7A         | -       | 5.0A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 7.0A          |   |
| VRM(rep)<br>(DIODE)             | Outline No.       | -      | Outline No   | +      | Outline No   | +       | Outline No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      | Outline No.   |   |
| 50                              | 3V1D1A1A1         | 1      | 3V2D1A1A1    | 5      | 3V3D1A1A1    | 5       | 3V2D1A1A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6      | 3V3D1A1A2     | ſ |
| 100                             | В                 | 1      | В            | 5      | В            | 5       | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | В             |   |
| 200                             | С                 | 1      | C            | 5      | С            | 5       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | C             | 1 |
|                                 | D                 | 1      | D            | 5      | D            | 5       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | D             |   |
| 300                             | E                 | 1      | E            | 5      | E            | 5       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6      | E             |   |
| 300<br>400                      |                   | 10     | D242         | 6      | D2A2         | 6       | D2A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8      | D244          | E |
| 300<br>400<br>300               | D2A2              | 2      | DZAZ         | 10     | DEME         |         | D LITT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -      | ULAT          | 1 |
| 300<br>400<br>300<br>400        | D2A2<br>E         | 2      | E            | 6      | E            | 6       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8      | E             | t |
| 300<br>400<br>300<br>400<br>300 | D2A2<br>E<br>D4A4 | 2 2 4  | E<br>D4A4    | 6      | E<br>D4A4    | 6       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8      | E             |   |

|                     |            | -     | -             | -   | -             |         |                  |       | -          |    |
|---------------------|------------|-------|---------------|-----|---------------|---------|------------------|-------|------------|----|
| 300                 | D4A4       | 4     | D4A4          | 8   | D4A4          | 8       |                  |       |            |    |
| 400                 | E          | 4     | E             | 8   | E             | 8       |                  |       |            |    |
|                     |            |       | 1             | HOR | IZONTAL -     | - Force | d Air Cooling (1 | 000 L | FM)        |    |
| Curre               | ent +55°C  | 13.8A | 16.5A         |     | 22.0A         |         | 25.5A            |       | 26.5A      |    |
| 1                   | +100°C     | 5.5A  | 7.0A          |     | 9.5A          | 1122    | 12.5A            |       | 14.5A      |    |
| VRM(rep)<br>(DIODE) | Outline No | *     | Outline No. – | -   | Outline No. • | -       | Outline No       | -     | Outline No | -7 |
| 50                  | 3H1D1A1A1  | 9     | 3H2D1A1A1     | 10  | 3H3D1A1A1     | 11      | 3H2D1A1A2        | 10    | 3H3D1A1A2  | 10 |
| 100                 | В          | 9     | В             | 10  | В             | 11      | В                | 10    | В          | 10 |
| 200                 | C          | 9     | C             | 10  | C             | 11      | C                | 10    | C          | 10 |
| 300                 | D          | 9     | D             | 10  | D             | 11      | D                | 10    | D          | 10 |
| 400                 | E          | 9     | E             | 10  | E             | 11      | E                | 10    | E          | 10 |
| 300                 | D2A2       | 9     | D2A2          | 10  | D2A2          | 11      | D2A4             | 12    | D2A4       | 12 |
| 400                 | E          | 9     | E             | 10  | E             | 11      | E                | 12    | E          | 12 |
| 300                 |            |       | D4A4          | 12  | D4A4          | 12      |                  |       |            |    |
| 400                 |            |       | E             | 12  | E             | 12      |                  |       |            |    |

#### H – SINGLE PHASE HALF-WAVE RECTIFIER

RED

| MAX. DC<br>OUTPUT                                                                               |                                                |       |                                                   | VER                        | TICAL - Free                                                                       | e Conv                                                             | ection Cooling                                        |                                                                |                                                       |                                              |
|-------------------------------------------------------------------------------------------------|------------------------------------------------|-------|---------------------------------------------------|----------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|
| Curr                                                                                            | ent +55°C                                      | 6.0A  | 8.0A                                              |                            | 11.0A                                                                              |                                                                    | 16.0A                                                 |                                                                | 24.0A                                                 |                                              |
| /                                                                                               | +100°C                                         | 2.5A  | 3.5A                                              |                            | 5.0A                                                                               |                                                                    | 7.0A                                                  |                                                                | 9.5A                                                  |                                              |
| VRM(rep)<br>(DIODE)                                                                             | Outline                                        | No    | Outline No                                        |                            | Outline No                                                                         |                                                                    | Outline No                                            |                                                                | Outline No                                            |                                              |
| 50                                                                                              |                                                |       |                                                   |                            | 3V1H1A1A1                                                                          | 1                                                                  | 3V2H1A1A1                                             | 5                                                              | 3V3H1A1A1                                             | 5                                            |
| 100                                                                                             |                                                |       |                                                   |                            | В                                                                                  | 1                                                                  | В                                                     | 5                                                              | В                                                     | 5                                            |
| 200                                                                                             |                                                |       |                                                   |                            | С                                                                                  | 1                                                                  | С                                                     | 5                                                              | C                                                     | 5                                            |
| 300                                                                                             |                                                |       |                                                   |                            | D                                                                                  | 1                                                                  | D                                                     | 5                                                              | D                                                     | 5                                            |
| 300                                                                                             |                                                |       |                                                   |                            | E                                                                                  | 1                                                                  | E                                                     | 5                                                              | E                                                     | 5                                            |
| 300                                                                                             | 3V1H1D2A1                                      | 1 1   | 3V2H1D2A1                                         | 5                          | 3V3H1D2A1                                                                          | 5                                                                  | D3A3                                                  | 7                                                              | D3A3                                                  | 7                                            |
| 400                                                                                             | E                                              | 1     | E                                                 | 5                          | E                                                                                  | 5                                                                  |                                                       |                                                                |                                                       |                                              |
| 400                                                                                             | D4A2                                           | 2 2   | D4A2                                              | 6                          | D4A2                                                                               | 6                                                                  |                                                       |                                                                |                                                       |                                              |
| 400                                                                                             | E                                              | 2     | E                                                 | 6                          | E                                                                                  | 6                                                                  | E3A3                                                  | 7                                                              | E3A3                                                  | 7                                            |
| 400                                                                                             | E6A3                                           | 3     | E6A3                                              | 7                          | E6A3                                                                               | 7                                                                  | E4A4                                                  | 8                                                              | E4A4                                                  | 8                                            |
| 400                                                                                             | E8A4                                           | 3     | E8A4                                              | 8                          | E8A4                                                                               | 8                                                                  |                                                       |                                                                |                                                       |                                              |
|                                                                                                 |                                                |       |                                                   | HOR                        | ZONTAL -                                                                           | Force                                                              | d Air Cooling (1                                      | 000 LI                                                         | FM)                                                   |                                              |
| Curre                                                                                           | ent +55°C                                      | 18.5A | 22.0A                                             |                            | 29.5A                                                                              |                                                                    | 34.0A                                                 |                                                                | 35.0A                                                 | _                                            |
|                                                                                                 | +100°C                                         | 7.5A  | 9.5A                                              |                            | 13.0A                                                                              |                                                                    | 17.0A                                                 |                                                                | 19.5A                                                 |                                              |
|                                                                                                 |                                                |       |                                                   |                            |                                                                                    |                                                                    | Outline No                                            |                                                                | Outline No                                            |                                              |
| VRM(rep)<br>(DIODE)                                                                             | Outline                                        | No. 🚽 | Outline No                                        | 0                          | Outline No                                                                         |                                                                    | Outline Ne                                            |                                                                |                                                       | T.                                           |
| VRM(rep)<br>(DIODE)<br>50                                                                       | Outline                                        | No.   | Outline No                                        | ). — <b>•</b>              | Outline No<br>3H1H1A1A1                                                            | 9                                                                  | 3H2H1A1A1                                             | 10                                                             | 3H3H1A1A1                                             | 11                                           |
| V <sub>RM(rep)</sub><br>(DIODE)<br>50<br>100                                                    | Outline                                        | No.   | Outline No                                        | ). — <b>•</b>              | Outline No<br>3H1H1A1A1<br>B                                                       | 9                                                                  | 3H2H1A1A1<br>B                                        | 10<br>10                                                       | 3H3H1A1A1<br>B                                        | 11                                           |
| V <sub>RM(rep)</sub><br>(DIODE)<br>50<br>100<br>200                                             | Outline                                        | No    | Outline No                                        | ). — •                     | Outline No<br>3H1H1A1A1<br>B<br>C                                                  | 9 9 9                                                              | 3H2H1A1A1<br>B<br>C                                   | 10<br>10<br>10                                                 | 3H3H1A1A1<br>B<br>C                                   | 11<br>11<br>11                               |
| VRM(rep)<br>(DIODE)<br>50<br>100<br>200<br>300                                                  | Outline                                        | No    | Outline No                                        | )                          | Outline No<br>3H1H1A1A1<br>B<br>C<br>D                                             | 9<br>9<br>9<br>9                                                   | 3H2H1A1A1<br>B<br>C<br>D                              | 10<br>10<br>10<br>10                                           | 3H3H1A1A1<br>B<br>C<br>D                              | 11<br>11<br>11<br>11                         |
| VRM(rep)<br>(DIODE)<br>50<br>100<br>200<br>300<br>400                                           | Outline                                        | No    | Outline No                                        |                            | Outline No<br>3H1H1A1A1<br>B<br>C<br>D<br>E                                        | 9<br>9<br>9<br>9<br>9                                              | 3H2H1A1A1<br>B<br>C<br>D<br>E                         | 10<br>10<br>10<br>10<br>10<br>10                               | 3H3H1A1A1<br>B<br>C<br>D<br>E                         | 11<br>11<br>11<br>11<br>11                   |
| VRM(rep)<br>(DIODE)<br>50<br>100<br>200<br>300<br>400<br>300                                    | Outline                                        | No.   | Outline No<br>3H2H1D2A1                           | 10                         | Outline No<br>3H1H1A1A1<br>B<br>C<br>D<br>E<br>3H3H1D2A1                           | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                               | 3H2H1A1A1<br>B<br>C<br>D<br>E<br>D3A3                 | 10<br>10<br>10<br>10<br>10<br>10<br>10                         | 3H3H1A1A1<br>B<br>C<br>D<br>E<br>D3A3                 | 11<br>11<br>11<br>11<br>11<br>11             |
| VRM(rep)<br>(DIODE)<br>50<br>100<br>200<br>300<br>400<br>300<br>400                             | Outline<br>                                    | No.   | Outline No<br>3H2H1D2A1<br>E                      | 10                         | Outline No<br>3H1H1A1A1<br>B<br>C<br>D<br>E<br>3H3H1D2A1<br>E                      | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>11<br>11                   | 3H2H1A1A1<br>B<br>C<br>D<br>E<br>D3A3                 | 10<br>10<br>10<br>10<br>10<br>10<br>10                         | 3H3H1A1A1<br>B<br>C<br>D<br>E<br>D3A3                 | 111<br>111<br>111<br>111<br>111              |
| VRM(rep)<br>(DIODE)<br>50<br>100<br>200<br>300<br>400<br>300<br>400<br>300<br>400<br>300        | Outline<br>3H1H1D2A1<br>E<br>D4A2              | No.   | Outline No<br>3H2H1D2A1<br>E<br>D4A2              | 10<br>10<br>10             | Outline No<br>3H1H1A1A1<br>B<br>C<br>D<br>E<br>3H3H1D2A1<br>E<br>D4A2              | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>11<br>11<br>11             | 3H2H1A1A1<br>B<br>C<br>D<br>E<br>D3A3                 | 10<br>10<br>10<br>10<br>10<br>10                               | 3H3H1A1A1<br>B<br>C<br>D<br>E<br>D3A3                 | 111<br>111<br>111<br>111<br>111              |
| VRM(rep)<br>(DIODE)<br>50<br>100<br>200<br>300<br>400<br>300<br>400<br>300<br>400<br>300<br>400 | Outline<br>3H1H1D2A1<br>E<br>D4A2<br>E         | No    | Outline No<br>3H2H1D2A1<br>E<br>D4A2<br>E         | 10<br>10<br>10<br>10       | Outline No<br>3H1H1A1A1<br>B<br>C<br>D<br>E<br>3H3H1D2A1<br>E<br>D4A2<br>E         | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>11<br>11<br>11<br>11            | 3H2H1A1A1<br>B<br>C<br>D<br>E<br>D3A3<br>E3A3         | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                   | 3H3H1A1A1<br>B<br>C<br>D<br>E<br>D3A3<br>E3A3         | 11<br>11<br>11<br>11<br>11<br>11             |
| VRM(rep)<br>(DIODE)<br>50<br>200<br>300<br>400<br>300<br>400<br>300<br>400<br>400<br>400        | Outline<br>3H1H1D2A1<br>E<br>D4A2<br>E<br>E6A3 | No    | Outline No<br>3H2H1D2A1<br>E<br>D4A2<br>E<br>E6A3 | 10<br>10<br>10<br>10<br>10 | Outline No<br>3H1H1A1A1<br>B<br>C<br>D<br>E<br>3H3H1D2A1<br>E<br>D4A2<br>E<br>E6A3 | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>11<br>11<br>11<br>11<br>11 | 3H2H1A1A1<br>B<br>C<br>D<br>E<br>D3A3<br>E3A3<br>E4A4 | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>12 | 3H3H1A1A1<br>B<br>C<br>D<br>E<br>D3A3<br>E3A3<br>E4A4 | 11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 |

#### Y – THREE PHASE HALF-WAVE, COMMON CATHODE W – THREE PHASE HALF-WAVE, COMMON ANODE

1

YELLOW O

-0-

YELLOW O

| MAX. DC<br>OUTPUT               |            |       |                                           | VER | TICAL — Fre   | e Conv | vection Cooling  | -Ch    | Test.      |    |
|---------------------------------|------------|-------|-------------------------------------------|-----|---------------|--------|------------------|--------|------------|----|
| Curr                            | rent +55°C | 18.0A | 24.0A                                     |     | 33.0A         |        | 48.0A            |        | 72.0A      |    |
|                                 | +100°C     | 7.5A  | 10.5A                                     |     | 15.0A         |        | 21.0A            |        | 28.5A      |    |
| V <sub>RM(rep)</sub><br>(DIODE) | Outline No |       | Outline No                                | -   | Outline No    | -      | Outline No       | -      | Outline No | 7  |
| 50                              |            |       |                                           |     | 3V1Y1A1A3     | 3      | 3V2Y1A1A3        | 7      | 3V3Y1A1A3  | 7  |
| 100                             |            |       |                                           |     | В             | 3      | В                | 7      | В          | 7  |
| 200                             |            |       |                                           |     | С             | 3      | С                | 7      | C          | 7  |
| 300                             |            |       |                                           |     | D             | 3      | D                | 7      | D          | 7  |
| 400                             |            |       |                                           |     | E             | 3      | E                | 7      | E          | 7  |
| 300                             | 3V1Y1D2A   | 3 3   | 3V2Y1D2A3                                 | 7   | 3V3Y1D2A3     | 7      |                  |        |            |    |
| 400                             | E          | 3     | E                                         | 7   | E             | 7      |                  |        |            |    |
|                                 |            |       |                                           | HOR | IZONTAL -     | Force  | d Air Cooling (1 | 1000 L | FM)        |    |
| Curr                            | rent +55°C | 55.5A | 66.0A                                     |     | 88.5A         |        | 102.0A           |        | 105.0A     |    |
|                                 | +100°C     | 22.5A | 28.5A                                     |     | 39.0A         |        | 51.0A            |        | 58.5A      |    |
| V <sub>RM(rep)</sub><br>(DIODE) | Outline No |       | Outline No                                | -   | Outline No. – | -      | Outline No       | -      | Outline No | -7 |
| 50                              |            |       |                                           |     | 3H1Y1A1A3     | 9      | 3H2Y1A1A3        | 10     | 3H3Y1A1A3  | 11 |
| 100                             |            |       |                                           |     | В             | 9      | В                | 10     | B          | 11 |
| 200                             |            |       | 100 - C - C - C - C - C - C - C - C - C - |     | C             | 9      | С                | 10     | C          | 11 |
| 300                             |            |       |                                           |     | D             | 9      | D                | 10     | D          | 11 |
| 400                             |            |       |                                           |     | E             | 9      | E                | 10     | E          | 11 |
| 300                             | 3H1Y1D2A   | 3 9   | 3H2Y1D2A3                                 | 10  | 3H3Y1D2A3     | 11     |                  |        |            |    |
| 400                             | E          | 9     | E                                         | 10  | E             | 11     |                  |        |            |    |





#### **Custom Assemblies**

As part of its program of total service to the semiconductor user, Motorola has established a complete in-house facility capable of handling high volume orders for virtually any semiconductor assembly requirement - and at economy prices! In addition to the standard units on the following pages and in the zener diode and rectifier sections, you can obtain custom service on any special requirements you may have. Motorola is geared to provide competent application assistance as well as prompt, economical custom-assembly fabrication.

#### TYPICAL MOLDED ASSEMBLY PACKAGES

#### PACKAGE STYLE "A"

| Package<br>Style<br>Prefix | Max. No.<br>of glass<br>diodes | Max. No.<br>of metal<br>pkgs. | Max.<br>L<br>inches | Max.<br>D<br>inches |
|----------------------------|--------------------------------|-------------------------------|---------------------|---------------------|
| 2A                         | 2                              |                               | .900                | .150                |
| 4A                         | 4                              | -                             | .500                | .313                |
| 10A                        | 10                             | 2                             | 1.00                | .313                |
| 18A                        | 18                             | 4                             | .625                | .625                |
| 36A                        | 36                             | 8                             | 1.200               | .625                |

| Package<br>Style<br>Prefix | Max. No.<br>of glass<br>diodes | Max. No.<br>of metal<br>pkgs. | Max.<br>L<br>inches | Max.<br>W<br>inches | Max.<br>H<br>inches |
|----------------------------|--------------------------------|-------------------------------|---------------------|---------------------|---------------------|
| 19B                        | 19                             | 4                             | 1.01                | .300                | .610                |
| 38B                        | 38                             | 8                             | 2.01                | .300                | .610                |

#### PACKAGE STYLE "C"

| Package | Max. No. | Max. No. | Max.   | Max.   | Max.   |
|---------|----------|----------|--------|--------|--------|
| Style   | of glass | of metal | L      | W      | H      |
| Prefix  | diodes   | pkgs.    | inches | inches | inches |
| 16C     | 16       | 4        | .600   | .600   | .625   |

#### PACKAGE STYLE "D"

| Package<br>Style<br>Prefix | Max. No.<br>of glass<br>diodes | Max. No.<br>of metal<br>pkgs. | Max.<br>L<br>inches | Max.<br>W<br>inches | Max.<br>H<br>inches |
|----------------------------|--------------------------------|-------------------------------|---------------------|---------------------|---------------------|
| 6D                         | 6                              | 0                             | .565                | .565                | .285                |
| 12D                        | 12                             | 2                             | .750                | .565                | .285                |

#### PACKAGE STYLE "E"

| Package<br>Style<br>Prefix | Max. No.<br>of glass<br>diodes | Max. No.<br>of metal<br>pkgs. | Max.<br>Dia. D<br>inches | Max.<br>H<br>inches |  |
|----------------------------|--------------------------------|-------------------------------|--------------------------|---------------------|--|
| 1E                         | 1 or 2                         | -                             | .400                     | .200                |  |
| 2E                         | 1 or 2                         | -                             | .400                     | .200                |  |





#### Bibliography

#### GENERAL REFERENCE

- 1. <u>Electronic Rectification</u>, F. G. Spreadbury, D. Van Nostrand Co., Inc., Princeton, N. J., 1962.
- 2. <u>Transistor Physics and Circuits</u>, Riddle and Ristenbatt, Prentice-Hall Inc., Englewood Cliffs, N. J., 1958.
- 3. <u>Shortcut to Design of Diode-Resistor Suppression Networks</u>, L. D. Jambor and E. Haber, Electronic Design, Oct 25, 1965.
- 4. <u>Thermal Impedance of Silicon Rectifiers</u>, N. Smith and S. Neilson, Published ST-2055 Radio Corp. of America, Somerville, New Jersey.

#### MOUNTING AND HEATSINK

- 1. <u>Mounting Techniques For Press Fit Rectifiers</u>, Motorola Semiconductor Products Inc.
- 2. Factors Influencing Selection of Commercial Power Transistor Heatsinks, Ralph Greenburg, Motorola Semiconductor Products Inc., Application Note #135.

#### OVERCURRENT PROTECTION

- 1. Overcurrent Protection of Semiconductor Rectifiers, F. W. Gutzwiller, Electrical Manufacturing, April, 1959, pp 106-14.
- 2. Forward Current Surge Failure in Semiconductors, AIEE Transactions, - Vol. 77 pt L Nov., 1958, pp 746-50 - F. E. Gentry.
- 3. <u>Current Limiting Fuses Their Characteristics and Applications</u>, P. C. Jacobs, AIEE Transactions, 1956.

#### OVERVOLTAGE PROTECTION

- 1. Rectifier Voltage Transients: Cause, Detection, Reduction, F. W. Gutzwiller, Electronics, March 29, 1963, pp 38-41.
- R. C. Transient Suppression Circuits for Silicon Rectifiers, R. G. Martin, AIEE Winter General Meeting, 1959, Conference Paper 59-402.

Bibliography

#### PARALLELING AND CURRENT BALANCING

1. <u>Current Balancing Reactors for Semiconductor Rectifier</u>, AIEE Communication, Electronics, Part I, 1959, pp 452-56.

## FILTERS

1. <u>Graphical Design of D-C Power Supplies</u>, Hugo Koppe, EDN, RJ No. 723, July, 1962.

#### SERIES CONNECTED DIODES

1. Damage Failures in Series-Connected Diodes, Their Cause and Prevention, E. E. Von Zostron, Electronic Design, Oct. 25, 1965.

## Appendix

0

1

0

### RECTIFIER CIRCUIT VOLTAGE CHARACTERISTICS

| (P/                                                  | METER <sub>1</sub> ) = | 01                                             | CIRCUIT NUMBERS |        |                        |       |                     |                     |                     |                |         |
|------------------------------------------------------|------------------------|------------------------------------------------|-----------------|--------|------------------------|-------|---------------------|---------------------|---------------------|----------------|---------|
| (PARAMETER                                           | 2) *                   | CIRCUIT VALUE                                  | 5)              | 1      | 2                      | 3     | 4                   | 5                   | 6                   | 7              | LOAD    |
| AVERAGE DC<br>OUTPUT<br>VOLTAGE                      | =                      | SECONDARY<br>R.M.S. VOLTS<br>PER LEG           | x               | 0.450  | C.T.<br>0.900<br>1.414 | 0.900 | N<br>1.170<br>1.414 | N<br>2.34<br>2.70   | N<br>1.350<br>1.414 | 1.170<br>1.414 | RL<br>C |
| R. M. S. DC<br>OUTPUT<br>VOLTAGE                     | п                      | SECONDARY<br>R.M.S. VOLTS<br>PER LEG           | x               | 0.707  | 1.00                   | 1.00  | 1.191               | 2.34                | 1.350               | 1.170          | RL      |
| R. M. S. DC<br>OUTPUT<br>VOLTAGE                     | =                      | AVERAGE DC<br>OUTPUT<br>VOLTAGE                | x               | 1.57   | 1.11                   | 1.11  | 1.02                | 1.00                | 1.00                | 1.00           | RL      |
| PEAK DC<br>OUTPUT<br>VOLTAGE                         | =                      | AVERAGE DC<br>OUTPUT<br>VOLTAGE                | x               | 3.14   | 1.57                   | 1.57  | 1.21                | 1.05                | 1.05                | 1.05           | RL      |
| R. M. S.<br>SECONDARY                                | =                      | AVERAGE DC<br>OUTPUT                           | v               | 2.22   | C.T.<br>1.11           | 1.11  | N<br>0.855          | N<br>0.428          | N<br>0.741          | 0.855          | RL      |
| VOLTS PER<br>LEG                                     | TS PER VOLTAGE         | x                                              | 0.707           | 0.707  | 0.707                  | 0.408 | 0.707               | 0.707               | 0.707               | С              |         |
| R. M. S.<br>SECONDARY<br>VOLTS LINE<br>TO LINE       | =                      | AVERAGE DC<br>OUTPUT<br>VOLTAGE                | x               | 2.22   | 2.22                   | 1.11  | 1.48                | 0.740               | 1.48                | 1.71           | RL      |
| PEAK<br>REVERSE                                      | =                      | AVERAGE DC<br>OUTPUT                           | x               | 3.14   | C.T.<br>3.14           | 1.57  | N<br>2.09           | N<br>1.05           | N<br>2.09           | 2.09           | RL      |
| VOLTS PER<br>RECTIFIER                               |                        | VOLTAGE                                        |                 | 2.00   | 2.00                   | 1.00  | 2.00                | 1.00                | 2.00                | 2.00           | С       |
| PEAK<br>REVERSE<br>VOLTS PER<br>RECTIFIER            | =                      | R. M. S.<br>SECONDARY<br>VOLTS PER<br>LEG      | x               | 1.41   | 2.828                  | 1.414 | 2.45                | 2.45                | 2.828               | 2.45           | RL      |
| PEAK<br>REVERSE<br>VOLTS PER<br>RECTIFIER            | =                      | R. M. S.<br>SECONDARY<br>VOLTS LINE<br>TO LINE | x               | 1. 414 | 1.414                  | 1.414 | 1.414               | 1.414               | 1.414               | 1.414          | RL      |
| INTERPHASE<br>TRANSFORMER<br>VOLTAGE<br>LINE-NEUTRAL | =<br>S                 | AVERAGE DC<br>OUTPUT<br>VOLTAGE                | x               |        |                        |       |                     |                     |                     | 0.252          |         |
| 3 V <sub>LINE-</sub><br>NEUTRAL                      | =                      | V <sub>LINE-LINE</sub>                         |                 |        | 2.6                    |       |                     | e steres i<br>Fisch |                     |                |         |

Appendix

| $(PARAMETER_1) =$                                               |   |                                                                             |    | CIRCUIT NUMBERS |       |       |       |        |        |        |      |  |
|-----------------------------------------------------------------|---|-----------------------------------------------------------------------------|----|-----------------|-------|-------|-------|--------|--------|--------|------|--|
| (PARAMETER <sub>2</sub> )                                       | х | (CIRCUIT VALUE                                                              | S) | 1               | 2     | 3     | 4     | 5      | 6      | 7      | LOAD |  |
| AVERAGE DC<br>OUTPUT<br>CURRENT PER<br>RECTIFIER<br>LEG         | = | AVERAGE DC<br>OUTPUT<br>CURRENT                                             | x  | 1.00            | 0.50  | 0.50  | 0.333 | 0.333  | 0.167  | 0.167  | RLC  |  |
| PEAK CURRENT<br>THROUGH<br>RECTIFIER                            | = | AVERAGE DC                                                                  | v  | 3.14            | 1.57  | 1.57  | 1.21  | 1.05   | 1.05   | 0.525  | R    |  |
|                                                                 |   | CURRENT                                                                     | X  |                 | 1.00  | 1.00  | 1.00  | 1.00   | 1.00   | 0.500  | L    |  |
| R. M. S. LINE<br>CURRENT TO<br>EACH<br>RECTIFIER<br>(SECONDARY) | - | AVERAGE DC<br>OUTPUT<br>CURRENT                                             | x  | R<br>1. 57      | 0.707 | 1.00  | 0.578 | 0.816  | 0. 408 | 0.289  | L    |  |
| R. M. S.<br>CURRENT PER                                         | = | AVERAGE DC                                                                  |    | 1.57            | 0.785 | 0.785 | 0.587 | 0. 579 | 0.409  | 0.293  | R    |  |
| RECTIFIER<br>ELEMENT                                            |   | CURRENT                                                                     | х  | 1               | 0.707 | 0.707 | 0.578 | 0. 578 | 0.408  | 0.289  | L    |  |
| PRIMARY<br>R. M. S. LINE<br>CURRENT                             | H | ARRAY LOAD<br>CURRENT X<br>PER LEG<br>VOLTAGE<br>PRIMARY<br>LINE<br>VOLTAGE | x  | R<br>1. 57      | 1.00  | 1.00  | 0.817 | 1.41   | 0.817  | 0. 707 | L    |  |

#### **RECTIFIER CIRCUIT CURRENT CHARACTERISTICS**

#### **RECTIFIER CIRCUIT MISCELLANEOUS CHARACTERISTICS**

| (PARAMETER <sub>1</sub> ) = |                                   |                     | 10.1 | CIRCUIT NUMBERS |      |       |       |       |       |      |   |  |
|-----------------------------|-----------------------------------|---------------------|------|-----------------|------|-------|-------|-------|-------|------|---|--|
| (PARAMETER <sub>2</sub> ) X | (CIRCUIT VALUE                    | 5.5)                | 1    | 2               | 3    | 4     | 5     | 6     | 7     | LOAD |   |  |
| TRANSFORMER =               | AVERAGE DC<br>WATTS X<br>OUTPUT X | v                   | 3.49 | 1.75            | 1.23 | 1.50  | 1.05  | 1.81  | 1.49  | R    |   |  |
| SECONDARY<br>VA             |                                   | A                   | 3.14 | 1. 57           | 1.11 | 1.48  | 1.05  | 1.81  | 1.48  | L    |   |  |
| TRANSFORMER =               | AVERAGE DC<br>WATTS<br>OUTPUT     | AVERAGE DC<br>WATTS | v    | 3.49            | 1.23 | 1.23  | 1.23  | 1.05  | 1.28  | 1.06 | R |  |
| PRICING<br>VA               |                                   | x                   | 3.14 | 1.11            | 1.11 | 1.21  | 1.05  | 1.28  | 1.05  | L    |   |  |
| Int.4                       | CORROSION<br>EFFICIENCY           |                     | 40.6 | 81.2            | 81.2 | 97    | 99.5  | 99.5  | 99.5  | 1.11 |   |  |
|                             | % RIPPLE                          |                     | 121  | 47              | 47   | 17    | 4     | 4     | 4     | R    |   |  |
|                             | LINE POWER<br>FACTOR              |                     |      | 0.90            | 0.90 | 0.826 | 0.955 | 0.955 | 0.955 |      |   |  |

) R

Appendix

-



#### **RECTIFIER CIRCUIT CHARACTERISTICS**



## Abbreviations

| A                | Area of a P-N junction                                            |
|------------------|-------------------------------------------------------------------|
| A <sub>o</sub>   | Proportionality constant                                          |
| Eg               | Forbidden-band energy                                             |
| F                | Form factor $\frac{I_{RMS}}{I_0}$                                 |
| Iac              | Effective value of all alternating components of the load current |
| I <sub>F</sub>   | Forward junction current                                          |
| I <sub>m</sub>   | Peak current through a rectifier                                  |
| <sup>1</sup> 0   | Average value of the load current                                 |
| I p              | Primary RMS line current                                          |
| I <sub>R</sub>   | Reverse junction current                                          |
| I <sub>RMS</sub> | Effective value of total load current                             |
| Is               | Secondary RMS line current                                        |
| k                | Boltsman's constant                                               |
| n                | Electron concentration, $electrons/cm^3$                          |
| n <sub>i</sub>   | Intrinsic carrier concentration                                   |
| P <sub>D</sub>   | Total power dissipation                                           |
| p                | Hole concentration, holes/cm <sup>3</sup>                         |
| PIV              | Peak inverse voltage of a rectifier                               |
| Po               | Average power                                                     |

Abbreviations

| q              | Electron charge                     |
|----------------|-------------------------------------|
| RL             | Load resistance                     |
| R <sub>s</sub> | Total equivalent series resistance  |
| Т              | Temperature, <sup>0</sup> K         |
| ts             | Storage time                        |
| т <sub>ј</sub> | Junction temperature <sup>0</sup> C |
| TA             | Ambient temperature <sup>o</sup> C  |
| UF             | Utility factor                      |
| v <sub>o</sub> | DC output voltage                   |
| v <sub>m</sub> | Peak rectifier voltage              |
| Vs             | Secondary line voltage              |
| v <sub>p</sub> | Primary RMS line voltage            |
| w <sub>D</sub> | Width of the depletion region       |

6

0

0

#### Abbreviations

#### GREEK SYMBOLS

| γ                 | dynamic resistance of a diode                               |
|-------------------|-------------------------------------------------------------|
| γ <sub>n</sub>    | ripple factor due to nth harmonic                           |
| E                 | dielectric constant of material ripple factor               |
| $\eta_{ m R}$     | rectification efficiency                                    |
| $\theta_{\rm CS}$ | thermal resistance case-to-sink                             |
| $^{	heta}$ JA     | thermal resistance junction-to-ambient                      |
| $^{\theta}$ JC    | thermal resistance junction-to-case                         |
| $^{	heta}$ SA     | thermal resistance sink-to-ambient                          |
| $\tau_{ m p}$     | mean lifetime of holes                                      |
| ω                 | $2\pi_{_{\mathrm{f}}}$ where f is the line-supply frequency |

## Index

0

0

0

F

| 이상 가는 것이 모든 것이 같은 것이 같은 것 같은 것 같은 것 같은 것이 없는 것이 가지 않는 것이 나라. |       |
|--------------------------------------------------------------|-------|
| Acceptor impurity                                            | 1-6   |
| Arc suppression                                              | 7-1   |
| Assemblies, custom                                           | 15-56 |
| Assemblies                                                   | 15-43 |
| Avalanche breakdown                                          | 1-9   |
|                                                              |       |
| Balancing Reactors                                           | 9-3   |
| Ballast Desistand                                            | 0_2   |
| Danlasi Resisions                                            | 1 2   |
| Dallus                                                       | 1-3   |
| Capacitance diffusion                                        | 1-10  |
| Capacitance, ultrusion                                       | 1-10  |
| Capacitalice, Space charge                                   | 1 -10 |
|                                                              | 1-0   |
| Case outlines, assemblies                                    | 15-4  |
| Case outlines, rectifier                                     | 15-4  |
| Circuits, multiphase rectifier                               | 5-1   |
| Circuits, single-phase full-wave with inductive filter       | 4-17  |
| Circuits, single-phase full-wave with L-section filter       | 4-17  |
| Circuits, single-phase full-wave (resistive load)            | 4-10  |
| Circuits, single-phase full-wave with capacitive filter      | 4-15  |
| Circuits, single-phase half-wave (resistive load)            | 4-2   |
| Circuits, single-phase half-wave with capacitive filter      | 4-4   |
| Circuits single-phase half-wave with inductive filter        | 4-8   |
| Circuits, six-phase full-wave bridge                         | 5-14  |
| Circuits, Six phase dan                                      | 5.12  |
| Circuits, Six-phase Star                                     | 0-10  |
| transformor                                                  | 5 11  |
|                                                              | 5-11  |
| Circuits, three-phase full-wave bridge                       | 5-9   |
| Circuits, three-phase inter-star                             | 5-8   |
| Circuits, three-phase star                                   | 5-5   |
| Circuits, three-phase star with resistive - inductive load   | 5-7   |
| Circuits, voltage doubling                                   | 6-1   |
| Circuits, voltage multiplier, higher-order                   | 6-9   |
| Circuits, voltage quadrupling                                | 6-7   |
| Circuits, voltage tripling                                   | 6-5   |
| Conductive Band                                              | 1-3   |
| Cooling                                                      | 12-1  |
| Covalent bonds                                               | 1-2   |
| Crystal Growing                                              | 2_1   |
| Current average reverse leakage                              | 3-5   |
| Current DC revenue lookage                                   | 2 5   |
| Current, DO TEVETSE TEARAge                                  | 3-0   |
| Current, maximum anowable surge                              | 3-8   |
| Current, maximum average forward                             | 3-3   |
| Current, maximum nonrepetitive surge                         | 3-3   |
| Current, maximum repetitive peak-forward                     | 3-3   |
| Current, maximum RMS                                         | 3-4   |

### Index

| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15-1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Depletion zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-8    |
| Device matching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-4    |
| Donor impurity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-6    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Energy Band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-3    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Fermi level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-7    |
| Filters canacitive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-15   |
| Filters L-section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-17   |
| Filters, E-Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-14   |
| Filters, single-phase lun-wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1_3    |
| Forbidden energy band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19_9   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12-0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-1    |
| Fuses, current-limiting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-2   |
| Fuses, placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Heat sinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 - 7 |
| High-current rectifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9-6    |
| Hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-4    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Impedance, thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-8    |
| Impurities in semiconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-5    |
| Interchangeability chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15-8   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Tallian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 9    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.9   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14-2   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Monocrystalline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-1    |
| Mounting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12-1   |
| Multi-cell rectifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9-6    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Overcurrent protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Darallel operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-1    |
| Dentavalent elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-5    |
| D N impation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 0    |
| P-14 julicitoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 0    |
| Power dissipation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-6    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Ratings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-1    |
| Ratings, maximum current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-10   |
| Reliability of multi cell power rectifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14-1   |
| Replacement chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15-8   |
| representation of the second s | ~ 0 0  |

Index

0

0

| Selection Guide, assembly                                 | 15-43                    |
|-----------------------------------------------------------|--------------------------|
| Selection Guide, rectifier                                | 15-2                     |
| Series connection                                         | 8-1                      |
| Shunting capacitors                                       | 8-5                      |
| Stacks, silicon rectifier                                 | 15-50                    |
| ,                                                         |                          |
| Tomporature maximum and minimum stars so junction         | 2 1                      |
| Temperature, maximum and minimum instantaneous junction   | 5-4                      |
| operating                                                 | 3-1                      |
| Test circuit DC forward voltage drop                      | 12_1                     |
| Test circuit, DC roverse current                          | 12 9                     |
| Test circuit, DC reverse current                          | 13-4                     |
| Test circuit, for rectifier bridged                       | 10-4                     |
| Test circuit, for reculler bridges                        | 13-3                     |
| Test circuit, recovery time                               | 13-2                     |
|                                                           | 13-1                     |
| Thermal derating curves                                   | 15-36                    |
|                                                           | 12-1                     |
| Thermal impedance                                         | 3-8                      |
| Thermal resistance                                        | 3-5                      |
| Thermal resistance tests                                  | 3-8                      |
| Torque, stud maximum                                      | 3-10                     |
| Transient suppression with non-polarizing capacitors      | 11-3                     |
| Transient suppression with polarizing capacitors          | 11-4                     |
| Transient suppression with selenium non-polarizing diodes | 11-                      |
| Transient suppression with zener diodes                   | 11-                      |
| Transient, voltage                                        | 11-1                     |
| Trivalent elements                                        | 1-6                      |
| Turn-off theory                                           | 1-12                     |
|                                                           |                          |
| Valance Band                                              | 1-3                      |
| Voltage average forward drop                              | 3-4                      |
| Voltage, average for ward drop                            | 3-5                      |
| Voltage, DC forward drop test airquit                     | 13_1                     |
| Voltage, DC for ward drop test circuit                    | 6-1                      |
| Voltage, doubling circuit                                 | 3_2                      |
| Voltage, maximum DC reverse block                         | 2-2                      |
| Voltage, maximum non-repetitive peak-reverse              | 2 1                      |
| voltage, maximum repetitive peak-reverse                  | 0-1                      |
| voltage, maximum working peak-reverse                     | 3-4                      |
| voltage, multiplier higher order                          | 0-9                      |
| voltage, quadrupling circuit                              | 0 0                      |
| Voltage, tripling circuit                                 | 6-7                      |
|                                                           | 6-7<br>6-5               |
| Voltage, utility factor                                   | 6-7<br>6-5<br>5-3        |
| Voltage, utility factor                                   | 6-7<br>6-5<br>5-3<br>2-1 |
| Voltage, utility factor                                   | 6-7<br>6-5<br>5-3<br>2-1 |

