

SIMPLE INDUCTOR DESIGN

Standard ferrite pot cores are used with an airgap to avoid saturation. Toroids do not generally have airgaps.

The voltage induced across a coil as a result of a changing flux within the coil or a changing current in the coil is given by:

$$
e = N \frac{d\Phi}{dt} = L \frac{di}{dt} \text{ Volts}
$$
 (1)

Equating the second two terms and cancelling dt:

$$
L = N \frac{d\Phi}{di} = NA \frac{dB}{di} = NA \frac{\Delta B}{\Delta I} = NA_e \frac{B_{\text{max}}}{I_{\text{max}}} \quad \text{Henry} \tag{2}
$$

The effective area of the core is therefore:

$$
A_e = \frac{L I_{\text{max}}}{N B_{\text{max}}} \qquad \qquad \text{m}^2 \tag{3}
$$

While the area that the coil takes up in the pot core former or toroid internal diameter is approximately given by:

The "square area" of each conductor is used to account for the packing of the conductor in the former. The 'mean' or 'rms' currents are used to find the conductor diameter (refer table 1).

The product A_eA_c is often used to determine whether a particular pot core or toroid can accommodate the energy transfer. Therefore:

$$
\left[A_e A_c = \frac{L I_{\text{max}}}{N B_{\text{max}}} \cdot N A_t = \frac{L I_{\text{max}} A_t}{B_{\text{max}}}\right] \qquad \text{m}^4 \tag{5}
$$

Equation (5) is the **first calculation** to be performed to find which pot core size will suit the particular application (refer table 2). The A_eA_c product for the core must be greater or equal to that calculated by equation (5). Rewriting equation (2) will give the **second calculation** which determines the number of turns needed for the coil:

$$
N = \frac{L I_{\text{max}}}{A_e B_{\text{max}}} \qquad \text{turns} \qquad (6)
$$

An airgap may be needed to avoid saturating the core. Fringing effects (increasing airgap area) can be ignored if the airgap is narrow which is usually the case. Utilising the magnetic equivalent circuit and equating mmf's:

where R_e = reluctance of core & R_{ag} = reluctance of airgap.

For a small airgap $A_e \cong A_{ag}$ and substituting in equation (7):

$$
NI_{\text{max}} = \frac{\Phi_{\text{max}}}{\mathbf{m}_{b} A_{e}} \left(\frac{\ell_{e}}{\mathbf{m}_{e}} + 2\ell_{ag} \right)
$$
 Ampere-turns (8)

$$
= \frac{B_{\text{max}}}{\mathbf{m}_{b}} \left(\frac{\ell_{e}}{\mathbf{m}_{e}} + 2\ell_{ag} \right)
$$

And because there are two airgaps within the potcore magnetic circuit the **third calculation** will give the airgap width as:

$$
Airgap = \ell_{ag} = \frac{1}{2} \left(\frac{NI_{\text{max}} \mathbf{m}_{a}}{B_{\text{max}}} - \frac{\ell_{e}}{\mathbf{m}_{a}} \right) \quad \text{m} \tag{9}
$$

Where $\mu_0 = 4\pi \times 10^{-7}$.

A term A_L (nH/turn²) is often given for a pot core and toroid. This term refers to $1/R_e$ when *no airgap* or a manufacturers *preset airgap* exists and can be used directly to find the number of turns.

$$
N = 1000 \sqrt{\frac{L(mH)}{A_L}}
$$
 (10)

This equation is derived from (1) $N\Phi_{\text{max}} = LI_{\text{max}}$ and (7) $NI_{\text{max}} = \Phi_{\text{max}} R_{\text{e}} = \Phi_{\text{max}} / A_{\text{L}}.$

The A_eA_c calculation is still required to size toroid.

Table 1: Wire date for coil winding:

	Diameter	Area	Current	Current	Current	Copper	Eureka
SWG			density	density	density	resistance	resistance
	mm	mm ²	155A/cm ²	186A/cm ²	310A/cm ²	$\Omega/100m$	$\Omega/100m$
10	3.25	8.3	13	15	26	0.171	
12	2.65	5.48	8.5	10	17	0.258	
14	2.03	3.24	5	6	10	0.437	13.0
16	1.63	2.07	3.2	4	6.5	0.684	20.3
18	1.22	1.17	1.8	2.2	3.6	1.22	36.0
20	0.91	0.657		1.2	2	2.16	64.0
22	0.71	0.397	0.6	0.7	1.2	3.58	106
24	0.56	0.245	0.4	0.5	0.8	5.78	172
26	0.46	0.164	0.25	0.3	0.5	8.72	256
28	0.38	0.111	0.17	0.2	0.35	12.8	379
30	0.32	0.078	0.12	0.14	0.24	18.2	539
32	0.27	0.059	0.09	0.11	0.18	24.0	711
34	0.23	0.043	0.07	0.08	0.14	33.1	981

Table 2: Phillips pot core data, material grade 3H1 (MnZn), Bmax = 0.3T:

Initial permeability vs frequency for different ferrite materials showing operating frequency ranges:

Loss vs frequency for different MnZi & NiZn ferrite materials showing operating frequency ranges:

Initial permeability vs fequency for iron powder toroids showing operating frequency ranges:

Note: Very high maximum flux density allows higher currents to be supported without an airgap.

NEOSID Neofer Iron Powder Toroids: A_L **for Neofer Iron Powder Toroids:**

Part Number	Ð	d	Ħ	۱.,	A.	V_{α}	Σ£
	mm			mm	mm'	mm	mm ²
$17 - 649 -$	13.2	7.8	5.4	33	14.5	479	2.28
$17 - 632 -$	14.8	8.0	6.35.	34	20.0	680	1.70
$17 - 630 -$	24.7	12.7	9.7	54	54	2916	1.0.
$17 - 638 -$	33	20	6	80	37	2960	2.17
$17 - 640 -$	33	20	-8	80	50	4000	1.61
$17 - 642 -$	33	20	10	80	63	5040	1.28
$17 - 645 -$	44	24	16.5	101	155	15655	0.65
$17 - 647 -$	44	24	8.5	101	80	8080	1.26

Small selection of NEOSID Nickel-Zinc Ferrite Toroids showing AL:

(F5 - B_{max} = 0.47T; F6 - B_{max} = 0.45T; F8, F9 - B_{max} = 0.38T; F10 - B_{max} = 0.35T; F14 - B_{max} = 0.32T; F16 - B_{max} = 0.3T; $F25, F29, P10, P11 - B_{max} = ?$

The range of ferrite pot cores cores is very large and obtainable from such companies as Phillips, Siemens and Neosid. Shapes of pot cores are different and the types are RM, PM, P and EP. Other ferrite cores that look like conventional transformers are made up of two halves of types ETD,EFD, EC, ER, E and U. An I section can be used at the end of a single E or U. Generally P type pot cores have the minimum leakage, if properly designed, because the coils are nearly totally surrounded by the magnetic core.

