DiVA

Service Manual

Issue I. 0

PI000 Amplifier

ARCAM

Arcam P-1000 Amplifier Board functions and operation

The power amplifiers in the P-1000 are of class H design and use a three rail power supply for high operating efficiency. These amplifier boards are field replaceable and the unit can be safely operated with one or more boards out of the unit. The operating descriptions below are divided into three groups. The input and signal control section. The amplifier section and the power switching section. Signal net name references as they appear in the schematic are designated here in bold type.

The line level audio path of the P-1000 very simple and short. Unbalanced audio sources are buffered by U6-A and summed with the balanced input from U1-A. The signal then passes through the gain set stage of U6-B and then on to the AMP-IN amplifier drive. The AMP-IN signal is also contoured by U2-A and on to the power switching section via the сомm output.

The gain switch S1 works by changing the local feedback around U6-B and has three settings. The "A" gain position provides an overall gain of 31.5 dB and is compatible with other Arcam amplifiers. The " B " setting is for use in THX compliant systems and the low gain " C " position can be used to lower the overall system noise level in installations where the speakers are very close to the listener.

Also at the input of the gain set stage are the mute transistor Q1 and the resistive element of the clipping eliminator circuit. When the P-1000 is turned on, the global mute signal at the MUTE input of U3-A is low. This forces its output to +12 V which activates the mute transistor Q1 as well as the clipping eliminator circuit through D15. The FLT_OUT from the emitter follower Q24 and also goes high. Q1 then shunts the audio to ground and R11 goes to a low resistance state. The flt_out passes on out to the channel status display board. When the global mute cycle finishes and the output from U3-B goes low, Q1 turns off and passes the audio signal immediately but the resistive element R11 has a slow release time which allows the audio output to ramp up in a controlled manner.

The local mute circuit of U3-B also has two other inputs. The thermal shutdown circuit of U2-B and R22 monitor the heatsink temperature of the amplifier. If the HS temperature exceeds approximately 95 Deg C, the output of U2-B goes high and toggles the local mute circuit on. Because of the hysteresis around U2-B, the thermal protection will remain active until the amplifier has cooled down approximately 20 Deg below the trip point. The second input is the PROT line from the amplifier. This is a fast acting input which goes to a low impedance state if a short circuit is detected at the amplifier output.

The clipping eliminator circuit has two inputs. The AMPOUT monitors the amplifier output signal and the OPA-OUT signal from the output of U1-B. The OPA-OUT line is inside the overall amplifier feedback loop and is very sensitive to any differences between the input and output signals in the audio path. If the unit is driven into clipping the difference signal from these two lines is amplified and used to drive the CLM5000 LDR. This causes the resistance of R11 to decrease and work as part of a voltage divider against R85 or R5. The effect of this is to reduce the signal level going into the amplifier thereby reducing the output clipping to a very low value. Typically this circuit will hold the THD to less than 1% with 10 dB of overdrive at the input.

Arcam P-1000 Amplifier Board functions and operation

In the amplifier portion of the board, Q2 acts as a level shifter and drives the class A transistor Q13. The voltage source for the class A stage is from Q14 and is regulated by Z1. This constant voltage causes Q13 to act as a constant current source and stabilizes the output transistor bias regardless of changes in the AC mains. The class A drive voltage is also removed from Q13 anytime the local or global mute circuits are activated. In the un-muted state CLA-mute is -12 V . When activated this line goes high to +12 V which removes Q14s base voltage when Q25 is turned on.

The bias temperature tracking is from diode D8 and the initial setting is made by adjusting RP1 for a voltage reading of .5 to 1.0 mV across either R51-R53 or R44-R45 after the unit has been on and running for a minute or two. A better method of setting the bias is to use a distortion analyzer and adjust the amplifier output for 1 volt at 2 kHz into an 8 Ohm load. After the amplifier has been on and allowed to warm up for a few minutes, adjust RP1 until the crossover notch just starts to disappear.

The output section is a complimentary feedback pair topology with Q9 and Q7,Q8 in the positive leg and Q12 and Q10, Q11 in the negative leg. The advantage of this configuration is higher peak output voltage and, because the emitters of the driver transistors become the effective output of the amplifier, crossover discontinuities are very fast and almost negligible without any bias setting. With the bias correctly adjusted the transition through the crossover region is seamless and the very low bias current holds the output stage dissipation to approximately 1 watt.

Output stage V-I limiting is through Q5 and Q6. The short circuit current limit is approximately 10 Amps and is set to this high value in order to handle the out of phase currents in highly reactive loads. At high output voltages, however, R37 increases this limit to 20 Amps. For short circuit loads where the current is very high but the output voltage is close to zero, Q4 is turned on and the PROT line activates the local signal mute circuit. This mute removes the output signal momentarily and then releases, cycling on/off until the fault is removed. To verify the short circuit protection, drive the amplifier to an output of 5 volts or more and short the output terminals together. The shorted channel output should cycle on and off and the front panel status indicator should toggle between green and amber.

To increase the efficiency and reliability of the amplifier, multiple voltage rails are made available to the output transistors. This addition of variable power supply voltages to the amplifier circuit creates what is known as a class H amplifier. In conventional amplifiers the output devices are simultaneously exposed to high voltage and high current. The product of this current and voltage is dissipated in the form of heat. To make matters worse, the efficiency of the amplifier is the poorest at lower power output levels. To side step this problem the class H amplifier greatly improves the efficiency by running at low power supply voltages when the signal level is low. The operating voltages increase only as required by the program material. Another benefit is in the form of reliability under demanding conditions. Because the output transistors are never exposed to the maximum positive and negative supply voltages at the same time, the amplifier is able to withstand both very high current, under short circuit conditions, as well as highly reactive currents presented by some speakers. With the overall efficiency gain, amplifier heatsink requirements are reduced by half.

Arcam P-1000 Amplifier Board functions and operation

With the amplifier operating at low output levels (<20 W) only the +/-20V low voltage rails are used. As the output requirements increase, the сомm signal from U2-A also increases and the peak value of this signal is compared to the low rail reference voltage at the comparators U4-A and U5-B. When the peak value of the сомm signal exceeds the reference the comparators will toggle on and the middle rail voltage will be supplied to the amplifier. For a positive signal, Q15 and Q17 turn on the 40 volt supply and on the negative swing Q23 and Q19 supply -40 volts.

As the requirements continue to increase the same sequence takes place for the $+/-60$ volt supplies. U4-B, Q16 and Q18 supply the positive voltage and U5-A, Q22, Q20 and Q21 supply the negative voltage. The power diodes D7,D23 and D24,D25 isolate the high voltage supplies from the lower voltage supplies. Under short circuit conditions the сомm line signal goes to zero because of the mute drive to Q1 and only the low voltage supply is present at the output transistors.

To verify the correct operation of the commutator circuits drive the amplifier to 30-35 Vrms into an 8 Ohm load at 200 Hz and observe the positive and negative supplies. The positive rail voltage is monitored at the emitter of Q18 or at the junction of D7, D23 (cathode ends). To monitor the negative rail use TP2 which is connected to the junction of D24, D25. The waveforms should appear as shown in figure XX. If any of the rail voltages fail to operate, the output of the amplifier will be limited to a lower value by the clipping eliminator circuit. Because of this and the fact that the output will still be a sine wave, it may be necessary to remove the 8 Ohm load to determine which rail is not switching.

FIGURE 1 POSITIVE RAIL SWITCHING WAVEFORM

FIGURE 2 NEGATIVE GOING WAVEFORM

FIG 4 BIAS PROPERLY ADJUSTED (COLD)

P-1000 Display Board functions and operation.

The P-1000 display functions are divided into two separate blocks, power on/off and channel status indications. The power on/off LED indicators are driven by the Standby Power supply on the main board and are active any time the P-1000 is connected to the AC mains supply and the rear panel power switch is on. The Channel Status LEDs receive power from both the Main power supply and from each individual amplifier channel.

With the P-1000 connected to the AC mains with the power switch on, the PWR-LED line is high which turns on the red Standby LED on. It also turns Q2 on which forces the run LED off.
When the unit is turned on via the front panel power button or the rear panel 12 V trigger PWR-LED line goes low and +12 V from the main power supply turns on the green run LED.

The amplifier channel status LEDs, at turn on, are driven by the FLT lines and show amber for approximately 2 seconds. When the turn on mute cycle has finished the FLT lines go low and the LEDs receive their power from the -12 V supply and are illuminated green.

If one of the amplifier channels becomes hot enough to thermal out the fLT line for that channel will go high until that amplifier channel cools down. During the off time the status led will show amber. Other channels are not affected by this action.

If one of the amplifier channels has a short circuit across the output terminals the FLT line will be activated momentarily and the status LED will alternate between amber and green. This amber/green cycle will continue as long as the fault is present and the amplifier is trying to run program material. When the fault is removed the LED for that channel will return to a steady green. No other channels are affected by this action.

In the event of a DC offset fault from the amplifier, the OFFSET line goes high which turns on both LEDs and the color changes to a steady amber. A DC fault condition will also shut down the main power supply. This removes the power to the status LEDs and all the channel indicators will go off. Although it very unlikely that a DC fault will ever take place, it does trigger a latching circuit that receives its power from the standby supply. This means that it will be unaffected by the front power button or the rear panel 12 V trigger. The only way to clear this condition is to completely remove the power either by turning the unit off via the rear panel power switch or by disconnecting the AC mains cord for a few minutes. This allows the offset latching circuit to reset to the off state.

Arcam P-1000 Main Board functions and operation

In addition to the high current supply voltages for the seven amplifier channels, the Main board also contains the circuitry for power on/off control, DC fault protection, the standby housekeeping power and other control circuits as well as the bussing interconnections to all channels.

Since the P-1000 is a multi rail class H amplifier, the Main board has three high power plus/minus voltage supplies for the amplifier output stages. The $+/-12 \mathrm{~V}$ for the signal level amplifier circuits is obtained from the $+/-20$ volt low rail supply. These 20 volt low rails are also fused for added DC fault protection but under no operational conditions including amplifier output short circuits should these fuses ever fail. The middle (+/40 V) and high (+/-60V) rails are capacitive input filters and require no further explanation.

Because the middle and high voltage supplies have no direct discharge path to the output stages when the unit is turned off, Q8 and Q9 form dynamic discharge resistors. This serves two purposes. First it discharges the main bulk capacitors when the unit is off and second, this energy is redirected to the +/-12-volt supplies which eliminates turn off irregularities. Q8 and Q9 function only for a minute or so when the unit is powered down.

The standby power supply is functional at all times when the unit is connected to the AC mains and the rear panel power switch is on. The function of the stby supply is to provide power for the power on/off logic, display and the DC fault circuit. One additional function is to supply the amplifier circuits with a small (less than 1 volt) DC negative bias which eliminates turn on "pops". This is accomplished through R62 and D15. Because the power requirements of these circuits is so low the power consumption when the P1000 is in the standby mode is less than 2 watts.

The DC fault circuit, which includes Q2, 3 and 4, is a bi-directional DC level sensing circuit. The output of each amplifier is monitored through the CH1 through CH7 R-C networks. If a positive going DC voltage is present on any of these inputs, Q2 becomes forward biased, turns on and forces Q3 on. Likewise, for a negative going DC fault Q2 operates in a common base mode with R12 holding the base close to ground potential while the emitter goes negative and the circuit is again activated. Because of the positive feedback through R26, Q3 latches on and, through Q4, pulls the base of the emitter follower Q7 to ground. This action shuts down the Opto coupler U3 and the main power supply Triac goes to the off state and turns the P-1000 off. The Offset line drives the global mute circuit and the power LED will show as amber. The unit will remain in this shutdown mode until all power is removed for a minute or so until the standby voltage drops close to zero. If the offset circuit is activated, LED D12 on the main board will be on and serve as a visual indication that the unit is in shutdown mode. Shorting TP1 and TP2 together on the main board will force the circuit to reset.

The power on/off switching can be done three ways. Turning the rear panel switch on or off, pressing the front panel power button (assuming the rear panel switch is on) or by applying a 12 volt DC trigger to the rear panel 3.5 MM jack. The logic switching functions of the P-1000 are then controlled by U1 and U2 which maintain a zero crossing on/off drive to the main triac.

Arcam P-1000 Main Board functions and operation

To perform these functions an AC mains sine wave from the standby transformer secondary is applied to the input of U2-D. This LV_AC_IN signal is then half wave rectified and the output of gate U2-D is a square wave clock signal to the CLK input of $\mathrm{U}-1 \mathrm{~B}$. By using a clock signal derived from the AC mains, zero crossing turn on/off is assured regardless of which method is used. If the unit is turned on via the rear panel power switch the SET input of U1-A goes high and the Q output becomes the DATA input to U1-B whose Q output goes high on the first clock cycle from U2-D. This high output then turns on the Optocoupler U3 and the main triac is gated on thereby turning on the main power. If the front panel power button is pressed again, the \bar{Q} output is clocked through the DATA input of U1-A causing its Q output to go low. This low state is passed through U1-B, on to the Opto and the unit is turned off. Since U1-A is a divide by 2 circuit subsequent button presses will switch the unit on and off. The PWR_LED line from U1-A drives the front panel standby LED and the PWR_oN line is used to supply power to Q5 in the power on/off mute circuit.

The rear panel 12 volt remote input is independent of the front panel power button and will cycle the unit on or off depending on the whether a 12 volt input is present. The remote switching, unlike the front panel switching, is voltagelevel dependent and operates by forcing a SET or RESET on U1-A. The main power triac switching, however, is still controlled by the clock signal from U2-D. The rear panel control also incorporates a time delay of 1-2 seconds through the R-C pair R2-C4. This allows for a staggered turn on sequence if an entire system is powered on by a single 12 volt trigger source.

Because triacs and SCRs remain conductive only when a current is flowing through them, a constant load circuit is included on the transformer secondary windings. The RC network of R64 on the 20 volt winding and the 3 uF 250 V capacitor across the 60 volt windings correct this by holding the triac on through the zero crossing point. This equalizes the transformer flux and prevents mechanical transformer "buzz" due to unequal conduction cycles across the windings.

When the P-1000 is turned on, the global mute circuit is activated by the network around Q5. Initially Q5 will be off and the mUTE output will be -12 V . This mute voltage is distributed to all seven channels and will activate the local mute circuit on each of the amplifier boards. As C30 discharges, the voltage eventually exceed the zener drop of Z4 and turn Q5 on which then toggles high for a mute line voltage of -4 V . When the global mute line is high (-4 V), the individual channels are active and will pass a signal. The fLT outputs from the amplifier boards are used to provide the channel status LED drive. If any amplifier channel is in the muted state its FLT output is high and the corresponding channel status LED will show as amber.

As shipped the $\mathrm{P}-1000$ is meant to operate at either 230 Vac or 120 Vac . To change the AC mains operating voltage it is necessary to replace the main power transformer with one of the desired voltage. In addition it is also required that the standby transformer primary windings are rewired to accept the new voltage. JP1,JP2 and JP3 determine which voltage the standby transformer is set for. For 230Vac operation JP1 is used and JP2 and 3 are removed. For 120Vac operation JP2 and 3 are installed and JP3 is removed. The fuse F1 is an F50mAL type and remains the same value for either voltage.

ARCAM P1000
$733-179-2$
REV-A
REFERENCE DESIGNATORS
P1000- AMP BD.

ARCAM
P-1000 AMPLIFIER BOARD
REVISION A

Reference No	Part No	Description
CAPACITOR		
C1 C45	205-813-4	CAP EL RADIAL 47uF 100V
C2	210-311-4	CAP EL NP 22uF 25V
C3	206-529-4	CAP EL RADIAL .22uF 50V
C4 C22 C23 C39 C42	203-038-4	CAP CERAMIC 330pF 1KV 20\%
C5	205-509-4	CAP EL RADIAL 10uF 50V
C6	203-002-4	CAP CERAMIC 5pF 1KV 20\%
C7 C25 C36 C37 C43 C46 C47 C48	203-027-4	CAP CERAMIC 100pF 1KV 20\% NP0
C8	203-015-4	CAP CERAMIC 27pF 1KV 20\% NP0
C9	203-019-4	CAP CERAMIC 47pF 1KV 20\%
C10 C32 C33 C34 C35 C40 C41	205-505-4	CAP EL RADIAL 2.2uF 50V
C11 C15	203-031-4	CAP CERAMIC 180pF 1KV 20\% NP0
C12 C13 C49	205-317-4	CAP EL RADIAL 220uF 25V
C16 C26 C27 C28 C29	201-125-4	CAP MYLAR .1uF 100V 10\%
C17 C18 C19 C20	201-013-4	CAP MYLAR .01uF 50V 10\%
C21	203-036-4	CAP CERAMIC 270pF 1KV 20\%
C24	201-015-4	CAP MYLAR .015uF 50V 10\%
C30 C31	224-012-3	CAP CERAMIC 22pf 50V 20\% AX .35"
C38	201-015-4	CAP MYLAR .015uF 50V 10\%
C44	203-043-4	CAP CERAMIC 470pF 1KV 20\%
C50		NOT USED
C51	201-121-4	CAP MYLAR .047uF 100V 10\%
DIODE		
D1 D2 D3 D4 D5 D6 D9 D10 D11 D1	302-001-4	DIODE 1N4148 SIGNAL .4"
D7 D23 D24 D25	304-008-0	DIODE FAST REC 5A
D8	301-001-1	DIODE 4004 1A 400V UN-PREP
D13	302-006-0	DIODE FDH400 HV SIGNAL .4"
D16 D19 D20 D21 D22	301-001-4	RECT 1N4004 1A 400V .4"
TRANSISTOR		
Q1	311-015-0	TRANS 2SC2878 NPN TO-92 ECB
Q2 Q4 Q5 Q15 Q16 Q22 Q23	311-010-0	TRANS MPSA56 PNP TO-92
Q3 Q14	311-003-0	TRANSISTOR MPSW06 NPN 1W
Q6 Q20 Q24 Q25	311-009-0	TRANS MPSA06 NPN TO-92
Q7 Q8	312-014-0	TRANSISTOR MJW21193 PNP PWR 250V
Q9 Q13	312-012-0	TRANS 2SC4793 NPN TO220
Q10 Q11	312-015-0	TRANSISTOR MJW21194 NPN PWR 250V
Q12	312-013-0	TRANS 2SA1837 PNP TO-220
Q17 Q19	314-001-0	TRANSISTOR IRFZ34 PWR FET
Q18	312-001-0	TRANSISTOR TIP35C NPN PWR 100V
Q21	312-002-0	TRANSISTOR TIP36C PNP PWR 100V
RESISTOR		
C14	103-051-4	RES CF 1/4W 5\% 130 OHM .4"
R1	109-289-4	RES MF 1/4W 1\% 10.0K .4"

ARCAM P-1000 AMPLIFIER BOARD REVISION A

Reference No	Part No	Description
RESISTOR		
R2	$109-289-4$	RES MF 1/4W 1\% 10.0K .4"
R3	$109-289-4$	RES MF 1/4W 1\% 10.0K .4"

Reference No	Part No	Description
R4	109-289-4	RES MF 1/4W 1\% 10.0 KOHM .4"
R5	103-072-4	RES CF 1/4W 5\% 1K.4"
R6	103-094-4	RES CF 1/4W 5\% 8.2K .4"
R7	103-107-4	RES CF 1/4W 5\% 30K .4"
R8	109-318-4	RES MF 1/4W 1\% 20.0K .4"
R9	103-113-4	RES CF 1/4W 5\% 51K .4"
R10	103-103-4	RES CF 1/4W 5\% 20K.4"
R11	325-004-0	PHOTO RES
R12	103-064-4	RES CF 1/4W 5\% 470 OHM .4"
R13	109-348-4	RES MF 1/4W 1\% 41.2K .4"
R14	103-073-4	RES CF 1/4W 5\% 1.1K .4"
R15	103-107-4	RES CF 1/4W 5\% 30K .4"
R16	103-072-4	RES CF 1/4W 5\% 1K .4"
R17	103-103-4	RES CF 1/4W 5\% 20K .4"
R18	103-100-4	RES CF 1/4W 5\% 15K .4"
R19	103-083-4	RES CF 1/4W 5\% 3K .4"
R20	103-083-4	RES CF 1/4W 5\% 3K .4"
R21	103-103-4	RES CF 1/4W 5\% 20K .4"
R23	103-072-4	RES CF 1/4W 5\% 1K .4"
R24	109-219-4	RES MF 1/4W 1\% 1.87K .4"
R25	103-136-4	RES CF 1/4W 5\% 470K .4"
R26	109-235-4	RES MF 1/4W 1\% 2.74K .4"
R27	103-096-4	RES CF 1/4W 5\% 10K .4"
R28	103-073-4	RES CF 1/4W 5\% 1.1K .4"
R29	103-101-4	RES CF 1/4W 5\% 16K .4"
R30	103-028-4	RES CF 1/4W 5\% 15 OHM .4"
R31	116-019-0	RES 1W MOF 5\% 1.6K
R32	116-019-0	RES 1W MOF 5\% 1.6K
R33	109-354-4	RES MF 1/4W 1\% 47.5K .4"
R34	103-060-4	RES CF 1/4W 5\% 330 OHM .4"
R35	103-080-4	RES CF 1/4W 5\% 2.2K.4"
R36	103-039-4	RES CF 1/4W 5\% 43 OHM .4"
R37	105-088-5	RES CF 1/2W 5\% 4.7K OHM .5"
R38	103-059-4	RES CF 1/4W 5\% 300 OHM .4"
R39	103-059-4	RES CF 1/4W 5\% 300 OHM .4"
R40	103-045-4	RES CF 1/4W 5\% 75 OHM .4"
R41	103-052-4	RES CF 1/4W 5\% 150 OHM .4"
R42	103-008-4	RES CF 1/4W 5\% 2 OHM .4"
R43	103-008-4	RES CF 1/4W 5\% 2 OHM .4"
R44	114-004-0	RES 5W WW 5\% . 2 OHM
R45	114-004-0	RES 5W WW 5\% . 2 OHM
R46	103-064-4	RES CF 1/4W 5\% 470 OHM .4"

ARCAM P-1000 AMPLIFIER BOARD

Reference No	Part No	Description
R47	$103-064-4$	RES CF 1/4W 5\% 470 OHM .4"
R48	$103-046-4$	RES CF 1/4W 5\% 82 OHM .4"
R49	$103-049-4$	RES CF 1/4W 5\% 110 OHM .4"
R50	$103-058-4$	RES CF 1/4W 5\% 270 OHM .4"
R51	$114-004-0$	RES 5W WW 5\% .2 OHM
R52	$103-008-4$	RES CF 1/4W 5\% 2 OHM .4"
R53	$114-004-0$	RES 5W WW 5\% .2 OHM
R54	$103-008-4$	RES CF 1/4W 5\% 2 OHM .4"
R55	$103-103-4$	RES CF 1/4W 5\% 20K .4"

Reference No	Part No	Description
R56	111-004-0	RES MOF 2W MOX 5\% 10 OHM
R57	103-072-4	RES CF 1/4W 5\% 1K .4"
R58	103-072-4	RES CF 1/4W 5\% 1K .4"
R59	103-072-4	RES CF 1/4W 5\% 1K .4"
R60	103-096-4	RES CF 1/4W 5\% 10K .4"
R61	103-074-4	RES CF 1/4W 5\% 1.2K.4"
R62	116-019-0	RES 1W MOF 5\% 1.6K
R63	103-086-4	RES CF 1/4W 5\% 3.9K .4"
R64	103-072-4	RES CF 1/4W 5\% 1K .4"
R65	103-089-4	RES CF 1/4W 5\% 5.1K .4"
R66	103-072-4	RES CF 1/4W 5\% 1K .4"
R67	103-089-4	RES CF 1/4W 5\% 5.1K .4"
R68	103-072-4	RES CF 1/4W 5\% 1K .4"
R69	103-072-4	RES CF 1/4W 5\% 1K .4"
R70	116-010-0	RES CF 1W 5\% 1.2K .4"
R71	103-104-4	RES CF 1/4W 5\% 22K .4"
R72	103-052-4	RES CF 1/4W 5\% 150 OHM .4"
R73	103-103-4	RES CF 1/4W 5\% 20K .4"
R74	109-220-4	RES MF 1/4W 1\% 1.91K .4"
R75	103-072-4	RES CF 1/4W 5\% 1K .4"
R76	103-098-4	RES CF 1/4W 5\% 12K .4"
R77	103-103-4	RES CF 1/4W 5\% 20K .4"
R78	109-220-4	RES MF 1/4W 1\% 1.91K .4"
R79	103-072-4	RES CF 1/4W 5\% 1K.4"
R80	109-289-4	RES MF 1/4W 1\% 10.0 KOHM .4"
R81	103-096-4	RES CF 1/4W 5\% 10K .4"
R82	103-103-4	RES CF 1/4W 5\% 20K .4"
R83	103-055-4	RES CF 1/4W 5\% 200 OHM .4"
R84	109-228-4	RES MF 1/4W 1\% 9.76K .4"
R85	109-289-4	RES MF 1/4W 1\% 10.0K .4"
R86	109-318-4	RES MF 1/4W 1\% 20.0K .4"
R87	103-080-4	RES CF 1/4W 5\% 2.2K .4"
R88	116-018-0	RES MOX 5.1 OHM 1W
R89	103-104-4	RES CF 1/4W 5\% 22K .4"
R90	103-103-4	RES CF 1/4W 5\% 20K .4"
R91	103-113-4	RES CF 1/4W 5\% 51K .4"

ARCAM P-1000 AMPLIFIER BOARD

Reference No	$\underline{\text { Part No }}$	Description
R92	$103-113-4$	RES CF 1/4W 5\% 51K .4"
R93	$103-098-4$	RES CF 1/4W 5\% 12K .4"
R95	$109-321-4$	RES MF 1/4W 1\% 21.5K .4"
R96	$103-124-4$	RES CF 1/4W 5\% 150K .4"
R97	$103-124-4$	RES CF 1/4W 5\% 150K .4"
R98	$103-052-4$	RES CF 1/4W 5\% 150 OHM .4"
R99	$109-225-4$	RES MF 1/4W 1\% 13.3K .4"
R101	$103-079-4$	RES CF 1/4W 5\% 2K .4"
R102	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R103	$103-072-4$	RES CF 1/4W 5\% 1K .4"
R104	$103-065-4$	RES CF 1/4W 5\% 510 OHM .4"
R105	$103-059-4$	RES CF 1/4W 5\% 300 OHM .4"
R106	$103-059-4$	RES CF 1/4W 5\% 300 OHM .4"
R107	$103-089-4$	RES CF 1/4W 5\% 5.1K .4"
R110	$103-071-4$	RES CF 1/4W 5\% 910 OHM .4"

Reference No	Part No	Description
IC		
U1	$322-010-0$	IC TLO82 DUAL OPAMP
U2 U3 U6	$322-007-0$	IC 4560 DUAL OPAMP DIP
U4 U5	$322-029-0$	IC LM393 DUAL COMP
ZENER		
Z1	$303-025-0$	DIODE ZEN 4758 54V .4"
Z2	$303-004-0$	DIODE ZEN 4738 8.2V .4"
Z3 Z4	$303-010-0$	DIODE ZEN 4754 39V .4"
L1	$353-007-0$	INDUCTOR 6UH AXIAL
CONNECTOR		
J1	$454-008-0$	XLR FEMALE R/A PCB MT TYPE A
J2	$446-020-0$	RCA JACK DUAL VERTICAL
J3 J5	$421-010-0$	FASTON 250
CON1	$445-016-0$	CONN 13 PIN/ST/ .156 TIN
MISC		
S1	$470-023-0$	SWITCH SLIDE SP3T HORZ
TP1 TP2 TP3 TP4	$445-015-0$	TEST POINT 1 PIN
RP1	$147-001-0$	POT ROTARY 10mm 5K H-ADJ
R22	$170-001-4$	THERMISTOR 10K NTC .4"
JACK PLATE	$633-301-0$	INPUT JACK MTG PLATE

	\square

ϕ

ARCAM
653-181-0
REV-A
PARTS LOCATOR
DISPLAY

ARCAM P-1000 DISPLAY BOARD

Reference No	Part No	Description
DIODE		
D1	$307-010-0$	DIODE LED YEL/GRN
D9 D10 D11	$302-001-4$	DIODE 1N4148 SIGNAL .4"
D2 D3 D4 D5 D6 D7 D8	$307-010-0$	DIODE LED YEL/GRN
TRANSISTOR		
Q1 Q2	$311-009-0$	TRANS MPSA06 NPN TO-92
RESISTOR		
R1	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R2	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R3	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R4	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R5	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R6	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R7	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"
R8	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R9	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R10	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R11	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R12	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R13	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R14	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R15	$103-112-4$	RES CF 1/4W 5\% 47K .4"
R16	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R17	$103-071-4$	RES CF 1/4W 5\% 910 OHM .4"
R18	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R19	$103-112-4$	RES CF 1/4W 5\% 47K .4"
MISC		
J1	$445-023-0$	HDR 10 x 2 .1 RA GOLD
RB1-RB2	$415-024-0$	RIBBON CABLE
SW1	$470-024-0$	SPST MOMETARY CONTACT
BRACKET RA	$561-006-0$	RIGHT ANGLE MTG BRACKET
SPACER	$541-022-0 ~$	USE WITH D1-D7
BUTTON	$581-053-0$	PWR ON/OFF
JACK	$447-004-0$	$3.5 ~ M M ~ M O N O ~ F O R ~ 12 V ~ T R I G G E R ~$
STANDOFF	$533-004-0 ~$	$.25 " ~ N Y L O N ~ S T A N D O F F ~ F O R ~ P C B ~ M T G ~$

ARCAM P-1000 MAIN BOARD

REVISION A

Reference No	Part No	Description
CAPACITOR		
C1 C2	202-101-4	CAP MYLAR .001uF 100V 5\%
C3 C9 C51	202-124-4	CAP MYLAR .082uF 100V 5\%
C4 C10 C30	205-509-4	CAP EL RADIAL 10uF 50V
C5 C55	205-315-4	CAP EL RADIAL 100uF 25V
C6	205-517-1	CAP EL RADIAL 220uF 50V
C7 C8	210-307-4	CAP EL NP 47uF 25V
$\begin{aligned} & \text { C11 C12 C33 C34 C35 C36 C37 C38 } \\ & \text { C39 C40 C41 C42 C43 C44 } \end{aligned}$	205-513-4	CAP EL RADIAL 47uF 50V
C15 C16	240-057-4	CAP CERAMIC . 0022 250V
C17 C18 C19 C20 C21 C22	205-781-0	CAP EL RADIAL 10000uF 80V
C23 C24	205-580-4	CAP EL RADIAL 15000uF 50V
C25 C26 C27 C28	205-422-4	CAP EL RADIAL 2200uF 35V
C29	240-025-0	CAP UL-CSA LINE CAP
C31	205-221-4	CAP EL RADIAL 1000uF 16V
C32 C50	205-505-4	CAP EL RADIAL 2.2uF 50V
C45 C46 C47 C48 C49 C52 C53	206-503-4	CAP EL RADIAL 1.0uF 50V
C54 C63	205-517-1	CAP EL RADIAL 220uF 50V
C56	202-113-4	CAP MYLAR .01uF 100V 5\%
R4-CAP USED IN THIS POSITION	206-503-4	CAP EL RADIAL 1.0uF 50V
DIODE		
D1 D2 D3 D6 D7 D8 D9 D10 D15 D20 D21 D22 D23 D24 D25 D27 D29 D41	302-001-4	DIODE 1N4148 SIGNAL .4"
$\begin{aligned} & \text { D4 D5 D11 D13 D14 D26 D28 D30 } \\ & \text { D32 D33 D40 } \end{aligned}$	301-001-4	RECT 1N4004 1A 400V .4"
D12	307-001-0	DIODE LED RED
D16 D17 D18 D19	304-008-0	DIODE FAST REC 5A
D31	N/A	NOT USED
D34-D39	N/A	NOT USED
Z1 Z2	303-002-0	DIODE ZEN 4742 12V 1W .4"
Z3	303-001-0	DIODE ZEN 4740 10V .4"
Z4 Z5 Z6	303-004-0	DIODE 4738 ZEN 8.2V 1W .4"
Z7	303-001-0	DIODE ZEN 4740 10V .4"
TRANSISTOR		
Q1 Q6	311-011-0	TRANS 2N4401 NPN TO-92
Q2 Q4 Q7	311-009-0	TRANS MPSA06 NPN TO-92
Q3 Q5	311-010-0	TRANS MPSA56 PNP TO-92
Q8	312-012-0	TRANS 2SC4793 NPN TO220
Q9	312-013-0	TRANS 2SA1837 PNP TO-220

ARCAM P-1000 MAIN BOARD

Reference No	Part No	Description
RESISTOR		
R1	$106-001-0$	RES CF 1/2W 5\% 2.2M
R2	$103-120-4$	RES CF 1/4W 5\% 100K .4"

Reference No	Part No	Description
R3	103-123-4	RES CF 1/4W 5\% 130K .4"
R4 SEE CAPACITORS		
R5	103-136-4	RES CF 1/4W 5\% 470K .4"
R6	103-136-4	RES CF 1/4W 5\% 470K .4"
R7	103-113-4	RES CF 1/4W 5\% 51K .4"
R8	103-103-4	RES CF 1/4W 5\% 20K .4"
R9	103-089-4	RES CF 1/4W 5\% 5.1K.4"
R10	103-096-4	RES CF 1/4W 5\% 10K .4"
R11	103-081-4	RES CF 1/4W 5\% 2.4K .4"
R12	103-103-4	RES CF 1/4W 5\% 20K .4"
R13	103-121-4	RES CF 1/4W 5\% 110K .4"
R14	103-096-4	RES CF 1/4W 5\% 10K .4"
R15	103-096-4	RES CF 1/4W 5\% 10K .4"
R16	103-116-4	RES CF 1/4W 5\% 68K .4"
R17	103-116-4	RES CF 1/4W 5\% 68K .4"
R18	103-116-4	RES CF 1/4W 5\% 68K .4"
R19	103-116-4	RES CF 1/4W 5\% 68K .4"
R20	103-116-4	RES CF 1/4W 5\% 68K .4"
R21	103-113-4	RES CF 1/4W 5\% 51K .4"
R22	103-113-4	RES CF 1/4W 5\% 51K .4"
R23	103-113-4	RES CF 1/4W 5\% 51K .4"
R24	103-103-4	RES CF 1/4W 5\% 20K .4"
R25	103-103-4	RES CF 1/4W 5\% 20K .4"
R26	103-096-4	RES CF 1/4W 5\% 10K .4"
R27	103-089-4	RES CF 1/4W 5\% 5.1K.4"
R28	103-111-4	RES CF 1/4W 5\% 43K .4"
R29	103-092-4	RES CF 1/4W 5\% 6.8K .4"
R30	103-111-4	RES CF 1/4W 5\% 43K .4"
R31	103-092-4	RES CF 1/4W 5\% 6.8K .4"
R32	103-111-4	RES CF 1/4W 5\% 43K .4"
R33	103-092-4	RES CF 1/4W 5\% 6.8K .4"
R34	103-111-4	RES CF 1/4W 5\% 43K .4"
R35	103-092-4	RES CF 1/4W 5\% 6.8K .4"
R36	103-111-4	RES CF 1/4W 5\% 43K .4"
R37	103-072-4	RES CF 1/4W 5\% 1K .4"
R38	103-024-4	RES CF 1/4W 5\% 10 OHM .4"
R39	103-024-4	RES CF 1/4W 5\% 10 OHM .4"
R40	101-096-0	RES CF 1/8W 5\% 10K .35"
R41	103-111-4	RES CF 1/4W 5\% 43K .4"

ARCAM P-1000 MAIN BOARD

Reference No	Part No	Description
R42	$103-123-4$	RES CF 1/4W 5\% 130K .4"
R43	$103-072-4$	RES CF 1/4W 5\% 1K .4"
R44	$103-136-4$	RES CF 1/4W 5\% 470K .4"
R45	$103-103-4$	RES CF 1/4W 5\% 20K .4"
R46	$103-089-4$	RES CF 1/4W 5\% 5.1K .4"
R47	$103-083-4$	RES CF 1/4W 5\% 3K .4"
R48	$103-024-4$	RES CF 1/4W 5\% 10 OHM .4"

Reference No	Part No	Description
R49	$103-111-4$	RES CF 1/4W 5\% 43K .4"
R50	$103-092-4$	RES CF 1/4W 5\% 6.8K .4"
R51	$103-116-4$	RES CF 1/4W 5\% 68K .4"
R52	$103-111-4$	RES CF 1/4W 5\% 43K .4"
R53	$103-092-4$	RES CF 1/4W 5\% 6.8K .4"
R54	$103-072-4$	RES CF 1/4W 5\% 1K .4"
R55	$103-096-4$	RES CF 1/4W 5\% 10K .4"
R56	$103-076-4$	RES CF 1/4W 5\% 1.5K .4"
R57	$103-092-4$	RES CF 1/4W 5\% 6.8K .4"
R58	$103-123-4$	RES CF 1/4W 5\% 130K .4"
R59	$103-123-4$	RES CF 1/4W 5\% 130K .4"
R60	$103-123-4$	RES CF 1/4W 5\% 130K .4"
R61	$103-123-4$	RES CF 1/4W 5\% 130K .4"
R62	$103-082-4$	RES CF 1/4W 5\% 2.7K .4"
R63	$103-048-4$	RES CF 1/4W 5\% 100 OHM .4"
R64	$114-007-0$	RES 5W WW 5\% 240 OHM
R65	$116-006-0$	RES MOX 2W 5\% 240 OHM
R66	$115-003-6$	RES MOX 3W 5\% 820 OHM
R67	$105-100-4$	RES CF 1/2W 5\% 15K .6"
R68	$105-100-4$	RES CF 1/2W 5\% 15K .6"
R69	$114-007-0$	RES 5W WW 5\% 240 OHM
R70	$114-008-0$	RES 5W WW 5\% 510 OHM
R71	$117-002-6$	RES MOX 2W 5\% 820 OHM
R72	$117-002-6$	RES MOX 2W 5\% 820 OHM
R73	$114-007-0$	RES 5W WW 5\% 240 OHM
R74	$114-007-0$	RES 5W WW 5\% 240 OHM
R75	$103-089-4 ~$	RES CF 1/4W 5\% 5.1K .4"
R100	$103-116-4$	RES CF 1/4W 5\% 68K .4"
R101	$103-123-4$	RES CF 1/4W 5\% 130K .4"
IC	$321-002-0$	Dual D-Flip-Flop
U1	$321-009-0 ~$	IC4093 QUAD NAND GATE
U2	$325-002-0 ~$	IC MCO3011 OPTOCOUPLER DIP6
U3	$324-002-0 ~$	IC 7912 LINEAR REG 12V NEG
U4	$324-001-0 ~$	IC 7812 LINEAR REG 12V POS
U5		

ARCAM P-1000 MAIN BOARD

Reference No	Part No	Description
MISC		
CON7-10 14 20 25	$444-048-0$	CON 156 RA ENTRY 12P
F1	$461-011-0$	FUSE HOLDER PCB 5MM
F2 F3	$461-009-0$	FUSE CLIP ATC
IND1	$353-007-0$	INDUCTOR 6UH AXIAL
J1	$445-022-0$	HDR 10Px2 .1 GOLD
JP1 JP2 JP3	$119-001-4$	JUMPER 1/4W BODY .4" PREP
T1	$354-100-0$	XFMR 30V CT PCB MNT
TP1 TP2	$445-015-0$	TEST POINT 1 PIN

INPUT Jack mTG PLATE
TRIAC 35 a

 6
 $2 / \tau \times 8 \pm$ 8\#\# M M N

AMPLIFIER BGTTDM SIDE MDUNTED PARTS FINISHED ASSEMBLY 731－179－0 REVISIDN A

D8 AND R22 MDUNTING DETAIL

USE THERMAL CDMPDUND IN THESE PARTS AND HS

TIP35－36 MロUNTING DETAIL

PLACE ．016＂TAPE BETWEEN TIP35／36 AND PCB BDARD

ITEMS 7 AND 8 MUST BE IN CDNTACT WITH MAIN HEATSINK．USE THERMAL CIMPDUND WITH THESE PARTS
APPLY THERMAL CDMPZUND TI BDTH SIDES DF MICA INSULATDR
POWER TRANSISTIRS（ITEMS $3,5,9,10$ ）MUST BE MIUNTED FIRMLY AGAINST THE PC BZARD

ITEM	PART ND	DESCRIPTIUN	
1	606－020－2	MAIN HEATSINK	
2	401－005－0	MICA INSULATDR	
3	301－002－0	TIP36C	
4	030－007－0	TAPE 016 THK	
5	312－015－0	MJW21194	
6	445－016－0	HEADER ，15＊x13 PIN	
7	170－001－1	10K NTC THERMISTUR	
8	301－001－1	DIIDE 1N4004 DR EQ	
9	312－014－0	MJW21193	
10	312－001－0	TIP35C	
11	502－020－0	6－32 UNC $\times 1 / 2^{\prime \prime}$ BLK	
12	653－179－0	PCB FR4 GLASS	
13			
14			
	ARCAM		
	P－1000 AMP BOARD		
	szE ${ }^{\text {fich }}$ Na．	DVa No． $731-179-0$	$\mathrm{A}^{\text {ReV }}$
	sCAL	7．17．05 ${ }^{\text {｜⿴囗十⺀⿺𠃊 }}$	

ARCAM P-1000 FINAL ASSEMBLY

Item	Part Description	Part No	Where Used
1	HEX NUT 10MM		SUPPLIED WITH TRANSFORMER
15	LOCATING WASHER		SUPPLIED WITH TRANSFORMER
20	RUBBER MTG GASKET		SUPPLIED WITH TRANSFORMER
25	TRANSFORMER 800VA 115V	356-123-0	US/CAN MODEL
25	TRANSFORMER 800VA 230V	356-223-0	UK/EUR MODEL
30	NUT 8-32 NYLOCK	523-001-0	XFMR MTG PLATE
35	MTG PLATE, TRANSFORMER	631-309-0	USE WITH TRANSFORMER
40	BOLT $10 \times 115 \mathrm{MM}$		SUPPLIED WITH TRANSFORMER
45	FOOT	583-010-0	
50	SCREW SM \#6 x 1/4	508-002-0	
55	SCREW 8-32 x 1/2" PH	502-022-0	USE WITH BRIDGE RECT
60	WELL NUT 8-32	527-001-0	XFMR MTG PLATE
65	WASHER \#8 FLAT	511-016-0	XFMR MTG PLATE
70	SCREW 8-32 x 3/4 PH	502-012-0	XFMR MTG PLATE
75	SCREW 6-32 $\times 1 / 4 \mathrm{PH}$	502-001-0	USE TO MNT MAIN BD AND REM BD
80	FLEX TUBING 5/8" $\times 7.5^{\prime \prime}$	404-008-0	USE OVER AC WIRING
90	FUSE T10AL MDA 10	463-009-0	US/CAN MODEL
95	SILPAD	402-005-0	USE WITH U4 U5
105	PRESSURE PLATE	631-185-0	USE WITH U4-U5
110	SCREW 6-32 x 1/2 PH	502-020-0	USE WITH PRESS PLATE ON U4 U5
125	MAIN BOARD	731-177-0	
130	KEP NUT \#8	521-003-0	USE WITH BRIDGE RECT
135	RECTIFIER 35A BR	325-005-0	MOUNT TO CHASSIS + FACING MAIN BD
140	CHASSIS, BLACK	635-302-2	
145	LINE FILTER FERRITE CORE	351-006-0	MOUNT TO XFMR PRIMARY LEADS
150	SCREW SM \#6 x 3/8	508-007-0	USE TO MOUNT HS AND FP
155	AMP BOARD	731-179-0	
165	WASHER \#6 INT	512-001-0	MAIN BD MTG SCREWS
180	SPKR TERMINAL ASSY	444-055-0	BLACK
185	SPEAKER CONN RED	527-003-2	TOP ROW
195	SPEAKER CONN BLACK	527-003-1	BOTTOM ROW
200	REM 12V JACK PCB	731-181-0	PART OF DISPLAY BD
215	FUSE T6.3AL	463-012-0	UK/EUR MODEL
220	FUSE HOLDER	451-005-0	US/CAN MODEL
220	FUSE HOLDER	451-010-0	UK/EUR MODEL
230	POWER CORD SOCKET	431-006-0	
235	BUSS BAR COPPER	631-306-0	
240	CAP 3.3UF 250VDC MYLAR	221-005-0	ATTACH ACROSS XFMR BLUE LEADS
255	WEATHER STRIP FOAM TAPE	030-00X-0	USE ALONG TOP EDGE OF CHASSIS
265	POWER SW PCB	731-181-0	PART OF DISPLAY BD
270	SCREW 4-40 x 3/8 SOC HD	504-002-0	USE WITH PWR SW PCB ASSY
305	TRIAC 35 A	318-001-0	MOUNT TO MAIN PCB
315	BUTTON PLASTIC	581-046-0	USE WITH PWR SW PCB ASSY
330	RIBBON ASSY 20 POS IDC	416-029-0	
335	DISPLAY PCB ASSY	731-181-0	

ARCAM P-1000 FINAL ASSEMBLY

REVISION A

Item	Part Description	$\underline{\text { Part No }}$	Where Used
	MASKING TAPE 1/2"	$030-007-0$	USE ON INSIDE EDGE OF TOP COVER
	TAPE DBL BACK FOAM 1/8"	$030-002-0$	USE UNDER LARGE CAPS
	SHRINK TUBING .25"	$404-003-0$	USE WITH AC WIRING

Item	Part Description	$\underline{\text { Part No }}$	$\underline{\text { Where Used }}$
	WIRE 18GA TEW BLU 3.5"	$413-030-0$	USE WITH BRIDGE RECT
	WIRE 18GA TEW BLK 4"	$413-031-0$	PWR SW TOP TO FUSE END TERM
	WIRE 18GA TEW BLK 5.5"	$413-032-0$	PWR SW BOT TO AC LINE BOT
	WIRE 18GA TEW BLK 13.25"	$413-033-0$	BUSS BAR TO WP18-19 ON MAIN BD
	FASTON FEM 18GA INSULATED	$421-002-0$	
	FASTON FEM 14GA INSULATED	$421-014-0$	
	TYWRAP	$584-003-0$	XFMR WIRING
	TYWRAP	$584-025-0$	LINE FILTER MTG
	FRONT PANEL BLK	$606-022-X$	
	FRONT PANEL SILVER	$606-022-X$	
	DAMPING PLATE	$631-316-0$	ATTACH TO INSIDE OF TOP COVER
	TOP COVER, BLACK	$635-304-X$	
	TOP COVER, SILVER	$635-304-X$	
	WIRE ASSY 18GA TEW 11.25"	$704-053-0$	AC LINE CONN TOP TO MAIN BD "L"
	WIRE ASSY 18GA TEW 12.25"	$704-054-0$	AC LINE GND TO MAIN BD "G"
	WIRE ASSY 18GA TEW 12.5"	$704-055-0$	FUSE HOLDER SIDE TO MAIN BD "N"
	WIRE ASSY 18GA TEW RED 4.25"	$704-056-0$	USE WITH RED JACKS
	RIBBON CABLE 20 COND	$415-020-0$	PART OF 416-029-0
	CONNECTOR IDC 20 POS	$444-033-0$	PART OF 416-029-0

