SERVICE MANUAL FOR MODEL YEAR 1989
 ELECTRONIC TUNED CASSETTE RADIOS

PART NUMBERS

44691064469107
44691084469109
4469198 (2 SPKR)

huntsville electronics division a Plotai
P.O. Box 240001 - Huntsville, Alabama 35805
© Acustar Inc 1989

FI GRE 3-13. PARTS LOCATI ON SH NMA CASSETTE

MODEL YEAR 1989 ELECTRONIC TUNED CASSETTE RADIOS
PART NUMBER
4469106
4469107
4469108
4469199
449198

PREMIRADIOS BIMACK
4469106
4469108
4469198
PREMIUM, BRIGHT
INFINITY, BIACK
INFINITY, BRIGHTT
PREMIUUM, SPECIAI

TABIE OF CONTENTS

B．TESTING
$1-10$
2．Radio Polarity
1－10
$2-\quad$ Sutput Ioad
3 ：
Signal Imjeqtion
1－10
1ート1
$1-11$
Capacitor Briaging
1ーュ1
C．TPROUBI．ESHOOTING
1－11
D．REPPIACEMENT
1－11
1．Transistor rememtification
2．Componemt Replacement PC Board Replacermerit Voltage Tumed AM Cireuits Voltage Tumed FM Cireuits
$1-13$
E．CIEANING
III．
CIRCUIT DESCRIPTIION
$1-13$
A．LOGIC AND CONTFOI CIRCUITS
$1-13$

B．AM CIRCUIT I－18
－ 1 RF Stage
$\begin{array}{ll}1 . & \text { RF Stage } \\ 2 \cdot & 1-18\end{array}$

IF stage 1 I－I
$\begin{array}{ll}\text { AM Station Detect } & \\ \text { Detector amd AM stereo Decoder } & 1-18 \\ 18\end{array}$
FM CIRCtITT
C．FM CIRCUIT
$1-20$
1．AM Front Enct
$1-20$
2 Audio Detection and station Detector stereo Decoder and Blend
$1-20$
D．AUDIO CIRCUIT
$1-21$
1．Filler／Amplifier
 Electronic
4．And Fader \quad Powerifiex
$1-21$
$1-21$
$1-21$
$1-22$

TABTE OF CONTEENTS

TABTE OF CONTENTS

IIST OF IILUSTERATIONS

FIGURE	TITT，	PAGE
1－3	CASSETME RADIO TROUBLESHOOTING SET－UP	$1-12$
3－4	AIIGNMENT IOCATIONS	$1-25$
1－5	IISSATOUS PATVERN TESTT SET－UP	1－25
1－6	AM DUMMY ANTENNA DETAIL	$1-26$
1－7	FM DUMMY ANTEENNA DETATI．	$1-26$
1－8	PARTS TOCATION，ESCUTCHEON ASSEMEIY	$1-30$
1－9	PARTS IOCATION，HEAT SINK／CHASSTS ASSEMEIY	$1-31$
1－10	PARTS LOCATION，BACK OF ESCUTCHEON ASSEMEIY	$1-31$
2－11	PARTS LOCATION，CONTROI PC BOARD	$1-32$
$1-12$	PARTS LOCATION，RF PC BOARD	$1-32$
1－13	PARTS LOCATION，RF PC BOARD	$1-33$
1－14	PARTS IOCATION，AUDTO／TOGIC PC BOARD	$1-33$
1－15	PAFTS IOCATION，AUDIO／IOGIC PC BOARD	$1-34$
1－16	PARTS LOCATION，RF BOARD，WITH INSUIATOR	1－34
1－17	PARTS IOCATION，REAR VIEW	$1-35$
	IIST OF TABIES	
TABIE	TITT，	PAGE
1－1	DESCRIPTION OF RADIO CONTROIS	1－3
$1-2$	DIGITAT，DISPIAYS AND DEFINITIONS	1－9
1－3	MICROPROCESSOR（UIOO）PIN DESCFIPTIONS	1－14
I－4	SYNTHESIZER（UIOZ）PIN DESCRIPTIONS	$1 \rightarrow 16$
1－5	QUAD 2 INPUT NAND SCHMITT－TRIGGER	ユーエフ
$1-6$	EIECTRONIC TUNE RADIO REMOVAI SEQUENCE	$1-28$

TABTE OF CONTENTS

SECTION $\geq-$ SUPPORT DOCUMENTATTION 2-1 THRU 2-2O

IIST OF IILUSTCRATIONS

TABTE OF CONTENTTS

TABIE OF CONTENTSS
IITST OF IILUSTRATIONS

FIGURE	TITLE	PAGE
3-3	CASSETTE MOUNTING	3-6
3-4	PIAY MODE	3-7
3-5	EJECT GEAR	3-8
3-6	PAUSE MODE	3-8
3-7	PROGRAM CHANGE MODE	3-8
3-8	REVERSE GEAR ASSEMBIY	3-8
3-9	FORWARD/REVERSE SWITCHING	3-9
3-10	FF/REWIND MODE	3-9
3-11	EUECT MODE	3-10
3-12	SELECT ARM	3-11
3-13	PARTS LOCATION, SHINWA CASSETTTE	3-12
3-14	SHINWA CASSETME MECHANISM	3-17
3-15	ELECTRONIC TUNED CASSETTEE RADIO WITH SHINWA, BLOCK WIRING DIAGRAM	3-18
3-16	ELECTRICAL SCHEMATIC, SHINWA CASSETTEE CONTROL PC BOARD (DOLEY)	3-19
	IIST OF TABLES	
TABLE	TITIEE	PAGE
3-1	HEAD ALIGNMENT PROCEDURE	3-3
3-2	PREAMPLIFIER ALIGNMENT PROCEDURE	3-4

```
PARAGRAPH TITIE
    DESCRIPTION
    LOGIC FUNCTIONS
    TAPE DIRECTION
    B.
    C
    D -
    E -
    F
    G
    PROCEDURE FOR ADTUSTTING PREAMPINIFIER
    OUTTEUTT LEVEIS
    RECOMMENDED EQUTPMENT 4-5
J - RECOMMENDED EQUIPMENT
```



```
    2: reyMori Rause
    Autg Reverse
    FF/REW OpEration
    FF/REW OPERAEIOM OPEIations at Music Sensor on
    Muting
    Auto Metal
    9%- Auto Metal
            1O. Auto Eject Sact mety mecmanism
    11. Eject safety Mecmanism
    12. पrgemt Eject
HOW TO HANDTEE CASSETTTE DECK
MECHANICAL, PARTSS REPIACEMENT
M -
I- Motor Replacememt
```



```
Program Switch PC Board Replacement
```

 4-1
 RECOMMENDED TEST \& REPAIR ENVIRONMENTT 4-4
 4-5
4-5
$4-5$
$4-6$
$4-14$
$4-14$
$4-15$
$4-15$

PAEE
4-1
4-1
4-1
4-1
AUTOMATIC MUSIC SEARCH
$4-2$
DOIGBY NOISE REDUCTION
4-2
TAPE PIAYBACK HEAD
HEAD ATIGNMENT
4-2
4-3
4-3
4-4
$4-5$
4-5
$4-5$
$4-6$
$4-8$
$4-8$
$4-8$
$4-10$
$4-10$
$4-10$
$4-10$
$4-11$
$4-13$
$4-13$
$4-13$
4-13
$4-14$
$4-14$
$4-16$

TABLE OF CONTENTS

IIST OF IIIUSIRATIONS

FIGURE
$4-18$
$4-19$
$4-20$
$4-21$
$4-22$
$4-23$
$4-24$
$4-25$
$4-26$
$4-27$
$4-28$
$4-29$
$4-30$
$4-31$
$4-32$
$4-33$
$4-34$
$4-35$

TABLE
4-1
$4-2$

TITEE
PAGE
AUDIO PC BOARD REMOVAL 4-17
HEAD REMOVAL
CASSETTE HOLDER \& BASE PLATE REMOVAL.
HEAD PC BOARD REMOVAL
HEIGHT ADSUSTMENT GAUGE PLACEMENT
4-17
4-18
4-18
4-19
HEAD HEIGHT ADUUSTMENT
4-19
HEAD HEIGHT ADTUSTMENT \quad 4-21
REVERSE PC BOARD \& REEKS 4-22
CASSETTE HOLDER \& BASE PIATE 4-23
ETECT ARM
HEAD BASE ASSEMBLY
PINCH ROIITER ASSEMBLY
REEL PANEL ASSEMBLY (513)
R/F FRAME MOUNTING
ALPINE TAPE MECHANISM 4-27
CASETTTE MECHANISM
$4-33$
ELECTRONIC TUNED CASSETTE RADIO WITH
ALPINE, BLOCK WIRING DIAGFAM
ELECTRICAI SGHEMATIC, AUDIO/CONTROL PC BOARDS. ALPINE MECHANISM
\square
LIST OF TABLES
TITLE
PAGE
HEAD ALIGNMENT PROCEDURES 4-2
PREAMPLIFIER ALIGNMENT PROCEDURE

4-3

The Chrysier built Electronic Tumed stereo AM arnd fM Cassette INFINITY Radig is Guartz orystal coritrolled for acouracy anc
 reception, arid bolby
 switches, or it can be made to automaticdily SEPK Or SEAN

 automaticaliy reversed at the peray of the tape rime radic

 audio amplifinexs are controiled by an electronio joystick for

 interface connector on the rear or the radio.
B.

DESCRIPIION. (PREMIUM)
 FREMTUM RAdio is quartz crystai comtiolided for acduracy arid stability, arid features Motorola C-Quam Bi sum system stereo AM
 rhe radio cam be tuned mariualiy with up and down pushbuttor

 effective or botm radio and tape phe casuette tape airention

 provides a voltage to raise the anterna when the radio switch is on the radio is capabie orivis.

 audio amplifiers are portrolied by an eledtrorio joystick for balance and fader functions.

```
C_ IOCATION OF CONTRROISS
See Figure l-1 For the location of the Electronicm Tumed stereo
AEe FidGMEcassette Tape Radio controls.
```


FIGURE 1-1. FRONT PANEL CONTROLS

TABLE I-1. DESCRTFTION OF FADIO CONTROLS

CONTROIS	FUNCTIONAT DESCRIPTION
VOL \rightarrow	Iricreases volume Ievel.
VOI, -	Decreases Volume Level.
BASS +	Boosts the Bass Response -
BASS -	Attenuates the Bass Response.
TREBIE +	Boosts the Treble Respomse.
TREBIEE -	Atteruztes the Treble Resporise.
1	U.S./European Mode change Button. statior select Mernory Button \#l for redall of stations pxogrammed imto memory -
$2,3,4,56$	```station select Memory buttoms 2-5 for recall of stations programmed into memory.```
AM/FM	Selects Am or FM bamd -
TUNE +	Increases the tuned Frequency.
TUNE -	Decreases the Tuned Frequency.
ON/OFF	Turns Radio Off and On. Enables Tape or c.D. to be playea irn the OFI position.
FF Or	Fast Foxward Tape control - Initiates Memory scan in conjunction with the SET Key. Initiates Radio scan (Key held >2 seconds). Initiates secornds) Initiates rape seek (key stroked >1 seconca).

TABIE I-1, DESCRIPTION OF RADIO CONTROIS (CORt)

CONTROLS	FUNCTIONAT DESCRIFTION
RW Or	Fast Rewind Tape control. Initiates memoxy scan in conjunction with the sex key. Initiates Radio can (Key hela > 2 seconde). Initiates seconas) . Iritiates Tape seek (key stroked > 1 secorid).
E.TT NR	Ejects Tape in the Tape player Mode. switch for Activating the noise reduction circuit.
$S E I$	switcif for selecting the time or Frequency display. changes direction of play in the Tape mode - Stops Fast Forward or Rewind in the Tape mode. stops the sEFK Eunction- Unmutes the Radio durimg FM Manual Tune. Used in $U . S . / E u r o p e a n$ Mode onanges.
SET	Sets the Time of Day. Sets stations in the Memory buttons. Sets volume to a pre-determined level (lm w relative to FM) in conjunction with TUNE $+\infty$ TUNE - sets bAss to a o ab (neutral position) if followed by pressilrg BASS+ or BASSSets TREBIE to a o db (neutral position) if followed by pressing TREBLE + OI TREESLE - . Initiates Memory scan if up ox down Key is pressed.
Electronic Joystiok	Provides speaker control from Front to Back, Left to Right and DiagonalıY Performs speaker and fader eomtrol functions.

 withinati and a -1 tious

| TUNE | $(+)$ or ($~(~$ |
| ---: | :--- |)

4. Scan (Radio) - Pressimg the up A or the down
key for 2 secomds or more wili cause the radio to go imto the sCAN mode mine radio is muted in the SCAN mode until a valid station is received. The valid station will be received for 5 secorids ther the SCAN function will resume burifg the time the scAN Fumction is in operation, the "Ms"inill be displayed the rate of tuning will be 74 m secper turied Erequency for both the AM and FM bands Pressimg the AM/FM key will cilusise the scAN

 + or TUNE
 radio will revert bacie to the tumed frequerncy which was selected
the

Memory scat \qquad

\qquad
\qquad rey. This will cause the radio to scAN the station frequencies that are storea in memory the radie will pause amd unmute for 5 secomde on the stations

[^0] clock.
a. Insure that the radio is in the time mode (use
b. Press the sET key.

indidate noxxs and a flashing colon.

f. To change the mimutes, use the TuNE + or tiver key set the minutes forward or the TUNE - or down key to set the minutes backwards the seconds are reset to zero during the minutes set procedure
g. Press the spI. key again to restart the clock-

NOTE

STEPS CAN BE SKIPPED AND THE TIME SET MODE CAN EE TERMINATED BY TURNING OFF THE RADIO INSERTING A TAPE, OR SUCCESSIVE USE OF THE SEI, SET, OR MEMORY KEYS. IF THE MINUTES ARE NOT ADJUSTED, THE CIOCK WITT CONTINUE TO RUN DURING THE IIME SEINING PROCEDURE THIS ALIOWS TIME ZONE ADJUSTMENTS OF THE HOURS WHIIE MAINTAINING THE CORRECT MINUTES.

the current position.

Seek (Tape) - press the up a or down bey to initiate the tape spek operation. mhe key musy to held tor moxe then whem the kev is releasea, the tape player wili begim seekimg the nest selection when the tape player detectsteret

 tape piayer to exit the sEEK mode and begimplayimg atp this tape locatione Durimg the sper operation, *Ms" will be aisplayed.

 switched voltage is present (IGmition piov pin 2) and a co is in the player, the co will play and the

 switched voltage is turned ofF, the co will stop but mot eject (pause mode) when the radio is
 oN/OFF switch. the The cD will not eject until the EJECT/PAUSE on the
11. European Mode
 i-z explains the digital dismplays -

TAEIE 1 -2, DIGITAI DISPIAYS AND DEFINITIONS

A. GENERAL

 exexcised when troubleshooting the aurion intiegrated circuits As these are DC amplifiers as well as Ac, with essemtialiy rio curremt inimitirng, they may be destroyed by a short circuit to orroiniol as the output of the IC.
B.

TESTING

1. Radio polarity - The positive outputs of the power supply must be commeqted to the radio as shown in Figure 1 -2. The radio wili not operate properiy if connected otherwise.

FIGURE 1-2. RADIO CONNECTION TO TEST SET-UP
2. output mobal - A radio speaker or an s onm resistive load should be commected across the radio speaker Ledas when voltage measurements are beimg made
3. Sigmal Iniection - If signals are injected at

 wher using cifip leadis mot to short points on the pe boarid.

Capacitox Brighing - Extreme caution shoulal be exercised when troubleshooting tor open or low value capacitors by dapacitor bridgingl tor avoid

 be completely discharged each time it is used. A o. M M - Apacitor charged to 30 volts contains enough enexgy to break down most sigmal tramsistors and $\quad C^{\prime \prime}$ when commected in the reverise diredtion, base to emitter.

C. TROUTBIESSHOOTTNE

D. REPLACEMENT

1. Transistor Identification - Each marked for identification with the foux digits of the appicable number -
2. Somporient Replacement - when replacing transistors, aiodes, or other components on the po boara that nay be camacged by excessive meate a pencil type groumdea solaeximg iroriof mot more tham 27112 watts is recommended. Im arny event, do not use a higher wattage iron than is necessary, as excessive heat will cause lifting of conductor pads- only rosin core radio type solder should be used. USE of and temperature comtrolided solder station is encouraced -
3. PC Board Replacement - when desolderimg the po
 should be piaced or the chassis ama not the tab-

FIGURE 1-3_ CASSETTE RADIO TROUBLESHOOTING SET-UP
4. Voltaae Tuned AM Circuits - The capacitances of varactors D1, D2, and D3, in 'the AM tuner module U2, change when the DC voltage applied across them changes and the resonant frequencies of their associated L-C circuits are changed. When a varactor fails, replace the U 2 module.
5. Voltage Tuned FM Circuits - The capacitances of the FM varactors, located in module U4, change when the DC voltage applied across them changes and the resonant frequencies of their associated L-C circuits are changed. When a varactor fails, replace the U4 module.

E. CLEANING

Because of the inaccessibility of the Tape Mechanism, a combination head and capstan cleaning tape should be used. If the radio is disassembled, the heads, pinch rollers and capstan shafts may be cleaned with isopropyl (rubbing) alcohol.

III. CIRCUIT DESCRIPTION

A. LOGIC AND CONTROL CIRCUITS

The logic and control functions of the receiver are performed primarily on the Audio/Logic PC Board, by the microprocessor UlOO (see Table 1-3), and the frequency synthesizer U102. The microprocessor accepts commands from the pushbutton switches located on the front of the radio and status signals from the RF board, cassette module and compact disc (CD) player (INFINITY ONLY). It processes the information and generates instructions to the display module and the frequency synthesizer. The display driver controls the vacuum fluorescent display and is located in the VF display module on the control PC board. The frequency synthesizer controls the local oscillator frequency and, thereby, the tuning of the radio. The synthesizer will tune either $200 \mathrm{kHz} / 10 \mathrm{kHz}$ for U.S. use or $100 \mathrm{kHz} / 9 \mathrm{kHz}$ steps for European use. European or U.S. mode selection is accomplished by software. To change the operating mode, press the SET key then the SEL key and press the memory one button three times in succession. For a description of synthesizer pin functions, see Table 1-4.

TABLE 1-3. MICROPROCESSOR (Ul00) PIN DESCRIPTIONS

PIN NUMBER	DESCRIPTION
1	Key Input KO
2	Key Input Kl
3	Key Input K2
4	Key Input K3
5	Radio Test Pin
6	Frequency Synthesizer Enable - Allows data transfer to the Frequency Synthesizer
7	Beep Output
8	Soft mute goes low to turn on 2102
9	Reset Input - A high on this pin for 6 usec while the oscillator is running resets the device.
10	Serial data input and output - Provides serial data to the display driver and frequency synthesizer.
11	Serial Clock - The serial data clock.
12	Tape Reel Input - Internally pulled up.
13	Off/On Key Input
14	CD "On" Input - Goes low for CD in.
15	$I^{2} \mathrm{C}$ Data
16	$\mathrm{I}^{2} \mathrm{C}$ Clock
17	Power antenna on
18	N/C
19	External Oscillator 1.98 MHz fed from the synthesizer
20	Ground
21	Used for display blanking

TABLE 1-3. MICROPROCESSOR (U100) PIN DESCRIPTIONS (Cont.)

PIN	NUMBER	DESCRIPTION
	22	Cassette read enable
	23	Cassette write enable
	24	AM Mono - Goes low for force to mono
	25	Station detect - goes low for station
	26	Joystick enable
	27	Stereo Detect - goes low for stereo
	28	Display Driver Enable - Allows data to be transferred to the vacuum fluorescent display driver.
	29	N/C
	30	W C
	31	External access connected to Vcc
	32	Goes low for hard mute output to turn on QlOl
	33	Power Switch Input - Goes high for ignition on
	34	Goes high for FM
	35	Goes high for AM
	36	Strobe 3
	37	Strobe 2
	38	Strobe 1
	39	Strobe 0
	40	Voltage Supply, Vcc + 5VDC

TABLE l-4. SYNTHESIZER (U102) PIN DESCRIPTIONS

PIN NUMBER	DESCRIPTION
1	Goes high during the search mode, to desensitize the front end to very weak stations.
2	Noise Reduction (high $=$ NR on)
3	Serial data from the microprocessor
4	Data clock from the microprocessor
5	Data enable from the microprocessor
6	Switched supply voltage which is regulated by U103, a 5 volt regulator.
7	Input from the AM local oscillator
8	External bypass capacitor for the phase detector
9	Input from the FM local oscillator
10	Ground
11	Unswitched supply voltage (Vcc) for the clock keep alive. Keeps the synthesizer oscillator and dividing chain active when the remaining functions of the synthesizer are powered down. Provides a low power microprocessor clock driver and a time-of-day indication.
12, 13	Reference oscillator which is controlled for stability by a quartz crystal (X101), capacitors and trimmer capacitor, for accurate setting of the clock.
14	Reference oscillator frequency divided by two from which the microprocessor derives the instruction time.
15	Clock signal (50 Hz) used in the program loop timing.
16	Resistor R124 sets the gain of the phase locked loop.

TABLE l-4. SYNTHESIZER (U102) PIN DESCRIPTIONS (CONT.)

PIN NUMBER	DESCRIPTION
17	Charge pump output develops tuning voltages and op-amp input.
18	Operational amplifier output - Supplies the tuning voltage for the RF circuits.
19	Operational amplifier ground.
20	Switched supply voltage, 10 volts.

1. Power-On-Reset - The power-on-reset is controlled by UlOl, see Table l-5. Input pin 2 is always high except when the battery voltage is disconnected. When the ignition voltage is applied, the RC time constant of C116 and R107 causes a pulse to be applied to pins 8 and 9, which causes pin 10 to go to a logic low. Pin 10 is hard wired to pin 1. With a logic high on pin 2 and a logic low on pin 1, the output pin 3 goes high. When pin 3 goes high, the microprocessor resets and pins 8 and 32 of the microprocessor go high. This turns on QlOl and Ql02, which causes the mute pin 11 of the audio output IC'S to go low, therefore, muting the output.

TABLE 1-5. QUAD 2 INPUT NAND SCHMITT-TRIGGER

INPUT A	INPUT	B	OUTPUT
0	0	1	
0	1	1	
1	0	1	
1	1	0	

TRUTH TABLE $0=$ Logic Low $1=$ Logic High
2. Analog to Digital Converter - The joystick provides a balance and fader input to A/D converter U202 which places information on the Bus to allow the microcomputer to control U105 for these functions.

1. $\quad \mathrm{RF}$ Stage - The $A M$ signals received by the antenna are coupled through the series choke Ll, which presents a high impedance to FM and shortwave broadcast frequencies, and Cl to AM antenna coil Tl which transformer couples the RF signal to the gate of Ql a J-FET RF amplifier. Transistor Q2 the second RF amplifier has its conduction controlled by the RF amplifier AGC pin 1 of Ul. The RF output of Q 2 is applied to pin 1 of U 2 which contains a varactor diode, fixed capacitor, trimmer capacitor and transformer tuned to resonate at the selected frequency.
2. Local Oscillator - The local oscillator tuning is accomplished through pin 20 of Ul . The local oscillator is controlled by the synthesizer and tuned by the combination of fixed capacitors, trimmer capacitor, transformer and a varactor diode in U2. The output of the oscillator goes directly to the mixer and also the synthesizer.
3. Mixer Staae - The mixer input is tuned by a varactor diode, fixed capacitor, trimmer capacitor and transformer contained in U2. The RF and oscillator are heterodyned in the mixer. The mixer output pin 7 of Ui is tuned to resonate at the IF or difference frequency by FL1 and applied to the IF input pin 9 of Ul through C8.
4. IF Stage - Pin 9 of $U 1$ is the $I F$ input which is amplified internally in Ul, and outputted on pin 10 of Ul. The stage gain of the IF amplifier is controlled by the IF AGC pin 17 of Ul. The IF out is tuned by T2 and coupled by Cl7 to the base of Q3. Transistor Q3 and Q4 are in the cascade configuration with the output being taken off the collector of $Q 4$ and applied to the AM stereo decoder U3.
5. AM Station Detect - When an AM signal is received, the signal meter or station detect output pin 16 of Ul will cause $Q 7$ to conduct which will result in Jl-11 going low. When an AM station is not received, Q7 will be cut off and Jl-11 will go high.
6. Detector and AM Stereo Decoder - The AM stereo decoder chip, U3, contains circuitry to detect and decode AM stereo from stations using the Motorola C-Quam AM stereo system. This system uses a modified form of quadrature modulation which is
compatible with monaural receivers. The phase modulation components of a quadrature signal are extracted and used to phasemodulate the broadcast transmitter. The (L-R) information is contained in this quadrature phase modulation. The (L+R) is transmitted as normal AM. The chip automatically switches to decode stereo when a 25 Hz , 4\% modulated pilot signal is received. Stations transmitting other systems of AM stereo are received in monaural, as are non-stereo stations.

The 450 kHz AM intermediate frequency is applied to pin 3 of u3. The chip contains an envelope detector which detects the (L+R) portion of the signal. A phase locked loop (PLL) detector, utilizing an external resonator controlled oscillator, which operates at eight times the IF frequency, to detect the (L-R) portion of the signal. The frequency of the oscillator is 3600 kHz and is applied to pin 17 with pin 18 being the feedback pin.

The stereo pilot signal is contained in the phase modulated (L-R) portion of the signal. This signal is controlled by an internal AGC and outputted on pin 11. A low pass filter is formed by R19 and C20, from which point the signal goes to pin 13, the input of a 25 Hz bandpass filter. The output of the bandpass filter appears at pin 14, which is also the pilot detector input. The pilot detector has two modes of operation. With a good signal it will switch to stereo after seven consecutive cycles of the 25 Hz pilot. When interference is present the pilot detector requires 37 consecutive cycles of pilot to switch to stereo. Pin 12 of U3 is the interference detector input. If the detected low frequency phase modulated interference exceeds a certain level, the pilot detector will be prevented from switching to stereo. A greater level of interference is required to switch back to monaural if the pilot detector is already in stereo. The most common type of interference that would require the circuitry to switch to monaural mode, would be the reception of more than one station on the selected frequency. Pin 15 goes low to indicate stereo. The decoder can be forced to monaural by holding pin 9 low. When any tuning function is operated, pin 9 is hold low by the microprocessor to switch the decoder to monaural for approximately 1 second.
6. Detector and AM Stereo Decoder (Cont.)

During AM operation, transistors $Q 5$ and $Q 6$ conduct to apply the regulated 10 volts to pin 6 of U3. The AM audio outputs pin 7 (left) and pin 8 (right) are applied to the filter/Amp IC (U7).

C. FM CIRCUIT

1. FM Front End - The completely integrated FM front end, U4, performs the following functions AGC, RF amp, mixer, oscillator and IF. Increased quality and reliability are achieved by integrating the discrete components. The signal from the antenna is hard wired to pin 13 and the output on pin 6 is the intermediate frequency. Tuning voltage is applied to pin 10 to determine the resonant frequencies of the varactor diodes, capacitor and coil combinations, for the RF, mixer and oscillator stages. Search sensitivity is controlled by pin 4 and the AGC input is applied to pin 3. Pin 1 supplies the IF output to the synthesizer. During FM operation, switched supply voltage will be applied to pin 5 because of the conduction of $Q 9$ and 88 .
2. Audio Detection and Station Detector - The IF output out of the front end is applied to pin 2 of u5. The IF amplifier output has two outputs, one to the level detector for AGC output pin 6 and the other to a buffer amplifier. The buffered IF output on pin 16 is connected to pin 15 by R37. Pins 14 and 15 are the inputs to the peak detector which has two outputs, one for the AF amplifier and the other to the frequency change detector. The detected audio is amplified and outputting on pin 10. Operation of the frequency change detector is determined by R39, C48 and C49. Station detect sensitivity is determined by R36 and C47. The station detect output pin 7 turns on 27 when a station is detected. An internal regulator regulates the Vcc voltage level.
3. Stereo Decoder and Blend - The separation of the left and right audio is accomplished in the FM stereo decoder U6. The multiplexed audio signal goes in on pin 3 and is outputted as left and right audio pins 4 and 6. The frequency of the PLL 19 kHz pilot detector is set at pin 16. The internal Vco frequency can be measured at pin 11 with a sufficiently high impedance counter through a 56K resistor or greater. The IC also contains a stereo
4. Stereo Decoder and Blend (Cont.)
blend and high frequency rolloff circuit controlled by the IF AGC voltage at pins 7 and 5. This feature improves the S / N of a very weak stereo station by gradually reducing the separation and high frequency response. The blend threshold is set by R43.

D.
 AUDIO CIRCUIT

1. Filter/Amplifier - The filter/amplifier IC, U7, contains an active high pass-low pass filter which is utilized in the AM mode using input pins 15 and 17. Internal diodes allow the chosen audio to pass but the other mode is blocked by reverse biased diodes. The dual audio amplifier is used for both AM and FM.
2. Dynamic Noise Reduction - The noise reduction is accomplished in U106. The IC contains circuitry which gives up to 10 db of effective noise reduction by varying the audio bandwidth. When there is no program material present, the audio bandwidth is electronically narrowed to cut out the mid and high frequency component of the noise. When music or speech with high frequency material is present, the audio bandwidth is widened so that the audio fidelity is not noticeably affected. The opening of the bandwidth takes only 500 usec. When the bandwidth is open, the noise is masked by the program material. The bandwidth closes back down 60 msec after the high frequency material in the program is removed. The program material is distinguished from the noise by a dynamic level threshold detector. Resistors R132 and R133 set the threshold at which the desired audio is separated from noise. When noise reduction is turned off, pin 2 of $U 102$ pulls pin 9 of U106 to ground, causing a constantly wide audio bandwidth, and no noise reduction. The effect of the noise reduction is greatest on program material containing quiet spots and low modulation.
3. Electronic - Volume, Tone, Balance and Fader - The audio inputs to the Audio Control Circuit, U105, come from three sources. The internal source selector selects the proper source and rejects the others. The input source from the CD player (Infinity only) is applied through Cl63 to pin 8 and through Cl62 to pin 21. The input source from the tape player is applied direct to pin 12 and to pin 17. The input source for the radio is applied
4. Electronic - Volume. Tone, Balance and Fader (Cnt)
through Cl06 to pin 10 and through Cl07 to pin 19. The chosen input source is passed through external capacitors and on pins 13 and 16 to the DNR chip and it comes back in on pins 14 and 15 through C120, C122; and C119, C121. The operation of U105 is software controlled using a two wire I^{2} C Bus connected to pins 1 and 28. Capacitor Cl17 is the Bass control capacitor for the left channel as Cl18 is for the right. Capacitor Cl05 is the treble control capacitor for the left channel as Cl06 is for the right. Capacitors Cl07 and Cl08 are for supply voltage filtering. The internal volume, tone and balance stages are variable depending on the data on the $I^{2} C$ Bus sent by the microprocessor. The U105 has two outputs for the left channel pins 3 and 4 and two outputs for the right channel pins 25 and 26 and the variable fader control in the IC responds to the data from the microprocessor.
5. Power Amplifiers - The audio power amplifiers U107, U108, U109 and Ull0 have their inputs capacitively coupled to pins 2 and 13. Muting is accomplished by the DC voltage level on pin 11. The switched power is applied to pins 6 and 8 for bootstrapping a feedback technique to improve linearity and also pin 10 for $+v p$ (supply voltage). The devices are dual audio integrated Class B hi-fi power amplifiers to be used in the Bridge-Tied-Load (BTL) configuration. Pin 9 is the output feed and pin 5 is the output return.

E. POWER

There are four power inputs to the radio. The battery line P107 pin 1 maintains the memory and clock functions.

NOTE

ANY INTERRUPTION OF THE UNSWITCHED POWER WILL CAUSE THE CLOCK TO REVERT BACK TO 12:00 AND THE RADIO TO REVERT TO 530 kHz IN THE U.S. MODE.

The switched voltage is applied to P107 pin 2. Chokes LlOl and L102 provide filtering and isolate power for the left side audio outputs from the right side audio outputs. The switched voltage is necessary to get a clock display and operate the radio. The rheostat dimming line P 107 pin 3 provides a controllable dimming of the incandescent lamps and vacuum fluorescent display by varying the voltage. The side marker input P107 pin 4 is used to lower the brightness of the vacuum fluorescent display.

F. \quad CLOCK

The clock function is derived from the synthesizer on-chip oscillator which is stabilized by a 3.96 MHz quartz crystal
(X100). Capacitor Cl31 is a fine tuning trimmer for setting the clock accuracy. As an example, if the oscillator frequency was 392 Hz low (196 Hz low at U102 pin 14), this would cause the clock to lose one minute per week. This same degree of error would show up as only 79 Hz low on the AM local oscillator. See Section IV for the oscillator alignment procedure.

G. MECHANISM CONTROL BOARD

Because of the surface mounted devices/components (SMD), it is recommended that board level maintenance be performed instead of component level.

H. PREAMPLIFIER

Because of the surface mounted devices/components (SMD), it is recommended that board level maintenance be performed instead of component level.
IV. ALIGNMENT
A. CLOCK REFERENCE FREOUENCY SETTING

1. Standard Method - The reference oscillator can be set without opening the radio by following this method.
a. Turn the radio on and tune to 540 on the display.
b. Connect an accurately calibrated counter to Jl pin 7 (TPl) which is accessible through the top cover, see Fig. 1-4. This should display the AM local oscillator frequency, 990 kHz when the radio is tuned to 540 .
c. Adjust Cl31 to give a local oscillator frequency of exactly $990 \mathrm{kHz} \mathrm{t/} \mathrm{Hz}$. capacitor C131, which is on the audio logic board, can be adjusted with a long tuning tool through a hole in the top cover and RF board, see Fig. l-4.
2. Alternate Method - This method is used when a frequency counter is unavailable, and uses lissajous patterns. A standard laboratory oscilloscope with two low capacitance (X10) probes and a known good electronic tuned radio with (3.96 $\mathrm{MHz} \mathrm{XTAL)} ,\mathrm{for} \mathrm{a} \mathrm{frequency} \mathrm{standard}$, for this procedure (see Fig. l-5).
a. Gain access to $u 102$ pin 14 of the frequency standard radio and connect it to the oscilloscope horizontal input.
b. Connect U 102 pin 14 of the radio under test to the oscilloscope vertical input.
c. Connect both radios to a power source of switched and unswitched voltage, as described in the service notes. (13.2V)
d. With oscilloscope horizontal sweep, set to external, adjust the oscilloscope vertical and horizontal gain controls to obtain a rectangular or circular pattern (see Fig. l-5).
e. Slowly adjust the trimmer capacitor Cl31 on the radio under test to obtain as near as possible, a stationary pattern. One complete revolution of the pattern per second indicates a difference in frequency of 1 Hz .

FI GRE 1-4. ALI GNMENT LOCATI ONS

FI GRE 1-5. LI SSAy OLIS PATTERN TEST SET-UP

The AM tuned circuits are factory aligned and alignment is not recommended. However, the AM dummy antenna detail is shown in Figure 1-6 for an aid in diagnosis.

PLUG TO FIT RECEIVER
ANTENNA CONNECTOR

FIGRE I-6. AM DUMM ANTENNA DETAI L
C. FM ALIGNMENT PROCEDURE

Connect an 8 Ohm, 20 watt, resistive load in place of each speaker and connect an audio voltmeter across each of the front speaker loads.

CAUTION

BOTH INPUT TERMINALS OF THE VOLTMETER MUST BE ISOLATED FROM GROUND.

Connect a signal generator through an FM dummy antenna, (see Figure l-7), to the receiver antenna connector, adjust the signal generator for 22.5 kHz deviation at 400 Hz . Connect a 13.2 volt power supply to the receiver power leads.

FI GURE I-7. FM DUMM ANTENNA DETAI L

FM ALIGNMENT			
Step	Test Signal	Receiver Tuned To	Adjustments, see Figure 4.
STATION DETECTOR - FINE ADJUSTMENT			
1.	97.9 MHZ	97.9 MHz	Set the signal generator output to 5 uv. Adjust T3 so that the radio is unmuted at 97.9 MHz and mutes when tuned to either 97.7 MHz or 98.1 MHz.
FM STEREO ALIGNMENT			
2.	Set the signal generator output to 1 mv for quieting. Do not modulate. Do not use stereo pilot. Connect a frequency counter through a 56 K Ohm series resistor to TP4 (pin 11 of U6).		
	97.9 MHz	97.9 MHz	Adjust R65 for 19 kHz signal at U6-pin 11.
STEREO BLEND			
3.	Set the signal generator output to 15 uv. Modulate with 400 Hz , 22.5 kHz deviation. Turn the stereo pilot on.		
	97.9 MHz	97.9 MHz	Begin with R43 and R44 adjusted to the full clockwise position.
4.	97.9 MHz	97.9 MHz	Adjust R43 for 10 db of stereo separation at 400 Hz .
5.	97.9 MHz	$97.9 \mathrm{MHZ}$	Increase the signal generator output to 3 mv and adjust R44 for maximum stereo separation.
6.	97.9 MHz	97.9 MHz	Recheck the stereo separation at 15 uv. If it does not fall between 11 db and 15 db , readjust R 43 for 13 db of stereo separation.

V. DISASSEMBLY AND ASSEMBLY PROCEDURE
 A. DISASSEMBLY PROCEDURE

In order to replace components in the Electronic Tune Cassette Radio, the following removal steps must be performed (see Table 1-6 for removal sequence).

TABLE 1-6. ELECTRONIC TUNE RADIO REMOVAL SEQUENCE

Part	Steps To Be Performed	Part Location Figures
Escutcheon/Switch Assembly	1	1-8 and 1-10
Control Board	1 and 2	1-10
Top Cover	3	1-16
Tape Mechanism Assembly	1 and 4	1-14
RF PC Board Assembly	1,3,4 and 5	1-13
Audio/Logic PC Board Assembly	1,3,4,5 and 6	1-15
Static Display Module Assembly	1 and 2	1-11
Tape Mechanism Sub-Assembly	4 and 8	

1. Escutcheon/Switch Assemblv Removal - To remove the Escutcheon/Switch Assembly, perform the following steps (see Figure 1-8).
a. Remove two screws from the left side front and two screws from the right side front of the chassis.
b. Pull assembly forward sufficiently to unplug the Audio-Control Cable Assembly (W202), (see Figure l-10). Place a flat blade screwdriver blade under flange of the connector and pry the connector out.
2. Control PC Board Assemblv Removal - To remove the Control PC Board Assembly (117), depress the six retainer tabs, and remove from the escutcheon (see Figure l-10).

NOTE

> WHEN RE-INSTALLING THE CONTROL BOARD, PLACE THE JOYSTICK IN THE CENTER AND LAY THE BOARD STRAIGHT INTO THE ESCUTCHEON. GENTLY PRESS IN WITH THUMBS IN CLEAR AREAS OF THE BOARD UNTIL IT SNAPS IN. EXERCISE EACH SWITCH FOR PROPER SWITCH SHAFT SEATING.
3. Top Cover Removal - To remove the Top Cover (107), remove two screws from top rear of radio and lift cover off, remove the Top Cover Insulator (103), (see Figure 1-16).
4. Tave Mechanism Assembly Removal - To remove the Tape Mechanism Assembly, perform the following steps:
a. Remove two screws on rear.
b. Disconnect the Radio/Tape Interface Cable from Header P103 (see Figure 1-14).
5. RF PC Board Assembly Removal - To remove the RF PC Board Assembly (115), perform the following steps:
a. Desolder the five tabs from the chassis to free the board (see Figure 1-13).
b. Lift the RF PC board assembly gently out. P104 will unplug from Jl as the board is lifted out.
6. Audio/Logic PC Board Assemblv Removal - To remove the Audio/Logic PC Board Assembly (116), perform the following steps:
a. Desolder five ground tabs located two on each end and one in back of the PC board (see Figure 1-15).
b. Remove four screws that hold the audio IC's to the heatsink, one on each end and two in the back.
c. Drop the audio/logic board down and out of the heat sink.
7. Static Display Module Removal - To remove the static disulav module (U201). (see Fiqure l-11), desolder the static dispiay module from the control PC board. As with all components on the control board, care must be taken to preserve the copper tracts on top of the PC board, as well as the bottom. When installing a new display board, make sure of a good top side connection as well as bottom. Damaged tracts may be repaired with a thin gage, solid conductor wire.
8. Cassette Tape Mechanism Subassemblv Removal - To remove the Cassette Tape Mechanism Subassembly, remove the four Phillips head screws on the bottom cover. The tape mechanism subassembly should now be free.
B. ASSEMBLY PROCEDURE

Reverse the component removal sequence to reassemble the radio.

FI GRE I-8. PARTS LOCATI ON, ESCUTCFEON ASSEMBLY

FI GRE I-9. PARTS LOCATI ON, HEAT SI NK CHASSIS ASSEMBLY

FI GRE 1-10. PARTS LOCATI ON, BACK OF ESCUTCFEON ASSEMBLY

FI GURE 1-11. PARTS LOCATI ON CONTROL PC BOARD

FI GURE 1-13. PARTS LOCATI ON, RF BOARD

FI GRE 1-15. PARTS LOCATI ON, AUDI O LOGC PC BOARD

FI GURE 1-16. PARTS LOCATI ON, R/F BOARD, WTH I NSULATOR

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		DIODES, TRANSISTORS, IC'S (RF BOARD ASSEMBLY, P/N 4393206-1: 4393206-2)
D1	4231205-A	Diode, Switch
D2	3600875	Diode, Pin
	4231205-A	Diode, Switch
Q1	4234554-R	Transistor, NPN, JFET
Q2	4234555-R	Transistor, NPN
Q3	4234555-R	Transistor, NPN
Q4	4234556-R	Transistor, PNP
Q5	4232198-R92	Transistor, PNP
Q6	3596339-R	Transistor, NPN
Q7	4230891-R	Transistor, NPN
Q8	4232198-R92	Transistor, PNP
Q9	3596339-R	Transistor, NPN
Q10	3596339-R	Transistor, NPN
U1	4234550	IC, AM Signal Processor
u2	4234422	Module, AM RF Tuner
u3	4233034	IC, AM Stereo Decoder
u4	4234553	Module, FM RF/MIX/OSC
u5	4393690,	IC, FM Detector
U6	4230078	IC, FM Stereo Decoder
u7	4234423	Module, Filter - Amplifier
		DIODES, TRANSISTORS, IC'S (AUDIO/LOGIC BOARD ASSEMBLY, P/N 4393222-1; 4393222-2)
D100	4231205-A	Diode, Switch
D101	4231205-A	Diode, Switch
D102	4230853-A	Diode, Zener, 5.6V
D103	4231204-A201	Diode, Rectifier, 200V
D104	4234567	Diode, Rectifier, 400V
D105	4231204-A201	Diode, Rectifier, 200V
D106	4233049-R	Diode, Stabilizer, 2.38V
Q100	4232553-R92	Transistor, NPN
Q101	4232553-R92	Transistor, NPN
Q102	4232553-R92	Transistor, NPN
Q103	3600963-R	Transistor, NPN
U100	4516271	IC, Microprocessor
Ul01	4234590	IC, Quad 2-Input NAND
U102	4234412	IC, Synthesizer
U103	4234592	IC, Regulator 5V
U104	4233042	IC, Regulator 10V
U105	4234545	IC, Audio Control 6300

\begin{tabular}{|c|c|c|}
\hline REFERENCE NUMBER \& PART NUMBER \& DESCRIPTION

\hline \multirow[b]{30}{*}{U106
U107
U108
U109
U110
U111
U112

D201
D202
D203
Q201
U201
U202

L2} \& \& | DIODES, TRANSISTORS, IC'S |
| :--- |
| (AUDIO/LOGIC BOARD ASSEMBLY, P/N 4393222-1: 4393222-2) |

\hline \& 4230862 \& IC, DNR

\hline \& 4234547 \& IC, Audio Amplifier

\hline \& 4392808-R \& IC, Regulator, 5V

\hline \& 4392807 \& IC, Driver Overlay

\hline \& \& $$
\begin{aligned}
& \text { DIODES, TRANSISTORS, IC's } \\
& \text { (CONTROL BOARD ASSEMBLY, P/N } \\
& \text { 4234484) }
\end{aligned}
$$

\hline \& 4231205-A \& Diode, Switch

\hline \& 4231205-A \& Diode, Switch

\hline \& 4231200-A140 \& Diode, Zener 14V

\hline \& 4234414-N \& Transistor, NPN

\hline \& 4392399 \& Module, Static Display

\hline \& 4234546 \& IC, A/D Converter

\hline \& \& CRYSTALS, COILS, TRANSFORMERS, FILTERS (RF BOARD ASSEMBLY,
P/N 4393206-1: 4393206-2)

\hline \& 4233116-A1 \& Inductor, Fixed 4.7 uHy

\hline \& 4234551 \& Transformer, AM Antenna

\hline \& 4234552 \& Transformer, AM IF

\hline \& 4234558 \& Transformer, FM Detector

\hline \& 4234539 \& Resonator, AM, Stop DET

\hline \& 4393274 -R \& Resonator, AM, Radial

\hline \& 4234549 \& Filter, AM IF

\hline \& 3599705 \& Ferrite Bead

\hline \& 3599705 \& Ferrite Bead

\hline \& 4232720 \& Crystal, 3.96 MHz

\hline \& 4234577 \& Inductor, Supply Filter, 600 uH

\hline \& 4234577 \& Inductor, Supply Filter, 600 uH

\hline \& 4393213 \& Inductor, Audio Filter, 800 uH

\hline \& 4393212 \& Relay, DPDT

\hline
\end{tabular}

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		$\begin{aligned} & \text { CAPACITORS, (RF BOARD ASSEMBLY, } \\ & \text { P/N 4393206-1; 4393206-Z) } \end{aligned}$
Cl	$\begin{aligned} & 4231063 \\ & \text { RAY5S103M2 } \end{aligned}$	Capacitor, Disc, 0.01 MF, 25V
C 2	$\begin{aligned} & \text { 4231061- } \\ & \text { RACOG330J3 } \end{aligned}$	Capacitor, Disc, 33 PF , 50V
C4	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S473M1 } \end{aligned}$	Capacitor, Disc, 0.047 MF, 16V
c5	4230650-23	Capacitor, Elect., 100 MF , 16V
C6	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S104M1 } \end{aligned}$	Capacitor, Disc, $0.1 \mathrm{MF}, 16 \mathrm{~V}$
C7	4230650-16	Capacitor, Elect., 1.0 MF , 50V
C8	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S473M1 } \end{aligned}$	Capacitor, Disc, 0.047 MF, 16V
C9	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S104M1 } \end{aligned}$	Capacitor, Disc, 0.1 MF, 16V
Cl0	4230650-18	Capacitor, Elect., 3.3 MF, 50V
Cl1	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S473M1 } \end{aligned}$	Capacitor, Disc, 0.047 MF, 16V
C12	4230650-19	Capacitor, Elect., 4.7 MF, 50V
C13	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S473M1 } \end{aligned}$	Capacitor, Disc, 0.047 MF, 16V
C14	4230650-17	Capacitor, Elect., 2.2 MF , 50V
C15	4234411-2	Capacitor, Elect., 330 MF , 16V
C16	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S473M1 } \end{aligned}$	Capacitor, Disc, 0.047 MF, 16V
Cl7	$\begin{aligned} & \text { 4231072- } \\ & \text { AY5R103M } \end{aligned}$	Capacitor, Tubular Ceramic, $0.01 \mathrm{MF}, 25 \mathrm{~V}$
C18	$\begin{aligned} & \text { 4231072- } \\ & \text { AY5R103M } \end{aligned}$	Capacitor, Tubular Ceramic, $0.01 \mathrm{MF}, 25 \mathrm{~V}$
cl. 9	$\begin{aligned} & \text { 4231072- } \\ & \text { AY5R103M } \end{aligned}$	Capacitor, Tubular Ceramic, $0.01 \mathrm{MF}, 25 \mathrm{~V}$
C20	4230650-19	Capacitor, Elect., 4.7 MF, 50V
C21	$\begin{aligned} & 4231059- \\ & \text { R334J0 } \end{aligned}$	Capacitor, Poly., 0.33 MF , 50V
C22	$\begin{aligned} & 4231059- \\ & \text { R334JO } \end{aligned}$	Capacitor, Poly., 0.33 MF , 50V
C23	4230650-17	Capacitor, Elect., 2.2 MF , 50V
C24	4230650-25	Capacitor, Elect., $10 \mathrm{MF}, 16 \mathrm{~V}$
C25	$\begin{aligned} & \text { 4231059- } \\ & \text { R102KI } \end{aligned}$	Capacitor, Poly., 0.001 MF , 63V
C2 6	4230650-22	Capacitor, Elect., 47 MF , 16V
C27	$\begin{aligned} & \text { 4231059- } \\ & \text { R332J1 } \end{aligned}$	Capacitor, Poly., 0.0033 MF , 63V
C28	4230650-17	Capacitor, Elect., 2.2 MF , 50V

REFERENCE NUMBER	PART NUMBER	DESCRIPTION	
		CAPACITORS, (RF BOARD ASSEMBLY, P/N 4393206-1; 4393206-2)	
c29	$\begin{aligned} & 4231059- \\ & \text { R332Jl } \end{aligned}$	Capacitor,	Poly., $0.0033 \mathrm{MF}, 63 \mathrm{~V}$
c30	$\begin{aligned} & 4231059-1 \\ & \text { R332J1 } \end{aligned}$	Capacitor,	Poly., 0.0033 MF , 63V
c31	4230650-25	Capacitor,	Elect., $10 \mathrm{MF}, 16 \mathrm{~V}$
C32	$\begin{aligned} & \text { 4231059- } \\ & \text { R332J1 } \end{aligned}$	Capacitor,	Poly., 0.9033 MF , 63V
c33	$\begin{aligned} & 4231059- \\ & \mathrm{R} 473 \times 2 \end{aligned}$	Capacitor,	Poly., 0.047 MF, 100V
c34	$\begin{aligned} & 4232777- \\ & \text { R103Ko } \end{aligned}$	Capacitor,	Poly., $0.01 \mathrm{MF}, 50 \mathrm{~V}$
c35	$\begin{aligned} & 4231061- \\ & \text { RACOG510J3 } \end{aligned}$	Capacitor,	Disc, $51 \mathrm{PF}, 50 \mathrm{~V}$
C36	$\begin{aligned} & 4231071- \\ & \text { AY5P } 271 \mathrm{~K} \end{aligned}$	Capacitor, 5ov	Tubular Ceramic, 270 PF,
c37	$\begin{aligned} & 4231063- \\ & \text { RAY5S473M1 } \end{aligned}$	Capacitor,	Disc, 0.047 MF, 16V
C38	4234569-1	Capacitor,	Elect., 1000 MF , 10V
c39	$\begin{aligned} & 4231063- \\ & \text { RAY5S473M1 } \end{aligned}$	Capacitor,	Disc, 0.047 MF, 16V
C40	$4231072-$ AY5P151M	Capacitor, 5ov	Tubular Ceramic, 150 PF,
c41	$\begin{aligned} & 4231063- \\ & \text { RAY5S104M1 } \end{aligned}$	Capacitor,	Disc, $0.1 \mathrm{MF}, 16 \mathrm{~V}$
C42	$\begin{aligned} & 4231063- \\ & \text { RAY5S103M2 } \end{aligned}$	Capacitor,	Disc, $0.01 \mathrm{MF}, 25 \mathrm{~V}$
c43	$\begin{aligned} & 4231063- \\ & \text { RAY5S103M2 } \end{aligned}$	Capacitor,	Disc, $0.01 \mathrm{MF}, 25 \mathrm{~V}$
c44	$\begin{aligned} & 4231063- \\ & \text { RAY5S103M2 } \end{aligned}$	Capacitor,	Disc, $0.01 \mathrm{MF}, 25 \mathrm{~V}$
c45	$\begin{aligned} & 4231061- \\ & \text { RACOH5R6J4 } \end{aligned}$	Capacitor,	Disc, 5.6 PF, 100V
C46	$\begin{aligned} & 4231061- \\ & \text { RACOG150J3 } \end{aligned}$	Capacitor,	Disc, $15 \mathrm{PF}, 50 \mathrm{~V}$
c47	$\begin{aligned} & 4232777- \\ & \text { R103Ko } \end{aligned}$	Capacitor,	Poly . $0.01 \mathrm{MF}, 50 \mathrm{~V}$
C48	4230650-17	Capacitor,	Elect., 2.2 MF, 50V
c49	4230650-25	Capacitor,	Elect., $10 \mathrm{MF}, 16 \mathrm{~V}$
C50	$\begin{aligned} & 4231062- \\ & \text { RAY5S501M4 } \end{aligned}$	Capacitor,	Disc, $500 \mathrm{PF}, 100 \mathrm{~V}$
c51	$\begin{aligned} & 4231062- \\ & \text { RAY5S501M4 } \end{aligned}$	Capacitor,	Disc, $500 \mathrm{PF}, 100 \mathrm{~V}$
C52	4230650-18	Capacitor,	Elect., 3.3 MF, 50V

REPLACEMENT PARTS LIST, ELECTRONIC TUNED MULTIPLEX, CASSETTE RADIO

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		CAPACITORS, (RF BOARD ASSEMBLY, P/N 4393206-1: 4393206-2)
c53	$\begin{aligned} & \text { 4231063- } \\ & \text { RAY5S103M2 } \end{aligned}$	Capacitor, Disc, 0.01 MF, 25V
c54	4230650-15	Capacitor, Elect., 0.47 MF , 50V
c 55	4230650-16	Capacitor, Elect., 1.0 MF, 50V
C56	$\begin{aligned} & 4231059- \\ & \text { R683X1 } \end{aligned}$	Capacitor, Poly., 0.068 MF , 63V
c 57	$\begin{aligned} & 4231064- \\ & \text { R751JO } \end{aligned}$	$\text { Capacitor, Polyprop., } 750 \text { PF, }$ $50 \mathrm{v}$
C58	4230650-15	Capacitor, Elect., 0.47 MF , 50V
c59	4230650-16	Capacitor, Elect., 1.0 MF, 50 V
C60	$\begin{aligned} & 4231059- \\ & \text { R333J1 } \end{aligned}$	Capacitor, Poly., 0.033 MF , 63V
C61	4230650-25	Capacitor, Elect., 10 MF , 16V
C62	$\begin{aligned} & 4232777- \\ & \text { R273K2 } \end{aligned}$	Capacitor, Poly. 0.027 MF , 100V
C63	$\begin{aligned} & 4232777- \\ & \text { R273K2 } \end{aligned}$	Capacitor, Poly. 0.027 MF , 100V
C64	4234411-2	Capacitor, Elect., 330 MF , 16V
		CAPACITORS, (AUDIO/LOGIC BOARD ASSEMBLY, $\mathrm{P} / \mathrm{N} \quad 4393222-1,4393222-2$)
Cl00	$\begin{aligned} & 4231059- \\ & \text { R103KO } \end{aligned}$	Capacitor, Poly., 0.01 MF , 50V
Cl01	$\begin{aligned} & 4232777- \\ & \text { R562K2 } \end{aligned}$	Capacitor, Poly., 0.0056 MF , 100V (Premium)
Cl01	$\begin{aligned} & 4232777- \\ & \text { R472K2 } \end{aligned}$	Capacitor, Poly., 0.0047 MF, 100V (Infinity)
Cl 02	$\begin{aligned} & 4232777- \\ & \text { R562K2 } \end{aligned}$	Capacitor, Poly., 0.0056 MF , 100V
Cl02	$\begin{aligned} & 4232777- \\ & \mathrm{R} 472 \mathrm{~K} 2 \end{aligned}$	Capacitor, Poly., 0.0047 MF , 100V
Cl03	4230650-20	Capacitor, Elect., 22 MF , 16V
Cl04	4230650-23	Capacitor, Elect., 100 MF , 16V
Cl05	4230650-25	Capacitor, Elect., 10 MF , 16 V
Cl06	4230835-R4	Capacitor, Bi-Polar, 2.2 MF, 16V
Cl07	4230835-R4	Capacitor, Bi-Polar, 2.2 MF , 16V

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		CAPACITORS, (AUDIO/LOGIC ASSEMBLY, P/N 4393222-1; 4393222-2)
Cl08	$\begin{aligned} & \text { 4232777- } \\ & \text { R683K1 } \end{aligned}$	Capacitor, Poly., , . 068 MF, 63V (Premium)
C1. 08	$\begin{aligned} & 4232777- \\ & \text { R823Kl } \end{aligned}$	Capacitor, Poly., . 082 MF, 63V (Infinity)
Cl09	4230835-R4	Capacitor, Bi-Polar, 2.2 MF , 16V
Cl10	$\begin{aligned} & 4232777- \\ & \text { R683Kl } \end{aligned}$	Capacitor, Poly., . $068 \mathrm{MF}, 63 \mathrm{~V}$ (Premium)
Cl10	$\begin{aligned} & 4232777- \\ & \text { R823Kl } \end{aligned}$	Capacitor, Poly., . 082 MF , 63V (Infinity)
Cl11	4230835-R4	Capacitor, Bi-Polar, 2.2 MF, 16V
Cl12	4230835-R4	Capacitor, Bi-Polar, 2.2 MF , 16V
Cl13	4230835-R4	Capacitor, Bi-Polar, 2.2 MF, 16V
Cl14	$\begin{aligned} & 4232777- \\ & \text { R392KO } \end{aligned}$	Capacitor, Poly., .0039 MF, 50V
Cl15	$\begin{aligned} & 4232777- \\ & \text { R392KO } \end{aligned}$	Capacitor, Poly., . 0039 MF , 50V
Cl16	$\begin{aligned} & 4231059- \\ & \text { R104KO } \end{aligned}$	Capacitor, Poly., 0.1 MF, 50V
C117	4230650-23	Capacitor, Elect., 100 MF , 16V
C118	4230650-17	Capacitor, Elect., 2.2 MF , 50V
C119	$\begin{aligned} & 4232777- \\ & \text { R473K2 } \end{aligned}$	Capacitor, Poly., . 047 MF , 100V
Cl20	$\begin{aligned} & 4232777- \\ & \text { R10 } 4 \mathrm{KO} \end{aligned}$	Capacitor, Poly., 0.1 MF, 50V
Cl21	$\begin{aligned} & 4231059- \\ & \text { R102Kl } \end{aligned}$	Capacitor, Poly., . 001 MF , 63V
Cl22	$\begin{aligned} & 4232777- \\ & \text { R473K2 } \end{aligned}$	Capacitor, Poly., . 047 MF , 100 V
Cl24	$\begin{aligned} & 4232777- \\ & \text { R104Ko } \end{aligned}$	Capacitor, Poly., 0.1 MF, 50V
Cl25	$\begin{aligned} & 4232777-- \\ & \text { R104Ko } \end{aligned}$	Capacitor, Poly., 0.1 MF, 50V
Cl26	$\begin{aligned} & 4232777- \\ & \text { R104KO } \end{aligned}$	Capacitor, Poly., 0.1 MF, 50V
Cl27	$\begin{aligned} & 4231071- \\ & \text { AY5P102K } \end{aligned}$	```Capacitor, Tubular Ceramic, .001 MF``` 5ov
Cl28	$\begin{aligned} & 4232777- \\ & \text { R103Ko } \end{aligned}$	Capacitor, Poly., 0.01 MF , 50V
C129	4230650-23	Capacitor, Elect., $0.001 \mathrm{MF}, 16 \mathrm{~V}$
C130	$\begin{aligned} & 4231059- \\ & \text { R222J1 } \end{aligned}$	Capacitor, Poly., . 0022 MF , 63V
C131	4232682	Capacitor, Trimmer, 5.5-18 PF, 3ov

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		RESISTORS, (RF BOARD ASSEMBLY, P/N 4393206-1: 4393206-2)
R12	4231017-R333	Resistor, l/8 W, 33k, $\pm 5 \%$
R13	4231017-R332	Resistor, $1 / 8 \mathrm{~W}, 3.3 \mathrm{~K}, \pm 5 \%$
R14	4231017-R221	Resistor, l/8 W, 220 Ohm , $\pm 5 \%$
R15	4231017-R471	Resistor, l/8 W, 470 Ohm, $\pm 5 \%$
R16	4231017-R331	Resistor, l/8 W, $330 \mathrm{Ohm}, \pm 5 \%$
R17	3597091-220	Resistor, l/4 W, 22 Ohm, $\pm 5 \%$
R 18	3597091-272	Resistor, $1 / 4 \mathrm{~W}, 2.7 \mathrm{~K}, \pm 5 \%$
R19	3597091-431	Resistor, $1 / 4 \mathrm{~W}, 430 \mathrm{Ohm},+5 \%$
R20	3597091-162	Resistor, $1 / 4 \mathrm{~W}, 1.6 \mathrm{~K}, \pm 5 \%$
R21	3597347-8251	Resistor, $1 / 4 \mathrm{~W}, 8.25 \mathrm{~K}, \pm 5 \%$
R22	3597091-162	Resistor, $1 / 4 \mathrm{~W}, 1.6 \mathrm{~K}, \pm 5 \%$
R23	4231017-R623	Resistor, $1 / 8 \mathrm{~W}, 62 \mathrm{~K}, \pm 5 \%$
R24	4231020-R3163	Resistor, $1 / 8 \mathrm{~W}, 316 \mathrm{~K}, \pm 1 \%$
R25	3597347-1371	Resistor, l/4 W, 1.37K, $\pm 1 \%$
R26	3597091-431	Resistor, l/4 W, $430 \mathrm{Ohm}, \pm 5 \%$
R27	3597091-100	Resistor, $1 / 4 \mathrm{~W}, 10 \mathrm{Ohm}, \pm 5 \%$
R28	3597091-122	Resistor, $1 / 4 \mathrm{~W}, 1.2 \mathrm{~K}, \pm 5 \%$
R29	3597091-273	Resistor, $1 / 4 \mathrm{~W}, 27 \mathrm{~K}, \pm 5 \%$
R30	3597091-153	Resistor, l/4 W, 15K, \pm 5\%
R31	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R33	3597091-102	Resistor, $1 / 4 \mathrm{~W}, 1 \mathrm{~K}, \pm 5 \%$
R34	3597091-124	Resistor, $1 / 4 \mathrm{~W}, 120 \mathrm{~K}, \pm 5 \%$
R35	3597091-101	Resistor, l/4 W, 100 Ohm, + 5\%
R36	4231017-R472	Resistor, $1 / 8 \mathrm{~W}, 4.3 \mathrm{~K}, \pm 5 \%$
R37	4231017-R122	Resistor, $1 / 8 \mathrm{~W}, 1.2 \mathrm{~K}, \pm 5 \%$
R38	4231017-R223	Resistor, $1 / 8 \mathrm{~W}, 22 \mathrm{~K}, \pm 5 \%$
R39	4231017-R512	Resistor, $1 / 8 \mathrm{~W}, 5.1 \mathrm{~K}, \pm 5 \%$
R40	3597091-331	Resistor, $1 / 4 \mathrm{~W}, 330 \mathrm{Ohm}$, $\pm 5 \%$,
R41	3597091-101	Resistor, $1 / 4 \mathrm{~W}, 100 \mathrm{Ohm}, \pm 5 \%$
R42	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R43	4234582-224	Resistor, Variable, 220K
R44	4234582-104	Resistor, Variable, 100K
R45	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R46	3597091-513	Resistor, l/4 W, 51K, $\pm 5 \%$
R47	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R48	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R49	3597347-1912	Resistor, $1 / 4 \mathrm{~W}, 19.1 \mathrm{~K}, \pm 1 \%$
R50	4234582-502	Resistor, Variable, 5K
R51	3597091-102	Resistor, l/4 W, lK, $\pm 5 \%$
R52	3597091-180	Resistor, l/4 W, 18 Ohm, + 5\%
R53	3597091-103	Resistor, $1 / 4 \mathrm{~W}, 10 \mathrm{~K}, \pm 5 \%$
R54	3597091-122	Resistor, $1 / 4 \mathrm{~W}, 1.2 \mathrm{~K}, \pm 5 \%$
R55	3597091-273	Resistor, $1 / 4 \mathrm{~W}, 27 \mathrm{~K}, \pm 5 \%$

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		RESISTORS, (RF BOARD ASSEMBLY, P/N 4393206-1; 4393206-2)
R56	3597091-153	Resistor, l/4 W, 15K, \pm 5\%
R57	3597091-103	Resistor, $1 / 4 \mathrm{~W}, \mathrm{lOK}, \pm 5 \%$
R58	3597091-102	Resistor, $1 / 4 \mathrm{~W}, \mathrm{lK}, \pm 5 \%$
		RESISTORS, (AUDIO/LOGIC BOARD ASSEMBLY; P/N 4393222-1: 4393222-2)
Rlol	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R102	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R103	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R104	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R105	3597091-223	Resistor, $1 / 4 \mathrm{~W}, 22 \mathrm{~K}, \pm 5 \%$
R106	3597091-223	Resistor, l/4 W, 22X, \pm 5\%
R107	3597091-104	Resistor, l/4 W, look, $\pm 5 \%$
R108	3597091-101	Resistor, $1 / 4 \mathrm{~W}, 100$ Ohm, $\pm 5 \%$
R109	3597091-102	Resistor, l/4 W, lK, $\pm 5 \%$
Rllo	3597091-101	Resistor, l/4 W, 100 Ohm, $\pm 5 \%$
Rlll	3597091-512	Resistor, $1 / 4 \mathrm{~W}, 5.1 \mathrm{~K}, \pm 5 \%$
R112	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R113	3597091-392	Resistor, $1 / 4 \mathrm{~W}, 3.9 \mathrm{~K}, \pm 5 \%$
R114	3597091-106	Resistor, l/4 W, lok, $\pm 5 \%$
R115	3597091-512	Resistor, $1 / 4 \mathrm{~W}, 5.1 \mathrm{~K}, \pm 5 \%$
R116	4231017-R683	Resistor, $1 / 8 \mathrm{~W}, 68 \mathrm{~K}, \pm 5 \%$
R117	4231017-R104	Resistor, $1 / 8 \mathrm{~W}, 100 \mathrm{~K}, \pm 5 \%$
R118	4231017-R273	Resistor, $1 / 8 \mathrm{~W}, 27 \mathrm{~K}, \pm 5 \%$
R119	3597091-273	Resistor, l/4 W, 27K, \pm 5\%
R120	3597091-273	Resistor, l/4 W, 27K, $\pm 5 \%$
R121	3597091-273	Resistor, l/4 W, 27K, $\pm 5 \%$
R122	35997091-101	Resistor, $1 / 4 \mathrm{~W}, 100 \mathrm{Ohm}$, + 5\%
R123	4231017-R512	Resistor, $1 / 8 \mathrm{~W}, 5.1 \mathrm{~K}, \pm 5 \%$
R124	4231017-R102	Resistor, l/8 W, lK, $\pm 5 \%$
R125	3597091-102	Resistor, l/4 W, lK, $\pm 5 \%$
R126	3597091-102	Resistor, l/4 W, lK, $\pm 5 \%$
R127	3597091-102	Resistor, l/4 W, lK, $\pm 5 \%$
R128	4231017-R202	Resistor, l/8 W, 2K, $\pm 5 \%$ (Infinity)
R129	4231016-A2F91	Resistor, WW_Fusible, 2W, 91 Ohm, + 5\%
R130	4231017-R152	$\begin{aligned} & \text { Resistor, } \\ & \text { (Infinity) } \end{aligned}$
R131	4231017-R103	Resistor, $1 / 8 \mathrm{~W}, \mathrm{loK}, \pm 5 \%$
R132	3597091-103	Resistor, l/4 W, lok, $\pm 5 \%$
R133	3597091-154	Resistor, $1 / 4 \mathrm{~W}, 150 \mathrm{~K}, \pm 5 \%$
R134	4231017-R304	Resistor, $1 / 8 \mathrm{~W}, 300 \mathrm{~K}, \pm 5 \%$

REPLACEMENT PARTS LIST, ELECTRONIC TUNED MULTIPLEX, CASSETTE RADIO

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		RESISTORS, (AUDIO/LOGIC BOARD ASSEMBLY, P / N 4393222-1: 4393222 -2'
R135	4231017-R272	Resistor, $1 / 8 \mathrm{~W}, 2.7 \mathrm{~K}, \pm 5 \%$
R136	4231017-R272	Resistor, $1 / 8 \mathrm{~W}, 2.7 \mathrm{X}, \pm 5 \%$
R202	4392343	Control, Joystick, Yellow (Special
R202	4234568	Control, Joystick (Premium)
R203	$\begin{aligned} & 4231106- \\ & \text { AlF20 } \end{aligned}$	Resistor, lW, 200 Ohm, $\pm 5 \%$
		MISCELLANEOUS PARTS
101	4234514-1	Knob, Joystick (Black)
101	4234514-2	Knob, Joystick (Bright)
102	4233144	Insulator, Ground Screw
103	4233051	Insulator, Top Cover
104	4234531	Insulator, Audio Board
105	4234588	Seal, Joystick
106	4234595	Clip, (U103 \& U104)
107	4234520	Cover, Top
108	4234589	Heatsink, Chassis Assembly
109	4234591	Clip, (U112)
110	4393220-1	Escutcheon Assembly Blk, Less Lens
111	4393220-2	Escutcheon Assembly Brt, Less Lens
114	4234519-1	Lens, Display, (Infinity)
114	4234519-2	Lens, Display, (Premium)
115	4393206-3	PC Board Assembly, RF
116	4393222-1	PC Board Assembly, Audio/Logic, (Infinity)
116	4393222-2	PC Board Assembly, Audio/Logic, (Premium)
117	4393225-1	PC Board Assembly, Control
117	4393225-2	PC Board Assembly, Control (Special Premium)
NOTE:	THE CONTROL PC REPLACE BOARD	ARD ASSEMBLY IS REPAIRABLE. N IT IS PHYSICALLY DAMAGED OHYY
Door Jl	$\begin{aligned} & 4393271-1 \\ & 4233055 \end{aligned}$	Tape Door Kit Header, Dual, 14 Pin

REPLACEMENT PARTS LIST, ELECTRONIC TUNED MULTIPLEX, CASSETTE RADIO

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
		MISCELLANEOUS
J201	4393209	Cable, 21 Wires
Pl	4233024	Connector, Antenna
PlolA	4233106	Header, Right Angle, Brown, 12 Pin
PlolB	4393210	Header, Right Angle, White, 9 Pin
P102	4234587	Connector, CD, (Infinity)
P103	4233056-11A	Connector, Header, 11 Pin (Infinity
P103	4233056-11B	Connector, Header, 11 Pin (Premium)
P104	4234573	Connector, Dual Row. 14 Pin
P105	4234586	Connector; Remote, 8 Pin
P106	4233085	Cable Assembly, Speaker, 7 Pin
P107	4233086	Cable Assembly, Power, 7 Pin
LP201	4391426-2	Lamp Assembly w/Diffuser
LP202	4391426-2	Lamp Assembly w/Diffuser
LP203	4391426-2	Lamp Assembly w/Diffuser
LP 204	4391426-2	Lamp Assembly w/Diffuser
LP205	4391426-2	Lamp Assembly w/Diffuser
LP206	4391426-2	Lamp Assembly w/Diffuser
s201	4234528	Switch, Tuning -
S 202	4234528	Switch, Tuning +
S203	4234528	Switch, Volume -
S204	4234528	Switch, Volume +
S205	4234528	Switch, Memory \#2
S206	4234528	Switch, Memory, \#3
5207	4234528	Switch, Memory \#4
S208	4234528	Switch, Memory, \#5
s209	4234528	Switch, N/R
s210	4234528	Switch, AM/FM
5211	4234528	Switch, SELECT
s212	4234528	Switch, Memory \#l
S213	4234528	Switch, F/F Seek
S214	4234528	Switch, RW
S215	4234528	Switch, EJECT
5216	4234528	Switch, SET
S217	4234528	Switch, Power, On/Off
S218	4234528	Switch, Bass -
s219	4234528	Switch, Bass +
s220	4234528	Switch, Treble -
5221	4234528	Switch, Treble +

VOTES

1 REFERENCE DRAWINGS, ELECTRICAL SCHEMATICS
4393206 RF BOARO ASSY
4234494 AUDIO LOGIC BOARD ASSY
4234484 CONTROL BOARD ASSY
4234507 SHINWA CASSETTE MECHANISM
4234510 ALPINE CASSETTE MECHANISA

FIGURE 2-1. ELECTRONIC TUNED CASSETTE RADIO, BLOCK WIRING DIAGRAM

FIGURE 2-2. ELECTRONIC SCHEMATIC, AUDIO/LOGIC PC BOARD

PIN	DCV
1	4.95
2	4.95
3	4.95
4	4.95
5	4.9s
6	4.95
7	0
8	0
9	0
10	4.30
11	2.50
12	4.95
13	4.9 s
14	4.9 s
15	3.70
16	3.70
17	0
18	3.90
19	1.80
20	0
21	0
22	0.30
23	0
24	4.9 s
25	4.95
26	4.95
27	4.9s
28	0
29	4.9s
30	1.65
31	4.9 s
32	0
33	5.00
34	0
35	3.30
36	0
37	0
38	0.40
39	0
40	4.9s

YOT

PIN	$D C V$
1	4.70
2	5.27
3	0
4	4.70
5	0
6	0
7	0
8	0
9	0
10	4.70
$I I$	0
12	4.50
13	4.95
14	4.7

U102

PIN	AM DCV	FM DCV
1	0	0
2	0	0
3	1.65	1.65
4	1.85	1.85
S	3.85	3.85
6	$4.9 s$	4.95
7	3.80	4.90
8	1.40	1.40
9	$4.3 s$	2.85
10	0	0
11	4.70	4.70
12	0.50	0.50
13	0.60	0.60
14	1.80	1.80
15	3.40	3.40
16	2.40	3.40
17	0.10	2.30
18		$1.7-7.0$
19	0	0
20	10.00	10.00

U105

DC V			
PIN	1	2	3
0103	12.7	5.0	0
U104	12.7	10.5	0
U111	12.7	5.0	0

U107, U108, U109, \& U110

PIN	DCV	■OV
1	0.16	3.20
2	0.16	3.30
3	0	0
4	0.16	3.20
5	0	6.00
6	13.20	13.70
7	0	0
8	13.20	13.70
9	0	6.00
10	13.30	9.70
11	0	NC
12	NC	1.60
13	0.30	With
	with	Switche
	Unswitched	and
	Voltage	Unswitched
	Only	Voltage
		Applied

U112

DC V						
PIN	1	2	3	4	5	
	12.7	12.7	0	0	5.0	

U100

PIN	DCV
1	4.95
2	4.95
3	4.95
4	4.95
5	4.95
6	4.95
7	0
8	0
9	0
10	4.20
11	2.50
12	4.95
13	4.95
14	4.95
15	3.70
16	3.70
17	0
18	2.90
19	1.80
20	0
21	0
22	0.30
23	0
24	4.95
25	4.95
26	4.95
27	4.95
28	0
29	4.95
30	1.65
31	4.95
32	0
33	5.00
34	0
35	3.30
36	0
37	0
38	0.40
39	0
40	4.95

U106

PIN	DCV
1	0.00
2	4.95
3	4.95
4	5.00
5	4.00
6	0.80
7	0
8	5.00
9	0
10	3.50
11	5.00
12	5.00
13	5.00
14	5.00

U101

PIN	DCV
1	4.70
2	5.27
3	0
4	4.70
5	0
5	0
7	0
8	0
9	0
10	4.70
11	0
	4.50
12	4.95
13	0
14	4.7

U107 U108, U109, \& U110

PIN	DC V	DC V
1	0.15	2.20
2	0.15	2.20
3	0	0
4	0.16	2.20
5	0	6.00
6	13.20	12.70
7	0	12.70
8	13.20	5.00
9	0	12.70
10	13.20	9.85
11	0	NC
12	NC	1.60
13	0.30	With
	with	Switched
	Unswitched	and
	Voltage	Unswitched
	Only	Voltage
		Applied

U112

DC V					
PIN	1	2	3	4	5
	12.7	12.7	0	0	5.0

FIGURE 2-4. PARTS LOCATION, AUDIO/LOGIC PC BOARD, COMPONENT SIDE

0100

PIN	DC V
1	4.95
2	4.95
3	4.95
4	4.95
5	4.95
6	4.95
7	0
8	0
9	0
10	4.20
11	2.50
12	4.95
13	4.95
14	4.95
15	3.70
16	3.70
17	0
18	2.90
19	1.80
20	0
21	0
22	0.30
23	0
24	4.95
25	4.95
26	4.95
27	4.95
28	0
29	4.95
30	1.65
31	4.95
32	0
33	5.00
34	0
35	3.30
36	0
37	0
38	0.40
39	0
40	4.95

U106

PIN	DC V
1	10.00
2	4.95
3	4.95
4	5.00
5	4.00
6	0.80
7	0
8	5.00
9	0
10	3.50
11	5.00
12	5.00
13	5.00
14	5.00

U101

PIN	DC V
1	4.70
2	5.27
3	0
.4	4.70
5	0
6	0
7	0
8	0
9	0
10	4.70
11	0
12	4.50
	4.95
13	0
14	4.7

U102

	AM PIN	FM $D C V$
1	0	0
2	0	0
3	1.65	1.65
4	1.85	1.85
5	3.85	3.85
6	4.95	4.95
7	2.80	4.90
8	1.40	1.40
9	4.35	2.85
10	0	0
11	4.70	4.70
12	0.50	0.50
13	0.60	0.60
14	1.80	1.80
15	2.40	2.40
16	2.40	2.40
17	0.10	2.30
18	0	$1.7-7.0$
19	0	0
20	10.00	10.00

U105

PIN	DC V
1	1.65
2	0
3	5.00
4	5.00
5	5.00
6	5.00
7	5.00
8	5.00
9	0.05
10	5.00
11	10.00
12	5.00
13	5.00
14	5.00
15	5.00
16	5.00
17	5.00
18	0
19	5.00
20	5.00
21	5.00
22	5.00
23	5.00
24	5.00
25	5.00
26	5.00
27	10.00
28	1.85

0100

PIN	DC V
1	4.95
2	4.95
3	4.95
4	4.95
5	4.95
6	4.95
7	0
8	0
9	0
10	4.20
11	2.50
12	4.95
13	4.95
14	4.95
15	3.70
16	3.70
17	0
18	2.90
19	1.80
20	0
21	0
22	0.30
23	0
24	4.95
25	4.95
26	4.95
27	4.95
28	0
29	4.95
30	1.65
31	4.95
32	0
33	5.00
34	0
35	3.30
36	0
37	0
38	0.40
39	0
40	4.95

0106

PIN	DC V
1	10.00
2	4.95
3	4.95
4	5.00
5	4.00
6	0.80
7	0
8	5.00
9	0
10	3.50
11	5.00
12	5.00
13	5.00
14	5.00

U101

PIN	DC V
1	4.70
2	5.27
3	0
4	4.70
5	0
6	0
7	0
8	0
9	0
10	4.70
11	0
12	4.50
13	4.95
14	4.7

DC V			
PIN	1	2	3
U103	12.7	5.0	0
U104	12.7	10.5	0
U111	12.7	5.0	0

U107, U108, U109, \& 0110

PIN	DC V	DC V
1	0.16	2.20
2	0.16	2.20
3	0	0
4	0.16	2.20
5	0	6.00
6	13.20	12.70
7	0	0
8	13.20	12.70
9	0	6.00
10	13.20	12.70
11	0	9.85
12	NC	Nc
13	0.30	1.60
	With	With
	Unswitched	Switched
	Voltage	and
	Only	Unswitched
		Voltage
		Applied

U112

DC V					
PIN	1	2	3	4	5
	12.7	12.7	0	0	5.0

FIGURE 2-5. ELECTRICAL SCHEMATIC, AUDIO/LOGIC PC BOARD

FIGURE 2-6. ELECTRICAL SCHEMATIC, RF PC BOARD

U7

PIN	AM DC V	FM DC V
1	6.50	6.50
2	0	0
3	0.15	4.66
4	4.91	0
5	0.26	4.57
6	10.00	10.00
7		
8		
9	4.61	0
10	0	0
11	0	0
12	0	
13		
14	0.76	0
15	0.00	0
16	0.82	0
17	0	0
18	0	0.50
19	6.50	
20	9.12	0

	E	B	C		
Q2	4.70	5.36	8.00		
Q3	3.57	5.84	6.48		
Q4	6.50	5.80	3.60		S
:---					
Q1					

U1

PIN	DV C	600 kHz e 1, 000 mV Mod. 400 Hz e 30%
1	5.36	1.75
2	2.03	
3	0.55	0.87
4	0.10	0.30
5	0	
6	2.03	
7	8.15	
8	8.17	
9	0.82	
10	8.17	
11	0.68	
12	0	
13	2.30	3.01
14	8.17	
15	1.25	
16	0.04	1.47
17	2.27	2.98
18	5.71	
19	5.71	
20	3.06	

U5

$P I N$	DC V
1	3.30
2	3.30
3	3.30
4	0
5	2.3 On Sta.
	$0.0 f$ I Sta.
6	1.5 - 6.2
7	7.3 On Sta.
	0.0 Sta.
8	0
9	5.0
10	5.0
11	0
12	8.6
13	4.9
14	2.6
15	2.6
16	2.6

U7

PIN	AM DC V	FM DC
1	6.50	6.50
2	0	0
3	0.15	4.66
4	4.91	0
5	0.26	4.57
6	10.00	10.00
7		
8		
9	4.61	0
10	0	0
11	0	0
12		
13		
14	0.76	0
15	5.00	0
16	0.82	0
17	0	0
18	0.50	6.50
19	9.12	0
20	9	

	E	B	C
Q2	4.70	5.36	8.00
$Q 3$	3.57	5.84	6.48
$Q 4$	6.50	5.80	3.60

	S	G	D
Q1	0.41	0	4.70

FIGURE 2-7. PARTS LOCATION, RF PC BOARD, CIRCUIT SIDE
01

PIN	DV C	600 kHz e $1,000 \mathrm{mV}$ Mod. 400 Hz e 30\%
1	5.36	1.75
2	2.03	
3	0.55	0.87
4	0.10	0.30
5	0	
6	2.03	
7	8.15	
8	8.17	
9	0.82	
10	8.17	
11	0.68	
12	0	
13	2.30	3.01
14	8.17	
15	1.25	
16	0.04	1.47
17	2.27	2.98
18	5.71	.
19	5.71	
20	3.06	

05

PIN	DC V
1	3.30
2	3.30
3	3.30
4	0
5	2.3 on Sta.
6	$0.0 f f$ Sta.
7	1.5 - 6.2
	7.3 On Sta.
8	0 off Sta.
9	0
10	5.0
11	0
12	8.6
13	4.9
14	2.6
15	2.6
16	2.6

U7

PIN	$\stackrel{A M}{D C^{V}}$	${\underset{D C}{ }}_{\text {FM }}^{V}$
1	6.50	6.50
2	0	0
3	0.15	4.66
4	4.91	0
5	0.26	4.57
6	10.00	10.00
7		
8		
9	4.61	0
10	0	0
11		
12	0	0
13		
14		
15	0.76	0
16	5.00	0
17	0.82	0
18	0	0
19	6.50	6.50
20	9.12	0

	E	B	C
$Q 2$	4.70	5.36	8.00
$Q 3$	3.57	5.84	6.48
$Q 4$	6.50	5.80	3.60

	S	G	D
Q1	0.41	0	4.70

01

PIN	DV C	600 kHz © $1,000 \mathrm{mV}$ Mod. 400 Hz e 30%
1	5.36	1.75
2	2.03	
3	0.55	0.87
4	0.10	0.30
5	0	
6	2.03	
7	8.15	
8	8.17	
9	0.82	
10	8.17	
11	0.68	
12	0	
13	2.30	3.01
14	8.17	
15	1.25	
16	0.04	1.47
17	2.27	2.98
18	5.71	
19	5.71	
20	3.06	

05

PIN	DC V
1	3.30
2	3.30
3	3.30
4	0
5	2.3 on Sta.
6	0 off Sta.
7	1.5 - 6.2
	7.3 on Sta.
8	0 off Sta.
9	0.0
10	5.0
11	0
12	8.6
13	4.9
14	2.6
15	2.6
16	2.6

U7

U6	
PIN	DC V
1	8.60
2	3.70
3	3.60
4	3.80
5	$0 . \overrightarrow{0.30}$
6	3.8
7	0.0 .50
8	0
9	0. Mono
	5.0 Stereo
10	3.40
11	3.50
12	2.20
13	2.00
14	2.20
15	2.05
16	3.20

U7

	AM			
PIN	DC V	FC V		
1	6.50	6.50		
2	0	0		
3	0.15	4.66		
4	4.91	0		
5	0.26	4.57		
6	10.00	10.00		
7				
8				
9	4.61	0		
10	0	0		
11		0		
12	0	0		
13				
14	0.76	0		
15	5.00	0		
16	0.82	0		
17	0	0		
18	6.50	6.50		
19	9.12	0		
20			\quad	
:---				

U2	
PIN	DC V
1	7.98
2	2.03
3	0
4	2.03
5	8.15
6	2.23
7	5.71
8	5.71

PIN	DC V		
1	0		
3	$0-6$		
4	0	on	Sta.
	0.85	Search	
5	8.60		
6	3.15		
7	0		
10	1.7	-7.0	
12	0		
13	0		
14	0		

PIN	DC V	600 kHz a $1,000 \mathrm{mV}$ Mod. 400 Hz e 30\%
1	8.50	7.56
2	8.54	7.57
3	3.58	
4	1.66	2.41
5	1.50	2.22
6	9.14	
7	0.85	1.19
8	0.78	1.11
9	0.69	
10	2.67	9.06
11	2.05	
12	0.57	
13	0.57	
14	0.59	
15	4.81	
16	0	
17	2.92	
18	8.07	
19	4.82	4.00
20	8.50	7.24

	E	B	C
$Q 2$	4.70	5.36	8.00
$Q 3$	3.57	5.84	6.48
$Q 4$	6.50	5.80	3.60
	S	G	D
$Q 1$	0.41	0	4.70

FIGURE 2-9. ELECTRICAL SCHEMATIC, RF PC BOARD

FIGURE 2-10. ELECTRICAL SCHEMATIC, CONTROL PC BOARD

FIGURE 2-11. PARTS LOCATION, CONTROL PC BOARD, CIRCUIT SIDE

A. LOGIC FUNCTIONS

The mechanism contains logic IC's to interface with the radio data bus via serial data. All functions are controlled by soft-touch buttons on the radio escutcheon. The serial data is converted by IC5 (8-bit serial input/parallel output shift register) and IC6 (8-bit serial input/serial output shift register), to control the functions which were initiated by the escutcheon buttons. Voltage regulator IClO supplies the Vcc voltage to IC5 and IC6.

B. TAPE DIRECTION

Photocoupled sensors Ul and U2 are comprised of a light-emitter and a photodetector. The reel-bush assemblies on which the spindles are mounted have discs with alternating shiny and dark areas, eight equal sections, on their undersides. As the spindles turn, the discs spin over the photocoupler IC's and the photodetector alternates between its on/off state as light is reflected, on/off from the shiny/dark sections on the discs. When the spindles stop, this action ceases and the radio microcomputer recognizes this and signals IC5 and IC6 to initiate a change of direction.

C. AUTOMATIC MUSIC SEARCH

Blank portions of tape between selections are detected by IC2. This function enables a user to quickly skip from one recorded selection to the next in fast-forward or rewind mode by picking out the end/beginning of one selection and the beginning/end of the next. The music search IC (IC2) samples a combined audio output from IC7. The value of R28 is chosen to give IC2 a sensitivity of -38 db below the reference level of 0 db . Software delays in the radio microcomputer provide optimum music search performance which compensates for variations in tape speed and quality by controlling IC2 and related circuitry.

D. DOLBY NOISE REDUCTION (INFINITY ONLY)

The Dolby@ B-type circuit acts as a frequency-and-levelsensitive cornpander. Noise objectionable to the listener is usually in the 500 Hz to 15 kHz range and IC7 is manufactured to be effective within this frequency range. The radio microcomputer sends a signal to IC7 to activate the noisereduction circuit when the NR button is pressed on the radio.

E. SOLENOIDS, (FF, REW \& PROGRAM)

When the radio notifies IC3 a high current, NPN Darlington transistor array by its input going high, the corresponding output will go low. The FF output is pin 11 (Solenoid 315), REW output is pin 12 (Solenoid 316) and the program output (Solenoid 314) is pin 10.

F. MOTOR

Because of the high current required for the motor, a separate transistor TR3 is used to drive it. Pin 13 of IC3 has to sink current for the motor to operate.

G. BELT REPLACEMENT

The drive belt is made of carbon-impregnated synthetic rubber and is designed to outlast the mechanism. However, the very find particles of carbon in and around the flywheel grooves should be cleaned periodically to prevent build-ups, which may cause other problems.

H. TAPE PLAYBACK HEAD

The tape deck uses a four-track head in which the two lower tracks are used for forward play and the upper two for reverse play direction. A mechanically actuated head switch, is used to switch from forward to reverie play mode.

I. HEAD ALIGNMENT

The alignment of the Head is factory-set using dual-directional Azimuth adjustment screws. In Forward Play mode, one screw is accessible from the top of the deck. When tape direction is reversed, another screw automatically becomes accessible. Optimum Frequency Response is achieved by adjusting Head alignment, with precision separately in Forward and Reverse Play modes.

When there is a perceptible change in quality of sound - such as poor treble response - or high-frequency signal loss during normal playback, it is possible that the Azimuth (Head Alignment) may need adjustment. Before proceeding to adjust the Azimuth, it is always a good idea to clean the Head thoroughly and check Frequency Response. In many cases oxide deposits from continuous tape playing are the cause of the complaint and proper cleaning solves the problem.

TABLE 3-1. HEAD ALIGNMENT PROCEDURE

STEP	ACTION
1.	Clean the tape head vigorously using a cotton swab dipped in alcohol or a good quality head cleaner.
2.	Using a good quality test tape - 10 kHz or $12.5 \mathrm{kHz}-$ check the Frequency Response in both directions to determine if the Azimuth needs adjustment. Step 1 may have already corrected the problem.
3.	Using a fine star-head, Phillips-type screwdriver, carefully adjust the Azimuth screw for maximum Frequency Response on both channels.
4.	Activate auto-reverse to access the second Azimuth screw and carefully adjust it for maximum Frequency Response on both channels.
5.	Verify Frequency Response using a good quality test tape.

To ensure that all Frequency Response testing and adjustment is of uniformly good quality, Shinwa recommends the use of highquality test-tapes like the TEAC MTT series.

Tapes should also be date-stamped and periodically replaced as per manufacturer's recommendations to ensure failsafe results. Adjusting the Azimuth is a precise procedure that should only be done when absolutely necessary using only the proper equipment and test-media.

J. PREAMPLIFIER

The high-gain stereo preamplifier $I C l$, in conjunction with the related external circuitry, provides the initial amplification of the signal from the playback head. A tape-sensor switch, and a transistor (TR2) are used to automatically select the correct equalization of the preamplifier for normal or Metal/CR02 tape. The tape-sensor switch will be closed for a normal tape (+5 V) which will turn off TR2. A metal tape will open the switch and turn on TR2. The tape-sensor switch action is controlled by using the slots in the industry-standard cassette tapes.

The audio levels of the two channel outputs of the preamp are controlled by two easily accessible trim-pots which are factory adjusted to compensate for differences in pickup level from the playback head, and to provide the correct output level to the Dolby@ noise reduction circuit (IC7).
J. PREAMPLIFIER (Cont.)

The pots are located just slightly right-of-center on the Control PC Board, as one looks down at the assembly, after removing the Cassette Mechanism from the Radio. These pots are factory-set to 280 millivolts RMS at the Dolby@ test points.

K. PROCEDURE FOR ADJUSTING PREAMPLIFIER OUTPUT LEVELS

Each channel of the tape Preamplifier IC must be adjusted to obtain the correct output signal levels for the left and right channels, to compensate for variations in Head pick-up and establish the Dolby@ specified levels for proper operation of the Noise Reduction circuits.

The Dolby@ reference-level test tape $-400 \mathrm{~Hz}, 200$ namowebers/meter-(TEAC \#MMT-150 or equivalent) is required for proper Preamplifier adjustment. If a Dolby $®$ reference-level tape is not available, use a standard SRL test tape. Note that the Dolby@ test tape is definitely preferred, because it provides the correct signal reference for setting the gain of the Preamplifier.

TABLE 3-2. PREAMPLIFIER ALIGNMENT PROCEDURE

STEP	ACTION
1.	Connect a VTVM/DVM to the left channel audio test point P103 pin 9. Adjust VR2 to obtain an output of 380 mV RMS on the left channel.
2.	Connect the VTVM/DVM to the right channel audio test point P103 pin 8. Adjust VRl to obtain an output of 280 mV P.M. 5 on the right channel.

L. RECOMMENDED TEST AND REPAIR ENVIRONMENT

The TTL IC's used on both Cassette Assemblies are CMOS devices. The sensitivity of these components to electro-static discharge (ESD) has prompted the establishment of more rigorous standards for ESD controls wherever the new Radios - and the Cassette Mechanism Assemblies used in them - are handled for any purpose.

Damage caused by ESD is normally catastrophic since it directly impacts those very Logic components on which modern electronics depends so heavily. Never has prevention been more meaningful, than cure. As a fundamental common-sense requirement, Acustar
will exnect all Service Centers to install ESD controls prior to attempting to service these new Radios and/or Cassette Mechanisms. We have reproduced a drawing from an Acustar specification for ESD control that may help you in equipping yourself suitably.

FIGURE 3-1. TYPICAL WORK STATION WITH ESD PROTECTION

RECOMMENDED EOUIPMENT

0 Power Supply - 14.0 VDC @ 7.5 Amperes minimum
$0 \quad$ AC Voltmeter (high impedance - 10 megohms or more)
0 General Purpose Oscilloscope
0 Frequency Counter
0 Audio Oscillator
M. MECHANISM SEOUENCE OF OPERATION

1. Plav Mode - Load a Cassette Tape into the Cassette Housing (217). It will engage and push against the Catch (251) which will move back. The cassette is drawn inside by the Reverse Spring (289), (see Figure 3-2).

FIGURE 3-2. REVERSE SPRING OPERATION

The cassette pushes back the Trigger Plate (232), (see Figure 3-3.) The Eject Plate (234) is unlocked and slides forward. As the Eject Plate (234) moves, the Leaf Switches (tape-in switches 308/309) are turned ON, the H/P Roller (250) moves to the stop position, the H/A Roller (252) moves down, and the Cassette Housing (217) comes down to mount the Cassette Tape on the Reel Drivers (254).

FIGURE 3-3. CASSETTE MOUNTING

When the tape-in switch is pushed to ON, the Motor (305) starts and the Program-Change Solenoid (314) and FF/REW Solenoid (315 and 316) are all energized. The Mode Gear (260) then starts turning and the Power Plate (211), Power Arm (208) and Mode Plate (209) move to PLAY position, (see Figure 34)

FIGURE 3-4. PLAY MODE

The FF/REW Solenoid Armature is held by Solenoids (315 and 316), and the Head Plate (203) moves forward. The Timing Arm (215) then lifts off the Head Plate Shaft to lock the Mode Gear (260), and the Cassette Tape begins to play. As soon as the Motor starts turning, the Eject Gear (221) also turns, and the Stopper Groove of the Eject Gear moves to the position of the Select Arm Pin (210), (see Figure 3-5). The Select Arm Pin locks the Eject Gear (221), and the Chip Arm (212) is held in place by the Program Solenoid (314). The Mode Gear (260) starts turning, and the Power Plate (211) is moved by the cam on the gear to PLAY position (see Figure 3-6). As the Power Plate (211) moves, the Power Arm (208) and the Mode Plate (209) move to the PLAY position, and the Mode Gear (260) comes to a stop.

221

FIGURE 3-6. PAUSE MODE
2. Pause Mode (Radio Mode - Power OFF With Cassette Loaded)-In the pause mode, the FF/REW and Program Solenoids (314, 315, \& 316) and the Motor are all de-energized. As the Mode Plate (209), Power Arm (208), Power Plate (211) move to STOP position, the Head Plate (203) also moves backward to the STOP position. All movement then comes to a stop.
3. Program Change Mode - When the Program switch is pushed, the Program Solenoid (314) is de-energized momentarily, and the Chip Arm (212) is released. The Reverse Trigger (233) and the Reverse Trigger Arm (245) are positioned to unlock the Reverse Gear (220). The Reverse Gear rotates to move the Reverse Plate (227), (see Figure 3-7 \& 3-8).

FIGURE 3-7. PROGRAM CHARGE MODE

FIGURE 3-8. REVERSE GEAR ASSEMBLY

Transfer of the Reverse Plate moves Pinch Rollers (206 and 207), Idler Gear (253), and Azimuth Arm (249) for FWD/REV switching, (see Figure 3-9).

FIGURE 3-9. FORWARD/REVERSE SWITCHING
4. Auto Reverse Function - As the Cassette Tape in PLAY mode reaches the end of the tape, the Reel Gear (222) stops turning. This is detected by the Photo- interrupter (312), and the Program Solenoid (314) is then de-energized momentarily for FWD/REV switching.
5. FF/REW Mode - When the FF or REW switch is pushed, the FF/REW Solenoids (315 and/or 316) are deenergized, the T-Crank (214), FF Crank (248), FF Plate (228), and FF Arm (205) all move to interlock the FF Gear (219) with Reel Gear (222) for FF or REW of the Cassette Tape, (see Figure 3-10).

FIGURE 3-10. FF/REWIND MODE
6. FF/REW to Play Mode - When the PLAY switch is pushed in FF or REW mode, a Solenoid (315 REW in FF mode or 316 FF in REW mode) is de-energized momentarily. Next, the FF/REW Solenoids (315/316) are energized at the same time, and the Mode Plate (209), Power Arm (208), and Power Plate (211), move to STOP position. The Mode Gear (260) starts turning and the Power Plate (211), Power Arm (208), and Mode Plate (209) all move to the PLAY position. The FF/REW Solenoid Armatures (315/316) are Positioned to move the Head plate (203) forward. Then, as the Timing Arm (215) lifts off the Head Plate Shaft to lock the Mode Gear (260), the Cassette Tape returns to PLAY mode.
7. Auto Replay Function - When the Cassette Tape in either FF or REW mode, reaches the end of tape, the Reel Gears (222) stop turning, which is detected by the Photointerrupter (312). A Solenoid (315 in FF mode or 316 in REW mode) is then momentarily deenergized. Next, the FF/REW Solenoids (315/316) are energized at the same time, and FF/REW changes to PLAY.
8. Eject Function - When the eject switch is pushed, Solenoids (314, $315 \& 316$) are de-energized. First, FF/REW Solenoids (315 \& 316) are deenergized, which causes the Mode Plate (209), Power Arm (208), and Power Plate (211) to move the EJECT position, (see Figure 3-11).

FIGURE 3-11. EJECT MODE

Then the Mode Gear (260) is unlocked and turns until the Stopper Groove of the Mode Gear is positioned at the Select Arm Pin (210). When the Program Solenoid (314) is de-energized, the Chip Arm (212) lifts up, the Select Arm (210) moves to lock the Mode Gear (260), and the Eject Gear (221) is unlocked, (see Figure 3-12).

FIGURE 3-12. SELECT ARM

As the Eject Gear (221) starts turning, the Reset Plate (213) and the Eject Plate (234) are pushed backward by the Eject Gear Roller (221). While the Eject Plate (234) is moving backward, the H / A Roller moves up to raise the cassette Tape, and the Head Plate (203) slides into EJECT position. The Leaf Switch (308-309 Tape-In Switch) is then turned OFF. At the same time, the Reset Plate (213) is moving to turn the Tape-Out Switch ON (Tape-Off Switch is turned ON before the Tape-In Switch is turned OFF). The Over-Center Rod (293) and the Over-Center Plate (239) move to a position which enables the Cassette Tape to be pushed out by the Reverse Spring (289). The Cassette Tape is ejected only when the cassette Housing (217) is in a completely raised position. The Tape-Off Switch is then turned OFF to stop all functions.

REPLACEMENT PARTS LIST, SHINWA CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
200	4234506-3	Cassette Unit with Dolby
201	EMCR (Ref Only)	Main Chassis Assy
202	EMCR (Ref Only)	Sub Chassis Assy
203	EMCR (Ref Only)	Head Plate Assy
204	3-0050-108	Reel Spindle Bracket Assy
205	3-0050-107	FF Arm Assy
206	3-0050-108-5	PR Arm (F) Assy
207	3-0050-109-5	PR Arm (R) Assy
208	3-0050-110	Power Arm Assy
209	3-0050-111	Mode Plate Assy
210	3-0050-117	Select Arm Assy
211	3-0050-118	Power Plate Assy
212	3-0050-119	Chip Arm Assy
213	3-0050-124	Reset Plate Assy
214	3-0050-128	T Crank Assy
215	3-0050-129	Timing Arm Assy
216	3-0050-149	Housing Arm (FTN) Assy
217	3-0050-150	Cassette Housing (SAN) Assy
218	N/A	
219	3-0050-211	FF Gear Assy
220	3-0050-219	RVS Gear Assy
221	3-00550-221	EJ Gear Assy
222	1-0050-223-5	Reel Bush (Ph) Assy
223	N/A	
224	1-0050-800	Flywheel Assy
225	N/A	
226	N/A	
227	1-0050-112	RVS Plate
228	1-0050-113	FF Plate
229	1-0050-114	Brake Plate (F)
230	1-0050-115	Brake Plate (R)
231	1-0050-120	Solenoid Bracket (B)
232	1-0050-121	Trigger Plate
233	1-0050-122	RVS Trigger
234	1-0050-123	EJ Plate
235	1-0050-125	Switch Bracket
236	1-0050-126	Adjuster Shim
237	1-0050-127	Azimuth Plate SPG
238	1-0050-132	Gear Shaft Guide
239	1-0050-134	Over Center Plate
240	1-0050-136	Bracket (S)
241	1-0050-139	Switch Plate
242	1-0050-141	Slide Plate
243	1-0050-146	Solenoid Bracket (AT) 20

REPLACEMENT PARTS LIST, SHINWA CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
244	1-0050-147	Solenoid Deaden Shock Plate
245	1-0050-153	RVS Trigger Arm
246	1-0050-154	RVS Trigger Arm
247	N/A	
248	1-0050-200	FF Crank
249	1-0050-201	Azimuth Arm
250	Part of Kit	H/P Roller (C)
251	1-0050-204	Catch
252	Part of Kit	H/A Roller
253	1-0050-206	Idler Gear
254	1-0050-210	Reel Driver
255	1-0050-214	0 15.2 Gear
256	1-0050-215	Input Gear
257	1-0050-216	Gear (A)
258	1-0050-217	Gear (B)
259	1-0050-218	Gear (C)
260	1-0050-220	Mode Gear
261	1-0050-222	Tension Pulley
262	N/A	
263	1-0050-323	Timing/A Roller
264	1-0050-331	H/P Roller (A)
265	1-0050-332	H/P Roller (B)
266	1-0050-342	Mode Roller
267	1-0050-343	Space
268	Part of Kit	Screw
269	Part of Kit	Special Stud (S)
270	1-0050-529	Top Spacer
271	1-0050-400	PR Arm (F) SPG
272	1-0050-401	PR Arm (R) SPG
273	1-0050-402	H/P SPG
274	1-0050-403	Idler SPG
275	1-0050-404	FF Arm SPG
276	1-0050-405	Brake SPG
277	1-0050-406	Trigger SPG
278	1-0050-407	RVS/T SPG
279	1-0050-408	Chip Arm SPG
280	1-0050-409	Starter SPG
281	1-0050-410	EJ/P SPG
282	1-0050-411	Reset/P SPG
283	1-0050-412	Sleeve SPG
284	1-0050-415	Azimuth Lock SPG
285	1-0050-416	Power SPG
286	1-0050-417	Timing Arm SPG
287	1-0050-420	Slide Plate SPG
288	1-0050-422	Deaden Shock Plate SPG

REPLACEMENT PARTS LIST, SHINWA CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
289	1-0050-423	Reverse SPG (SAN)
290	1-0050-424	RVS Trigger Arm SPG
291	1-0050-530	Spacer Tube
292	1-0050-501	Belt
293	1-0050-502	Over Center Rod
294	1-0050-503	Azimuth Screw
295	1-0050-508	Spacer (T)
296	1-0050-512	Wire Clamper
297	1-0050-513	Cushion
298	1-0050-519	Tube
299	1-0050-520	Spacer (HP)
300	1-0050-509	CH Cushion
301	1-0010-543	Insulation Tube
302	Part of Kit	Wire Clamper (L)
303	N/A	
304	3-0050-745	Head Assy
305	1-0050-365	Motor Assy
306	1-0050-736	Chrome Tape Detective Switch
307	1-0150-715	Detective Switch Wire (LOU)
308	1-0050-749	Leaf Switch (MLS-2AU)
309	1-0050-750	Leaf Switch (MLS-4AU)
310	1-0025-704	Slide Switch
311	3-0050-727	Main P.W.B. (RP) Assy
312	1-0050-613	Photointerrupter (B) Assy
313	1-0050-729	Ribbon Reeder (Ph)
314	1-0050-731	Solenoid B (DMO5-200-16)
315	1-0150-707-20	Solenoid (DMO5W-200A)
316	1-0150-707-40	Solenoid (DMO5W-200B)
317	1-0150-716	Connect Housing
318	1-0050-610-3	Control P.W.B (RP) Assy
319	1-0050-717	Head Wire
320	N/A	
321	N/A	
322	N/A	
323	N/A	
324	N/A	
325	Part of Kit	+Machine Screw Plain \#1 M1 7X7
326	2-1012-030-H2	+Machine Screw Plain \#1 M 2 X 3
327	Part of Kit	+Machine Screw Plain \#1 M 2×5.5
328	2-101L-030-H2	+Machine Screw Plain \#1 M2 6X3
329	Part of Kit	+Bind Screw M 2 X 3
330	Part of Kit	+Bind Screw M 2 X 4
331	2-1112-050-B1	+Bind Screw M 2 X 5
332	Part of Kit	+Bind Screw M 2.6X3
333	Part of Kit	+Bind Screw M 2.6X4

REPLACEMENT PARTS LIST, SHINWA CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
334	Part of Kit	Screw M $2 \mathrm{X} 5 \mathrm{P}=0.25$
335	N/A	
336	Part of Kit	E-Ring 01.2
337	Part of Kit	E-Ring 01.5
338	Part of Kit	E-Ring 0 1.6X 03.2
339	Part of Kit	E-Ring 02.5
340	Part of Kit	E-Ring 03
341	N/A	
342	2-1821-030-D2	Polywasher 01.2×0 3Xt0. 25 With Notch
343	Part of Kit	Polywasher 0 1.6X 0 3.2Xt0. 25 With Notch
344	2-1816-032-52	Polywasher 0 1.6X 0 3.2Xt0.5 With Notch
345	Part of Kit	Polywasher 0 2.1X 03.5 Xt 0.3
346	2-1816-040-D1	Polywasher 0 2.1X 0 4Xt0.25
347	2-1821-040-D2	Polywasher 0 2.1X 0 4Xt0.25 With Notch
348	2-1821-050-D1	Polywasher 0 2.1X 0 5Xt0.25
349	2-1821-035-D1	Polywasher 0 2.1X 0 3.5xt0.25
350	Part of Kit 20-212	Polywasher 0 2.1X 0 4Xt0.1 Service Parts Kit Shinwa CDS50
351	CDS-50	Mechanism Replacement

FIGURE 3-15. ELECTRONIC TUNED CASSETTE RADIO WITH SHINWA, BLOCK WIRING DIAGRAM

NOTES
1 REFERENCE DRAWINGS, ELECTRICAL SCHEMATICS
4393206 RF BOARD ASSY
4234494 AUDIO LOGIC BOARD ASSY
4234484 CONTROL BOARD ASSY 423450 ? SHINWA CASSETTE MECHANISM
4234510 ALPINE CASSETTE MECMANISM

FIGURE 3-16. ELECTRICAL SCHEMATIC, SHINWA CASSETTE CONTROL PC BOARD (DOLBY)

ALPINE CASSETTE TAPE PLAYER

DESCRIPTION

The "GZ" mechanism is a soft-touch type car stereo playback cassette deck featuring front operation, side-loading, slot-in, auto-eject, key-off-pause and auto-tape select having 2-motors, 1-head, 4 -tracks, 2-channels, auto-reverse, music sensor functions controlled by advanced IC logic circuits.

A. LOGIC FUNCTIONS

The mechanism contains logic IC's to interface with the radio data bus via serial data. All functions are controlled by soft-touch buttons on the radio escutcheon. The serial data is converted by IC5 (8-bit serial input/parallel output shift register) and IC6 (8-bit serial input/serial output shift register), to control the functions which were initiated by the escutcheon buttons. Voltage regulator IClO supplies the Vcc voltage to IC5 and IC6.

B. TAPE DIRECTION

Photocoupled sensors U1 and U2 are comprised of a light-emitter and a photodetector. The reel-bush assemblies on which the spindles are mounted have discs with alternating shiny and dark areas, six equal sections, on their undersides. As the spindles turn, the discs spin over the photocoupler IC's and the photodetector alternates between its on/off state as light is reflected, on/off from the shiny/dark sections on the discs. When the spindles stop, this action ceases and the radio microcomputer recognizes this and signals IC5 and IC6 to initiate a change of direction.

C. AUTOMATIC MUSIC SEARCH

Blank portions of tape between selections are detected by IC2. This function enables a user to quickly skip from one recorded selection to the next in fast-forward or rewind mode by picking out the end/beginning of one selection and the beginning/end of the next. The music search IC (IC2) samples a combined audio output from IC7. The value of R28 is chosen to give IC2 a sensitivity of -38 db below the reference level of 0 db . Software delays in the radio microcomputer provide optimum music search performance which compensates for variations in tape speed and quality by controlling IC2 and related circuitry.

The Dolby ${ }^{\circledR}$ B-type circuit acts as a frequency-and-levelsensitive compander. Noise objectionable to the listener is usually in the 500 Hz to 15 kHz range and IC7 is manufactured to be effective within this frequency range. The radio microcomputer sends a signal to IC7 to activate the noisereduction circuit when the NR button is pressed on the Infinity radio.

E. TAPE PLAYBACK HEAD

The tape deck uses a four-track head in which the two lower tracks are used for forward play and the upper two for reverse play direction. A switching IC is used to switch from forward to reverse play mode.

H. HEAD ALIGNMENT

See the details of the Replacement of Audio PC Board and Heads.
When there is a perceptible change in quality of sound - such as poor treble response - or high-frequency signal loss during normal playback, it is possible that the Azimuth (Head alignment) may need adjustment. Before proceeding to adjust the Azimuth, it is always a good idea to clean the Head thoroughly and check Frequency Response. In many cases oxide deposits from continuous tape playing are the cause of the complaint and proper cleaning solves the problem.

TABLE 4-1. HEAD ALIGNMENT PROCEDURE

STEP	ACTION
1.	Clean the tape head vigorously using a cotton swab dipped in alcohol or a good quality head cleaner.
2.	Using a good quality test tape - 12.5 kHz or 14 kHz (TEAC MTT series) - check the Frequency Response in both directions to determine if the Azimuth needs adjustment. Step 1 may have already corrected the problem.
3.	Using a fine ALPS-head, Phillips-type screwdriver, carefully adjust the Azimuth screw for maximum Frequency Response on both channels.

PREAMPLIFIER

The high-gain stereo preamplifier ICl, in conjunction with the related external circuitry, provides the initial amplification of the signal from the playback head. A tape-sensor switch, and a transistor (TR2) are used to automatically select the correct equalization of the preamplifier for normal or Metal/CR02 tape. The tape-sensor switch will be closed for a normal tape (+5 V) which will turn off TR2. A metal tape will open the switch and turn on TR2. The tape-sensor switch action is controlled by using the slots in the industry-standard cassette tapes.

The audio levels of the two channel outputs of the preamp are controlled by two easily accessible trim-pots which are factory adjusted to compensate for differences in pickup level from the playback head, and to provide the correct output level to the Dolby ${ }^{\circledR}$ noise reduction circuit (IC7).

The volumes are located just to the right of the Audio PC Board, after removing the Cassette Mechanism from the Radio. These volumes are factory-set to 300 millivolts RMS at the Dolby ${ }^{\circledR}$ test points.

H. PROCEDURE FOR ADJUSTING PREAMPLIFIER OUTPUT LEVELS

Each channel of the tape Preamplifier IC must be adjusted to obtain the correct output signal levels for the left and right channels, to compensate for variations in Head pick-up and establish the Dolby ${ }^{\circledR}$ specified levels for proper operation of the Noise Reduction circuits.

The Dolby ${ }^{\circledR}$ Reference-level test tape $-400 \mathrm{~Hz}, 200$ namowebers/meter-(TEAC \#MMT-150 or equivalent) is required for proper Preamplifier adjustment. If a Dolby $®$ reference-level tape is not available, use a standard SRL test tape. Note that the Dolby ${ }^{\circledR}$ test tape is definitely preferred, because it provides the correct signal reference for setting the gain of the Preamplifier.

TABLE 4-2. PREAMPLIFIER ALIGNMENT PROCEDURE

STEP	ACTION
1.	Connect a VTVM/DVM to the left channel audio test point P103 pin 9. Adjust VR2 to obtain an output of 380 mV RMS on the left channel.
2.	Connect the VTVM/DVM to the right channel audio test point Plo3 pin 8. Adjust VR1 to obtain an output of 300 mV RMS on the right channel.

The TTL IC's used on both Cassette Assemblies are CMOS devices. The sensitivity of these components to electro-static discharge (ESD) has prompted the establishment of more rigorous standards for ESD controls wherever the new Radios - and the cassette Mechanism Assemblies used in them - are handled for any purpose.

Damage caused by ESD is normally catastrophic since it directly impacts those very Logic components on which modern electronics depends so heavily. Never has prevention been more meaningful than cure. As a fundamental common-sense requirement, Acustar will expect all Service Centers to install ESD controls prior to attempting to service these new Radios and/or Cassette Mechanisms. We have reproduced a drawing from an Acustar specification for ESD control that may help you in equipping yourself suitably.

FIGURE 4-1. TYPICAL WORK STATION WITH ESD PROTECTION

- Power Supply - 14.0 VDC @ 7.5 Amperes minimum o AC Voltmeter (high impedance - 10 megohms or more)
- General Purpose Oscilloscope
o Frequency Counter
- Audio Oscillator

K. OPERATION THEORY

1. Play - When a cassette is inserted to the tape slot, it is pulled inside the slot by approx. 59 mm from the reel center. The cassette is then automatically held in the playback condition with location poles which function as guides on the chassis. At the same time, a micro switch provided on the right of the motor closes, and then the Play Solenoid (SD3) is energized, moving Play Solenoid Lever (493) which in turn moves Pause Gear (416) thus engaging the Gear (416) (rotating with the motor) with the Idler (417) (see Figure 4-2).

NOTE
CLUTCH LEVER (419) IS LIFTED UP
TO ENGAGE WITH MOTOR GEAR (416), THUS ROTATING EJECT IDLER GEAR (417).

During playback mode, the Gear (416) does not rotate, so no gear noise will be heard. The Motor (M1) rotates Pause Gear (416) by approx. one turn so that the cam drives the head base and to lock the head base at the play position with Play Lock Lever (445). Above operations are conducted as soon as the cassette is loaded (cassette-in or cassette-down), and the playback operation starts immediately.

FIGURE 4-2. PLAY MODE
2. Key-Off Pause - When Key-Off or Pause $S W$ is turned off in the playback mode, Play Solenoid (SD3) is energized, and Play Solenoid Lever (493) and Play Lock Lever (445) are released. Then, Pause Gear (416) engages with Eject Idler Gear (417), and this returns to HD Base (432) to Eject position, thus stopping the motor (see Figure 4-2). Playback operations mentioned above takes place with Key-On.
3. Reverse Operation - Tape travel direction can be reversed at any time in the play mode by simply turning the Program Button (SW) on. When Program Solenoid (SD1) is energized, Reverse Lock Lever (451) is pulled and Lock of Change Gear (481) is released, allowing the Change Gear (481) pressed by Reverse Act Lever (451) to engage with Flywheel's gear. A boss provided on Change Gear (481) moves Select Lever (425) up (or down) to move the Pinch Roller Shaft (444), thereby changing Pinch Roller's (430/449) pressure direction, thus reversing direction of tape travel (see Figures 4-3 \& 4-4).

FIGURE 4-3. REVERSE OPERATION MODE

FIGURE 4-4. REVERSE OPERATION MODE
4. Auto Reverse - When rotation of reels stops at Play End, a photo-transistor senses this end, and actuates the Auto-Reverse circuit which automatically changes direction of tape travel, thus allowing the tape to travel in reverse direction.

In the similar way, when the tape travel direction is automatically reversed. The End detection signal is inverted when the take-up reel stops.

In the REW End, the Prog signal is not inverted and the deck enters the play mode if REW button is not pushed.

When the REW button is being pushed, the Prog signal is inverted and the deck enters play mode with the opposite tracks selected. However, as the input is confirmed immediately after, the deck becomes REW condition.

The End detection signal is inverted when only the take-up reels stops.
5. True $F F /$ REW - During playback operation in normal direction the tape is wound in forward direction rapidly when FF button is pushed, or the tape is rewound rapidly when REW button is pushed.

During playback operation in reverse direction the tape is wound in reverse direction rapidly (playback direction) when $F F$ button is pushed; and the tape is wound in normal direction rapidly when REW button is pushed. That is, the tape is always fed in the playback direction when the FF button is pushed, or fed in reverse direction when the REW button is pushed.
6. FF/REW Operation - When FF or REW button is pushed during playback operation, the deck enters FF/REW mode and is locked to the mode. To release the lock in the FF/REW mode, push Play, Eject, Pause, or IGN button, and the deck directly enters the mode specified by the button pushed.

When REW button is pushed during FF mode, the deck directly enters REW mode. When FF button is pushed during REW mode the deck enters the FF mode directly. FF or REW time is approx. $75 \mathrm{sec}\left(\pm 20^{\circ} \mathrm{C}\right)$ for $c-60$ tape, and may not vary largely due to environmental change because of a gear drive system employed.

FF/REW Operation Theory - When FF/REW button is pushed during playback mode of operation, play Solenoid (SD3) is energized as mentioned in Key-Off Pause operation, and Head Base (432) moves backward up to Eject condition. At the same time, R/F C Motor (M2) (which is a submotor) rotates and R/F Gear (454) rotates by approximately one turn through reduction gears. The R / F Motor (M2) can rotate in either forward or reverse direction. This rotating direction is controlled by the signal developed in the Reverse circuit.

R/F rotating R/F C Gear determines swing direction of Gear R/F Swing (504) or FF/REW Mode. (R/F Lever (503) moves up and down, and this makes R/F Idler Gear (454) engage (disengage) with Flywheel (438)).

FF/REW Lock is continuously held with Chip (482) of R/F Lock Riv. (483) (moving left and right simultaneously) energized by R / F Solenoid (SD4). Releasing the operation is made by de-energizing the R/F Solenoid (SD4). That is, when the Chip (482) is released, R/F Lock Riv. (483) is returned to the neutral position by force of Spring (484).

FIGURE 4-5. FF/REW OPERATION THEORY
7. FF/REW Operations at Music Sensor on - when MS (Music Sensor) function is actuated in FF/REW mode to detect a signal blank between tunes, the playback head is moved forward to contact running tape or CUE/REV mode is set (see Figure 4-6).

In CUE/REV mode with the MS function actuated, Play Solenoid (SD3) is not energized but Head Base (432) is driven by the cam of R / F Lever (503) which in turn is driven up or downward by R / F Lever (503).

FIGURE 4-6. FF/REW OPERATIONS AT MUSIC SENSOR ON
8. Muting - Muting operation is controlled inside the IC and no mechanism is concerned. The circuit is designed to mute signals over time range starting from 50 msec before initiation of each mode to end of the transitional operation of the mode.
9. Auto Metal - When a cassette with a cutout (opening) for identifying a metal tape, the claw of Auto Metal Lever slides into the cutout, and \#l and \#2 of SW slide opens, thus indicating "metal". While, when a normal tape is loaded, the claw of the Lever is pressed outward, shorting \#1 and \#2, thus operating the circuits related to the normal tape. That is, the switch is used to automatically switch equalizer circuits for the metal/chromium tapes (see Figure 4-7).

FIGURE 4-7. AUTO METAL IDENTIFICATION
10. Auto Eject - When. Eject button is pushed, Main Motor (MI) actuates the power assist mechanism and slowly ejects the cassette. The Eject button is enabled for IGN Off period.

Eject Mechanism - When the Eject button is pushed, Play Solenoid (SD3) is energized and this releases the Play Lock Lever (445) and allows the Play Solenoid Lever (493) to move for releasing lock of the Pause Gear (416).

The Pause Gear (416) is rotated clockwise by side pressure (of Head Base Spring) (433) of the Play Lever ganged with Head Base (432).

Then the CAM pushes up the Clutch Lever (419), and Clutch Gear mounted on the clutch engages with the Motor Gear. Idler Gears (417) rotate through gear transmission mechanism. At this time, the Head Base (432) moves backward and reaches the position for Eject, Pause mode.

The Eject Idler Gear (417) rotates and makes the Pause Gear (416) rotate up to the cutout position.

After a specified time elapsed from Play Solenoid (SD3) operation (after HD Base (432) has been returned), the Eject Solenoid (SD2) is energized, then the Lock section of the Eject Lock Lever and

Eject Mechanism (Cont.)

the Eject Gear is released, and the Gear Eject rotates clockwise by being pushed with the Eject Act Lever, and engages with the Eject Idler Gear (417). With the Eject Gear rotated, the Rack attached on the Eject Lever (403) is pulled, and this moves the Eject Arm (525) in reverse direction in addition to reverse force of Turn EJ Spring (443) thus ejecting the cassette.

Cassette Holder is raised by moving Rack with CAM of Eject Lever (403) (see Figures 4-8 \& 4-9).

FIGURE 4-8. PLAY MODE

FIGURE 4-9. AUTO EJECT MODE
11. Eject Safety Mechanism - If a cassette is jammed during Eject operation, or ejected by foreign matter inserted, Rack is pulled by Eject Gear, as can be seen from the above illustration. However, the coil spring is expanded and this completes the Eject operation without ejecting the cassette, thus preventing the mechanism from possible damage.
12. Urgent Eject Mechanism - If the cassette is not ejected with Eject button pushed, the cassette can be manually removed by pushing the part marked * on Eject Lever with a fine, long bar through the cassette slot as illustrated (see Figure 4-8).
13. Music Sensor - As mentioned previously, Head Base (432) is moved backward by moving R/F Lever (503) to touch the head with tape while feeding the tape rapidly in forward or reverse direction. The signals thus picked up are used to detect a blank between tunes for performing the one Music Scan operations.
L. HOW TO HANDLE CASSETTE DECK

Do not hold the cassette deck at/around the motor pulley (see Figure 4-10). Do not hold the cassette deck at/around the R / F motor. If held, R / F motor's gear engagement may be upset and cause undesirable troubles (see Figure 4-11). Do not hold the cassette deck as shown (see Figure 4-12). If held, brakes may be damaged or the pinch roller deformation may be caused. It may cause breakdown of parallel wire leads. Holding as shown is recommendable (see figure 4-13).

FIGURE 4-10. UNDESIRABLE HANDLING

FIGURE 4-11. UNDESIRABLE HANDLING

FIGURE 4-12. UNDESIRABLE HANDLING

FIGURE 4-13. DESIRABLE HANDLING

CAUTIONS ON MECHANISM DISASSEMBLING

IF THE DECK PLACED WITH THE CASSETTE HOLDER FACING DOWNWARD IS PUSHED FROM TOP TO SIDE, THE CASSETTE HOIDER MAY CAUSE UNDESIRABLE CLEARANCE OR LOOSENESS. ALWAYS PLACE THE DECK SO THAT THE CASSETTE HOLDER IS FREE FROM ANY PRESSURE (SEE FIGURE 4-14).

FIGURE 4-14. CASSETTE MECHANISM DAMAGE
M. MECHANICAL PARTS REPLACEMENT

1. Motor Replacement
a. Remove 2 screws (marked 0) (see Figure 4-15).
b. Remove the belt (see Figure 4-15).
c. Remove the wire leads from the motor terminal and the motor will be removed.
2. Motor Replacement (Cont.)
d. Install a good motor, taking care not to damage gear teeth. To mount the motor perform the above steps in reverse order.
e. After completion of the replacement, adjust the tape speed, using the test tape (MTT-111). (Refer to the tape speed adjustment).

Program Switch
P.C. Board

Flywheel Mounting Plate
FIGURE 4-15. MOTOR REPLACEMENT

Belt Replacement
a. Remove 2 screws (marked Δ) and remove the flywheel mounting bracket (see Figure 4-15).
b. Clean a good belt with alcohol and thread the belt. Assemble the unit, performing above steps in reverse order (see Figure 4-16).

NOTE

1. Take care the belt is not stained with oil.
2. When tightening screws for the flywheel bracket, apply tightening torque of $4.5 \mathrm{~kg} / \mathrm{cm}$.
3. When applying screw lock adhesive to the flywheel spacer, take care that the crossrecessed screw hole is free from the adhesive.

FIGURE 4-16. BELT REPLACEMENT

3. Control PC Board Replacement

a. Desolder 9 locations and one screw (marked $※$) (see Figure 4-17).
b. Remove the flexible wire leads and wire leads connected to the PC board, and the control PC board will be removed.
c. Replace the board with a good one and assemble the board, using above steps in reverse order.

FIGURE 4-17. CONTROL PC BOARD REPLACEMENT
4. Program Switch PC Board Replacement
a. First remove the control PC board as mentioned above and then remove one screw (marked), and the program PC board will be removed.
b. Replace the board with a good one and assemble the board, using above steps in reverse order.
5. Replacement of Audio PC Board and Heads
a. Desolder two locations and the audio PC board will be removed (see Figure 4-18).
5. Replacement of Audio PC Board and Heads (Cont.)
b. Remove the head flexible PC board connected to the audio PC board.
c. Remove two screws (marked A) and remove the guide holder (see Figure 4-19).
d. Remove one washer and remove the cassette holder and the base plate (see Figure 4-20).

FIGURE 4-19. HEAD REMOVAL

FIGURE 4-20. CASSETTE HOLDER \& BASE PLATE REMOVAL
e. Remove two screws (marked \square) and the head flexible PC board will be removed. (In this case take care not to miss the spacer and the coil spring.) (see Figure 4-21).
f. Remove the head from the PC board.
g. Replace the head with a good one and mount the head with two screws (marked). (In this case, insert the spacer to the fixed side screw and the coil spring to azimuth adjustment side screw).

NOTE
SINCE THE FLEXIBLE PC BOARD IS APT TO BE DAMAGED, HANDLE IT WITH SUFFICIENT CARE.

FIGURE 4-21. HEAD PC BOARD REMOVAL
h. . Perform the Head Height Adjustment.

1) Place the height adjustment gauge (M-300 or AI-500) on the head base, and adjust the gauge height so that the check bar can enter the tape head guide smoothly (see Figures 4-22, 4-23, \& 4-24).
2) When the check bar touches top or bottom guide of the tape guide, insert a spacer (of 0.1 mm thickness or a polyslider washer of 0.13 mm in thickness). (Or remove the spacer to adjust the height.)
i. After mounting the head, reassemble using the above steps in reverse order.
j. Next, adjust head angle, using the test tape (MTT-113C). (Refer to the "Head Angle Adjustment".) After completion of the adjustment apply screw lock adhesive to the adjusting screw. In this case, take care so that the adhesive does not stain the pinch roller.

NOTE
IF THE HEIGHT GAUGE IS NOT AVAILABLE, RUN A TAPE AS USUAL AND ADJUST THE HEIGHT (HEAD AND SMALL GUIDE WINDOW) SO THAT NO TAPE CURLING IS OBSERVED (SEE FIGURE 4-23).

FIGURE 4-22. HEIGHT ADJUSTMENT GAUGE PLACEMENT

6. Pinch Roller Replacement
a. Remove the control PC board and guide holder, and then the $R F$ motor will be removed.
b. Remove two E-rings securing the pinch roller and the pinch roller will be removed (see Figure 4-21).
c. Replace the pinch roller with a good one, clean the pinch roller with alcohol, and then assemble it, using the above steps in reverse order.
d. After assembling, make sure performance of tape speed and wow-flutter, using the test tape (MTT-111).
7. Flywheel Replacement
a. Remove the flywheel mounting bracket and the belt.
b. Remove the flywheel by moving it straight up. (In this case, a washer on opposite chassis will also be removed together, so taking care not to miss the washer.)
c. Mount a good flywheel. (In this case, also insert the flywheel washer and apply a drop of "mobile 1" oil.)
d. Mount the belt and the flywheel mounting bracket. Make sure flywheel's thrust clearance by pushing tip of the flywheel shaft and by pushing the flywheel through the opening on the flywheel mounting bracket (marked) (see Figure 4-15).

Turn the spacer flywheel until the thrust clearance becomes minimum and then fix the spacer with screw adhesive lock.
e. Finally, mount the oil seal washer to the shaft.
f. After assembling, make sure of the tape speed and wow-flutter, using a test tape (MTT-111).

Apply Screw Adhesive Lock
 Min. and Max.

FIGURE 4-24. HEAD HEIGHT ADJUSTMENT

8. Replacement of Reverse PC Board and Reels

a. Remove two flywheels.
b. Remove one screw (marked) and remove the flexible wire leads mounted on the PC board (see Figure 4-15).
c. Remove two lock washers and the two reels will be removed.
d. After removal of the reels, desolder two locations and remove two screws (marked X) and one lock washer. Desolder leads from the RF solenoid (see Figure 4-25).
e. Replace with good reel(s) and/or reverse PC board. Assemble them using above steps in reverse order.
f. After the replacement, make sure of the tape speed and wow-flutter, using a test tape (MTT111).

FIGURE 4-25. REVERSE PC BOARD \& REELS
N.

DECK DISASSEMBLING DIAGRAM

1. Methods - Disassembling and assembling methods of the cassette holder and the base plate.
a. Mount the switch lever A.
b. Mount the micro switch B and fix it with screw C.
c. Mount the cassette holder assembly E on the base plate assembly D (see Figure 4-26).
d. Mount the eject frame assembly F (see Figure 4-27).
e. Mount them on the chassis.
f. Place the chassis vertically and fix with screw G (see Figure 4-26).

CAUTION

1. WHEN MOUNTING THE BASE PLATE ASSEMBLY D AND EJECT FRAME ASSEMBLY E, TAKE CARE NOT TO BEND THE EJECT ARM.
2. WHEN INSTALLING F, PRESS DOWN THE CAS.PUSH LEVER.
3. WHEN MOUNTING THE EJECT FRAME ASSEMBLY F ON THE CHASSIS, DO NOT APPLY EXCESSIVE FORCE TO THE FRAME.

FIGURE 4-26. CASSETTE HOLDER \& BASE PLATE
g. Under cassette-in condition, insert the slider shaft F into the eject arm, and mount it as illustrated by rotating it in direction shown by the arrow (see Figure 4-27).

FIGURE 4-27. EJECT ARM

Head Base Assembly

524	Head Frame Head Assembly
HD1	
472	SCR F-LOKS
514	Head Spring
421	Tape Guide Spring Tape Guide
463	Shim (option) For head height adjustment

FIGURE 4-28. HEAD BASE ASSEMBLY

Pinch Roller Assembly

430	Pinch Roller Assembly Pinch Roller Assembly
449	E-Ring
431	Pinch Roller Spring 457 422
Pinch Roller Spring Head Base Spring	

FIGURE 4-29. PINCH ROLLER ASSEMBLY

Photo-Transistor Mounting

FIGURE 4-30. REEL PANEL ASSEMBLY (513)

R/F Frame Mounting

487	R/F Frame
412	Washer
489	Gear, R/F (B)
491	R/F Gear Assembly
410	Washer
M2	R/F Motor Assembly
473	Screw

FIGURE 4-31. R/F FRAME MOUNTING

REPLACEMENT PARTS LIST, ALPINE CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
401	EMCR (Ref Only)	Rack
402	EMCR (Ref Only)	Spring
403	EMCR (Ref Only)	Assy., Riv. Eject Lever
404	EMCR (Ref Only)	Roller Eject (C)
405	Part of Kit	Washer Lock (M1.2)
406	Part of Kit	Washer Polyslider (M2.1)
407	EMCR (Ref only)	Washer Lock (M1.2)
408	EMCR (Ref only)	Washer Lock (M2.6)
409	EMCR (Ref only)	Washer Polyslider (M4.1)
410	EMCR (Ref only)	Washer Lock (M1.2)
411	EMCR (Ref Only)	Washer Lock (M2.3)
412	Part of Kit	Washer Lock (M1.7)
413	04A41345P12	Washer Lock (M1.7)
414	41B63283F05	Spring
415	EMCR (Ref Only)	Assy., Riv. Chas.
416	44A63189F01	Gear Motor Idler
417	44A63190F01	Gear Eject Idler
418	EMCR (Ref Only)	Gear Clutch
419	01A63497F02	Assy., Riv. Clutch Lever
420	41B63283F08	Spring
421	EMCR (Ref Only)	Spring Tape Guide
422	41A63286F02	Spring Pinch Roller
423	EMCR (Ref Only)	Spring
424	EMCR (Ref Only)	Roller Plate Base
425	EMCR (Ref Only)	Lever Select
426	45B82846F01	Slider
427	EMCR (Ref Only)	Shaft Slider
428	EMCR (Ref Only)	Spring Reverse Lock
429	07C82556F01	Assy., Riv. Cassette Holder
430	01T83741F01	Assy., Pinch Roller
431	Part of Kit	Ring "E" (M3)
432	EMCR (Ref Only)	Assy., Riv. Head Base
433	41B63283F03	Spring
434	EMCR (Ref Only)	Spring
435	01V68400F39	Assy., Gear Pause
436	44A63196F01	Gear Take Up
437	EMCR (Ref Only)	Spring Reverse Act.
438	49A64627F01	Reel Cap
439	49A64626F01	Reel Ring
440	41A64628F01	Spring Reel
441	EMCR (Ref Only)	Spring Eject Lock
442	01T72396F01	Assy., Reel
443	41A63284F01	Spring Turn Eject

REPLACEMENT PARTS LIST, ALPINE CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
444	01A63495F04	Assy., Riv. Reel Bkt.
445	45A63173F01	Lever Play Lock
446	01A82275F01	Assy., Riv. Plate Base
447	Part of Kit	Cushion Holder (B)
448	07C82478F01	Frame, Holder
449	01T83741F02	Assy., Pinch Roller
450	EMCR (Ref Only)	Lever, Sw. Micro
451	01A63496F01	Assy., Riv. Reverse Frame
452	01A63483F02	Assy., Riv. RF Idler
453	EMCR (Ref Only)	Roller Eject Arm
454	44A63197F01	Gear RF Idler
455	EMCR (Ref Only)	Spring Play Act.
456	45A63179F01	Lever Play Solenoid
457	41A63286F01	Spring Pinch Roller
458	01T72396F02	Assy., Reel
459	EMCR (Ref Only)	Spring
460	01V71800F19	Assy., Flywheel Bkt.
461	$44 \mathrm{B63188FO1}$	Gear Eject
462	Part of Kit	Spacer Head
463	43B63198F01	Tape Guide
464	Part of Kit	Scr., Pan (M1.7X6)
465	EMCR (Ref Only)	Scr., Countersink (M2.6X6.5)
466	Part of Kit	Scr., W/Washer (M3X5)
467	EMCR (Ref Only)	Scr., Countersink (2.6X3)
468	Part of Kit	Scr., Bind (M2.3X8)
469	Part of Kit	Scr., W/Washer (M2.6X4)
470	Part of Kit	Scr., Countersink (2.6X3)
471	Part of Kit	Scr., Pan (M2.6X4)
472	Part of Kit	Scr., F-Locks (M2X4)
473	EMCR (Ref Only)	Scr., Pan (M2X2.5)
474	Part of Kit	Scr., Pan (M2.6X4)
475	EMCR (Ref Only)	Scr., Pan (M2X6)
476	Part of Kit	Scr., Pan (M2.6X4.5)
477	Part of Kit	Scr., Pan (M1.7X2)
478	EMCR (Ref Only)	Panel Program Sw.
479	Part of Kit	Scr., Pan (M2.6X3)
480	EMCR (Ref Only)	Panel R/F Sw.
481	44B63187F01	Gear Change
482	EMCR (Ref Only)	Chip
483	EMCR (Ref Only)	Assy., Riv. RF Lock
484	EMCR (Ref Only)	Spring did
485	EMCR (Ref Only)	Assy., Audio Panel
486	84T63477F01	Panel Head

REPLACEMENT PARTS LIST, ALPINE CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCR.IPTION
487	EMCR (Ref Only)	Assy., Riv. RF Frame
488	EMCR (Ref Only)	Wire PC
489	44A63194F01	Gear RF (B)
490	44A63193F01	Gear RF (A)
491	01A63493F01	Assy., Riv. RF gear
492	EMCR (Ref only)	Spacer Motor
493	EMCR (Ref Only)	Lever, Solenoid Link
494	EMCR (Ref Only)	Lever, RF Link
495	EMCR (Ref Only)	Lever, RF Spring (B)
496	41B63283F06	Spring
497	EMCR (Ref Only)	Panel Pack in Sw.
498	01T63210F04	Assy., Flywheel
499	42A40969F01	Belt
500	EMCR (Ref Only)	Wire PC
501	EMCR (Ref Only)	Ring "E" (M1.2)
502	01V83500F24	Assy., Control Panel
503	EMCR (Ref Only)	Lever R/F
504	EMCR (Ref Only)	Gear RF Swing
505	EMCR (Ref Only)	Lever RF Spring (A)
506	EMCR (Ref only)	Pulley Idler
507	EMCR (Ref Only)	Cover Bottom
508	EMCR (Ref Only)	Assy., Riv. Side Bkt.
509	EMCR (Ref Only)	Assy., GZ Out Cable
510	01T63210F03	Assy., Flywheel
511	Part of Kit	Lug Wrap Around
512	EMCR (Ref Only)	Bkt., Deck (A)
513	01V83600F37	Assy., Reel Panel
514	EMCR (Ref Only)	Spring Head
515	44B70362F01	Gear Eject (A)
516	07A81324F01	Bkt., Deck (B)
517	EMCR (Ref Only)	Lever Pack Sw.
518	EMCR (Ref only)	Lever Reel Brake
519	41A70517F01	Spring Reel Brake
520	EMCR (Ref Only)	Spacer Motor
521	EMCR (Ref Only)	Spring PC
522	Part of Kit	Rivet Push
523	EMCR (Ref Only)	Insulator Cover
524	EMCR (Ref only)	Frame Head
525	01A82108F01	Assy., Riv. Eject Arm
526	Part of Kit	Rivet Push
439	49A64626F01	Reel Ring
HD1	88T74130F01	Head
M1	01V83800F37	Assy., Motor

REPLACEMENT PARTS LIST, ALPINE CASSETTE MECHANISM

REFERENCE NUMBER	PART NUMBER	DESCRIPTION
M2 S1 S2 S3 S5 S6 S7 SD1 SD2 SD3 SD4	01V83500F82 40T71025F03 40T60239F02 40T63432F01 40T52216F01 40T71025F03 40T71025F03 01A63213F01 01A63215F01 01A63212F01 01A63214F01	Assy., RF Motor Sw. Detector Sw. Leaf Sw. Slide Sw. Micro Sw. Detector Sw. Detector Assy., Program Solenoid Assy., Eject Solenoid Assy., Play Solenoid Assy., RF Solenoid

FIGURE 4-33. ALPINE CASSETTE MECHANISM

CONTROL BOARD
4234484-I INFINITY \& PREMIUM 4234484-2 SPECIAL PREMIUM

FIGURE 4-34. ELECTRONIC TUNED CASSETTE RADIO, BLOCK WIRING DIAGRAM

NOTES

I REFERENCE ORAWINGS, ELEGTRICAL SCHEMATICS
4393206 RF BOARD ASSY
4234494 AUDTO LOGIC BOARD ASSY
4234484 CONTROL BOARD ASSY
4234507 SHINWA CASSETTE MECHANISM
4234510 ALPINE CASSETTE MECHANISM

FIGURE 4-35. ELECTRICAL SCHEMATIC WITH AUDIO/CONTROL PC BOARD, ALPINE MECHANISM

[^0]: the sEr, switch will ummute the radio on FM durime FM manual tuming The frequency mode looks out the

