Why use a DSP?

[Digital Signal Processing 101—
An Introductory Course in DSP
System Design—Part 2]

by David Skolnick and Noam Levine

If you’ve read Part 1 of this series (or are already familiar with
some of the ways a DSP can work with real-world signals), you
might want to learn more about how digital filters (such as those
described in Part 1) can be implemented with a DSP. This article,
the second of a series, introduces the following DSP topics:

* Modeling filter transform functions

* Relating the models to DSP architecture

» Experimenting with digital filters

This series seeks to describe these topics from the perspective of
analog system designers who want to add DSP to their design
repertoire. Using the information from articles in this series as an
introduction, designers can make more informed decisions about
when DSP designs might be more productive than analog circuits.

Modeling Filter Transform Functions

Part 1 compared analog and digital filter properties and suggested
why one might implement these filters digitally (using DSP); this
part focuses on some of the mechanics of digital filter application.

The three principal reasons for using digital filtering are (1) closer
approach to ideal filter approximations, (2) ability to adjust filter
characteristics in software rather than by physical tuning, and (3)
compatibility of filter response with sampled data. The two best-
known filters described in Part 1 are the finite impulse-response
(FIR) and infinite impulse-response (IIR) types. The FIR filter
response is called finite because its output is based solely on a
finite set of input samples; it is non-recursive and has no poles,
only zeroes in its s-plane. The IIR filter, on the other hand, has a
response that can go on indefinitely (and can be unstable) because
it is recursive, i.e., its output values are affected by both input and
output. It has both poles and zeroes in its s-plane. Figure 1 shows
the typical filter architectures and summation formulas that
appeared in Part 1.
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Figure 1. Filter equations and their delay-line models.

To model these filters digitally, one might take two steps. First,
view these formulas as programs running on a computer. This
step consists of breaking down the formula into the mathematical
steps (e.g., multiply and add) and identifying all of the additional
operations that would be necessary for a computer to perform
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(handling instructions and data, testing status, etc.) to implement
the formula in software.

Second, take those operations and write them as a program. This
can be a fairly arduous task. Fortunately, there is much “canned”
software available, often in a high-level language (HLL) such as
C, somewhat simplifying (but by no means eliminating!) the job
of programming. From the point of view of learning, though, it
may be more instructive to start with assembly language; also
assembly language algorithms are often more useful than HLL
where system performance must be optimized. At the level of
abstraction of some high-level languages, the program may not
look much like the equations. For example, Figure 2 shows an
example of an FIR algorithm implemented as a C program.*

floatfir_filter(floatinput, float *coef, int n, float *history)
{

inti;

float *hist_ptr, *hist1_ptr, *coef_ptr;

float output;

hist_ptr = history;

histl_ptr = hist_ptr;  /* use for history update */

coef_ptr = coef + n-1; /* point to last coef */
/*form output accumulation */

output = *hist_ptr++ * (*coef_ptr-);

for(i=2;i<n;i++)

*histl_ptr++ = *hist_ptr; /* update history array */
output += (*hist_ptr++) * (*coef_ptr-);

output += input * (*coef_ptr); /* input tap */
*hist1l_ptr = input; [* last history */
return(output);

Figure 2. FIR Filter as C program.

There are many analysis packages available that support algorithm
modeling; see the references at the end of this article for several
popular packages. We will return to algorithm modeling at various
times in the course of this series. Now, continuing the discussion
of the process, after these filter algorithms have been modeled,
they are ready for implementation in DSP architecture.

Relating The Models To DSP Architecture: For programming,
one must understand four sections of DSP architecture: numeric,
memory, sequencer, and I/O operations. This architectural
discussion is generic (applying to general DSP concepts), but it is
also specific as it relates to programming examples later in this
article. Figure 3 shows the generalized DSP architecture that this
section describes.

ARCHITECTURE

Numeric Section: Because DSPs must complete multiply/
accumulate, add, subtract, and/or bit-shift operations in a single
instruction cycle, hardware optimized for numeric operations is
central to all DSP processors. It is this hardware that distinguishes
DSPs from general-purpose microprocessors, which can require
many cycles to complete these types of operations. In the digital
filters (and other DSP algorithms), the DSP must complete
multiple steps of arithmetic operations involving data values and
coefficients, to produce responses in real time that have not been
possible with general-purpose processors.

Numeric operations occur within a DSP’s multiply/accumulator
(MAC), arithmetic-logic unit (ALU), and barrel shifter (shifter).
The MAC performs sum-of-products operations, which appear in
most DSP algorithms (such as FIR and IIR filters and fast Fourier
transforms). ALU capabilities include addition, subtraction, and

*From Embree, P. M., C algorithms for real-time DSP. Upper Saddle River, NJ:
Prentice Hall (1995).
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logical operations. Operations on bits and words occur within the
shifter. Figure 3 shows the parallelism of the MAC, ALU, and
shifter and how data can flow into and out of them.
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Figure 3. A useful DSP architecture.

From a programming point of view, a DSP architecture that uses
separate numeric sections provides great flexibility and efficiency.
There are many non-conflicting paths for data, allowing single-
cycle completion of numeric operations. The architecture of the
DSP must also provide a wide dynamic range for MAC operations,
with the ability to handle multiplication results that are double
the width of the inputs—and accumulator outputs that can mount
up without overflowing. (On a 16-bit DSP, this feature equates to
16-bit data inputs and a 40-biz result output from the MAC.) One
needs this range for handling most DSP algorithms (such as filters).

Other features of the numeric section can facilitate programming
in real-time systems. By making operations contingent on a variety
of conditional states, which result from numeric operations, these
can serve as variables in a program’s execution, testing for carries,
overflows, saturates, flags, or other states. Using these conditionals,
a DSP can rapidly handle decisions about program flow based on
numeric operations. The need to be constantly feeding data into
the numeric section is a key design influence on the DSP’s memory
and internal bus structures.

Memory Section: DSP memory and bus architecture design is
guided by the need for speed. Data and instructions must flow
into the numeric and sequencing sections of the DSP on every
instruction cycle. There can be no delays, no bottlenecks.
Everything about the design focuses on throughput.

To put this focus on throughput in perspective, one can look at
the difference between DSP memory design and memory for other
microprocessors. Most microprocessors use a single memory space
containing both data and instructions, using one bus for address
and other for data or instructions. This architecture is called von
Neumann architecture. The limitation on throughput in a von
Neumann architecture comes from having to choose between either
a piece of data or an instruction on each cycle. In DSPs, memory
is typically divided into program and data memory—with separate
busses for each. This type of architecture is referred to as Harvard
architecture. By separating the data and instructions, the DSP can
fetch multiple items on each cycle, doubling throughput. Additional
optimizations, such as instruction cache, results feedback, and
context switching also increase DSP throughput.
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Etymology of Harvard and von Neumann Architectures—
According to John A. N. Lee, Department of Computer Science,
Virginia Tech:

“Howard Aiken, developer of the Harvard series of machines,
insisted on the separation of data and programs in all his
machines. In the Mark III, which I know best, he even had
different size drums for each.”

“The von Neumann concept was that by treating instructions
as data one could make alterations in programs, enhancing
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the ability for programs to ‘learn’.

“For some reason, the latter was given von Neumann’s name,
while the former took its name from the Harvard line of
machines.”

Other optimizations in DSP memory architecture relate to repeated
memory accesses. Most DSP algorithms, such as digital filters,
need to get data from memory in a repeating pattern of accesses.
Typically, this type of access serves to fetch data from a range of
addresses, a range that is filled with data from the real-world signals
to be processed. By reducing the number of instructions needed
to “manage” memory accesses (overhead), DSPs “save” instruction
cycles, allowing more time for the main job of each cycle—
processing signals. To reduce overhead and automatically manage
these types of accesses, DSPs utilize specialized data address-
generators (DAGs).

Most DSP algorithms require two operands to be fetched from
memory in a single cycle to become inputs to the arithmetic units.
To supply the addresses of these two operands in a flexible manner,
the DSP has two DAGs. In the DSP’s modified Harvard
architecture, one address generator supplies an address over the
data-memory address bus; the other supplies an address over the
program-memory address bus. By performing these two data
fetches in time for the next numeric instruction, the DSP is able
to sustain single-cycle execution of instructions.

DSP algorithms, such as the example digital filters, usually require
data in a range of addresses (a buffer) to be addressed so that the
address pointer “wraps-around” from the end of the buffer back
to the start of the buffer (buffer lengrh). This pointer movement is
called circular buffering. (In the filter equations, each summation
basically results from a sequence of multiply-and-accumulates of
a circular buffer of data points and a circular buffer of coefficients).
A variation of circular buffering, which is required in some
applications, advances the address pointer by values greater than
one address per “step,” but still wraps around at a given length
This variation is called modulo circular buffering.

By supporting various types of buffering with its DAGs, the DSP
is able to perform address modify and compare operations in
hardware for optimum efficiency. Performing these functions in
software (as occurs in general purpose processors) limits the
processor’s ability to handle real-time signals.

Because buffering is an unusual concept, yet key to digital signal
processing, a brief buffering example is useful. In the example
illustrated in Figure 4, a buffer of eight locations resides in memory
starting at address 30. The address generator must calculate next
addresses that stay within this buffer yet keep the proper data
spacing so that two locations are skipped. The address generator
outputs the address 30 on to the address bus while it modifies the
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address to 33 for the next cycle’s memory access. This process
repeats, moving the address pointer through the buffer. A special
case occurs when the address 36 gets modified to 39.The address
39 is outside the buffer. The address generator detects that the
address has fallen outside of the buffer boundary and modifies
the address to 31 as if the end of the buffer is connected to the
start of the buffer. The update, compare, and modify occur with no
overhead. In one cycle, the address 36 is output onto the address
bus. On the next cycle, the address 31 is output onto the address
bus. This modulo circular buffering serves the needs of algorithms
such as interpolation filters and saves instruction cycles for

processing.

ADDRESS SEQUENCE

0x0030

0x0037

Figure 4. Example of modulo circular buffering.

Sequencer Section: Because most DSP algorithms (such as the
example filters) are by nature repetitive, the DSP’s program
sequencer needs to loop through the repeated code without
incurring overhead while getting from the end of the loop back to
the start of the loop. This capability is called zero-overhead looping.
Having the ability to loop without overhead is a key area in which
DSPs differ from conventional microprocessors. Typically,
microprocessors require that program loops be maintained in
software, placing a conditional instruction at the end of the loop.
This conditional instruction determines whether the address
pointer moves (jumps) back to the top of the loop or to another
address. Because getting these addresses from memory takes time—
and availability of time for signal-processing is critical in DSP
applications—DSPs cannot waste cycles retrieving addresses for
conditional program sequencing (branching) in this manner.
Instead, DSPs perform these test and branch functions in hardware,
storing the needed addresses.

As Figure 5 shows, the DSP executes the last instruction of the
loop in one cycle. On the next cycle, the DSP evaluates the
conditional and executes either the first instruction at the top of
the loop or the first instruction outside the loop. Because the DSP
uses dedicated hardware for these operations, no extra time is
wasted with software evaluating conditionals, retrieving addresses,
or branching program execution.

GENERAL FORM:
DO LABEL UNTIL CONDITION

EXAMPLE:
CNTR=10;
DO ENDLOOP UNTIL CE;
ADDRESS SAVED
BY HARDWARE { FIRST LOOP INSTRUCTION }

{ NEXT LOOP INSTRUCTION }

{ LAST LOOP INSTRUCTION } D

ENDLOOP: H
{ FIRST INSTRUCTION OUTSIDE LOOP }

ADDRESS SAVED
BY HARDWARE

Figure 5. Example of program loop.
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Input/Output (I/O) Section: As noted again and again, there is
a need for tremendous throughput of data to the DSP; everything
about its design is focused on funneling data into and out of the
numeric, memory, and sequencer sections. The source of the data—
and destination of the output (the result of signal processing)—is
the DSP’s connection to its system and the real-world. A number
of I/O functions are required to complete signal processing tasks.
Off-DSP memory arrays store processor instructions and data.
Communication channels (such as serial ports, I/O ports and direct
memory accessing (DMA) channels transfer data into and out of
the DSP quickly. Other functions (such as timers and program
boot logic) ease DSP system development. A brief list of typical
I/O tasks in a DSP system includes the following (among many
others):

* Boot loading: At Reset, the DSP loads instructions form an
external source (EPROM or host) usually through an external
memory interface.

o Serial communications: The DSP receives or transmits data
through a synchronous serial port (SPORT), communicating
with codecs, ADCs, DACs, or other devices.

o Memory-mapped I/O: The DSP receives or transmits data
through an off-DSP memory location that is decoded by an
external device.

EXPERIMENTING WITH DIGITAL FILTERS

Having modeled the filter algorithms and looked at some of the
DSP architectural features, one is ready to start looking at how
these filters could be coded in DSP assembly language. Up to this
point the discussion and examples have been generic, applying to
almost all DSPs. Here, the example is specific to the Analog Devices
ADSP-2181.This processor is a fixed-point, 16-bit DSP.The term
“fixed-point” means that the “point” separating the mantissa and
exponent does not change its bit location during arithmetic
operations. Fixed-point DSPs can be more challenging to program,
but they tend to be less expensive than floating-point DSPs. The
“16-bit” in “16-bit DSP” refers to the size of the DSP’s data words.
This DSP uses 16-bit data words and 24-bir wide instruction words.
DSPs are specified by the size of the data, rather than instruction
width because data word size describes the width of data that the
DSP can handle most efficiently.

The example program in Figure 6 is an FIR filter in ADSP-2181
assembly language. The software has two parts. The main routine
includes register and buffer initialization along with the interrupt
vector table, and the interrupt routine that executes when a data
sample is ready. After initialization, the DSP executes instructions
in the main routine, performing some background tasks, looping
through code, or idling in a low-power standby mode until it gets
an interrupt from the A/D converter. In this example, the processor
idles in a low-power standby mode waiting for an interrupt.

The FIR filter interrupt subroutine (the last segment of code) is
the heart of the filter program. The processor responds to the
interrupt, saving the context of the main routine and jumping to
the interrupt routine. This interrupt routine processes the filter
input sample, reading data and filter coefficients from memory
and storing them in data registers of the DSP processor. After
processing the input sample, the DSP sends an output sample to
the D/A converter.
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.module/RAM/ABS=0 FIR_PROGRAM;
[rexxrkxx |njtialize Constants and Variables ¥tk
.const taps=127;

.var/dm/circ data[taps];

.var/pm/circ fir_coefs[taps];

.init fir_coefs: <coeffs.dat>;
.var/dm/circ output_data[taps];

[FRxxkkx Interrupt vector table /

reset_svc: jump start; rti; rti; rti;
/*00: reset */

irq2_svc: /*04: IRQ2 */
si=io(0); [* get next sample */
dm(i0,m0)=si; [* store in tap delay line */
jump fir; [* jump to fir filter */

nop; /* nop is placeholder */
irgll_svc: rti; rti; rti; rti;  /*08: IRQL1 */
irql0_svc:  rti; rti; rti; rti;  /*Oc: IRQLO */
spOtx_svc:  rti; rti; rti; rti;  /*10: SPORTO tx */
spOrx_sve:  rti; rti; rti; rti;  /*14: SPORTL rx */
irge_svc: rti; rti; rti; rti;  /*18: IRQE */
bdma_svc: rti; rti; rti; rti;  /*1c: BDMA */
spltx_svc: rti; rti; rti; rti;  /*20: SPORT1 tx or IRQ1 */
splrx_svc: rti; rti; rti; rti;  /*24: SPORTL rx or IRQO */
timer_svc: rti; rti; rti; rti;  /*28: timer */
pwdn_svc: rti; rti; rti; rti;  /*2c: power down */
[Fexrxk START OF PROGRAM — initialize mask, pointers *#iiix/
start:
[* set up various control registers */
ICNTL=0x07; /*setIRQ2,IRQ1, IRQO edge sensitive */
IFC=0xFF; /* clear all pending interrupts */
NOP; /* add nop because of one cycle */
/* synchronization delay of IFC */
S1=0x0000;
DM(0x3FFF)=SlI; [* sports not enabled */
/* sportl set for IRQ1, IRQO, FI, FO */

IMASK=0x200; /* enable IRQ2 interrupt */
i0="data; /* index to data buffer */
10=taps; /* length of data buffer */

mO=1; I* post modify value */
i4=nfir_coefs; [* index to fir_coefs buffer */
l4=taps; /* length of fir_coefs buffer */
m4=1; I* post modify value */
i2=output_data; /* index to data buffer */
12=taps; /* length of data buffer */
cntr=taps;
do zero until ce;
dm(i0,m0)=0; /* clear out the tap delay data buffer */
zero:  dm(i2,m0)=0; /* clear out the output_data buffer */
[+ WAIT for IRQ2 Interrupt — then JUMP to INTERRUPT VECTOR *¥/
wait: idle; /* wait for IRQ2 interrupt */
jump wait;
I******* FlR FlLTER |nterrupt SUbI’OU[Ine ***********************/
fir cntr=taps-1; /* set up loop counter */
mr=0, mx0=dm(i0,m0), myO=pm(i4,m4);
/* fetch data and coefficient */
do firlloop until ce; /* set up loop */
firlloop: mr=mr+mx0*my0(ss), mx0=dm(i0,m0), myO=pm(i4,m4);
[* calculations */
/* if not ce jump firlloop;*/
mr=mr+mx0*my0(rnd); /* round final result to 16-bits */

if mv sat mr; /* if overflow, saturate */
io(1)=mr1; /* send result to DAC */
dm(i2,m0)=mr1;
rti;
[Frxxxk END OF PROGRAM |
.endmod;

Figure 6. An FIR filter in ADSP-2181 assembly language.

Note that this program uses DSP features that perform operations
with zero overhead, usually introduced by a conditional. In
particular, program loops and data buffers are maintained with
zero overhead. The multifunction instruction in the core of the
filter loop performs a multiply/accumulate operation while the next
data word and filter coefficient are fetched from memory.

The program checks the final result of the filter calculation for
any overflow. If the final value has overflowed, the value is saturated
to emulate the clipping of an analog signal. Finally, the context of
the main routine is restored and the instruction flow is returned
to the main routine with a return from interrupt (RTT) instruction.
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REVIEW AND PREVIEW

The goal of this article has been to provide a link between filter
theory and digital filter implementation. On the way, this article
covers modeling filters with HLL programs, using DSP
architecture, and experimenting with filter software. The issues
introduced in this article include:

+ Filters as programs
* DSP architecture (generalized)
* DSP assembly language

Because these issues involve many valuable levels of detail that
one could not do justice to in this brief article, you should consider
reading Richard Higgins’s text, Digizal Signal Processing in VLSI,
and Paul Embree’s text, C Algorithms For Real Time DSP (see
References below). These texts provides a complete overview of
DSP theory, implementation issues, and reduction to practice (with
devices available at the time of publication), plus exercises and
examples. The Reference section below also contains other sources
that further amplify this article’s issues. To prepare for the next
articles in this series, you might want to get free copies of the
ADSP-2100 Family User’s Manual* or the ADSP-2106x SHARC
User’s Manual.* These texts provide information on Analog
Devices’s fixed- and floating-point DSP architectures, a major topic
in these articles. Working through this series, each part adds some
feature or information contributing to the series goal of developing
a DSP system. To reach this goal, the next article describes the
series’ development platform (the ADSP-2181 EZ-KIT LITE)
and introduces additional DSP development topics.
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