
Analog Dialogue 31-1 (1997) 3

Why Use DSP?
Digital Signal Processing 101—
An introductory course in DSP
system design: Part 1:
by David Skolnick and Noam Levine
Having heard a lot about digital signal processing (DSP)
technology, you may have wanted to find out what can be done
with DSP, investigate why DSP is preferred to analog circuitry for
many types of operations, and discover how to learn enough to
design your own DSP system. This article, the first of a series, is
an opportunity to take a substantial first step towards finding
answers to your questions. This series is an introduction to DSP
topics from the point of view of analog system designers seeking
additional tools for handling analog signals. Designers reading this
series can learn about the possibilities of DSP to deal with analog
signals and where to find additional sources of information and
assistance.

What is [a] DSP? In brief , DSPs are processors or
microcomputers whose hardware, software, and instruction sets
are optimized for high-speed numeric processing applications—
an essential for processing digital data representing analog signals
in real time. What a DSP does is straightforward. When acting as a
digital filter, for example, the DSP receives digital values based on
samples of a signal, calculates the results of a filter function
operating on these values, and provides digital values that represent
the filter output; it can also provide system control signals based
on properties of these values. The DSP’s high-speed arithmetic
and logical hardware is programmed to rapidly execute algorithms
modelling the filter transformation.

The combination of design elements—arithmetic operators,
memory handling, instruction set, parallelism, data addressing—
that provide this ability forms the key difference between DSPs
and other kinds of processors. Understanding the relationship
between real-time signals and DSP calculation speed provides some
background on just how special this combination is. The real-time
signal comes to the DSP as a train of individual samples from an
analog-to-digital converter (ADC). To do filtering in real-time,
the DSP must complete all the calculations and operations required
for processing each sample (usually updating a process involving
many previous samples) before the next sample arrives. To perform
high-order filtering of real-world signals having significant
frequency content calls for really fast processors.

WHY USE A DSP?
To get an idea of the type of calculations a DSP does and get an
idea of how an analog circuit compares with a DSP system, one
could compare the two systems in terms of a filter function. The
familiar analog filter uses resistors, capacitors, inductors, amplifiers.
It can be cheap and easy to assemble, but difficult to calibrate,
modify, and maintain—a difficulty that increases exponentially with
filter order. For many purposes, one can more easily design, modify,
and depend on filters using a DSP because the filter function on
the DSP is software-based, flexible, and repeatable. Further, to
create flexibly adjustable filters with higher-order response requires
only software modifications, with no additional hardware—unlike
purely analog circuits. An ideal bandpass filter, with the frequency

IN THIS ISSUE
Volume 31, Number 1, 1997, 24 Pages

Editor’s Notes, Authors . 2
Digital signal processing 101—an introductory course in DSP system design: I . . 3
Selecting mixed-signal components for digital communications systems—III 7
Controller board system allows for easy evaluation of general-purpose converters . . 10
Build a smart analog process-instrument transmitter with

low-power converters & microcontroller . 13
New-Product Briefs:

Amplifiers, Buffered Switches and Multiplexers 16
A/D and D/A Converters, Volume Controls 17
Power Management, Supervisory Circuits 18
Mixed bag: Communications, Video, DSP 19

Ask The Applications Engineer—24: Resistance 20
Worth Reading, More authors . 23

response shown in Figure 1, would have the following
characteristics:

• a response within the passband that is completely flat with zero
phase shift

• infinite attenuation in the stopband.

Useful additions would include:
• passband tuning and width control
• stopband rolloff control.

As Figure 1 shows, an analog approach using second-order filters
would require quite a few staggered high-Q sections; the difficulty
of tuning and adjusting it can be imagined.

Figure 1. An ideal bandpass filter and second-order
approximations.

With DSP software, there are two basic approaches to filter design:
finite impulse response (FIR) and infinite impulse response (IIR).
The FIR filter’s time response to an impulse is the straightforward
weighted sum of the present and a finite number of previous input
samples. Having no feedback, its response to a given sample ends
when the sample reaches the “end of the line” (Figure 2). An FIR
filter’s frequency response has no poles, only zeros. The IIR filter,
by comparison, is called infinite because it is a recursive function:
its output is a weighted sum of inputs and outputs. Since it is
recursive, its response can continue indefinitely. An IIR filter
frequency response has both poles and zeros.

 PASSBAND

IDEAL
RESPONSE

ROLLOFF

2ND
ORDER

IDEAL
RESPONSE

ROLLOFF

2ND
ORDER

|H
(f

)|
f0 fSTOPBAND STOPBAND

4 Analog Dialogue 31-1 (1997)

Figure 2. Filter equations and delay-line representation.

The xs are the input samples, ys are the output samples, as are
input sample weightings, and bs are output sample weightings. n
is the present sample time, and M and N are the number of samples
programmed (the filter’s order). Note that the arithmetic operations
indicated for both types are simply sums and products—in
potentially great number. In fact, multiply-and-add is the case for
many DSP algorithms that represent mathematical operations of
great sophistication and complexity.

Approximating an ideal filter consists of applying a transfer function
with appropriate coefficients and a high enough order, or number
of taps (considering the train of input samples as a tapped delay
line). Figure 3 shows the response of a 90-tap FIR filter compared
with sharp-cutoff Chebyshev filters of various orders. The 90-tap
example suggests how close the filter can come to approximating
an ideal filter. Within a DSP system, programming a 90-tap FIR
filter—like the one in Figure 3—is not a difficult task. By
comparison, it would not be cost-effective to attempt this level of
approximation with a purely analog circuit. Another crucial point
in favor of using a DSP to approximate the ideal filter is long-term
stability. With an FIR (or an IIR having sufficient resolution to
avoid truncation-error buildup), the programmable DSP achieves
the same response, time after time. Purely analog filter responses
of high order are less stable with time.

Figure 3. 90-tap FIR filter response compared with those of
sharp cutoff Chebyshev filters.

Mathematical transform theory and practice are the core
requirement for creating DSP applications and understanding their

limits. This article series walks through a few signal-analysis and -
processing examples to introduce DSP concepts. The series also
provides references to texts for further study and identifies software
tools that ease the development of signal-processing software.

SAMPLING REAL-WORLD SIGNALS
Real-world phenomena are analog—the continuously changing
energy levels of physical processes like sound, light, heat, electricity,
magnetism. A transducer converts these levels into manageable
electrical voltage and current signals, and an ADC samples and
converts these signals to digital for processing. The conversion
rate, or sampling frequency, of the ADC is critically important in
digital processing of real-world signals.

This sampling rate is determined by the amount of signal
information that is needed for processing the signals adequately
for a given application. In order for an ADC to provide enough
samples to accurately describe the real-world signal, the sampling
rate must be at least twice the highest-frequency component of
the analog signal. For example, to accurately describe an audio
signal containing frequencies up to 20 kHz, the ADC must sample
the signal at a minimum of 40 kHz. Since arriving signals can easily
contain component frequencies above 20 kHz (including noise),
they must be removed before sampling by feeding the signal
through a low-pass filter ahead of the ADC. This filter, known as
an anti-aliasing filter, is intended to remove the frequencies above
20 kHz that could corrupt the converted signal.

However, the anti-aliasing filter has a finite frequency rolloff, so
additional bandwidth must be provided for the filter’s transition
band. For example, with an input signal bandwidth of 20 kHz,
one might allow 2 to 4 kHz of extra bandwidth.

Figure 4. Antialiasing filter ideal response.

Figure 4 depicts the filter needed to reject any signals with
frequencies above half of a 48-kHz sampling rate. Rejection means
attenuation to less than 1/2 least-significant bit (LSB) of the ADC’s
resolution. One way to achieve this level of rejection without a
highly sophisticated analog filter is to use an oversampling converter,
such as a sigma-delta ADC. It typically obtains low-resolution (e.g.,
1-bit) samples at megahertz rates—much faster than twice the
highest frequency component—greatly easing the requirement for
the analog filter ahead of the converter. An internal digital filter
(DSP at work!) restores the required resolution and frequency
response. For many applications, oversampling converters reduce
system design effort and cost.

(n–N+2) (n–N+1)
z–1

(n–1)

a(0) a(1) a(N–2) a(N–1)

INPUT

∑
OUTPUT

y(n) = ∑a(k) (n–k)
N–1

k=0

FIR
STRUCTURE

z–1 z–1

a(1)

y(n) = ∑a(k) x (n–k) + ∑b(k) y (n–k)
N–1

k=0

M

k=1

a(2)

b(1)

b(2)

a(0)
y(n)x(n)

IIR
FILTER

z–1 z–1

z–1 z–1

90-TAP FIR
PASSBAND CUTOFF

FREQUENCY 0.5fS

0

–25

–50

–75

–100

–125
0 0.1 0.2 0.3 0.4 0.5

f
fS

NORMALIZED FREQUENCY =
(ACTUAL FREQ) / (SAMPLING FREQ)

2

4

6

R
E

L
A

T
IV

E
 M

A
G

N
IT

U
D

E
 –

 d
B

1/2 LSB

 NOISE

20 24 48
FREQUENCY – kHz

Analog Dialogue 31-1 (1997) 5

PROCESSING REAL-WORLD SIGNALS
The ADC sampling rate depends on the bandwidth of the analog
signal being sampled. This sampling rate sets the pace at which
samples are available for processing. Once the system bandwidth
requirements have established the A/D converter sampling rate,
the designer can begin to explore the speed requirements of the
DSP processor.

Processing speed at a required sample rate is influenced by
algorithm complexity. As a rule, the DSP needs to finish all
operations relating to the first sample before receiving the second
sample. The time between samples is the time budget for the DSP
to perform all processing tasks. For the audio example, a 48-kHz
sampling rate corresponds to a 20.833-µs sampling interval. Figure
5 relates the analog signal and digital sampling rate.

Figure 5. Sampling train and processing time.

Next consider the relation between the speed of the DSP and
complexity of the algorithm (the software containing the transform
or other set of numeric operations). Complex algorithms require
more processing tasks. Because the time between samples is fixed,
the higher complexity calls for faster processing.

For example, suppose that the algorithm requires 50 processing
operations to be performed between samples. Using the previous
example’s 48-kHz sampling rate (20.833-µs sampling interval),
one can calculate the minimum required DSP processor speed, in
millions of operations per second (MOPS) as follows:

DSP Speed =

Operations
Sampling Interval

=
50

20.833 µs
= 2.4 MOPS

Thus if all of the time between samples is available for operations
to implement the algorithm, a processor with a performance level
of 2.4 MOPS is required. Note that the two common ratings for
DSPs, based on operations per second (MOPS) and instructions
per second (MIPS), are not the same. A processor with a 10-MIPS
rating that can perform 8 operations per instruction has basically
the same performance as a faster processor with a 40 MIPS rating
that can only perform 2 operations per instruction.

SAMPLING VARIOUS REAL-WORLD SIGNALS
There are two basic ways to acquire data, either one sample at a
time or one frame at a time (continuous processing vs. batch
processing). Sample-based systems, like a digital filter, acquire data
one sample at a time. As shown in Figure 6, at each tick of the
clock, a sample comes into the system and a processed sample is
output. The output waveform develops continuously.

Figure 6. Example of continuous processing of samples
in digital filter.

Frame-based systems, like a spectrum analyzer, which determines
the frequency components of a time-varying waveform, acquire a
frame (or block of samples). Processing occurs on the entire frame of
data and results in a frame of transformed data, as shown in Figure 7.

Figure 7. Example of batch processing of a block of data.

For an audio sampling rate of 48 kHz, a processor working on a
frame of 1024 samples has a frame acquisition interval of 21.33 ms
(i.e., 1024 × 20.833 µs = 21.33 ms). Here the DSP has 21.33 ms
to complete all the required processing tasks for that frame of data.
If the system handles signals in real time, it must not lose any
data; so while the DSP is processing the first frame, it must also
be acquiring the second frame. Acquiring the data is one area where
special architectural features of DSPs come into play: Seamless
data acquisition is facilitated by a processor’s flexible data-
addressing capabilities in conjunction with its direct memory-
accessing (DMA) channels.

RESPONDING TO REAL-WORLD SIGNALS
One cannot assume that all the time between samples is available
for the execution of processing instructions. In reality, time must
be budgeted for the processor to respond to external devices,
controlling the flow of data in and out. Typically, an external device
(such as an ADC) signals the processor using an interrupt. The
DSP’s response time to that interrupt, or interrupt latency, directly
influences how much time remains for actual signal processing.

Interrupt latency (response delay) depends on several factors; the
most dominant is the DSP architecture’s instruction pipelining.
An instruction pipeline consists of the number of instruction cycles
that occur between the time an interrupt is received and the time
that program execution resumes. More pipeline levels in a DSP
result in longer interrupt latency. For example, if a processor has a
20-ns cycle time and requires 10 cycles to respond to an interrupt,
200 ns elapse before it executes any signal-processing instructions.

When data is acquired one sample at a time, this 200-ns overhead
will not hurt if the DSP finishes the processing of each sample
before the next arrives. When data is acquired sample-by-sample
while processing a frame at a time, however, an interrupted system
wastes processor instruction cycles. For example, a system with a

t t

X(N) Y(N)

LOWPASS FILTER

H(Z)

ADC DAC

SAMPLING
INTERVAL

ANALOG

DIGITAL SAMPLE TIMES

SIGNAL
ANALYSIS

DSP
SYSTEM

FREQUENCYTIME

6 Analog Dialogue 31-1 (1997)

200-ns interrupt response time running a frame-based algorithm,
such as the FFT, with a frame size of 1024 samples, would require
204.8 µs of overhead. That amounts to more than 10,000
instruction cycles wasted to latency—productive time when the
DSP could be performing signal processing. This waste is easy to
avoid in DSPs having architectural features such as DMA and
dual memory access; they let the DSP receive and store data
without interrupting the processor.

DEVELOPING A DSP SYSTEM
Having discussed the role of the processor, the ADC, the anti-
aliasing filter, and the timing relationships between these
components, it is time to look at a complete DSP system. Figure 8
shows the building blocks of a typical DSP system that could be
used for data acquisition and control.

Figure 8. Putting together elements of a DSP system.

Note how few components make up the DSP system, because so
much of the system’s functionality comes from the programmable
DSP. Converters funnel data into and out of the DSP; the ADC
timing is controlled by a precise sampling clock. To simplify system
design, many converter devices available today combine some or
all of the following: an A/D converter, a D/A converter, a sampling
clock, and filters for anti-aliasing and anti-imaging. The clock
oscillator in these types of I/O components is separately controlled
by an external crystal. Here are some important points about the
data flow in this sort of DSP system:

Analog Input: The analog signal is appropriately band-limited
by the anti-aliasing filter and applied to the input of the ADC. At
the selected sampling time, the converter interrupts the DSP
processor and makes the digital sample available. The choice
between serial and parallel interfacing between the ADC and DSP
depends on the amount of data, design complexity trade-offs, space,
power, and price.

Digital Signal Processing: The incoming data is handled by the
DSP’s algorithm software. When the processor completes the
required calculations, it sends the result to the DAC. Because the
signal processing is programmable, considerable flexibility is
available in handling the data and improving system performance
with incremental programming adjustments.

Analog Output: The DAC converts the DSP’s output into the
desired analog output at the next sample clock. The converter’s
output is smoothed by a low-pass, anti-imaging filter (also called a
reconstruction filter), to produce the reconstructed analog signal.

Host Interface: An optional host interface lets the DSP
communicate with external systems, sending and receiving data
and control information.

REVIEW AND PREVIEW
The goal of this article has been to provide an overview of major
DSP design concepts and explain some of the reasons why a DSP
is better suited that analog circuitry for some applications. The
issues introduced in this article include:
• DSP overview
• Real-time DSP operation
• Real-world signals
• Sampling rates and anti-alias filtering
• DSP algorithm time budget
• Sample driven versus frame driven data acquisition

Because these issues involve many valuable levels of detail that we
could not do justice to in this brief article, you should consider
reading Richard Higgins’s text, Digital Signal Processing in VLSI
(see References below). This text provides a complete overview of
DSP theory, implementation issues, and reduction to practice (with
devices available at the time it was published), plus exercises and
examples. The Reference section below also contains other sources
that further amplify this article’s issues. To prepare for the next
articles in this series, you might want to get free copies of the
ADSP-2100 Family User’s Manual* and the ADSP-2106x SHARC
User’s Manual.* These texts provide information on Analog
Devices’s fixed- and floating-point DSP architectures, a major topic
in these articles. The next article will cover the following territory:

• Mathematical overview of signal processing: It will present
the mathematics for the transform functions (frequency domain)
and convolution functions (time domain) that appear throughout
the series. While the mathematical treatment is necessarily
incomplete (no derivations), there will be sufficient detail for
considering how to program the operations.

• DSP architecture: The article will discuss the nature and
functioning of the DSP’s arithmetic-logic unit (ALU), multiply-
accumulator (MAC), barrel-shifter, and memory busses—and
describe the numeric operations that support DSP functions.

• DSP programming concepts: A discussion of programming
will bring together theory and practice (math and architecture).
Finally, it will lay out the main parameters for a series-length DSP
design project, provided as an example. b

References
Higgins, R. J. Digital Signal Processing in VLSI, Englewood Cliffs, NJ: Prentice
Hall, 1990. DSP basics. Includes a wide-ranging bibliography. Available for
purchase from ADI. See the book purchase card.

Mar, A., ed. Digital Signal Processing Applications Using the ADSP-2100 Family—
Volume 1, Englewood Cliffs, NJ: Prentice Hall, 1992. Available for purchase
from ADI. See the book purchase card.

Mar, A., Babst, J., eds. Digital Signal Processing Applications Using the ADSP-
2100 Family—Volume 2, Englewood Cliffs, NJ: Prentice Hall, 1994. Available
for purchase from ADI. See the book purchase card.

Dearborn, G., ed. Digital Signal Processing Applications Using the ADSP-21000
Family—Volume 1, Norwood, MA: Analog Devices, Inc., 1994. Available for
purchase from ADI.0 See the book purchase card.

*Mar, A., Rempel, H., eds. ADSP-2100 Family User’s Manual, Norwood, MA:
Analog Devices, Inc., 1995. Free. Circle 1

Mar, A., Rempel, H., eds. ADSP-21020 Family User’s Manual, Norwood, MA:
Analog Devices, Inc., 1995. Free. Circle 2

*Rempel, H., ed. ADSP-21060/62 SHARC User’s Manual, Norwood, MA:
Analog Devices, Inc., 1995. Free. Circle 3

ANTI-ALIASING
FILTER

ADC

HOST
INTERFACE

ANALOG INPUT

DSP DAC

ANTI-IMAGING
FILTER

ANALOG OUTPUTDIGITAL I/O

