DSP 101 Part 4:

Programming Considerations for
Real-time 1/0

by Noam Levine and David Skolnick

So far, this series has introduced the following topics:

® Part 1 (vol. 31-1): DSP architecture and DSP advantages over
traditionally analog circuitry

® Part 2 (vol. 31-2): digital filtering concepts and DSP filtering
algorithms
* Part 3 (vol. 31-3): implementation of a finite-impulse- response

(FIR) filter algorithm and an overview of a demonstration
hardware platform, the ADSP-2181 EZ-Kit Lite™,

Now, we look more closely at DSP programming concerns that
are unique to real-time systems. This article focuses on how to
develop algorithms for DSP systems with a variety of I/O interfaces.

What does “real-time” mean? In an analog system, every task
is performed in “real time” with continuous signals and processing.
In a digital signal-processing (DSP) system, signals are represented
with sets of samples, i.e., values at discrete points in time. Thus
the time for processing a given number of samples in a DSP system
can have an arbitrary interpretation in “real time”, depending on
the sampling rate. The first article in this series introduces the
concept of sampling and the Nyquist criterion—that in real-time
applications, the sampling frequency must be at least twice the
frequency of the highest frequency component of interest in the
(analog) signal (Nyquist rate). The time between samples is referred
to as the sampling interval. To consider a system as operating in
“real time,” all processing of a given set of data (one or more
samples, depending on the algorithm) must be completed before
new data arrives.

This definition of real time implies that, for a processor operating
at a given clock rate, the speed and quantity of the input data
determines how much processing can be applied to the data without
falling behind the data stream.The idea of having a limited amount
of time with which to handle data may seem odd to analog designers
because this concept does not have a parallel in analog systems. In
analog systems, signals are processed continuously. The only
penalty in a slow system is limited frequency response. By
comparison, digital systems process parts of the signal, enough
for very accurate approximations, but only within a limited block
of time. Figure 1 shows a comparison. Real-time DSP can be
limited by the amount of data or type of processing that can be
completed within the algorithm’s time budget. For example, a given
DSP processor handling data values sampled at, say, 48-kHz (audio
signals), has less time to process those data values, including
execution of all necessary tasks, than one sampling 8-kHz voice-
band data.

In the filter example described earlier in this series, the input
sampling rate is 8 kHz. For the DSP in the example to keep up
with real-time data, all processing has to be done within a time
budget of 1/(8 kHz), or 125 ps. On a 33-MHz digital signal-
processor (30 ns per cycle), the time budget provides 125 ps/30 ns,
or 4166 instruction cycles, to complete processing and any other
required tasks.

Since there is a finite amount of time that can be budgeted to
perform any given algorithm, managing time is a central part of
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DSP system software design. Time management strategy
determines how the processor gets notified about events, influences
data handling, and shapes processor communications.

Analog
Signal
Processing

Figure 1. Comparison of analog and digital signal processing.
a. Analog: A response value corresponds to each data value
at all instants of time. b. Digital: For each sample, the data
must be transferred in and processed, an event marks the
end of processing (control), and extra time may be neces-
sary for other tasks within the cycle after the designated pro-
Cess occurs.

Event Notification: Interrupts: One can program a DSP to
process data using one of several strategies for handling the “event,”
the arrival of data. A status bit or flag pin could be read periodically
to determine whether new data is available. But—“polling” wastes
processor cycles. The data may arrive just after the last poll, but it
can’t make its presence known until the next poll. This makes it
difficult to develop real-time systems.

The second strategy is for the data to interrupt the processor on
arrival. Using interrupts to notify the processor is efficient, though
not as easy to program; clock cycles can be wasted during the wait
for an interrupt. Nevertheless, event-driven interrupt programming
being well-suited to processing real-world signals promptly, most
DSPs are designed to deal efficiently with them. In fact, they are
designed to respond very quickly to interrupts. The ADSP-2181’s
response time to an interrupt is about three processor cycles; i.e.,
within 75 ns the DSP has stopped doing what it was doing and is
handling the interrupt event (vector).

In many DSP-based systems, the interrupt rates, based on the
input data sampling rate, are often totally unrelated to the DSP’s
clock rate. In the FIR example seen earlier in this series, the
processor is interrupted at 125-s intervals to receive new data.

Interrupt Handling and Interrupt Vectors: Because interrupt
processing is such a vital element in DSP systems, processors
typically have built-in hardware mechanisms to handle interrupts
efficiently. Hard-wired mechanisms are more efficacious than
software alone because a DSP’s interrupt service routines (ISRs)
may have to meet all of the following demands:

* Fast context switching—switch from working on one task and
its data (a context) to another context without the time loss and
complication associated with writing programs to save register
contents and chip status information.

* Nested-interrupt handling—handle multiple interrupts of
different priorities “simultaneously.” The DSP handles one
interrupt at a time, but an interrupt of higher priority can take
precedence over the handling of a lower-priority interrupt.



» Continue to accept data/record status—while the DSP services
an interrupt, events keep on occurring in the real world and
data keeps on arriving. To keep up with the “real-world,” the
DSP must record these events and accept the data—then
process them when it has finished servicing the interrupt.

On Analog Devices DSPs, fast context switching is accomplished
using two sets of data registers. Only one set is active at a time,
containing all the data in process during that context. When
servicing an interrupt, the computer can switch from the active
to the alternate set without having to temporarily save the data
in memory. This facilitates rapid switching between tasks.

To handle multiple interrupts, Analog Devices DSPs record their
state for each one. Processor state information is kept on a set of
status “stacks” located in the DSP’s Program Sequencer. A “stack”
consists of a set of hardware registers. Current status information
is “pushed” onto the stack when an event occurs. This stack
mechanism also allows interrupts to be nested; one with higher
priority can interrupt one with lower priority.

Two hardware features, interrupt latch and automated I/O, let
Analog Devices DSPs stay abreast of the “real world” while
processing an interrupt. The latch keeps the DSP from missing
important events while servicing an interrupt. The other feature,
comprising various forms of automated I/O (including serial ports,
DMA, autobuffering, etc.) lets external devices pump data into
the DSP’s memory without requiring intervention from the DSP.
So no data is missed while the DSP is “busy.”

When an interrupt request is generated, by an external source or
an internal resource, the DSP processor automatically stores its
current state of operation, and prepares to execute the interrupt
routine. Interrupt routines are dispatched from an interrupt vector
table. An interrupt vector table is an area in Program Memory
with instruction addresses assigned to particular DSP interrupt
functions. For example, in the table below, a Transmit (Tx)
interrupt at serial port 1 (SPORT1) of an ADSP-2181 processor
will cause the next instruction to be executed at program memory
(PM) location 0x0020, followed by the contents of the next three
locations, through 0x0023 (the interrupt routine). As the 12 items
in the table indicate, an ADSP-2181 can handle interrupts from
11 locations (external hardware, DMA ports, and the serial ports)
and the processor Reset. The table lists the programmed
instructions assigned to each interrupt vector source in memory
locations 0x0000 to 0x002F for an FIR filter program.
Jump start; nop; nop; nop; /* PM(0x0000-03): Reset vector */
rti; nop; nop; nop; * PM(0x0004-07): IRQ2 vector */
rti; nop; nop; nop; [* PM(0x0008-0B): IRQL1 vector */
rti; nop; nop; nop; [* PM(0x000C-0F): IRQLO vector */
ar = dm(stat_flag); ar = pass ar; if eq_rti; jump next_cmd;

/* PM(0x0010-13): SPORTO Tx vector */
jump input_samples; nop; nop; nop;

/* PM(0x0014-17): SPORTO Rx vector */
jump irge; nop; nop; nop;  /* PM(0x0018-1B): IRQE vector */
rti; nop; nop; nop; [* PM(0x001C-1F): BDMA vector */

rti; nop; nop; nop; * PM(0x0020-23): SPORT1 Tx vector */
rti; nop; nop; nop; [* PM(0x0024-27): SPORT1 Rx vector */
rti; nop; nop; nop; [* PM(0x0028-2B): Timer vector */

(

rti; nop; nop; nop; * PM(0x002C-2F): Powerdown vector */

Each interrupt vector has four instruction locations. Typically,
these instructions will cause the processor to jump to another
area of memory in order to process the data, as is shown in the
Reset (at 0x0000), SPORTO0 Rx (0x0014), and IRQE (0x0018)
interrupt vectors. If there are just a few steps—such as reading a
value, checking status, or loading memory—that can be done
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within the four available instruction locations, they are programmed
directly, as shown in the SPORTO Tx vector (0x0010-13). Any
unused interrupt vectors call for return from interrupt (rti), with
three nop (no operation) instructions.

The nop instructions serve as place holders—instruction space
used to ensure that the correct interrupt action lines up with the
hardware-specified interrupt vector. The rti instruction at the
beginning of each unused vector location is both placeholder and
safety valve. If an unused interrupt is mistakenly unmasked or
inadvertently triggered, “rti” causes a return to normal execution.

Data I/O

In DSP systems, interrupts are typically generated by the arrival
of data or the requirement to provide new output data. Interrupts
may occur with each sample, or they may occur after a frame of
data has been collected. The differences greatly influence how the
DSP algorithm deals with data.

For algorithms that operate on a sample-by-sample basis, DSP
software may be required to handle each incoming and outgoing
data value. Each DSP serial port incorporates two data I/O
registers, a recerve register (Rx), and a rransmit register (Tx). When
a serial word is received, the port will typically generate a Receive
interrupt. The processor stops what it is doing, begins executing
code at the interrupt vector location, reads the incoming value
from the Rx register into a processor data register, and either
operates on that data value or returns to its background task. In
the table above, the computer jumps to a program segment,
“input_samples”, performs whatever instructions are programmed
in that segment, and returns from the interrupt, either directly or
via a return to the interrupt vector.

To transmit data, the serial port can generate a Transmit interrupt,
indicating that new data can be written to the SPORT Tx register.
The DSP can then begin code execution at the SPORT Tx
interrupt vector and typically transfer a value from a data register
to the SPORT Tx register. If data input and output are controlled
by the same sampling clock, only one interrupt is necessary. For
example, if a program segment is initiated by Receive interrupt
timing, new data would be read during the interrupt routine; then
either the previously computed result, which is being held in a
register, would be transmitted, or a new result would be computed
and immediately transmitted—as the final step of the interrupt
routine.

All of these mechanisms help a DSP to approach the ability to
emulate what an analog system does naturally—continuously
process data in real time—but with digital precision and flexibility.
In addition, in an efficiently programmed digital system, spare
processor cycles left between processing data sets can be used to
handle other tasks.

Programming Considerations

In a “real-time” system, processing speed is of the essence. By
using SPORT autobuffering, no time is lost to data I/O. Instead,
the data management goal is to make sure that the selected address
points to the new data.

In the FIR filter example (Analog Dialogue 31-3, page 15),a SPORT
Receive interrupt request is generated when the input autobuffer
is full, meaning that the DSP has received three data words: status,
left channel data, and right channel data. Since this simplified
application uses single-channel data, only the data value that resides
at location rx_buf+1 is used by the algorithm.
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Filter Algorithm Expansion In other applications, the data handling
can be more involved. For example, if the FIR filter of the example
were expanded to a two-channel implementation, the core DSP
algorithm code would not have to change. The code relating to
data handling, however, would have to be modified to account for
a second data stream and a second set of coefficients.

In the filter code, two new buffers in memory would be required
to handle both the additional data stream and the additional set of
coefficients. The core filter loop may be isolated as a separate
“callable” function. This technique lets the same code be used,
regardless of the input data values. Benefits of this programming
style include readable code, re-usable algorithms, and reduced code
size. If a modular approach is not taken, the filter loop would have
to be repeated, using additional DSP memory space.

The SPORT Receive interrupt routine would then consist of the
setting of pointer and calling the filter. The revised filter routine is
shown in the following listing:

Filter: cntr = taps - 1;

mr =0, mx0 = dm(i2,m1), my0 = pm(i5,m5);
/* clear accumulator, get first data
and coefficient value */

do filt_loop until ce; [* set-up zero-overhead loop */

filt_loop: mr = mr + mx0*my0(ss), mx0 = dm(i2,m1),

my0 = pm(i5,m5); /* MAC and two data fetches */

mr = mr + mx0 * my0 (rnd);  /* final multiply, round to 16-bit

result */
if mv sat mr; [* check for overflow*/
rts; [* return */

It’s important to note that the only modifications to the core filter
loop were the addition of a label, “Filter:” at the beginning of the
routine, and the addition of an “rts” (return from subroutine)
instruction at the end. These additions change filter code from a
stand-alone routine into a subroutine that can be called from other
routines. No longer a single-purpose routine, it has become a re-
usable, callable subroutine.

With the core filter set up as a callable subroutine, the two-channel
data handling requirements can now be addressed. To simplify
some of the programming issues, this example assumes that both
the left and right channels use the same filter coefficients.

In the third installment of this series, the entire filter application
assembly code was displayed. At the top of the code listing, all of
the required memory buffers were declared. To expand the filter
application to handle two channels of data, the required new
variables and buffers need to be declared. For the incoming data,
the buffer declaration,

var/dm/circ_filt_data[taps]; /* input data buffer */
would need to be replaced with two buffers, declared as

var/dm/circ_filtl_dataftaps]; /* left  channel input data buffer */
var/dm/circ_filt2_data[taps]; /* right channel input data buffer */

Because both channels are to have the same filter coefficients
applied to them, the data buffers are of equal length.

The filter loop subroutine expects certain data and coefficient
values to be accessed using particular address registers. Specifically,
address register I2 must point to the oldest data sample, and 15
must point to the proper coefficient value prior to the filter routine
being called.

Because the filters for both the left and right channel will be sharing
the same memory pointers, there has to be a mechanism for
differentiating the two data streams. For the data pointer, 12, two
new variables need to be defined, “filter]l_ptr” and “filter2_ptr.”
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These locations in memory are going to be used to store address
values appropriate for each data stream. The circular buffering
capability of the ADSP-2181 is used to ensure that the data pointer
is always in the correct place in the buffer whenever the filter is
executed. Because the subroutine is now dealing with two bulffers,
the pointer locations need to be saved when processing for each
channel is completed.

To set up the pointers, two variables in data memory need to be
declared as follows:

.var/dm filterl_ptr;
.var/dm filter2_ptr;

[* data pointer for left channel data */

[* data pointer for right channel data */

These variable then need to be initialized with the starting address
of each of the data buffers;

Anit filter1_ptr: ~iltl_data; /* initialize starting point,

left channel */

Ainit filter2_ptr: ~filt2_data; /* initialize starting point,
right channel */

WA

The DSP assembler software recognizes the symbol to mean
“address of.” The DSP linker software fills in the appropriate
address value. In this way, the pointer variables in the executable
program are initialized with the starting addresses of the
appropriate memory buffers.

The following listing shows how the FIR Filter interrupt routine
uses these new memory elements. The original Filter subroutine
from the 3rd installment has been modified to provide two separate
channels of filtering. Instead of launching directly into the filter
calculation, the routine must first load the appropriate data pointer.
The filter routine is then called, and the resulting output is placed
in the correct location for transmission.

S — S S— %

input_samples:
ena sec_reg; I* use shadow register bank */
[* set up for filter 1 */
i2 = dm(filterl_ptr);
ax0 = dm(rx_buf + 1);

/* set data pointer for filter 1 */
/* read left channel data */

dm(i2,m1) = axo; [* write new data into delay line,
pointer now pointing to oldest data */
call filter; [* perform the first filter for left

channel data */

dm(tx_buf+1) = mrl,;
dm(filterd_ptr) = i2; *

[* write left-channel output data */
save updated filterl data pointer */

/* set up for filter 2 */
i2 = dm(filter2_ptr);
ax0 = dm(rx_buf + 2);

/* set data pointer for filter 2 */
[* read right channel data */

dm(i2,m1) = axo; [* write new data into delay line,
pointer  now pointing to oldest data */
call filter; [* perform the filter again for the

right channel data */

dm(tx_buf+2) = mr1;
dm(filter2_ptr) = i2; *

[* write right channel output data */
save updated filter2 data pointer */

rti; /* return from interrupt */

Because the core filter algorithm no longer handles data I/O, this
subroutine can be expanded to more channels of filtering by merely
adding more pointer variables and declaring more buffer space
(as long as sufficient memory exists!) Similarly, different
coefficients can be used for the two filters by setting up variables
that contain coefficient-buffer pointer information. In either case,
the filter algorithm does not need to be altered. By using this style
of modular programming, the user can build up a library of callable

11



DSP functions. Differences for particular systems can thus be
reduced to data-handling issues rather than the development of
new algorithms. While this programming style does not necessarily
allow the algorithm to perform its task more quickly, the system
designer has more flexibility in establishing how data flows through
the system.

Real-Time Interface Issues: So far, we have examined how
real-time programming in embedded systems relies on rapid
interrupt response, efficient data handling, and fast program
execution. In addition, the flow of data into and out of the
processor also influences how well the system will work in a real-
time embedded environment.

The primary data flows into and out of a digital signal processor
can be both parallel and serial. Parallel transfers are typically at
least as wide as the native data word of the processor’s architecture
(16 bits for an ADSP-2100 Family processor, 32 bits for the
SHARC®). Parallel transfers occur via the external memory bus
or external host interface bus of the processor. Serial data transfers
require considerably fewer interconnections; they are frequently
used to communicate with data converters.

Serial Interface: Ease of hardware interfacing is an important
element of efficient DSP system implementation. The ADSP-2181
EZ-Kit Lite system uses an AD1847 serial codec (COder/
DECoder). Serial codecs permit data transfers via a serial port
(SPORT) on the DSP. This serial port is not an RS-232 PC-style
asynchronous serial port; it is a 5-wire synchronous interface that
passes bit-clock, Receive-data, Transmit-data, and frame-
synchronization signals. Major benefits of serial interfaces are
low pin count and ease of hardware hookup. The AD1847 requires
only 4 signals to interface to the DSP: serial clock, Receive data,
Transmit data, and Receive frame-synchronization signal. The
serial data stream is time-division multiplexed (TDM), meaning
that the same physical line can carry more than one type of
information in serial order. In the case of the AD1847 application
on EZ-Kit Lite, initiated in the last issue, the serial line carries
both left- and right-channel audio information, along with codec
control and status information. As noted earlier, the processor
has various means for handling this data. SPORT Interrupts are
generated automatically by the serial port hardware for either
Receive or Transmit data and for either a single word or a block
of words (Figure 2).

/RESET |- FO
SDI [ DTO
SDO | DRO
SDFS »| RFSO
SCLK » SCLK
+5V
BM T
AD1847 ADSP-218x
SOUNDPORT 16-BIT DSP

STEREO CODEC

Figure 2. Serial interfacing between digital signal processor
and |1/0 device.

Parallel Interface: Even with a serial bit clock running as fast as
the DSP processor, a serial interface trades data transfer speed
for simplicity of wiring, transferring a data word at a fraction of
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the DSP processor speed. For system performance that requires
higher data rates, a parallel interface can be used. When interfacing
in parallel, the DSP exercises its external data and address busses
to read or write data to a peripheral device. On the ADSP-2181,
the buses can interface with up to 16 bits of data.

Parallel data transfer is always faster than serial transfers. The DSP
can perform an external access every processor cycle, but this
requires really fast parallel peripherals that can keep up with it,
such as fast SRAM chips. Parallel data transfers with other entities
usually occur at less than one per processor cycle.

Interrupt handling is different for the serial and parallel interfaces.
Since the external data bus of the DSP processor is a general-
purpose entity handling all sorts of data, it does not have dedicated
signal lines for interrupt generation and control; however, other
DSP resources are available. On the ADSP-2181, several external
hardware interrupt lines, such as the one for I/O memory select,
are available for triggering by an external device, such as an A/D
converter or codec. Such an interface is shown in Figure 3, involving
a parallel device and the ADSP-2181 DSP.
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Figure 3. Parallel I/0 interfacing for a DSP.

When responding to the interrupt for parallel data, the processor

reads the appropriate source and typically places that data value

in memory, by executing instructions similar to those shown here:
irg2_svc: ax0 = 10(ad_converter); dm(i2,m1) = ax0; rti;

“ad_converter” is a previously defined address in I/O space.

REVIEW AND PREVIEW

The goal of this article has been to detail the programming
concerns that DSP developers face when handling I/O and other
events in real-time systems. Issues introduced include real-time
data (samples and frames), interrupts and interrupt-handling,
automated I/O, and generalizing routines to make callable
subroutines. This brief article could not do justice to the many
levels of detail associated with each of these topics. Further
information is available in the references below. Future topics in
this series will continue to build on this application. The next article
will add more features to our growing example program and
describe software validation (i.e., debugging) techniques.
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